
Contents

 Windows Forms for .NET
 What's new
 Get started

 Overview
 Create an app

 Migration
 Migrate to .NET 5

 Forms
 Event handlers
 Automatic scaling
 Common tasks

 Add a form
 Resize a form
 Position a form

 Controls
 Overview
 Layout options
 Labels
 Events
 Custom controls
 Custom painting and drawing
 Apply accessibility information
 Common tasks

 Add a control to a form
 Create access key shortcuts
 Set the text displayed by a control
 Set the the tab order of a control
 Dock and anchor controls
 Set the image displayed by a control

file:///T:/ct4y/b3m3/dotnet/desktop/1766060af223bf48308ebac5b54a3bb3/winforms/index.html#body

 Add or remove event handlers
 Make thread-safe calls to controls

 User input - keyboard
 Overview
 Use keyboard events
 Validate input
 Common tasks

 Change the pressed key
 Determine which modifier key is pressed
 Handle input at the form level
 Simulate keyboard events

 User input - mouse
 Overview
 Use mouse events
 Drag-and-drop functionality
 Common tasks

 Distinguish between clicks and double-clicks
 Control and modify the mouse pointer
 Simulate mouse events

What's new (Windows Forms .NET)
 3/9/2021 • 2 minutes to read • Edit Online

 Enhanced features

 New controls

 Enhanced controls

Windows Forms for .NET 5.0 adds the following features and enhancements over .NET Framework.

There are a few breaking changes you should be aware of when migrating from .NET Framework to .NET 5.0.

For more information, see Breaking changes in Windows Forms.

C a u t i o n

Microsoft UI Automation patterns work better with accessibility tools like Narrator and Jaws.

Improved performance.

The VB.NET project template defaults to DPI SystemAware settings for high DPI resolutions such as 4k

monitors.

The default font matches the current Windows design recommendations.

This may impact the layout of apps migrated from .NET Framework.

The following controls have been added since Windows Forms was ported to .NET Framework:

System.Windows.Forms.TaskDialog

A task dialog is a dialog box that can be used to display information and receive simple input from the

user. Like a message box, it's formatted by the operating system according to parameters you set. Task

dialog has more features than a message box. For more information, see the Task dialog sample.

Microsoft.Web.WebView2.WinForms.WebView2

A new web browser control with modern web support. Based on Edge (Chromium). For more

information, see Getting started with WebView2 in Windows Forms.

System.Windows.Forms.ListView

Supports collapsible groups

Footers

Group subtitle, task, and title images

System.Windows.Forms.FolderBrowserDialog

This dialog has been upgraded to use the modern Windows experience instead of the old Windows 7

experience.

System.Windows.Forms.FileDialog

Added support for ClientGuid.

ClientGuid enables a calling application to associate a GUID with a dialog's persisted state. A

dialog's state can include factors such as the last visited folder and the position and size of the

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/whats-new/index.md
https://docs.microsoft.com/en-us/dotnet/core/compatibility/winforms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.taskdialog
https://github.com/dotnet/samples/tree/master/windowsforms/TaskDialogDemo
https://docs.microsoft.com/en-us/dotnet/api/microsoft.web.webview2.winforms.webview2
https://docs.microsoft.com/en-us/microsoft-edge/webview2/gettingstarted/winforms
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.folderbrowserdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.filedialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.filedialog.clientguid#system_windows_forms_filedialog_clientguid

 See also

dialog. Typically, this state is persisted based on the name of the executable file. With ClientGuid ,

an application can persist different states of the dialog within the same application.

System.Windows.Forms.TextRenderer

Support added for ReadOnlySpan<T> to enhance performance of rendering text.

Breaking changes in Windows Forms

Tutorial: Create a new WinForms app (Windows Forms .NET)

How to migrate a Windows Forms desktop app to .NET 5

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textrenderer
https://docs.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://docs.microsoft.com/en-us/dotnet/core/compatibility/winforms

Desktop Guide (Windows Forms .NET)
 3/9/2021 • 6 minutes to read • Edit Online

IMPORTANT

 Introduction

 Why migrate from .NET Framework

 Build rich, interactive user interfaces

Welcome to the Desktop Guide for Windows Forms, a UI framework that creates rich desktop client apps for

Windows. The Windows Forms development platform supports a broad set of app development features,

including controls, graphics, data binding, and user input. Windows Forms features a drag-and-drop visual

designer in Visual Studio to easily create Windows Forms apps.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

There are two implementations of Windows Forms:

1. The open-source implementation hosted on GitHub.

This version runs on .NET 5 and .NET Core 3.1. The Windows Forms Visual Designer requires, at a

minimum, Visual Studio 2019 version 16.8 Preview.

2. The .NET Framework 4 implementation that's supported by Visual Studio 2019 and Visual Studio 2017.

.NET Framework 4 is a Windows-only version of .NET and is considered a Windows Operating System

component. This version of Windows Forms is distributed with .NET Framework.

This Desktop Guide is written for Windows Forms on .NET 5. For more information about the .NET Framework

version of Windows Forms, see Windows Forms for .NET Framework.

Windows Forms is a UI framework for building Windows desktop apps. It provides one of the most productive

ways to create desktop apps based on the visual designer provided in Visual Studio. Functionality such as drag-

and-drop placement of visual controls makes it easy to build desktop apps.

With Windows Forms, you develop graphically rich apps that are easy to deploy, update, and work while offline

or while connected to the internet. Windows Forms apps can access the local hardware and file system of the

computer where the app is running.

To learn how to create a Windows Forms app, see Tutorial: Create a new WinForms app (Windows Forms .NET).

Windows Forms for .NET 5.0 provides new features and enhancements over .NET Framework. For more

information, see What's new in Windows Forms for .NET 5. To learn how to migrate an app, see How to migrate

a Windows Forms desktop app to .NET 5.

Windows Forms is a UI technology for .NET, a set of managed libraries that simplify common app tasks such as

reading and writing to the file system. When you use a development environment like Visual Studio, you can

create Windows Forms smart-client apps that display information, request input from users, and communicate

with remote computers over a network.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/overview/index.md
https://github.com/dotnet/winforms
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019+desktopguide+winforms
https://docs.microsoft.com/en-us/dotnet/desktop/winforms/index

 Create forms and controls

 Display and manipulate data

 Deploy apps to client computers

In Windows Forms, a form is a visual surface on which you display information to the user. You ordinarily build

Windows Forms apps by adding controls to forms and developing responses to user actions, such as mouse

clicks or key presses. A control is a discrete UI element that displays data or accepts data input.

When a user does something to your form or one of its controls, the action generates an event. Your app reacts

to these events with code, and processes the events when they occur.

Windows Forms contains a variety of controls that you can add to forms: controls that display text boxes,

buttons, drop-down boxes, radio buttons, and even webpages. If an existing control doesn't meet your needs,

Windows Forms also supports creating your own custom controls using the UserControl class.

Windows Forms has rich UI controls that emulate features in high-end apps like Microsoft Office. When you use

the ToolStrip and MenuStrip controls, you can create toolbars and menus that contain text and images, display

submenus, and host other controls such as text boxes and combo boxes.

With the drag-and-drop Windows Forms Designer in Visual Studio, you can easily create Windows Forms

apps. Just select the controls with your cursor and place them where you want on the form. The designer

provides tools such as gridlines and snap lines to take the hassle out of aligning controls. You can use the

FlowLayoutPanel, TableLayoutPanel, and SplitContainer controls to create advanced form layouts in less time.

Finally, if you must create your own custom UI elements, the System.Drawing namespace contains a large

selection of classes to render lines, circles, and other shapes directly on a form.

For step-by-step information about how to use these features, see the following Help topics.

How to add a form to a project

How to add Controls to to a form

Many apps must display data from a database, XML or JSON file, web service, or other data source. Windows

Forms provides a flexible control that is named the DataGridView control for displaying such tabular data in a

traditional row and column format, so that every piece of data occupies its own cell. When you use

DataGridView, you can customize the appearance of individual cells, lock arbitrary rows and columns in place,

and display complex controls inside cells, among other features.

Connecting to data sources over a network is a simple task with Windows Forms. The BindingSource

component represents a connection to a data source, and exposes methods for binding data to controls,

navigating to the previous and next records, editing records, and saving changes back to the original source. The

BindingNavigator control provides a simple interface over the BindingSource component for users to navigate

between records.

You can create data-bound controls easily by using the Data Sources window in Visual Studio. The window

displays data sources such as databases, web services, and objects in your project. You can create data-bound

controls by dragging items from this window onto forms in your project. You can also data-bind existing

controls to data by dragging objects from the Data Sources window onto existing controls.

Another type of data binding you can manage in Windows Forms is settings. Most apps must retain some

information about their run-time state, such as the last-known size of forms, and retain user preference data,

such as default locations for saved files. The Application Settings feature addresses these requirements by

providing an easy way to store both types of settings on the client computer. After you define these settings by

using either Visual Studio or a code editor, the settings are persisted as XML and automatically read back into

memory at run time.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.menustrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.bindingsource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.bindingnavigator
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.bindingsource

 See also

After you have written your app, you must send the app to your users so that they can install and run it on their

own client computers. When you use the ClickOnce technology, you can deploy your apps from within Visual

Studio by using just a few clicks, and provide your users with a URL pointing to your app on the web. ClickOnce

manages all the elements and dependencies in your app, and ensures that the app is correctly installed on the

client computer.

ClickOnce apps can be configured to run only when the user is connected to the network, or to run both online

and offline. When you specify that an app should support offline operation, ClickOnce adds a link to your app in

the user's Star t menu. The user can then open the app without using the URL.

When you update your app, you publish a new deployment manifest and a new copy of your app to your web

server. ClickOnce will detect that there is an update available and upgrade the user's installation. No custom

programming is required to update old apps.

Tutorial: Create a new WinForms app (Windows Forms .NET)

How to add a form to a project (Windows Forms .NET)

Add a control (Windows Forms .NET)

Tutorial: Create a new WinForms app (Windows
Forms .NET)

 3/9/2021 • 4 minutes to read • Edit Online

IMPORTANT

 Prerequisites

 Create a WinForms app

In this short tutorial, you'll learn how to create a new Windows Forms (WinForms) app with Visual Studio. Once

the initial app has been generated, you'll learn how to add controls and how to handle events. By the end of this

tutorial, you'll have a simple app that adds names to a list box.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In this tutorial, you learn how to:

Create a new WinForms app

Add controls to a form

Handle control events to provide app functionality

Run the app

Visual Studio 2019 version 16.8 or later versions

Select the Visual Studio Desktop workload

Select the .NET 5 individual component

The first step to creating a new app is opening Visual Studio and generating the app from a template.

1. Open Visual Studio.

2. Select Create a new project.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/get-started/create-app-visual-studio.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019+desktopguide+winforms
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019&preserve-view=true#modify-workloads
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019&preserve-view=true#modify-individual-components

IMPORTANT

3. In the Search for templates box, type winforms , and then press Enter.

4. In the code language dropdown, choose C# or Visual Basic.

5. In the templates list, select Windows Forms App (.NET) and then click Next.

Don't select the Windows Forms App (.NET Framework) template.

 Important parts of Visual Studio

6. In the Configure your new project window, set the Project name to Names and click Create.

You can also save your project to a different folder by adjusting the Location setting.

Once the app is generated, Visual Studio should open the designer pane for the default form, Form1. If the form

designer isn't visible, double-click on the form in the Solution Explorer pane to open the designer window.

Support for WinForms in Visual Studio has four important components that you'll interact with as you create an

app:

1. Solution Explorer

 Add controls to the form

O B JEC T SET T IN G VA L UE

Form Text Names

Size 268, 180

Label Location 12, 9

Text Names

Listbox Name lstNames

Location 12, 27

Size 120, 94

Textbox Name txtName

Location 138, 26

All if your project files, code, forms, resources, will appear in this pane.

2. Properties

This pane shows property settings you can configure based on the item selected. For example, if you

select an item from Solution Explorer , you'll see property settings related to the file. If you select an

object in the Designer , you'll see settings for the control or form.

3. Form Designer

This is the designer for the form. It's interactive and you can drag-and-drop objects from the Toolbox. By

selecting and moving items in the designer, you can visually compose the user interface (UI) for your app.

4. Toolbox

The toolbox contains all of the controls you can add to a form. To add a control to the current form,

double-click a control or drag-and-drop the control.

With the Form1 form designer open, use the Toolbox pane to add the following controls to the form:

Label

Button

Listbox

Textbox

You can position and size the controls according to the following settings. Either visually move them to match

the screenshot that follows, or click on each control and configure the settings in the Proper ties pane. You can

also click on the form title area to select the form:

Size 100, 23

Button Name btnAdd

Location 138, 55

Size 100, 23

Text Add Name

O B JEC T SET T IN G VA L UE

 Handle events

You should have a form in the designer that looks similar to the following:

Now that the form has all of its controls laid out, you need to handle the events of the controls to respond to

user input. With the form designer still open, perform the following steps:

private void btnAdd_Click(object sender, EventArgs e)
{

}

Private Sub btnAdd_Click(sender As Object, e As EventArgs) Handles btnAdd.Click

End Sub

1. Select the button control on the form.

2. In the Proper ties pane, click on the events icon to list the events of the button.

3. Find the Click event and double-click it to generate an event handler.

This action adds the following code to the the form:

The code we'll put in this handler will add the name specified by the txtName textbox control to the

lstNames listbox control. However, we want there to be two conditions to adding the name: the name

provided must not be blank, and the name must not already exist.

4. The following code demonstrates adding a name to the lstNames control:

 Run the app

 Next steps

private void btnAdd_Click(object sender, EventArgs e)
{
 if (!string.IsNullOrWhiteSpace(txtName.Text) && !lstNames.Items.Contains(txtName.Text))
 lstNames.Items.Add(txtName.Text);
}

Private Sub btnAdd_Click(sender As Object, e As EventArgs) Handles btnAdd.Click
 If Not String.IsNullOrWhiteSpace(txtName.Text) And Not lstNames.Items.Contains(txtName.Text) Then
 lstNames.Items.Add(txtName.Text)
 End If
End Sub

Now that the event has been coded, you can run the app by pressing the F5 key or by selecting Debug > Star t

Debugging from the menu. The form displays and you can enter a name in the textbox and then add it by

clicking the button.

Learn more about Windows Forms

How to migrate a Windows Forms desktop app to
.NET 5

 8/12/2021 • 9 minutes to read • Edit Online

 Try the upgrade assistant

 Prerequisites

 Consider

This article describes how to migrate a Windows Forms desktop app from .NET Framework to .NET 5 or later.

The .NET SDK includes support for Windows Forms applications. Windows Forms is still a Windows-only

framework and only runs on Windows.

Migrating your app from .NET Framework to .NET 5 generally requires a new project file. .NET 5 uses SDK-style

project files while .NET Framework typically uses the older Visual Studio project file. If you've ever opened a

Visual Studio project file in a text editor, you know how verbose it is. SDK-style projects are smaller and don't

require as many entries as the older project file format does.

To learn more about .NET 5, see Introduction to .NET.

The .NET Upgrade Assistant is a command-line tool that can be run on different kinds of .NET Framework apps.

It's designed to assist with upgrading .NET Framework apps to .NET 5. After running the tool, in most cases the

app will require additional effort to complete the migration. The tool includes the installation of analyzers that

can assist with completing the migration.

For more information, see Upgrade a WPF App to .NET 5 with the .NET Upgrade Assistant.

Visual Studio 2019 version 16.8 Preview

Select the Visual Studio Desktop workload.

Select the .NET 5 individual component.

Preview WinForms designer in Visual Studio.

To enable the designer, go to Tools > Options > Environment > Preview Features and select the Use

the preview Windows Forms designer for .NET Core apps option.

This article uses the Matching game sample app. If you want to follow along, download and open the

application in Visual Studio. Otherwise, use your own app.

When migrating a .NET Framework Windows Forms application, there are a few things you must consider.

1. Check that your application is a good candidate for migration.

Use the .NET Portability Analyzer to determine if your project will migrate to .NET 5. If your project has

issues with .NET 5, the analyzer helps you identify those problems. The .NET Portability Analyzer tool can

be installed as a Visual Studio extension or used from the command line. For more information, see .NET

Portability Analyzer.

2. You're using a different version of Windows Forms.

When .NET Core 3.0 was released, Windows Forms went open source on GitHub. The code for Windows

Forms for .NET 5 is a fork of the .NET Framework Windows Forms codebase. It's possible some

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/migration/index.md
https://docs.microsoft.com/en-us/dotnet/core/introduction
https://docs.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-wpf-framework
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019+desktopguide+winforms
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019&preserve-view=true#modify-workloads
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019&preserve-view=true#modify-individual-components
https://github.com/dotnet/samples/tree/master/windowsforms/matching-game/net45/
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://github.com/dotnet/winforms

 Back up your projects

 NuGet packages

 Project file

differences exist and your app will be difficult to migrate.

3. The Windows Compatibility Pack may help you migrate.

Some APIs that are available in .NET Framework aren't available in .NET 5. The Windows Compatibility

Pack adds many of these APIs and may help your Windows Forms app become compatible with .NET 5.

4. Update the NuGet packages used by your project.

It's always a good practice to use the latest versions of NuGet packages before any migration. If your

application is referencing any NuGet packages, update them to the latest version. Ensure your application

builds successfully. After upgrading, if there are any package errors, downgrade the package to the latest

version that doesn't break your code.

The first step to migrating a project is to back up your project! If something goes wrong, you can restore your

code to its original state by restoring your backup. Don't rely on tools such as the .NET Portability Analyzer to

back up your project, even if they seem to. It's best to personally create a copy of the original project.

If your project is referencing NuGet packages, you probably have a packages.config file in your project folder.

With SDK-style projects, NuGet package references are configured in the project file. Visual Studio project files

can optionally define NuGet packages in the project file too. .NET 5 doesn't use packages.config for NuGet

packages. NuGet package references must be migrated into the project file before migration.

To migrate the packages.config file, do the following steps:

1. In Solution explorer , find the project you're migrating.

2. Right-click on packages.config > Migrate packages.config to PackageReference.

3. Select all of the top-level packages.

A build report is generated to let you know of any issues migrating the NuGet packages.

The next step in migrating your app is converting the project file. As previously stated, .NET 5 uses SDK-style

project files and won't load the Visual Studio project files that .NET Framework uses. However, there's the

possibility that you're already using SDK-style projects. You can easily spot the difference in Visual Studio. Right-

click on the project file in Solution explorer and look for the Edit Project File menu option. If this menu item

is missing, you're using the old Visual Studio project format and need to upgrade.

Convert each project in your solution. If you're using the sample app previously referenced, both the

MatchingGame and MatchingGame.Logic projects would be converted.

To convert a project, do the following steps:

1. In Solution explorer , find the project you're migrating.

2. Right-click on the project and select Unload Project.

3. Right-click on the project and select Edit Project File.

4. Copy-and-paste the project XML into a text editor. You'll want a copy so that it's easy to move content into

the new project.

5. Erase the content of the file and paste the following XML:

https://docs.microsoft.com/en-us/dotnet/core/porting/windows-compat-pack
https://docs.microsoft.com/en-us/dotnet/core/porting/windows-compat-pack

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 <TargetFramework>net5.0-windows</TargetFramework>
 <UseWindowsForms>true</UseWindowsForms>
 <GenerateAssemblyInfo>false</GenerateAssemblyInfo>
 </PropertyGroup>

</Project>

IMPORTANT
Libraries don't need to define an <OutputType> setting. Remove that entry if you're upgrading a library project.

This XML gives you the basic structure of the project. However, it doesn't contain any of the settings from the old

project file. Using the old project information you previously copied to a text editor, do the following steps:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 <TargetFramework>net5.0-windows</TargetFramework>
 <UseWindowsForms>true</UseWindowsForms>
 <GenerateAssemblyInfo>false</GenerateAssemblyInfo>

 <RootNamespace>MatchingGame</RootNamespace>
 <AssemblyName>MatchingGame</AssemblyName>
 </PropertyGroup>

</Project>

1. Copy the following elements from the old project file into the <PropertyGroup> element in the new

project file:

<RootNamespace>

<AssemblyName>

Your project file should look similar to the following XML:

2. Copy the <ItemGroup> elements from the old project file that contain <ProjectReference> or

<PackageReference> into the new file after the </PropertyGroup> closing tag.

Your project file should look similar to the following XML:

 Resources and settings

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 (contains settings previously described)
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include="..\MatchingGame.Logic\MatchingGame.Logic.csproj">
 <Project>{36b3e6e2-a9ae-4924-89ae-7f0120ce08bd}</Project>
 <Name>MatchingGame.Logic</Name>
 </ProjectReference>
 </ItemGroup>
 <ItemGroup>
 <PackageReference Include="MetroFramework">
 <Version>1.2.0.3</Version>
 </PackageReference>
 </ItemGroup>

</Project>

<ItemGroup>
 <ProjectReference Include="..\MatchingGame.Logic\MatchingGame.Logic.csproj" />
</ItemGroup>

The <ProjectReference> elements don't need the <Project> and <Name> children, so you can remove

those settings:

One thing to note about the difference between .NET Framework projects and the SDK-style projects used by

.NET 5 is that .NET Framework projects use an opt-in model for code files. Any code file you want to compile

needs to be explicitly defined in your project file. SDK-style projects are reverse, they default to opt-out behavior :

All code files starting from the project's directory and below are automatically included in your project. You

don't need to migrate these entries if they are simple and without settings. This is the same for other common

files such as resx.

Windows Forms projects may also reference the following files:

Properties\Settings.settings

Properties\Resources.resx

Properties\app.manifest

The app.manifest file is automatically referenced by your project and you don't need to do anything special to

migrate it.

Any *.resx and *.settings files in the Properties folder need to be migrated in the project. Copy those entries

from the old project file into an <ItemGroup> element in the new project. After you copy the entries, change all

<Compile Include="value"> elements to instead use the Update attribute instead of Include .

Import the configuration for the Settings.settings file.

 Visual Basic

<ItemGroup>
 <None Update="Properties\Settings.settings">
 <Generator>SettingsSingleFileGenerator</Generator>
 <LastGenOutput>Settings.Designer.cs</LastGenOutput>
 </None>
 <Compile Update="Properties\Settings.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Settings.settings</DependentUpon>
 <DesignTimeSharedInput>True</DesignTimeSharedInput>
 </Compile>
</ItemGroup>

IMPORTANT

<ItemGroup>
 <EmbeddedResource Update="Properties\Resources.resx">
 <Generator>ResXFileCodeGenerator</Generator>
 <LastGenOutput>Resources.Designer.cs</LastGenOutput>
 </EmbeddedResource>
 <Compile Update="Properties\Resources.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Resources.resx</DependentUpon>
 <DesignTime>True</DesignTime>
 </Compile>
</ItemGroup>

IMPORTANT

Visual Basic projects typically use the folder My Project while C# projects typically use the folder Properties for

the default project settings file.

Import the configuration for any resx file, such as the properties\Resources.resx file. Notice that the

Include attribute was set to Update on the <Compile> and <EmbeddedResource> element, and <SubType>

was removed from <EmbeddedResource> :

Visual Basic projects typically use the folder My Project while C# projects typically use the folder Properties for

the default project resource file.

Visual Basic language projects require extra configuration.

<ItemGroup>
 <None Include="My Project\Application.myapp">
 <Generator>MyApplicationCodeGenerator</Generator>
 <LastGenOutput>Application.Designer.vb</LastGenOutput>
 </None>
 <Compile Update="My Project\Application.Designer.vb">
 <AutoGen>True</AutoGen>
 <DependentUpon>Application.myapp</DependentUpon>
 <DesignTime>True</DesignTime>
 </Compile>
</ItemGroup>

1. Import the configuration file My Project\Application.myapp setting. Notice that the <Compile> element

uses the Update attribute instead of the Include attribute.

 Reload the project

<PropertyGroup>
 (contains settings previously described)

 <MyType>WindowsForms</MyType>
</PropertyGroup>

<ItemGroup>
 <Import Include="Microsoft.VisualBasic" />
 <Import Include="System" />
 <Import Include="System.Collections" />
 <Import Include="System.Collections.Generic" />
 <Import Include="System.Data" />
 <Import Include="System.Drawing" />
 <Import Include="System.Diagnostics" />
 <Import Include="System.Windows.Forms" />
 <Import Include="System.Linq" />
 <Import Include="System.Xml.Linq" />
 <Import Include="System.Threading.Tasks" />
</ItemGroup>

<ItemGroup>
 <Import Include="System.Data" />
 <Import Include="System.Drawing" />
 <Import Include="System.Windows.Forms" />
</ItemGroup>

<PropertyGroup>
 (contains settings previously described)

 <OptionExplicit>On</OptionExplicit>
 <OptionCompare>Binary</OptionCompare>
 <OptionStrict>Off</OptionStrict>
 <OptionInfer>On</OptionInfer>
 <StartupObject>MatchingGame.My.MyApplication</StartupObject>
</PropertyGroup>

2. Add the <MyType>WindowsForms</MyType> setting to the <PropertyGroup> element:

This setting imports the My namespace members Visual Basic programmers are familiar with.

3. Import the namespaces defined by your project.

Visual Basic projects can automatically import namespaces into every code file. Copy the <ItemGroup>

elements from the old project file that contain <Import> into the new file after the </PropertyGroup>

closing tag.

If you can't find any <Import> statements, or your project fails to compile, make sure you at least have

the following <Import> statements defined in your project:

4. From the original project, copy the <Option*> and <StartupObject> settings to the <PropertyGroup>

element:

After you convert a project to the new SDK-style format, reload the project in Visual Studio:

1. In Solution Explorer , find the project you converted.

2. Right-click on the project and select Reload Project.

 Edit App.config

<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />

 Add the compatibility package

<ItemGroup>
 <PackageReference Include="Microsoft.Windows.Compatibility" Version="5.0.0" />
</ItemGroup>

 Test your app

 Next steps

If the project fails to load, you may have introduced a mistake in the XML of the project. Open the project

file for editing and try to identify and fix the mistake. If you can't find a mistake, try starting over.

If your app has an App.config file, remove the <supportedRuntime> element:

There are some things you should consider with the App.config file. The App.config file in .NET Framework was

used not only to configure the app, but to configure runtime settings and behavior, such as logging. The

App.config file in .NET 5+ (and .NET Core) is no longer used for runtime configuration. If your App.config file has

these sections, they won't be respected.

If your project file is loading correctly, but compilation fails for your project and you receive errors similar to the

following:

The type or namespace <some name> could not be found

The name <some name> does not exist in the current context

You may need to add the Microsoft.Windows.Compatibility package to your app. This package adds ~21,000

.NET APIs from .NET Framework, such as the System.Configuration.ConfigurationManager class and APIs for

interacting with the Windows Registry. Add the Microsoft.Windows.Compatibility package.

Edit your project file and add the following <ItemGroup> element:

After you've finished migrating your app, test it!

Try the .NET Upgrade Assistant to migrate your app.

Learn about breaking changes in Windows Forms.

Read more about the Windows Compatibility Pack.

https://www.nuget.org/packages/Microsoft.Windows.Compatibility/
https://docs.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-winforms-framework
https://docs.microsoft.com/en-us/dotnet/core/compatibility/winforms
https://docs.microsoft.com/en-us/dotnet/core/porting/windows-compat-pack

Events overview (Windows Forms .NET)
 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

NOTE

 Delegates and their role

An event is an action that you can respond to, or "handle," in code. Events can be generated by a user action,

such as clicking the mouse or pressing a key, by program code, or by the system.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Event-driven applications execute code in response to an event. Each form and control exposes a predefined set

of events that you can program against. If one of these events occurs and there's code an associated event

handler, that code is invoked.

The types of events raised by an object vary, but many types are common to most controls. For example, most

objects will handle a Click event. If a user clicks a form, code in the form's Click event handler is executed.

Many events occur in conjunction with other events. For example, in the course of the DoubleClick event occurring, the

MouseDown, MouseUp, and Click events occur.

For information about how to raise and consume an event, see Handling and raising events.

Delegates are classes commonly used within .NET to build event-handling mechanisms. Delegates roughly

equate to function pointers, commonly used in Visual C++ and other object-oriented languages. Unlike function

pointers however, delegates are object-oriented, type-safe, and secure. Also, where a function pointer contains

only a reference to a particular function, a delegate consists of a reference to an object, and references to one or

more methods within the object.

This event model uses delegates to bind events to the methods that are used to handle them. The delegate

enables other classes to register for event notification by specifying a handler method. When the event occurs,

the delegate calls the bound method. For more information about how to define delegates, see Handling and

raising events.

Delegates can be bound to a single method or to multiple methods, referred to as multicasting. When creating a

delegate for an event, you typically create a multicast event. A rare exception might be an event that results in a

specific procedure (such as displaying a dialog box) that wouldn't logically repeat multiple times per event. For

information about how to create a multicast delegate, see How to combine delegates (Multicast Delegates).

A multicast delegate maintains an invocation list of the methods it's bound to. The multicast delegate supports a

Combine method to add a method to the invocation list and a Remove method to remove it.

When an event is recorded by the application, the control raises the event by invoking the delegate for that

event. The delegate in turn calls the bound method. In the most common case (a multicast delegate), the

delegate calls each bound method in the invocation list in turn, which provides a one-to-many notification. This

strategy means that the control doesn't need to maintain a list of target objects for event notification—the

delegate handles all registration and notification.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/forms/events.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/standard/events/index
https://docs.microsoft.com/en-us/dotnet/standard/events/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-combine-delegates-multicast-delegates
https://docs.microsoft.com/en-us/dotnet/api/system.delegate.combine
https://docs.microsoft.com/en-us/dotnet/api/system.delegate.remove

 See also

Delegates also enable multiple events to be bound to the same method, allowing a many-to-one notification.

For example, a button-click event and a menu-command–click event can both invoke the same delegate, which

then calls a single method to handle these separate events the same way.

The binding mechanism used with delegates is dynamic: a delegate can be bound at run-time to any method

whose signature matches that of the event handler. With this feature, you can set up or change the bound

method depending on a condition and to dynamically attach an event handler to a control.

Handling and raising events

https://docs.microsoft.com/en-us/dotnet/standard/events/index

Automatic scaling (Windows Forms .NET)
 11/3/2020 • 3 minutes to read • Edit Online

IMPORTANT

 Need for automatic scaling

C a u t i o n

 Automatic scaling in action

Automatic scaling enables a form and its controls, designed on one machine with a certain display resolution or

font, to be displayed appropriately on another machine with a different display resolution or font. It assures that

the form and its controls will intelligently resize to be consistent with native windows and other applications on

both the users' and other developers' machines. Automatic scaling and visual styles enable Windows Forms

applications to maintain a consistent look-and-feel when compared to native Windows applications on each

user's machine.

For the most part, automatic scaling works as expected in Windows Forms. However, font scheme changes can

be problematic.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Without automatic scaling, an application designed for one display resolution or font will either appear too

small or too large when that resolution or font is changed. For example, if the application is designed using

Tahoma 9 point as a baseline, without adjustment it will appear too small if run on a machine where the system

font is Tahoma 12 point. Text elements, such as titles, menus, text box contents, and so on will render smaller

than other applications. Furthermore, the size of user interface (UI) elements that contain text, such as the title

bar, menus, and many controls are dependent on the font used. In this example, these elements will also appear

relatively smaller.

An analogous situation occurs when an application is designed for a certain display resolution. The most

common display resolution is 96 dots per inch (DPI), which equals 100% display scaling, but higher resolution

displays supporting 125%, 150%, 200% (which respectively equal 120, 144 and 192 DPI) and above are

becoming more common. Without adjustment, an application, especially a graphics-based one, designed for one

resolution will appear either too large or too small when run at another resolution.

Automatic scaling seeks to address these problems by automatically resizing the form and its child controls

according to the relative font size or display resolution. The Windows operating system supports automatic

scaling of dialog boxes using a relative unit of measurement called dialog units. A dialog unit is based on the

system font and its relationship to pixels can be determined though the Win32 SDK function

GetDialogBaseUnits . When a user changes the theme used by Windows, all dialog boxes are automatically

adjusted accordingly. In addition, Windows Forms supports automatic scaling either according to the default

system font or the display resolution. Optionally, automatic scaling can be disabled in an application.

Arbitrary mixtures of DPI and font scaling modes are not supported. Although you may scale a user control

using one mode (for example, DPI) and place it on a form using another mode (Font) with no issues, but mixing

a base form in one mode and a derived form in another can lead to unexpected results.

Windows Forms uses the following logic to automatically scale forms and their contents:

1. At design time, each ContainerControl records the scaling mode and it current resolution in the

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/forms/autoscale.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol

 See also

AutoScaleMode and AutoScaleDimensions, respectively.

2. At run time, the actual resolution is stored in the CurrentAutoScaleDimensions property. The

AutoScaleFactor property dynamically calculates the ratio between the run-time and design-time scaling

resolution.

3. When the form loads, if the values of CurrentAutoScaleDimensions and AutoScaleDimensions are

different, then the PerformAutoScale method is called to scale the control and its children. This method

suspends layout and calls the Scale method to perform the actual scaling. Afterwards, the value of

AutoScaleDimensions is updated to avoid progressive scaling.

4. PerformAutoScale is also automatically invoked in the following situations:

In response to the OnFontChanged event if the scaling mode is Font.

When the layout of the container control resumes and a change is detected in the

AutoScaleDimensions or AutoScaleMode properties.

As implied above, when a parent ContainerControl is being scaled. Each container control is

responsible for scaling its children using its own scaling factors and not the one from its parent

container.

5. Child controls can modify their scaling behavior through several means:

The ScaleChildren property can be overridden to determine if their child controls should be scaled

or not.

The GetScaledBounds method can be overridden to adjust the bounds that the control is scaled to,

but not the scaling logic.

The ScaleControl method can be overridden to change the scaling logic for the current control.

AutoScaleMode

Scale

PerformAutoScale

AutoScaleDimensions

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscalemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscaledimensions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.currentautoscaledimensions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscalefactor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.currentautoscaledimensions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscaledimensions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.performautoscale
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.scale
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscaledimensions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.performautoscale
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onfontchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autoscalemode#system_windows_forms_autoscalemode_font
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscaledimensions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscalemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.scalechildren
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.getscaledbounds
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.scalecontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscalemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.scale
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.performautoscale
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscaledimensions

How to add a form to a project (Windows Forms
.NET)

 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 Add a new form

Add forms to your project with Visual Studio. When your app has multiple forms, you can choose which is the

startup form for your app, and you can display multiple forms at the same time.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Add a new form with Visual Studio.

1. In Visual Studio, find the Project Explorer pane. Right-click on the project and choose Add > Form

(Windows Forms) .

2. In the Name box, type a name for your form, such as MyNewForm. Visual Studio will provide a default

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/forms/how-to-add.md

 Add a project reference to a form

and unique name that you may use.

Once the form has been added, Visual Studio opens the form designer for the form.

If you have the source files to a form, you can add the form to your project by copying the files into the same

folder as your project. The project automatically references any code files that are in the same folder or child

folder of your project.

Forms are made up of two files that share the same name: form2.cs (form2 being an example of a file name)

and form2.Designer.cs. Sometimes a resource file exists, sharing the same name, form2.resx. In in the previous

example, form2 represents the base file name. You'll want to copy all related files to your project folder.

Alternatively, you can use Visual Studio to import a file into your project. When you add an existing file to your

project, the file is copied into the same folder as your project.

1. In Visual Studio, find the Project Explorer pane. Right-click on the project and choose Add > Existing

Item.

 See also

2. Navigate to the folder containing your form files.

3. Select the form2.cs file, where form2 is the base file name of the related form files. Don't select the other

files, such as form2.Designer.cs.

How to position and size a form (Windows Forms .NET)

Events overview (Windows Forms .NET)

Position and layout of controls (Windows Forms .NET)

How to position and size a form (Windows Forms
.NET)

 11/3/2020 • 4 minutes to read • Edit Online

IMPORTANT

 Resize with the designer

When a form is created, the size and location is initially set to a default value. The default size of a form is

generally a width and height of 800x500 pixels. The initial location, when the form is displayed, depends on a

few different settings.

You can change the size of a form at design time with Visual Studio, and at run time with code.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

After adding a new form to the project, the size of a form is set in two different ways. First, you can set it is with

the size grips in the designer. By dragging either the right edge, bottom edge, or the corner, you can resize the

form.

The second way you can resize the form while the designer is open, is through the properties pane. Select the

form, then find the Proper ties pane in Visual Studio. Scroll down to size and expand it. You can set the Width

and Height manually.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/forms/how-to-position-and-resize.md

 Resize in code

 Resize the current form

private void button1_Click(object sender, EventArgs e) =>
 Size = new Size(250, 200);

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Size = New Drawing.Size(250, 200)
End Sub

 Resize a different form

private void button1_Click(object sender, EventArgs e)
{
 Form2 form = new Form2();
 form.Size = new Size(250, 200);
 form.Show();
}

Even though the designer sets the starting size of a form, you can resize it through code. Using code to resize a

form is useful when something about your application determines that the default size of the form is

insufficient.

To resize a form, change the Size, which represents the width and height of the form.

You can change the size of the current form as long as the code is running within the context of the form. For

example, if you have Form1 with a button on it, that when clicked invokes the Click event handler to resize the

form:

You can change the size of another form after it's created by using the variable referencing the form. For

example, let's say you have two forms, Form1 (the startup form in this example) and Form2 . Form1 has a

button that when clicked, invokes the Click event. The handler of this event creates a new instance of the

Form2 form, sets the size, and then displays it:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.size

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Dim form = New Form2 With {
 .Size = New Drawing.Size(250, 200)
 }
 form.Show()
End Sub

 Position with the designer

F O RM STA RT P O SIT IO N EN UM DESC RIP T IO N

CenterParent The form is centered within the bounds of its parent form.

CenterScreen The form is centered on the current display.

Manual The position of the form is determined by the Location
property.

WindowsDefaultBounds The form is positioned at the Windows default location and
is resized to the default size determined by Windows.

WindowsDefaultLocation The form is positioned at the Windows default location and
isn't resized.

form.StartPosition = FormStartPosition.Manual;
form.Location = new Point(parentForm.Width / 2 - form.Width / 2 + parentForm.Location.X,
 parentForm.Height / 2 - form.Height / 2 + parentForm.Location.Y);
form.Show();

If the Size isn't manually set, the form's default size is what it was set to during design-time.

When a form instance is created and displayed, the initial location of the form is determined by the StartPosition

property. The Location property holds the current location the form. Both properties can be set through the

designer.

The CenterParent value only works with forms that are either a multiple document interface (MDI) child form, or

a normal form that is displayed with the ShowDialog method. CenterParent has no affect on a normal form that

is displayed with the Show method. To center a form (form variable) to another form (parentForm variable), use

the following code:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.startposition
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formstartposition#system_windows_forms_formstartposition_centerparent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show

form.StartPosition = Windows.Forms.FormStartPosition.CenterParent.Manual
form.Location = New Drawing.Point(parentForm.Width / 2 - form.Width / 2 + parentForm.Location.X,
 parentForm.Height / 2 - form.Height / 2 + parentForm.Location.Y)

form.Show()

 Position with code

 Move the current form

private void button1_Click(object sender, EventArgs e) =>
 Location = new Point(0, 0);

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Location = New Drawing.Point(0, 0)
End Sub

 Position a different form

private void button1_Click(object sender, EventArgs e)
{
 Form2 form = new Form2();
 form.Size = new Size(250, 200);
 form.Show();
}

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Dim form = New Form2 With {
 .Size = New Drawing.Size(250, 200)
 }
 form.Show()
End Sub

 See also

Even though the designer can be used to set the starting location of a form, you can use code either change the

starting position mode or set the location manually. Using code to position a form is useful if you need to

manually position and size a form in relation to the screen or other forms.

You can move the current form as long as the code is running within the context of the form. For example, if you

have Form1 with a button on it, that when clicked invokes the Click event handler. The handler in this example

changes the location of the form to the top-left of the screen by setting the Location property:

You can change the location of another form after it's created by using the variable referencing the form. For

example, let's say you have two forms, Form1 (the startup form in this example) and Form2 . Form1 has a

button that when clicked, invokes the Click event. The handler of this event creates a new instance of the

Form2 form and sets the size:

If the Size isn't set, the form's default size is what it was set to at design-time.

How to add a form to a project (Windows Forms .NET)

Events overview (Windows Forms .NET)

Position and layout of controls (Windows Forms .NET)

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.location

How to position and size a form (Windows Forms
.NET)

 11/3/2020 • 4 minutes to read • Edit Online

IMPORTANT

 Resize with the designer

When a form is created, the size and location is initially set to a default value. The default size of a form is

generally a width and height of 800x500 pixels. The initial location, when the form is displayed, depends on a

few different settings.

You can change the size of a form at design time with Visual Studio, and at run time with code.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

After adding a new form to the project, the size of a form is set in two different ways. First, you can set it is with

the size grips in the designer. By dragging either the right edge, bottom edge, or the corner, you can resize the

form.

The second way you can resize the form while the designer is open, is through the properties pane. Select the

form, then find the Proper ties pane in Visual Studio. Scroll down to size and expand it. You can set the Width

and Height manually.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/forms/how-to-position-and-resize.md

 Resize in code

 Resize the current form

private void button1_Click(object sender, EventArgs e) =>
 Size = new Size(250, 200);

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Size = New Drawing.Size(250, 200)
End Sub

 Resize a different form

private void button1_Click(object sender, EventArgs e)
{
 Form2 form = new Form2();
 form.Size = new Size(250, 200);
 form.Show();
}

Even though the designer sets the starting size of a form, you can resize it through code. Using code to resize a

form is useful when something about your application determines that the default size of the form is

insufficient.

To resize a form, change the Size, which represents the width and height of the form.

You can change the size of the current form as long as the code is running within the context of the form. For

example, if you have Form1 with a button on it, that when clicked invokes the Click event handler to resize the

form:

You can change the size of another form after it's created by using the variable referencing the form. For

example, let's say you have two forms, Form1 (the startup form in this example) and Form2 . Form1 has a

button that when clicked, invokes the Click event. The handler of this event creates a new instance of the

Form2 form, sets the size, and then displays it:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.size

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Dim form = New Form2 With {
 .Size = New Drawing.Size(250, 200)
 }
 form.Show()
End Sub

 Position with the designer

F O RM STA RT P O SIT IO N EN UM DESC RIP T IO N

CenterParent The form is centered within the bounds of its parent form.

CenterScreen The form is centered on the current display.

Manual The position of the form is determined by the Location
property.

WindowsDefaultBounds The form is positioned at the Windows default location and
is resized to the default size determined by Windows.

WindowsDefaultLocation The form is positioned at the Windows default location and
isn't resized.

form.StartPosition = FormStartPosition.Manual;
form.Location = new Point(parentForm.Width / 2 - form.Width / 2 + parentForm.Location.X,
 parentForm.Height / 2 - form.Height / 2 + parentForm.Location.Y);
form.Show();

If the Size isn't manually set, the form's default size is what it was set to during design-time.

When a form instance is created and displayed, the initial location of the form is determined by the StartPosition

property. The Location property holds the current location the form. Both properties can be set through the

designer.

The CenterParent value only works with forms that are either a multiple document interface (MDI) child form, or

a normal form that is displayed with the ShowDialog method. CenterParent has no affect on a normal form that

is displayed with the Show method. To center a form (form variable) to another form (parentForm variable), use

the following code:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.startposition
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formstartposition#system_windows_forms_formstartposition_centerparent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show

form.StartPosition = Windows.Forms.FormStartPosition.CenterParent.Manual
form.Location = New Drawing.Point(parentForm.Width / 2 - form.Width / 2 + parentForm.Location.X,
 parentForm.Height / 2 - form.Height / 2 + parentForm.Location.Y)

form.Show()

 Position with code

 Move the current form

private void button1_Click(object sender, EventArgs e) =>
 Location = new Point(0, 0);

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Location = New Drawing.Point(0, 0)
End Sub

 Position a different form

private void button1_Click(object sender, EventArgs e)
{
 Form2 form = new Form2();
 form.Size = new Size(250, 200);
 form.Show();
}

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Dim form = New Form2 With {
 .Size = New Drawing.Size(250, 200)
 }
 form.Show()
End Sub

 See also

Even though the designer can be used to set the starting location of a form, you can use code either change the

starting position mode or set the location manually. Using code to position a form is useful if you need to

manually position and size a form in relation to the screen or other forms.

You can move the current form as long as the code is running within the context of the form. For example, if you

have Form1 with a button on it, that when clicked invokes the Click event handler. The handler in this example

changes the location of the form to the top-left of the screen by setting the Location property:

You can change the location of another form after it's created by using the variable referencing the form. For

example, let's say you have two forms, Form1 (the startup form in this example) and Form2 . Form1 has a

button that when clicked, invokes the Click event. The handler of this event creates a new instance of the

Form2 form and sets the size:

If the Size isn't set, the form's default size is what it was set to at design-time.

How to add a form to a project (Windows Forms .NET)

Events overview (Windows Forms .NET)

Position and layout of controls (Windows Forms .NET)

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.location

Overview of using controls (Windows Forms .NET)
 7/30/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Adding controls

 Layout options

 Control events

 Control accessibility

 See also

Windows Forms controls are reusable components that encapsulate user interface functionality and are used in

client-side, Windows-based applications. Not only does Windows Forms provide many ready-to-use controls, it

also provides the infrastructure for developing your own controls. You can combine existing controls, extend

existing controls, or author your own custom controls. For more information, see Types of custom controls.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Controls are added through the Visual Studio Designer. With the Designer, you can place, size, align, and move

controls. Alternatively, controls can be added through code. For more information, see Add a control (Windows

Forms).

The position a control appears on a parent is determined by the value of the Location property relative to the

top-left of the parent surface. The top-left position coordinate in the parent is (x0,y0) . The size of the control is

determined by the Size property and represents the width and height of the control.

Besides manual positioning and sizing, various container controls are provided that help with automatic

placement of controls.

For more information, see Position and layout of controls and How to dock and anchor controls.

Controls provide a set of common events through the base class: Control. Not every control responds to every

event. For example, the Label control doesn't respond to keyboard input, so the Control.PreviewKeyDown event

isn't raised. Most shared events fall under these categories:

Mouse events

Keyboard events

Property changed events

Other events

For more information, see Control events and How to handle a control event.

Windows Forms has accessibility support for screen readers and voice input utilities for verbal commands.

However, you must design your UI with accessibility in mind. Windows Forms controls expose various

properties to handle accessibility. For more information about these properties, see Providing Accessibility

Information for Controls.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/overview.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location#system_windows_forms_control_location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size#system_windows_forms_control_size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.previewkeydown

Position and layout of controls

Label control overview

Control events

Types of custom controls

Painting and drawing on controls

Providing Accessibility Information for Controls

Position and layout of controls (Windows Forms
.NET)

 7/30/2021 • 12 minutes to read • Edit Online

IMPORTANT

 Fixed position and size

 Margin and Padding

Control placement in Windows Forms is determined not only by the control, but also by the parent of the

control. This article describes the different settings provided by controls and the different types of parent

containers that affect layout.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The position a control appears on a parent is determined by the value of the Location property relative to the

top-left of the parent surface. The top-left position coordinate in the parent is (x0,y0) . The size of the control is

determined by the Size property and represents the width and height of the control.

When a control is added to a parent that enforces automatic placement, the position and size of the control is

changed. In this case, the position and size of the control may not be manually adjusted, depending on the type

of parent.

The MaximumSize and MinimumSize properties help set the minimum and maximum space a control can use.

There are two control properties that help with precise placement of controls: Margin and Padding.

The Margin property defines the space around the control that keeps other controls a specified distance from

the control's borders.

The Padding property defines the space in the interior of a control that keeps the control's content (for example,

the value of its Text property) a specified distance from the control's borders.

The following figure shows the Margin and Padding properties on a control.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/layout.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location#system_windows_forms_control_location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size#system_windows_forms_control_size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.maximumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.minimumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.margin
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.padding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.margin
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.padding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.margin
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.padding

 Automatic placement and size

 Dock

The Visual Studio Designer will respect these properties when you're positioning and resizing controls.

Snaplines appear as guides to help you remain outside the specified margin of a control. For example, Visual

Studio displays the snapline when you drag a control next to another control:

Controls can be automatically placed within their parent. Some parent containers force placement while others

respect control settings that guide placement. There are two properties on a control that help automatic

placement and size within a parent: Dock and Anchor.

Drawing order can affect automatic placement. The order in which a control is drawn determined by the

control's index in the parent's Controls collection. This index is known as the Z-order . Each control is drawn in

the reverse order they appear in the collection. Meaning, the collection is a first-in-last-drawn and last-in-first-

drawn collection.

The MinimumSize and MaximumSize properties help set the minimum and maximum space a control can use.

The Dock property sets which border of the control is aligned to the corresponding side of the parent, and how

the control is resized within the parent.

When a control is docked, the container determines the space it should occupy and resizes and places the

control. The width and height of the control are still respected based on the docking style. For example, if the

control is docked to the top, the Height of the control is respected but the Width is automatically adjusted. If a

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor#system_windows_forms_control_anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.controls#system_windows_forms_control_controls
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.minimumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.maximumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.height#system_windows_forms_control_height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.width#system_windows_forms_control_width

control is docked to the left, the Width of the control is respected but the Height is automatically adjusted.

The Location of the control can't be manually set as docking a control automatically controls its position.

The Z-order of the control does affect docking. As docked controls are laid out, they use what space is available

to them. For example, if a control is drawn first and docked to the top, it will take up the entire width of the

container. If a next control is docked to the left, it has less vertical space available to it.

If the control's Z-order is reversed, the control that is docked to the left now has more initial space available.

The control uses the entire height of the container. The control that is docked to the top has less horizontal space

available to it.

As the container grows and shrinks, the controls docked to the container are repositioned and resized to

maintain their applicable positions and sizes.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.width#system_windows_forms_control_width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.height#system_windows_forms_control_height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location#system_windows_forms_control_location

 Anchor

If multiple controls are docked to the same side of the container, they're stacked according to their Z-order .

Anchoring a control allows you to tie the control to one or more sides of the parent container. As the container

changes in size, any child control will maintain its distance to the anchored side.

A control can be anchored to one or more sides, without restriction. The anchor is set with the Anchor property.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor#system_windows_forms_control_anchor

 Automatic sizing

A L WAY S T RUE B EH AVIO R DESC RIP T IO N

Automatic sizing is a run-time feature. This means it never grows or shrinks a control and then has
no further effect.

If a control changes size, the value of its Location property
always remains constant.

When a control's contents cause it to grow, the control
grows toward the right and downward. Controls do not
grow to the left.

The Dock and Anchor properties are honored when AutoSize
is true .

The value of the control's Location property is adjusted to
the correct value.

The Label control is the exception to this rule. When you set
the value of a docked Label control's AutoSize property to
true , the Label control will not stretch.

A control's MaximumSize and MinimumSize properties are
always honored, regardless of the value of its AutoSize
property.

The MaximumSize and MinimumSize properties are not
affected by the AutoSize property.

There is no minimum size set by default. This means that if a control is set to shrink under AutoSize
and it has no contents, the value of its Size property is
(0x,0y) . In this case, your control will shrink to a point,

and it will not be readily visible.

If a control does not implement the GetPreferredSize
method, the GetPreferredSize method returns last value
assigned to the Size property.

This means that setting AutoSize to true will have no

effect.

The AutoSize property enables a control to change its size, if necessary, to fit the size specified by the

PreferredSize property. You adjust the sizing behavior for specific controls by setting the AutoSizeMode property.

Only some controls support the AutoSize property. In addition, some controls that support the AutoSize

property also supports the AutoSizeMode property.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize#system_windows_forms_control_autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.preferredsize#system_windows_forms_control_preferredsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.maximumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.minimumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.maximumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.minimumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.getpreferredsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.getpreferredsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize

A control in a TableLayoutPanel cell always shrinks to fit in
the cell until its MinimumSize is reached.

This size is enforced as a maximum size. This is not the case
when the cell is part of an AutoSize row or column.

A L WAY S T RUE B EH AVIO R DESC RIP T IO N

 AutoSizeMode property

 Controls that support the AutoSize property

C O N T RO L AUTOSIZE SUP P O RT ED AUTOSIZEMODE SUP P O RT ED

Button ✔️ ✔️

CheckedListBox ✔️ ✔️

FlowLayoutPanel ✔️ ✔️

Form ✔️ ✔️

GroupBox ✔️ ✔️

Panel ✔️ ✔️

TableLayoutPanel ✔️ ✔️

CheckBox ✔️ ❌

DomainUpDown ✔️ ❌

Label ✔️ ❌

LinkLabel ✔️ ❌

MaskedTextBox ✔️ ❌

The AutoSizeMode property provides more fine-grained control over the default AutoSize behavior. The

AutoSizeMode property specifies how a control sizes itself to its content. The content, for example, could be the

text for a Button control or the child controls for a container.

The following list shows the AutoSizeMode values and its behavior.

AutoSizeMode.GrowAndShrink

The control grows or shrinks to encompass its contents.

The MinimumSize and MaximumSize values are honored, but the current value of the Size property is

ignored.

This is the same behavior as controls with the AutoSize property and no AutoSizeMode property.

AutoSizeMode.GrowOnly

The control grows as much as necessary to encompass its contents, but it will not shrink smaller than the

value specified by its Size property.

This is the default value for AutoSizeMode .

The following table describes the level of auto sizing support by control:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.minimumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sizetype#system_windows_forms_sizetype_autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autosizemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autosizemode#system_windows_forms_autosizemode_growandshrink
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.minimumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.maximumsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autosizemode#system_windows_forms_autosizemode_growonly
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.domainupdown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.linklabel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.maskedtextbox

NumericUpDown ✔️ ❌

RadioButton ✔️ ❌

TextBox ✔️ ❌

TrackBar ✔️ ❌

CheckedListBox ❌ ❌

ComboBox ❌ ❌

DataGridView ❌ ❌

DateTimePicker ❌ ❌

ListBox ❌ ❌

ListView ❌ ❌

MaskedTextBox ❌ ❌

MonthCalendar ❌ ❌

ProgressBar ❌ ❌

PropertyGrid ❌ ❌

RichTextBox ❌ ❌

SplitContainer ❌ ❌

TabControl ❌ ❌

TabPage ❌ ❌

TreeView ❌ ❌

WebBrowser ❌ ❌

ScrollBar ❌ ❌

C O N T RO L AUTOSIZE SUP P O RT ED AUTOSIZEMODE SUP P O RT ED

 AutoSize in the design environment

The following table describes the sizing behavior of a control at design time, based on the value of its AutoSize

and AutoSizeMode properties.

Override the SelectionRules property to determine whether a given control is in a user-resizable state. In the

following table, "can't resize" means Moveable only, "can resize" means AllSizeable and Moveable.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.numericupdown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.trackbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datetimepicker
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.maskedtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.monthcalendar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.propertygrid
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabpage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.webbrowser
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.scrollbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.design.controldesigner.selectionrules
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.design.selectionrules#system_windows_forms_design_selectionrules_moveable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.design.selectionrules#system_windows_forms_design_selectionrules_allsizeable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.design.selectionrules#system_windows_forms_design_selectionrules_moveable

AUTOSIZE SET T IN G AUTOSIZEMODE SET T IN G B EH AVIO R

true Property not available. The user can't resize the control at
design time, except for the following
controls:

- TextBox
- MaskedTextBox
- RichTextBox
- TrackBar

true GrowAndShrink The user can't resize the control at
design time.

true GrowOnly The user can resize the control at
design time. When the Size property is
set, the user can only increase the size
of the control.

false or AutoSize is hidden Not applicable. User can resize the control at design
time.

NOTE

 Container: Form

 Container: Panel

To maximize productivity, the Windows Forms Designer in Visual Studio shadows the AutoSize property for the Form class.

At design time, the form behaves as though the AutoSize property is set to false , regardless of its actual setting. At

runtime, no special accommodation is made, and the AutoSize property is applied as specified by the property setting.

The Form is the main object of Windows Forms. A Windows Forms application will usually have a form

displayed at all times. Forms contain controls and respect the Location and Size properties of the control for

manual placement. Forms also respond to the Dock property for automatic placement.

Most of the time a form will have grips on the edges that allow the user to resize the form. The Anchor property

of a control will let the control grow and shrink as the form is resized.

The Panel control is similar to a form in that it simply groups controls together. It supports the same manual and

automatic placement styles that a form does. For more information, see the Container : Form section.

A panel blends in seamlessly with the parent, and it does cut off any area of a control that falls out of bounds of

the panel. If a control falls outside the bounds of the panel and AutoScroll is set to true , scroll bars appear and

the user can scroll the panel.

Unlike the group box control, a panel doesn't have a caption and border.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.maskedtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.trackbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autosizemode#system_windows_forms_autosizemode_growandshrink
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autosizemode#system_windows_forms_autosizemode_growonly
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location#system_windows_forms_control_location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size#system_windows_forms_control_size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor#system_windows_forms_control_anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.autoscroll#system_windows_forms_form_autoscroll

 Container: Group box

 Container: Flow Layout

The image above has a panel with the BorderStyle property set to demonstrate the bounds of the panel.

The GroupBox control provides an identifiable grouping for other controls. Typically, you use a group box to

subdivide a form by function. For example, you may have a form representing personal information and the

fields related to an address would be grouped together. At design time, it's easy to move the group box around

along with its contained controls.

The group box supports the same manual and automatic placement styles that a form does. For more

information, see the Container : Form section. A group box also cuts off any portion of a control that falls out of

bounds of the panel.

Unlike the panel control, a group box doesn't have the capability to scroll content and display scroll bars.

The FlowLayoutPanel control arranges its contents in a horizontal or vertical flow direction. You can wrap the

control's contents from one row to the next, or from one column to the next. Alternately, you can clip instead of

wrap its contents.

You can specify the flow direction by setting the value of the FlowDirection property. The FlowLayoutPanel

control correctly reverses its flow direction in Right-to-Left (RTL) layouts. You can also specify whether the

FlowLayoutPanel control's contents are wrapped or clipped by setting the value of the WrapContents property.

The FlowLayoutPanel control automatically sizes to its contents when you set the AutoSize property to true . It

also provides a FlowBreak property to its child controls. Setting the value of the FlowBreak property to true

causes the FlowLayoutPanel control to stop laying out controls in the current flow direction and wrap to the next

row or column.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel.borderstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel.flowdirection
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel.wrapcontents
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.flowlayoutpanel

 Container: Table layout

 Container: Split container

The image above has two FlowLayoutPanel controls with the BorderStyle property set to demonstrate the

bounds of the control.

The TableLayoutPanel control arranges its contents in a grid. Because the layout is done both at design time and

run time, it can change dynamically as the application environment changes. This gives the controls in the panel

the ability to resize proportionally, so they can respond to changes such as the parent control resizing or text

length changing because of localization.

Any Windows Forms control can be a child of the TableLayoutPanel control, including other instances of

TableLayoutPanel. This allows you to construct sophisticated layouts that adapt to changes at run time.

You can also control the direction of expansion (horizontal or vertical) after the TableLayoutPanel control is full

of child controls. By default, the TableLayoutPanel control expands downward by adding rows.

You can control the size and style of the rows and columns by using the RowStyles and ColumnStyles properties.

You can set the properties of rows or columns individually.

The TableLayoutPanel control adds the following properties to its child controls: Cell , Column , Row ,

ColumnSpan , and RowSpan .

The image above has a table with the CellBorderStyle property set to demonstrate the bounds of each cell.

The Windows Forms SplitContainer control can be thought of as a composite control; it's two panels separated

by a movable bar. When the mouse pointer is over the bar, the pointer changes shape to show that the bar is

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.panel.borderstyle#system_windows_forms_panel_borderstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel.rowstyles
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel.columnstyles
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tablelayoutpanel.cellborderstyle#system_windows_forms_tablelayoutpanel_cellborderstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer

 Container: Tab control

movable.

With the SplitContainer control, you can create complex user interfaces; often, a selection in one panel

determines what objects are shown in the other panel. This arrangement is effective for displaying and browsing

information. Having two panels lets you aggregate information in areas, and the bar, or "splitter," makes it easy

for users to resize the panels.

The image above has a split container to create a left and right pane. The right pane contains a second split

container with the Orientation set to Vertical. The BorderStyle property is set to demonstrate the bounds of each

panel.

The TabControl displays multiple tabs, like dividers in a notebook or labels in a set of folders in a filing cabinet.

The tabs can contain pictures and other controls. Use the tab control to produce the kind of multiple-page dialog

box that appears many places in the Windows operating system, such as the Control Panel and Display

Properties. Additionally, the TabControl can be used to create property pages, which are used to set a group of

related properties.

The most important property of the TabControl is TabPages, which contains the individual tabs. Each individual

tab is a TabPage object.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer.orientation#system_windows_forms_splitcontainer_orientation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.orientation#system_windows_forms_orientation_vertical
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer.borderstyle#system_windows_forms_splitcontainer_borderstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabcontrol.tabpages
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.tabpage

Label control overview (Windows Forms .NET)
 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 Working with the Label Control

 See also

Windows Forms Label controls are used to display text that cannot be edited by the user. They're used to identify

objects on a form and to provide a description of what a certain control represents or does. For example, you

can use labels to add descriptive captions to text boxes, list boxes, combo boxes, and so on. You can also write

code that changes the text displayed by a label in response to events at run time.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Because the Label control can't receive focus, it can be used to create access keys for other controls. An access

key allows a user to focus the next control in tab order by pressing the Alt key with the chosen access key. For

more information, see Use a label to focus a control.

The caption displayed in the label is contained in the Text property. The TextAlign property allows you to set the

alignment of the text within the label. For more information, see How to: Set the Text Displayed by a Windows

Forms Control.

Use a label to focus a control (Windows Forms .NET)

How to: Set the text displayed by a control (Windows Forms .NET)

AutoScaleMode

Scale

PerformAutoScale

AutoScaleDimensions

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/labels.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.textalign
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscalemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.scale
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.performautoscale
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autoscaledimensions

Control events (Windows Forms .NET)
 7/20/2021 • 3 minutes to read • Edit Online

IMPORTANT

 Common events

 Mouse events

 Keyboard events

Controls provide events that are raised when the user interacts with the control or when the state of the control

changes. This article describes the common events shared by most controls, events raised by user interaction,

and events unique to specific controls. For more information about events in Windows Forms, see Events

overview and Handling and raising events.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

For more information about how to add or remove a control event handler, see How to handle an event.

Controls provide a set of common events through the base class: Control. Not every control responds to every

event. For example, the Label control doesn't respond to keyboard input, so the Control.PreviewKeyDown event

isn't raised. Most shared events fall under these categories:

Mouse events

Keyboard events

Property changed events

Other events

Considering Windows Forms is a User Interface (UI) technology, mouse input is the primary way users interact

with a Windows Forms application. All controls provide basic mouse-related events:

MouseClick

MouseDoubleClick

MouseDown

MouseEnter

MouseHover

MouseLeave

MouseMove

MouseUp

MouseWheel

Click

For more information, see Using mouse events.

If the control responds to user input, such as a TextBox or Button control, the appropriate input event is raised

for the control. The control must be focused to receive keyboard events. Some controls, such as the Label

control, can't be focused and can't receive keyboard events. The following is a list of keyboard events:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/events.md
https://docs.microsoft.com/en-us/dotnet/standard/events/index
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.previewkeydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousehover
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseleave
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousemove
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousewheel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label

 Property changed events

EVEN T DESC RIP T IO N

BackColorChanged Occurs when the value of the BackColor property changes.

BackgroundImageChanged Occurs when the value of the BackgroundImage property
changes.

BindingContextChanged Occurs when the value of the BindingContext property
changes.

DockChanged Occurs when the value of the Dock property changes.

EnabledChanged Occurs when the Enabled property value has changed.

FontChanged Occurs when the Font property value changes.

ForeColorChanged Occurs when the ForeColor property value changes.

LocationChanged Occurs when the Location property value has changed.

SizeChanged Occurs when the Size property value changes.

VisibleChanged Occurs when the Visible property value changes.

 Other events

KeyDown

KeyPress

KeyUp

For more information, see Using keyboard events.

Windows Forms follows the PropertyNameChanged pattern for properties that have change events. The data

binding engine provided by Windows Forms recognizes this pattern and integrates well with it. When creating

your own controls, implement this pattern.

This pattern implements the following rules, using the property FirstName as an example:

Name your property: FirstName .

Create an event for the property using the pattern PropertyNameChanged : FirstNameChanged .

Create a private or protected method using the pattern OnPropertyNameChanged : OnFirstNameChanged .

If the FirstName property set modifies the backing value, the OnFirstNameChanged method is called. The

OnFirstNameChanged method raises the FirstNameChanged event.

Here are some of the common property changed events for a control:

For a full list of events, see the Events section of the Control Class.

Controls will also raise events based on the state of the control, or other interactions with the control. For

example, the HelpRequested event is raised if the control has focus and the user presses the F1 key. This event is

also raised if the user presses the context-sensitive Help button on a form, and then presses the help cursor on

the control.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.backcolorchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.backcolor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.backgroundimagechanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.backgroundimage#system_windows_forms_control_backgroundimage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.bindingcontextchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.bindingcontext#system_windows_forms_control_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dockchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock#system_windows_forms_control_dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.enabledchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.enabled#system_windows_forms_control_enabled
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.fontchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.font#system_windows_forms_control_font
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.forecolorchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.forecolor#system_windows_forms_control_forecolor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.locationchanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location#system_windows_forms_control_location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.sizechanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.size#system_windows_forms_control_size
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.visiblechanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.visible#system_windows_forms_control_visible
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control#events
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.helprequested

 See also

Another example is when a control is changed, moved, or resized, the Paint event is raised. This event provides

the developer with the opportunity to draw on the control and change its appearance.

For a full list of events, see the Events section of the Control Class.

How to handle an event

Events overview

Using mouse events

Using keyboard events

System.Windows.Forms.Control

System.Windows.Forms.Control.Click

System.Windows.Forms.Button

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control#events
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

Types of custom controls (Windows Forms .NET)
 11/3/2020 • 4 minutes to read • Edit Online

IMPORTANT

IF . . . C REAT E A . . .

Composite control by inheriting from
System.Windows.Forms.UserControl.

Extended control by inheriting from a specific Windows
Forms control.

Custom control by inheriting from
System.Windows.Forms.Control.

 Base Control Class

 Composite Controls

With Windows Forms, you can develop and implement new controls. You can create a new user control, modify

existing controls through inheritance, and write a custom control that does its own painting.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Deciding which kind of control to create can be confusing. This article highlights the differences among the

various kinds of controls from which you can inherit, and provides you with information about how to choose a

particular type of control for your project.

You want to combine the functionality of several
Windows Forms controls into a single reusable unit.

Most of the functionality you need is already identical
to an existing Windows Forms control.

You don't need a custom graphical user interface, or
you want to design a new graphical user interface for
an existing control.

You want to provide a custom graphical
representation of your control.

You need to implement custom functionality that isn't
available through standard controls.

The Control class is the base class for Windows Forms controls. It provides the infrastructure required for visual

display in Windows Forms applications and provides the following capabilities:

Exposes a window handle.

Manages message routing.

Provides mouse and keyboard events, and many other user interface events.

Provides advanced layout features.

Contains many properties specific to visual display, such as ForeColor, BackColor, Height, and Width.

Provides the security and threading support necessary for a Windows Forms control to act as a Microsoft®

ActiveX® control.

Because so much of the infrastructure is provided by the base class, it's relatively easy to develop your own

Windows Forms controls.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/custom.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.forecolor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.backcolor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.width

 Extended Controls

 Custom Controls

 ActiveX Controls

 Windowless Controls

A composite control is a collection of Windows Forms controls encapsulated in a common container. This kind of

control is sometimes called a user control. The contained controls are called constituent controls.

A composite control holds all of the inherent functionality associated with each of the contained Windows

Forms controls and enables you to selectively expose and bind their properties. A composite control also

provides a great deal of default keyboard handling functionality with no extra development effort on your part.

For example, a composite control could be built to display customer address data from a database. This control

would include a DataGridView control to display the database fields, a BindingSource to handle binding to a

data source, and a BindingNavigator control to move through the records. You could selectively expose data

binding properties, and you could package and reuse the entire control from application to application.

To author a composite control, derive from the UserControl class. The UserControl base class provides keyboard

routing for child controls and enables child controls to work as a group.

You can derive an inherited control from any existing Windows Forms control. With this approach, you can keep

all of the inherent functionality of a Windows Forms control, and then extend that functionality by adding

custom properties, methods, or other features. With this option, you can override the base control's paint logic,

and then extend its user interface by changing its appearance.

For example, you can create a control derived from the Button control that tracks how many times a user has

clicked it.

In some controls, you can also add a custom appearance to the graphical user interface of your control by

overriding the OnPaint method of the base class. For an extended button that tracks clicks, you can override the

OnPaint method to call the base implementation of OnPaint, and then draw the click count in one corner of the

Button control's client area.

Another way to create a control is to create one substantially from the beginning by inheriting from Control. The

Control class provides all of the basic functionality required by controls, including mouse and keyboard

handling events, but no control-specific functionality or graphical interface.

Creating a control by inheriting from the Control class requires much more thought and effort than inheriting

from UserControl or an existing Windows Forms control. Because a great deal of implementation is left for you,

your control can have greater flexibility than a composite or extended control, and you can tailor your control to

suit your exact needs.

To implement a custom control, you must write code for the OnPaint event of the control, as well as any feature-

specific code you need. You can also override the WndProc method and handle windows messages directly. This

is the most powerful way to create a control, but to use this technique effectively, you need to be familiar with

the Microsoft Win32® API.

An example of a custom control is a clock control that duplicates the appearance and behavior of an analog

clock. Custom painting is invoked to cause the hands of the clock to move in response to Tick events from an

internal Timer component.

Although the Windows Forms infrastructure has been optimized to host Windows Forms controls, you can still

use ActiveX controls. There's support for this task in Visual Studio.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.bindingsource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.bindingnavigator
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.wndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.timer.tick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.timer

 Custom Design Experience

 See also

The Microsoft Visual Basic® 6.0 and ActiveX technologies support windowless controls. Windowless controls

aren't supported in Windows Forms.

If you need to implement a custom design-time experience, you can author your own designer. For composite

controls, derive your custom designer class from the ParentControlDesigner or the DocumentDesigner classes.

For extended and custom controls, derive your custom designer class from the ControlDesigner class.

Use the DesignerAttribute to associate your control with your designer.

The following information is out of date but may help you.

(Visual Studio 2013) Extending Design-Time Support.

(Visual Studio 2013) How to: Create a Windows Forms Control That Takes Advantage of Design-Time

Features.

Overview of Using Controls (Windows Forms .NET)

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.design.parentcontroldesigner
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.design.documentdesigner
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.design.controldesigner
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.designerattribute
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2013/37899azc(v=vs.120)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2013/307hck25(v=vs.120)

Painting and drawing on controls (Windows Forms
.NET)

 11/3/2020 • 5 minutes to read • Edit Online

IMPORTANT

 Drawing provided by control

public class PaintEventArgs : EventArgs, IDisposable
{

 public System.Drawing.Rectangle ClipRectangle {get;}
 public System.Drawing.Graphics Graphics {get;}

 // Other properties and methods.
}

Custom painting of controls is one of the many complicated tasks made easy by Windows Forms. When

authoring a custom control, you have many options available to handle your control's graphical appearance. If

you're authoring a custom control, that is, a control that inherits from Control, you must provide code to render

its graphical representation.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

If you're creating a composite control, that is a control that inherits from UserControl or one of the existing

Windows Forms controls, you may override the standard graphical representation and provide your own

graphics code.

If you want to provide custom rendering for an existing control without creating a new control, your options

become more limited. However, there are still a wide range of graphical possibilities for your controls and

applications.

The following elements are involved in control rendering:

The drawing functionality provided by the base class System.Windows.Forms.Control.

The essential elements of the GDI graphics library.

The geometry of the drawing region.

The procedure for freeing graphics resources.

The base class Control provides drawing functionality through its Paint event. A control raises the Paint event

whenever it needs to update its display. For more information about events in the .NET, see Handling and raising

events.

The event data class for the Paint event, PaintEventArgs, holds the data needed for drawing a control - a handle

to a graphics object and a rectangle that represents the region to draw in.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/custom-painting-drawing.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/standard/events/index
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs

Public Class PaintEventArgs
 Inherits EventArgs
 Implements IDisposable

 Public ReadOnly Property ClipRectangle As System.Drawing.Rectangle
 Public ReadOnly Property Graphics As System.Drawing.Graphics

 ' Other properties and methods.
End Class

 OnPaint

protected override void OnPaint(PaintEventArgs e)
{
 // Call the OnPaint method of the base class.
 base.OnPaint(e);

 // Declare and instantiate a new pen that will be disposed of at the end of the method.
 using var myPen = new Pen(Color.Aqua);

 // Create a rectangle that represents the size of the control, minus 1 pixel.
 var area = new Rectangle(new Point(0, 0), new Size(this.Size.Width - 1, this.Size.Height - 1));

 // Draw an aqua rectangle in the rectangle represented by the control.
 e.Graphics.DrawRectangle(myPen, area);
}

Protected Overrides Sub OnPaint(e As PaintEventArgs)
 MyBase.OnPaint(e)

 ' Declare and instantiate a drawing pen.
 Using myPen = New System.Drawing.Pen(Color.Aqua)

 ' Create a rectangle that represents the size of the control, minus 1 pixel.
 Dim area = New Rectangle(New Point(0, 0), New Size(Me.Size.Width - 1, Me.Size.Height - 1))

 ' Draw an aqua rectangle in the rectangle represented by the control.
 e.Graphics.DrawRectangle(myPen, area)

 End Using
End Sub

Graphics is a managed class that encapsulates drawing functionality, as described in the discussion of GDI later

in this article. The ClipRectangle is an instance of the Rectangle structure and defines the available area in which

a control can draw. A control developer can compute the ClipRectangle using the ClipRectangle property of a

control, as described in the discussion of geometry later in this article.

A control must provide rendering logic by overriding the OnPaint method that it inherits from Control. OnPaint

gets access to a graphics object and a rectangle to draw in through the Graphics and the ClipRectangle

properties of the PaintEventArgs instance passed to it.

The following code uses the System.Drawing namespace:

The OnPaint method of the base Control class doesn't implement any drawing functionality but merely invokes

the event delegates that are registered with the Paint event. When you override OnPaint, you should typically

invoke the OnPaint method of the base class so that registered delegates receive the Paint event. However,

controls that paint their entire surface shouldn't invoke the base class's OnPaint, as this introduces flicker.

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs.cliprectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs.cliprectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs.cliprectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.design.paintvalueeventargs.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs.cliprectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint

NOTE

SetStyle(ControlStyles.ResizeRedraw, true);

SetStyle(ControlStyles.ResizeRedraw, True)

 OnPaintBackground

protected virtual void OnPaintBackground(PaintEventArgs e);

Protected Overridable Sub OnPaintBackground(e As PaintEventArgs)

 GDI+ Basics

 Geometry of the Drawing Region

 Freeing Graphics Resources

Don't invoke OnPaint directly from your control; instead, invoke the Invalidate method (inherited from Control) or some

other method that invokes Invalidate. The Invalidate method in turn invokes OnPaint. The Invalidate method is

overloaded, and, depending on the arguments supplied to Invalidate e , redraws either some or all of its screen area.

The code in the OnPaint method of your control will execute when the control is first drawn, and whenever it is

refreshed. To ensure that your control is redrawn every time it is resized, add the following line to the

constructor of your control:

The base Control class defines another method that is useful for drawing, the OnPaintBackground method.

OnPaintBackground paints the background (and in that way, the shape) of the window and is guaranteed to be

fast, while OnPaint paints the details and might be slower because individual paint requests are combined into

one Paint event that covers all areas that have to be redrawn. You might want to invoke the OnPaintBackground

if, for instance, you want to draw a gradient-colored background for your control.

While OnPaintBackground has an event-like nomenclature and takes the same argument as the OnPaint

method, OnPaintBackground is not a true event method. There is no PaintBackground event and

OnPaintBackground doesn't invoke event delegates. When overriding the OnPaintBackground method, a derived

class is not required to invoke the OnPaintBackground method of its base class.

The Graphics class provides methods for drawing various shapes such as circles, triangles, arcs, and ellipses, and

methods for displaying text. The System.Drawing namespace contains namespaces and classes that encapsulate

graphics elements such as shapes (circles, rectangles, arcs, and others), colors, fonts, brushes, and so on.

The ClientRectangle property of a control specifies the rectangular region available to the control on the user's

screen, while the ClipRectangle property of PaintEventArgs specifies the area that is painted. A control might

need to paint only a portion of its available area, as is the case when a small section of the control's display

changes. In those situations, a control developer must compute the actual rectangle to draw in and pass that to

Invalidate. The overloaded versions of Invalidate that take a Rectangle or Region as an argument use that

argument to generate the ClipRectangle property of PaintEventArgs.

Graphics objects are expensive because they use system resources. Such objects include instances of the

System.Drawing.Graphics class and instances of System.Drawing.Brush, System.Drawing.Pen, and other graphics

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaintbackground
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaintbackground
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.paint
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaintbackground
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onpaintbackground
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.clientrectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs.cliprectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invalidate
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.rectangle
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.region
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs.cliprectangle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.painteventargs
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.graphics
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.brush
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.pen

 See also

classes. It's important that you create a graphics resource only when you need it and release it soon as you're

finished using it. If you create an instance of a type that implements the IDisposable interface, call its Dispose

method when you're finished with it to free resources.

Types of custom controls

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose

Providing Accessibility Information for Controls
(Windows Forms .NET)

 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 AccessibilityObject Property

 AccessibleDefaultActionDescription Property

Button1.AccessibleDefaultActionDescription = "Closes the application."

button1.AccessibleDefaultActionDescription = "Closes the application.";

 AccessibleDescription Property

Button1.AccessibleDescription = "A button with text 'Exit'."

button1.AccessibleDescription = "A button with text 'Exit'";

 AccessibleName Property

Accessibility aids are specialized programs and devices that help people with disabilities use computers more

effectively. Examples include screen readers for people who are blind and voice input utilities for people who

provide verbal commands instead of using the mouse or keyboard. These accessibility aids interact with the

accessibility properties exposed by Windows Forms controls. These properties are:

System.Windows.Forms.AccessibleObject

System.Windows.Forms.Control.AccessibleDefaultActionDescription

System.Windows.Forms.Control.AccessibleDescription

System.Windows.Forms.Control.AccessibleName

System.Windows.Forms.AccessibleRole

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

This read-only property contains an AccessibleObject instance. The AccessibleObject implements the

IAccessible interface, which provides information about the control's description, screen location, navigational

abilities, and value. The designer sets this value when the control is added to the form.

This string describes the action of the control. It does not appear in the Properties window and may only be set

in code. The following example sets the AccessibleDefaultActionDescription property for a button control:

This string describes the control. The AccessibleDescription property may be set in the Properties window, or in

code as follows:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/provide-accessibility-information.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.accessibleobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibledefaultactiondescription#system_windows_forms_control_accessibledefaultactiondescription
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibledescription#system_windows_forms_control_accessibledescription
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessiblename#system_windows_forms_control_accessiblename
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.accessiblerole
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.accessibleobject
https://docs.microsoft.com/en-us/dotnet/api/accessibility.iaccessible
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibledefaultactiondescription#system_windows_forms_control_accessibledefaultactiondescription
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibledescription#system_windows_forms_control_accessibledescription

Button1.AccessibleName = "Order"

button1.AccessibleName = "Order";

 AccessibleRole Property

PictureBox1.AccessibleRole = AccessibleRole.Chart

pictureBox1.AccessibleRole = AccessibleRole.Chart;

 See also

This is the name of a control reported to accessibility aids. The AccessibleName property may be set in the

Properties window, or in code as follows:

This property, which contains an AccessibleRole enumeration, describes the user interface role of the control. A

new control has the value set to Default . This would mean that by default, a Button control acts as a Button .

You may want to reset this property if a control has another role. For example, you may be using a PictureBox

control as a Chart , and you may want accessibility aids to report the role as a Chart , not as a PictureBox . You

may also want to specify this property for custom controls you have developed. This property may be set in the

Properties window, or in code as follows:

Label control overview (Windows Forms .NET)

AccessibleObject

Control.AccessibilityObject

Control.AccessibleDefaultActionDescription

Control.AccessibleDescription

Control.AccessibleName

Control.AccessibleRole

AccessibleRole

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessiblename#system_windows_forms_control_accessiblename
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.accessiblerole
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.accessibleobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibilityobject#system_windows_forms_control_accessibilityobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibledefaultactiondescription#system_windows_forms_control_accessibledefaultactiondescription
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessibledescription#system_windows_forms_control_accessibledescription
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessiblename#system_windows_forms_control_accessiblename
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.accessiblerole#system_windows_forms_control_accessiblerole
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.accessiblerole

Add a control to a form (Windows Forms .NET)
 5/27/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Add with Designer

 Add the control by double-clicking

 Add the control by drawing

Most forms are designed by adding controls to the surface of the form to define a user interface (UI). A control is

a component on a form used to display information or accept user input.

The primary way a control is added to a form is through the Visual Studio Designer, but you can also manage

the controls on a form at run time through code.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Visual Studio uses the Forms Designer to design forms. There is a Controls pane which lists all the controls

available to your app. You can add controls from the pane in two ways:

When a control is double-clicked, it is automatically added to the current open form with default settings.

Select the control by clicking on it. In your form, drag-select a region. The control will be placed to fit the size of

the region you selected.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-add-to-a-form.md

 Add with code

Label label1 = new Label()
{
 Text = "&First Name",
 Location = new Point(10, 10),
 TabIndex = 10
};

TextBox field1 = new TextBox()
{
 Location = new Point(label1.Location.X, label1.Bounds.Bottom + Padding.Top),
 TabIndex = 11
};

Controls.Add(label1);
Controls.Add(field1);

Dim label1 As New Label With {.Text = "&First Name",
 .Location = New Point(10, 10),
 .TabIndex = 10}

Dim field1 As New TextBox With {.Location = New Point(label1.Location.X,
 label1.Bounds.Bottom + Padding.Top),
 .TabIndex = 11}

Controls.Add(label1)
Controls.Add(field1)

 See also

Controls can be created and then added to a form at run time with the form's Controls collection. This collection

can also be used to remove controls from a form.

The following code adds and positions two controls, a Label and a TextBox:

Set the Text Displayed by a Windows Forms Control

Add an access key shortcut to a control

System.Windows.Forms.Label

System.Windows.Forms.TextBox

System.Windows.Forms.Button

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.controls
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

Add an access key shortcut to a control (Windows
Forms .NET)

 5/27/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Designer

 Programmatic

' Set the letter "P" as an access key.
Button1.Text = "&Print"

// Set the letter "P" as an access key.
button1.Text = "&Print";

 Use a label to focus a control

An access key is an underlined character in the text of a menu, menu item, or the label of a control such as a

button. With an access key, the user can "click" a button by pressing the Alt key in combination with the

predefined access key. For example, if a button runs a procedure to print a form, and therefore its Text

property is set to "Print," adding an ampersand (&) before the letter "P" causes the letter "P" to be underlined in

the button text at run time. The user can run the command associated with the button by pressing Alt.

Controls that cannot receive focus can't have access keys, except label controls.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In the Proper ties window of Visual Studio, set the Text property to a string that includes an ampersand (&)

before the letter that will be the access key. For example, to set the letter "P" as the access key, enter &Print.

Set the Text property to a string that includes an ampersand (&) before the letter that will be the shortcut.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-create-access-keys.md

' Set the letter "P" as an access key.
Label1.Text = "&Print"
Label1.TabIndex = 9
Button1.TabIndex = 10

// Set the letter "P" as an access key.
label1.Text = "&Print";
label1.TabIndex = 9
button1.TabIndex = 10

 Display an ampersand

' Set the letter "P" as an access key.
Button1.Text = "Print && Close"

// Set the letter "P" as an access key.
button1.Text = "Print && Close";

 See also

Even though a label cannot be focused, it has the ability to focus the next control in the tab order of the form.

Each control is assigned a value to the TabIndex property, generally in ascending sequential order. When the

access key is assigned to the Label.Text property, the next control in the sequential tab order is focused.

Using the example from the Programmatic section, if the button didn't have any text set, but instead presented

an image of a printer, you could use a label to focus the button.

When setting the text or caption of a control that interprets an ampersand (&) as an access key, use two

consecutive ampersands (&&) to display a single ampersand. For example, the text of a button set to

"Print && Close" displays in the caption of Print & Close :

Set the text displayed by a Windows Forms control

System.Windows.Forms.Button

System.Windows.Forms.Label

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabindex#system_windows_forms_control_tabindex
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label.text#system_windows_forms_label_text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label

How to: Set the text displayed by a control
(Windows Forms .NET)

 7/20/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Designer

Windows Forms controls usually display some text that's related to the primary function of the control. For

example, a Button control usually displays a caption indicating what action will be performed if the button is

clicked. For all controls, you can set or return the text by using the Text property. You can change the font by

using the Font property.

You can also set the text by using the designer.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

1. In the Proper ties window in Visual Studio, set the Text property of the control to an appropriate string.

To create an underlined shortcut key, include an ampersand (&) before the letter that will be the shortcut

key.

2. In the Proper ties window, select the ellipsis button () next to the Font property.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-set-the-display-text.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.font

 Programmatic

In the standard font dialog box, adjust the font with settings such as type, size, and style.

Button1.Text = "Click here to save changes"
Button1.Font = New Font("Arial", 10, FontStyle.Bold, GraphicsUnit.Point)

button1.Text = "Click here to save changes";
button1.Font = new Font("Arial", 10, FontStyle.Bold, GraphicsUnit.Point);

NOTE

1. Set the Text property to a string.

To create an underlined access key, include an ampersand (&) before the letter that will be the access key.

2. Set the Font property to an object of type Font.

You can use an escape character to display a special character in user-interface elements that would normally

interpret them differently, such as menu items. For example, the following line of code sets the menu item's text to

read "& Now For Something Completely Different":

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.font
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.font

 See also

MPMenuItem.Text = "&& Now For Something Completely Different"

mpMenuItem.Text = "&& Now For Something Completely Different";

Create Access Keys for Windows Forms Controls

System.Windows.Forms.Control.Text

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.text

How to set the tab order on Windows Forms
(Windows Forms .NET)

 6/3/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Designer

The tab order is the order in which a user moves focus from one control to another by pressing the Tab key.

Each form has its own tab order. By default, the tab order is the same as the order in which you created the

controls. Tab-order numbering begins with zero and ascends in value, and is set with the TabIndex property.

You can also set the tab order by using the designer.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Tab order can be set in the Proper ties window of the designer using the TabIndex property. The TabIndex

property of a control determines where it's positioned in the tab order. By default, the first control added to the

designer has a TabIndex value of 0, the second has a TabIndex of 1, and so on. Once the highest TabIndex has

been focused, pressing Tab will cycle and focus the control with the lowest TabIndex value.

Container controls, such as a GroupBox control, treat their children as separate from the rest of the form. Each

child in the container has its own TabIndex value. Because a container control can't be focused, when the tab

order reaches the container control, the child control of the container with the lowest TabIndex is focused. As

the Tab is pressed, each child control is focused according to its TabIndex value until the last control. When Tab
is pressed on the last control, focus resumes to the next control in the parent of the container, based on the next

TabIndex value.

Any control of the many on your form can be skipped in the tab order. Usually, pressing Tab successively at run

time selects each control in the tab order. By turning off the TabStop property, a control is passed over in the tab

order of the form.

Use the Visual Studio designer Proper ties window to set the tab order of a control.

1. Select the control in the designer.

2. In the Proper ties window in Visual Studio, set the TabIndex property of the control to an appropriate

number.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-set-the-tab-order.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabindex
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabindex
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabindex
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabstop

 Programmatic

 Remove a control from the tab order

NOTE

 Set TabStop with the designer

Button1.TabIndex = 1

Button1.TabIndex = 1;

1. Set the TabIndex property to a numerical value.

You can prevent a control from receiving focus when the Tab key is pressed, by setting the TabStop property to

false . The control is skipped when you cycle through the controls with the Tab key. The control doesn't lose its

tab order when this property is set to false .

A radio button group has a single tab stop at run-time. The selected button, the button with its Checked property set to

true , has its TabStop property automatically set to true . Other buttons in the radio button group have their

TabStop property set to false .

1. Select the control in the designer.

2. In the Proper ties window in Visual Studio, set the TabStop property to False .

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabstop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.radiobutton.checked
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabstop

 Set TabStop programmatically

 See also

Button1.TabStop = false;

Button1.TabStop = False

1. Set the TabStop property to false .

Add a control to a form

System.Windows.Forms.Control.TabIndex

System.Windows.Forms.Control.TabStop

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabindex
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.tabstop

How to dock and anchor controls (Windows Forms
.NET)

 6/2/2021 • 3 minutes to read • Edit Online

IMPORTANT

If you're designing a form that the user can resize at run time, the controls on your form should resize and

reposition properly. Controls have two properties that help with automatic placement and sizing, when the form

changes size.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Control.Dock

Controls that are docked fill the edges of the control's container, either the form or a container control.

For example, Windows Explorer docks its TreeView control to the left side of the window and its ListView

control to the right side of the window. The docking mode can be any side of the control's container, or

set to fill the remaining space of the container.

Controls are docked in reverse z-order and the Dock property interacts with the AutoSize property. For

more information, see Automatic sizing.

Control.Anchor

When an anchored control's form is resized, the control maintains the distance between the control and

the anchor positions. For example, if you have a TextBox control that is anchored to the left, right, and

bottom edges of the form, as the form is resized, the TextBox control resizes horizontally so that it

maintains the same distance from the right and left sides of the form. The control also positions itself

vertically so that its location is always the same distance from the bottom edge of the form. If a control

isn't anchored and the form is resized, the position of the control relative to the edges of the form is

changed.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-dock-and-anchor.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox

 Dock a control

NOTE

 Use the designer

For more information, see Position and layout of controls.

A control is docked by setting its Dock property.

Inherited controls must be Protected to be able to be docked. To change the access level of a control, set its Modifier

property in the Proper ties window.

Use the Visual Studio designer Proper ties window to set the docking mode of a control.

1. Select the control in the designer.

2. In the Proper ties window, select the arrow to the right of the Dock property.

3. Select the button that represents the edge of the container where you want to dock the control. To fill the

contents of the control's form or container control, press the center box. Press (none) to disable docking.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock

 Set Dock programmatically

 Anchor a control

NOTE

 Use the designer

The control is automatically resized to fit the boundaries of the docked edge.

button1.Dock = DockStyle.Right;

button1.Dock = DockStyle.Right

1. Set the Dock property on a control. In this example, a button is docked to the right side of its container :

A control is anchored to an edge by setting its Anchor property to one or more values.

Certain controls, such as the ComboBox control, have a limit to their height. Anchoring the control to the bottom of its

form or container cannot force the control to exceed its height limit.

Inherited controls must be Protected to be able to be anchored. To change the access level of a control, set its

Modifiers property in the Proper ties window.

Use the Visual Studio designer Proper ties window to set the anchored edges of a control.

1. Select the control in the designer.

2. In the Proper ties window, select the arrow to the right of the Anchor property.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox

 Set Anchor programmatically

 See also

3. To set or unset an anchor, select the top, left, right, or bottom arm of the cross.

button1.Anchor = AnchorStyles.Bottom | AnchorStyles.Right;

button1.Anchor = AnchorStyles.Bottom Or AnchorStyles.Right

1. Set the Anchor property on a control. In this example, a button is anchored to the right and bottom sides

of its container :

Position and layout of controls.

System.Windows.Forms.Control.Anchor

System.Windows.Forms.Control.Dock

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.anchor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dock

How to display an image on a control (Windows
Forms .NET)

 7/20/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Display an image - designer

 Display an image - code

Several Windows Forms controls can display images. These images can be icons that clarify the purpose of the

control, such as a diskette icon on a button denoting the Save command. Alternatively, the icons can be

background images to give the control the appearance and behavior you want.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In Visual Studio, use the Visual Designer to display an image.

1. Open the Visual Designer of the form containing the control to change.

2. Select the control.

3. In the Proper ties pane, select the Image or BackgroundImage property of the control.

4. Select the ellipsis () to display the Select Resource dialog box and then select the image you want to

display.

Set the control's Image or BackgroundImage property to an object of type Image. Generally, you'll load the image

from a file by using the FromFile method.

In the following code example, the path set for the location of the image is the My Pictures folder. Most

computers running the Windows operating system include this directory. This also enables users with minimal

system access levels to run the application safely. The following code example requires that you already have a

form with a PictureBox control added.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-add-a-picture-to-a-control.md
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.fromfile
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.picturebox

// Replace the image named below with your own icon.
// Note the escape character used (@) when specifying the path.
pictureBox1.Image = Image.FromFile
 (System.Environment.GetFolderPath
 (System.Environment.SpecialFolder.MyPictures)
 + @"\Image.gif");

' Replace the image named below with your own icon.
PictureBox1.Image = Image.FromFile _
 (System.Environment.GetFolderPath _
 (System.Environment.SpecialFolder.MyPictures) _
 & "\Image.gif")

 See also
System.Drawing.Image.FromFile

System.Drawing.Image

System.Windows.Forms.Control.BackgroundImage

https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image.fromfile
https://docs.microsoft.com/en-us/dotnet/api/system.drawing.image
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.backgroundimage

How to handle a control event (Windows Forms
.NET)

 7/30/2021 • 4 minutes to read • Edit Online

IMPORTANT

 Handle an event - designer

 Set the handler

Events for controls (and for forms) are generally set through the Visual Studio Visual Designer for Windows

Forms. Setting an event through the Visual Designer is known as handling an event at design-time. You can also

handle events dynamically in code, known as handling events at run-time. An event created at run-time allows

you to connect event handlers dynamically based on what your app is currently doing.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In Visual Studio, use the Visual Designer to manage handlers for control events. The Visual Designer will

generate the handler code and add it to the event for you.

Use the Proper ties pane to add or set the handler of an event:

1. Open the Visual Designer of the form containing the control to change.

2. Select the control.

3. Change the Proper ties pane mode to Events by pressing the events button ().

4. Find the event you want to add a handler to, for example, the Click event:

5. Do one of the following:

Double-click the event to generate a new handler, it's blank if no handler is assigned. If it's not

blank, this action opens the code for the form and navigates to the existing handler.

Use the selection box () to choose an existing handler.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-add-an-event-handler.md

 Clear the handler

 Handle an event - code

 Add a handler

The selection box will list all methods that have a compatible method signature for the event

handler.

To remove an event handler, you can't just delete handler code that is in the form's code-behind file, it's still

referenced by the event. Use the Proper ties pane to remove the handler of an event:

1. Open the Visual Designer of the form containing the control to change.

2. Select the control.

3. Change the Proper ties pane mode to Events by pressing the events button ().

4. Find the event containing the handler you want to remove, for example, the Click event:

5. Right-click on the event and choose Reset.

You typically add event handlers to controls at design-time through the Visual Designer. You can, though, create

controls at run-time, which requires you to add event handlers in code. Adding handlers in code also gives you

the chance to add multiple handlers to the same event.

The following example shows how to create a control and add an event handler. This control is created in the

Button.Click event handler a different button. When Button1 is pressed. The code moves and sizes a new

button. The new button's Click event is handled by the MyNewButton_Click method. To get the new button to

appear, it's added to the form's Controls collection. There's also code to remove the Button1.Click event's

handler, this is discussed in the Remove the handler section.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click

private void button1_Click(object sender, EventArgs e)
{
 // Create and add the button
 Button myNewButton = new()
 {
 Location = new Point(10, 10),
 Size = new Size(120, 25),
 Text = "Do work"
 };

 // Handle the Click event for the new button
 myNewButton.Click += MyNewButton_Click;
 this.Controls.Add(myNewButton);

 // Remove this button handler so the user cannot do this twice
 button1.Click -= button1_Click;
}

private void MyNewButton_Click(object sender, EventArgs e)
{

}

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 'Create and add the button
 Dim myNewButton As New Button() With {.Location = New Point(10, 10),
 .Size = New Size(120, 25),
 .Text = "Do work"}

 'Handle the Click event for the new button
 AddHandler myNewButton.Click, AddressOf MyNewButton_Click
 Me.Controls.Add(myNewButton)

 'Remove this button handler so the user cannot do this twice
 RemoveHandler Button1.Click, AddressOf Button1_Click
End Sub

Private Sub MyNewButton_Click(sender As Object, e As EventArgs)

End Sub

 Remove the handler

button1.Click -= button1_Click;

To run this code, do the following to a form with the Visual Studio Visual Designer :

1. Add a new button to the form and name it Button1 .

2. Change the Proper ties pane mode to Events by pressing the event button ().

3. Double-click the Click event to generate a handler. This action opens the code window and generates a blank

Button1_Click method.

4. Replace the method code with the previous code above.

For more information about C# events, see Events (C#) For more information about Visual Basic events, see

Events (Visual Basic)

The Add a handler section used some code to demonstrate adding a handler. That code also contained a call to

remove a handler :

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/

RemoveHandler Button1.Click, AddressOf Button1_Click

 How to use multiple events with the same handler

 Visual Basic

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click, Button2.Click
 'Do some work to handle the events
End Sub

 See also

This syntax can be used to remove any event handler from any event.

For more information about C# events, see Events (C#) For more information about Visual Basic events, see

Events (Visual Basic)

With the Visual Studio Visual Designer's Proper ties pane, you can select the same handler already in use by a

different event. Follow the directions in the Set the handler section to select an existing handler instead of

creating a new one.

In C#, the handler is attached to a control's event in the form's designer code, which changed through the Visual

Designer. For more information about C# events, see Events (C#)

In Visual Basic, the handler is attached to a control's event in the form's code-behind file, where the event

handler code is declared. Multiple Handles keywords can be added to the event handler code to use it with

multiple events. The Visual Designer will generate the Handles keyword for you and add it to the event handler.

However, you can easily do this yourself to any control's event and event handler, as long as the signature of the

handler method matches the event. For more information about Visual Basic events, see Events (Visual Basic)

This code demonstrates how the same method can be used as a handler for two different Button.Click events:

Control events

Events overview

Using mouse events

Using keyboard events

System.Windows.Forms.Button

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button

How to make thread-safe calls to controls (Windows
Forms .NET)

 7/30/2021 • 4 minutes to read • Edit Online

IMPORTANT

 Unsafe cross-thread calls

private void button1_Click(object sender, EventArgs e)
{
 var thread2 = new System.Threading.Thread(WriteTextUnsafe);
 thread2.Start();
}

private void WriteTextUnsafe() =>
 textBox1.Text = "This text was set unsafely.";

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim thread2 As New System.Threading.Thread(AddressOf WriteTextUnsafe)
 thread2.Start()
End Sub

Private Sub WriteTextUnsafe()
 TextBox1.Text = "This text was set unsafely."
End Sub

Multithreading can improve the performance of Windows Forms apps, but access to Windows Forms controls

isn't inherently thread-safe. Multithreading can expose your code to serious and complex bugs. Two or more

threads manipulating a control can force the control into an inconsistent state and lead to race conditions,

deadlocks, and freezes or hangs. If you implement multithreading in your app, be sure to call cross-thread

controls in a thread-safe way. For more information, see Managed threading best practices.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

There are two ways to safely call a Windows Forms control from a thread that didn't create that control. Use the

System.Windows.Forms.Control.Invoke method to call a delegate created in the main thread, which in turn calls

the control. Or, implement a System.ComponentModel.BackgroundWorker, which uses an event-driven model to

separate work done in the background thread from reporting on the results.

It's unsafe to call a control directly from a thread that didn't create it. The following code snippet illustrates an

unsafe call to the System.Windows.Forms.TextBox control. The Button1_Click event handler creates a new

WriteTextUnsafe thread, which sets the main thread's TextBox.Text property directly.

The Visual Studio debugger detects these unsafe thread calls by raising an InvalidOperationException with the

message, Cross-thread operation not valid. Control accessed from a thread other than the thread it

was created on. The InvalidOperationException always occurs for unsafe cross-thread calls during Visual

Studio debugging, and may occur at app runtime. You should fix the issue, but you can disable the exception by

setting the Control.CheckForIllegalCrossThreadCalls property to false .

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/controls/how-to-make-thread-safe-calls.md
https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invoke
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://docs.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.checkforillegalcrossthreadcalls

Safe cross-thread calls

 Example: Use the Invoke method

private void button1_Click(object sender, EventArgs e)
{
 var threadParameters = new System.Threading.ThreadStart(delegate { WriteTextSafe("This text was set
safely."); });
 var thread2 = new System.Threading.Thread(threadParameters);
 thread2.Start();
}

public void WriteTextSafe(string text)
{
 if (textBox1.InvokeRequired)
 {
 // Call this same method but append THREAD2 to the text
 Action safeWrite = delegate { WriteTextSafe($"{text} (THREAD2)"); };
 textBox1.Invoke(safeWrite);
 }
 else
 textBox1.Text = text;
}

The following code examples demonstrate two ways to safely call a Windows Forms control from a thread that

didn't create it:

1. The System.Windows.Forms.Control.Invoke method, which calls a delegate from the main thread to call the

control.

2. A System.ComponentModel.BackgroundWorker component, which offers an event-driven model.

In both examples, the background thread sleeps for one second to simulate work being done in that thread.

The following example demonstrates a pattern for ensuring thread-safe calls to a Windows Forms control. It

queries the System.Windows.Forms.Control.InvokeRequired property, which compares the control's creating

thread ID to the calling thread ID. If they're different, you should call the Control.Invoke method.

The WriteTextSafe enables setting the TextBox control's Text property to a new value. The method queries

InvokeRequired. If InvokeRequired returns true , WriteTextSafe recursively calls itself, passing the method as a

delegate to the Invoke method. If InvokeRequired returns false , WriteTextSafe sets the TextBox.Text directly.

The Button1_Click event handler creates the new thread and runs the WriteTextSafe method.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invoke
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invokerequired
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invoke
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invokerequired
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invokerequired
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invoke
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invokerequired
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox.text

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim threadParameters As New System.Threading.ThreadStart(Sub()
 WriteTextSafe("This text was set safely.")
 End Sub)

 Dim thread2 As New System.Threading.Thread(threadParameters)
 thread2.Start()

End Sub

Private Sub WriteTextSafe(text As String)

 If (TextBox1.InvokeRequired) Then

 TextBox1.Invoke(Sub()
 WriteTextSafe($"{text} (THREAD2)")
 End Sub)

 Else
 TextBox1.Text = text
 End If

End Sub

 Example: Use a BackgroundWorker
An easy way to implement multithreading is with the System.ComponentModel.BackgroundWorker component,

which uses an event-driven model. The background thread raises the BackgroundWorker.DoWork event, which

doesn't interact with the main thread. The main thread runs the BackgroundWorker.ProgressChanged and

BackgroundWorker.RunWorkerCompleted event handlers, which can call the main thread's controls.

To make a thread-safe call by using BackgroundWorker, handle the DoWork event. There are two events the

background worker uses to report status: ProgressChanged and RunWorkerCompleted. The ProgressChanged

event is used to communicate status updates to the main thread, and the RunWorkerCompleted event is used to

signal that the background worker has completed its work. To start the background thread, call

BackgroundWorker.RunWorkerAsync.

The example counts from 0 to 10 in the DoWork event, pausing for one second between counts. It uses the

ProgressChanged event handler to report the number back to the main thread and set the TextBox control's Text

property. For the ProgressChanged event to work, the BackgroundWorker.WorkerReportsProgress property

must be set to true .

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.dowork
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.progresschanged
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.runworkercompleted
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.dowork
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.progresschanged
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.runworkercompleted
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.runworkerasync
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.progresschanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.progresschanged
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker.workerreportsprogress

private void button1_Click(object sender, EventArgs e)
{
 if (!backgroundWorker1.IsBusy)
 backgroundWorker1.RunWorkerAsync();
}

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
 int counter = 0;
 int max = 10;

 while (counter <= max)
 {
 backgroundWorker1.ReportProgress(0, counter.ToString());
 System.Threading.Thread.Sleep(1000);
 counter++;
 }
}

private void backgroundWorker1_ProgressChanged(object sender, ProgressChangedEventArgs e) =>
 textBox1.Text = (string)e.UserState;

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 If (Not BackgroundWorker1.IsBusy) Then
 BackgroundWorker1.RunWorkerAsync()
 End If

End Sub

Private Sub BackgroundWorker1_DoWork(sender As Object, e As ComponentModel.DoWorkEventArgs) Handles
BackgroundWorker1.DoWork

 Dim counter = 0
 Dim max = 10

 While counter <= max

 BackgroundWorker1.ReportProgress(0, counter.ToString())
 System.Threading.Thread.Sleep(1000)

 counter += 1

 End While

End Sub

Private Sub BackgroundWorker1_ProgressChanged(sender As Object, e As
ComponentModel.ProgressChangedEventArgs) Handles BackgroundWorker1.ProgressChanged
 TextBox1.Text = e.UserState
End Sub

Overview of using the keyboard (Windows Forms
.NET)

 3/9/2021 • 7 minutes to read • Edit Online

IMPORTANT

 Keyboard events

 Methods that process user input messages

M ET H O D N OT ES

PreFilterMessage This method intercepts queued (also known as posted)
Windows messages at the application level.

PreProcessMessage This method intercepts Windows messages at the form and
control level before they have been processed.

WndProc This method processes Windows messages at the form and
control level.

DefWndProc This method performs the default processing of Windows
messages at the form and control level. This provides the
minimal functionality of a window.

OnNotifyMessage This method intercepts messages at the form and control
level, after they have been processed. The
EnableNotifyMessage style bit must be set for this method
to be called.

In Windows Forms, user input is sent to applications in the form of Windows messages. A series of overridable

methods process these messages at the application, form, and control level. When these methods receive

keyboard messages, they raise events that can be handled to get information about the keyboard input. In many

cases, Windows Forms applications will be able to process all user input simply by handling these events. In

other cases, an application may need to override one of the methods that process messages in order to intercept

a particular message before it is received by the application, form, or control.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

All Windows Forms controls inherit a set of events related to mouse and keyboard input. For example, a control

can handle the KeyPress event to determine the character code of a key that was pressed. For more information,

see Using keyboard events.

Forms and controls have access to the IMessageFilter interface and a set of overridable methods that process

Windows messages at different points in the message queue. These methods all have a Message parameter,

which encapsulates the low-level details of Windows messages. You can implement or override these methods

to examine the message and then either consume the message or pass it on to the next consumer in the

message queue. The following table presents the methods that process all Windows messages in Windows

Forms.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-keyboard/overview.md
https://docs.microsoft.com/en-us/windows/win32/winmsg/about-messages-and-message-queues
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imessagefilter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.message
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imessagefilter.prefiltermessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.preprocessmessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.wndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.defwndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onnotifymessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.controlstyles#system_windows_forms_controlstyles_enablenotifymessage

 Types of keys

 Order of keyboard events

 Preprocessing keys

 Preprocessing for a KeyDown event

A C T IO N REL AT ED M ET H O D N OT ES

Check for a command key such as an
accelerator or menu shortcut.

ProcessCmdKey This method processes a command
key, which takes precedence over
regular keys. If this method returns
true , the key message is not

dispatched and a key event does not
occur. If it returns false , IsInputKey

is called .

Check for a special key that requires
preprocessing or a normal character
key that should raise a KeyDown event
and be dispatched to a control.

IsInputKey If the method returns true , it means

the control is a regular character and a
KeyDown event is raised. If false ,

ProcessDialogKey is called. Note: To
ensure a control gets a key or
combination of keys, you can handle
the PreviewKeyDown event and set
IsInputKey of the
PreviewKeyDownEventArgs to true

for the key or keys you want.

Keyboard and mouse messages are also processed by an additional set of overridable methods that are specific

to those types of messages. For more information, see the Preprocessing keys section. .

Windows Forms identifies keyboard input as virtual-key codes that are represented by the bitwise Keys

enumeration. With the Keys enumeration, you can combine a series of pressed keys to result in a single value.

These values correspond to the values that accompany the WM_KEYDOWN and WM_SYSKEYDOWN

Windows messages. You can detect most physical key presses by handling the KeyDown or KeyUp events.

Character keys are a subset of the Keys enumeration and correspond to the values that accompany the

WM_CHAR and WM_SYSCHAR Windows messages. If the combination of pressed keys results in a character,

you can detect the character by handling the KeyPress event.

As listed previously, there are 3 keyboard related events that can occur on a control. The following sequence

shows the general order of the events:

1. The user pushes the "a" key, the key is preprocessed, dispatched, and a KeyDown event occurs.

2. The user holds the "a" key, the key is preprocessed, dispatched, and a KeyPress event occurs. This event

occurs multiple times as the user holds a key.

3. The user releases the "a" key, the key is preprocessed, dispatched and a KeyUp event occurs.

Like other messages, keyboard messages are processed in the WndProc method of a form or control. However,

before keyboard messages are processed, the PreProcessMessage method calls one or more methods that can

be overridden to handle special character keys and physical keys. You can override these methods to detect and

filter certain keys before the messages are processed by the control. The following table shows the action that is

being performed and the related method that occurs, in the order that the method occurs.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.wndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.preprocessmessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processcmdkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.isinputkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.isinputkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.previewkeydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.previewkeydowneventargs.isinputkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.previewkeydowneventargs

Check for a navigation key (ESC, TAB,
Return, or arrow keys).

ProcessDialogKey This method processes a physical key
that employs special functionality
within the control, such as switching
focus between the control and its
parent. If the immediate control does
not handle the key, the
ProcessDialogKey is called on the
parent control and so on to the
topmost control in the hierarchy. If this
method returns true , preprocessing

is complete and a key event is not
generated. If it returns false , a

KeyDown event occurs.

A C T IO N REL AT ED M ET H O D N OT ES

 Preprocessing for a KeyPress event

A C T IO N REL AT ED M ET H O D N OT ES

Check to see the key is a normal
character that should be processed by
the control

IsInputChar If the character is a normal character,
this method returns true , the

KeyPress event is raised and no further
preprocessing occurs. Otherwise
ProcessDialogChar will be called.

Check to see if the character is a
mnemonic (such as &OK on a button)

ProcessDialogChar This method, similar to
ProcessDialogKey, will be called up the
control hierarchy. If the control is a
container control, it checks for
mnemonics by calling
ProcessMnemonic on itself and its
child controls. If ProcessDialogChar
returns true , a KeyPress event does

not occur.

 Processing keyboard messages

M ET H O D N OT ES

ProcessKeyMessage This method processes all keyboard messages that are
received by the WndProc method of the control.

ProcessKeyPreview This method sends the keyboard message to the control's
parent. If ProcessKeyPreview returns true , no key event is

generated, otherwise ProcessKeyEventArgs is called.

ProcessKeyEventArgs This method raises the KeyDown, KeyPress, and KeyUp
events, as appropriate.

After keyboard messages reach the WndProc method of a form or control, they are processed by a set of

methods that can be overridden. Each of these methods returns a Boolean value specifying whether the

keyboard message has been processed and consumed by the control. If one of the methods returns true , then

the message is considered handled, and it is not passed to the control's base or parent for further processing.

Otherwise, the message stays in the message queue and may be processed in another method in the control's

base or parent. The following table presents the methods that process keyboard messages.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.isinputchar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogchar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogchar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processmnemonic
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogchar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.wndproc
https://docs.microsoft.com/en-us/dotnet/api/system.boolean
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processkeymessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.wndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processkeypreview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processkeypreview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processkeyeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processkeyeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup

 Overriding keyboard methods

TA SK M ET H O D

Intercept a navigation key and raise a KeyDown event. For
example you want TAB and Return to be handled in a text
box.

Override IsInputKey. Note: Alternatively, you can handle the
PreviewKeyDown event and set IsInputKey of the
PreviewKeyDownEventArgs to true for the key or keys

you want.

Perform special input or navigation handling on a control.
For example, you want the use of arrow keys in your list
control to change the selected item.

Override ProcessDialogKey

Intercept a navigation key and raise a KeyPress event. For
example in a spin-box control you want multiple arrow key
presses to accelerate progression through the items.

Override IsInputChar.

Perform special input or navigation handling during a
KeyPress event. For example, in a list control holding down
the "r" key skips between items that begin with the letter r.

Override ProcessDialogChar

Perform custom mnemonic handling; for example, you want
to handle mnemonics on owner-drawn buttons contained in
a toolbar.

Override ProcessMnemonic.

 See also

There are many methods available for overriding when a keyboard message is preprocessed and processed;

however, some methods are much better choices than others. Following table shows tasks you might want to

accomplish and the best way to override the keyboard methods. For more information on overriding methods,

see Inheritance (C# Programming Guide) or Inheritance (Visual Basic)

Keys

WndProc

PreProcessMessage

Using keyboard events (Windows Forms .NET)

How to modify keyboard key events (Windows Forms .NET)

How to Check for modifier key presses (Windows Forms .NET)

How to simulate keyboard events (Windows Forms .NET)

How to handle keyboard input messages in the form (Windows Forms .NET)

Add a control (Windows Forms .NET)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance.md#abstract-and-virtual-methods
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics.md#overriding-properties-and-methods-in-derived-classes
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.isinputkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.previewkeydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.previewkeydowneventargs.isinputkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.previewkeydowneventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.isinputchar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processdialogchar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.processmnemonic
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.wndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.preprocessmessage

Using keyboard events (Windows Forms .NET)
 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 Keyboard events

KEY B O A RD EVEN T DESC RIP T IO N RESULT S

KeyDown This event is raised when a user
presses a physical key.

The handler for KeyDown receives:

Most Windows Forms programs process keyboard input by handling the keyboard events. This article provides

an overview of the keyboard events, including details on when to use each event and the data that is supplied

for each event. For more information about events in general, see Events overview (Windows Forms .NET).

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Windows Forms provides two events that occur when a user presses a keyboard key and one event when a user

releases a keyboard key:

The KeyDown event occurs once.

The KeyPress event, which can occur multiple times when a user holds down the same key.

The KeyUp event occurs once when a user releases a key.

When a user presses a key, Windows Forms determines which event to raise based on whether the keyboard

message specifies a character key or a physical key. For more information about character and physical keys, see

Keyboard overview, keyboard events.

The following table describes the three keyboard events.

A KeyEventArgs parameter,
which provides the KeyCode
property (which specifies a
physical keyboard button).

The Modifiers property (SHIFT,
CTRL, or ALT).

The KeyData property (which
combines the key code and
modifier). The KeyEventArgs
parameter also provides:

The Handled property,
which can be set to
prevent the underlying
control from receiving
the key.

The SuppressKeyPress
property, which can be
used to suppress the
KeyPress and KeyUp
events for that
keystroke.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-keyboard/events.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.keycode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.modifiers
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.keydata
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.handled
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.suppresskeypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup

KeyPress This event is raised when the key or
keys pressed result in a character. For
example, a user presses SHIFT and the
lowercase "a" keys, which result in a
capital letter "A" character.

KeyPress is raised after KeyDown.

KeyUp This event is raised when a user
releases a physical key.

The handler for KeyUp receives:

KEY B O A RD EVEN T DESC RIP T IO N RESULT S

 See also

The handler for KeyPress
receives:

A KeyPressEventArgs
parameter, which contains the
character code of the key that
was pressed. This character
code is unique for every
combination of a character key
and a modifier key.

For example, the "A" key will
generate:

The character code 65, if
it is pressed with the
SHIFT key

Or the CAPS LOCK key,
97 if it is pressed by
itself,

And 1, if it is pressed
with the CTRL key.

A KeyEventArgs parameter:

Which provides the
KeyCode property
(which specifies a
physical keyboard
button).

The Modifiers property
(SHIFT, CTRL, or ALT).

The KeyData property
(which combines the
key code and modifier).

Overview of using the keyboard (Windows Forms .NET)

How to modify keyboard key events (Windows Forms .NET)

How to Check for modifier key presses (Windows Forms .NET)

How to simulate keyboard events (Windows Forms .NET)

How to handle keyboard input messages in the form (Windows Forms .NET)

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keypresseventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.keycode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.modifiers
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.sortkey.keydata

Overview of how to validate user input (Windows
Forms .NET)

 11/3/2020 • 6 minutes to read • Edit Online

IMPORTANT

 MaskedTextBox Control

 Event-driven validation

When users enter data into your application, you may want to verify that the data is valid before your

application uses it. You may require that certain text fields not be zero-length, that a field formatted as a

telephone number, or that a string doesn't contain invalid characters. Windows Forms provides several ways for

you to validate input in your application.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

If you need to require users to enter data in a well-defined format, such as a telephone number or a part

number, you can accomplish this quickly and with minimal code by using the MaskedTextBox control. A mask is

a string made up of characters from a masking language that specifies which characters can be entered at any

given position in the text box. The control displays a set of prompts to the user. If the user types an incorrect

entry, for example, the user types a letter when a digit is required, the control will automatically reject the input.

The masking language that is used by MaskedTextBox is flexible. It allows you to specify required characters,

optional characters, literal characters, such as hyphens and parentheses, currency characters, and date

separators. The control also works well when bound to a data source. The Format event on a data binding can be

used to reformat incoming data to comply with the mask, and the Parse event can be used to reformat outgoing

data to comply with the specifications of the data field.

If you want full programmatic control over validation, or need complex validation checks, you should use the

validation events that are built into most Windows Forms controls. Each control that accepts free-form user

input has a Validating event that will occur whenever the control requires data validation. In the Validating

event-handling method, you can validate user input in several ways. For example, if you have a text box that

must contain a postal code, you can do the validation in the following ways:

If the postal code must belong to a specific group of zip codes, you can do a string comparison on the

input to validate the data entered by the user. For example, if the postal code must be in the set

{10001, 10002, 10003} , then you can use a string comparison to validate the data.

If the postal code must be in a specific form, you can use regular expressions to validate the data entered

by the user. For example, to validate the form ##### or #####-#### , you can use the regular expression

^(\d{5})(-\d{4})?$. To validate the form A#A #A# , you can use the regular expression

[A-Z]\d[A-Z] \d[A-Z]\d . For more information about regular expressions, see .NET Regular Expressions

and Regular Expression Examples.

If the postal code must be a valid United States Zip code, you could call a Zip code Web service to validate

the data entered by the user.

The Validating event is supplied an object of type CancelEventArgs. If you determine that the control's data isn't

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-keyboard/validation.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.maskedtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.maskedtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.binding.format
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.binding.parse
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-example-scanning-for-hrefs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs

 Event-driven validation data-bound controls

IMPORTANT

 Implicit and explicit validation

 Implicit validation

 Explicit validation

 Default implicit validation behavior for controls

valid, cancel the Validating event by setting this object's Cancel property to true . If you don't set the Cancel

property, Windows Forms will assume that validation succeeded for that control and raise the Validated event.

For a code example that validates an email address in a TextBox, see the Validating event reference.

Validation is useful when you have bound your controls to a data source, such as a database table. By using

validation, you can make sure that your control's data satisfies the format required by the data source, and that

it doesn't contain any special characters such as quotation marks and back slashes that might be unsafe.

When you use data binding, the data in your control is synchronized with the data source during execution of

the Validating event. If you cancel the Validating event, the data won't be synchronized with the data source.

If you have custom validation that takes place after the Validating event, it won't affect the data binding. For example, if

you have code in a Validated event that attempts to cancel the data binding, the data binding will still occur. In this case,

to perform validation in the Validated event, change the control's Binding.DataSourceUpdateMode property from

DataSourceUpdateMode.OnValidation to DataSourceUpdateMode.Never, and add

your-control.DataBindings["field-name"].WriteValue() to your validation code.

So when does a control's data get validated? This is up to you, the developer. You can use either implicit or

explicit validation, depending on the needs of your application.

The implicit validation approach validates data as the user enters it. Validate the data by reading the keys as

they're pressed, or more commonly whenever the user takes the input focus away from the control. This

approach is useful when you want to give the user immediate feedback about the data as they're working.

If you want to use implicit validation for a control, you must set that control's AutoValidate property to

EnablePreventFocusChange or EnableAllowFocusChange. If you cancel the Validating event, the behavior of the

control will be determined by what value you assigned to AutoValidate. If you assigned

EnablePreventFocusChange, canceling the event will cause the Validated event not to occur. Input focus will

remain on the current control until the user changes the data to a valid format. If you assigned

EnableAllowFocusChange, the Validated event won't occur when you cancel the event, but focus will still change

to the next control.

Assigning Disable to the AutoValidate property prevents implicit validation altogether. To validate your controls,

you'll have to use explicit validation.

The explicit validation approach validates data at one time. You can validate the data in response to a user action,

such as clicking a Save button or a Next link. When the user action occurs, you can trigger explicit validation in

one of the following ways:

Call Validate to validate the last control to have lost focus.

Call ValidateChildren to validate all child controls in a form or container control.

Call a custom method to validate the data in the controls manually.

Different Windows Forms controls have different defaults for their AutoValidate property. The following table

shows the most common controls and their defaults.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs.cancel
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs.cancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.binding.datasourceupdatemode#system_windows_forms_binding_datasourceupdatemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datasourceupdatemode#system_windows_forms_datasourceupdatemode_onvalidation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datasourceupdatemode#system_windows_forms_datasourceupdatemode_never
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autovalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_enablepreventfocuschange
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_enableallowfocuschange
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autovalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_enablepreventfocuschange
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_enableallowfocuschange
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_disable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autovalidate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.validate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.validatechildren
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol.autovalidate

C O N T RO L DEFA ULT VA L IDAT IO N B EH AVIO R

ContainerControl Inherit

Form EnableAllowFocusChange

PropertyGrid Property not exposed in Visual Studio

ToolStripContainer Property not exposed in Visual Studio

SplitContainer Inherit

UserControl EnableAllowFocusChange

 Closing the form and overriding Validation

NOTE

 See also

When a control maintains focus because the data it contains is invalid, it's impossible to close the parent form in

one of the usual ways:

By clicking the Close button.

By selecting the System > Close menu.

By calling the Close method programmatically.

However, in some cases, you might want to let the user close the form regardless of whether the values in the

controls are valid. You can override validation and close a form that still contains invalid data by creating a

handler for the form's FormClosing event. In the event, set the Cancel property to false . This forces the form to

close. For more information and an example, see Form.FormClosing.

If you force the form to close in this manner, any data in the form's controls that has not already been saved is lost. In

addition, modal forms don't validate the contents of controls when they're closed. You can still use control validation to

lock focus to a control, but you don't have to be concerned about the behavior associated with closing the form.

Using keyboard events (Windows Forms .NET)

Control.Validating

Form.FormClosing

System.Windows.Forms.FormClosingEventArgs

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.containercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_inherit
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_enableallowfocuschange
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.propertygrid
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.toolstripcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.splitcontainer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_inherit
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.autovalidate#system_windows_forms_autovalidate_enableallowfocuschange
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.close
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.formclosing
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs.cancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.formclosing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.validating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.formclosing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formclosingeventargs

How to modify keyboard key events (Windows
Forms .NET)

 11/3/2020 • 3 minutes to read • Edit Online

IMPORTANT

 Consume a key

NOTE

private void textBox1_KeyPress(object sender, KeyPressEventArgs e)
{
 if (e.KeyChar == 'a' || e.KeyChar == 'A')
 e.Handled = true;
}

Private Sub TextBox1_KeyPress(sender As Object, e As KeyPressEventArgs)
 If e.KeyChar = "a"c Or e.KeyChar = "A"c Then
 e.Handled = True
 End If
End Sub

 Modify a standard character key

Windows Forms provides the ability to consume and modify keyboard input. Consuming a key refers to

handling a key within a method or event handler so that other methods and events further down the message

queue don't receive the key value. And, modifying a key refers to modifying the value of a key so that methods

and event handlers further down the message queue receive a different key value. This article shows how to

accomplish these tasks.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In a KeyPress event handler, set the Handled property of the KeyPressEventArgs class to true .

-or-

In a KeyDown event handler, set the Handled property of the KeyEventArgs class to true .

Setting the Handled property in the KeyDown event handler does not prevent the KeyPress and KeyUp events from

being raised for the current keystroke. Use the SuppressKeyPress property for this purpose.

The following example handles the KeyPress event to consume the A and a character keys. Those keys can't

be typed into the text box:

In a KeyPress event handler, set the KeyChar property of the KeyPressEventArgs class to the value of the new

character key.

The following example handles the KeyPress event to change any A and a character keys to ! :

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-keyboard/how-to-change-key-press.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keypresseventargs.handled
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keypresseventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.handled
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.handled
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keyup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.suppresskeypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keypresseventargs.keychar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keypresseventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress

private void textBox2_KeyPress(object sender, KeyPressEventArgs e)
{
 if (e.KeyChar == 'a' || e.KeyChar == 'A')
 {
 e.KeyChar = '!';
 e.Handled = false;
 }
}

Private Sub TextBox2_KeyPress(sender As Object, e As KeyPressEventArgs)
 If e.KeyChar = "a"c Or e.KeyChar = "A"c Then
 e.KeyChar = "!"c
 e.Handled = False
 End If
End Sub

 Modify a non-character key

public override bool PreProcessMessage(ref Message m)
{
 const int WM_KEYDOWN = 0x100;

 if (m.Msg == WM_KEYDOWN)
 {
 Keys keyCode = (Keys)m.WParam & Keys.KeyCode;

 // Detect F1 through F9.
 m.WParam = keyCode switch
 {
 Keys.F1 => (IntPtr)Keys.D1,
 Keys.F2 => (IntPtr)Keys.D2,
 Keys.F3 => (IntPtr)Keys.D3,
 Keys.F4 => (IntPtr)Keys.D4,
 Keys.F5 => (IntPtr)Keys.D5,
 Keys.F6 => (IntPtr)Keys.D6,
 Keys.F7 => (IntPtr)Keys.D7,
 Keys.F8 => (IntPtr)Keys.D8,
 Keys.F9 => (IntPtr)Keys.D9,
 Keys.F10 => (IntPtr)Keys.D0,
 _ => m.WParam
 };
 }

 // Send all other messages to the base method.
 return base.PreProcessMessage(ref m);
}

You can only modify non-character key presses by inheriting from the control and overriding the

PreProcessMessage method. As the input Message is sent to the control, it's processed before the control raising

events. You can intercept these messages to modify or block them.

The following code example demonstrates how to use the WParam property of the Message parameter to

change the key pressed. This code detects a key from F1 through F10 and translates the key into a numeric key

ranging from 0 through 9 (where F10 maps to 0).

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.preprocessmessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.message
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.message.wparam
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.message

Public Overrides Function PreProcessMessage(ByRef m As Message) As Boolean

 Const WM_KEYDOWN = &H100

 If m.Msg = WM_KEYDOWN Then
 Dim keyCode As Keys = CType(m.WParam, Keys) And Keys.KeyCode

 Select Case keyCode
 Case Keys.F1 : m.WParam = CType(Keys.D1, IntPtr)
 Case Keys.F2 : m.WParam = CType(Keys.D2, IntPtr)
 Case Keys.F3 : m.WParam = CType(Keys.D3, IntPtr)
 Case Keys.F4 : m.WParam = CType(Keys.D4, IntPtr)
 Case Keys.F5 : m.WParam = CType(Keys.D5, IntPtr)
 Case Keys.F6 : m.WParam = CType(Keys.D6, IntPtr)
 Case Keys.F7 : m.WParam = CType(Keys.D7, IntPtr)
 Case Keys.F8 : m.WParam = CType(Keys.D8, IntPtr)
 Case Keys.F9 : m.WParam = CType(Keys.D9, IntPtr)
 Case Keys.F10 : m.WParam = CType(Keys.D0, IntPtr)
 End Select
 End If

 Return MyBase.PreProcessMessage(m)
End Function

 See also
Overview of using the keyboard (Windows Forms .NET)

Using keyboard events (Windows Forms .NET)

Keys

KeyDown

KeyPress

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress

How to check for modifier key presses (Windows
Forms .NET)

 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 Detect modifier key

As the user types keys into your application, you can monitor for pressed modifier keys such as the SHIFT, ALT,

and CTRL. When a modifier key is pressed in combination with other keys or even a mouse click, your

application can respond appropriately. For example, pressing the S key may cause an "s" to appear on the

screen. If the keys CTRL+S are pressed, instead, the current document may be saved.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

If you handle the KeyDown event, the KeyEventArgs.Modifiers property received by the event handler specifies

which modifier keys are pressed. Also, the KeyEventArgs.KeyData property specifies the character that was

pressed along with any modifier keys combined with a bitwise OR.

If you're handling the KeyPress event or a mouse event, the event handler doesn't receive this information. Use

the ModifierKeys property of the Control class to detect a key modifier. In either case, you must perform a

bitwise AND of the appropriate Keys value and the value you're testing. The Keys enumeration offers variations

of each modifier key, so it's important that you do the bitwise AND check with the correct value.

For example, the SHIFT key is represented by the following key values:

Keys.Shift

Keys.ShiftKey

Keys.RShiftKey

Keys.LShiftKey

The correct value to test SHIFT as a modifier key is Keys.Shift. Similarly, to test for CTRL and ALT as modifiers

you should use the Keys.Control and Keys.Alt values, respectively.

Detect if a modifier key is pressed by comparing the ModifierKeys property and the Keys enumeration value

with a bitwise AND operator.

The following code example shows how to determine whether the SHIFT key is pressed within the KeyPress and

KeyDown event handlers.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-keyboard/how-to-check-modifier-key.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.modifiers#system_windows_forms_keyeventargs_modifiers
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs.keydata#system_windows_forms_keyeventargs_keydata
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.modifierkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys#system_windows_forms_keys_shift
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys#system_windows_forms_keys_shiftkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys#system_windows_forms_keys_rshiftkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys#system_windows_forms_keys_lshiftkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys#system_windows_forms_keys_shift
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys#system_windows_forms_keys_control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys#system_windows_forms_keys_alt
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.modifierkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown

// Event only raised when non-modifier key is pressed
private void textBox1_KeyPress(object sender, KeyPressEventArgs e)
{
 if ((Control.ModifierKeys & Keys.Shift) == Keys.Shift)
 MessageBox.Show("KeyPress " + Keys.Shift);
}

// Event raised as soon as shift is pressed
private void textBox1_KeyDown(object sender, KeyEventArgs e)
{
 if ((Control.ModifierKeys & Keys.Shift) == Keys.Shift)
 MessageBox.Show("KeyDown " + Keys.Shift);
}

' Event only raised when non-modifier key is pressed
Private Sub TextBox1_KeyPress(sender As Object, e As KeyPressEventArgs)
 If ((Control.ModifierKeys And Keys.Shift) = Keys.Shift) Then
 MessageBox.Show("KeyPress " & [Enum].GetName(GetType(Keys), Keys.Shift))
 End If
End Sub

' Event raised as soon as shift is pressed
Private Sub TextBox1_KeyDown(sender As Object, e As KeyEventArgs)
 If ((Control.ModifierKeys And Keys.Shift) = Keys.Shift) Then
 MessageBox.Show("KeyPress " & [Enum].GetName(GetType(Keys), Keys.Shift))
 End If
End Sub

 See also
Overview of using the keyboard (Windows Forms .NET)

Using keyboard events (Windows Forms .NET)

Keys

ModifierKeys

KeyDown

KeyPress

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.modifierkeys#system_windows_forms_control_modifierkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress

How to handle keyboard input messages in the
form (Windows Forms .NET)

 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 Handle a keyboard message

// Detect all numeric characters at the form level and consume 1,4, and 7.
// Form.KeyPreview must be set to true for this event handler to be called.
void Form1_KeyPress(object sender, KeyPressEventArgs e)
{
 if (e.KeyChar >= 48 && e.KeyChar <= 57)
 {
 MessageBox.Show($"Form.KeyPress: '{e.KeyChar}' pressed.");

 switch (e.KeyChar)
 {
 case (char)49:
 case (char)52:
 case (char)55:
 MessageBox.Show($"Form.KeyPress: '{e.KeyChar}' consumed.");
 e.Handled = true;
 break;
 }
 }
}

' Detect all numeric characters at the form level and consume 1,4, and 7.
' Form.KeyPreview must be set to true for this event handler to be called.
Private Sub Form1_KeyPress(sender As Object, e As KeyPressEventArgs)
 If e.KeyChar >= Chr(48) And e.KeyChar <= Chr(57) Then
 MessageBox.Show($"Form.KeyPress: '{e.KeyChar}' pressed.")

 Select Case e.KeyChar
 Case Chr(49), Chr(52), Chr(55)
 MessageBox.Show($"Form.KeyPress: '{e.KeyChar}' consumed.")
 e.Handled = True
 End Select
 End If

End Sub

Windows Forms provides the ability to handle keyboard messages at the form level, before the messages reach

a control. This article shows how to accomplish this task.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Handle the KeyPress or KeyDown event of the active form and set the KeyPreview property of the form to true .

This property causes the keyboard to be received by the form before they reach any controls on the form. The

following code example handles the KeyPress event by detecting all of the number keys and consuming 1, 4,

and 7.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-keyboard/how-to-handle-forms.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form.keypreview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress

See also
Overview of using the keyboard (Windows Forms .NET)

Using keyboard events (Windows Forms .NET)

Keys

ModifierKeys

KeyDown

KeyPress

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.modifierkeys#system_windows_forms_control_modifierkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress

How to simulate keyboard events (Windows Forms
.NET)

 11/3/2020 • 3 minutes to read • Edit Online

IMPORTANT

 Use SendKeys

C a u t i o n

IMPORTANT

<appSettings>
 <add key="SendKeys" value="SendInput"/>
</appSettings>

 To send a keystroke to the same application

Windows Forms provides a few options for programmatically simulating keyboard input. This article provides

an overview of these options.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Windows Forms provides the System.Windows.Forms.SendKeys class for sending keystrokes to the active

application. There are two methods to send keystrokes to an application: SendKeys.Send and

SendKeys.SendWait. The difference between the two methods is that SendWait blocks the current thread when

the keystroke is sent, waiting for a response, while Send doesn't. For more information about SendWait , see To

send a keystroke to a different application.

If your application is intended for international use with a variety of keyboards, the use of SendKeys.Send could

yield unpredictable results and should be avoided.

Behind the scenes, SendKeys uses an older Windows implementation for sending input, which may fail on

modern Windows where it's expected that the application isn't running with administrative rights. If the older

implementation fails, the code automatically tries the newer Windows implementation for sending input.

Additionally, when the SendKeys class uses the new implementation, the SendWait method no longer blocks the

current thread when sending keystrokes to another application.

If your application relies on consistent behavior regardless of the operating system, you can force the SendKeys class to

use the new implementation by adding the following application setting to your app.config file.

To force the SendKeys class to only use the previous implementation, use the value "JournalHook" instead.

Call the SendKeys.Send or SendKeys.SendWait method of the SendKeys class. The specified keystrokes will be

received by the active control of the application.

The following code example uses Send to simulate pressing the ALT and DOWN keys together. These keystrokes

cause the ComboBox control to display its dropdown. This example assumes a Form with a Button and

ComboBox.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-keyboard/how-to-simulate-events.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.send
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.sendwait
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.send
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.sendwait
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.send
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.sendwait
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox

private void button1_Click(object sender, EventArgs e)
{
 comboBox1.Focus();
 SendKeys.Send("%+{DOWN}");
}

Private Sub Button1_Click(sender As Object, e As EventArgs)
 ComboBox1.Focus()
 SendKeys.Send("%+{DOWN}")
End Sub

 To send a keystroke to a different application

[DllImport("USER32.DLL", CharSet = CharSet.Unicode)]
public static extern IntPtr FindWindow(string lpClassName, string lpWindowName);

[DllImport("USER32.DLL")]
public static extern bool SetForegroundWindow(IntPtr hWnd);

private void button1_Click(object sender, EventArgs e)
{
 IntPtr calcWindow = FindWindow(null, "Calculator");

 if (SetForegroundWindow(calcWindow))
 SendKeys.Send("10{+}10=");
}

<Runtime.InteropServices.DllImport("USER32.DLL", CharSet:=Runtime.InteropServices.CharSet.Unicode)>
Public Shared Function FindWindow(lpClassName As String, lpWindowName As String) As IntPtr : End Function

<Runtime.InteropServices.DllImport("USER32.DLL")>
Public Shared Function SetForegroundWindow(hWnd As IntPtr) As Boolean : End Function

Private Sub Button1_Click(sender As Object, e As EventArgs)
 Dim hCalcWindow As IntPtr = FindWindow(Nothing, "Calculator")

 If SetForegroundWindow(hCalcWindow) Then
 SendKeys.Send("10{+}10=")
 End If
End Sub

 Use OnEventName methods

The SendKeys.Send and SendKeys.SendWait methods send keystrokes to the active application, which is usually

the application you're sending keystrokes from. To send keystrokes to another application, you first need to

activate it. Because there's no managed method to activate another application, you must use native Windows

methods to focus the other application. The following code example uses platform invoke to call the FindWindow

and SetForegroundWindow methods to activate the Calculator application window, and then calls Send to issue a

series of calculations to the Calculator application.

The following code example uses Send to simulate pressing keys into the Windows 10 Calculator application. It

first searches for an application window with title of Calculator and then activates it. Once activated, the

keystrokes are sent to calculate 10 plus 10.

The easiest way to simulate keyboard events is to call a method on the object that raises the event. Most events

have a corresponding method that invokes them, named in the pattern of On followed by EventName , such as

OnKeyPress . This option is only possible within custom controls or forms, because these methods are protected

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.send
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys.sendwait

 See also

and can't be accessed from outside the context of the control or form.

These protected methods are available to simulate keyboard events.

OnKeyDown

OnKeyPress

OnKeyUp

For more information about these events, see Using keyboard events (Windows Forms .NET).

Overview of using the keyboard (Windows Forms .NET)

Using keyboard events (Windows Forms .NET)

Using mouse events (Windows Forms .NET)

SendKeys

Keys

KeyDown

KeyPress

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.keys
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keypress

Overview of using the mouse (Windows Forms
.NET)

 11/3/2020 • 4 minutes to read • Edit Online

IMPORTANT

 Mouse Events

 Mouse location and hit-testing

 Changing mouse input settings

Receiving and handling mouse input is an important part of every Windows application. You can handle mouse

events to carry out an action in your application, or use mouse location information to perform hit testing or

other actions. Also, you can change the way the controls in your application handle mouse input. This article

describes these mouse events in detail, and how to obtain and change system settings for the mouse.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In Windows Forms, user input is sent to applications in the form of Windows messages. A series of overridable

methods process these messages at the application, form, and control level. When these methods receive mouse

messages, they raise events that can be handled to get information about the mouse input. In many cases,

Windows Forms applications can process all user input simply by handling these events. In other cases, an

application may override one of the methods that process messages to intercept a particular message before it's

received by the application, form, or control.

All Windows Forms controls inherit a set of events related to mouse and keyboard input. For example, a control

can handle the MouseClick event to determine the location of a mouse click. For more information on the

mouse events, see Using mouse events.

When the user moves the mouse, the operating system moves the mouse pointer. The mouse pointer contains a

single pixel, called the hot spot, which the operating system tracks and recognizes as the position of the pointer.

When the user moves the mouse or presses a mouse button, the Control that contains the HotSpot raises the

appropriate mouse event.

You can obtain the current mouse position with the Location property of the MouseEventArgs when handling a

mouse event or by using the Position property of the Cursor class. You can then use mouse location information

to carry out hit-testing, and then perform an action based on the location of the mouse. Hit-testing capability is

built in to several controls in Windows Forms such as the ListView, TreeView, MonthCalendar and DataGridView

controls.

Used with the appropriate mouse event, MouseHover for example, hit-testing is very useful for determining

when your application should do a specific action.

You can detect and change the way a control handles mouse input by deriving from the control and using the

GetStyle and SetStyle methods. The SetStyle method takes a bitwise combination of ControlStyles values to

determine whether the control will have standard click, double-click behavior, or if the control will handle its

own mouse processing. Also, the SystemInformation class includes properties that describe the capabilities of

the mouse and specify how the mouse interacts with the operating system. The following table summarizes

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-mouse/overview.md
https://docs.microsoft.com/en-us/windows/win32/winmsg/about-messages-and-message-queues
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.hotspot
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs.location
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.position
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.monthcalendar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousehover
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.getstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.controlstyles
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation

P RO P ERT Y DESC RIP T IO N

DoubleClickSize Gets the dimensions, in pixels, of the area in which the user
must click twice for the operating system to consider the
two clicks a double-click.

DoubleClickTime Gets the maximum number of milliseconds that can elapse
between a first click and a second click for the mouse action
to be considered a double-click.

MouseButtons Gets the number of buttons on the mouse.

MouseButtonsSwapped Gets a value indicating whether the functions of the left and
right mouse buttons have been swapped.

MouseHoverSize Gets the dimensions, in pixels, of the rectangle within which
the mouse pointer has to stay for the mouse hover time
before a mouse hover message is generated.

MouseHoverTime Gets the time, in milliseconds, that the mouse pointer has to
stay in the hover rectangle before a mouse hover message is
generated.

MousePresent Gets a value indicating whether a mouse is installed.

MouseSpeed Gets a value indicating the current mouse speed, from 1 to
20.

MouseWheelPresent Gets a value indicating whether a mouse with a mouse
wheel is installed.

MouseWheelScrollDelta Gets the amount of the delta value of the increment of a
single mouse wheel rotation.

MouseWheelScrollLines Gets the number of lines to scroll when the mouse wheel is
rotated.

 Methods that process user input messages

M ET H O D N OT ES

PreFilterMessage This method intercepts queued (also known as posted)
Windows messages at the application level.

PreProcessMessage This method intercepts Windows messages at the form and
control level before they have been processed.

these properties.

Forms and controls have access to the IMessageFilter interface and a set of overridable methods that process

Windows messages at different points in the message queue. These methods all have a Message parameter,

which encapsulates the low-level details of Windows messages. You can implement or override these methods

to examine the message and then either consume the message or pass it on to the next consumer in the

message queue. The following table presents the methods that process all Windows messages in Windows

Forms.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.doubleclicksize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.doubleclicktime
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousebuttons
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousebuttonsswapped
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousehoversize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousehovertime
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousepresent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousespeed
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousewheelpresent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousewheelscrolldelta
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.mousewheelscrolllines
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imessagefilter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.message
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.imessagefilter.prefiltermessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.preprocessmessage

WndProc This method processes Windows messages at the form and
control level.

DefWndProc This method performs the default processing of Windows
messages at the form and control level. This provides the
minimal functionality of a window.

OnNotifyMessage This method intercepts messages at the form and control
level, after they've been processed. The
EnableNotifyMessage style bit must be set for this method
to be called.

M ET H O D N OT ES

 See also
Using mouse events (Windows Forms .NET)

Drag-and-drop mouse behavior overview (Windows Forms .NET)

Manage mouse pointers (Windows Forms .NET)

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.wndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.defwndproc
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.onnotifymessage
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.controlstyles#system_windows_forms_controlstyles_enablenotifymessage

Using mouse events (Windows Forms .NET)
 11/3/2020 • 6 minutes to read • Edit Online

IMPORTANT

 Mouse events

M O USE EVEN T DESC RIP T IO N

Click This event occurs when the mouse button is released,
typically before the MouseUp event. The handler for this
event receives an argument of type EventArgs. Handle this
event when you only need to determine when a click occurs.

MouseClick This event occurs when the user clicks the control with the
mouse. The handler for this event receives an argument of
type MouseEventArgs. Handle this event when you need to
get information about the mouse when a click occurs.

DoubleClick This event occurs when the control is double-clicked. The
handler for this event receives an argument of type
EventArgs. Handle this event when you only need to
determine when a double-click occurs.

MouseDoubleClick This event occurs when the user double-clicks the control
with the mouse. The handler for this event receives an
argument of type MouseEventArgs. Handle this event when
you need to get information about the mouse when a
double-click occurs.

MouseDown This event occurs when the mouse pointer is over the
control and the user presses a mouse button. The handler
for this event receives an argument of type
MouseEventArgs.

MouseEnter This event occurs when the mouse pointer enters the border
or client area of the control, depending on the type of
control. The handler for this event receives an argument of
type EventArgs.

MouseHover This event occurs when the mouse pointer stops and rests
over the control. The handler for this event receives an
argument of type EventArgs.

Most Windows Forms programs process mouse input by handling the mouse events. This article provides an

overview of the mouse events, including details on when to use each event and the data that is supplied for each

event. For more information about events in general, see Events overview (Windows Forms .NET).

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The primary way to respond to mouse input is to handle mouse events. The following table shows the mouse

events and describes when they're raised.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-mouse/events.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseenter
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousehover
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs

MouseLeave This event occurs when the mouse pointer leaves the border
or client area of the control, depending on the type of the
control. The handler for this event receives an argument of
type EventArgs.

MouseMove This event occurs when the mouse pointer moves while it is
over a control. The handler for this event receives an
argument of type MouseEventArgs.

MouseUp This event occurs when the mouse pointer is over the
control and the user releases a mouse button. The handler
for this event receives an argument of type
MouseEventArgs.

MouseWheel This event occurs when the user rotates the mouse wheel
while the control has focus. The handler for this event
receives an argument of type MouseEventArgs. You can use
the Delta property of MouseEventArgs to determine how far
the mouse has scrolled.

M O USE EVEN T DESC RIP T IO N

 Mouse information

 Converting Between Screen and Client Coordinates

 Standard Click event behavior

A MouseEventArgs is sent to the handlers of mouse events related to clicking a mouse button and tracking

mouse movements. MouseEventArgs provides information about the current state of the mouse, including the

location of the mouse pointer in client coordinates, which mouse buttons are pressed, and whether the mouse

wheel has scrolled. Several mouse events, such as those that are raised when the mouse pointer has entered or

left the bounds of a control, send an EventArgs to the event handler with no further information.

If you want to know the current state of the mouse buttons or the location of the mouse pointer, and you want

to avoid handling a mouse event, you can also use the MouseButtons and MousePosition properties of the

Control class. MouseButtons returns information about which mouse buttons are currently pressed. The

MousePosition returns the screen coordinates of the mouse pointer and is equivalent to the value returned by

Position.

Because some mouse location information is in client coordinates and some is in screen coordinates, you may

need to convert a point from one coordinate system to the other. You can do this easily by using the

PointToClient and PointToScreen methods available on the Control class.

If you want to handle mouse click events in the proper order, you need to know the order in which click events

are raised in Windows Forms controls. All Windows Forms controls raise click events in the same order when

any supported mouse button is pressed and released, except where noted in the following list for individual

controls. The following list shows the order of events raised for a single mouse-button click:

1. MouseDown event.

2. Click event.

3. MouseClick event.

4. MouseUp event.

The following is the order of events raised for a double mouse-button click:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseleave
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousemove
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousewheel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs.delta
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousebuttons
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseposition
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousebuttons
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseposition
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.position
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.pointtoclient
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.pointtoscreen
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup

 Individual controls

1. MouseDown event.

2. Click event.

3. MouseClick event.

4. MouseUp event.

5. MouseDown event.

6. DoubleClick event.

This can vary, depending on whether the control in question has the StandardDoubleClick style bit set to

true . For more information about how to set a ControlStyles bit, see the SetStyle method.

7. MouseDoubleClick event.

8. MouseUp event.

The following controls don't conform to the standard mouse click event behavior :

NOTE

NOTE

Button

CheckBox

ComboBox

RadioButton

For the ComboBox control, the event behavior detailed later occurs if the user clicks on the edit field, the button,

or on an item within the list.

Left click : Click, MouseClick

Right click : No click events raised

Left double-click : Click, MouseClick; Click, MouseClick

Right double-click : No click events raised

TextBox, RichTextBox, ListBox, MaskedTextBox, and CheckedListBox controls

The event behavior detailed later occurs when the user clicks anywhere within these controls.

Left click : Click, MouseClick

Right click : No click events raised

Left double-click : Click, MouseClick, DoubleClick, MouseDoubleClick

Right double-click : No click events raised

ListView control

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.controlstyles#system_windows_forms_controlstyles_standarddoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.controlstyles
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.combobox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.richtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.maskedtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview

 Painting behavior of toggle controls

 See also

NOTE

NOTE

The event behavior detailed later occurs only when the user clicks on the items in the ListView control. No events

are raised for clicks anywhere else on the control. In addition to the events described later, there are the

BeforeLabelEdit and AfterLabelEdit events, which may be of interest to you if you want to use validation with the

ListView control.

Left click : Click, MouseClick

Right click : Click, MouseClick

Left double-click : Click, MouseClick; DoubleClick, MouseDoubleClick

Right double-click : Click, MouseClick; DoubleClick, MouseDoubleClick

TreeView control

The event behavior detailed later occurs only when the user clicks on the items themselves or to the right of the

items in the TreeView control. No events are raised for clicks anywhere else on the control. In addition to those

described later, there are the BeforeCheck, BeforeSelect, BeforeLabelEdit, AfterSelect, AfterCheck, and

AfterLabelEdit events, which may be of interest to you if you want to use validation with the TreeView control.

Left click : Click, MouseClick

Right click : Click, MouseClick

Left double-click : Click, MouseClick; DoubleClick, MouseDoubleClick

Right double-click : Click, MouseClick; DoubleClick, MouseDoubleClick

Toggle controls, such as the controls deriving from the ButtonBase class, have the following distinctive painting

behavior in combination with mouse click events:

NOTE

1. The user presses the mouse button.

2. The control paints in the pressed state.

3. The MouseDown event is raised.

4. The user releases the mouse button.

5. The control paints in the raised state.

6. The Click event is raised.

7. The MouseClick event is raised.

8. The MouseUp event is raised.

If the user moves the pointer out of the toggle control while the mouse button is down (such as moving the

mouse off the Button control while it is pressed), the toggle control will paint in the raised state and only the

MouseUp event occurs. The Click or MouseClick events will not occur in this situation.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview.beforelabeledit
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview.afterlabeledit
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview.beforecheck
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview.beforeselect
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview.beforelabeledit
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview.afterselect
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview.aftercheck
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview.afterlabeledit
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.buttonbase
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick

Overview of using the mouse (Windows Forms .NET)

Manage mouse pointers (Windows Forms .NET)

How to simulate mouse events (Windows Forms .NET)

System.Windows.Forms.Control

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control

Drag-and-drop mouse behavior overview
(Windows Forms .NET)

 11/3/2020 • 3 minutes to read • Edit Online

IMPORTANT

 Drag-and-drop events

 Events on the current drop target

M O USE EVEN T DESC RIP T IO N

DragEnter This event occurs when an object is dragged into the
control's bounds. The handler for this event receives an
argument of type DragEventArgs.

DragOver This event occurs when an object is dragged while the
mouse pointer is within the control's bounds. The handler for
this event receives an argument of type DragEventArgs.

DragDrop This event occurs when a drag-and-drop operation is
completed. The handler for this event receives an argument
of type DragEventArgs.

DragLeave This event occurs when an object is dragged out of the
control's bounds. The handler for this event receives an
argument of type EventArgs.

 Events on the drop source

Windows Forms includes a set of methods, events, and classes that implement drag-and-drop behavior. This

topic provides an overview of the drag-and-drop support in Windows Forms.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

There are two categories of events in a drag and drop operation: events that occur on the current target of the

drag-and-drop operation, and events that occur on the source of the drag and drop operation. To perform drag-

and-drop operations, you must handle these events. By working with the information available in the event

arguments of these events, you can easily facilitate drag-and-drop operations.

The following table shows the events that occur on the current target of a drag-and-drop operation.

The DragEventArgs class provides the location of the mouse pointer, the current state of the mouse buttons and

modifier keys of the keyboard, the data being dragged, and DragDropEffects values that specify the operations

allowed by the source of the drag event and the target drop effect for the operation.

The following table shows the events that occur on the source of the drag-and-drop operation.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-mouse/drag-and-drop.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragover
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragleave
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dragdropeffects

M O USE EVEN T DESC RIP T IO N

GiveFeedback This event occurs during a drag operation. It provides an
opportunity to give a visual cue to the user that the drag-
and-drop operation is occurring, such as changing the
mouse pointer. The handler for this event receives an
argument of type GiveFeedbackEventArgs.

QueryContinueDrag This event is raised during a drag-and-drop operation and
enables the drag source to determine whether the drag-
and-drop operation should be canceled. The handler for this
event receives an argument of type
QueryContinueDragEventArgs.

 Performing drag-and-drop

// Initiate the drag
private void label1_MouseDown(object sender, MouseEventArgs e) =>
 DoDragDrop(((Label)sender).Text, DragDropEffects.All);

// Set the effect filter and allow the drop on this control
private void textBox1_DragOver(object sender, DragEventArgs e) =>
 e.Effect = DragDropEffects.All;

// React to the drop on this control
private void textBox1_DragDrop(object sender, DragEventArgs e) =>
 textBox1.Text = (string)e.Data.GetData(typeof(string));

' Initiate the drag
Private Sub Label1_MouseDown(sender As Object, e As MouseEventArgs)
 DoDragDrop(DirectCast(sender, Label).Text, DragDropEffects.All)
End Sub

' Set the effect filter and allow the drop on this control
Private Sub TextBox1_DragOver(sender As Object, e As DragEventArgs)
 e.Effect = DragDropEffects.All
End Sub

' React to the drop on this control
Private Sub TextBox1_DragDrop(sender As Object, e As DragEventArgs)
 TextBox1.Text = e.Data.GetData(GetType(String))
End Sub

The QueryContinueDragEventArgs class provides the current state of the mouse buttons and modifier keys of

the keyboard, a value specifying whether the ESC key was pressed, and a DragAction value that can be set to

specify whether the drag-and-drop operation should continue.

Drag-and-drop operations always involve two components, the drag source and the drop target. To start a

drag-and-drop operation, designate a control as the source and handle the MouseDown event. In the event

handler, call the DoDragDrop method providing the data associated with the drop and the a DragDropEffects

value.

Set the target control's AllowDrop property set to true to allow that control to accept a drag-and-drop

operation. The target handles two events, first an event in response to the drag being over the control, such as

DragOver. And a second event which is the drop action itself, DragDrop.

The following example demonstrates a drag from a Label control to a TextBox. When the drag is completed, the

TextBox responds by assigning the label's text to itself.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.givefeedback
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.givefeedbackeventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.querycontinuedrag
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.querycontinuedrageventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.querycontinuedrageventargs
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dragaction
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dragdrop.dodragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dragdropeffects
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.allowdrop#system_windows_forms_control_allowdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragover
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox

 See also

For more information about the drag effects, see Data and AllowedEffect.

Overview of using the mouse (Windows Forms .NET)

Control.DragDrop

Control.DragEnter

Control.DragLeave

Control.DragOver

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.data
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.drageventargs.allowedeffect
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragdrop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragleave
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.dragover

How to distinguish between clicks and double-clicks
(Windows Forms .NET)

 11/3/2020 • 4 minutes to read • Edit Online

IMPORTANT

 To roll back a click action

public partial class DoubleClickButton : Button
{
 public DoubleClickButton()
 {
 // Set the style so a double click event occurs.
 SetStyle(ControlStyles.StandardClick | ControlStyles.StandardDoubleClick, true);
 }
}

Public Class DoubleClickButton : Inherits Button

 Public Sub New()
 SetStyle(ControlStyles.StandardClick Or ControlStyles.StandardDoubleClick, True)
 End Sub

End Class

Typically, a single click initiates a user interface action and a double-click extends the action. For example, one

click usually selects an item, and a double-click edits the selected item. However, the Windows Forms click

events do not easily accommodate a scenario where a click and a double-click perform incompatible actions,

because an action tied to the Click or MouseClick event is performed before the action tied to the DoubleClick or

MouseDoubleClick event. This topic demonstrates two solutions to this problem.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

One solution is to handle the double-click event and roll back the actions in the handling of the click event. In

rare situations you may need to simulate click and double-click behavior by handling the MouseDown event and

by using the DoubleClickTime and DoubleClickSize properties of the SystemInformation class. You measure the

time between clicks and if a second click occurs before the value of DoubleClickTime is reached and the click is

within a rectangle defined by DoubleClickSize, perform the double-click action; otherwise, perform the click

action.

Ensure that the control you are working with has standard double-click behavior. If not, enable the control with

the SetStyle method. Handle the double-click event and roll back the click action as well as the double-click

action. The following code example demonstrates a how to create a custom button with double-click enabled, as

well as how to roll back the click action in the double-click event handling code.

This code example uses a new button control that enables double-clicks:

The following code demonstrates how a form changes the style of border based on a click or double-click of the

new button control:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-mouse/how-to-distinguish-between-clicks-and-double-clicks.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.doubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedoubleclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.doubleclicktime
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.doubleclicksize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.doubleclicktime
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation.doubleclicksize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle

public partial class Form1 : Form
{
 private FormBorderStyle _initialStyle;
 private bool _isDoubleClicking;

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 _initialStyle = this.FormBorderStyle;

 var button1 = new DoubleClickButton();
 button1.Location = new Point(50, 50);
 button1.Size = new Size(200, 23);
 button1.Text = "Click or Double Click";
 button1.Click += Button1_Click;
 button1.DoubleClick += Button1_DoubleClick;

 Controls.Add(button1);
 }

 private void Button1_DoubleClick(object sender, EventArgs e)
 {
 // This flag prevents the click handler logic from running
 // A double click raises the click event twice.
 _isDoubleClicking = true;
 FormBorderStyle = _initialStyle;
 }

 private void Button1_Click(object sender, EventArgs e)
 {
 if (_isDoubleClicking)
 _isDoubleClicking = false;
 else
 FormBorderStyle = FormBorderStyle.FixedToolWindow;
 }
}

Partial Public Class Form1

 Private _initialStyle As FormBorderStyle
 Private _isDoubleClicking As Boolean

 Public Sub New()
 InitializeComponent()
 End Sub

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim button1 As New DoubleClickButton

 _initialStyle = FormBorderStyle

 button1.Location = New Point(50, 50)
 button1.Size = New Size(200, 23)
 button1.Text = "Click or Double Click"

 AddHandler button1.Click, AddressOf Button1_Click
 AddHandler button1.DoubleClick, AddressOf Button1_DoubleClick

 Controls.Add(button1)

 End Sub

 Private Sub Button1_DoubleClick(sender As Object, e As EventArgs)
 ' This flag prevents the click handler logic from running
 ' A double click raises the click event twice.
 _isDoubleClicking = True
 FormBorderStyle = _initialStyle
 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs)
 If _isDoubleClicking Then
 _isDoubleClicking = False
 Else
 FormBorderStyle = FormBorderStyle.FixedToolWindow
 End If
 End Sub
End Class

 To distinguish between clicks

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Windows.Forms;

namespace project
{
 public partial class Form2 : Form
 {
 private DateTime _lastClick;
 private bool _inDoubleClick;
 private Rectangle _doubleClickArea;
 private TimeSpan _doubleClickMaxTime;
 private Action _doubleClickAction;
 private Action _singleClickAction;
 private Timer _clickTimer;

Handle the MouseDown event and determine the location and time span between clicks using the

SystemInformation property and a Timer component. Perform the appropriate action depending on whether a

click or double-click takes place. The following code example demonstrates how this can be done.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.systeminformation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.timer

 public Form2()
 {
 InitializeComponent();
 _doubleClickMaxTime = TimeSpan.FromMilliseconds(SystemInformation.DoubleClickTime);

 _clickTimer = new Timer();
 _clickTimer.Interval = SystemInformation.DoubleClickTime;
 _clickTimer.Tick += ClickTimer_Tick;

 _singleClickAction = () => MessageBox.Show("Single clicked");
 _doubleClickAction = () => MessageBox.Show("Double clicked");
 }

 private void Form2_MouseDown(object sender, MouseEventArgs e)
 {
 if (_inDoubleClick)
 {
 _inDoubleClick = false;

 TimeSpan length = DateTime.Now - _lastClick;

 // If double click is valid, respond
 if (_doubleClickArea.Contains(e.Location) && length < _doubleClickMaxTime)
 {
 _clickTimer.Stop();
 _doubleClickAction();
 }

 return;
 }

 // Double click was invalid, restart
 _clickTimer.Stop();
 _clickTimer.Start();
 _lastClick = DateTime.Now;
 _inDoubleClick = true;
 _doubleClickArea = new Rectangle(e.Location - (SystemInformation.DoubleClickSize / 2),
 SystemInformation.DoubleClickSize);
 }

 private void ClickTimer_Tick(object sender, EventArgs e)
 {
 // Clear double click watcher and timer
 _inDoubleClick = false;
 _clickTimer.Stop();

 _singleClickAction();
 }
 }
}

Imports System.Drawing
Imports System.Windows.Forms

Public Class Form2
 Private _lastClick As Date
 Private _inDoubleClick As Boolean
 Private _doubleClickArea As Rectangle
 Private _doubleClickMaxTime As TimeSpan
 Private _singleClickAction As Action
 Private _doubleClickAction As Action
 Private WithEvents _clickTimer As Timer

 Private Sub Form2_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 _doubleClickMaxTime = TimeSpan.FromMilliseconds(SystemInformation.DoubleClickTime)

 _clickTimer = New Timer()
 _clickTimer.Interval = SystemInformation.DoubleClickTime

 _singleClickAction = Sub()
 MessageBox.Show("Single click")
 End Sub

 _doubleClickAction = Sub()
 MessageBox.Show("Double click")
 End Sub
 End Sub

 Private Sub Form2_MouseDown(sender As Object, e As MouseEventArgs) Handles MyBase.MouseDown
 If _inDoubleClick Then

 _inDoubleClick = False

 Dim length As TimeSpan = Date.Now - _lastClick

 ' If double click is valid, respond
 If _doubleClickArea.Contains(e.Location) And length < _doubleClickMaxTime Then
 _clickTimer.Stop()
 Call _doubleClickAction()
 End If

 Return
 End If

 ' Double click was invalid, restart
 _clickTimer.Stop()
 _clickTimer.Start()
 _lastClick = Date.Now
 _inDoubleClick = True
 _doubleClickArea = New Rectangle(e.Location - (SystemInformation.DoubleClickSize / 2),
 SystemInformation.DoubleClickSize)
 End Sub

 Private Sub SingleClickTimer_Tick(sender As Object, e As EventArgs) Handles _clickTimer.Tick
 ' Clear double click watcher and timer
 _inDoubleClick = False
 _clickTimer.Stop()

 Call _singleClickAction()
 End Sub

End Class

 See also
Overview of using the mouse (Windows Forms .NET)

Using mouse events (Windows Forms .NET)

Manage mouse pointers (Windows Forms .NET)

How to simulate mouse events (Windows Forms .NET)

Control.Click

Control.MouseDown

Control.SetStyle

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.setstyle

Manage mouse pointers (Windows Forms .NET)
 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 Accessing the mouse pointer

private void button1_MouseEnter(object sender, EventArgs e) =>
 Cursor.Hide();

private void button1_MouseLeave(object sender, EventArgs e) =>
 Cursor.Show();

Private Sub Button1_MouseEnter(sender As Object, e As EventArgs) Handles Button1.MouseEnter
 Cursor.Hide()
End Sub

Private Sub Button1_MouseLeave(sender As Object, e As EventArgs) Handles Button1.MouseLeave
 Cursor.Show()
End Sub

 Controlling the mouse pointer

private void button1_Click(object sender, EventArgs e) =>
 Cursor.Position = PointToScreen(button2.Location);

private void button2_Click(object sender, EventArgs e) =>
 Cursor.Position = PointToScreen(button1.Location);

The mouse pointer, which is sometimes referred to as the cursor, is a bitmap that specifies a focus point on the

screen for user input with the mouse. This topic provides an overview of the mouse pointer in Windows Forms

and describes some of the ways to modify and control the mouse pointer.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The mouse pointer is represented by the Cursor class, and each Control has a Control.Cursor property that

specifies the pointer for that control. The Cursor class contains properties that describe the pointer, such as the

Position and HotSpot properties, and methods that can modify the appearance of the pointer, such as the Show,

Hide, and DrawStretched methods.

The following example hides the cursor when the cursor is over a button:

Sometimes you may want to limit the area in which the mouse pointer can be used or change the position the

mouse. You can get or set the current location of the mouse using the Position property of the Cursor. In

addition, you can limit the area the mouse pointer can be used be setting the Clip property. The clip area, by

default, is the entire screen.

The following example positions the mouse pointer between two buttons when they are clicked:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-mouse/how-to-manage-cursor-pointer.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.position
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.hotspot
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.hide
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.drawstretched
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.position
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.clip

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 PointToScreen(Button2.Location)
End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
 PointToScreen(Button1.Location)
End Sub

 Changing the mouse pointer

button2.Cursor = System.Windows.Forms.Cursors.Hand;

Button2.Cursor = System.Windows.Forms.Cursors.Hand

 See also

Changing the mouse pointer is an important way of providing feedback to the user. For example, the mouse

pointer can be modified in the handlers of the MouseEnter and MouseLeave events to tell the user that

computations are occurring and to limit user interaction in the control. Sometimes, the mouse pointer will

change because of system events, such as when your application is involved in a drag-and-drop operation.

The primary way to change the mouse pointer is by setting the Control.Cursor or DefaultCursor property of a

control to a new Cursor. For examples of changing the mouse pointer, see the code example in the Cursor class.

In addition, the Cursors class exposes a set of Cursor objects for many different types of pointers, such as a

pointer that resembles a hand.

The following example changes the cursor of the mouse pointer for a button to a hand:

To display the wait pointer, which resembles an hourglass, whenever the mouse pointer is on the control, use the

UseWaitCursor property of the Control class.

Overview of using the mouse (Windows Forms .NET)

Using mouse events (Windows Forms .NET)

How to distinguish between clicks and double-clicks (Windows Forms .NET)

How to simulate mouse events (Windows Forms .NET)

System.Windows.Forms.Cursor

Cursor.Position

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mouseleave
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.defaultcursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.usewaitcursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.cursor.position

How to simulate mouse events (Windows Forms
.NET)

 11/3/2020 • 2 minutes to read • Edit Online

IMPORTANT

 Events

 Invoke a click

 PerformClick

Simulating mouse events in Windows Forms isn't as straight forward as simulating keyboard events. Windows

Forms doesn't provide a helper class to move the mouse and invoke mouse-click actions. The only option for

controlling the mouse is to use native Windows methods. If you're working with a custom control or a form, you

can simulate a mouse event, but you can't directly control the mouse.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Most events have a corresponding method that invokes them, named in the pattern of On followed by

EventName , such as OnMouseMove . This option is only possible within custom controls or forms, because these

methods are protected and can't be accessed from outside the context of the control or form. The disadvantage

to using a method such as OnMouseMove is that it doesn't actually control the mouse or interact with the control,

it simply raises the associated event. For example, if you wanted to simulate hovering over an item in a ListBox,

OnMouseMove and the ListBox doesn't visually react with a highlighted item under the cursor.

These protected methods are available to simulate mouse events.

OnMouseDown

OnMouseEnter

OnMouseHover

OnMouseLeave

OnMouseMove

OnMouseUp

OnMouseWheel

OnMouseClick

OnMouseDoubleClick

For more information about these events, see Using mouse events (Windows Forms .NET)

Considering most controls do something when clicked, like a button calling user code, or checkbox change its

checked state, Windows Forms provides an easy way to trigger the click. Some controls, such as a combobox,

don't do anything special when clicked and simulating a click has no effect on the control.

The System.Windows.Forms.IButtonControl interface provides the PerformClick method which simulates a click

on the control. Both the System.Windows.Forms.Button and System.Windows.Forms.LinkLabel controls

implement this interface.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/winforms/input-mouse/how-to-simulate-events.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.ibuttoncontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.ibuttoncontrol.performclick
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.linklabel

button1.PerformClick();

Button1.PerformClick()

 InvokeClick

private void button1_Click(object sender, EventArgs e)
{
 InvokeOnClick(checkBox1, EventArgs.Empty);
}

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 InvokeOnClick(CheckBox1, EventArgs.Empty)
End Sub

 Use native Windows methods

[DllImport("user32.dll", EntryPoint = "SetCursorPos")]
[return: MarshalAs(UnmanagedType.Bool)]
private static extern bool SetCursorPos(int x, int y);

private void button1_Click(object sender, EventArgs e)
{
 Point position = PointToScreen(checkBox1.Location) + new Size(checkBox1.Width / 2, checkBox1.Height /
2);
 SetCursorPos(position.X, position.Y);
}

<Runtime.InteropServices.DllImport("USER32.DLL", EntryPoint:="SetCursorPos")>
Public Shared Function SetCursorPos(x As Integer, y As Integer) As Boolean : End Function

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim position As Point = PointToScreen(CheckBox1.Location) + New Size(CheckBox1.Width / 2,
CheckBox1.Height / 2)
 SetCursorPos(position.X, position.Y)
End Sub

 See also

With a form a custom control, use the InvokeOnClick method to simulate a mouse click. This is a protected

method that can only be called from within the form or a derived custom control.

For example, the following code clicks a checkbox from button1 .

Windows provides methods you can call to simulate mouse movements and clicks such as

User32.dll SendInput and User32.dll SetCursorPos . The following example moves the mouse cursor to the

center of a control:

Overview of using the mouse (Windows Forms .NET)

Using mouse events (Windows Forms .NET)

How to distinguish between clicks and double-clicks (Windows Forms .NET)

Manage mouse pointers (Windows Forms .NET)

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.invokeonclick
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendinput
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setcursorpos

	Cover Page
	Windows Forms for .NET
	What's new
	Get started
	Overview
	Create an app

	Migration
	Migrate to .NET 5

	Forms
	Event handlers
	Automatic scaling
	Common tasks
	Add a form
	Resize a form
	Position a form

	Controls
	Overview
	Layout options
	Labels
	Events
	Custom controls
	Custom painting and drawing
	Apply accessibility information
	Common tasks
	Add a control to a form
	Create access key shortcuts
	Set the text displayed by a control
	Set the the tab order of a control
	Dock and anchor controls
	Set the image displayed by a control
	Add or remove event handlers
	Make thread-safe calls to controls

	User input - keyboard
	Overview
	Use keyboard events
	Validate input
	Common tasks
	Change the pressed key
	Determine which modifier key is pressed
	Handle input at the form level
	Simulate keyboard events

	User input - mouse
	Overview
	Use mouse events
	Drag-and-drop functionality
	Common tasks
	Distinguish between clicks and double-clicks
	Control and modify the mouse pointer
	Simulate mouse events

