
Contents

 Windows Presentation Foundation for .NET Core
 Get started

 Overview
 Create a WPF application

 Migration
 Differences from .NET Framework
 Migrate from .NET Framework

 Fundamentals
 Windows

 Overview
 Dialogs boxes
 Common tasks

 Display a message box
 Open a window
 Close a window
 Display a system dialog box
 Get or set the main window

 Controls
 Styles and templates

 Overview
 Common tasks

 Create and apply a style
 Create and apply a template

 Data binding
 Overview
 Declare a binding
 Binding sources

 Common tasks
 Bind to an enumeration

file:///T:/ct4y/hdtw/dotnet/desktop/1766060af223bf48308ebac5b54a3bb3/wpf/index.html#body

 Systems
 Resources

 Overview
 Merged dictionaries
 Resources in code
 Common tasks

 Define and reference resources
 Use application resources
 Use system resources

 XAML with WPF
 Overview

 XAML Language Reference

Desktop Guide (WPF .NET)
 4/15/2021 • 17 minutes to read • Edit Online

IMPORTANT

 Why migrate from .NET Framework

 Program with WPF

Welcome to the Desktop Guide for Windows Presentation Foundation (WPF), a UI framework that is resolution-

independent and uses a vector-based rendering engine, built to take advantage of modern graphics hardware.

WPF provides a comprehensive set of application-development features that include Extensible Application

Markup Language (XAML), controls, data binding, layout, 2D and 3D graphics, animation, styles, templates,

documents, media, text, and typography. WPF is part of .NET, so you can build applications that incorporate

other elements of the .NET API.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

There are two implementations of WPF:

1. .NET version (this guide):

An open-source implementation of WPF hosted on GitHub, which runs on .NET 5 or higher (including

.NET Core 3.1). The XAML designer requires, at a minimum, Visual Studio 2019 version 16.8.

Even though .NET is a cross-platform technology, WPF isn't and only runs on Windows.

2. .NET Framework 4 version:

The .NET Framework implementation of WPF that's supported by Visual Studio 2019 and Visual Studio

2017.

.NET Framework 4 is a Windows-only version of .NET and is considered a Windows Operating System

component. This version of WPF is distributed with .NET Framework. For more information about the

.NET Framework version of WPF, see Introduction to WPF for .NET Framework.

This overview is intended for newcomers and covers the key capabilities and concepts of WPF. To learn how to

create a WPF app, see Tutorial: Create a new WPF app.

WPF for .NET 5.0 provides new features and enhancements over .NET Framework. To learn how to migrate an

app, see How to migrate a WPF desktop app to .NET 5.

WPF exists as a subset of .NET types that are, mostly located in the System.Windows namespace. If you have

previously built applications with .NET with frameworks like ASP.NET and Windows Forms, the fundamental

WPF programming experience should be familiar, you:

Instantiate classes

Set properties

Call methods

Handle events

WPF includes more programming constructs that enhance properties and events: dependency properties and

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/overview/index.md
https://github.com/dotnet/wpf
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019+desktopguide+wpf
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/introduction-to-wpf
https://docs.microsoft.com/en-us/dotnet/api/system.windows
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dependency-properties-overview

 Markup and code-behind

 Markup

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 Title="Window with Button"
 Width="250" Height="100">

 <!-- Add button to window -->
 <Button Name="button">Click Me!</Button>

</Window>

 Code-behind

routed events.

WPF lets you develop an application using both markup and code-behind, an experience with which ASP.NET

developers should be familiar. You generally use XAML markup to implement the appearance of an application

while using managed programming languages (code-behind) to implement its behavior. This separation of

appearance and behavior has the following benefits:

Development and maintenance costs are reduced because appearance-specific markup isn't tightly

coupled with behavior-specific code.

Development is more efficient because designers can implement an application's appearance

simultaneously with developers who are implementing the application's behavior.

Globalization and localization for WPF applications is simplified.

XAML is an XML-based markup language that implements an application's appearance declaratively. You

typically use it to define windows, dialog boxes, pages, and user controls, and to fill them with controls, shapes,

and graphics.

The following example uses XAML to implement the appearance of a window that contains a single button:

Specifically, this XAML defines a window and a button by using the Window and Button elements. Each element

is configured with attributes, such as the Window element's Title attribute to specify the window's title-bar

text. At run time, WPF converts the elements and attributes that are defined in markup to instances of WPF

classes. For example, the Window element is converted to an instance of the Window class whose Title property

is the value of the Title attribute.

The following figure shows the user interface (UI) that is defined by the XAML in the previous example:

Since XAML is XML-based, the UI that you compose with it's assembled in a hierarchy of nested elements that is

known as an element tree. The element tree provides a logical and intuitive way to create and manage UIs.

The main behavior of an application is to implement the functionality that responds to user interactions. For

example clicking a menu or button, and calling business logic and data access logic in response. In WPF, this

behavior is implemented in code that is associated with markup. This type of code is known as code-behind. The

following example shows the updated markup from the previous example and the code-behind:

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/routed-events-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-globalization-and-localization-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.title
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/trees-in-wpf

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SDKSample.AWindow"
 Title="Window with Button"
 Width="250" Height="100">

 <!-- Add button to window -->
 <Button Name="button" Click="button_Click">Click Me!</Button>

</Window>

using System.Windows;

namespace SDKSample
{
 public partial class AWindow : Window
 {
 public AWindow()
 {
 // InitializeComponent call is required to merge the UI
 // that is defined in markup with this class, including
 // setting properties and registering event handlers
 InitializeComponent();
 }

 void button_Click(object sender, RoutedEventArgs e)
 {
 // Show message box when button is clicked.
 MessageBox.Show("Hello, Windows Presentation Foundation!");
 }
 }
}

The updated markup defines the xmlns:x namespace and maps it to the schema that adds support for the

code-behind types. The x:Class attribute is used to associate a code-behind class to this specific XAML markup.

Considering this attribute is declared on the <Window> element, the code-behind class must inherit from the

Window class.

Namespace SDKSample

 Partial Public Class AWindow
 Inherits System.Windows.Window

 Public Sub New()

 ' InitializeComponent call is required to merge the UI
 ' that is defined in markup with this class, including
 ' setting properties and registering event handlers
 InitializeComponent()

 End Sub

 Private Sub button_Click(ByVal sender As Object, ByVal e As RoutedEventArgs)

 ' Show message box when button is clicked.
 MessageBox.Show("Hello, Windows Presentation Foundation!")

 End Sub

 End Class

End Namespace

 Input and commands

InitializeComponent is called from the code-behind class's constructor to merge the UI that is defined in

markup with the code-behind class. (InitializeComponent is generated for you when your application is built,

which is why you don't need to implement it manually.) The combination of x:Class and InitializeComponent

ensure that your implementation is correctly initialized whenever it's created.

Notice that in the markup the <Button> element defined a value of button_click for the Click attribute. With

the markup and code-behind initialized and working together, the Click event for the button is automatically

mapped to the button_click method. When the button is clicked, the event handler is invoked and a message

box is displayed by calling the System.Windows.MessageBox.Show method.

The following figure shows the result when the button is clicked:

Controls most often detect and respond to user input. The WPF input system uses both direct and routed events

to support text input, focus management, and mouse positioning.

Applications often have complex input requirements. WPF provides a command system that separates user-

input actions from the code that responds to those actions. The command system allows for multiple sources to

invoke the same command logic. For example, take the common editing operations used by different

applications: Copy , Cut, and Paste. These operations can be invoked by using different user actions if they're

implemented by using commands.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox.show

 Controls

 WPF controls by function

 Layout

The user experiences that are delivered by the application model are constructed controls. In WPF, control is an

umbrella term that applies to a category of WPF classes that have the following characteristics:

Hosted in either a window or a page.

Have a user interface.

Implement some behavior.

For more information, see Controls.

The built-in WPF controls are listed here:

Buttons : Button and RepeatButton.

Data Display : DataGrid, ListView, and TreeView.

Date Display and Selection: Calendar and DatePicker.

Dialog Boxes : OpenFileDialog, PrintDialog, and SaveFileDialog.

Digital Ink : InkCanvas and InkPresenter.

Documents : DocumentViewer, FlowDocumentPageViewer, FlowDocumentReader,

FlowDocumentScrollViewer, and StickyNoteControl.

Input: TextBox, RichTextBox, and PasswordBox.

Layout: Border, BulletDecorator, Canvas, DockPanel, Expander, Grid, GridView, GridSplitter, GroupBox,

Panel, ResizeGrip, Separator, ScrollBar, ScrollViewer, StackPanel, Thumb, Viewbox, VirtualizingStackPanel,

Window, and WrapPanel.

Media: Image, MediaElement, and SoundPlayerAction.

Menus : ContextMenu, Menu, and ToolBar.

Navigation: Frame, Hyperlink, Page, NavigationWindow, and TabControl.

Selection: CheckBox, ComboBox, ListBox, RadioButton, and Slider.

User Information: AccessText, Label, Popup, ProgressBar, StatusBar, TextBlock, and ToolTip.

When you create a user interface, you arrange your controls by location and size to form a layout. A key

requirement of any layout is to adapt to changes in window size and display settings. Rather than forcing you to

write the code to adapt a layout in these circumstances, WPF provides a first-class, extensible layout system for

you.

The cornerstone of the layout system is relative positioning, which increases the ability to adapt to changing

window and display conditions. The layout system also manages the negotiation between controls to determine

the layout. The negotiation is a two-step process: first, a control tells its parent what location and size it requires.

Second, the parent tells the control what space it can have.

The layout system is exposed to child controls through base WPF classes. For common layouts such as grids,

stacking, and docking, WPF includes several layout controls:

Canvas: Child controls provide their own layout.

DockPanel: Child controls are aligned to the edges of the panel.

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/index
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.repeatbutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.datagrid
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.calendar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.datepicker
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.openfiledialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.printdialog
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.savefiledialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.inkcanvas
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.inkpresenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.documentviewer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.flowdocumentpageviewer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.flowdocumentreader
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.flowdocumentscrollviewer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stickynotecontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.richtextbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.passwordbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.border
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.bulletdecorator
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.canvas
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.expander
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.grid
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.gridview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.gridsplitter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.groupbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.resizegrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.separator
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.scrollbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.scrollviewer
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.thumb
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.viewbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.virtualizingstackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.wrappanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.image
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.mediaelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.soundplayeraction
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contextmenu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.menu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.toolbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.frame
https://docs.microsoft.com/en-us/dotnet/api/system.windows.documents.hyperlink
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.page
https://docs.microsoft.com/en-us/dotnet/api/system.windows.navigation.navigationwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.tabcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.combobox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.slider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.accesstext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.label
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.popup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.progressbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.statusbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.canvas
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SDKSample.LayoutWindow"
 Title="Layout with the DockPanel" Height="143" Width="319">

 <!--DockPanel to layout four text boxes-->
 <DockPanel>
 <TextBox DockPanel.Dock="Top">Dock = "Top"</TextBox>
 <TextBox DockPanel.Dock="Bottom">Dock = "Bottom"</TextBox>
 <TextBox DockPanel.Dock="Left">Dock = "Left"</TextBox>
 <TextBox Background="White">This TextBox "fills" the remaining space.</TextBox>
 </DockPanel>

</Window>

NOTE

 Data binding

Grid: Child controls are positioned by rows and columns.

StackPanel: Child controls are stacked either vertically or horizontally.

VirtualizingStackPanel: Child controls are virtualized and arranged on a single line that is either

horizontally or vertically oriented.

WrapPanel: Child controls are positioned in left-to-right order and wrapped to the next line when there

isn't enough space. on the current line.

The following example uses a DockPanel to lay out several TextBox controls:

The DockPanel allows the child TextBox controls to tell it how to arrange them. To do this, the DockPanel

implements a Dock attached property that is exposed to the child controls to allow each of them to specify a

dock style.

A property that's implemented by a parent control for use by child controls is a WPF construct called an attached

property.

The following figure shows the result of the XAML markup in the preceding example:

Most applications are created to provide users with the means to view and edit data. For WPF applications, the

work of storing and accessing data is already provided for by many different .NET data access libraries such as

SQL and Entity Framework Core. After the data is accessed and loaded into an application's managed objects,

the hard work for WPF applications begins. Essentially, this involves two things:

1. Copying the data from the managed objects into controls, where the data can be displayed and edited.

2. Ensuring that changes made to data by using controls are copied back to the managed objects.

To simplify application development, WPF provides a powerful data binding engine to automatically handle

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.grid
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.virtualizingstackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.wrappanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/attached-properties-overview

 <Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SDKSample.DataBindingWindow">

 <!-- Bind the TextBox to the data source (TextBox.Text to Person.Name) -->
 <TextBox Name="personNameTextBox" Text="{Binding Path=Name}" />

 </Window>

 Graphics & animation

 2D graphics

these steps. The core unit of the data binding engine is the Binding class, whose job is to bind a control (the

binding target) to a data object (the binding source). This relationship is illustrated by the following figure:

WPF supports declaring bindings in the XAML markup directly. For example, the following XAML code binds the

Text property of the TextBox to the Name property of an object using the " {Binding ... } " XAML syntax. This

assumes there's a data object set to the DataContext property of the Window with a Name property.

The WPF data binding engine provides more than just binding, it provides validation, sorting, filtering, and

grouping. Furthermore, data binding supports the use of data templates to create custom user interface for

bound data.

For more information, see Data binding overview.

WPF provides an extensive and flexible set of graphics features that have the following benefits:

Resolution-independent and device-independent graphics . The basic unit of measurement in the

WPF graphics system is the device-independent pixel, which is 1/96th of an inch, and provides the

foundation for resolution-independent and device-independent rendering. Each device-independent pixel

automatically scales to match the dots-per-inch (dpi) setting of the system it renders on.

Improved precision. The WPF coordinate system is measured with double-precision floating-point

numbers rather than single-precision. Transformations and opacity values are also expressed as double-

precision. WPF also supports a wide color gamut (scRGB) and provides integrated support for managing

inputs from different color spaces.

Advanced graphics and animation suppor t . WPF simplifies graphics programming by managing

animation scenes for you; there's no need to worry about scene processing, rendering loops, and bilinear

interpolation. Additionally, WPF provides hit-testing support and full alpha-compositing support.

Hardware acceleration. The WPF graphics system takes advantage of graphics hardware to minimize

CPU usage.

WPF provides a library of common vector-drawn 2D shapes, such as the rectangles and ellipses. The shapes

aren't just for display; shapes implement many of the features that you expect from controls, including keyboard

and mouse input.

The 2D shapes provided by WPF cover the standard set of basic shapes. However, you may need to create

custom shapes to help the design of a customized user interface. WPF provides geometries to create a custom

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext

 3D rendering

 Animation

shape that can be drawn directly, used as a brush, or used to clip other shapes and controls.

For more information, see Geometry overview.

A subset of WPF 2D capabilities includes visual effects, such as gradients, bitmaps, drawings, painting with

videos, rotation, scaling, and skewing. These effects are all achieved with brushes. The following figure shows

some examples:

For more information, see WPF brushes overview.

WPF also includes 3D rendering capabilities that integrate with 2D graphics to allow the creation of more

exciting and interesting user interfaces. For example, the following figure shows 2D images rendered onto 3D

shapes:

For more information, see 3D graphics overview.

WPF animation support lets you make controls grow, shake, spin, and fade, to create interesting page

transitions, and more. You can animate most WPF classes, even custom classes. The following figure shows a

simple animation in action:

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/geometry-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/wpf-brushes-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/3-d-graphics-overview

 Text and typography

 Customize WPF apps

For more information, see Animation overview.

To provide high-quality text rendering, WPF offers the following features:

OpenType font support.

ClearType enhancements.

High performance that takes advantage of hardware acceleration.

Integration of text with media, graphics, and animation.

International font support and fallback mechanisms.

As a demonstration of text integration with graphics, the following figure shows the application of text

decorations:

For more information, see Typography in Windows Presentation Foundation.

Up to this point, you've seen the core WPF building blocks for developing applications:

You use the application model to host and deliver application content, which consists mainly of controls.

To simplify the arrangement of controls in a user interface, you use the WPF layout system.

You use data binding to reduce the work of integrating your user interface with data.

To enhance the visual appearance of your application, you use the comprehensive range of graphics,

animation, and media support provided by WPF.

Often, though, the basics aren't enough for creating and managing a truly distinct and visually stunning user

experience. The standard WPF controls might not integrate with the desired appearance of your application.

Data might not be displayed in the most effective way. Your application's overall user experience may not be

suited to the default look and feel of Windows themes.

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/animation-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/typography-in-wpf

 Content Model

 Triggers

 Templates

 Data templates

For this reason, WPF provides various mechanisms for creating unique user experiences.

The main purpose of most of the WPF controls is to display content. In WPF, the type and number of items that

can constitute the content of a control is referred to as the control's content model. Some controls can contain a

single item and type of content. For example, the content of a TextBox is a string value that is assigned to the Text

property.

Other controls, however, can contain multiple items of different types of content; the content of a Button,

specified by the Content property, can contain various items including layout controls, text, images, and shapes.

For more information on the kinds of content that is supported by various controls, see WPF content model.

Although the main purpose of XAML markup is to implement an application's appearance, you can also use

XAML to implement some aspects of an application's behavior. One example is the use of triggers to change an

application's appearance based on user interactions. For more information, see Styles and templates.

The default user interfaces for WPF controls are typically constructed from other controls and shapes. For

example, a Button is composed of both ButtonChrome and ContentPresenter controls. The ButtonChrome

provides the standard button appearance, while the ContentPresenter displays the button's content, as specified

by the Content property.

Sometimes the default appearance of a control may conflict with the overall appearance of an application. In this

case, you can use a ControlTemplate to change the appearance of the control's user interface without changing

its content and behavior.

For example, a Button raises the Click event when it's clicked. By changing the template of a button to display an

Ellipse shape, the visual of the aspect of the control has changed, but the functionality hasn't. You can still click

on the visual aspect of the control and the Click event is raised as expected.

Whereas a control template lets you specify the appearance of a control, a data template lets you specify the

appearance of a control's content. Data templates are frequently used to enhance how bound data is displayed.

The following figure shows the default appearance for a ListBox that is bound to a collection of Task objects,

where each task has a name, description, and priority:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/wpf-content-model
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/microsoft.windows.themes.buttonchrome
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/microsoft.windows.themes.buttonchrome
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.shapes.ellipse
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox

 Styles

The default appearance is what you would expect from a ListBox. However, the default appearance of each task

contains only the task name. To show the task name, description, and priority, the default appearance of the

ListBox control's bound list items must be changed by using a DataTemplate. Here is an example of applying a

data template that was created for the Task object.

The ListBox retains its behavior and overall appearance and only the appearance of the content being displayed

by the list box has changed.

For more information, see Data templating overview.

Styles enable developers and designers to standardize on a particular appearance for their product. WPF

provides a strong style model, the foundation of which is the Style element. Styles can apply property values to

types. They can be applied automatically to the everything according to the type or individual objects when

referenced. The following example creates a style that sets the background color for every Button on the

window to Orange :

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/data-templating-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SDKSample.StyleWindow"
 Title="Styles">

 <Window.Resources>
 <!-- Style that will be applied to all buttons for this window -->
 <Style TargetType="{x:Type Button}">
 <Setter Property="Background" Value="Orange" />
 <Setter Property="BorderBrush" Value="Crimson" />
 <Setter Property="FontSize" Value="20" />
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </Window.Resources>
 <StackPanel>

 <!-- This button will have the style applied to it -->
 <Button>Click Me!</Button>

 <!-- This label will not have the style applied to it -->
 <Label>Don't Click Me!</Label>

 <!-- This button will have the style applied to it -->
 <Button>Click Me!</Button>

 </StackPanel>
</Window>

 Resources

Because this style targets all Button controls, the style is automatically applied to all the buttons in the window,

as shown in the following figure:

For more information, see Styles and templates.

Controls in an application should share the same appearance, which can include anything from fonts and

background colors to control templates, data templates, and styles. You can use WPF's support for user interface

resources to encapsulate these resources in a single location for reuse.

The following example defines a common background color that is shared by a Button and a Label:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.label

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SDKSample.ResourcesWindow"
 Title="Resources Window">

 <!-- Define window-scoped background color resource -->
 <Window.Resources>
 <SolidColorBrush x:Key="defaultBackground" Color="Red" />
 </Window.Resources>

 <!-- Button background is defined by window-scoped resource -->
 <Button Background="{StaticResource defaultBackground}">One Button</Button>

 <!-- Label background is defined by window-scoped resource -->
 <Label Background="{StaticResource defaultBackground}">One Label</Label>
</Window>

 Custom controls

 See also

For more information, see How to define and reference a WPF resource.

Although WPF provides a host of customization support, you may encounter situations where existing WPF

controls do not meet the needs of either your application or its users. This can occur when:

The user interface that you require cannot be created by customizing the look and feel of existing WPF

implementations.

The behavior that you require isn't supported (or not easily supported) by existing WPF implementations.

At this point, however, you can take advantage of one of three WPF models to create a new control. Each model

targets a specific scenario and requires your custom control to derive from a particular WPF base class. The

three models are listed here:

User Control Model

A custom control derives from UserControl and is composed of one or more other controls.

Control Model A custom control derives from Control and is used to build implementations that

separate their behavior from their appearance using templates, much like most WPF controls. Deriving

from Control allows you more freedom for creating a custom user interface than user controls, but it may

require more effort.

Framework Element Model .

A custom control derives from FrameworkElement when its appearance is defined by custom rendering

logic (not templates).

For more information on custom controls, see Control authoring overview.

Tutorial: Create a new WPF app

Migrate a WPF app to .NET Core

Overview of WPF windows

Data binding overview

XAML overview

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/control-authoring-overview

Tutorial: Create a new WPF app (WPF .NET)
 4/30/2021 • 11 minutes to read • Edit Online

IMPORTANT

 Prerequisites

 Create a WPF app

In this short tutorial, you'll learn how to create a new Windows Presentation Foundation (WPF) app with Visual

Studio. Once the initial app has been generated, you'll learn how to add controls and how to handle events. By

the end of this tutorial, you'll have a simple app that adds names to a list box.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In this tutorial, you learn how to:

Create a new WPF app

Add controls to a form

Handle control events to provide app functionality

Run the app

Here's a preview of the app you'll build while following this tutorial:

Visual Studio 2019 version 16.9 or later versions

Select the Visual Studio Desktop workload

Select the .NET 5 individual component

The first step to creating a new app is opening Visual Studio and generating the app from a template.

1. Open Visual Studio.

2. Select Create a new project.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/get-started/create-app-visual-studio.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019+desktopguide+wpf
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019&preserve-view=true#modify-workloads
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019&preserve-view=true#modify-individual-components

IMPORTANT

3. In the Search for templates box, type wpf , and then press Enter.

4. In the code language dropdown, choose C# or Visual Basic.

5. In the templates list, select WPF Application and then select Next.

Don't select the WPF Application (.NET Framework) template.

6. In the Configure your new project window, do the following:

a. In the Project name box, enter Names .

b. Select the Place solution and project in the same director y check box.

c. Optionally, choose a different Location to save your code.

d. Select the Next button.

7. In the Additional information window, select .NET 5.0 (Current) for Target Framework . Select the

Create button.

Once the app is generated, Visual Studio should open the XAML designer pane for the default window,

 Important parts of Visual Studio

MainWindow. If the designer isn't visible, double-click on the MainWindow.xaml file in the Solution Explorer

pane to open the designer.

Support for WPF in Visual Studio has five important components that you'll interact with as you create an app:

1. Solution Explorer

All of your project files, code, windows, resources, will appear in this pane.

2. Properties

This pane shows property settings you can configure based on the item selected. For example, if you

select an item from Solution Explorer , you'll see property settings related to the file. If you select an

object in the Designer , you'll see settings for that item.

3. Toolbox

The toolbox contains all of the controls you can add to a form. To add a control to the current form,

double-click a control or drag-and-drop the control.

4. XAML designer

This is the designer for a XAML document. It's interactive and you can drag-and-drop objects from the

Toolbox. By selecting and moving items in the designer, you can visually compose the user interface (UI)

for your app.

When both the designer and editor are visible, changes to one is reflected in the other. When you select

items in the designer, the Proper ties pane displays the properties and attributes about that object.

5. XAML code editor

This is the XAML code editor for a XAML document. The XAML code editor is a way to craft your UI by

hand without a designer. The designer may infer the values of properties on a control when the control is

added in the designer. The XAML code editor gives you a lot more control.

When both the designer and editor are visible, changes to one is reflected in the other. As you navigate

the text caret in the code editor, the Proper ties pane displays the properties and attributes about that

 Examine the XAML

<Window x:Class="Names.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Names"
 mc:Ignorable="d"
 Title="MainWindow" Height="450" Width="800">
 <Grid>

 </Grid>
</Window>

 Change the window

object.

After your project is created, the XAML code editor is visible with a minimal amount of XAML code to display the

window. If the editor isn't open, double-click the MainWindow.xaml item in the Solution Explorer . You should

see XAML similar to the following:

Let's break down this XAML code to understand it better. XAML is simply XML that can be processed by the

compilers that WPF uses. It describes the WPF UI and interacts with .NET code. To understand XAML, you should,

at a minimum, be familiar with the basics of XML.

The document root <Window> represents the type of object being described by the XAML file. There are eight

attributes declared, and they generally belong to three categories:

Namespaces

An XML namespace provides structure to the XML, determining what is or isn't allowed to be declared in

the file.

The main xmlns attribute imports the XML namespace for the entire file, and in this case, maps to the

types declared by WPF. The other XML namespaces declare a prefix and import other types and objects

for the XAML file. For example, the xmlns:local namespace declares the local prefix and maps to the

objects declared by your project, the ones declared in the Names code namespace.

x:Class attribute

This attribute maps the <Window> to the type defined by your code: the MainWindow.xaml.cs or

MainWindow.xaml.vb file, which is the Names.MainWindow class.

Title attribute

Any normal attribute declared on the XAML object sets a property of that object. In this case the Title

attribute sets the Window.Title property.

First, let's run the project and see the default output. You'll see that a window that pops up, without any controls,

and a title of MainWindow :

<Window x:Class="Names.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Names"
 mc:Ignorable="d"
 Title="Names" Height="180" Width="260">
 <Grid>

 </Grid>
</Window>

 Prepare the layout

For our example app, this window is too large, and the title bar isn't descriptive. Change the title and size of the

window by changing the appropriate attributes in the XAML to the following values:

WPF provides a powerful layout system with many different layout controls. Layout controls help place and size

child controls, and can even do so automatically. The default layout control provided to you in this XAML is the

<Grid> control.

The Grid control lets you define rows and columns, much like a table, and place controls within the bounds of a

specific row and column combination. You can have any number of child controls or other layout controls added

to the Grid . For example, you can place another Grid control in a specific row and column combination, and

that new Grid can then define more rows and columns and have its own children.

The <Grid> control defines rows and columns in which your controls will be. A grid always has a single row and

column declared, meaning, the grid by default is a single cell. That doesn't really give you much flexibility in

placing controls.

Before we add the new rows and columns, add a new attribute to the <Grid> element: Margin="10" . This insets

the grid from the window and makes it look a little nicer.

Next, define two rows and two columns, dividing the grid into four cells:

<Window x:Class="Names.LayoutStep2"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Names"
 mc:Ignorable="d"
 Title="Names" Height="180" Width="260">
 <Grid Margin="10">

 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 </Grid>
</Window>

 Add the first control

Select the grid in either the XAML code editor or XAML designer, you'll see that the XAML designer shows each

row and column:

Now that the grid has been created, we can start adding controls to it. First, start with the label control. Create a

new <Label> element inside the <Grid> element, after the row and column definitions, and give it a string

value of Names :

<Grid Margin="10">

 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Label>Names</Label>

</Grid>

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
</Grid.RowDefinitions>

 Control placement

The <Label>Names</Label> defines the content Names . Some controls understand how to handle content, others

don't. The content of a control maps to the Content property. Setting the content through XAML attribute

syntax, you would use this format: <Label Content="Names" /> . Both ways accomplish the same thing, setting the

content of the label to display the text Names .

We have a problem though, the label takes up half the window as it was automatically assigned to the first row

and column of the grid. For our first row, we don't need that much space because we're only going to use that

row for the label. Change the Height attribute of the first <RowDefinition> from * to Auto . The Auto value

automatically sizes the grid row to the size of its contents, in this case, the label control.

Notice that the designer now shows the label occupying a small amount of the available height. There's now

more room for the next row to occupy. Most controls define some sort of height and width value that they

should occupy that looks best for them. In the case of the label control, it has a height value that ensures that

you can read it.

Let's talk about control placement. The label created in the section above was automatically placed in row 0 and

column 0 of the grid. The numbering for rows and columns starts at 0 and increments by 1 for each new row or

<Label Grid.Column="1">Names</Label>

 Create the name list box

<Grid Margin="10">

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Label>Names</Label>
 <ListBox Grid.Row="1" x:Name="lstNames" />

</Grid>

 Add the remaining controls

column. The control doesn't know anything about the grid, and the control doesn't define any properties to

control its placement within the grid. The control could have even been placed within some other layout control

which has its own set of rules defining how to place controls.

How do you tell a control to use a different row or column when the control has no knowledge of the grid?

Attached properties! The grid takes advantage of the powerful property system provided by WPF. The grid

defines new properties that the child controls can declare and use. The properties don't actually exist on the

control itself, they're attached by the grid when the control is added to the grid.

The grid defines two properties to determine the row and column placement of a child control: Grid.Row and

Grid.Column . If these properties are omitted from the control, it's implied that they have the default values of 0,

so, the control is placed in row 0 and column 0 of the grid. Try changing the placement of the <Label>

control by setting the Grid.Column attribute to 1 :

Notice how your label now moved to the second column. You can use the Grid.Row and Grid.Column attached

properties to place the next controls we'll create. For now though, restore the label to row 0.

Now that the grid is correctly sized and the label created, add a list box control on the row below the label. The

list box will be in row 1 and column 0 . We'll also give this control the name of lstNames . Once a control is

named, it can be referenced in the code behind. The name is assigned to the control with the x:Name attribute.

The last two controls we'll add are a text box and a button, which the user will use to enter a name to add to the

list box. However, instead of trying to create more rows and columns for the grid, we'll put these controls into

the <StackPanel> layout control.

The stack panel differs from the grid in how the controls are placed. While you tell the grid where you want the

controls to be with the Grid.Row and Grid.Column attached properties, the stack panel works automatically by

placing the first control, then placing the next control after it, continuing until all controls have been placed. It

"stacks" each control below the other.

Create the <StackPanel> control after the list box and put it in grid row 1 column 1 . Add another attribute

named Margin with a value of 5,0,0,0 :

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>

<Label>Names</Label>
<ListBox Grid.Row="1" x:Name="lstNames" />

<StackPanel Grid.Row="1" Grid.Column="1" Margin="5,0,0,0">

</StackPanel>

<StackPanel Grid.Row="1" Grid.Column="1" Margin="5,0,0,0">
 <TextBox x:Name="txtName" />
 <Button x:Name="btnAdd" Margin="0,5,0,0">Add Name</Button>
</StackPanel>

 Add code for the Click event

<StackPanel Grid.Row="1" Grid.Column="1" Margin="5,0,0,0">
 <TextBox x:Name="txtName" />
 <Button x:Name="btnAdd" Margin="0,5,0,0" Click="ButtonAddName_Click">Add Name</Button>
</StackPanel>

private void ButtonAddName_Click(object sender, RoutedEventArgs e)
{

}

Private Sub ButtonAddName_Click(sender As Object, e As RoutedEventArgs)

End Sub

The Margin attribute was previously used on the grid, but we only put in a single value, 10 . Now we've used a

value of 5,0,0,0 on the stack panel. The margin is a Thickness type and can interpret both values. A thickness

defines the space around each side of a rectangular frame, left, top, r ight , bottom, respectively. If the value for

the margin is a single value, it uses that value for all four sides.

Next, create a <TextBox> and <Button> control in the <StackPanel> .

The layout for the window is complete. However, our app doesn't have any logic in it to actually be functional.

Next, we need to hook up the control events to code and get the app to actually do something.

The <Button> we created has a Click event that is raised when the user presses the button. You can subscribe

to this event and add code to add a name to the list box. Just like you set a property on a control by adding a

XAML attribute, you can use a XAML attribute to subscribe to an event. Set the Click attribute to

ButtonAddName_Click

Now you need to generate the handler code. Right-click on ButtonAddName_Click and select Go To Definition.

This will generate a method in the code behind for you that matches the handler name you've entered.

private void ButtonAddName_Click(object sender, RoutedEventArgs e)
{
 if (!string.IsNullOrWhiteSpace(txtName.Text) && !lstNames.Items.Contains(txtName.Text))
 {
 lstNames.Items.Add(txtName.Text);
 txtName.Clear();
 }
}

Private Sub ButtonAddName_Click(sender As Object, e As RoutedEventArgs)
 If Not String.IsNullOrWhiteSpace(txtName.Text) And Not lstNames.Items.Contains(txtName.Text) Then
 lstNames.Items.Add(txtName.Text)
 txtName.Clear()
 End If
End Sub

 Run the app

 Next steps

Next, add the following code to do these three steps:

1. Make sure that the text box contains a name.

2. Validate that the name entered in the text box doesn't already exist.

3. Add the name to the list box.

Now that the event has been coded, you can run the app by pressing the F5 key or by selecting Debug > Star t

Debugging from the menu. The window is displayed and you can enter a name in the textbox and then add it

by clicking the button.

Learn more about Windows Presentation Foundation

Differences in WPF .NET
 4/15/2021 • 2 minutes to read • Edit Online

IMPORTANT

 SDK-style projects

 NuGet package references

This article describes the differences between Windows Presentation Foundation (WPF) on .NET 5 (or .NET Core

3.1) and .NET Framework. WPF for .NET 5 is an open-source framework forked from the original WPF for .NET

Framework source code.

There are a few features of .NET Framework that .NET 5 doesn't support. For more information on unsupported

technologies, see .NET Framework technologies unavailable on .NET 5 and .NET Core.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

.NET 5 uses SDK-style project files. These project files are different from the traditional .NET Framework project

files managed by Visual Studio. To migrate your .NET Framework WPF apps to .NET 5, you must convert your

projects. For more information, see Migrate WPF apps to .NET 5.

If your .NET Framework app lists its NuGet dependencies in a packages.config file, migrate to the

<PackageReference> format:

1. In Visual Studio, open the Solution Explorer pane.

2. In your WPF project, right-click packages.config > Migrate packages.config to PackageReference.

A dialog will appear showing calculated top-level NuGet dependencies and asking which other NuGet packages

should be promoted to top level. Select OK and the packages.config file will be removed from the project and

<PackageReference> elements will be added to the project file.

When your project uses <PackageReference> , packages aren't stored locally in a Packages folder, they're stored

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/migration/differences-from-net-framework.md
https://github.com/dotnet/wpf
https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable
https://docs.microsoft.com/en-us/nuget/consume-packages/package-references-in-project-files

 Code Access Security

SO URC E A SSEM B LY TA RGET A SSEM B LY T Y P E

WindowsBase.dll System.Security.Permissions.dll MediaPermission
MediaPermissionAttribute
MediaPermissionAudio
MediaPermissionImage
MediaPermissionVideo
WebBrowserPermission
WebBrowserPermissionAttribute
WebBrowserPermissionLevel

System.Xaml.dll System.Security.Permissions.dll XamlLoadPermission

System.Xaml.dll System.Windows.Extension.dll XamlAccessLevel

NOTE

 Next steps

globally. Open the project file and remove any <Analyzer> elements that referred to the Packages folder. These

analyzers are automatically included with the NuGet package references.

Code Access Security (CAS) is not supported by .NET 5. All CAS-related functionality is treated under the

assumption of full-trust. WPF for .NET 5 removes CAS-related code. The public API surface of these types still

exists to ensure that calls into these types succeed.

Publicly defined CAS-related types were moved out of the WPF assemblies and into the Core .NET library

assemblies. The WPF assemblies have type-forwarding set to the new location of the moved types.

In order to minimize porting friction, the functionality for storing and retrieving information related to the following

properties was retained in the XamlAccessLevel type.

PrivateAccessToTypeName

AssemblyNameString

Migrate WPF apps to .NET 5

https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.mediapermission
https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.mediapermissionattribute
https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.mediapermissionaudio
https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.mediapermissionimage
https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.mediapermissionvideo
https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.webbrowserpermission
https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.webbrowserpermissionattribute
https://docs.microsoft.com/en-us/dotnet/api/system.security.permissions.webbrowserpermissionlevel
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.permissions.xamlloadpermission
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.permissions.xamlaccesslevel

Migrating WPF apps to .NET Core
 8/12/2021 • 26 minutes to read • Edit Online

IMPORTANT

 Try the upgrade assistant

 Prerequisites

 About the sample

This article covers the steps necessary to migrate a Windows Presentation Foundation (WPF) app from .NET

Framework to .NET Core 3.0. If you don't have a WPF app on hand to port, but would like to try out the process,

you can use the Bean Trader sample app available on GitHub. The original app (targeting .NET Framework

4.7.2) is available in the NetFx\BeanTraderClient folder. First we'll explain the steps necessary to port apps in

general, and then we'll walk through the specific changes that apply to the Bean Trader sample.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The .NET Upgrade Assistant is a command-line tool that can be run on different kinds of .NET Framework apps.

It's designed to assist with upgrading .NET Framework apps to .NET 5. After running the tool, in most cases the

app will require additional effort to complete the migration. The tool includes the installation of analyzers that

can assist with completing the migration.

For more information, see Upgrade a Windows Forms App to .NET 5 with the .NET Upgrade Assistant.

To migrate to .NET Core, you must first:

1. Understand and update NuGet dependencies:

a. Upgrade NuGet dependencies to use the <PackageReference> format.

b. Review top-level NuGet dependencies for .NET Core or .NET Standard compatibility.

c. Upgrade NuGet packages to newer versions.

d. Use the .NET Portability Analyzer to understand .NET dependencies.

2. Migrate the project file to the new SDK-style format:

a. Choose whether to target both .NET Core and .NET Framework, or only .NET Core.

b. Copy relevant project file properties and items to the new project file.

3. Fix build issues:

a. Add a reference to the Microsoft.Windows.Compatibility package.

b. Find and fix API-level differences.

c. Remove app.config sections other than appSettings or connectionStrings .

d. Regenerate generated code, if necessary.

4. Runtime testing:

a. Confirm the ported app works as expected.

b. Beware of NotSupportedException exceptions.

This article references the Bean Trader sample app because it uses a variety of dependencies similar to those

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/migration/convert-project-from-net-framework.md
https://github.com/dotnet/windows-desktop/tree/main/Samples/BeanTrader
https://docs.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-winforms-framework
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://www.nuget.org/packages/Microsoft.Windows.Compatibility/
https://docs.microsoft.com/en-us/dotnet/api/system.notsupportedexception
https://github.com/dotnet/windows-desktop/tree/main/Samples/BeanTrader

 Getting ready

 Upgrade to <PackageReference> NuGet references

that real-world WPF apps might have. The app isn't large, but is meant to be a step up from 'Hello World' in

terms of complexity. The app demonstrates some issues users may encounter while porting real apps. The app

communicates with a WCF service, so for it to run properly, you'll also need to run the BeanTraderServer project

(available in the same GitHub repository) and make sure the BeanTraderClient configuration points to the

correct endpoint. (By default, the sample assumes the server is running on the same machine at

http://localhost:8090 , which will be true if you launch BeanTraderServer locally.)

Keep in mind that this sample app is meant to demonstrate .NET Core porting challenges and solutions. It's not

meant to demonstrate WPF best practices. In fact, it deliberately includes some anti-patterns to make sure you

come across at least a couple of interesting challenges while porting.

The primary challenge of migrating a .NET Framework app to .NET Core is that its dependencies may work

differently or not at all. Migration is much easier than it used to be; many NuGet packages now target .NET

Standard. Starting with .NET Core 2.0, the .NET Framework and .NET Core surface areas have become similar.

Even so, some differences (both in support from NuGet packages and in available .NET APIs) remain. The first

step in migrating is to review the app's dependencies and make sure references are in a format that's easily

migrated to .NET Core.

Older .NET Framework projects typically list their NuGet dependencies in a packages.config file. The new SDK-

style project file format references NuGet packages as <PackageReference> elements in the csproj file itself

rather than in a separate config file.

When migrating, there are two advantages to using <PackageReference> -style references:

This is the style of NuGet reference that is required for the new .NET Core project file. If you're already using

<PackageReference> , those project file elements can be copied and pasted directly into the new project.

Unlike a packages.config file, <PackageReference> elements only refer to the top-level dependencies that your

project depends on directly. All other transitive NuGet packages will be determined at restore time and

recorded in the autogenerated obj\project.assets.json file. This makes it much easier to determine what

dependencies your project has, which is useful when determining whether the necessary dependencies will

work on .NET Core or not.

The first step to migrating a .NET Framework app to .NET Core is to update it to use <PackageReference> NuGet

references. Visual Studio makes this simple. Just right-click the project's packages.config file in Visual Studio's

Solution Explorer , and then select Migrate packages.config to PackageReference.

https://docs.microsoft.com/en-us/nuget/consume-packages/package-references-in-project-files

 Review NuGet packages

A dialog appears showing calculated top-level NuGet dependencies and asking which other NuGet packages

should be promoted to top-level. None of these other packages need to be top-level for the Bean Trader sample,

so you can uncheck all of those boxes. Then, click Ok and the packages.config file is removed and

<PackageReference> elements are added to the project file.

<PackageReference> -style references don't store NuGet packages locally in a packages folder. Instead, they're

stored globally as an optimization. After the migration completes, edit the csproj file and remove any

<Analyzer> elements referring to the analyzers that previously came from the ..\packages directory. Don't

worry; since you still have the NuGet package references, the analyzers will be included in the project. You just

need to clean up the old packages.config-style <Analyzer> elements.

Now that you can see the top-level NuGet packages that the project depends on, you can review whether those

packages are available on .NET Core. You can determine whether a package supports .NET Core by looking at its

dependencies on nuget.org. The community-created fuget.org site shows this information prominently at the

top of the package information page.

When targeting .NET Core 3.0, any packages targeting .NET Core or .NET Standard should work (since .NET Core

implements the .NET Standard surface area). In some cases, the specific version of a package that's used won't

target .NET Core or .NET Standard, but newer versions will. In this case, you should consider upgrading to the

latest version of the package.

You can use packages targeting .NET Framework, as well, but that introduces some risk. .NET Core to .NET

Framework dependencies are allowed because .NET Core and .NET Framework surface areas are similar enough

that such dependencies often work. However, if the package tries to use a .NET API that isn't present in .NET

Core, you'll encounter a runtime exception. Because of that, you should only reference .NET Framework

packages when no other options are available and understand that doing so imposes a test burden.

If there are packages referenced that don't target .NET Core or .NET Standard, you'll have to think about other

alternatives:

Are there other similar packages that can be used instead? Sometimes NuGet authors publish separate

'.Core' versions of their libraries specifically targeting .NET Core. Enterprise Library packages are an example

of the community publishing ".NetCore" alternatives. In other cases, newer SDKs for a particular service

(sometimes with different package names) are available for .NET Standard. If no alternatives are available,

you can proceed using the .NET Framework-targeted packages, bearing in mind that you'll need to test them

thoroughly once running on .NET Core.

https://www.nuget.org/
https://www.fuget.org/

 Upgrade NuGet packages

The Bean Trader sample has the following top-level NuGet dependencies:

Castle.Windsor, version 4.1 .1

This package targets .NET Standard 1.6, so it works on .NET Core.

Microsoft.CodeAnalysis.FxCopAnalyzers, version 2.6 .3

This is a meta-package, so it's not immediately obvious which platforms it supports, but documentation

indicates that its newest version (2.9.2) will work for both .NET Framework and .NET Core.

Nito.AsyncEx, version 4.0 .1

This package doesn't target .NET Core, but the newer 5.0 version does. This is common when migrating

because many NuGet packages have added .NET Standard support recently, but older project versions

will only target .NET Framework. If the version difference is only a minor version difference, it's often easy

to upgrade to the newer version. Because this is a major version change, you need to be cautious

upgrading since there could be breaking changes in the package. There is a path forward, though, which

is good.

MahApps.Metro, version 1.6 .5

This package also doesn't target .NET Core, but has a newer pre-release (2.0-alpha) that does. Again, you

have to look out for breaking changes, but the newer package is encouraging.

The Bean Trader sample's NuGet dependencies all either target .NET Standard/.NET Core or have newer versions

that do, so there are unlikely to be any blocking issues here.

If possible, it would be good to upgrade the versions of any packages that only target .NET Core or .NET

Standard with more recent versions at this point (with the project still targeting .NET Framework) to discover

and address any breaking changes early.

If you would rather not make any material changes to the existing .NET Framework version of the app, this can

wait until you have a new project file targeting .NET Core. However, upgrading the NuGet packages to .NET

Core-compatible versions ahead of time makes the migration process even easier once you create the new

project file and reduces the number of differences between the .NET Framework and .NET Core versions of the

app.

With the Bean Trader sample, all of the necessary upgrades can be made easily (using Visual Studio's NuGet

package manager) with one exception: upgrading from MahApps.Metro 1.6 .5 to 2.0 reveals breaking changes

related to theme and accent management APIs.

Ideally, the app would be updated to use the newer version of the package (since that is more likely to work on

.NET Core). In some cases, however, that may not be feasible. In these cases, don't upgrade MahApps.Metro

because the necessary changes are non-trivial and this tutorial focuses on migrating to .NET Core 3, not to

MahApps.Metro 2. Also, this is a low-risk .NET Framework dependency because the Bean Trader app only

exercises a small part of MahApps.Metro. It will, of course, require testing to make sure everything's working

once the migration is complete. If this were a real-world scenario, it would be good to file an issue to track the

work to move to MahApps.Metro version 2.0 since not doing the migration now leaves behind some technical

debt.

Once the NuGet packages are updated to recent versions, the <PackageReference> item group in the Bean Trader

sample's project file should look like this.

https://www.castleproject.org/projects/windsor/
https://www.nuget.org/packages/Microsoft.CodeAnalysis.FxCopAnalyzers/2.6.3
https://github.com/dotnet/roslyn-analyzers#microsoftcodeanalysisfxcopanalyzers
https://www.nuget.org/packages/Nito.AsyncEx/4.0.1
https://www.nuget.org/packages/MahApps.Metro/1.6.5

<ItemGroup>
 <PackageReference Include="Castle.Windsor">
 <Version>4.1.1</Version>
 </PackageReference>
 <PackageReference Include="MahApps.Metro">
 <Version>1.6.5</Version>
 </PackageReference>
 <PackageReference Include="Microsoft.CodeAnalysis.FxCopAnalyzers">
 <Version>2.9.2</Version>
 </PackageReference>
 <PackageReference Include="Nito.AsyncEx">
 <Version>5.0.0</Version>
 </PackageReference>
</ItemGroup>

 .NET Framework portability analysis
Once you understand the state of your project's NuGet dependencies, the next thing to consider is .NET

Framework API dependencies. The .NET Portability Analyzer tool is useful for understanding which of the .NET

APIs your project uses are available on other .NET platforms.

The tool comes as a Visual Studio plugin, a command-line tool, or wrapped in a simple GUI, which simplifies its

options. You can read more about using the .NET Portability Analyzer (API Port) using the GUI in the Porting

desktop apps to .NET Core blog post. If you prefer to use the command line, the necessary steps are:

ApiPort.exe analyze -f <PathToBeanTraderBinaries> -r html -r excel -t ".NET Core"

1. Download the .NET Portability Analyzer if you don't already have it.

2. Make sure the .NET Framework app to be ported builds successfully (this is a good idea prior to

migration regardless).

3. Run API Port with a command line like this.

The -f argument specifies the path containing the binaries to analyze. The -r argument specifies

which output file format you want. The -t argument specifies which .NET platform to analyze API usage

against. In this case, you want .NET Core.

When you open the HTML report, the first section will list all of the analyzed binaries and what percentage of the

.NET APIs they use are available on the targeted platform. The percentage is not meaningful by itself. What's

more useful is to see the specific APIs that are missing. To do that, either select an assembly name or scroll down

to the reports for individual assemblies.

Focus on the assemblies that you own the source code for. In the Bean Trader ApiPort report, for example, there

are many binaries listed, but most of them belong to NuGet packages. Castle.Windsor shows that it depends on

some System.Web APIs that are missing in .NET Core. This isn't a concern because you previously verified that

Castle.Windsor supports .NET Core. It is common for NuGet packages to have different binaries for use with

different .NET platforms, so whether the .NET Framework version of Castle.Windsor uses System.Web APIs or

not is irrelevant as long as the package also targets .NET Standard or .NET Core (which it does).

With the Bean Trader sample, the only binary that you need to consider is BeanTraderClient and the report

shows that only two .NET APIs are missing: System.ServiceModel.ClientBase<T>.Close and

System.ServiceModel.ClientBase<T>.Open .

https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://marketplace.visualstudio.com/items?itemName=ConnieYau.NETPortabilityAnalyzer
https://github.com/Microsoft/dotnet-apiport/releases
https://github.com/Microsoft/dotnet-apiport-ui
https://devblogs.microsoft.com/dotnet/porting-desktop-apps-to-net-core/
https://github.com/Microsoft/dotnet-apiport/releases

 Migrating the project file

These are unlikely to be blocking issues because WCF Client APIs are (mostly) supported on .NET Core, so there

must be alternatives available for these central APIs. In fact, looking at System.ServiceModel 's .NET Core surface

area (using https://apisof.net), you see that there are async alternatives in .NET Core instead.

Based on this report and the previous NuGet dependency analysis, it looks like there should be no major issues

migrating the Bean Trader sample to .NET Core. You're ready for the next step in which you'll actually start the

migration.

If your app isn't using the new SDK-style project file format, you'll need a new project file to target .NET Core.

You can replace the existing csproj file or, if you prefer to keep the existing project untouched in its current state,

you can add a new csproj file targeting .NET Core. You can build versions of the app for .NET Framework and

.NET Core with a single SDK-style project file with multi-targeting (specifying multiple <TargetFrameworks>

targets).

To create the new project file, you can create a new WPF project in Visual Studio or use the dotnet new wpf

command in a temporary directory to generate the project file and then copy/rename it to the correct location.

There is also a community-created tool, CsprojToVs2017, that can automate some of the project file migration.

The tool is helpful but still needs a human to review the results to make sure all the details of the migration are

correct. One particular area that the tool doesn't handle optimally is migrating NuGet packages from

packages.config files. If the tool runs on a project file that still uses a packages.config file to reference NuGet

packages, it will migrate to <PackageReference> elements automatically, but will add <PackageReference>

elements for all of the packages instead of just top-level ones. If you have already migrated to

<PackageReference> elements with Visual Studio (as you've done in this sample), then the tool can help with the

rest of the conversion. Like Scott Hanselman recommends in his blog post on migrating csproj files, porting by

hand is educational and will give better results if you only have a few projects to port. But if you're porting

dozens or hundreds of project files, then a tool like CsprojToVs2017 can be a help.

To create a new project file for the Bean Trader sample, run dotnet new wpf in a temporary directory and move

the generated .csproj file into the BeanTraderClient folder and rename it BeanTraderClient.Core.csproj .

Because the new project file format automatically includes C# files, resx files, and XAML files that it finds in or

under its directory, the project file is already almost complete! To finish the migration, open the old and new

project files side-by-side and look through the old one to see if any information it contains needs to be

migrated. In the Bean Trader sample case, the following items should be copied to the new project:

The <RootNamespace> , <AssemblyName> , and <ApplicationIcon> properties should all be copied.

You also need to add a <GenerateAssemblyInfo>false</GenerateAssemblyInfo> property to the new project

file since the Bean Trader sample includes assembly-level attributes (like [AssemblyTitle]) in an

AssemblyInfo.cs file. By default, new SDK-style projects will autogenerate these attributes based on

properties in the csproj file. Because you don't want that to happen in this case (the autogenerated

attributes would conflict with those from AssemblyInfo.cs), you disable the autogenerated attributes with

<GenerateAssemblyInfo> .

Although resx files are automatically included as embedded resources, other <Resource> items like

images are not. So, copy the <Resource> elements for embedding image and icon files. You can simplify

the png references to a single line by using the new project file format's support for globbing patterns:

https://apisof.net
https://docs.microsoft.com/en-us/dotnet/core/tools/csproj
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/cross-platform-targeting
https://github.com/hvanbakel/CsprojToVs2017
https://www.hanselman.com/blog/UpgradingAnExistingNETProjectFilesToTheLeanNewCSPROJFormatFromNETCore.aspx
https://github.com/hvanbakel/CsprojToVs2017

 Fix build issues

 System.ServiceModel references and Microsoft.Windows.Compatibility

<None Update="BeanTrader.pfx">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>

<Content Include="Resources\Themes\Default.Accent.xaml">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</Content>

<Resource Include="***.png" /> .

Similarly, <None> items are included automatically, but they aren't copied to the output directory, by

default. Because the Bean Trader project includes a <None> item that is copied to the output directory

(using PreserveNewest behaviors), you need to update the automatically populated <None> item for that

file, like this.

The Bean Trader sample includes a XAML file (Default.Accent.xaml) as Content (rather than as a Page)

because themes and accents defined in this file are loaded from the file's XAML at runtime, rather than

being embedded in the app itself. The new project system automatically includes this file as a <Page> ,

however, since it's a XAML file. So, you need to both remove the XAML file as a page (

<Page Remove="**\Default.Accent.xaml" />) and add it as content.

Finally, add NuGet references by copying the <ItemGroup> with all the <PackageReference> elements. If

you hadn't previously upgraded the NuGet packages to .NET Core-compatible versions, you could do that

now that the package references are in a .NET Core-specific project.

At this point, it should be possible to add the new project to the BeanTrader solution and open it in Visual Studio.

The project should look correct in Solution Explorer , and dotnet restore BeanTraderClient.Core.csproj should

successfully restore packages (with two expected warnings related to the MahApps.Metro version you're using

targeting .NET Framework).

Although it's possible to keep both project files side-by-side (and may even be desirable if you want to keep

building the old project exactly as it was), it complicates the migration process (the two projects will try to use

the same bin and obj folders) and usually isn't necessary. If you want to build for both .NET Core and .NET

Framework targets, you can replace the <TargetFramework>netcoreapp3.0</TargetFramework> property in the new

project file with <TargetFrameworks>netcoreapp3.0;net472</TargetFrameworks> instead. For the Bean Trader sample,

delete the old project file (BeanTraderClient.csproj) since it's no longer needed. If you prefer to keep both project

files, be sure to have them build to different output and intermediate output paths.

The third step of the porting process is getting the project to build. Some apps will already build successfully

once the project file is converted to an SDK-style project. If that's the case for your app, congratulations! You can

go on to Step 4. Other apps will need some updates to get them building for .NET Core. If you try to run

dotnet build on the Bean Trader sample project now, for example, (or build it in Visual Studio), there will be

many errors, but you'll get them fixed quickly.

A common source of errors is missing references for APIs that are available for .NET Core but not automatically

included in the .NET Core app metapackage. To address this, you should reference the

Microsoft.Windows.Compatibility package. The compatibility package includes a broad set of APIs that are

common in Windows desktop apps, such as WCF client, directory services, registry, configuration, ACLs APIs,

and more.

With the Bean Trader sample, the majority of the build errors are due to missing System.ServiceModel types.

https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel

 Cleaning up unused files

 A brief aside on multi-pass compilers

NOTE

 Third-party dependency fixes (Castle.Windsor)

These could be addressed by referencing the necessary WCF NuGet packages. WCF client APIs are among those

present in the Microsoft.Windows.Compatibility package, though, so referencing the compatibility package is an

even better solution (since it also addresses any issues related to APIs as well as solutions to the WCF issues that

the compatibility package makes available). The Microsoft.Windows.Compatibility package helps in most .NET

Core 3.0 WPF and WinForms porting scenarios. After adding the NuGet reference to

Microsoft.Windows.Compatibility , only one build error remains!

One type of migration issue that comes up often relates to C# and XAML files that weren't previously included in

the build getting picked up by the new SDK-style projects that include all source automatically.

The next build error you see in the Bean Trader sample refers to a bad interface implementation in

OldUnusedViewModel.cs. The file name is a hint, but on inspection, you'll find that this source file is incorrect. It

didn't cause issues previously because it wasn't included in the original .NET Framework project. Source files

that were present on disk but not included in the old csproj are included automatically now.

For one-off issues like this, it's easy to compare to the previous csproj to confirm that the file isn't needed, and

then either <Compile Remove="" /> it or, if the source file isn't needed anywhere anymore, delete it. In this case,

it's safe to just delete OldUnusedViewModel.cs.

If you have many source files that would need to be excluded this way, you can disable auto-inclusion of C# files

by setting the <EnableDefaultCompileItems> property to false in the project file. Then, you can copy

<Compile Include> items from the old project file to the new one in order to only build sources you intended to

include. Similarly, <EnableDefaultPageItems> can be used to turn off auto-inclusion of XAML pages and

<EnableDefaultItems> can control both with a single property.

After removing the offending file from the Bean Trader sample, you can re-build and will get four errors. Didn't

you have one before? Why did the number of errors go up? The C# compiler is a multi-pass compiler. This

means that it goes through each source file twice. First, the compiler just looks at metadata and declarations in

each source file and identifies any declaration-level problems. Those are the errors you've fixed. Then it goes

through the code again to build the C# source into IL; those are the second set of errors that you're seeing now.

The C# compiler does more than just two passes, but the end result is that compiler errors for large code changes like this

tend to come in two waves.

Another class of issue that comes up in some migration scenarios is API differences between .NET Framework

and .NET Core versions of dependencies. Even if a NuGet package targets both .NET Framework and .NET

Standard or .NET Core, there may be different libraries for use with different .NET targets. This allows the

packages to support many different .NET platforms, which may require different implementations. It also means

that there may be small API differences in the libraries when targeting different .NET platforms.

The next set of errors you'll see in the Bean Trader sample are related to Castle.Windsor APIs. The .NET Core

Bean Trader project uses the same version of Castle.Windsor as the .NET Framework-targeted project (4.1.1),

but the implementations for those two platforms are slightly different.

In this case, you see the following issues that need to be fixed:

1. Castle.MicroKernel.Registration.Classes.FromThisAssembly isn't available on .NET Core. There is, however, the

similar API Classes.FromAssemblyContaining available, so we can replace both uses of

Classes.FromThisAssembly() with calls to Classes.FromAssemblyContaining(t) , where t is the type making

https://docs.microsoft.com/en-us/archive/blogs/ericlippert/how-many-passes
https://docs.microsoft.com/en-us/archive/blogs/ericlippert/how-many-passes

 Updating WCF client usage

the call.

2. Similarly, in Bootstrapper.cs, Castle.Windsor.Installer.FromAssembly .This is unavailable on .NET Core. Instead,

that call can be replaced with FromAssembly.Containing(typeof(Bootstrapper)) .

Having fixed the Castle.Windsor differences, the last remaining build error in the .NET Core Bean Trader project

is that BeanTraderServiceClient (which derives from DuplexClientBase) doesn't have an Open method. This isn't

surprising since this is an API that was highlighted by the .NET Portability Analyzer at the beginning of this

migration process. Looking at BeanTraderServiceClient draws our attention to a larger issue, though. This WCF

client was autogenerated by the Svcutil.exe tool.

WCF clients generated by Svcutil are meant for use on .NET Framework .

Solutions that use svcutil-generated WCF clients will need to regenerate .NET Standard-compatible clients for

use with .NET Core. One of the main reasons the old clients won't work is that they depend on app configuration

for defining WCF bindings and endpoints. Because .NET Standard WCF APIs can work cross-platform (where

System.Configuration APIs aren't available), WCF clients for .NET Core and .NET Standard scenarios must define

bindings and endpoints programmatically instead of in configuration.

In fact, any WCF client usage that depends on the <system.serviceModel> app.config section (whether created

with Svcutil or manually) will need to be changed to work on .NET Core.

There are two ways to automatically generate .NET Standard-compatible WCF clients:

The dotnet-svcutil tool is a .NET tool that generates WCF clients in a way that is similar to how Svcutil

worked previously.

Visual Studio can generate WCF clients using the WCF Web Service Reference option of its Connected

Services feature.

Either approach works well. Alternatively, of course, you could write the WCF client code yourself. For this

sample, I chose to use the Visual Studio Connected Service feature. To do that, right-click on the

BeanTraderClient.Core project in Visual Studio's solution explorer and select Add > Connected Ser vice . Next,

choose the WCF Web Service Reference Provider. This will bring up a dialog where you can specify the address

of the backend Bean Trader web service (localhost:8080 if you are running the server locally) and the

namespace that generated types should use (BeanTrader.Ser vice , for example).

https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe
https://docs.microsoft.com/en-us/dotnet/core/additional-tools/wcf-web-service-reference-guide

After you select the Finish button, a new Connected Services node is added to the project and a Reference.cs file

is added under that node containing the new .NET Standard WCF client for accessing the Bean Trader service. If

you look at the GetEndpointAddress or GetBindingForEndpoint methods in that file, you'll see that bindings and

endpoints are now generated programmatically (instead of via app config). The 'Add Connected Services'

feature may also add references to some System.ServiceModel packages in the project file, which aren't needed

since all necessary WCF packages are included via Microsoft.Windows.Compatibility. Check the csproj to see if

any extra System.ServiceModel <PackageReference> items have been added, and if so, remove them.

Our project has new WCF client classes now (in Reference.cs), but it also still has the old ones (in BeanTrader.cs).

There are two options at this point:

If you want to be able to build the original .NET Framework project (alongside the new .NET Core-

targeted one), you can use a <Compile Remove="BeanTrader.cs" /> item in the .NET Core project's csproj

file so that the .NET Framework and .NET Core versions of the app use different WCF clients. This has the

advantage of leaving the existing .NET Framework project unchanged, but has the disadvantage that code

using the generated WCF clients may need to be slightly different in the .NET Core case than it was in the

.NET Framework project, so you'll likely need to use #if directives to conditionally compile some WCF

client usage (creating clients, for example) to work one way when built for .NET Core and another way

when built for .NET Framework.

If, on the other hand, some code churn in the existing .NET Framework project is acceptable, you can

remove BeanTrader.cs all together. Because the new WCF client is built for .NET Standard, it will work in

both .NET Core and .NET Framework scenarios. If you are building for .NET Framework in addition to .NET

Core (either by multi-targeting or by having two csproj files), you can use this new Reference.cs file for

both targets. This approach has the advantage that the code won't need to bifurcate to support two

different WCF clients; the same code will be used everywhere. The drawback is that it involves changing

the (presumably stable) .NET Framework project.

In the case of the Bean Trader sample, you can make small changes to the original project if it makes migration

easier, so follow these steps to reconcile WCF client usage:

1. Add the new Reference.cs file to the .NET Framework BeanTraderClient.csproj project using the 'Add

 Runtime testing

System.Configuration.ConfigurationErrorsException: 'Configuration system failed to initialize'

Inner Exception
ConfigurationErrorsException: Unrecognized configuration section system.serviceModel.

public BeanTraderServiceClient(System.ServiceModel.InstanceContext callbackInstance) :
 base(callbackInstance, EndpointConfiguration.NetTcpBinding_BeanTraderService)
 { }

existing item' context menu from the solution explorer. Be sure to add 'as link' so that the same file is

used by both projects (as opposed to copying the C# file). If you are building for both .NET Core and .NET

Framework with a single csproj (using multi-targeting) then this step isn't necessary.

2. Delete BeanTrader.cs.

3. The new WCF client is similar to the old one, but a number of namespaces in the generated code are

different. Because of this, it is necessary to update the project so that WCF client types are used from

BeanTrader.Service (or whatever namespace name you chose) instead of BeanTrader.Model or without a

namespace. Building BeanTraderClient.Core.csproj will help to identify where these changes need to be

made. Fixes will be needed both in C# and in XAML source files.

4. Finally, you'll discover that there is an error in BeanTraderServiceClientFactory.cs because the available

constructors for the BeanTraderServiceClient type have changed. It used to be possible to supply an

InstanceContext argument (which was created using a CallbackHandler from the Castle.Windsor IoC

container). The new constructors create new CallbackHandler s. There are, however, constructors in

BeanTraderServiceClient 's base type that match what you want. Since the autogenerated WCF client code

all exists in partial classes, you can easily extend it. To do this, create a new file called

BeanTraderServiceClient.cs and then create a partial class with that same name (using the

BeanTrader.Service namespace). Then, add one constructor to the partial type as shown here.

With those changes made, the Bean Trader sample will now be using a new .NET Standard-compatible WCF

client and you can make the final fix of changing the Open call in TradingService.cs to use await OpenAsync

instead.

With the WCF issues addressed, the .NET Core version of the Bean Trader sample now builds cleanly!

It's easy to forget that migration work isn't done as soon as the project builds cleanly against .NET Core. It's

important to leave time for testing the ported app, too. Once things build successfully, make sure the app runs

and works as expected, especially if you are using any packages targeting .NET Framework.

Let's try launching the ported Bean Trader app and see what happens. The app doesn't get far before failing with

the following exception.

This makes sense, of course. Remember that WCF no longer uses app configuration, so the old

system.serviceModel section of the app.config file needs to be removed. The updated WCF client includes all of

the same information in its code, so the config section isn't needed anymore. If you wanted the WCF endpoint to

be configurable in app.config, you could add it as an app setting and update the WCF client code to retrieve the

WCF service endpoint from configuration.

After removing the system.serviceModel section of app.config, the app launches but fails with another exception

when a user signs in.

System.PlatformNotSupportedException: 'Operation is not supported on this platform.'

Task.Run(() =>
{
 return userInfoRetriever.Invoke();
}).ContinueWith(result =>
{
 // BeginInvoke's callback is replaced with ContinueWith
 var task = result.ConfigureAwait(false);
 CurrentTrader = task.GetAwaiter().GetResult();
}, TaskScheduler.Default);

The unsupported API is Func<T>.BeginInvoke . As explained in dotnet/corefx#5940, .NET Core doesn't support

the BeginInvoke and EndInvoke methods on delegate types due to underlying remoting dependencies. This

issue and its fix are explained in more detail in the Migrating Delegate.BeginInvoke Calls for .NET Core blog post,

but the gist is that BeginInvoke and EndInvoke calls should be replaced with Task.Run (or async alternatives, if

possible). Applying the general solution here, the BeginInvoke call can be replaced with an Invoke call

launched by Task.Run .

After removing the BeginInvoke usage, the Bean Trader app runs successfully on .NET Core!

All apps are different, so the specific steps needed to migrate your own apps to .NET Core will vary. But

hopefully the Bean Trader sample demonstrates the general workflow and the types of issues that can be

expected. And, despite this article's length, the actual changes needed in the Bean Trader sample to make it work

on .NET Core were fairly limited. Many apps migrate to .NET Core in this same way; with limited or even no code

changes needed.

https://github.com/dotnet/corefx/issues/5940
https://devblogs.microsoft.com/dotnet/migrating-delegate-begininvoke-calls-for-net-core/

Overview of WPF windows (WPF .NET)
 4/15/2021 • 22 minutes to read • Edit Online

IMPORTANT

 The Window class

Users interact with Windows Presentation Foundation (WPF) applications through windows. The primary

purpose of a window is to host content that visualizes data and enables users to interact with data. WPF

applications provide their own windows by using the Window class. This article introduces Window before

covering the fundamentals of creating and managing windows in applications.

This article uses XAML generated from a C# project. If you're using Visual Basic, the XAML may look slightly different.

These differences are typically present on x:Class attribute values. C# includes the root namespace for the project while

Visual Basic doesn't.

The project templates for C# create an App type contained in the app.xaml file. In Visual Basic, the type is named

Application and the file is named Application.xaml .

In WPF, a window is encapsulated by the Window class that you use to do the following:

Display a window.

Configure the size, position, and appearance of a window.

Host application-specific content.

Manage the lifetime of a window.

The following figure illustrates the constituent parts of a window:

A window is divided into two areas: the non-client area and client area.

The non-client area of a window is implemented by WPF and includes the parts of a window that are common

to most windows, including the following:

A title bar (1-5).

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/windows/index.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window

 Implementing a window

<Window x:Class="WindowsOverview.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WindowsOverview"
 >

 <!-- Client area containing the content of the window -->

</Window>

using System.Windows;

namespace WindowsOverview
{
 public partial class Window1 : Window
 {
 public Window1()
 {
 InitializeComponent();
 }
 }
}

Public Class Window1

End Class

An icon (1).

Title (2).

Minimize (3), Maximize (4), and Close (5) buttons.

System menu (6) with menu items. Appears when clicking on the icon (1).

Border (7).

The client area of a window is the area within a window's non-client area and is used by developers to add

application-specific content, such as menu bars, tool bars, and controls.

Client area (8).

Resize grip (9). This is a control added to the Client area (8).

The implementation of a typical window includes both appearance and behavior, where appearance defines how

a window looks to users and behavior defines the way a window functions as users interact with it. In WPF, you

can implement the appearance and behavior of a window using either code or XAML markup.

In general, however, the appearance of a window is implemented using XAML markup, and its behavior is

implemented using code-behind, as shown in the following example.

The following code is the code-behind for the XAML.

To enable a XAML markup file and code-behind file to work together, the following are required:

In markup, the Window element must include the x:Class attribute. When the application is built, the

existence of x:Class attribute causes Microsoft build engine (MSBuild) to generate a partial class that

derives from Window with the name that is specified by the x:Class attribute. This requires the addition

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window

NOTE

<Window x:Class="WindowsOverview.Final"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WindowsOverview"
 >

 <!-- Client area containing the content of the window -->

 <Button Click="Button_Click">Click This Button</Button>

</Window>

using System.Windows;

namespace WindowsOverview
{
 public partial class Window1 : Window
 {
 public Window1()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("Button was clicked.");
 }
 }
}

of an XML namespace declaration for the XAML schema (

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"). The generated partial class implements the

InitializeComponent method, which is called to register the events and set the properties that are

implemented in markup.

In code-behind, the class must be a partial class with the same name that is specified by the x:Class

attribute in markup, and it must derive from Window. This allows the code-behind file to be associated

with the partial class that is generated for the markup file when the application is built, for more

information, see Compile a WPF Application.

In code-behind, the Window class must implement a constructor that calls the InitializeComponent

method. InitializeComponent is implemented by the markup file's generated partial class to register

events and set properties that are defined in markup.

When you add a new Window to your project by using Visual Studio, the Window is implemented using both markup and

code-behind, and includes the necessary configuration to create the association between the markup and code-behind

files as described here.

With this configuration in place, you can focus on defining the appearance of the window in XAML markup and

implementing its behavior in code-behind. The following example shows a window with a button that defines an

event handler for the Click event. This is implemented in the XAML and the handler is implemented in code-

behind.

The following code is the code-behind for the XAML.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/app-development/building-a-wpf-application-wpf
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click

Public Class Window1

 Private Sub Button_Click(sender As Object, e As RoutedEventArgs)
 MessageBox.Show("Button was clicked.")
 End Sub

End Class

 Configuring a window for MSBuild

<Project>
 ...
 <Page Include="MarkupAndCodeBehindWindow.xaml" />
 <Compile Include=" MarkupAndCodeBehindWindow.xaml.cs" />
 ...
</Project>

 Window lifetime

 Opening a window

using System.Windows;

namespace WindowsOverview
{
 public partial class App : Application
 {
 private void Application_Startup(object sender, StartupEventArgs e)
 {
 // Create the window
 Window1 window = new Window1();

 // Open the window
 window.Show();
 }
 }
}

How you implement your window determines how it's configured for MSBuild. For a window that is defined

using both XAML markup and code-behind:

XAML markup files are configured as MSBuild Page items.

Code-behind files are configured as MSBuild Compile items.

.NET SDK projects automatically import the correct Page and Compile items for you and you don't need to do

declare these. When the project is configured for WPF, the XAML markup files are automatically imported as

Page items, and the corresponding code-behind file is imported as Compile .

MSBuild projects won't automatically import the types and you must declare them yourself:

For information about building WPF applications, see Compile a WPF Application.

As with any class, a window has a lifetime that begins when it's first instantiated, after which it's opened,

activated/deactivated, and eventually closed.

To open a window, you first create an instance of it, which is demonstrated in the following example:

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/app-development/building-a-wpf-application-wpf

Class Application

 Private Sub Application_Startup(sender As Object, e As StartupEventArgs)
 ' Create the window
 Dim window As New Window1

 ' Open the window
 window.Show()
 End Sub

End Class

 Startup window

<Application x:Class="WindowsOverview.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:WindowsOverview"
 StartupUri="ClippedWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

 Window ownership

In this example Window1 is instantiated when the application starts, which occurs when the Startup event is

raised. For more information about the startup window, see How to get or set the main application window.

When a window is instantiated, a reference to it's automatically added to a list of windows that is managed by

the Application object. The first window to be instantiated is automatically set by Application as the main

application window.

The window is finally opened by calling the Show method as shown in the following image:

A window that is opened by calling Show is a modeless window, and the application doesn't prevent users from

interacting with other windows in the application. Opening a window with ShowDialog opens a window as

modal and restricts user interaction to the specific window. For more information, see Dialog Boxes Overview.

When Show is called, a window does initialization work before it's shown to establish infrastructure that allows

it to receive user input. When the window is initialized, the SourceInitialized event is raised and the window is

shown.

For more information, see How to open a window or dialog box.

The previous example used the Startup event to run code that displayed the initial application window. As a

shortcut, instead use StartupUri to specify the path to a XAML file in your application. The application

automatically creates and displays the window specified by that property.

A window that is opened by using the Show method doesn't have an implicit relationship with the window that

created it. Users can interact with either window independently of the other, which means that either window

can do the following:

Cover the other (unless one of the windows has its Topmost property set to true).

Be minimized, maximized, and restored without affecting the other.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.windows
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.sourceinitialized
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startupuri
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.topmost

private void Button_Click(object sender, RoutedEventArgs e)
{
 // Create a window and make the current window its owner
 var ownedWindow = new ChildWindow1();
 ownedWindow.Owner = this;
 ownedWindow.Show();
}

Private Sub Button_Click(sender As Object, e As RoutedEventArgs)
 ' Create a window and make the current window its owner
 Dim ownedWindow As New ChildWindow1
 ownedWindow.Owner = Me
 ownedWindow.Show()
End Sub

 Window activation

NOTE

Some windows require a relationship with the window that opens them. For example, an Integrated

Development Environment (IDE) application may open property windows and tool windows whose typical

behavior is to cover the window that creates them. Furthermore, such windows should always close, minimize,

maximize, and restore in concert with the window that created them. Such a relationship can be established by

making one window own another, and is achieved by setting the Owner property of the owned window with a

reference to the owner window. This is shown in the following example.

After ownership is established:

The owned window can reference its owner window by inspecting the value of its Owner property.

The owner window can discover all the windows it owns by inspecting the value of its OwnedWindows

property.

When a window is first opened, it becomes the active window. The active window is the window that is currently

capturing user input, such as key strokes and mouse clicks. When a window becomes active, it raises the

Activated event.

When a window is first opened, the Loaded and ContentRendered events are raised only after the Activated event is

raised. With this in mind, a window can effectively be considered opened when ContentRendered is raised.

After a window becomes active, a user can activate another window in the same application, or activate another

application. When that happens, the currently active window becomes deactivated and raises the Deactivated

event. Likewise, when the user selects a currently deactivated window, the window becomes active again and

Activated is raised.

One common reason to handle Activated and Deactivated is to enable and disable functionality that can only run

when a window is active. For example, some windows display interactive content that requires constant user

input or attention, including games and video players. The following example is a simplified video player that

demonstrates how to handle Activated and Deactivated to implement this behavior.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.owner
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.owner
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.ownedwindows
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.loaded
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.contentrendered
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.contentrendered
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.deactivated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.deactivated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.deactivated

<Window x:Class="WindowsOverview.CustomMediaPlayerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Activated="Window_Activated"
 Deactivated="Window_Deactivated"
 Title="CustomMediaPlayerWindow" Height="450" Width="800">
 <Grid>
 <MediaElement x:Name="mediaElement" Stretch="Fill"
 LoadedBehavior="Manual" Source="numbers.mp4" />
 </Grid>
</Window>

using System;
using System.Windows;

namespace WindowsOverview
{
 public partial class CustomMediaPlayerWindow : Window
 {
 public CustomMediaPlayerWindow() =>
 InitializeComponent();

 private void Window_Activated(object sender, EventArgs e)
 {
 // Continue playing media if window is activated
 mediaElement.Play();
 }

 private void Window_Deactivated(object sender, EventArgs e)
 {
 // Pause playing if media is being played and window is deactivated
 mediaElement.Pause();
 }
 }
}

Public Class CustomMediaPlayerWindow
 Private Sub Window_Activated(sender As Object, e As EventArgs)
 ' Continue playing media if window Is activated
 mediaElement.Play()
 End Sub

 Private Sub Window_Deactivated(sender As Object, e As EventArgs)
 ' Pause playing if media is being played and window is deactivated
 mediaElement.Pause()
 End Sub
End Class

The following code is the code-behind for the XAML.

Other types of applications may still run code in the background when a window is deactivated. For example, a

mail client may continue polling the mail server while the user is using other applications. Applications like

these often provide different or extra behavior while the main window is deactivated. For a mail program, this

may mean both adding the new mail item to the inbox and adding a notification icon to the system tray. A

notification icon need only be displayed when the mail window isn't active, which is determined by inspecting

the IsActive property.

If a background task completes, a window may want to notify the user more urgently by calling Activate

method. If the user is interacting with another application activated when Activate is called, the window's taskbar

button flashes. However, if a user is interacting with the current application, calling Activate will bring the

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.isactive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activate

NOTE

 Preventing window activation

 Closing a window

window to the foreground.

You can handle application-scope activation using the Application.Activated and Application.Deactivated events.

There are scenarios where windows shouldn't be activated when shown, such as conversation windows of a chat

application or notification windows of an email application.

If your application has a window that shouldn't be activated when shown, you can set its ShowActivated

property to false before calling the Show method for the first time. As a consequence:

The window isn't activated.

The window's Activated event isn't raised.

The currently activated window remains activated.

The window will become activated, however, as soon as the user activates it by clicking either the client or non-

client area. In this case:

The window is activated.

The window's Activated event is raised.

The previously activated window is deactivated.

The window's Deactivated and Activated events are then raised as expected in response to user actions.

The life of a window starts coming to an end when a user closes it. Once a window is closed, it can't be

reopened. A window can be closed by using elements in the non-client area, including the following:

The Close item of the System menu.

Pressing ALT + F4.

Pressing the Close button.

Pressing ESC when a button has the IsCancel property set to true on a modal window.

You can provide more mechanisms to the client area to close a window, the more common of which include the

following:

An Exit item in the File menu, typically for main application windows.

A Close item in the File menu, typically on a secondary application window.

A Cancel button, typically on a modal dialog box.

A Close button, typically on a modeless dialog box.

To close a window in response to one of these custom mechanisms, you need to call the Close method. The

following example implements the ability to close a window by choosing Exit from a File menu.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.deactivated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showactivated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.deactivated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.activated
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button.iscancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.close

<Window x:Class="WindowsOverview.ClosingWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ClosingWindow" Height="450" Width="800">
 <StackPanel>
 <Menu>
 <MenuItem Header="_File">
 <MenuItem Header="E_xit" Click="fileExitMenuItem_Click" />
 </MenuItem>
 </Menu>
 </StackPanel>
</Window>

using System.Windows;

namespace WindowsOverview
{
 public partial class ClosingWindow : Window
 {
 public ClosingWindow() =>
 InitializeComponent();

 private void fileExitMenuItem_Click(object sender, RoutedEventArgs e)
 {
 // Close the current window
 this.Close();
 }
 }
}

Public Class ClosingWindow
 Private Sub fileExitMenuItem_Click(sender As Object, e As RoutedEventArgs)
 ' Close the current window
 Me.Close()
 End Sub
End Class

NOTE

IMPORTANT

The following code is the code-behind for the XAML.

An application can be configured to shut down automatically when either the main application window closes (see

MainWindow) or the last window closes. For more information, see ShutdownMode.

While a window can be explicitly closed through mechanisms provided in the non-client and client areas, a

window can also be implicitly closed as a result of behavior in other parts of the application or Windows,

including the following:

A user logs off or shuts down Windows.

A window's Owner closes.

The main application window is closed and ShutdownMode is OnMainWindowClose.

Shutdown is called.

A window can't be reopened after it's closed.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.shutdownmode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.owner
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.shutdownmode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.shutdownmode#system_windows_shutdownmode_onmainwindowclose
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.shutdown

 Cancel window closure

<Window x:Class="WindowsOverview.DataWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="DataWindow" Height="450" Width="800"
 Closing="Window_Closing">
 <Grid>
 <TextBox x:Name="documentTextBox" TextChanged="documentTextBox_TextChanged" />
 </Grid>
</Window>

using System.Windows;
using System.Windows.Controls;

namespace WindowsOverview
{
 public partial class DataWindow : Window
 {
 private bool _isDataDirty;

 public DataWindow() =>
 InitializeComponent();

 private void documentTextBox_TextChanged(object sender, TextChangedEventArgs e) =>
 _isDataDirty = true;

 private void Window_Closing(object sender, System.ComponentModel.CancelEventArgs e)
 {
 // If data is dirty, prompt user and ask for a response
 if (_isDataDirty)
 {
 var result = MessageBox.Show("Document has changed. Close without saving?",
 "Question",
 MessageBoxButton.YesNo);

 // User doesn't want to close, cancel closure
 if (result == MessageBoxResult.No)
 e.Cancel = true;
 }
 }
 }
}

When a window closes, it raises two events: Closing and Closed.

Closing is raised before the window closes, and it provides a mechanism by which window closure can be

prevented. One common reason to prevent window closure is if window content contains modified data. In this

situation, the Closing event can be handled to determine whether data is dirty and, if so, to ask the user whether

to either continue closing the window without saving the data or to cancel window closure. The following

example shows the key aspects of handling Closing.

The following code is the code-behind for the XAML.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closed
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing

Public Class DataWindow

 Private _isDataDirty As Boolean

 Private Sub documentTextBox_TextChanged(sender As Object, e As TextChangedEventArgs)
 _isDataDirty = True
 End Sub

 Private Sub Window_Closing(sender As Object, e As ComponentModel.CancelEventArgs)

 ' If data is dirty, prompt user and ask for a response
 If _isDataDirty Then
 Dim result = MessageBox.Show("Document has changed. Close without saving?",
 "Question",
 MessageBoxButton.YesNo)

 ' User doesn't want to close, cancel closure
 If result = MessageBoxResult.No Then
 e.Cancel = True
 End If
 End If

 End Sub
End Class

 Window lifetime events

The Closing event handler is passed a CancelEventArgs, which implements the Cancel property that you set to

true to prevent a window from closing.

If Closing isn't handled, or it's handled but not canceled, the window will close. Just before a window actually

closes, Closed is raised. At this point, a window can't be prevented from closing.

The following illustration shows the sequence of the principal events in the lifetime of a window:

The following illustration shows the sequence of the principal events in the lifetime of a window that is shown

without activation (ShowActivated is set to false before the window is shown):

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs.cancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closed
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showactivated

 Window location

 Topmost windows and z-order

 Window size

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 MinWidth="300" Width="400" MaxWidth="500">
</Window>

While a window is open, it has a location in the x and y dimensions relative to the desktop. This location can be

determined by inspecting the Left and Top properties, respectively. Set these properties to change the location of

the window.

You can also specify the initial location of a Window when it first appears by setting the WindowStartupLocation

property with one of the following WindowStartupLocation enumeration values:

CenterOwner (default)

CenterScreen

Manual

If the startup location is specified as Manual, and the Left and Top properties have not been set, Window will ask

the operating system for a location to appear in.

Besides having an x and y location, a window also has a location in the z dimension, which determines its

vertical position with respect to other windows. This is known as the window's z-order, and there are two types:

normal z-order and topmost z-order. The location of a window in the normal z-order is determined by

whether it's currently active or not. By default, a window is located in the normal z-order. The location of a

window in the topmost z-order is also determined by whether it's currently active or not. Furthermore, windows

in the topmost z-order are always located above windows in the normal z-order. A window is located in the

topmost z-order by setting its Topmost property to true .

Within each z-order type, the currently active window appears above all other windows in the same z-order.

Besides having a desktop location, a window has a size that is determined by several properties, including the

various width and height properties and SizeToContent.

MinWidth, Width, and MaxWidth are used to manage the range of widths that a window can have during its

lifetime.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.left
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.top
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstartuplocation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstartuplocation
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstartuplocation#system_windows_windowstartuplocation_centerowner
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstartuplocation#system_windows_windowstartuplocation_centerscreen
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstartuplocation#system_windows_windowstartuplocation_manual
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstartuplocation#system_windows_windowstartuplocation_manual
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.left
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.top
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.topmost
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.sizetocontent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxwidth

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 MinHeight="300" Height="400" MaxHeight="500">
</Window>

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 SizeToContent="WidthAndHeight">
</Window>

// Manually alter window height and width
this.SizeToContent = SizeToContent.Manual;

// Automatically resize width relative to content
this.SizeToContent = SizeToContent.Width;

// Automatically resize height relative to content
this.SizeToContent = SizeToContent.Height;

// Automatically resize height and width relative to content
this.SizeToContent = SizeToContent.WidthAndHeight;

Window height is managed by MinHeight, Height, and MaxHeight.

Because the various width values and height values each specify a range, it's possible for the width and height of

a resizable window to be anywhere within the specified range for the respective dimension. To detect its current

width and height, inspect ActualWidth and ActualHeight, respectively.

If you'd like the width and height of your window to have a size that fits to the size of the window's content, you

can use the SizeToContent property, which has the following values:

SizeToContent.Manual

No effect (default).

SizeToContent.Width

Fit to content width, which has the same effect as setting both MinWidth and MaxWidth to the width of the

content.

SizeToContent.Height

Fit to content height, which has the same effect as setting both MinHeight and MaxHeight to the height of the

content.

SizeToContent.WidthAndHeight

Fit to content width and height, which has the same effect as setting both MinHeight and MaxHeight to the

height of the content, and setting both MinWidth and MaxWidth to the width of the content.

The following example shows a window that automatically sizes to fit its content, both vertically and

horizontally, when first shown.

The following example shows how to set the SizeToContent property in code to specify how a window resizes to

fit its content .

https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.actualwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.actualheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.sizetocontent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_manual
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_widthandheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.sizetocontent

' Manually alter window height and width
Me.SizeToContent = SizeToContent.Manual

' Automatically resize width relative to content
Me.SizeToContent = SizeToContent.Width

' Automatically resize height relative to content
Me.SizeToContent = SizeToContent.Height

' Automatically resize height and width relative to content
Me.SizeToContent = SizeToContent.WidthAndHeight

 Order of precedence for sizing properties

 Window state

NOTE

Essentially, the various sizes properties of a window combine to define the range of width and height for a

resizable window. To ensure a valid range is maintained, Window evaluates the values of the size properties

using the following orders of precedence.

For Height Proper ties:

1. FrameworkElement.MinHeight

2. FrameworkElement.MaxHeight

3. SizeToContent.Height / SizeToContent.WidthAndHeight

4. FrameworkElement.Height

For Width Proper ties:

1. FrameworkElement.MinWidth

2. FrameworkElement.MaxWidth

3. SizeToContent.Width / SizeToContent.WidthAndHeight

4. FrameworkElement.Width

The order of precedence can also determine the size of a window when it's maximized, which is managed with

the WindowState property.

During the lifetime of a resizable window, it can have three states: normal, minimized, and maximized. A window

with a normal state is the default state of a window. A window with this state allows a user to move and resize it

by using a resize grip or the border, if it's resizable.

A window with a minimized state collapses to its task bar button if ShowInTaskbar is set to true ; otherwise, it

collapses to the smallest possible size it can be and moves itself to the bottom-left corner of the desktop.

Neither type of minimized window can be resized using a border or resize grip, although a minimized window

that isn't shown in the task bar can be dragged around the desktop.

A window with a maximized state expands to the maximum size it can be, which will only be as large as its

MaxWidth, MaxHeight, and SizeToContent properties dictate. Like a minimized window, a maximized window

can't be resized by using a resize grip or by dragging the border.

The values of the Top, Left, Width, and Height properties of a window always represent the values for the normal state,

even when the window is currently maximized or minimized.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_widthandheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.minwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.sizetocontent#system_windows_sizetocontent_widthandheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showintaskbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxwidth
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.sizetocontent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.top
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.left
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.width
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.height

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 WindowState="Maximized">
</Window>

 Window appearance

 Resize mode

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 ResizeMode="CanResizeWithGrip">
</Window>

 Window style

The state of a window can be configured by setting its WindowState property, which can have one of the

following WindowState enumeration values:

Normal (default)

Maximized

Minimized

The following example shows how to create a window that is shown as maximized when it opens.

In general, you should set WindowState to configure the initial state of a window. Once a resizable window is

shown, users can press the minimize, maximize, and restore buttons on the window's title bar to change the

window state.

You change the appearance of the client area of a window by adding window-specific content to it, such as

buttons, labels, and text boxes. To configure the non-client area, Window provides several properties, which

include Icon to set a window's icon and Title to set its title.

You can also change the appearance and behavior of non-client area border by configuring a window's resize

mode, window style, and whether it appears as a button in the desktop task bar.

Depending on the WindowStyle property, you can control if, and how, users resize the window. The window style

affects the following:

Allow or disallow resizing by dragging the window border with the mouse.

Whether the Minimize, Maximize, and Close buttons appear on the non-client area.

Whether the Minimize, Maximize, and Close buttons are enabled.

You can configure how a window resizes by setting its ResizeMode property, which can be one of the following

ResizeMode enumeration values:

NoResize

CanMinimize

CanResize (default)

CanResizeWithGrip

As with WindowStyle, the resize mode of a window is unlikely to change during its lifetime, which means that

you'll most likely set it from XAML markup.

Note that you can detect whether a window is maximized, minimized, or restored by inspecting the

WindowState property.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstate#system_windows_windowstate_normal
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstate#system_windows_windowstate_maximized
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstate#system_windows_windowstate_minimized
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.icon
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.title
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.resizemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resizemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resizemode#system_windows_resizemode_noresize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resizemode#system_windows_resizemode_canminimize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resizemode#system_windows_resizemode_canresize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resizemode#system_windows_resizemode_canresizewithgrip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstate

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 WindowStyle="ToolWindow">
</Window>

 Non-rectangular window style

The border that is exposed from the non-client area of a window is suitable for most applications. However,

there are circumstances where different types of borders are needed, or no borders are needed at all, depending

on the type of window.

To control what type of border a window gets, you set its WindowStyle property with one of the following values

of the WindowStyle enumeration:

None

SingleBorderWindow (default)

ThreeDBorderWindow

ToolWindow

The effect of applying a window style is illustrated in the following image:

Notice that the image above doesn't show any noticeable difference between SingleBorderWindow and

ThreeDBorderWindow . Back in Windows XP, ThreeDBorderWindow did affect how the window was drawn, adding a

3D border to the client area. Starting with Windows 7, the differences between the two styles are minimal.

You can set WindowStyle using either XAML markup or code. Because it's unlikely to change during the lifetime

of a window, you'll most likely configure it using XAML markup.

There are also situations where the border styles that WindowStyle allows you to have aren't sufficient. For

example, you may want to create an application with a non-rectangular border, like Microsoft Windows Media

Player uses.

For example, consider the speech bubble window shown in the following image:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstyle#system_windows_windowstyle_none
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstyle#system_windows_windowstyle_singleborderwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstyle#system_windows_windowstyle_threedborderwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstyle#system_windows_windowstyle_toolwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstyle

<Window x:Class="WindowsOverview.ClippedWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ClippedWindow" SizeToContent="WidthAndHeight"
 WindowStyle="None" AllowsTransparency="True" Background="Transparent">
 <Grid Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="20"/>
 </Grid.RowDefinitions>

 <Rectangle Stroke="#FF000000" RadiusX="10" RadiusY="10"/>
 <Path Fill="White" Stretch="Fill" Stroke="#FF000000" HorizontalAlignment="Left" Margin="15,-
5.597,0,-0.003" Width="30" Grid.Row="1" Data="M22.166642,154.45381 L29.999666,187.66699
40.791059,154.54395"/>
 <Rectangle Fill="White" RadiusX="10" RadiusY="10" Margin="1"/>

 <TextBlock HorizontalAlignment="Left" VerticalAlignment="Center" FontSize="25" Text="Greetings!"
TextWrapping="Wrap" Margin="5,5,50,5"/>
 <Button HorizontalAlignment="Right" VerticalAlignment="Top" Background="Transparent" BorderBrush="
{x:Null}" Foreground="Red" Content="�" FontSize="15" />

 <Grid.Effect>
 <DropShadowEffect BlurRadius="10" ShadowDepth="3" Color="LightBlue"/>
 </Grid.Effect>
 </Grid>
</Window>

 Task bar presence

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 ShowInTaskbar="False">
</Window>

 Other types of windows

This type of window can be created by setting the WindowStyle property to None, and by using special support

that Window has for transparency.

This combination of values instructs the window to render transparent. In this state, the window's non-client

area adornment buttons can't be used and you need to provide your own.

The default appearance of a window includes a taskbar button. Some types of windows don't have a task bar

button, such as message boxes, dialog boxes, or windows with the WindowStyle property set to ToolWindow.

You can control whether the task bar button for a window is shown by setting the ShowInTaskbar property,

which is true by default.

NavigationWindow is a window that is designed to host navigable content.

Dialog boxes are windows that are often used to gather information from a user to complete a function. For

example, when a user wants to open a file, the Open File dialog box is displayed by an application to get the file

name from the user. For more information, see Dialog Boxes Overview.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstyle#system_windows_windowstyle_none
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.windowstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.windowstyle#system_windows_windowstyle_toolwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showintaskbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.navigation.navigationwindow

See also
Dialog boxes overview

How to open a window or dialog box

How to open a common dialog box

How to open a message box

How to close a window or dialog box

System.Windows.Window

System.Windows.MessageBox

System.Windows.Navigation.NavigationWindow

System.Windows.Application

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.navigation.navigationwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application

Dialog boxes overview (WPF .NET)
 4/15/2021 • 10 minutes to read • Edit Online

 Message boxes

 Common dialog boxes

Windows Presentation Foundation (WPF) provides ways for you to design your own dialog boxes. Dialog boxes

are windows but with a specific intent and user experience. This article discusses how a dialog box works and

what types of dialog boxes you can create and use. Dialog boxes are used to:

Display specific information to users.

Gather information from users.

Both display and gather information.

Display an operating system prompt, such a print window.

Select a file or folder.

These types of windows are known as dialog boxes. A dialog box can be displayed in two ways: modal and

modeless.

Displaying a modal dialog box to the user is a technique with which the application interrupts what it was doing

until the user closes the dialog box. This generally comes in the form of a prompt or alert. Other windows in the

application can't be interacted with until the dialog box is closed. Once the modal dialog box is closed, the

application continues. The most common dialog boxes are used to show an open file or save file prompt,

displaying the printer dialog, or messaging the user with some status.

A modeless dialog box doesn't prevent a user from activating other windows while it's open. For example, if a

user wants to find occurrences of a particular word in a document, a main window will often open a dialog box

to ask a user what word they're looking for. Since the application doesn't want to prevent the user from editing

the document, the dialog box doesn't need to be modal. A modeless dialog box at least provides a Close button

to close the dialog box. Other buttons may be provided to run specific functions, such as a Find Next button to

find the next word in a word search.

With WPF you can create several types of dialog boxes, such as message boxes, common dialog boxes, and

custom dialog boxes. This article discusses each, and the Dialog Box Sample provides matching examples.

A message box is a dialog box that can be used to display textual information and to allow users to make

decisions with buttons. The following figure shows a message box that asks a question and provides the user

with three buttons to answer the question.

To create a message box, you use the MessageBox class. MessageBox lets you configure the message box text,

title, icon, and buttons.

For more information, see How to open a message box.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/windows/dialog-boxes-overview.md
https://github.com/Microsoft/WPF-Samples/tree/master/Windows/DialogBox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox

 Custom dialog boxes

Windows implements different kinds of reusable dialog boxes that are common to all applications, including

dialog boxes for selecting files and printing.

Since these dialog boxes are provided by the operating system, they're shared among all the applications that

run on the operating system. These dialog boxes provide a consistent user experience, and are known as

common dialog boxes. As a user uses a common dialog box in one application, they don't need to learn how to

use that dialog box in other applications.

WPF encapsulates the open file, save file, and print common dialog boxes and exposes them as managed classes

for you to use in standalone applications.

To learn more about common dialog boxes, see the following articles:

How to display a common dialog box

Show the Open File dialog box

Show the Save File dialog box

Show the Print dialog box

While common dialog boxes are useful, and should be used when possible, they don't support the requirements

of domain-specific dialog boxes. In these cases, you need to create your own dialog boxes. As we'll see, a dialog

box is a window with special behaviors. Window implements those behaviors and you use the window to create

custom modal and modeless dialog boxes.

There are many design considerations to take into account when you create your own dialog box. Although both

an application window and dialog box contain similarities, such as sharing the same base class, a dialog box is

used for a specific purpose. Usually a dialog box is required when you need to prompt a user for some sort of

information or response. Typically the application will pause while the dialog box (modal) is displayed,

restricting access to the rest of the application. Once the dialog box is closed, the application continues.

Confining interactions to the dialog box alone, though, isn't a requirement.

When a WPF window is closed, it can't be reopened. Custom dialog boxes are WPF windows and the same rule

applies. To learn how to close a window, see How to close a window or dialog box.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window

Implementing a dialog box
When designing a dialog box, follow these suggestions to create a good user experience:

❌ DON'T clutter the dialog window. The dialog experience is for the user to enter some data, or to make a

choice.

✔️ DO provide an OK button to close the window.

✔️ DO set the OK button's IsDefault property to true to allow the user to press the ENTER key to accept and

close the window.

✔️ CONSIDER adding a Cancel button so that the user can close the window and indicate that they don't want

to continue.

✔️ DO set the Cancel button's IsCancel property to true to allow the user to press the ESC key to close the

window.

✔️ DO set the title of the window to accurately describe what the dialog represents, or what the user should do

with the dialog.

✔️ DO set minimum width and height values for the window, preventing the user from resizing the window too

small.

✔️ CONSIDER disabling the ability to resize the window if ShowInTaskbar is set to false . You can disable

resizing by setting ResizeMode to NoResize

The following code demonstrates this configuration.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button.isdefault
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button.iscancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showintaskbar
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.resizemode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resizemode#system_windows_resizemode_noresize

<Window x:Class="Dialogs.Margins"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Change Margins"
 Closing="Window_Closing"
 MinHeight="200"
 MinWidth="300"
 SizeToContent="WidthAndHeight"
 ResizeMode="NoResize"
 ShowInTaskbar="False"
 WindowStartupLocation="CenterOwner"
 FocusManager.FocusedElement="{Binding ElementName=leftMarginTextBox}">
 <Grid Margin="10">
 <Grid.Resources>
 <!-- Default settings for controls -->
 <Style TargetType="{x:Type Label}">
 <Setter Property="Margin" Value="0,3,5,5" />
 <Setter Property="Padding" Value="0,0,0,5" />
 </Style>
 <Style TargetType="{x:Type TextBox}">
 <Setter Property="Margin" Value="0,0,0,5" />
 </Style>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Width" Value="70" />
 <Setter Property="Height" Value="25" />
 <Setter Property="Margin" Value="5,0,0,0" />
 </Style>
 </Grid.Resources>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>

 <!-- Left,Top,Right,Bottom margins-->
 <Label Grid.Column="0" Grid.Row="0">Left Margin:</Label>
 <TextBox Name="leftMarginTextBox" Grid.Column="1" Grid.Row="0" />

 <Label Grid.Column="0" Grid.Row="1">Top Margin:</Label>
 <TextBox Name="topMarginTextBox" Grid.Column="1" Grid.Row="1"/>

 <Label Grid.Column="0" Grid.Row="2">Right Margin:</Label>
 <TextBox Name="rightMarginTextBox" Grid.Column="1" Grid.Row="2" />

 <Label Grid.Column="0" Grid.Row="3">Bottom Margin:</Label>
 <TextBox Name="bottomMarginTextBox" Grid.Column="1" Grid.Row="3" />

 <!-- Accept or Cancel -->
 <StackPanel Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="4" Orientation="Horizontal"
HorizontalAlignment="Right">
 <Button Name="okButton" Click="okButton_Click" IsDefault="True">OK</Button>
 <Button Name="cancelButton" IsCancel="True">Cancel</Button>
 </StackPanel>
 </Grid >
</Window>

The above XAML creates a window that looks similar to the following image:

 UI elements opening a dialog box

<MenuItem Header="_Margins..." Click="formatMarginsMenuItem_Click" />
<!-- or -->
<Button Content="_Margins..." Click="formatMarginsButton_Click" />

 Menu items

 Buttons

The user experience for a dialog box also extends into the menu bar or the button of the window that opens it.

When a menu item or button runs a function that requires user interaction through a dialog box before the

function can continue, the control should use an ellipsis at the end of its header text:

When a menu item or button runs a function that displays a dialog box that doesn't require user interaction,

such as an About dialog box, an ellipsis isn't required.

Menu items are a common way to provide users with application actions that are grouped into related themes.

You've probably seen the File menu on many different applications. In a typical application, the File menu item

provides ways to save a file, load a file, and print a file. If the action is going to display a modal window, the

header typically includes an ellipsis as shown in the following image:

Two of the menu items have an ellipsis: This helps the user identify that when they select those menu

items, a modal window is shown, pausing the application until the user closes it.

This design technique is an easy way for you to communicate to your users what they should expect.

You can follow the same principle described in the Menu items section. Use an ellipsis on the button text to

indicate that when the user presses the button, a modal dialog will appear. In the following image, there are two

buttons and it's easy to understand which button displays a dialog box:

 Return a result

 Modal dialogs

private void okButton_Click(object sender, RoutedEventArgs e) =>
 DialogResult = true;

private void cancelButton_Click(object sender, RoutedEventArgs e) =>
 DialogResult = false;

Private Sub okButton_Click(sender As Object, e As RoutedEventArgs)
 DialogResult = True
End Sub

Private Sub cancelButton_Click(sender As Object, e As RoutedEventArgs)
 DialogResult = False
End Sub

 Processing the response

Opening another window, especially a modal dialog box, is a great way to return status and information to

calling code.

When a dialog box is shown by calling ShowDialog(), the code that opened the dialog box waits until the

ShowDialog method returns. When the method returns, the code that called it needs to decide whether to

continue processing or stop processing. The user generally indicates this by pressing an OK or Cancel button

on the dialog box.

When the OK button is pressed, ShowDialog should be designed to return true , and the Cancel button to

return false . This is achieved by setting the DialogResult property when the button is pressed.

The DialogResult property can only be set if the dialog box was displayed with ShowDialog(). When the

DialogResult property is set, the dialog box closes.

If a button's IsCancel property is set to true , and the window is opened with ShowDialog(), the ESC key will

close the window and set DialogResult to false .

For more information about closing dialog boxes, see How to close a window or dialog box.

The ShowDialog() returns a boolean value to indicate whether the user accepted or canceled the dialog box. If

you're alerting the user to something, but not requiring they make a decision or provide data, you can ignore

the response. The response can also be inspected by checking the DialogResult property. The following code

shows how to process the response:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog#system_windows_window_showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog#system_windows_window_showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button.iscancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog#system_windows_window_showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog#system_windows_window_showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult

var dialog = new Margins();

// Display the dialog box and read the response
bool? result = dialog.ShowDialog();

if (result == true)
{
 // User accepted the dialog box
 MessageBox.Show("Your request will be processed.");
}
else
{
 // User cancelled the dialog box
 MessageBox.Show("Sorry it didn't work out, we'll try again later.");
}

Dim marginsWindow As New Margins

Dim result As Boolean? = marginsWindow.ShowDialog()

If result = True Then
 ' User accepted the dialog box
 MessageBox.Show("Your request will be processed.")
Else
 ' User cancelled the dialog box
 MessageBox.Show("Sorry it didn't work out, we'll try again later.")
End If

marginsWindow.Show()

 Modeless dialog

var marginsWindow = new Margins();

marginsWindow.Closed += (sender, eventArgs) =>
{
 MessageBox.Show($"You closed the margins window! It had the title of {marginsWindow.Title}");
};

marginsWindow.Show();

To show a dialog box modeless, call Show(). The dialog box should at least provide a Close button. Other

buttons and interactive elements can be provided to run a specific function, such as a Find Next button to find

the next word in a word search.

Because a modeless dialog box doesn't block the calling code from continuing, you must provide a different way

of returning a result. You can do one of the following:

Expose a data object property on the window.

Handle the Window.Closed event in the calling code.

Create events on the window that are raised when the user selects an object or presses a specific button.

The following example uses the Window.Closed event to display a message box to the user when the dialog box

closes. The message displayed references a property of the closed dialog box. For more information about

closing dialogs boxes, see How to close a window or dialog box.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show#system_windows_window_show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closed
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closed

Dim marginsWindow As New Margins

AddHandler marginsWindow.Closed, Sub(sender As Object, e As EventArgs)
 MessageBox.Show($"You closed the margins window! It had the title of
{marginsWindow.Title}")
 End Sub

marginsWindow.Show()

 See also
Overview of WPF windows

How to open a window or dialog box

How to open a common dialog box

How to open a message box

How to close a window or dialog box

Dialog Box Sample

System.Windows.Window

System.Windows.MessageBox

https://github.com/Microsoft/WPF-Samples/tree/master/Windows/DialogBox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox

How to open a message box (WPF .NET)
 4/15/2021 • 3 minutes to read • Edit Online

 Display a message box

string messageBoxText = "Do you want to save changes?";
string caption = "Word Processor";
MessageBoxButton button = MessageBoxButton.YesNoCancel;
MessageBoxImage icon = MessageBoxImage.Warning;
MessageBoxResult result;

result = MessageBox.Show(messageBoxText, caption, button, icon, MessageBoxResult.Yes);

A message box is a dialog box that is used to quickly display information and optionally allow users to make

decisions. Access to the message box is provided by the MessageBox class. A message box is displayed modally.

And the code that displays the message box is paused until the user closes the message box either with the close

button or a response button.

The following illustration demonstrates the parts of a message box:

A title bar with a caption (1).

A close button (2).

Icon (3).

Message displayed to the user (4).

Response buttons (5).

For presenting or gathering complex data, a dialog box might be more suitable than a message box. For more

information, see Dialog boxes overview.

To create a message box, you use the MessageBox class. The MessageBox.Show method lets you configure the

message box text, title, icon, and buttons, shown in the following code:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/windows/how-to-open-message-box.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox.show

Dim messageBoxText As String = "Do you want to save changes?"
Dim caption As String = "Word Processor"
Dim Button As MessageBoxButton = MessageBoxButton.YesNoCancel
Dim Icon As MessageBoxImage = MessageBoxImage.Warning
Dim result As MessageBoxResult

result = MessageBox.Show(messageBoxText, caption, Button, Icon, MessageBoxResult.Yes)

The MessageBox.Show method overloads provide ways to configure the message box. These options include:

Title bar caption

Message icon

Message text

Response buttons

Here are some more examples of using a message box.

MessageBox.Show("Unable to save file, try again.");

MessageBox.Show("Unable to save file, try again.")

MessageBox.Show("Unable to save file, try again.", "Save error", MessageBoxButton.OK,
MessageBoxImage.Error);

MessageBox.Show("Unable to save file, try again.", "Save error", MessageBoxButton.OK,
MessageBoxImage.Error)

Display an alert.

The previous code displays a message box like the following image:

It's a good idea to use the options provided by the message box class. Using the same alert as before, set

more options to make it more visually appealing:

The previous code displays a message box like the following image:

Display a warning.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox.show

 Handle a message box response

MessageBox.Show("If you close the next window without saving, your changes will be lost.",
"Configuration", MessageBoxButton.OK, MessageBoxImage.Warning);

MessageBox.Show("If you close the next window without saving, your changes will be lost.",
"Configuration", MessageBoxButton.OK, MessageBoxImage.Warning)

if (MessageBox.Show("If the file save fails, do you want to automatically try again?",
 "Save file",
 MessageBoxButton.YesNo,
 MessageBoxImage.Question) == MessageBoxResult.Yes)
{
 // Do something here
}

If MessageBox.Show("If the file save fails, do you want to automatically try again?",
 "Save file",
 MessageBoxButton.YesNo,
 MessageBoxImage.Question) = MessageBoxResult.Yes Then

 ' Do something here

End If

The previous code displays a message box like the following image:

Ask the user a question.

The previous code displays a message box like the following image:

The MessageBox.Show method displays the message box and returns a result. The result indicates how the user

closed the message box:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox.show

result = MessageBox.Show(messageBoxText, caption, button, icon, MessageBoxResult.Yes);

switch (result)
{
 case MessageBoxResult.Cancel:
 // User pressed Cancel
 break;
 case MessageBoxResult.Yes:
 // User pressed Yes
 break;
 case MessageBoxResult.No:
 // User pressed No
 break;
}

result = MessageBox.Show(messageBoxText, caption, Button, Icon, MessageBoxResult.Yes)

Select Case result
 Case MessageBoxResult.Cancel
 ' User pressed Cancel
 Case MessageBoxResult.Yes
 ' User pressed Yes
 Case MessageBoxResult.No
 ' User pressed No
End Select

B UT TO N O P T IO N S ESC O R C LO SE B UT TO N RESULT

Ok Ok

OkCancel Cancel

YesNo ESC keyboard shortcut and Close button disabled. User
must press Yes or No.

YesNoCancel Cancel

 See also

When a user presses the buttons at the bottom of the message box, the corresponding MessageBoxResult is

returned. However, if the user presses the ESC key or presses the Close button (#2 in the message box

illustration), the result of the message box varies based on the button options:

For more information on using message boxes, see MessageBox and the MessageBox sample.

Overview of WPF windows

Dialog boxes overview

How to display a common dialog box

MessageBox sample

System.Windows.MessageBox

System.Windows.MessageBox.Show

System.Windows.MessageBoxResult

https://docs.microsoft.com/en-us/dotnet/api/system.windows.messageboxresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox
https://github.com/Microsoft/WPF-Samples/tree/master/Windows/MessageBox
https://github.com/Microsoft/WPF-Samples/tree/master/Windows/MessageBox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messageboxresult

How to open a window or dialog box (WPF .NET)
 4/15/2021 • 2 minutes to read • Edit Online

 Open as modal

var window = new Margins();

window.Owner = this;
window.ShowDialog();

Dim myWindow As New Margins()

myWindow.Owner = Me
myWindow.ShowDialog()

IMPORTANT

 Open as modeless

You can create your own windows and display them in Windows Presentation Foundation (WPF). In this article,

you'll learn how to display modal and modeless windows and dialogs.

Conceptually, a window and a dialog box are the same thing: they're displayed to a user to provide information

or interaction. They're both "window" objects. The design of the window and the way it's used, is what makes a

dialog box. A dialog box is generally small in size and requires the user to respond to it. For more information,

see Overview of WPF windows and Dialog boxes overview.

If you're interested in opening operating system dialog boxes, see How to open a common dialog box.

When a modal window is opened, it generally represents a dialog box. WPF restricts interaction to the modal

window, and the code that opened the window pauses until the window closes. This mechanism provides an

easy way for you to prompt the user with data and wait for their response.

Use the ShowDialog method to open a window. The following code instantiates the window, and opens it

modally. The code opening the window pauses, waiting for the window to be closed:

Once a window is closed, the same object instance can't be used to reopen the window.

For more information about how to handle the user response to a dialog box, see Dialog boxes overview:

Processing the response.

Opening a window modeless means displaying it as a normal window. The code that opens the window

continues to run as the window becomes visible. You can focus and interact with all modeless windows

displayed by your application, without restriction.

Use the Show method to open a window. The following code instantiates the window, and opens it modeless.

The code opening the window continues to run:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/windows/how-to-open-window-dialog-box.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show

var window = new Margins();

window.Owner = this;
window.Show();

Dim myWindow As New Margins()

myWindow.Owner = Me
myWindow.Show()

IMPORTANT

 See also

Once a window is closed, the same object instance can't be used to reopen the window.

Overview of WPF windows

Dialog boxes overview

How to close a window or dialog box

How to open a common dialog box

How to open a message box

System.Windows.Window

System.Windows.Window.DialogResult

System.Windows.Window.Show()

System.Windows.Window.ShowDialog()

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show#system_windows_window_show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog#system_windows_window_showdialog

How to close a window or dialog box (WPF .NET)
 4/15/2021 • 3 minutes to read • Edit Online

IMPORTANT

 Close a modal window

private void okButton_Click(object sender, RoutedEventArgs e) =>
 DialogResult = true;

private void cancelButton_Click(object sender, RoutedEventArgs e) =>
 DialogResult = false;

Private Sub okButton_Click(sender As Object, e As RoutedEventArgs)
 DialogResult = True
End Sub

Private Sub cancelButton_Click(sender As Object, e As RoutedEventArgs)
 DialogResult = False
End Sub

In this article, you'll learn about the different ways to close a window or dialog box. A user can close a window

by using the elements in the non-client area, including the following:

The Close item of the System menu.

Pressing ALT + F4.

Pressing the Close button.

Pressing ESC when a button has the IsCancel property set to true on a modal window.

When designing a window, provide more mechanisms to the client area to close a window. Some of the

common design elements on a window that are used to close it include the following:

An Exit item in the File menu, typically for main application windows.

A Close item in the File menu, typically on a secondary application window.

A Cancel button, typically on a modal dialog box.

A Close button, typically on a modeless dialog box.

Once a window is closed, the same object instance can't be used to reopen the window.

For more information about the life of a window, see Overview of WPF windows: Window lifetime.

When closing a window that was opened with the ShowDialog method, set the DialogResult property to either

true or false to indicate an "accepted" or "canceled" state, respectively. As soon as the DialogResult

property is set to a value, the window closes. The following code demonstrates setting the DialogResult

property:

You can also call the Close method. If the Close method is used, the DialogResult property is set to false .

Once a window has been closed, it can't be reopened with the same object instance. If you try to show the same

window, a InvalidOperationException is thrown. Instead, create a new instance of the window and open it.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/windows/how-to-close-window-dialog-box.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button.iscancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.close
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.invalidoperationexception

 Close a modeless window

private void closeButton_Click(object sender, RoutedEventArgs e) =>
 Close();

Private Sub closeButton_Click(sender As Object, e As RoutedEventArgs)
 Close()
End Sub

 Close with IsCancel

<Button Name="cancelButton" IsCancel="True">Cancel</Button>

 Hide a window

private void saveButton_Click(object sender, RoutedEventArgs e) =>
 Hide();

Private Sub saveButton_Click(sender As Object, e As RoutedEventArgs)
 Hide()
End Sub

 Cancel close and hide

C a u t i o n

When closing a window that was opened with the Show method, use the Close method. The following code

demonstrates closing a modeless window:

The Button.IsCancel property can be set to true to enable the ESC key to automatically close the window. This

only works when the window is opened with ShowDialog method.

Instead of closing a window, a window can be hidden with the Hide method. A hidden window can be reopened,

unlike a window that has been closed. If you're going to reuse a window object instance, hide the window

instead of closing it. The following code demonstrates hiding a window:

If you've designed your buttons to hide a window instead of closing it, the user can still bypass this and close the

window. The Close item of the system menu and the Close button of the non-client area of the window, will

close the window instead of hiding it. Consider this scenario when your intent is to hide a window instead of

closing it.

If a window is shown modally with ShowDialog, the DialogResult property will be set to null when the window

is hidden. You'll need to communicate state back to the calling code by adding your own property to the

window.

When a window is closed, the Closing event is raised. The handler is passed a CancelEventArgs, which

implements the Cancel property. Set that property to true to prevent a window from closing. The following

code demonstrates how to cancel the closure and instead hide the window:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.close
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button.iscancel#system_windows_controls_button_iscancel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.hide
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.canceleventargs.cancel#system_componentmodel_canceleventargs_cancel

private void Window_Closing(object sender, System.ComponentModel.CancelEventArgs e)
{
 // Cancel the closure
 e.Cancel = true;

 // Hide the window
 Hide();
}

Private Sub Window_Closing(sender As Object, e As ComponentModel.CancelEventArgs)
 ' Cancel the closure
 e.Cancel = True

 ' Hide the window
 Hide()
End Sub

 See also

There may be times where you don't want to hide a window, but actually prevent the user from closing it. For

more information, see Overview of WPF windows: Cancel window closure.

Overview of WPF windows

Dialog boxes overview

How to open a window or dialog box

System.Windows.Window.Close()

System.Windows.Window.Closing

System.Windows.Window.DialogResult

System.Windows.Window.Hide()

System.Windows.Window.Show()

System.Windows.Window.ShowDialog()

https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.close#system_windows_window_close
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.closing
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.dialogresult#system_windows_window_dialogresult
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.hide#system_windows_window_hide
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.show#system_windows_window_show
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog#system_windows_window_showdialog

How to open a common dialog box (WPF .NET)
 4/15/2021 • 3 minutes to read • Edit Online

 Open File dialog box

This article demonstrates how you can display a common system dialog box in Windows Presentation

Foundation (WPF). Windows implements different kinds of reusable dialog boxes that are common to all

applications, including dialog boxes for selecting files and printing.

Since these dialog boxes are provided by the operating system, they're shared among all the applications that

run on the operating system. These dialog boxes provide a consistent user experience, and are known as

common dialog boxes. As a user uses a common dialog box in one application, they don't need to learn how to

use that dialog box in other applications.

A message box is another common dialog box. For more information, see How to open a message box.

The open file dialog box is used by file opening functionality to retrieve the name of a file to open.

The common open file dialog box is implemented as the OpenFileDialog class and is located in the

Microsoft.Win32 namespace. The following code shows how to create, configure, and show one, and how to

process the result.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/windows/how-to-open-common-system-dialog-box.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.openfiledialog
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32

// Configure open file dialog box
var dialog = new Microsoft.Win32.OpenFileDialog();
dialog.FileName = "Document"; // Default file name
dialog.DefaultExt = ".txt"; // Default file extension
dialog.Filter = "Text documents (.txt)|*.txt"; // Filter files by extension

// Show open file dialog box
bool? result = dialog.ShowDialog();

// Process open file dialog box results
if (result == true)
{
 // Open document
 string filename = dialog.FileName;
}

' Configure open file dialog box
Dim dialog As New Microsoft.Win32.OpenFileDialog()
dialog.FileName = "Document" ' Default file name
dialog.DefaultExt = ".txt" ' Default file extension
dialog.Filter = "Text documents (.txt)|*.txt" ' Filter files by extension

' Show open file dialog box
Dim result As Boolean? = dialog.ShowDialog()

' Process open file dialog box results
If result = True Then
 ' Open document
 Dim filename As String = dialog.FileName
End If

 Save File dialog box

For more information on the open file dialog box, see Microsoft.Win32.OpenFileDialog.

The save file dialog box is used by file saving functionality to retrieve the name of a file to save.

The common save file dialog box is implemented as the SaveFileDialog class, and is located in the

https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.openfiledialog
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.savefiledialog

// Configure save file dialog box
var dialog = new Microsoft.Win32.SaveFileDialog();
dialog.FileName = "Document"; // Default file name
dialog.DefaultExt = ".txt"; // Default file extension
dialog.Filter = "Text documents (.txt)|*.txt"; // Filter files by extension

// Show save file dialog box
bool? result = dialog.ShowDialog();

// Process save file dialog box results
if (result == true)
{
 // Save document
 string filename = dialog.FileName;
}

' Configure save file dialog box
Dim dialog As New Microsoft.Win32.SaveFileDialog()
dialog.FileName = "Document" ' Default file name
dialog.DefaultExt = ".txt" ' Default file extension
dialog.Filter = "Text documents (.txt)|*.txt" ' Filter files by extension

' Show save file dialog box
Dim result As Boolean? = dialog.ShowDialog()

' Process save file dialog box results
If result = True Then
 ' Save document
 Dim filename As String = dialog.FileName
End If

 Print dialog box

Microsoft.Win32 namespace. The following code shows how to create, configure, and show one, and how to

process the result.

For more information on the save file dialog box, see Microsoft.Win32.SaveFileDialog.

The print dialog box is used by printing functionality to choose and configure the printer that a user wants to

print data to.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.savefiledialog

// Configure printer dialog box
var dialog = new System.Windows.Controls.PrintDialog();
dialog.PageRangeSelection = System.Windows.Controls.PageRangeSelection.AllPages;
dialog.UserPageRangeEnabled = true;

// Show save file dialog box
bool? result = dialog.ShowDialog();

// Process save file dialog box results
if (result == true)
{
 // Document was printed
}

' Configure printer dialog box
Dim dialog As New System.Windows.Controls.PrintDialog()
dialog.PageRangeSelection = System.Windows.Controls.PageRangeSelection.AllPages
dialog.UserPageRangeEnabled = True

' Show save file dialog box
Dim result As Boolean? = dialog.ShowDialog()

' Process save file dialog box results
If result = True Then
 ' Document was printed
End If

 See also

The common print dialog box is implemented as the PrintDialog class, and is located in the

System.Windows.Controls namespace. The following code shows how to create, configure, and show one.

For more information on the print dialog box, see System.Windows.Controls.PrintDialog. For detailed discussion

of printing in WPF, see Printing overview.

How to open a message box

Dialog boxes overview

Overview of WPF windows

Microsoft.Win32.OpenFileDialog

Microsoft.Win32.SaveFileDialog

System.Windows.Controls.PrintDialog

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.printdialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.printdialog
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/printing-overview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.openfiledialog
https://docs.microsoft.com/en-us/dotnet/api/microsoft.win32.savefiledialog
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.printdialog

How to get or set the main application window
(WPF .NET)

 4/15/2021 • 2 minutes to read • Edit Online

TIP

 Set the main window in XAML

<Application x:Class="MainApp.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MainApp"
 StartupUri="Window1.xaml">

</Application>

<Application x:Class="MainApp.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MainApp">

 <Application.MainWindow>
 <local:Window2 Visibility="Visible" />
 </Application.MainWindow>
</Application>

C a u t i o n

This article teaches you how to get or set the main application window for Windows Presentation Foundation

(WPF). The first Window that is instantiated within a WPF application is automatically set by Application as the

main application window. The main window is referenced with the Application.MainWindow property.

Much of the time a project template will set the Application.StartupUri to a XAML file within your application,

such as _Window1.xaml_. This is the first window instantiated and shown by your application, and it becomes

the main window.

The default behavior for an application is to shutdown when the last window is closed. This behavior is controlled by the

Application.ShutdownMode property. Instead, you can configure the application to shutdown if the MainWindow is

closed. Set Application.ShutdownMode to OnMainWindowClose to enable this behavior.

The templates that generate your WPF application typically set the Application.StartupUri property to a XAML

file. This property is helpful because:

1. It's easily changeable to a different XAML file in your project.

2. Automatically instantiates and displays the specified window.

3. The specified window becomes the Application.MainWindow.

Instead of using Application.StartupUri, you can set the Application.MainWindow to a XAML-declared window.

However, the window specified here won't be displayed and you must set its visibility.

If you set both the Application.StartupUri and the Application.MainWindow properties, you'll display both

windows when your application starts.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/windows/how-to-get-set-main-application-window.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startupuri
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.shutdownmode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.shutdownmode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.shutdownmode#system_windows_shutdownmode_onmainwindowclose
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startupuri
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startupuri
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startupuri
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow

 Set the main window in code

Application.Current.MainWindow = new Window2();

Application.Current.MainWindow.Show();

Application.Current.MainWindow = New Window2()

Application.Current.MainWindow.Show()

var appWindow = new Window2();

appWindow.Show();

Dim appWindow As New Window2()

appWindow.Show()

 Get the main window

private void Button_Click(object sender, RoutedEventArgs e) =>
 MessageBox.Show($"The main window's title is: {Application.Current.MainWindow.Title}");

Private Sub Button_Click(sender As Object, e As RoutedEventArgs)
 MessageBox.Show($"The main window's title is: {Application.Current.MainWindow.Title}")
End Sub

 See also

Also, you can use the Application.Startup event to open a window. For more information, see Use the Startup

event to open a window.

The first window instantiated by your application automatically becomes the main window and is set to the

Application.MainWindow property. To set a different main window, change this property to a window:

If your application has never created an instance of a window, the following code is functionally equivalent to

the previous code:

As soon as the window object instance is created, it's assigned to Application.MainWindow.

You can access the window chosen as the main window by inspecting the Application.MainWindow property.

The following code displays a message box with the title of the main window when a button is clicked:

Overview of WPF windows

Use the Startup event to open a window

How to open a window or dialog box

System.Windows.Application

System.Windows.Application.MainWindow

System.Windows.Application.StartupUri

System.Windows.Application.ShutdownMode

https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.mainwindow#system_windows_application_mainwindow
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.startupuri#system_windows_application_startupuri
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.shutdownmode#system_windows_application_shutdownmode

Styles and templates (WPF .NET)
 4/15/2021 • 12 minutes to read • Edit Online

IMPORTANT

 Sample

 Styles

Windows Presentation Foundation (WPF) styling and templating refer to a suite of features that let developers

and designers create visually compelling effects and a consistent appearance for their product. When

customizing the appearance of an app, you want a strong styling and templating model that enables

maintenance and sharing of appearance within and among apps. WPF provides that model.

Another feature of the WPF styling model is the separation of presentation and logic. Designers can work on the

appearance of an app by using only XAML at the same time that developers work on the programming logic by

using C# or Visual Basic.

This overview focuses on the styling and templating aspects of the app and doesn't discuss any data-binding

concepts. For information about data binding, see Data Binding Overview.

It's important to understand resources, which are what enable styles and templates to be reused. For more

information about resources, see Overview of XAML resources.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The sample code provided in this overview is based on a simple photo browsing application shown in the

following illustration.

This simple photo sample uses styling and templating to create a visually compelling user experience. The

sample has two TextBlock elements and a ListBox control that is bound to a list of images.

For the complete sample, see Introduction to Styling and Templating Sample.

You can think of a Style as a convenient way to apply a set of property values to multiple elements. You can use a

style on any element that derives from FrameworkElement or FrameworkContentElement such as a Window or

a Button.

The most common way to declare a style is as a resource in the Resources section in a XAML file. Because styles

are resources, they obey the same scoping rules that apply to all resources. Put simply, where you declare a style

affects where the style can be applied. For example, if you declare the style in the root element of your app

definition XAML file, the style can be used anywhere in your app.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/controls/styles-templates-overview.md
https://github.com/Microsoft/WPF-Samples/tree/master/Styles%20&%20Templates/IntroToStylingAndTemplating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://github.com/Microsoft/WPF-Samples/tree/master/Styles%20&%20Templates/IntroToStylingAndTemplating
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkcontentelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button

<Window.Resources>
 <!-- other resources -->

 <!--A Style that affects all TextBlocks-->
 <Style TargetType="TextBlock">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
 <Setter Property="FontSize" Value="14"/>
 </Style>

 <!--A Style that extends the previous TextBlock Style with an x:Key of TitleText-->
 <Style BasedOn="{StaticResource {x:Type TextBlock}}"
 TargetType="TextBlock"
 x:Key="TitleText">
 <Setter Property="FontSize" Value="26"/>
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.0" Color="#90DDDD" />
 <GradientStop Offset="1.0" Color="#5BFFFF" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</Window.Resources>

<StackPanel>
 <TextBlock Style="{StaticResource TitleText}" Name="textblock1">My Pictures</TextBlock>
 <TextBlock>Check out my new pictures!</TextBlock>
</StackPanel>

 ControlTemplates

For example, the following XAML code declares two styles for a TextBlock , one automatically applied to all

TextBlock elements, and another that must be explicitly referenced.

Here is an example of the styles declared above being used.

For more information, see Create a style for a control.

In WPF, the ControlTemplate of a control defines the appearance of the control. You can change the structure and

appearance of a control by defining a new ControlTemplate and assigning it to a control. In many cases,

templates give you enough flexibility so that you do not have to write your own custom controls.

Each control has a default template assigned to the Control.Template property. The template connects the visual

presentation of the control with the control's capabilities. Because you define a template in XAML, you can

change the control's appearance without writing any code. Each template is designed for a specific control, such

as a Button.

Commonly you declare a template as a resource on the Resources section of a XAML file. As with all resources,

scoping rules apply.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.template#system_windows_controls_control_template
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button

<Style x:Key="CheckBoxStyle1" TargetType="{x:Type CheckBox}">
 <Setter Property="FocusVisualStyle" Value="{StaticResource FocusVisual1}"/>
 <Setter Property="Background" Value="{StaticResource OptionMark.Static.Background1}"/>
 <Setter Property="BorderBrush" Value="{StaticResource OptionMark.Static.Border1}"/>
 <Setter Property="Foreground" Value="{DynamicResource {x:Static SystemColors.ControlTextBrushKey}}"/>
 <Setter Property="BorderThickness" Value="1"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type CheckBox}">
 <Grid x:Name="templateRoot" Background="Transparent" SnapsToDevicePixels="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Border x:Name="checkBoxBorder" Background="{TemplateBinding Background}"
BorderThickness="{TemplateBinding BorderThickness}" BorderBrush="{TemplateBinding BorderBrush}"
HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" Margin="1" VerticalAlignment="
{TemplateBinding VerticalContentAlignment}">
 <Grid x:Name="markGrid">
 <Path x:Name="optionMark" Data="F1 M 9.97498,1.22334L 4.6983,9.09834L
4.52164,9.09834L 0,5.19331L 1.27664,3.52165L 4.255,6.08833L 8.33331,1.52588e-005L 9.97498,1.22334 Z " Fill="
{StaticResource OptionMark.Static.Glyph1}" Margin="1" Opacity="0" Stretch="None"/>
 <Rectangle x:Name="indeterminateMark" Fill="{StaticResource
OptionMark.Static.Glyph1}" Margin="2" Opacity="0"/>
 </Grid>
 </Border>
 <ContentPresenter x:Name="contentPresenter" Grid.Column="1" Focusable="False"
HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" Margin="{TemplateBinding Padding}"
RecognizesAccessKey="True" SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}" VerticalAlignment="
{TemplateBinding VerticalContentAlignment}"/>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="HasContent" Value="true">
 <Setter Property="FocusVisualStyle" Value="{StaticResource
OptionMarkFocusVisual1}"/>
 <Setter Property="Padding" Value="4,-1,0,0"/>

... content removed to save space ...

 TemplateBinding

 ContentControl and ItemsControl

Control templates are a lot more involved than a style. This is because the control template rewrites the visual

appearance of the entire control, while a style simply applies property changes to the existing control. However,

since the template of a control is applied by setting the Control.Template property, you can use a style to define

or set a template.

Designers generally allow you to create a copy of an existing template and modify it. For example, in the Visual

Studio WPF designer, select a CheckBox control, and then right-click and select Edit template > Create a copy .

This command generates a style that defines a template.

Editing a copy of a template is a great way to learn how templates work. Instead of creating a new blank

template, it's easier to edit a copy and change a few aspects of the visual presentation.

For an example, see Create a template for a control.

You may have noticed that the template resource defined in the previous section uses the TemplateBinding

Markup Extension. A TemplateBinding is an optimized form of a binding for template scenarios, analogous to a

binding constructed with {Binding RelativeSource={RelativeSource TemplatedParent}} . TemplateBinding is useful

for binding parts of the template to properties of the control. For example, each control has a BorderThickness

property. Use a TemplateBinding to manage which element in the template is affected by this control setting.

If a ContentPresenter is declared in the ControlTemplate of a ContentControl, the ContentPresenter will

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.template#system_windows_controls_control_template
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/templatebinding-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.borderthickness#system_windows_controls_control_borderthickness
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter

 DataTemplates

<ListBox ItemsSource="{Binding Source={StaticResource MyPhotos}}"
 Background="Silver" Width="600" Margin="10" SelectedIndex="0"/>

public class Photo
{
 public Photo(string path)
 {
 Source = path;
 }

 public string Source { get; }

 public override string ToString() => Source;
}

Public Class Photo
 Sub New(ByVal path As String)
 Source = path
 End Sub

 Public ReadOnly Property Source As String

 Public Overrides Function ToString() As String
 Return Source
 End Function
End Class

automatically bind to the ContentTemplate and Content properties. Likewise, an ItemsPresenter that is in the

ControlTemplate of an ItemsControl will automatically bind to the ItemTemplate and Items properties.

In this sample app, there is a ListBox control that is bound to a list of photos.

This ListBox currently looks like the following.

Most controls have some type of content, and that content often comes from data that you are binding to. In this

sample, the data is the list of photos. In WPF, you use a DataTemplate to define the visual representation of data.

Basically, what you put into a DataTemplate determines what the data looks like in the rendered app.

In our sample app, each custom Photo object has a Source property of type string that specifies the file path of

the image. Currently, the photo objects appear as file paths.

For the photos to appear as images, you create a DataTemplate as a resource.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.contenttemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemspresenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol.itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol.items
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate

<Window.Resources>
 <!-- other resources -->

 <!--DataTemplate to display Photos as images
 instead of text strings of Paths-->
 <DataTemplate DataType="{x:Type local:Photo}">
 <Border Margin="3">
 <Image Source="{Binding Source}"/>
 </Border>
 </DataTemplate>
</Window.Resources>

 Triggers

 PropertyTriggers

Notice that the DataType property is similar to the TargetType property of the Style. If your DataTemplate is in

the resources section, when you specify the DataType property to a type and omit an x:Key , the DataTemplate

is applied whenever that type appears. You always have the option to assign the DataTemplate with an x:Key

and then set it as a StaticResource for properties that take DataTemplate types, such as the ItemTemplate

property or the ContentTemplate property.

Essentially, the DataTemplate in the above example defines that whenever there is a Photo object, it should

appear as an Image within a Border. With this DataTemplate, our app now looks like this.

The data templating model provides other features. For example, if you are displaying collection data that

contains other collections using a HeaderedItemsControl type such as a Menu or a TreeView, there is the

HierarchicalDataTemplate. Another data templating feature is the DataTemplateSelector, which allows you to

choose a DataTemplate to use based on custom logic. For more information, see Data Templating Overview,

which provides a more in-depth discussion of the different data templating features.

A trigger sets properties or starts actions, such as an animation, when a property value changes or when an

event is raised. Style, ControlTemplate, and DataTemplate all have a Triggers property that can contain a set of

triggers. There are several types of triggers.

A Trigger that sets property values or starts actions based on the value of a property is called a property trigger.

To demonstrate how to use property triggers, you can make each ListBoxItem partially transparent unless it is

https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate.datatype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate.datatype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol.itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.contenttemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.image
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.border
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.headereditemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.menu
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.hierarchicaldatatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/data-templating-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.trigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listboxitem

<Window.Resources>
 <!-- other resources -->

 <Style TargetType="ListBoxItem">
 <Setter Property="Opacity" Value="0.5" />
 <Setter Property="MaxHeight" Value="75" />
 <Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Trigger.Setters>
 <Setter Property="Opacity" Value="1.0" />
 </Trigger.Setters>
 </Trigger>
 </Style.Triggers>
 </Style>
</Window.Resources>

 EventTriggers and Storyboards

selected. The following style sets the Opacity value of a ListBoxItem to 0.5 . When the IsSelected property is

true , however, the Opacity is set to 1.0 .

This example uses a Trigger to set a property value, but note that the Trigger class also has the EnterActions and

ExitActions properties that enable a trigger to perform actions.

Notice that the MaxHeight property of the ListBoxItem is set to 75 . In the following illustration, the third item is

the selected item.

Another type of trigger is the EventTrigger, which starts a set of actions based on the occurrence of an event. For

example, the following EventTrigger objects specify that when the mouse pointer enters the ListBoxItem, the

MaxHeight property animates to a value of 90 over a 0.2 second period. When the mouse moves away from

the item, the property returns to the original value over a period of 1 second. Note how it is not necessary to

specify a To value for the MouseLeave animation. This is because the animation is able to keep track of the

original value.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.uielement.opacity
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listboxitem
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listboxitem.isselected
https://docs.microsoft.com/en-us/dotnet/api/system.windows.uielement.opacity
https://docs.microsoft.com/en-us/dotnet/api/system.windows.trigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.trigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.triggerbase.enteractions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.triggerbase.exitactions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listboxitem
https://docs.microsoft.com/en-us/dotnet/api/system.windows.eventtrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.eventtrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listboxitem
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.maxheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.animation.doubleanimation.to
https://docs.microsoft.com/en-us/dotnet/api/system.windows.contentelement.mouseleave

<Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Trigger.Setters>
 <Setter Property="Opacity" Value="1.0" />
 </Trigger.Setters>
 </Trigger>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight"
 To="90" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Duration="0:0:1"
 Storyboard.TargetProperty="MaxHeight" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
</Style.Triggers>

 MultiTriggers, DataTriggers, and MultiDataTriggers

 Visual States

For more information, see the Storyboards overview.

In the following illustration, the mouse is pointing to the third item.

In addition to Trigger and EventTrigger, there are other types of triggers. MultiTrigger allows you to set property

values based on multiple conditions. You use DataTrigger and MultiDataTrigger when the property of your

condition is data-bound.

Controls are always in a specific state. For example, when the mouse moves over the surface of a control, the

control is considered to be in a common state of MouseOver . A control without a specific state is considered to

be in the common Normal state. States are broken into groups, and the previously mentioned states are part of

the state group CommonStates . Most controls have two state groups: CommonStates and FocusStates . Of each

state group applied to a control, a control is always in one state of each group, such as CommonStates.MouseOver

and FocusStates.Unfocused . However, a control can't be in two different states within the same group, such as

CommonStates.Normal and CommonStates.Disabled . Here is a table of states most controls recognize and use.

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/storyboards-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.trigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.eventtrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.multitrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.multidatatrigger

VISUA L STAT E N A M E VISUA L STAT EGRO UP N A M E DESC RIP T IO N

Normal CommonStates The default state.

MouseOver CommonStates The mouse pointer is positioned over
the control.

Pressed CommonStates The control is pressed.

Disabled CommonStates The control is disabled.

Focused FocusStates The control has focus.

Unfocused FocusStates The control does not have focus.

<ControlTemplate x:Key="roundbutton" TargetType="Button">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="CommonStates">
 <VisualState Name="Normal">
 <ColorAnimation Storyboard.TargetName="backgroundElement"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 To="{TemplateBinding Background}"
 Duration="0:0:0.3"/>
 </VisualState>
 <VisualState Name="MouseOver">
 <ColorAnimation Storyboard.TargetName="backgroundElement"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 To="Yellow"
 Duration="0:0:0.3"/>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 ...

 Shared resources and themes

By defining a System.Windows.VisualStateManager on the root element of a control template, you can trigger

animations when a control enters a specific state. The VisualStateManager declares which combinations of

VisualStateGroup and VisualState to watch. When the control enters a watched state, the animation defined by

the VisaulStateManager is started.

For example, the following XAML code watches the CommonStates.MouseOver state to animate the fill color of the

element named backgroundElement . When the control returns to the CommonStates.Normal state, the fill color of

the element named backgroundElement is restored.

For more information about storyboards, see Storyboards Overview.

A typical WPF app might have multiple UI resources that are applied throughout the app. Collectively, this set of

resources can be considered the theme for the app. WPF provides support for packaging UI resources as a

theme by using a resource dictionary that is encapsulated as the ResourceDictionary class.

WPF themes are defined by using the styling and templating mechanism that WPF exposes for customizing the

visuals of any element.

WPF theme resources are stored in embedded resource dictionaries. These resource dictionaries must be

embedded within a signed assembly, and can either be embedded in the same assembly as the code itself or in a

https://docs.microsoft.com/en-us/dotnet/api/system.windows.visualstatemanager
https://docs.microsoft.com/en-us/dotnet/api/system.windows.visualstategroup
https://docs.microsoft.com/en-us/dotnet/api/system.windows.visualstate
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/storyboards-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary

<ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Shared.xaml" />
</ResourceDictionary.MergedDictionaries>

 See also

side-by-side assembly. For PresentationFramework.dll, the assembly that contains WPF controls, theme

resources are in a series of side-by-side assemblies.

The theme becomes the last place to look when searching for the style of an element. Typically, the search will

begin by walking up the element tree searching for an appropriate resource, then look in the app resource

collection and finally query the system. This gives app developers a chance to redefine the style for any object at

the tree or app level before reaching the theme.

You can define resource dictionaries as individual files that enable you to reuse a theme across multiple apps.

You can also create swappable themes by defining multiple resource dictionaries that provide the same types of

resources but with different values. Redefining these styles or other resources at the app level is the

recommended approach for skinning an app.

To share a set of resources, including styles and templates, across apps, you can create a XAML file and define a

ResourceDictionary that includes reference to a shared.xaml file.

It is the sharing of shared.xaml , which itself defines a ResourceDictionary that contains a set of style and brush

resources, that enables the controls in an app to have a consistent look.

For more information, see Merged resource dictionaries.

If you are creating a theme for your custom control, see the Defining resources at the theme level section

of the Control authoring overview.

Pack URIs in WPF

How to: Find ControlTemplate-Generated Elements

Find DataTemplate-Generated Elements

https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/merged-resource-dictionaries
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/control-authoring-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/app-development/pack-uris-in-wpf
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/how-to-find-controltemplate-generated-elements
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-find-datatemplate-generated-elements

How to create a style for a control (WPF .NET)
 4/15/2021 • 6 minutes to read • Edit Online

IMPORTANT

 Create a style

<Application x:Class="IntroToStylingAndTemplating.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:IntroToStylingAndTemplating"
 StartupUri="WindowExplicitStyle.xaml">
 <Application.Resources>
 <ResourceDictionary>

 <Style x:Key="Header1" TargetType="TextBlock">
 <Setter Property="FontSize" Value="15" />
 <Setter Property="FontWeight" Value="ExtraBold" />
 </Style>

 </ResourceDictionary>
 </Application.Resources>
</Application>

With Windows Presentation Foundation (WPF), you can customize an existing control's appearance with your

own reusable style. Styles can be applied globally to your app, windows and pages, or directly to controls.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

You can think of a Style as a convenient way to apply a set of property values to one or more elements. You can

use a style on any element that derives from FrameworkElement or FrameworkContentElement such as a

Window or a Button.

The most common way to declare a style is as a resource in the Resources section in a XAML file. Because styles

are resources, they obey the same scoping rules that apply to all resources. Put simply, where you declare a style

affects where the style can be applied. For example, if you declare the style in the root element of your app

definition XAML file, the style can be used anywhere in your app.

If you declare the style in one of the app's XAML files, the style can be used only in that XAML file. For more

information about scoping rules for resources, see Overview of XAML resources.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/controls/how-to-create-apply-style.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkcontentelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button

<Window x:Class="IntroToStylingAndTemplating.WindowSingleResource"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:IntroToStylingAndTemplating"
 mc:Ignorable="d"
 Title="WindowSingleResource" Height="450" Width="800">
 <Window.Resources>

 <Style x:Key="Header1" TargetType="TextBlock">
 <Setter Property="FontSize" Value="15" />
 <Setter Property="FontWeight" Value="ExtraBold" />
 </Style>

 </Window.Resources>
 <Grid />
</Window>

 Apply a style implicitly

<StackPanel>
 <TextBlock>My Pictures</TextBlock>
 <TextBlock>Check out my new pictures!</TextBlock>
</StackPanel>

<Window.Resources>
 <!--A Style that affects all TextBlocks-->
 <Style TargetType="TextBlock">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
 <Setter Property="FontSize" Value="14"/>
 </Style>
</Window.Resources>

A style is made up of <Setter> child elements that set properties on the elements the style is applied to. In the

example above, notice that the style is set to apply to TextBlock types through the TargetType attribute. The

style will set the FontSize to 15 and the FontWeight to ExtraBold . Add a <Setter> for each property the style

changes.

A Style is a convenient way to apply a set of property values to more than one element. For example, consider

the following TextBlock elements and their default appearance in a window.

You can change the default appearance by setting properties, such as FontSize and FontFamily, on each

TextBlock element directly. However, if you want your TextBlock elements to share some properties, you can

create a Style in the Resources section of your XAML file, as shown here.

When you set the TargetType of your style to the TextBlock type and omit the x:Key attribute, the style is applied

to all the TextBlock elements scoped to the style, which is generally the XAML file itself.

Now the TextBlock elements appear as follows.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontweight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock

 Apply a style explicitly

<Window.Resources>
 <Style x:Key="TitleText" TargetType="TextBlock">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
 <Setter Property="FontSize" Value="14"/>
 </Style>
</Window.Resources>

<StackPanel>
 <TextBlock Style="{StaticResource TitleText}">My Pictures</TextBlock>
 <TextBlock>Check out my new pictures!</TextBlock>
</StackPanel>

 Apply a style programmatically

textblock1.Style = (Style)Resources["TitleText"];

If you add an x:Key attribute with value to the style, the style is no longer implicitly applied to all elements of

TargetType. Only elements that explicitly reference the style will have the style applied to them.

Here is the style from the previous section, but declared with the x:Key attribute.

To apply the style, set the Style property on the element to the x:Key value, using a StaticResource markup

extension, as shown here.

Notice that the first TextBlock element has the style applied to it while the second TextBlock element remains

unchanged. The implicit style from the previous section was changed to a style that declared the x:Key

attribute, meaning, the only element affected by the style is the one that referenced the style directly.

Once a style is applied, explicitly or implicitly, it becomes sealed and can't be changed. If you want to change a

style that has been applied, create a new style to replace the existing one. For more information, see the IsSealed

property.

You can create an object that chooses a style to apply based on custom logic. For an example, see the example

provided for the StyleSelector class.

To assign a named style to an element programmatically, get the style from the resources collection and assign it

to the element's Style property. The items in a resources collection are of type Object. Therefore, you must cast

the retrieved style to a System.Windows.Style before assigning it to the Style property. For example, the

following code sets the style of a TextBlock named textblock1 to the defined style TitleText .

https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.issealed
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.styleselector
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style

textblock1.Style = CType(Resources("TitleText"), Windows.Style)

 Extend a style

<Window.Resources>
 <!-- other resources -->

 <!--A Style that affects all TextBlocks-->
 <Style TargetType="TextBlock">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
 <Setter Property="FontSize" Value="14"/>
 </Style>

 <!--A Style that extends the previous TextBlock Style with an x:Key of TitleText-->
 <Style BasedOn="{StaticResource {x:Type TextBlock}}"
 TargetType="TextBlock"
 x:Key="TitleText">
 <Setter Property="FontSize" Value="26"/>
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5,1">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.0" Color="#90DDDD" />
 <GradientStop Offset="1.0" Color="#5BFFFF" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</Window.Resources>

<StackPanel>
 <TextBlock Style="{StaticResource TitleText}" Name="textblock1">My Pictures</TextBlock>
 <TextBlock>Check out my new pictures!</TextBlock>
</StackPanel>

Perhaps you want your two TextBlock elements to share some property values, such as the FontFamily and the

centered HorizontalAlignment. But you also want the text My Pictures to have some additional properties. You

can do that by creating a new style that is based on the first style, as shown here.

This TextBlock style is now centered, uses a Comic Sans MS font with a size of 26 , and the foreground color set

to the LinearGradientBrush shown in the example. Notice that it overrides the FontSize value of the base style. If

there's more than one Setter pointing to the same property in a Style, the Setter that is declared last takes

precedence.

The following shows what the TextBlock elements now look like:

This TitleText style extends the style that has been created for the TextBlock type, referenced with

BasedOn="{StaticResource {x:Type TextBlock}}" . You can also extend a style that has an x:Key by using the

x:Key of the style. For example, if there was a style named Header1 and you wanted to extend that style, you

would use BasedOn="{StaticResource Header1}" .

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.horizontalalignment
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.lineargradientbrush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontsize
https://docs.microsoft.com/en-us/dotnet/api/system.windows.setter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock

 Relationship of the TargetType property and the x:Key attribute

 See also

As previously shown, setting the TargetType property to TextBlock without assigning the style an x:Key causes

the style to be applied to all TextBlock elements. In this case, the x:Key is implicitly set to {x:Type TextBlock} .

This means that if you explicitly set the x:Key value to anything other than {x:Type TextBlock} , the Style isn't

applied to all TextBlock elements automatically. Instead, you must apply the style (by using the x:Key value) to

the TextBlock elements explicitly. If your style is in the resources section and you don't set the TargetType

property on your style, then you must set the x:Key attribute.

In addition to providing a default value for the x:Key , the TargetType property specifies the type to which

setter properties apply. If you don't specify a TargetType , you must qualify the properties in your Setter objects

with a class name by using the syntax Property="ClassName.Property" . For example, instead of setting

Property="FontSize" , you must set Property to "TextBlock.FontSize" or "Control.FontSize" .

Also note that many WPF controls consist of a combination of other WPF controls. If you create a style that

applies to all controls of a type, you might get unexpected results. For example, if you create a style that targets

the TextBlock type in a Window, the style is applied to all TextBlock controls in the window, even if the

TextBlock is part of another control, such as a ListBox.

How to create a template for a control

Overview of XAML resources

XAML overview

https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.setter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.setter.property
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox

How to create a template for a control (WPF.NET)
 4/15/2021 • 7 minutes to read • Edit Online

IMPORTANT

 When to create a ControlTemplate

 Prerequisites

P RO P ERT Y VA L UE

Title Template Intro Sample

SizeToContent WidthAndHeight

MinWidth 250

With Windows Presentation Foundation (WPF), you can customize an existing control's visual structure and

behavior with your own reusable template. Templates can be applied globally to your application, windows and

pages, or directly to controls. Most scenarios that require you to create a new control can be covered by instead

creating a new template for an existing control.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In this article, you'll explore creating a new ControlTemplate for the Button control.

Controls have many properties, such as Background, Foreground, and FontFamily. These properties control

different aspects of the control's appearance, but the changes that you can make by setting these properties are

limited. For example, you can set the Foreground property to blue and FontStyle to italic on a CheckBox. When

you want to customize the control's appearance beyond what setting the other properties on the control can do,

you create a ControlTemplate.

In most user interfaces, a button has the same general appearance: a rectangle with some text. If you wanted to

create a rounded button, you could create a new control that inherits from the button or recreates the

functionality of the button. In addition, the new user control would provide the circular visual.

You can avoid creating new controls by customizing the visual layout of an existing control. With a rounded

button, you create a ControlTemplate with the desired visual layout.

On the other hand, if you need a control with new functionality, different properties, and new settings, you

would create a new UserControl.

Create a new WPF application and in MainWindow.xaml (or another window of your choice) set the following

properties on the <Window> element:

Set the content of the <Window> element to the following XAML:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/controls/how-to-create-apply-template.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.border.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.foreground
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.foreground
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.fontstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.usercontrol

<StackPanel Margin="10">
 <Label>Unstyled Button</Label>
 <Button>Button 1</Button>
 <Label>Rounded Button</Label>
 <Button>Button 2</Button>
</StackPanel>

<Window x:Class="IntroToStylingAndTemplating.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:IntroToStylingAndTemplating"
 mc:Ignorable="d"
 Title="Template Intro Sample" SizeToContent="WidthAndHeight" MinWidth="250">
 <StackPanel Margin="10">
 <Label>Unstyled Button</Label>
 <Button>Button 1</Button>
 <Label>Rounded Button</Label>
 <Button>Button 2</Button>
 </StackPanel>
</Window>

 Create a ControlTemplate

In the end, the MainWindow.xaml file should look similar to the following:

If you run the application, it looks like the following:

The most common way to declare a ControlTemplate is as a resource in the Resources section in a XAML file.

Because templates are resources, they obey the same scoping rules that apply to all resources. Put simply, where

you declare a template affects where the template can be applied. For example, if you declare the template in the

root element of your application definition XAML file, the template can be used anywhere in your application. If

you define the template in a window, only the controls in that window can use the template.

To start with, add a Window.Resources element to your MainWindow.xaml file:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate

<Window x:Class="IntroToStylingAndTemplating.Window2"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:IntroToStylingAndTemplating"
 mc:Ignorable="d"
 Title="Template Intro Sample" SizeToContent="WidthAndHeight" MinWidth="250">
 <Window.Resources>

 </Window.Resources>
 <StackPanel Margin="10">
 <Label>Unstyled Button</Label>
 <Button>Button 1</Button>
 <Label>Rounded Button</Label>
 <Button>Button 2</Button>
 </StackPanel>
</Window>

P RO P ERT Y VA L UE

x:Key roundbutton

TargetType Button

<ControlTemplate x:Key="roundbutton" TargetType="Button">
 <Grid>
 <Ellipse Fill="{TemplateBinding Background}" Stroke="{TemplateBinding Foreground}" />
 <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>
</ControlTemplate>

 TemplateBinding

 Ellipse

 ContentPresenter

Create a new <ControlTemplate> with the following properties set:

This control template will be simple:

a root element for the control, a Grid

an Ellipse to draw the rounded appearance of the button

a ContentPresenter to display the user-specified button content

When you create a new ControlTemplate, you still might want to use the public properties to change the

control's appearance. The TemplateBinding markup extension binds a property of an element that is in the

ControlTemplate to a public property that is defined by the control. When you use a TemplateBinding, you

enable properties on the control to act as parameters to the template. That is, when a property on a control is

set, that value is passed on to the element that has the TemplateBinding on it.

Notice that the Fill and Stroke properties of the <Ellipse> element are bound to the control's Foreground and

Background properties.

A <ContentPresenter> element is also added to the template. Because this template is designed for a button,

take into consideration that the button inherits from ContentControl. The button presents the content of the

element. You can set anything inside of the button, such as plain text or even another control. Both of the

following are valid buttons:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.grid
https://docs.microsoft.com/en-us/dotnet/api/system.windows.shapes.ellipse
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/templatebinding-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/templatebinding-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/templatebinding-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.foreground#system_windows_controls_control_foreground
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background#system_windows_controls_control_background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol

<Button>My Text</Button>

<!-- and -->

<Button>
 <CheckBox>Checkbox in a button</CheckBox>
</Button>

 Use the template

<StackPanel Margin="10">
 <Label>Unstyled Button</Label>
 <Button>Button 1</Button>
 <Label>Rounded Button</Label>
 <Button>Button 2</Button>
</StackPanel>

<StackPanel Margin="10">
 <Label>Unstyled Button</Label>
 <Button>Button 1</Button>
 <Label>Rounded Button</Label>
 <Button Template="{StaticResource roundbutton}">Button 2</Button>
</StackPanel>

<StackPanel Margin="10">
 <Label>Unstyled Button</Label>
 <Button>Button 1</Button>
 <Label>Rounded Button</Label>
 <Button Template="{StaticResource roundbutton}" Width="65" Height="65">Button 2</Button>
</StackPanel>

In both of the previous examples, the text and the checkbox are set as the Button.Content property. Whatever is

set as the content can be presented through a <ContentPresenter>, which is what the template does.

If the ControlTemplate is applied to a ContentControl type, such as a Button , a ContentPresenter is searched for

in the element tree. If the ContentPresenter is found, the template automatically binds the control's Content

property to the ContentPresenter .

Find the buttons that were declared at the start of this article.

Set the second button's Template property to the roundbutton resource:

If you run the project and look at the result, you'll see that the button has a rounded background.

You may have noticed that the button isn't a circle but is skewed. Because of the way the <Ellipse> element

works, it always expands to fill the available space. Make the circle uniform by changing the button's width and

height properties to the same value:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content#system_windows_controls_contentcontrol_content
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content#system_windows_controls_contentcontrol_content
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.template#system_windows_controls_control_template

 Add a Trigger

<Ellipse x:Name="backgroundElement" Fill="{TemplateBinding Background}" Stroke="{TemplateBinding
Foreground}" />

<ControlTemplate x:Key="roundbutton" TargetType="Button">
 <Grid>
 <Ellipse x:Name="backgroundElement" Fill="{TemplateBinding Background}" Stroke="{TemplateBinding
Foreground}" />
 <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="true">

 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

<Trigger Property="IsMouseOver" Value="true">
 <Setter Property="Fill" TargetName="backgroundElement" Value="AliceBlue"/>
</Trigger>

Even though a button with a template applied looks different, it behaves the same as any other button. If you

press the button, the Click event fires. However, you may have noticed that when you move your mouse over the

button, the button's visuals don't change. These visual interactions are all defined by the template.

With the dynamic event and property systems that WPF provides, you can watch a specific property for a value

and then restyle the template when appropriate. In this example, you'll watch the button's IsMouseOver

property. When the mouse is over the control, style the <Ellipse> with a new color. This type of trigger is

known as a PropertyTrigger.

For this to work, you'll need to add a name to the <Ellipse> that you can reference. Give it the name of

backgroundElement.

Next, add a new Trigger to the ControlTemplate.Triggers collection. The trigger will watch the IsMouseOver event

for the value true .

Next, add a <Setter> to the <Trigger> that changes the Fill property of the <Ellipse> to a new color.

Run the project. Notice that when you move the mouse over the button, the color of the <Ellipse> changes.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.uielement.ismouseover#system_windows_uielement_ismouseover
https://docs.microsoft.com/en-us/dotnet/api/system.windows.trigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate.triggers#system_windows_controls_controltemplate_triggers

 Use a VisualState

<ControlTemplate x:Key="roundbutton" TargetType="Button">
 <Grid>
 <Ellipse x:Name="backgroundElement" Fill="{TemplateBinding Background}" Stroke="{TemplateBinding
Foreground}" />
 <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>
</ControlTemplate>

<ControlTemplate x:Key="roundbutton" TargetType="Button">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="CommonStates">
 <VisualState Name="Normal">
 </VisualState>
 <VisualState Name="MouseOver">
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Ellipse x:Name="backgroundElement" Fill="{TemplateBinding Background}" Stroke="{TemplateBinding
Foreground}" />
 <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>
</ControlTemplate>

Visual states are defined and triggered by a control. For example, when the mouse is moved on top of the

control, the CommonStates.MouseOver state is triggered. You can animate property changes based on the current

state of the control. In the previous section, a <Proper tyTr igger> was used to change the foreground of the

button to AliceBlue when the IsMouseOver property was true . Instead, create a visual state that animates the

change of this color, providing a smooth transition. For more information about VisualStates, see Styles and

templates in WPF.

To convert the <Proper tyTr igger> to an animated visual state, First, remove the

<ControlTemplate.Tr iggers> element from your template.

Next, in the <Grid> root of the control template, add the <VisualStateManager.VisualStateGroups>

element with a <VisualStateGroup> for CommonStates . Define two states, Normal and MouseOver .

Any animations defined in a <VisualState> are applied when that state is triggered. Create animations for each

state. Animations are put inside of a <Stor yboard> element. For more information about storyboards, see

Storyboards Overview.

Normal

This state animates the ellipse fill, restoring it to the control's Background color.

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/storyboards-overview

<ControlTemplate x:Key="roundbutton" TargetType="Button">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="CommonStates">
 <VisualState Name="Normal">
 <Storyboard>
 <ColorAnimation Storyboard.TargetName="backgroundElement"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 To="{TemplateBinding Background}"
 Duration="0:0:0.3"/>
 </Storyboard>
 </VisualState>
 <VisualState Name="MouseOver">
 <Storyboard>
 <ColorAnimation Storyboard.TargetName="backgroundElement"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 To="Yellow"
 Duration="0:0:0.3"/>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Ellipse Name="backgroundElement" Fill="{TemplateBinding Background}" Stroke="{TemplateBinding
Foreground}" />
 <ContentPresenter x:Name="contentPresenter" HorizontalAlignment="Center" VerticalAlignment="Center"
/>
 </Grid>
</ControlTemplate>

<Storyboard>
 <ColorAnimation Storyboard.TargetName="backgroundElement"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 To="{TemplateBinding Background}"
 Duration="0:0:0.3"/>
</Storyboard>

<Storyboard>
 <ColorAnimation Storyboard.TargetName="backgroundElement"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 To="Yellow"
 Duration="0:0:0.3"/>
</Storyboard>

MouseOver

This state animates the ellipse Background color to a new color : Yellow .

The <ControlTemplate> should now look like the following.

Run the project. Notice that when you move the mouse over the button, the color of the <Ellipse> animates.

Next steps
Create a style for a control

Styles and templates

Overview of XAML resources

Data binding overview (WPF .NET)
 7/10/2021 • 39 minutes to read • Edit Online

IMPORTANT

 What is data binding?

 Basic data binding concepts

Data binding in Windows Presentation Foundation (WPF) provides a simple and consistent way for apps to

present and interact with data. Elements can be bound to data from different kinds of data sources in the form

of .NET objects and XML. Any ContentControl such as Button and any ItemsControl, such as ListBox and

ListView, have built-in functionality to enable flexible styling of single data items or collections of data items.

Sort, filter, and group views can be generated on top of the data.

The data binding in WPF has several advantages over traditional models, including inherent support for data

binding by a broad range of properties, flexible UI representation of data, and clean separation of business logic

from UI.

This article first discusses concepts fundamental to WPF data binding and then covers the usage of the Binding

class and other features of data binding.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Data binding is the process that establishes a connection between the app UI and the data it displays. If the

binding has the correct settings and the data provides the proper notifications, when the data changes its value,

the elements that are bound to the data reflect changes automatically. Data binding can also mean that if an

outer representation of the data in an element changes, then the underlying data can be automatically updated

to reflect the change. For example, if the user edits the value in a TextBox element, the underlying data value is

automatically updated to reflect that change.

A typical use of data binding is to place server or local configuration data into forms or other UI controls. In WPF,

this concept is expanded to include binding a broad range of properties to different kinds of data sources. In

WPF, dependency properties of elements can be bound to .NET objects (including ADO.NET objects or objects

associated with Web Services and Web properties) and XML data.

Regardless of what element you're binding and the nature of your data source, each binding always follows the

model illustrated by the following figure.

As the figure shows, data binding is essentially the bridge between your binding target and your binding source.

The figure demonstrates the following fundamental WPF data binding concepts:

Typically, each binding has four components:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/data/index.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding

 Data context

 Direction of the data flow

SET T IN G VA L UE

Target TextBox

Target property Text

Source object Employee

Source object value path Name

A binding target object.

A target property.

A binding source.

A path to the value in the binding source to use.

For example, if you bound the content of a TextBox to the Employee.Name property, you would set up

your binding like the following table:

The target property must be a dependency property.

Most UIElement properties are dependency properties, and most dependency properties, except read-

only ones, support data binding by default. Only types derived from DependencyObject can define

dependency properties. All UIElement types derive from DependencyObject .

Binding sources aren't restricted to custom .NET objects.

Although not shown in the figure, it should be noted that the binding source object isn't restricted to

being a custom .NET object. WPF data binding supports data in the form of .NET objects, XML, and even

XAML element objects. To provide some examples, your binding source may be a UIElement, any list

object, an ADO.NET or Web Services object, or an XmlNode that contains your XML data. For more

information, see Binding sources overview.

It's important to remember that when you're establishing a binding, you're binding a binding target to a binding

source. For example, if you're displaying some underlying XML data in a ListBox using data binding, you're

binding your ListBox to the XML data.

To establish a binding, you use the Binding object. The rest of this article discusses many of the concepts

associated with and some of the properties and usage of the Binding object.

When data binding is declared on XAML elements, they resolve data binding by looking at their immediate

DataContext property. The data context is typically the binding source object for the binding source value

path evaluation. You can override this behavior in the binding and set a specific binding source object value.

If the DataContext property for the object hosting the binding isn't set, the parent element's DataContext

property is checked, and so on, up until the root of the XAML object tree. In short, the data context used to

resolve binding is inherited from the parent unless explicitly set on the object.

Bindings can be configured to resolve with a specific object, as opposed to using the data context for binding

resolution. Specifying a source object directly is used when, for example, you bind the foreground color of an

object to the background color of another object. Data context isn't needed since the binding is resolved

between those two objects. Inversely, bindings that aren't bound to specific source objects use data-context

resolution.

When the DataContext property changes, all bindings that could be affected by the data context are reevaluated.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.uielement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.uielement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.uielement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext

 What triggers source updates

As indicated by the arrow in the previous figure, the data flow of a binding can go from the binding target to the

binding source (for example, the source value changes when a user edits the value of a TextBox) and/or from

the binding source to the binding target (for example, your TextBox content is updated with changes in the

binding source) if the binding source provides the proper notifications.

You may want your app to enable users to change the data and propagate it back to the source object. Or you

may not want to enable users to update the source data. You can control the flow of data by setting the

Binding.Mode.

This figure illustrates the different types of data flow:

OneWay binding causes changes to the source property to automatically update the target property, but

changes to the target property are not propagated back to the source property. This type of binding is

appropriate if the control being bound is implicitly read-only. For instance, you may bind to a source such

as a stock ticker, or perhaps your target property has no control interface provided for making changes,

such as a data-bound background color of a table. If there's no need to monitor the changes of the target

property, using the OneWay binding mode avoids the overhead of the TwoWay binding mode.

TwoWay binding causes changes to either the source property or the target property to automatically

update the other. This type of binding is appropriate for editable forms or other fully interactive UI

scenarios. Most properties default to OneWay binding, but some dependency properties (typically

properties of user-editable controls such as the TextBox.Text and CheckBox.IsChecked default to TwoWay

binding. A programmatic way to determine whether a dependency property binds one-way or two-way

by default is to get the property metadata with DependencyProperty.GetMetadata and then check the

Boolean value of the FrameworkPropertyMetadata.BindsTwoWayByDefault property.

OneWayToSource is the reverse of OneWay binding; it updates the source property when the target

property changes. One example scenario is if you only need to reevaluate the source value from the UI.

Not illustrated in the figure is OneTime binding, which causes the source property to initialize the target

property but doesn't propagate subsequent changes. If the data context changes or the object in the data

context changes, the change is not reflected in the target property. This type of binding is appropriate if

either a snapshot of the current state is appropriate or the data is truly static. This type of binding is also

useful if you want to initialize your target property with some value from a source property and the data

context isn't known in advance. This mode is essentially a simpler form of OneWay binding that provides

better performance in cases where the source value doesn't change.

To detect source changes (applicable to OneWay and TwoWay bindings), the source must implement a suitable

property change notification mechanism such as INotifyPropertyChanged. See How to: Implement property

change notification (.NET Framework) for an example of an INotifyPropertyChanged implementation.

The Binding.Mode property provides more information about binding modes and an example of how to specify

the direction of a binding.

Bindings that are TwoWay or OneWayToSource listen for changes in the target property and propagate them

back to the source, known as updating the source. For example, you may edit the text of a TextBox to change the

underlying source value.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.mode#system_windows_data_binding_mode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text#system_windows_controls_textbox_text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.togglebutton.ischecked#system_windows_controls_primitives_togglebutton_ischecked
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyproperty.getmetadata
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkpropertymetadata.bindstwowaybydefault
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onewaytosource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onetime
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-implement-property-change-notification
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.mode#system_windows_data_binding_mode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onewaytosource

UP DAT ESO URC ET RIGGER VA L UE
W H EN T H E SO URC E VA L UE IS
UP DAT ED EXA M P L E SC EN A RIO F O R T EXT B O X

LostFocus (default for TextBox.Text) When the TextBox control loses focus. A TextBox that is associated with
validation logic (see Data Validation
below).

PropertyChanged As you type into the TextBox. TextBox controls in a chat room
window.

Explicit When the app calls UpdateSource. TextBox controls in an editable form
(updates the source values only when
the user presses the submit button).

 Example of data binding

However, is your source value updated while you're editing the text or after you finish editing the text and the

control loses focus? The Binding.UpdateSourceTrigger property determines what triggers the update of the

source. The dots of the right arrows in the following figure illustrate the role of the Binding.UpdateSourceTrigger

property.

If the UpdateSourceTrigger value is UpdateSourceTrigger.PropertyChanged, then the value pointed to by the

right arrow of TwoWay or the OneWayToSource bindings is updated as soon as the target property changes.

However, if the UpdateSourceTrigger value is LostFocus, then that value only is updated with the new value

when the target property loses focus.

Similar to the Mode property, different dependency properties have different default UpdateSourceTrigger

values. The default value for most dependency properties is PropertyChanged, which causes the source

property's value to instantly change when the target property value is changed. Instant changes are fine for

CheckBox and other simple controls. However, for text fields, updating after every keystroke can diminish

performance and denies the user the usual opportunity to backspace and fix typing errors before committing to

the new value. For example, the TextBox.Text property defaults to the UpdateSourceTrigger value of LostFocus,

which causes the source value to change only when the control element loses focus, not when the TextBox.Text

property is changed. See the UpdateSourceTrigger property page for information about how to find the default

value of a dependency property.

The following table provides an example scenario for each UpdateSourceTrigger value using the TextBox as an

example.

For an example, see How to: Control when the TextBox text updates the source (.NET Framework).

For an example of data binding, take a look at the following app UI from the Data Binding Demo, which displays

a list of auction items.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger#system_windows_data_binding_updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger#system_windows_data_binding_updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_propertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onewaytosource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_lostfocus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.mode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_propertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_lostfocus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression.updatesource
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-control-when-the-textbox-text-updates-the-source
https://github.com/microsoft/WPF-Samples/tree/master/Sample%20Applications/DataBindingDemo

The app demonstrates the following features of data binding:

The content of the ListBox is bound to a collection of AuctionItem objects. An AuctionItem object has

properties such as Description, StartPrice, StartDate, Category, and SpecialFeatures.

The data (AuctionItem objects) displayed in the ListBox is templated so that the description and the

current price are shown for each item. The template is created by using a DataTemplate. In addition, the

appearance of each item depends on the SpecialFeatures value of the AuctionItem being displayed. If the

SpecialFeatures value of the AuctionItem is Color, the item has a blue border. If the value is Highlight, the

item has an orange border and a star. The Data Templating section provides information about data

templating.

The user can group, filter, or sort the data using the CheckBoxes provided. In the image above, the Group

by categor y and Sor t by categor y and date CheckBoxes are selected. You may have noticed that the

data is grouped based on the category of the product, and the category name is in alphabetical order. It's

difficult to notice from the image but the items are also sorted by the start date within each category.

Sorting is done using a collection view. The Binding to collections section discusses collection views.

When the user selects an item, the ContentControl displays the details of the selected item. This

experience is called the Master-detail scenario. The Master-detail scenario section provides information

about this type of binding.

The type of the StartDate property is DateTime, which returns a date that includes the time to the

millisecond. In this app, a custom converter has been used so that a shorter date string is displayed. The

Data conversion section provides information about converters.

When the user selects the Add Product button, the following form comes up.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.datetime

 Create a binding

The user can edit the fields in the form, preview the product listing using the short or detailed preview panes,

and select Submit to add the new product listing. Any existing grouping, filtering and sorting settings will apply

to the new entry. In this particular case, the item entered in the above image will be displayed as the second

item within the Computer category.

Not shown in this image is the validation logic provided in the Start Date TextBox. If the user enters an invalid

date (invalid formatting or a past date), the user will be notified with a ToolTip and a red exclamation point next

to the TextBox. The Data Validation section discusses how to create validation logic.

Before going into the different features of data binding outlined above, we will first discuss the fundamental

concepts that are critical to understanding WPF data binding.

To restate some of the concepts discussed in the previous sections, you establish a binding using the Binding

object, and each binding usually has four components: a binding target, a target property, a binding source, and

a path to the source value to use. This section discusses how to set up a binding.

Binding sources are tied to the active DataContext for the element. Elements automatically inherit their

DataContext if they've not explicitly defined one.

Consider the following example, in which the binding source object is a class named MyData that is defined in

the SDKSample namespace. For demonstration purposes, MyData has a string property named ColorName

whose value is set to "Red". Thus, this example generates a button with a red background.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext

<DockPanel xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:c="clr-namespace:SDKSample">
 <DockPanel.Resources>
 <c:MyData x:Key="myDataSource"/>
 </DockPanel.Resources>
 <DockPanel.DataContext>
 <Binding Source="{StaticResource myDataSource}"/>
 </DockPanel.DataContext>
 <Button Background="{Binding Path=ColorName}"
 Width="150" Height="30">
 I am bound to be RED!
 </Button>
</DockPanel>

 Specifying the binding source

<DockPanel xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:c="clr-namespace:SDKSample">
 <DockPanel.Resources>
 <c:MyData x:Key="myDataSource"/>
 </DockPanel.Resources>
 <Button Background="{Binding Source={StaticResource myDataSource}, Path=ColorName}"
 Width="150" Height="30">
 I am bound to be RED!
 </Button>
</DockPanel>

For more information on the binding declaration syntax and examples of how to set up a binding in code, see

Binding declarations overview.

If we apply this example to our basic diagram, the resulting figure looks like the following. This figure describes

a OneWay binding because the Background property supports OneWay binding by default.

You may wonder why this binding works even though the ColorName property is of type string while the

Background property is of type Brush. This binding uses default type conversion, which is discussed in the Data

conversion section.

Notice that in the previous example, the binding source is specified by setting the DockPanel.DataContext

property. The Button then inherits the DataContext value from the DockPanel, which is its parent element. To

reiterate, the binding source object is one of the four necessary components of a binding. So, without the

binding source object being specified, the binding would do nothing.

There are several ways to specify the binding source object. Using the DataContext property on a parent

element is useful when you're binding multiple properties to the same source. However, sometimes it may be

more appropriate to specify the binding source on individual binding declarations. For the previous example,

instead of using the DataContext property, you can specify the binding source by setting the Binding.Source

property directly on the binding declaration of the button, as in the following example.

Other than setting the DataContext property on an element directly, inheriting the DataContext value from an

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.brush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext#system_windows_frameworkelement_datacontext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext

 Specifying the path to the value

<ListBox ItemsSource="{Binding}"
 IsSynchronizedWithCurrentItem="true"/>

 Binding and BindingExpression

ancestor (such as the button in the first example), and explicitly specifying the binding source by setting the

Binding.Source property on the binding (such as the button the last example), you can also use the

Binding.ElementName property or the Binding.RelativeSource property to specify the binding source. The

ElementName property is useful when you're binding to other elements in your app, such as when you're using

a slider to adjust the width of a button. The RelativeSource property is useful when the binding is specified in a

ControlTemplate or a Style. For more information, see Binding sources overview.

If your binding source is an object, you use the Binding.Path property to specify the value to use for your

binding. If you're binding to XML data, you use the Binding.XPath property to specify the value. In some cases, it

may be applicable to use the Path property even when your data is XML. For example, if you want to access the

Name property of a returned XmlNode (as a result of an XPath query), you should use the Path property in

addition to the XPath property.

For more information, see the Path and XPath properties.

Although we have emphasized that the Path to the value to use is one of the four necessary components of a

binding, in the scenarios that you want to bind to an entire object, the value to use would be the same as the

binding source object. In those cases, it's applicable to not specify a Path. Consider the following example.

The above example uses the empty binding syntax: {Binding}. In this case, the ListBox inherits the DataContext

from a parent DockPanel element (not shown in this example). When the path isn't specified, the default is to

bind to the entire object. In other words, in this example, the path has been left out because we are binding the

ItemsSource property to the entire object. (See the Binding to collections section for an in-depth discussion.)

Other than binding to a collection, this scenario is also useful when you want to bind to an entire object instead

of just a single property of an object. For example, if your source object is of type String, you may simply want to

bind to the string itself. Another common scenario is when you want to bind an element to an object with

several properties.

You may need to apply custom logic so that the data is meaningful to your bound target property. The custom

logic may be in the form of a custom converter if default type conversion doesn't exist. See Data conversion for

information about converters.

Before getting into other features and usages of data binding, it's useful to introduce the BindingExpression

class. As you have seen in previous sections, the Binding class is the high-level class for the declaration of a

binding; it provides many properties that allow you to specify the characteristics of a binding. A related class,

BindingExpression, is the underlying object that maintains the connection between the source and the target. A

binding contains all the information that can be shared across several binding expressions. A BindingExpression

is an instance expression that cannot be shared and contains all the instance information of the Binding.

Consider the following example, where myDataObject is an instance of the MyData class, myBinding is the

source Binding object, and MyData is a defined class that contains a string property named ColorName . This

example binds the text content of myText , an instance of TextBlock, to ColorName .

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.elementname#system_windows_data_binding_elementname
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.relativesource#system_windows_data_binding_relativesource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.elementname
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.relativesource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path#system_windows_data_binding_path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.xpath#system_windows_data_binding_xpath
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.xpath
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.xpath
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol.itemssource
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock

// Make a new source
var myDataObject = new MyData();
var myBinding = new Binding("ColorName")
{
 Source = myDataObject
};

// Bind the data source to the TextBox control's Text dependency property
myText.SetBinding(TextBlock.TextProperty, myBinding);

' Make a New source
Dim myDataObject As New MyData
Dim myBinding As New Binding("ColorName")
myBinding.Source = myDataObject

' Bind the data source to the TextBox control's Text dependency property
myText.SetBinding(TextBlock.TextProperty, myBinding)

 Data conversion

You can use the same myBinding object to create other bindings. For example, you can use the myBinding object

to bind the text content of a check box to ColorName. In that scenario, there will be two instances of

BindingExpression sharing the myBinding object.

A BindingExpression object is returned by calling GetBindingExpression on a data-bound object. The following

articles demonstrate some of the usages of the BindingExpression class:

Get the binding object from a bound target property (.NET Framework)

Control When the TextBox text updates the source (.NET Framework)

In the Create a binding section, the button is red because its Background property is bound to a string property

with the value "Red". This string value works because a type converter is present on the Brush type to convert

the string value to a Brush.

Adding this information to the figure in the Create a binding section looks like this.

However, what if instead of having a property of type string your binding source object has a Color property of

type Color? In that case, in order for the binding to work you would need to first turn the Color property value

into something that the Background property accepts. You would need to create a custom converter by

implementing the IValueConverter interface, as in the following example.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingoperations.getbindingexpression
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-get-the-binding-object-from-a-bound-target-property
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-control-when-the-textbox-text-updates-the-source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.brush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.brush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.color
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.ivalueconverter

[ValueConversion(typeof(Color), typeof(SolidColorBrush))]
public class ColorBrushConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo
culture)
 {
 Color color = (Color)value;
 return new SolidColorBrush(color);
 }

 public object ConvertBack(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)
 {
 return null;
 }
}

<ValueConversion(GetType(Color), GetType(SolidColorBrush))>
Public Class ColorBrushConverter
 Implements IValueConverter
 Public Function Convert(ByVal value As Object, ByVal targetType As Type, ByVal parameter As Object,
ByVal culture As System.Globalization.CultureInfo) As Object Implements IValueConverter.Convert
 Dim color As Color = CType(value, Color)
 Return New SolidColorBrush(color)
 End Function

 Public Function ConvertBack(ByVal value As Object, ByVal targetType As Type, ByVal parameter As Object,
ByVal culture As System.Globalization.CultureInfo) As Object Implements IValueConverter.ConvertBack
 Return Nothing
 End Function
End Class

See IValueConverter for more information.

Now the custom converter is used instead of default conversion, and our diagram looks like this.

To reiterate, default conversions may be available because of type converters that are present in the type being

bound to. This behavior will depend on which type converters are available in the target. If in doubt, create your

own converter.

The following are some typical scenarios where it makes sense to implement a data converter :

Your data should be displayed differently, depending on culture. For instance, you might want to

implement a currency converter or a calendar date/time converter based on the conventions used in a

particular culture.

The data being used isn't necessarily intended to change the text value of a property, but is instead

intended to change some other value, such as the source for an image, or the color or style of the display

text. Converters can be used in this instance by converting the binding of a property that might not seem

to be appropriate, such as binding a text field to the Background property of a table cell.

More than one control or multiple properties of controls are bound to the same data. In this case, the

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.ivalueconverter

 Binding to collections

 How to implement collections

 Collection views

 What Are collection views?

primary binding might just display the text, whereas other bindings handle specific display issues but still

use the same binding as source information.

A target property has a collection of bindings, which is termed MultiBinding. For MultiBinding, you use a

custom IMultiValueConverter to produce a final value from the values of the bindings. For example, color

may be computed from red, blue, and green values, which can be values from the same or different

binding source objects. See MultiBinding for examples and information.

A binding source object can be treated either as a single object whose properties contain data or as a data

collection of polymorphic objects that are often grouped together (such as the result of a query to a database).

So far we've only discussed binding to single objects. However, binding to a data collection is a common

scenario. For example, a common scenario is to use an ItemsControl such as a ListBox, ListView, or TreeView to

display a data collection, such as in the app shown in the What is data binding section.

Fortunately, our basic diagram still applies. If you're binding an ItemsControl to a collection, the diagram looks

like this.

As shown in this diagram, to bind an ItemsControl to a collection object, ItemsControl.ItemsSource property is

the property to use. You can think of ItemsSource as the content of the ItemsControl. The binding is OneWay

because the ItemsSource property supports OneWay binding by default.

You can enumerate over any collection that implements the IEnumerable interface. However, to set up dynamic

bindings so that insertions or deletions in the collection update the UI automatically, the collection must

implement the INotifyCollectionChanged interface. This interface exposes an event that should be raised

whenever the underlying collection changes.

WPF provides the ObservableCollection<T> class, which is a built-in implementation of a data collection that

exposes the INotifyCollectionChanged interface. To fully support transferring data values from source objects to

targets, each object in your collection that supports bindable properties must also implement the

INotifyPropertyChanged interface. For more information, see Binding sources overview.

Before implementing your own collection, consider using ObservableCollection<T> or one of the existing

collection classes, such as List<T>, Collection<T>, and BindingList<T>, among many others. If you have an

advanced scenario and want to implement your own collection, consider using IList, which provides a non-

generic collection of objects that can be individually accessed by the index, and thus provides the best

performance.

Once your ItemsControl is bound to a data collection, you may want to sort, filter, or group the data. To do that,

you use collection views, which are classes that implement the ICollectionView interface.

A collection view is a layer on top of a binding source collection that allows you to navigate and display the

source collection based on sort, filter, and group queries, without having to change the underlying source

collection itself. A collection view also maintains a pointer to the current item in the collection. If the source

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.multibinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.multibinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.imultivalueconverter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.multibinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.treeview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol.itemssource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.inotifycollectionchanged
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.observablecollection-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.inotifycollectionchanged
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.observablecollection-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.collection-1
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.bindinglist-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ilist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.itemscontrol
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.icollectionview

 How to create a view

<Window.Resources>
 <CollectionViewSource
 Source="{Binding Source={x:Static Application.Current}, Path=AuctionItems}"
 x:Key="listingDataView" />
</Window.Resources>

<ListBox Name="Master" Grid.Row="2" Grid.ColumnSpan="3" Margin="8"
 ItemsSource="{Binding Source={StaticResource listingDataView}}" />

SO URC E C O L L EC T IO N T Y P E C O L L EC T IO N VIEW T Y P E N OT ES

IEnumerable An internal type based on
CollectionView

Cannot group items.

IList ListCollectionView Fastest.

IBindingList BindingListCollectionView

 Using a default view

 Collection views with ADO.NET DataTables

collection implements the INotifyCollectionChanged interface, the changes raised by the CollectionChanged

event are propagated to the views.

Because views do not change the underlying source collections, each source collection can have multiple views

associated with it. For example, you may have a collection of Task objects. With the use of views, you can display

that same data in different ways. For example, on the left side of your page you may want to show tasks sorted

by priority, and on the right side, grouped by area.

One way to create and use a view is to instantiate the view object directly and then use it as the binding source.

For example, consider the Data binding demo app shown in the What is data binding section. The app is

implemented such that the ListBox binds to a view over the data collection instead of the data collection directly.

The following example is extracted from the Data binding demo app. The CollectionViewSource class is the

XAML proxy of a class that inherits from CollectionView. In this particular example, the Source of the view is

bound to the AuctionItems collection (of type ObservableCollection<T>) of the current app object.

The resource listingDataView then serves as the binding source for elements in the app, such as the ListBox.

To create another view for the same collection, you can create another CollectionViewSource instance and give it

a different x:Key name.

The following table shows what view data types are created as the default collection view or by

CollectionViewSource based on the source collection type.

Specifying a collection view as a binding source is one way to create and use a collection view. WPF also creates

a default collection view for every collection used as a binding source. If you bind directly to a collection, WPF

binds to its default view. This default view is shared by all bindings to the same collection, so a change made to a

default view by one bound control or code (such as sorting or a change to the current item pointer, discussed

later) is reflected in all other bindings to the same collection.

To get the default view, you use the GetDefaultView method. For an example, see Get the default view of a data

collection (.NET Framework).

To improve performance, collection views for ADO.NET DataTable or DataView objects delegate sorting and

filtering to the DataView, which causes sorting and filtering to be shared across all collection views of the data

https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.inotifycollectionchanged
https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.inotifycollectionchanged.collectionchanged
https://github.com/microsoft/WPF-Samples/tree/master/Sample%20Applications/DataBindingDemo
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://github.com/microsoft/WPF-Samples/tree/master/Sample%20Applications/DataBindingDemo
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource.source
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.observablecollection-1
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionview
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ilist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.listcollectionview
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.ibindinglist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindinglistcollectionview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource.getdefaultview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-get-the-default-view-of-a-data-collection
https://docs.microsoft.com/en-us/dotnet/api/system.data.datatable
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataview
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataview

 Sorting

private void AddSortCheckBox_Checked(object sender, RoutedEventArgs e)
{
 // Sort the items first by Category and then by StartDate
 listingDataView.SortDescriptions.Add(new SortDescription("Category", ListSortDirection.Ascending));
 listingDataView.SortDescriptions.Add(new SortDescription("StartDate", ListSortDirection.Ascending));
}

Private Sub AddSortCheckBox_Checked(sender As Object, e As RoutedEventArgs)
 ' Sort the items first by Category And then by StartDate
 listingDataView.SortDescriptions.Add(New SortDescription("Category", ListSortDirection.Ascending))
 listingDataView.SortDescriptions.Add(New SortDescription("StartDate", ListSortDirection.Ascending))
End Sub

 Filtering

private void AddFilteringCheckBox_Checked(object sender, RoutedEventArgs e)
{
 if (((CheckBox)sender).IsChecked == true)
 listingDataView.Filter += ListingDataView_Filter;
 else
 listingDataView.Filter -= ListingDataView_Filter;
}

Private Sub AddFilteringCheckBox_Checked(sender As Object, e As RoutedEventArgs)
 Dim checkBox = DirectCast(sender, CheckBox)

 If checkBox.IsChecked = True Then
 AddHandler listingDataView.Filter, AddressOf ListingDataView_Filter
 Else
 RemoveHandler listingDataView.Filter, AddressOf ListingDataView_Filter
 End If
End Sub

source. To enable each collection view to sort and filter independently, initialize each collection view with its own

DataView object.

As mentioned before, views can apply a sort order to a collection. As it exists in the underlying collection, your

data may or may not have a relevant, inherent order. The view over the collection allows you to impose an order,

or change the default order, based on comparison criteria that you supply. Because it's a client-based view of the

data, a common scenario is that the user might want to sort columns of tabular data per the value that the

column corresponds to. Using views, this user-driven sort can be applied, again without making any changes to

the underlying collection or even having to requery for the collection content. For an example, see Sort a

GridView column when a header is clicked (.NET Framework).

The following example shows the sorting logic of the "Sort by category and date" CheckBox of the app UI in the

What is data binding section.

Views can also apply a filter to a collection, so that the view shows only a certain subset of the full collection. You

might filter on a condition in the data. For instance, as is done by the app in the What is data binding section, the

"Show only bargains" CheckBox contains logic to filter out items that cost $25 or more. The following code is

executed to set ShowOnlyBargainsFilter as the Filter event handler when that CheckBox is selected.

The ShowOnlyBargainsFilter event handler has the following implementation.

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/how-to-sort-a-gridview-column-when-a-header-is-clicked
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.checkbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource.filter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.checkbox

private void ListingDataView_Filter(object sender, FilterEventArgs e)
{
 // Start with everything excluded
 e.Accepted = false;

 // Only inlcude items with a price less than 25
 if (e.Item is AuctionItem product && product.CurrentPrice < 25)
 e.Accepted = true;
}

Private Sub ListingDataView_Filter(sender As Object, e As FilterEventArgs)

 ' Start with everything excluded
 e.Accepted = False

 Dim product As AuctionItem = TryCast(e.Item, AuctionItem)

 If product IsNot Nothing Then

 ' Only include products with prices lower than 25
 If product.CurrentPrice < 25 Then e.Accepted = True

 End If

End Sub

 Grouping

// This groups the items in the view by the property "Category"
var groupDescription = new PropertyGroupDescription();
groupDescription.PropertyName = "Category";
listingDataView.GroupDescriptions.Add(groupDescription);

' This groups the items in the view by the property "Category"
Dim groupDescription = New PropertyGroupDescription()
groupDescription.PropertyName = "Category"
listingDataView.GroupDescriptions.Add(groupDescription)

 Current item pointers

If you're using one of the CollectionView classes directly instead of CollectionViewSource, you would use the

Filter property to specify a callback. For an example, see Filter Data in a View (.NET Framework).

Except for the internal class that views an IEnumerable collection, all collection views support grouping, which

allows the user to partition the collection in the collection view into logical groups. The groups can be explicit,

where the user supplies a list of groups, or implicit, where the groups are generated dynamically depending on

the data.

The following example shows the logic of the "Group by category" CheckBox.

For another grouping example, see Group Items in a ListView That Implements a GridView (.NET Framework).

Views also support the notion of a current item. You can navigate through the objects in a collection view. As

you navigate, you're moving an item pointer that allows you to retrieve the object that exists at that particular

location in the collection. For an example, see Navigate through the objects in a data CollectionView (.NET

Framework).

Because WPF binds to a collection only by using a view (either a view you specify, or the collection's default

view), all bindings to collections have a current item pointer. When binding to a view, the slash ("/") character in

a Path value designates the current item of the view. In the following example, the data context is a collection

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionview.filter
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-filter-data-in-a-view
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.checkbox
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/how-to-group-items-in-a-listview-that-implements-a-gridview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-navigate-through-the-objects-in-a-data-collectionview

<Button Content="{Binding }" />
<Button Content="{Binding Path=/}" />
<Button Content="{Binding Path=/Description}" />

<Button Content="{Binding /Offices/}" />

 Master-detail binding scenario

<ListBox Name="Master" Grid.Row="2" Grid.ColumnSpan="3" Margin="8"
 ItemsSource="{Binding Source={StaticResource listingDataView}}" />
<ContentControl Name="Detail" Grid.Row="3" Grid.ColumnSpan="3"
 Content="{Binding Source={StaticResource listingDataView}}"
 ContentTemplate="{StaticResource detailsProductListingTemplate}"
 Margin="9,0,0,0"/>

 Data templating

view. The first line binds to the collection. The second line binds to the current item in the collection. The third

line binds to the Description property of the current item in the collection.

The slash and property syntax can also be stacked to traverse a hierarchy of collections. The following example

binds to the current item of a collection named Offices , which is a property of the current item of the source

collection.

The current item pointer can be affected by any sorting or filtering that is applied to the collection. Sorting

preserves the current item pointer on the last item selected, but the collection view is now restructured around

it. (Perhaps the selected item was at the beginning of the list before, but now the selected item might be

somewhere in the middle.) Filtering preserves the selected item if that selection remains in view after the

filtering. Otherwise, the current item pointer is set to the first item of the filtered collection view.

The notion of a current item is useful not only for navigation of items in a collection, but also for the master-

detail binding scenario. Consider the app UI in the What is data binding section again. In that app, the selection

within the ListBox determines the content shown in the ContentControl. To put it in another way, when a ListBox

item is selected, the ContentControl shows the details of the selected item.

You can implement the master-detail scenario simply by having two or more controls bound to the same view.

The following example from the Data binding demo shows the markup of the ListBox and the ContentControl

you see on the app UI in the What is data binding section.

Notice that both of the controls are bound to the same source, the listingDataView static resource (see the

definition of this resource in the How to create a view section). This binding works because when a singleton

object (the ContentControl in this case) is bound to a collection view, it automatically binds to the CurrentItem of

the view. The CollectionViewSource objects automatically synchronize currency and selection. If your list control

isn't bound to a CollectionViewSource object as in this example, then you would need to set its

IsSynchronizedWithCurrentItem property to true for this to work.

For other examples, see Bind to a collection and display information based on selection (.NET Framework) and

Use the master-detail pattern with hierarchical data (.NET Framework).

You may have noticed that the above example uses a template. In fact, the data would not be displayed the way

we wish without the use of templates (the one explicitly used by the ContentControl and the one implicitly used

by the ListBox). We now turn to data templating in the next section.

Without the use of data templates, our app UI in the What is data binding section would look like the following.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://github.com/microsoft/WPF-Samples/tree/master/Sample%20Applications/DataBindingDemo
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionview.currentitem
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.collectionviewsource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.selector.issynchronizedwithcurrentitem
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-bind-to-a-collection-and-display-information-based-on-selection
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-use-the-master-detail-pattern-with-hierarchical-data
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox

<DataTemplate DataType="{x:Type src:AuctionItem}">
 <Border BorderThickness="1" BorderBrush="Gray"
 Padding="7" Name="border" Margin="3" Width="500">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="20"/>
 <ColumnDefinition Width="86"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Polygon Grid.Row="0" Grid.Column="0" Grid.RowSpan="4"
 Fill="Yellow" Stroke="Black" StrokeThickness="1"
 StrokeLineJoin="Round" Width="20" Height="20"
 Stretch="Fill"
 Points="9,2 11,7 17,7 12,10 14,15 9,12 4,15 6,10 1,7 7,7"
 Visibility="Hidden" Name="star"/>

 <TextBlock Grid.Row="0" Grid.Column="1" Margin="0,0,8,0"
 Name="descriptionTitle"

As shown in the example in the previous section, both the ListBox control and the ContentControl are bound to

the entire collection object (or more specifically, the view over the collection object) of AuctionItems. Without

specific instructions of how to display the data collection, the ListBox displays the string representation of each

object in the underlying collection, and the ContentControl displays the string representation of the object it's

bound to.

To solve that problem, the app defines DataTemplates. As shown in the example in the previous section, the

ContentControl explicitly uses the detailsProductListingTemplate data template. The ListBox control implicitly

uses the following data template when displaying the AuctionItem objects in the collection.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox

 Name="descriptionTitle"
 Style="{StaticResource smallTitleStyle}">Description:</TextBlock>

 <TextBlock Name="DescriptionDTDataType" Grid.Row="0" Grid.Column="2"
 Text="{Binding Path=Description}"
 Style="{StaticResource textStyleTextBlock}"/>

 <TextBlock Grid.Row="1" Grid.Column="1" Margin="0,0,8,0"
 Name="currentPriceTitle"
 Style="{StaticResource smallTitleStyle}">Current Price:</TextBlock>

 <StackPanel Grid.Row="1" Grid.Column="2" Orientation="Horizontal">
 <TextBlock Text="$" Style="{StaticResource textStyleTextBlock}"/>
 <TextBlock Name="CurrentPriceDTDataType"
 Text="{Binding Path=CurrentPrice}"
 Style="{StaticResource textStyleTextBlock}"/>
 </StackPanel>
 </Grid>
 </Border>
 <DataTemplate.Triggers>
 <DataTrigger Binding="{Binding Path=SpecialFeatures}">
 <DataTrigger.Value>
 <src:SpecialFeatures>Color</src:SpecialFeatures>
 </DataTrigger.Value>
 <DataTrigger.Setters>
 <Setter Property="BorderBrush" Value="DodgerBlue" TargetName="border" />
 <Setter Property="Foreground" Value="Navy" TargetName="descriptionTitle" />
 <Setter Property="Foreground" Value="Navy" TargetName="currentPriceTitle" />
 <Setter Property="BorderThickness" Value="3" TargetName="border" />
 <Setter Property="Padding" Value="5" TargetName="border" />
 </DataTrigger.Setters>
 </DataTrigger>
 <DataTrigger Binding="{Binding Path=SpecialFeatures}">
 <DataTrigger.Value>
 <src:SpecialFeatures>Highlight</src:SpecialFeatures>
 </DataTrigger.Value>
 <Setter Property="BorderBrush" Value="Orange" TargetName="border" />
 <Setter Property="Foreground" Value="Navy" TargetName="descriptionTitle" />
 <Setter Property="Foreground" Value="Navy" TargetName="currentPriceTitle" />
 <Setter Property="Visibility" Value="Visible" TargetName="star" />
 <Setter Property="BorderThickness" Value="3" TargetName="border" />
 <Setter Property="Padding" Value="5" TargetName="border" />
 </DataTrigger>
 </DataTemplate.Triggers>
</DataTemplate>

 Data validation

 Associating validation rules with a binding

With the use of those two DataTemplates, the resulting UI is the one shown in the What is data binding section.

As you can see from that screenshot, in addition to letting you place data in your controls, DataTemplates allow

you to define compelling visuals for your data. For example, DataTriggers are used in the above DataTemplate so

that AuctionItems with SpecialFeatures value of HighLight would be displayed with an orange border and a star.

For more information about data templates, see the Data templating overview (.NET Framework).

Most app that take user input need to have validation logic to ensure that the user has entered the expected

information. The validation checks can be based on type, range, format, or other app-specific requirements. This

section discusses how data validation works in WPF.

The WPF data binding model allows you to associate ValidationRules with your Binding object. For example, the

following example binds a TextBox to a property named StartPrice and adds a ExceptionValidationRule object

to the Binding.ValidationRules property.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/data-templating-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.validationrules
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.exceptionvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.validationrules

<TextBox Name="StartPriceEntryForm" Grid.Row="2"
 Style="{StaticResource textStyleTextBox}" Margin="8,5,0,5" Grid.ColumnSpan="2">
 <TextBox.Text>
 <Binding Path="StartPrice" UpdateSourceTrigger="PropertyChanged">
 <Binding.ValidationRules>
 <ExceptionValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

public class FutureDateRule : ValidationRule
{
 public override ValidationResult Validate(object value, CultureInfo cultureInfo)
 {
 // Test if date is valid
 if (DateTime.TryParse(value.ToString(), out DateTime date))
 {
 // Date is not in the future, fail
 if (DateTime.Now > date)
 return new ValidationResult(false, "Please enter a date in the future.");
 }
 else
 {
 // Date is not a valid date, fail
 return new ValidationResult(false, "Value is not a valid date.");
 }

 // Date is valid and in the future, pass
 return ValidationResult.ValidResult;
 }
}

A ValidationRule object checks whether the value of a property is valid. WPF has two types of built-in

ValidationRule objects:

A ExceptionValidationRule checks for exceptions thrown during the update of the binding source

property. In the previous example, StartPrice is of type integer. When the user enters a value that

cannot be converted to an integer, an exception is thrown, causing the binding to be marked as invalid.

An alternative syntax to setting the ExceptionValidationRule explicitly is to set the ValidatesOnExceptions

property to true on your Binding or MultiBinding object.

A DataErrorValidationRule object checks for errors that are raised by objects that implement the

IDataErrorInfo interface. For more information about using this validation rule, see

DataErrorValidationRule. An alternative syntax to setting the DataErrorValidationRule explicitly is to set

the ValidatesOnDataErrors property to true on your Binding or MultiBinding object.

You can also create your own validation rule by deriving from the ValidationRule class and implementing the

Validate method. The following example shows the rule used by the Add Product Listing "Start Date" TextBox

from the What is data binding section.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.exceptionvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.exceptionvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.validatesonexceptions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.multibinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dataerrorvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.idataerrorinfo
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dataerrorvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dataerrorvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.validatesondataerrors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.multibinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox

Public Class FutureDateRule
 Inherits ValidationRule

 Public Overrides Function Validate(value As Object, cultureInfo As CultureInfo) As ValidationResult

 Dim inputDate As Date

 ' Test if date is valid
 If Date.TryParse(value.ToString, inputDate) Then

 ' Date is not in the future, fail
 If Date.Now > inputDate Then
 Return New ValidationResult(False, "Please enter a date in the future.")
 End If

 Else
 ' // Date Is Not a valid date, fail
 Return New ValidationResult(False, "Value is not a valid date.")
 End If

 ' Date is valid and in the future, pass
 Return ValidationResult.ValidResult

 End Function

End Class

<TextBox Name="StartDateEntryForm" Grid.Row="3"
 Validation.ErrorTemplate="{StaticResource validationTemplate}"
 Style="{StaticResource textStyleTextBox}" Margin="8,5,0,5" Grid.ColumnSpan="2">
 <TextBox.Text>
 <Binding Path="StartDate" UpdateSourceTrigger="PropertyChanged"
 Converter="{StaticResource dateConverter}" >
 <Binding.ValidationRules>
 <src:FutureDateRule />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

 Providing visual feedback

<ControlTemplate x:Key="validationTemplate">
 <DockPanel>
 <TextBlock Foreground="Red" FontSize="20">!</TextBlock>
 <AdornedElementPlaceholder/>
 </DockPanel>
</ControlTemplate>

The StartDateEntryForm TextBox uses this FutureDateRule, as shown in the following example.

Because the UpdateSourceTrigger value is PropertyChanged, the binding engine updates the source value on

every keystroke, which means it also checks every rule in the ValidationRules collection on every keystroke. We

discuss this further in the Validation Process section.

If the user enters an invalid value, you may want to provide some feedback about the error on the app UI. One

way to provide such feedback is to set the Validation.ErrorTemplate attached property to a custom

ControlTemplate. As shown in the previous subsection, the StartDateEntryForm TextBox uses an ErrorTemplate

called validationTemplate. The following example shows the definition of validationTemplate.

The AdornedElementPlaceholder element specifies where the control being adorned should be placed.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_propertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.validationrules
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errortemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errortemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.adornedelementplaceholder

<Style x:Key="textStyleTextBox" TargetType="TextBox">
 <Setter Property="Foreground" Value="#333333" />
 <Setter Property="MaxLength" Value="40" />
 <Setter Property="Width" Value="392" />
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="true">
 <Setter Property="ToolTip"
 Value="{Binding (Validation.Errors).CurrentItem.ErrorContent, RelativeSource=
{RelativeSource Self}}" />
 </Trigger>
 </Style.Triggers>
</Style>

 Validation process

In addition, you may also use a ToolTip to display the error message. Both the StartDateEntryForm and the

StartPriceEntryFormTextBoxes use the style textStyleTextBox, which creates a ToolTip that displays the error

message. The following example shows the definition of textStyleTextBox. The attached property

Validation.HasError is true when one or more of the bindings on the properties of the bound element are in

error.

With the custom ErrorTemplate and the ToolTip, the StartDateEntryForm TextBox looks like the following when

there's a validation error.

If your Binding has associated validation rules but you do not specify an ErrorTemplate on the bound control, a

default ErrorTemplate will be used to notify users when there's a validation error. The default ErrorTemplate is a

control template that defines a red border in the adorner layer. With the default ErrorTemplate and the ToolTip,

the UI of the StartPriceEntryForm TextBox looks like the following when there's a validation error.

For an example of how to provide logic to validate all controls in a dialog box, see the Custom Dialog Boxes

section in the Dialog boxes overview.

Validation usually occurs when the value of a target is transferred to the binding source property. This transfer

occurs on TwoWay and OneWayToSource bindings. To reiterate, what causes a source update depends on the

value of the UpdateSourceTrigger property, as described in the What triggers source updates section.

The following items describe the validation process. If a validation error or other type of error occurs at any time

during this process, the process is halted:

1. The binding engine checks if there are any custom ValidationRule objects defined whose ValidationStep is

set to RawProposedValue for that Binding, in which case it calls the Validate method on each

ValidationRule until one of them runs into an error or until all of them pass.

2. The binding engine then calls the converter, if one exists.

3. If the converter succeeds, the binding engine checks if there are any custom ValidationRule objects

defined whose ValidationStep is set to ConvertedProposedValue for that Binding, in which case it calls the

Validate method on each ValidationRule that has ValidationStep set to ConvertedProposedValue until one

of them runs into an error or until all of them pass.

4. The binding engine sets the source property.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.haserror
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errortemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errortemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errortemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errortemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errortemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.tooltip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onewaytosource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_rawproposedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_convertedproposedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_convertedproposedvalue

 Debugging mechanism

 See also

5. The binding engine checks if there are any custom ValidationRule objects defined whose ValidationStep is

set to UpdatedValue for that Binding, in which case it calls the Validate method on each ValidationRule

that has ValidationStep set to UpdatedValue until one of them runs into an error or until all of them pass.

If a DataErrorValidationRule is associated with a binding and its ValidationStep is set to the default,

UpdatedValue, the DataErrorValidationRule is checked at this point. At this point any binding that has the

ValidatesOnDataErrors set to true is checked.

6. The binding engine checks if there are any custom ValidationRule objects defined whose ValidationStep is

set to CommittedValue for that Binding, in which case it calls the Validate method on each ValidationRule

that has ValidationStep set to CommittedValue until one of them runs into an error or until all of them

pass.

If a ValidationRule doesn't pass at any time throughout this process, the binding engine creates a ValidationError

object and adds it to the Validation.Errors collection of the bound element. Before the binding engine runs the

ValidationRule objects at any given step, it removes any ValidationError that was added to the Validation.Errors

attached property of the bound element during that step. For example, if a ValidationRule whose ValidationStep

is set to UpdatedValue failed, the next time the validation process occurs, the binding engine removes that

ValidationError immediately before it calls any ValidationRule that has ValidationStep set to UpdatedValue.

When Validation.Errors isn't empty, the Validation.HasError attached property of the element is set to true .

Also, if the NotifyOnValidationError property of the Binding is set to true , then the binding engine raises the

Validation.Error attached event on the element.

Also note that a valid value transfer in either direction (target to source or source to target) clears the

Validation.Errors attached property.

If the binding either has an ExceptionValidationRule associated with it, or had the ValidatesOnExceptions

property is set to true and an exception is thrown when the binding engine sets the source, the binding engine

checks to see if there's a UpdateSourceExceptionFilter. You can use the UpdateSourceExceptionFilter callback to

provide a custom handler for handling exceptions. If an UpdateSourceExceptionFilter isn't specified on the

Binding, the binding engine creates a ValidationError with the exception and adds it to the Validation.Errors

collection of the bound element.

You can set the attached property PresentationTraceSources.TraceLevel on a binding-related object to receive

information about the status of a specific binding.

Data binding demo

Binding declarations overview

Binding sources overview

DataErrorValidationRule

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_updatedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_updatedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dataerrorvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_updatedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dataerrorvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.validatesondataerrors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_committedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_committedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationerror
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationerror
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_updatedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationerror
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationrule.validationstep
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationstep#system_windows_controls_validationstep_updatedvalue
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.haserror
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.notifyonvalidationerror
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.error
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.exceptionvalidationrule
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.validatesonexceptions
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourceexceptionfilter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourceexceptionfilter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourceexceptionfilter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validationerror
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.errors
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.presentationtracesources.tracelevel
https://github.com/microsoft/WPF-Samples/tree/master/Sample%20Applications/DataBindingDemo
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dataerrorvalidationrule

Binding declarations overview (WPF .NET)
 5/1/2021 • 8 minutes to read • Edit Online

 Prerequisites

 Declare a binding in XAML

<TextBlock Text="{Binding Source={StaticResource myDataSource}, Path=Name}"/>

 Object element syntax

<TextBlock>
 <TextBlock.Text>
 <Binding Source="{StaticResource myDataSource}" Path="Name"/>
 </TextBlock.Text>
</TextBlock>

 MultiBinding and PriorityBinding

Typically, developers declare the bindings directly in the XAML markup of the UI elements they want to bind data

to. However, you can also declare bindings in code. This article describes how to declare bindings in both XAML

and in code.

Before reading this article, it's important that you're familiar with the concept and usage of markup extensions.

For more information about markup extensions, see Markup Extensions and WPF XAML.

This article doesn't cover data binding concepts. For a discussion of data binding concepts, see Data binding

overview.

Binding is a markup extension. When you use the binding extension to declare a binding, the declaration

consists of a series of clauses following the Binding keyword and separated by commas (,). The clauses in the

binding declaration can be in any order and there are many possible combinations. The clauses are

Name=Value pairs, where Name is the name of the Binding property and Value is the value you're setting for

the property.

When creating binding declaration strings in markup, they must be attached to the specific dependency

property of a target object. The following example shows how to bind the TextBox.Text property using the

binding extension, specifying the Source and Path properties.

You can specify most of the properties of the Binding class this way. For more information about the binding

extension and for a list of Binding properties that cannot be set using the binding extension, see the Binding

Markup Extension (.NET Framework) overview.

Object element syntax is an alternative to creating the binding declaration. In most cases, there's no particular

advantage to using either the markup extension or the object element syntax. However, when the markup

extension doesn't support your scenario, such as when your property value is of a non-string type for which no

type conversion exists, you need to use the object element syntax.

The previous section demonstrated how to bind with a XAML extension. The following example demonstrates

doing the same binding but uses object element syntax:

For more information about the different terms, see XAML Syntax In Detail (.NET Framework).

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/data/binding-declarations-overview.md
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/markup-extensions-and-wpf-xaml
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/binding-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/xaml-syntax-in-detail

 Create a binding in code

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Make a new data source object
 var personDetails = new Person()
 {
 Name = "John",
 Birthdate = DateTime.Parse("2001-02-03")
 };

 // New binding object using the path of 'Name' for whatever source object is used
 var nameBindingObject = new Binding("Name");

 // Configure the binding
 nameBindingObject.Mode = BindingMode.OneWay;
 nameBindingObject.Source = personDetails;
 nameBindingObject.Converter = NameConverter.Instance;
 nameBindingObject.ConverterCulture = new CultureInfo("en-US");

 // Set the binding to a target object. The TextBlock.Name property on the NameBlock UI element
 BindingOperations.SetBinding(NameBlock, TextBlock.TextProperty, nameBindingObject);
}

Private Sub Window_Loaded(sender As Object, e As RoutedEventArgs)

 ' Make a new data source object
 Dim personDetails As New Person() With {
 .Name = "John",
 .Birthdate = Date.Parse("2001-02-03")
 }

 ' New binding object using the path of 'Name' for whatever source object is used
 Dim nameBindingObject As New Binding("Name")

 ' Configure the binding
 nameBindingObject.Mode = BindingMode.OneWay
 nameBindingObject.Source = personDetails
 nameBindingObject.Converter = NameConverter.Instance
 nameBindingObject.ConverterCulture = New CultureInfo("en-US")

 ' Set the binding to a target object. The TextBlock.Name property on the NameBlock UI element
 BindingOperations.SetBinding(NameBlock, TextBlock.TextProperty, nameBindingObject)

End Sub

MultiBinding and PriorityBinding don't support the XAML extension syntax. That's why you must use the object

element syntax if you're declaring a MultiBinding or a PriorityBinding in XAML.

Another way to specify a binding is to set properties directly on a Binding object in code, and then assign the

binding to a property. The following example shows how to create a Binding object in code.

The previous code set the following on the binding:

A path of the property on the data source object.

The mode of the binding.

The data source, in this case, a simple object instance representing a person.

An optional converter that processes the value coming in from the data source object before it's assigned to

the target property.

When the object you're binding is a FrameworkElement or a FrameworkContentElement, you can call the

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.multibinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.prioritybinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.multibinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.prioritybinding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkcontentelement

class Person
{
 public string Name { get; set; }
 public DateTime Birthdate { get; set; }
}

Public Class Person

 Public Property Name As String
 Public Property Birthdate As DateTime

End Class

 Binding path syntax

 Escaping mechanism

SetBinding method on your object directly instead of using BindingOperations.SetBinding. For an example, see

How to: Create a Binding in Code.

The previous example uses a simple data object type of Person . The following is the code for that object:

Use the Path property to specify the source value you want to bind to:

In the simplest case, the Path property value is the name of the property of the source object to use for

the binding, such as Path=PropertyName .

Subproperties of a property can be specified by a similar syntax as in C#. For instance, the clause

Path=ShoppingCart.Order sets the binding to the subproperty Order of the object or property

ShoppingCart .

To bind to an attached property, place parentheses around the attached property. For example, to bind to

the attached property DockPanel.Dock, the syntax is Path=(DockPanel.Dock) .

Indexers of a property can be specified within square brackets following the property name where the

indexer is applied. For instance, the clause Path=ShoppingCart[0] sets the binding to the index that

corresponds to how your property's internal indexing handles the literal string "0". Nested indexers are

also supported.

Indexers and subproperties can be mixed in a Path clause; for example,

Path=ShoppingCart.ShippingInfo[MailingAddress,Street].

Inside indexers. You can have multiple indexer parameters separated by commas (,). The type of each

parameter can be specified with parentheses. For example, you can have

Path="[(sys:Int32)42,(sys:Int32)24]" , where sys is mapped to the System namespace.

When the source is a collection view, the current item can be specified with a slash (/). For example, the

clause Path=/ sets the binding to the current item in the view. When the source is a collection, this syntax

specifies the current item of the default collection view.

Property names and slashes can be combined to traverse properties that are collections. For example,

Path=/Offices/ManagerName specifies the current item of the source collection, which contains an Offices

property that is also a collection. Its current item is an object that contains a ManagerName property.

Optionally, a period (.) path can be used to bind to the current source. For example, Text="{Binding}" is

equivalent to Text="{Binding Path=.}" .

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingoperations.setbinding
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-create-a-binding-in-code
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel.dock

 Binding direction

B IN DIN G M O DE DESC RIP T IO N

BindingMode.TwoWay Updates the target property or the property whenever
either the target property or the source property changes.

BindingMode.OneWay Updates the target property only when the source property
changes.

BindingMode.OneTime Updates the target property only when the application
starts or when the DataContext undergoes a change.

BindingMode.OneWayToSource Updates the source property when the target property
changes.

BindingMode.Default Causes the default Mode value of target property to be
used.

<TextBlock Name="IncomeText" Text="{Binding Path=TotalIncome, Mode=OneTime}" />

 Default behaviors

Inside indexers ([]), the caret character (^) escapes the next character.

If you set Path in XAML, you also need to escape (using XML entities) certain characters that are special to

the XML language definition:

Use & to escape the character " & ".

Use > to escape the end tag " > ".

Additionally, if you describe the entire binding in an attribute using the markup extension syntax, you

need to escape (using backslash \) characters that are special to the WPF markup extension parser :

Backslash (\) is the escape character itself.

The equal sign (=) separates property name from property value.

Comma (,) separates properties.

The right curly brace (}) is the end of a markup extension.

Use the Binding.Mode property to specify the direction of the binding. The following modes are the available

options for binding updates:

For more information, see the BindingMode enumeration.

The following example shows how to set the Mode property:

To detect source changes (applicable to OneWay and TwoWay bindings), the source must implement a suitable

property change notification mechanism such as INotifyPropertyChanged. For more information, see Providing

change notifications.

For TwoWay or OneWayToSource bindings, you can control the timing of the source updates by setting the

UpdateSourceTrigger property. For more information, see UpdateSourceTrigger.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.path
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.mode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onetime
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onewaytosource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_default
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.mode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.mode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_onewaytosource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger

 See also

The default behavior is as follows if not specified in the declaration:

A default converter is created that tries to do a type conversion between the binding source value and the

binding target value. If a conversion cannot be made, the default converter returns null .

If you don't set ConverterCulture, the binding engine uses the Language property of the binding target

object. In XAML, this defaults to en-US or inherits the value from the root element (or any element) of the

page, if one has been explicitly set.

As long as the binding already has a data context (for example, the inherited data context coming from a

parent element), and whatever item or collection being returned by that context is appropriate for

binding without requiring further path modification, a binding declaration can have no clauses at all:

{Binding} . This is often the way a binding is specified for data styling, where the binding acts upon a

collection. For more information, see Using Entire Objects as a Binding Source.

The default Mode varies between one-way and two-way depending on the dependency property that is

being bound. You can always declare the binding mode explicitly to ensure that your binding has the

desired behavior. In general, user-editable control properties, such as TextBox.Text and RangeBase.Value,

default to two-way bindings, but most other properties default to one-way bindings.

The default UpdateSourceTrigger value varies between PropertyChanged and LostFocus depending on

the bound dependency property as well. The default value for most dependency properties is

PropertyChanged, while the TextBox.Text property has a default value of LostFocus.

Data binding overview

Binding sources overview

PropertyPath XAML Syntax (.NET Framework)

https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.converterculture
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/binding-sources-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.mode
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.rangebase.value
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.updatesourcetrigger
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_propertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_lostfocus
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_propertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textbox.text
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.updatesourcetrigger#system_windows_data_updatesourcetrigger_lostfocus
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/propertypath-xaml-syntax

Binding sources overview (WPF .NET)
 5/1/2021 • 6 minutes to read • Edit Online

 Binding source types

 Implement a binding source on your objects

 Provide change notifications

In data binding, the binding source object refers to the object you obtain data from. This article discusses the

types of objects you can use as the binding source, like .NET CLR objects, XML, and DependencyObject objects.

Windows Presentation Foundation (WPF) data binding supports the following binding source types:

.NET common language runtime (CLR) objects

You can bind to public properties, sub-properties, and indexers of any common language runtime (CLR)

object. The binding engine uses CLR reflection to get the values of the properties. Objects that implement

ICustomTypeDescriptor or have a registered TypeDescriptionProvider also work with the binding engine.

For more information about how to implement a class that can serve as a binding source, see

Implementing a binding source on your objects later in this article.

Dynamic objects

You can bind to available properties and indexers of an object that implements the

IDynamicMetaObjectProvider interface. If you can access the member in code, you can bind to it. For

example, if a dynamic object enables you to access a member in code via someObjet.AProperty , you can

bind to it by setting the binding path to AProperty .

ADO.NET objects

You can bind to ADO.NET objects, such as DataTable. The ADO.NET DataView implements the IBindingList

interface, which provides change notifications that the binding engine listens for.

XML objects

You can bind to and run XPath queries on an XmlNode, XmlDocument, or XmlElement. A convenient way

to access XML data that is the binding source in markup is to use an XmlDataProvider object. For more

information, see Bind to XML Data Using an XMLDataProvider and XPath Queries (.NET Framework).

You can also bind to an XElement or XDocument, or bind to the results of queries run on objects of these

types by using LINQ to XML. A convenient way to use LINQ to XML to access XML data that is the binding

source in markup is to use an ObjectDataProvider object. For more information, see Bind to XDocument,

XElement, or LINQ for XML Query Results (.NET Framework).

DependencyObject objects

You can bind to dependency properties of any DependencyObject. For an example, see Bind the

Properties of Two Controls (.NET Framework).

Your CLR objects can become binding sources. There are a few things to be aware of when implementing a class

to serve as a binding source.

If you're using either OneWay or TwoWay binding, implement a suitable "property changed" notification

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/data/binding-sources-overview.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyobject
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.icustomtypedescriptor
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.typedescriptionprovider
https://docs.microsoft.com/en-us/dotnet/api/system.dynamic.idynamicmetaobjectprovider
https://docs.microsoft.com/en-us/dotnet/api/system.data.datatable
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataview
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.ibindinglist
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmlnode
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmldocument
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmlelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.xmldataprovider
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-bind-to-xml-data-using-an-xmldataprovider-and-xpath-queries
https://docs.microsoft.com/en-us/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.objectdataprovider
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-bind-to-xdocument-xelement-or-linq-for-xml-query-results
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyobject
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-bind-the-properties-of-two-controls
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#system_windows_data_bindingmode_twoway

 Other characteristics

 Entire objects as a binding source

 Collection objects as a binding source

mechanism. The recommended mechanism is for the CLR or dynamic class to implement the

INotifyPropertyChanged interface. For more information, see How to: Implement Property Change Notification

(.NET Framework).

There are two ways to notify a subscriber of a property change:

1. Implement the INotifyPropertyChanged interface.

This is the recommended mechanism for notifications. The INotifyPropertyChanged supplies the

PropertyChanged event, which the binding system respects. By raising this event, and providing the

name of the property that changed, you'll notify a binding target of the change.

2. Implement the PropertyChanged pattern.

Each property that needs to notify a binding target that it's changed, has a corresponding

PropertyNameChanged event, where PropertyName is the name of the property. You raise the event every

time the property changes.

If your binding source implements one of these notification mechanisms, target updates happen automatically. If

for any reason your binding source doesn't provide the proper property changed notifications, you can use the

UpdateTarget method to update the target property explicitly.

The following list provides other important points to note:

Data objects that serve as binding sources can be declared in XAML as resources, provided they have a

parameter less constructor . Otherwise, you must create the data object in code and directly assign it to

either the data context of your XAML object tree, or as the binding source of binding.

The properties you use as binding source properties must be public properties of your class. Explicitly

defined interface properties can't be accessed for binding purposes, nor can protected, private, internal,

or virtual properties that have no base implementation.

You can't bind to public fields.

The type of the property declared in your class is the type that is passed to the binding. However, the type

ultimately used by the binding depends on the type of the binding target property, not of the binding

source property. If there's a difference in type, you might want to write a converter to handle how your

custom property is initially passed to the binding. For more information, see IValueConverter.

You can use an entire object as a binding source. Specify a binding source by using the Source or the

DataContext property, and then provide a blank binding declaration: {Binding} . Scenarios in which this is useful

include binding to objects that are of type string, binding to objects with multiple properties you're interested in,

or binding to collection objects. For an example of binding to an entire collection object, see How to Use the

Master-Detail Pattern with Hierarchical Data (.NET Framework).

You may need to apply custom logic so that the data is meaningful to your bound target property. The custom

logic may be in the form of a custom converter or a DataTemplate. For more information about converters, see

Data conversion. For more information about data templates, see Data Templating Overview (.NET Framework).

Often, the object you want to use as the binding source is a collection of custom objects. Each object serves as

the source for one instance of a repeated binding. For example, you might have a CustomerOrders collection that

consists of CustomerOrder objects, where your application iterates over the collection to determine how many

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-implement-property-change-notification
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged.propertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingexpression.updatetarget
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.ivalueconverter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.binding.source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.datacontext
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-use-the-master-detail-pattern-with-hierarchical-data
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/data-templating-overview

 Permission requirements in data binding

 See also

orders exist and the data contained in each order.

You can enumerate over any collection that implements the IEnumerable interface. However, to set up dynamic

bindings so that insertions or deletions in the collection update the UI automatically, the collection must

implement the INotifyCollectionChanged interface. This interface exposes an event that must be raised

whenever the underlying collection changes.

The ObservableCollection<T> class is a built-in implementation of a data collection that exposes the

INotifyCollectionChanged interface. The individual data objects within the collection must satisfy the

requirements described in the preceding sections. For an example, see How to Create and Bind to an

ObservableCollection (.NET Framework). Before you implement your own collection, consider using

ObservableCollection<T> or one of the existing collection classes, such as List<T>, Collection<T>, and

BindingList<T>, among many others.

When you specify a collection as a binding source, WPF doesn't bind directly to the collection. Instead, WPF

actually binds to the collection's default view. For information about default views, see Using a default view.

If you have an advanced scenario and you want to implement your own collection, consider using the IList

interface. This interface provides a non-generic collection of objects that can be individually accessed by index,

which can improve performance.

Unlike .NET Framework, .NET 5+ (and .NET Core 3.1) runs with full-trust security. All data binding runs with the

same access as the user running the application.

ObjectDataProvider

XmlDataProvider

Data binding overview

Binding sources overview

Overview of WPF data binding with LINQ to XML (.NET Framework)

Optimizing Performance: Data Binding (.NET Framework)

https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.inotifycollectionchanged
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.observablecollection-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.inotifycollectionchanged
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/how-to-create-and-bind-to-an-observablecollection
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.observablecollection-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.collection-1
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.bindinglist-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ilist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.objectdataprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.xmldataprovider
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/wpf-data-binding-with-linq-to-xml-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/optimizing-performance-data-binding

How to bind to an enumeration (WPF .NET)
 5/7/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Reference the enumeration

This example shows how to bind to an enumeration. Unfortunately there isn't a direct way to use an

enumeration as a data binding source. However, the Enum.GetValues(Type) method returns a collection of

values. These values can be wrapped in an ObjectDataProvider and used as a data source.

The ObjectDataProvider type provides a convenient way to create an object in XAML and use it as a data source.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Use the ObjectDataProvider type to wrap an array of enumeration values provided by the enumeration type

itself.

<Window.Resources>
 <ObjectDataProvider x:Key="EnumDataSource"
 ObjectType="{x:Type sys:Enum}"
 MethodName="GetValues">
 <ObjectDataProvider.MethodParameters>
 <x:Type TypeName="HorizontalAlignment" />
 </ObjectDataProvider.MethodParameters>
 </ObjectDataProvider>
</Window.Resources>

P RO P ERT Y DESC RIP T IO N

ObjectType The type of object to be returned by the data provider. In
this example, System.Enum. The sys: XAML

namespace is mapped to System .

MethodName The name of the method to run on the System.Enum

type. In this example, Enum.GetValues.

MethodParameters A collection of values to provide to the MethodName

method. In this example, the method takes the
System.Type of the enumeration.

1. Create a new ObjectDataProvider as a XAML resource, either in your application XAML or the XAML of

the object you're working with. This example uses a window and creates the ObjectDataProvider with a

resource key of EnumDataSource .

In this example, the ObjectDataProvider uses three properties to retrieve the enumeration:

Effectively, the XAML is breaking down a method call, method name, parameters, and the return type. The

ObjectDataProvider configured in the previous example is the equivalent of the following code:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/data/how-to-bind-to-an-enumeration.md
https://docs.microsoft.com/en-us/dotnet/api/system.enum.getvalues#system_enum_getvalues_system_type_
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.objectdataprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.objectdataprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.objectdataprovider
https://docs.microsoft.com/en-us/dotnet/api/system.enum
https://docs.microsoft.com/en-us/dotnet/api/system.enum.getvalues

 Full XAML

<Window x:Class="ArticleExample.BindEnumFull"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sys="clr-namespace:System;assembly=mscorlib"
 SizeToContent="WidthAndHeight"
 Title="Enum binding">
 <Window.Resources>
 <ObjectDataProvider x:Key="EnumDataSource"
 ObjectType="{x:Type sys:Enum}"
 MethodName="GetValues">
 <ObjectDataProvider.MethodParameters>
 <x:Type TypeName="HorizontalAlignment" />
 </ObjectDataProvider.MethodParameters>
 </ObjectDataProvider>
 </Window.Resources>

 <StackPanel Width="300" Margin="10">
 <TextBlock>Choose the HorizontalAlignment value of the Button:</TextBlock>

 <ListBox Name="myComboBox" SelectedIndex="0"
 ItemsSource="{Binding Source={StaticResource EnumDataSource}}"/>

 <Button Content="I'm a button"
 HorizontalAlignment="{Binding ElementName=myComboBox, Path=SelectedItem}" />
 </StackPanel>
</Window>

 See also

var enumDataSource = System.Enum.GetValues(typeof(System.Windows.HorizontalAlignment));

Dim enumDataSource = System.Enum.GetValues(GetType(System.Windows.HorizontalAlignment))

<ListBox Name="myComboBox" SelectedIndex="0"
 ItemsSource="{Binding Source={StaticResource EnumDataSource}}"/>

2. Reference the ObjectDataProvider resource. The following XAML lists the enumeration values in a ListBox

control:

The following XAML code represents a simple window that does the following:

1. Wraps the HorizontalAlignment enumeration in a ObjectDataProvider data source as a resource.

2. Provides a ListBox control to list all enumeration values.

3. Binds a Button control's HorizontalAlignment property to the selected item in the ListBox .

Data binding overview

Binding sources overview

StaticResource Markup Extension

An alternative way to bind to an enumeration

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.horizontalalignment
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.objectdataprovider
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.listbox
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.horizontalalignment#system_windows_frameworkelement_horizontalalignment
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://brianlagunas.com/a-better-way-to-data-bind-enums-in-wpf/

Overview of XAML resources (WPF .NET)
 4/15/2021 • 13 minutes to read • Edit Online

NOTE

IMPORTANT

 Use resources in XAML

A resource is an object that can be reused in different places in your app. Examples of resources include brushes

and styles. This overview describes how to use resources in Extensible Application Markup Language (XAML).

You can also create and access resources by using code.

XAML resources described in this article are different from app resources, which are generally files added to an app, such

as content, data, or embedded files.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The following example defines a SolidColorBrush as a resource on the root element of a page. The example then

references the resource and uses it to set properties of several child elements, including an Ellipse, a TextBlock,

and a Button.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/systems/xaml-resources-overview.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.solidcolorbrush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.shapes.ellipse
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button

<Window x:Class="resources.ResExample"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ResExample" Height="400" Width="300">
 <Window.Resources>
 <SolidColorBrush x:Key="MyBrush" Color="#05E0E9"/>
 <Style TargetType="Border">
 <Setter Property="Background" Value="#4E1A3D" />
 <Setter Property="BorderThickness" Value="5" />
 <Setter Property="BorderBrush">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0.0" Color="#4E1A3D"/>
 <GradientStop Offset="1.0" Color="Salmon"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
 <Style TargetType="TextBlock" x:Key="TitleText">
 <Setter Property="FontSize" Value="18"/>
 <Setter Property="Foreground" Value="#4E87D4"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Margin" Value="0,10,10,10"/>
 </Style>
 <Style TargetType="TextBlock" x:Key="Label">
 <Setter Property="HorizontalAlignment" Value="Right"/>
 <Setter Property="FontSize" Value="13"/>
 <Setter Property="Foreground" Value="{StaticResource MyBrush}"/>
 <Setter Property="FontFamily" Value="Arial"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Margin" Value="0,3,10,0"/>
 </Style>
 </Window.Resources>

 <Border>
 <StackPanel>
 <TextBlock Style="{StaticResource TitleText}">Title</TextBlock>
 <TextBlock Style="{StaticResource Label}">Label</TextBlock>
 <TextBlock HorizontalAlignment="Right" FontSize="36" Foreground="{StaticResource MyBrush}"
Text="Text" Margin="20" />
 <Button HorizontalAlignment="Left" Height="30" Background="{StaticResource MyBrush}"
Margin="40">Button</Button>
 <Ellipse HorizontalAlignment="Center" Width="100" Height="100" Fill="{StaticResource MyBrush}"
Margin="10" />
 </StackPanel>
 </Border>

</Window>

Every framework-level element (FrameworkElement or FrameworkContentElement) has a Resources property,

which is a ResourceDictionary type that contains defined resources. You can define resources on any element,

such as a Button. However, resources are most often defined on the root element, which is Window in the

example.

Each resource in a resource dictionary must have a unique key. When you define resources in markup, you

assign the unique key through the x:Key Directive. Typically, the key is a string; however, you can also set it to

other object types by using the appropriate markup extensions. Non-string keys for resources are used by

certain feature areas in WPF, notably for styles, component resources, and data styling.

You can use a defined resource with the resource markup extension syntax that specifies the key name of the

resource. For example, use the resource as the value of a property on another element.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkcontentelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xkey-directive

<Button Background="{StaticResource MyBrush}"/>
<Ellipse Fill="{StaticResource MyBrush}"/>

 Static and dynamic resources

 Static resources

In the preceding example, when the XAML loader processes the value {StaticResource MyBrush} for the

Background property on Button, the resource lookup logic first checks the resource dictionary for the Button

element. If Button doesn't have a definition of the resource key MyBrush (in that example it doesn't; its resource

collection is empty), the lookup next checks the parent element of Button . If the resource isn't defined on the

parent, it continues to check the object's logical tree upward until it's found.

If you define resources on the root element, all the elements in the logical tree, such as the Window or Page, can

access it. And you can reuse the same resource for setting the value of any property that accepts the same type

that the resource represents. In the previous example, the same MyBrush resource sets two different properties:

Button.Background and Rectangle.Fill.

A resource can be referenced as either static or dynamic. References are created by using either the

StaticResource Markup Extension or the DynamicResource Markup Extension. A markup extension is a XAML

feature that lets you specify an object reference by having the markup extension process the attribute string and

return the object to a XAML loader. For more information about markup extension behavior, see Markup

Extensions and WPF XAML.

When you use a markup extension, you typically provide one or more parameters in string form that are

processed by that particular markup extension. The StaticResource Markup Extension processes a key by looking

up the value for that key in all available resource dictionaries. Processing happens during load, which is when

the loading process needs to assign the property value. The DynamicResource Markup Extension instead

processes a key by creating an expression, and that expression remains unevaluated until the app runs, at which

time the expression is evaluated to provide a value.

When you reference a resource, the following considerations can influence whether you use a static resource

reference or a dynamic resource reference:

When determining the overall design of how you create the resources for your app (per page, in the app,

in loose XAML, or in a resource-only assembly), consider the following:

The app's functionality. Are updating resources in real-time part of your app requirements?

The respective lookup behavior of that resource reference type.

The particular property or resource type, and the native behavior of those types.

Static resource references work best for the following circumstances:

Your app design concentrates most of its resources into page or application-level resource dictionaries.

Static resource references aren't reevaluated based on runtime behaviors, such as reloading a page. So

there can be some performance benefit to avoiding large numbers of dynamic resource references when

they aren't necessary based on your resource and app design.

You're setting the value of a property that isn't on a DependencyObject or a Freezable.

You're creating a resource dictionary that's compiled into a DLL that's shared between apps.

You're creating a theme for a custom control and are defining resources that are used within the themes.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.page
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.shapes.shape.fill
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dynamicresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/markup-extensions-and-wpf-xaml
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dynamicresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.freezable

 Static resource lookup behavior

 Dynamic resources

For this case, you typically don't want the dynamic resource reference lookup behavior. Instead, use static

resource reference behavior so that the lookup is predictable and self-contained to the theme. With a

dynamic resource reference, even a reference within a theme is left unevaluated until run-time. And,

there's a chance that when the theme is applied, some local element will redefine a key that your theme is

trying to reference, and the local element will fall before the theme itself in the lookup. If that happens,

your theme won't behave as expected.

You're using resources to set large numbers of dependency properties. Dependency properties have

effective value caching as enabled by the property system, so if you provide a value for a dependency

property that can be evaluated at load time, the dependency property doesn't have to check for a

reevaluated expression and can return the last effective value. This technique can be a performance

benefit.

You want to change the underlying resource for all consumers, or you want to maintain separate writable

instances for each consumer by using the x:Shared Attribute.

The following describes the lookup process that automatically happens when a static resource is referenced by a

property or element:

1. The lookup process checks for the requested key within the resource dictionary defined by the element

that sets the property.

2. The lookup process then traverses the logical tree upward to the parent element and its resource

dictionary. This process continues until the root element is reached.

3. App resources are checked. App resources are those resources within the resource dictionary that is

defined by the Application object for your WPF app.

Static resource references from within a resource dictionary must reference a resource that has already been

defined lexically before the resource reference. Forward references cannot be resolved by a static resource

reference. For this reason, design your resource dictionary structure such that resources are defined at or near

the beginning of each respective resource dictionary.

Static resource lookup can extend into themes or into system resources, but this lookup is supported only

because the XAML loader defers the request. The deferral is necessary so that the runtime theme at the time the

page loads applies properly to the app. However, static resource references to keys that are known to only exist

in themes or as system resources aren't recommended, because such references aren't reevaluated if the theme

is changed by the user in real time. A dynamic resource reference is more reliable when you request theme or

system resources. The exception is when a theme element itself requests another resource. These references

should be static resource references, for the reasons mentioned earlier.

The exception behavior if a static resource reference isn't found varies. If the resource was deferred, then the

exception occurs at runtime. If the resource wasn't deferred, the exception occurs at load time.

Dynamic resources work best when:

The value of the resource, including system resources, or resources that are otherwise user settable,

depends on conditions that aren't known until runtime. For example, you can create setter values that

refer to system properties as exposed by SystemColors, SystemFonts, or SystemParameters. These values

are truly dynamic because they ultimately come from the runtime environment of the user and operating

system. You might also have application-level themes that can change, where page-level resource access

must also capture the change.

You're creating or referencing theme styles for a custom control.

https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xshared-attribute
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemcolors
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters

 Dynamic resource lookup behavior

You intend to adjust the contents of a ResourceDictionary during an app lifetime.

You have a complicated resource structure that has interdependencies, where a forward reference may be

required. Static resource references don't support forward references, but dynamic resource references

do support them because the resource doesn't need to be evaluated until runtime, and forward

references are therefore not a relevant concept.

You're referencing a resource that is large from the perspective of a compile or working set, and the

resource might not be used immediately when the page loads. Static resource references always load

from XAML when the page loads. However, a dynamic resource reference doesn't load until it's used.

You're creating a style where setter values might come from other values that are influenced by themes

or other user settings.

You're applying resources to elements that might be reparented in the logical tree during app lifetime.

Changing the parent also potentially changes the resource lookup scope, so if you want the resource for a

reparented element to be reevaluated based on the new scope, always use a dynamic resource reference.

Resource lookup behavior for a dynamic resource reference parallels the lookup behavior in your code if you

call FindResource or SetResourceReference:

1. The lookup checks for the requested key within the resource dictionary defined by the element that sets

the property:

If the element defines a Style property, the System.Windows.FrameworkElement.Style of the

element has its Resources dictionary checked.

If the element defines a Template property, the System.Windows.FrameworkTemplate.Resources

dictionary of the element is checked.

2. The lookup traverses the logical tree upward to the parent element and its resource dictionary. This

process continues until the root element is reached.

3. App resources are checked. App resources are those resources within the resource dictionary that are

defined by the Application object for your WPF app.

4. The theme resource dictionary is checked for the currently active theme. If the theme changes at runtime,

the value is reevaluated.

5. System resources are checked.

Exception behavior (if any) varies:

If a resource was requested by a FindResource call and wasn't found, an exception is thrown.

If a resource was requested by a TryFindResource call and wasn't found, no exception is thrown, and the

returned value is null . If the property being set doesn't accept null , then it's still possible that a deeper

exception will be thrown, depending on the individual property being set.

If a resource was requested by a dynamic resource reference in XAML and wasn't found, then the

behavior depends on the general property system. The general behavior is as if no property setting

operation occurred at the level where the resource exists. For instance, if you attempt to set the

background on an individual button element using a resource that could not be evaluated, then no value

set results, but the effective value can still come from other participants in the property system and value

precedence. For instance, the background value might still come from a locally defined button style or

from the theme style. For properties that aren't defined by theme styles, the effective value after a failed

resource evaluation might come from the default value in the property metadata.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.findresource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.setresourcereference
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style#system_windows_frameworkelement_style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.resources#system_windows_style_resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.template
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworktemplate.resources#system_windows_frameworktemplate_resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.findresource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.tryfindresource

 Restrictions

 Styles, DataTemplates, and implicit keys

<Style TargetType="Button">
 <Setter Property="Background" Value="#4E1A3D" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="BorderThickness" Value="5" />
 <Setter Property="BorderBrush">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0.0" Color="#4E1A3D"/>
 <GradientStop Offset="1.0" Color="Salmon"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

Dynamic resource references have some notable restrictions. At least one of the following conditions must be

true:

The property being set must be a property on a FrameworkElement or FrameworkContentElement. That

property must be backed by a DependencyProperty.

The reference is for a value within a StyleSetter .

The property being set must be a property on a Freezable that is provided as a value of either a

FrameworkElement or FrameworkContentElement property, or a Setter value.

Because the property being set must be a DependencyProperty or Freezable property, most property changes

can propagate to the UI because a property change (the changed dynamic resource value) is acknowledged by

the property system. Most controls include logic that will force another layout of a control if a

DependencyProperty changes and that property might affect layout. However, not all properties that have a

DynamicResource Markup Extension as their value are guaranteed to provide real-time updates in the UI. That

functionality still might vary depending on the property, and depending on the type that owns the property, or

even the logical structure of your app.

Although all items in a ResourceDictionary must have a key, that doesn't mean that all resources must have an

explicit x:Key . Several object types support an implicit key when defined as a resource, where the key value is

tied to the value of another property. This type of key is known as an implicit key, and an x:Key attribute is an

explicit key. You can overwrite any implicit key by specifying an explicit key.

One important scenario for resources is when you define a Style. In fact, a Style is almost always defined as an

entry in a resource dictionary, because styles are inherently intended for reuse. For more information about

styles, see Styles and templates (WPF .NET).

Styles for controls can be both created with and referenced with an implicit key. The theme styles that define the

default appearance of a control rely on this implicit key. From the standpoint of requesting it, the implicit key is

the Type of the control itself. From the standpoint of defining the resources, the implicit key is the TargetType of

the style. As such, if you're creating themes for custom controls or creating styles that interact with existing

theme styles, you don't need to specify an x:Key Directive for that Style. And if you want to use the themed styles,

you don't need to specify any style at all. For instance, the following style definition works, even though the Style

resource doesn't appear to have a key:

That style really does have a key: the implicit key: the System.Windows.Controls.Button type. In markup, you can

specify a TargetType directly as the type name (or you can optionally use {x:Type...} to return a Type.

Through the default theme style mechanisms used by WPF, that style is applied as the runtime style of a Button

https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkcontentelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyproperty
https://docs.microsoft.com/en-us/dotnet/api/system.windows.freezable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkcontentelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.setter
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyproperty
https://docs.microsoft.com/en-us/dotnet/api/system.windows.freezable
https://docs.microsoft.com/en-us/dotnet/api/system.windows.dependencyproperty
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dynamicresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xkey-directive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xtype-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button

 See also

on the page, even though the Button itself doesn't attempt to specify its Style property or a specific resource

reference to the style. Your style defined in the page is found earlier in the lookup sequence than the theme

dictionary style, using the same key that the theme dictionary style has. You could just specify

<Button>Hello</Button> anywhere in the page, and the style you defined with TargetType of Button would

apply to that button. If you want, you can still explicitly key the style with the same type value as TargetType for

clarity in your markup, but that is optional.

Implicit keys for styles don't apply on a control if OverridesDefaultStyle is true . (Also note that

OverridesDefaultStyle might be set as part of native behavior for the control class, rather than explicitly on an

instance of the control.) Also, to support implicit keys for derived class scenarios, the control must override

DefaultStyleKey (all existing controls provided as part of WPF include this override). For more information about

styles, themes, and control design, see Guidelines for Designing Stylable Controls.

DataTemplate also has an implicit key. The implicit key for a DataTemplate is the DataType property value.

DataType can also be specified as the name of the type rather than explicitly using {x:Type...}. For details, see Data

Templating Overview.

Resources in code

Merged resource dictionaries

How to define and reference a WPF resource

How to use system resources

How to use application resources

x:Type markup extension

ResourceDictionary

Application resources

Define and reference a resource

Application management overview

StaticResource markup extension

DynamicResource markup extension

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.overridesdefaultstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.overridesdefaultstyle
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.defaultstylekey
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/controls/guidelines-for-designing-stylable-controls
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate.datatype
https://docs.microsoft.com/en-us/dotnet/api/system.windows.datatemplate.datatype
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xtype-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/data-templating-overview
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xtype-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/optimizing-performance-application-resources
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/how-to-define-and-reference-a-resource
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/app-development/application-management-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dynamicresource-markup-extension

Merged resource dictionaries (WPF .NET)
 4/15/2021 • 5 minutes to read • Edit Online

IMPORTANT

 Create a merged dictionary

<Page.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="myresourcedictionary.xaml"/>
 <ResourceDictionary Source="myresourcedictionary2.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Page.Resources>

NOTE

 Merged dictionary behavior

Windows Presentation Foundation (WPF) resources support a merged resource dictionary feature. This feature

provides a way to define the resources portion of a WPF application outside of the compiled XAML application.

Resources can then be shared across applications and are also more conveniently isolated for localization.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

In markup, you use the following syntax to introduce a merged resource dictionary into a page:

The ResourceDictionary element doesn't have an x:Key Directive, which is generally required for all items in a

resource collection. But another ResourceDictionary reference within the MergedDictionaries collection is a

special case, reserved for this merged resource dictionary scenario. Further, the ResourceDictionary that

introduces a merged resource dictionary can't have an x:Key Directive.

Typically, each ResourceDictionary within the MergedDictionaries collection specifies a Source attribute. The

value of Source should be a uniform resource identifier (URI) that resolves to the location of the resources file

to be merged. The destination of that URI must be another XAML file, with ResourceDictionary as its root

element.

It's legal to define resources within a ResourceDictionary that's specified as a merged dictionary, either as an alternative to

specifying Source, or in addition to whatever resources are included from the specified source. However, this isn't a

common scenario. The main scenario for merged dictionaries is to merge resources from external file locations. If you want

to specify resources within the markup for a page, define these in the main ResourceDictionary and not in the merged

dictionaries.

Resources in a merged dictionary occupy a location in the resource lookup scope that's just after the scope of

the main resource dictionary they are merged into. Although a resource key must be unique within any

individual dictionary, a key can exist multiple times in a set of merged dictionaries. In this case, the resource

that's returned will come from the last dictionary found sequentially in the MergedDictionaries collection. If the

MergedDictionaries collection was defined in XAML, then the order of the merged dictionaries in the collection is

the order of the elements as provided in the markup. If a key is defined in the primary dictionary and also in a

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/systems/xaml-resources-merged-dictionaries.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xkey-directive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xkey-directive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.mergeddictionaries

 Merged dictionaries and code

 Merged dictionary URIs

NOTE

 Reusing merged dictionaries

dictionary that was merged, then the resource that's returned will come from the primary dictionary. These

scoping rules apply equally for both static resource references and dynamic resource references.

Merged dictionaries can be added to a Resources dictionary through code. The default, initially empty

ResourceDictionary that exists for any Resources property also has a default, initially empty MergedDictionaries

collection property. To add a merged dictionary through code, you obtain a reference to the desired primary

ResourceDictionary , get its MergedDictionaries property value, and call Add on the generic Collection that's

contained in MergedDictionaries . The object you add must be a new ResourceDictionary .

In code, you don't set the Source property. Instead, you must obtain a ResourceDictionary object by either

creating one or loading one. One way to load an existing ResourceDictionary to call XamlReader.Load on an

existing XAML file stream that has a ResourceDictionary root, then casting the return value to

ResourceDictionary .

There are several techniques for how to include a merged resource dictionary, which are indicated by the

uniform resource identifier (URI) format that you use. Broadly speaking, these techniques can be divided into

two categories: resources that are compiled as part of the project, and resources that aren't compiled as part of

the project.

For resources that are compiled as part of the project, you can use a relative path that refers to the resource

location. The relative path is evaluated during compilation. Your resource must be defined as part of the project

as a Resource build action. If you include a resource .xaml file in the project as Resource, you don't need to

copy the resource file to the output directory, the resource is already included within the compiled application.

You can also use Content build action, but you must then copy the files to the output directory and also deploy

the resource files in the same path relationship to the executable.

Don't use the Embedded Resource build action. The build action itself is supported for WPF applications, but the

resolution of Source doesn't incorporate ResourceManager, and thus cannot separate the individual resource out of the

stream. You could still use Embedded Resource for other purposes so long as you also used ResourceManager to access

the resources.

A related technique is to use a Pack URI to a XAML file, and refer to it as Source. Pack URI enables references

to components of referenced assemblies and other techniques. For more information on Pack URIs , see WPF

Application Resource, Content, and Data Files.

For resources that aren't compiled as part of the project, the URI is evaluated at run time. You can use a common

URI transport such as file: or http: to refer to the resource file. The disadvantage of using the non-compiled

resource approach is that file: access requires additional deployment steps, and http: access implies the Internet

security zone.

You can reuse or share merged resource dictionaries between applications, because the resource dictionary to

merge can be referenced through any valid uniform resource identifier (URI). Exactly how you do this depends

on your application deployment strategy and which application model you follow. The previously mentioned

Pack URI strategy provides a way to commonly source a merged resource across multiple projects during

development by sharing an assembly reference. In this scenario the resources are still distributed by the client,

https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.source
https://docs.microsoft.com/en-us/dotnet/api/system.windows.markup.xamlreader.load
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.source
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/app-development/wpf-application-resource-content-and-data-files

 Localization

 See also

and at least one of the applications must deploy the referenced assembly. It's also possible to reference merged

resources through a distributed URI that uses the http: protocol.

Writing merged dictionaries as local application files or to local shared storage is another possible merged

dictionary and application deployment scenario.

If resources that need to be localized are isolated to dictionaries that are merged into primary dictionaries, and

kept as loose XAML, these files can be localized separately. This technique is a lightweight alternative to

localizing the satellite resource assemblies. For details, see WPF Globalization and Localization Overview.

ResourceDictionary

Overview of XAML resources

Resources in code

WPF Application Resource, Content, and Data Files

WPF Globalization and Localization Overview

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-globalization-and-localization-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/app-development/wpf-application-resource-content-and-data-files
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-globalization-and-localization-overview

Resources in code (WPF .NET)
 4/15/2021 • 4 minutes to read • Edit Online

 Accessing resources from code

private void myButton_Click(object sender, RoutedEventArgs e)
{
 Button button = (Button)sender;
 button.Background = (Brush)this.FindResource("RainbowBrush");
}

Private Sub myButton_Click(sender As Object, e As RoutedEventArgs)
 Dim buttonControl = DirectCast(sender, Button)
 buttonControl.Background = DirectCast(Me.FindResource("RainbowBrush"), Brush)
End Sub

This overview concentrates on how Windows Presentation Foundation (WPF) resources can be accessed or

created using code rather than XAML syntax. For more information on general resource usage and resources

from a XAML syntax perspective, see Overview of XAML resources.

The keys that identify XAML defined resources are also used to retrieve specific resources if you request the

resource in code. The simplest way to retrieve a resource from code is to call either the FindResource or the

TryFindResource method from framework-level objects in your application. The behavioral difference between

these methods is what happens if the requested key isn't found. FindResource raises an exception.

TryFindResource won't raise an exception but returns null . Each method takes the resource key as an input

parameter, and returns a loosely typed object.

Typically, a resource key is a string, but there are occasional nonstring usages. The lookup logic for code

resource resolution is the same as the dynamic resource reference XAML case. The search for resources starts

from the calling element, then continues through parent elements in the logical tree. The lookup continues

onwards into application resources, themes, and system resources if necessary. A code request for a resource

will properly account for changes to those resources that happened during runtime.

The following code example demonstrates a Click event handler that finds a resource by key, and uses the

returned value to set a property.

An alternative method for assigning a resource reference is SetResourceReference. This method takes two

parameters: the key of the resource, and the identifier for a particular dependency property that's present on the

element instance to which the resource value should be assigned. Functionally, this method is the same and has

the advantage of not requiring any casting of return values.

Still another way to access resources programmatically is to access the contents of the Resources property as a

dictionary. Resource dictionaries are used to add new resources to existing collections, check to see if a given

key name is already used by the collection, and other operations. If you're writing a WPF application entirely in

code, you can also create the entire collection in code, assign resources to it. The collection can then be assigned

to the Resources property of an element. This is described in the next section.

You can index within any given Resources collection, using a specific key as the index. Resources accessed in this

way don't follow the normal runtime rules of resource resolution. You're only accessing that particular collection.

Resource lookup doesn't traverse the resource scope to the root or the application if no valid object was found

at the requested key. However, this approach may have performance advantages in some cases precisely

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/systems/xaml-resources-and-code.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.findresource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.tryfindresource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.findresource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.tryfindresource
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.setresourcereference
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.resources

 Creating resources with code

 Using objects as keys

 See also

because the scope of the search for the key is more constrained. For more information about how to work with

a resource dictionary directly, see the ResourceDictionary class.

If you want to create an entire WPF application in code, you might also want to create any resources in that

application in code. To achieve this, create a new ResourceDictionary instance, and then add all the resources to

the dictionary using successive calls to ResourceDictionary.Add. Then, assign the created ResourceDictionary to

set the Resources property on an element that's present in a page scope, or the Application.Resources. You could

also maintain the ResourceDictionary as a standalone object without adding it to an element. However, if you do

this, you must access the resources within it by item key, as if it were a generic dictionary. A ResourceDictionary

that's not attached to an element Resources property wouldn't exist as part of the element tree and has no

scope in a lookup sequence that can be used by FindResource and related methods.

Most resource usages will set the key of the resource to be a string. However, various WPF features deliberately

use the object type as a key instead of a string. The capability of having the resource be keyed by an object type

is used by the WPF style and theming support. The styles and themes that become the default for an otherwise

non-styled control are each keyed by the Type of the control that they should apply to.

Being keyed by type provides a reliable lookup mechanism that works on default instances of each control type.

The type can be detected by reflection and used for styling derived classes even though the derived type

otherwise has no default style. You can specify a Type key for a resource defined in XAML by using the x:Type

Markup Extension. Similar extensions exist for other nonstring key usages that support WPF features, such as

ComponentResourceKey Markup Extension.

For more information, see Styles, DataTemplates, and implicit keys.

Overview of XAML resources

How to define and reference a WPF resource

How to use system resources

How to use application resources

https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary.add
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.findresource
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/xaml-services/xtype-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/componentresourcekey-markup-extension

How to define and reference a WPF resource (WPF
.NET)

 4/15/2021 • 5 minutes to read • Edit Online

IMPORTANT

 XAML example

<Window.Resources>
 <SolidColorBrush x:Key="MyBrush" Color="#05E0E9"/>
 <Style TargetType="Border">
 <Setter Property="Background" Value="#4E1A3D" />
 <Setter Property="BorderThickness" Value="5" />
 <Setter Property="BorderBrush">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0.0" Color="#4E1A3D"/>
 <GradientStop Offset="1.0" Color="Salmon"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
 <Style TargetType="TextBlock" x:Key="TitleText">
 <Setter Property="FontSize" Value="18"/>
 <Setter Property="Foreground" Value="#4E87D4"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Margin" Value="0,10,10,10"/>
 </Style>
 <Style TargetType="TextBlock" x:Key="Label">
 <Setter Property="HorizontalAlignment" Value="Right"/>
 <Setter Property="FontSize" Value="13"/>
 <Setter Property="Foreground" Value="{StaticResource MyBrush}"/>
 <Setter Property="FontFamily" Value="Arial"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Margin" Value="0,3,10,0"/>
 </Style>
</Window.Resources>

 Resources

This example shows how to define a resource and reference it. A resource can be referenced through XAML or

through code.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The following example defines two types of resources: a SolidColorBrush resource, and several Style resources.

The SolidColorBrush resource MyBrush is used to provide the value of several properties that each take a Brush

type value. This resource is referenced through the x:Key value.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/systems/xaml-resources-how-to-define-and-reference.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.solidcolorbrush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.solidcolorbrush
https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.brush

<Border>
 <StackPanel>
 <TextBlock Style="{StaticResource TitleText}">Title</TextBlock>
 <TextBlock Style="{StaticResource Label}">Label</TextBlock>
 <TextBlock HorizontalAlignment="Right" FontSize="36" Foreground="{StaticResource MyBrush}"
Text="Text" Margin="20" />
 <Button HorizontalAlignment="Left" Height="30" Background="{StaticResource MyBrush}"
Margin="40">Button</Button>
 <Ellipse HorizontalAlignment="Center" Width="100" Height="100" Fill="{StaticResource MyBrush}"
Margin="10" />
 </StackPanel>
</Border>

 Style resources

<Border>
 <StackPanel>
 <TextBlock Style="{StaticResource TitleText}">Title</TextBlock>
 <TextBlock Style="{StaticResource Label}">Label</TextBlock>
 <TextBlock HorizontalAlignment="Right" FontSize="36" Foreground="{StaticResource MyBrush}"
Text="Text" Margin="20" />
 <Button HorizontalAlignment="Left" Height="30" Background="{StaticResource MyBrush}"
Margin="40">Button</Button>
 <Ellipse HorizontalAlignment="Center" Width="100" Height="100" Fill="{StaticResource MyBrush}"
Margin="10" />
 </StackPanel>
</Border>

 Code examples

In the previous example, the MyBrush resource is accessed with the StaticResource Markup Extension. The

resource is assigned to a property that can accept the type of resource being defined. In this case the

Background, Foreground, and Fill properties.

All resources in a resource diction must provide a key. When styles are defined though, they can omit the key, as

explained in the next section.

Resources are also requested by the order found within the dictionary if you use the StaticResource Markup

Extension to reference them from within another resource. Make sure that any resource that you reference is

defined in the collection earlier than where that resource is requested. For more information, see Static

resources.

If necessary, you can work around the strict creation order of resource references by using a DynamicResource

Markup Extension to reference the resource at runtime instead, but you should be aware that this

DynamicResource technique has performance consequences. For more information, see Dynamic resources.

The following example references styles implicitly and explicitly:

In the previous code example, the Style resources TitleText and Label , each target a particular control type. In

this case, they both target a TextBlock. The styles set a variety of different properties on the targeted controls

when that style resource is referenced by its resource key for the Style property.

The style though that targets a Border control doesn't define a key. When a key is omitted, the type of object

being targeted by the TargetType property is implicitly used as the key for the style. When a style is keyed to a

type, it becomes the default style for all controls of that type, as long as these controls are within scope of the

style. For more information, see Styles, DataTemplates, and implicit keys.

The following code snippets demonstrate creating and setting resources through code

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.background
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.control.foreground
https://docs.microsoft.com/en-us/dotnet/api/system.windows.shapes.shape.fill#system_windows_shapes_shape_fill
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dynamicresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.border
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype#system_windows_style_targettype

Create a style resource

<StackPanel Margin="5">
 <Button Click="Button_Click">Explicitly Styled</Button>
 <Button>Unstyled</Button>
 <Button>Unstyled</Button>
 <Button Style="{DynamicResource ResourceKey=buttonStyle1}">Dynamically Styled</Button>
</StackPanel>

private void Button_Click(object sender, RoutedEventArgs e)
{
 // Create colors
 Color purple = (Color)ColorConverter.ConvertFromString("#4E1A3D");
 Color white = Colors.White;
 Color salmon = Colors.Salmon;

 // Create a new style for a button
 var buttonStyle = new Style(typeof(Button));

 // Set the properties of the style
 buttonStyle.Setters.Add(new Setter(Control.BackgroundProperty, new SolidColorBrush(purple)));
 buttonStyle.Setters.Add(new Setter(Control.ForegroundProperty, new SolidColorBrush(white)));
 buttonStyle.Setters.Add(new Setter(Control.BorderBrushProperty, new LinearGradientBrush(purple, salmon,
45d)));
 buttonStyle.Setters.Add(new Setter(Control.BorderThicknessProperty, new Thickness(5)));

 // Set this style as a resource. Any DynamicResource tied to this key will be updated.
 this.Resources["buttonStyle1"] = buttonStyle;

 // Set this style directly to a button
 ((Button)sender).Style = buttonStyle;
}

Creating a resource and assigning it to a resource dictionary can happen at any time. However, only XAML

elements that use the DynamicResource syntax will be automatically updated with the resource after it's created.

Take for example the following Window. It has four buttons. The forth button is using a DynamicResource to

style itself. However, this resource doesn't yet exist, so it just looks like a normal button:

The following code is invoked when the first button is clicked and performs the following tasks:

Creates some colors for easy reference.

Creates a new style.

Assigns setters to the style.

Adds the style as a resource named buttonStyle1 to the window's resource dictionary.

Assigns the style directly to the button raising the Click event.

Private Sub Button_Click(sender As Object, e As RoutedEventArgs)

 'Create colors
 Dim purple = DirectCast(ColorConverter.ConvertFromString("#4E1A3D"), Color)
 Dim white = Colors.White
 Dim salmon = Colors.Salmon

 'Create a new style for a button
 Dim buttonStyle As New Style()

 'Set the properties of the style
 buttonStyle.Setters.Add(New Setter(Control.BackgroundProperty, New SolidColorBrush(purple)))
 buttonStyle.Setters.Add(New Setter(Control.ForegroundProperty, New SolidColorBrush(white)))
 buttonStyle.Setters.Add(New Setter(Control.BorderBrushProperty, New LinearGradientBrush(purple, salmon,
45D)))
 buttonStyle.Setters.Add(New Setter(Control.BorderThicknessProperty, New Thickness(5)))

 'Set this style as a resource. Any DynamicResource looking for this key will be updated.
 Me.Resources("buttonStyle1") = buttonStyle

 'Set this style directly to a button
 DirectCast(sender, Button).Style = buttonStyle

End Sub

 Find a resource

myButton.Style = myButton.TryFindResource("buttonStyle1") as Style;

myButton.Style = myButton.TryFindResource("buttonStyle1")

 Explicitly reference a resource

After the code runs, the window is updated:

Notice that the forth button's style was updated. The style was automatically applied because the button used

the DynamicResource Markup Extension to reference a style that didn't yet exist. Once the style was created and

added to the resources of the window, it was applied to the button. For more information, see Dynamic

resources.

The following code traverses the logical tree of the XAML object in which is run, to find the specified resource.

The resource might be defined on the object itself, it's parent, all the way to the root, the application itself. The

following code searches for a resource, starting with the button itself:

When you have reference to a resource, either by searching for it or by creating it, it can be assigned to a

property directly:

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dynamicresource-markup-extension

// Set this style as a resource. Any DynamicResource tied to this key will be updated.
this.Resources["buttonStyle1"] = buttonStyle;

'Set this style as a resource. Any DynamicResource looking for this key will be updated.
Me.Resources("buttonStyle1") = buttonStyle

 See also
Overview of XAML resources

Styles and templates

How to use system resources

How to use application resources

How to use application resources (WPF .NET)
 4/15/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Example

<Application.Resources>
 <Style TargetType="Border" x:Key="FancyBorder">
 <Setter Property="Background" Value="#4E1A3D" />
 <Setter Property="BorderThickness" Value="5" />
 <Setter Property="BorderBrush">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0.0" Color="#4E1A3D"/>
 <GradientStop Offset="1.0" Color="Salmon"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</Application.Resources>

<Border Style="{StaticResource FancyBorder}">
 <StackPanel Margin="5">
 <Button>Button 1</Button>
 <Button>Button 2</Button>
 <Button>Button 3</Button>
 <Button>Button 4</Button>
 </StackPanel>
</Border>

 See also

This example demonstrates how to use application-defined resources. Resources can be defined at the

application level, generally through the App.xaml or Application.xaml file, whichever one your project uses.

Resources that are defined by the application are globally scoped and accessible by all parts of the application.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

The following example shows an application definition file. The application definition file defines a resource

section (a value for the Resources property). Resources defined at the application level can be accessed by all

other pages that are part of the application. In this case, the resource is a declared style. Because a complete

style that includes a control template can be lengthy, this example omits the control template that is defined

within the ContentTemplate property setter of the style.

The following example shows a XAML page that references an application-level resource from the previous

example. The resource is referenced with a StaticResource Markup Extension that specifies the unique resource

key for the resource. The resource "FancyBorder" isn't found in the scope of the current object and window, so

the resource lookup continues beyond the current page and into application-level resources.

Overview of XAML resources

Resources in code

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/systems/xaml-resources-how-to-use-application.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application.resources
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.contenttemplate
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension

How to define and reference a WPF resource

How to use system resources

How to use system resources (WPF .NET)
 4/15/2021 • 3 minutes to read • Edit Online

IMPORTANT

 Fonts

<TextBlock FontSize="{x:Static SystemFonts.SmallCaptionFontSize}"
 FontWeight="{x:Static SystemFonts.SmallCaptionFontWeight}"
 FontFamily="{x:Static SystemFonts.SmallCaptionFontFamily}"
 Text="Small Caption Font">
</TextBlock>

var myButton = new Button()
{
 Content = "SystemFonts",
 Background = SystemColors.ControlDarkDarkBrush,
 FontSize = SystemFonts.IconFontSize,
 FontWeight = SystemFonts.MessageFontWeight,
 FontFamily = SystemFonts.CaptionFontFamily
};

mainStackPanel.Children.Add(myButton);

This example demonstrates how to use system-defined resources. System resources are provided by WPF and

allow access to operating system resources, such as fonts, colors, and icons. System resources expose several

system-defined values as both resources and properties to help you create visuals that are consistent with

Windows.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

Use the SystemFonts class to reference the fonts used by the operating system. This class contains system font

values as static properties, and properties that reference resource keys that can be used to access those values

dynamically at run time. For example, CaptionFontFamily is a SystemFonts value, and CaptionFontFamilyKey is a

corresponding resource key.

The following example shows how to access and use the properties of SystemFonts as static values to style or

customize a text block:

To use the values of SystemFonts in code, you don't have to use either a static value or a dynamic resource

reference. Instead, use the non-key properties of the SystemFonts class. Although the non-key properties are

apparently defined as static properties, the run-time behavior of WPF as hosted by the system will reevaluate

the properties in real time and will properly account for user-driven changes to system values. The following

example shows how to specify the font settings of a button:

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/systems/xaml-resources-how-to-use-system.md
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts.captionfontfamily
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts.captionfontfamilykey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemfonts

Dim myButton = New Button() With
{
 .Content = "SystemFonts",
 .Background = SystemColors.ControlDarkDarkBrush,
 .FontSize = SystemFonts.IconFontSize,
 .FontWeight = SystemFonts.MessageFontWeight,
 .FontFamily = SystemFonts.CaptionFontFamily
}

mainStackPanel.Children.Add(myButton)

 Dynamic fonts in XAML

NOTE

<TextBlock FontSize="{DynamicResource {x:Static SystemFonts.SmallCaptionFontSize}}"
 FontWeight="{DynamicResource {x:Static SystemFonts.SmallCaptionFontWeight}}"
 FontFamily="{DynamicResource {x:Static SystemFonts.SmallCaptionFontFamily}}"
 Text="Small Caption Font">
</TextBlock>

 Parameters

<Button FontSize="8"
 Height="{x:Static SystemParameters.CaptionHeight}"
 Width="{x:Static SystemParameters.IconGridWidth}"
 Content="System Parameters">
</Button>

System font metrics can be used as either static or dynamic resources. Use a dynamic resource if you want the

font metric to update automatically while the application runs; otherwise, use a static resource.

Dynamic resources have the keyword Key appended to the property name.

The following example shows how to access and use system font dynamic resources to style or customize a text

block:

Use the SystemParameters class to reference system-level properties, such as the size of the primary display.

This class contains both system parameter value properties, and resource keys that bind to the values. For

example, FullPrimaryScreenHeight is a SystemParameters property value and FullPrimaryScreenHeightKey is

the corresponding resource key.

The following example shows how to access and use the static values of SystemParameters to style or customize

a button. This markup example sizes a button by applying SystemParameters values to a button:

To use the values of SystemParameters in code, you don't have to use either static references or dynamic

resource references. Instead, use the values of the SystemParameters class. Although the non-key properties are

apparently defined as static properties, the run-time behavior of WPF as hosted by the system will reevaluate

the properties in real time, and will properly account for user-driven changes to system values. The following

example shows how to set the width and height of a button by using SystemParameters values:

https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters.fullprimaryscreenheight
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters.fullprimaryscreenheightkey
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters
https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters

var myButton = new Button()
{
 Content = "SystemParameters",
 FontSize = 8,
 Background = SystemColors.ControlDarkDarkBrush,
 Height = SystemParameters.CaptionHeight,
 Width = SystemParameters.CaptionWidth,
};

mainStackPanel.Children.Add(myButton);

Dim myButton = New Button() With
{
 .Content = "SystemParameters",
 .FontSize = 8,
 .Background = SystemColors.ControlDarkDarkBrush,
 .Height = SystemParameters.CaptionHeight,
 .Width = SystemParameters.CaptionWidth
}

mainStackPanel.Children.Add(myButton)

 Dynamic parameters in XAML

NOTE

<Button FontSize="8"
 Height="{DynamicResource {x:Static SystemParameters.CaptionHeightKey}}"
 Width="{DynamicResource {x:Static SystemParameters.IconGridWidthKey}}"
 Content="System Parameters">
</Button>

 See also

System parameter metrics can be used as either static or dynamic resources. Use a dynamic resource if you

want the parameter metric to update automatically while the application runs; otherwise, use a static resource.

Dynamic resources have the keyword Key appended to the property name.

The following example shows how to access and use system parameter dynamic resources to style or customize

a button. This XAML example sizes a button by assigning SystemParameters values to the button's width and

height.

Overview of XAML resources

Resources in code

How to define and reference a WPF resource

How to use application resources

https://docs.microsoft.com/en-us/dotnet/api/system.windows.systemparameters

XAML overview (WPF .NET)
 4/15/2021 • 25 minutes to read • Edit Online

IMPORTANT

 What is XAML

<StackPanel>
 <Button Content="Click Me"/>
</StackPanel>

 XAML syntax in brief

 XAML object elements

This article describes the features of the XAML language and demonstrates how you can use XAML to write

Windows Presentation Foundation (WPF) apps. This article specifically describes XAML as implemented by WPF.

XAML itself is a larger language concept than WPF.

The Desktop Guide documentation for .NET 5 (and .NET Core) is under construction.

XAML is a declarative markup language. As applied to the .NET Core programming model, XAML simplifies

creating a UI for a .NET Core app. You can create visible UI elements in the declarative XAML markup, and then

separate the UI definition from the run-time logic by using code-behind files that are joined to the markup

through partial class definitions. XAML directly represents the instantiation of objects in a specific set of backing

types defined in assemblies. This is unlike most other markup languages, which are typically an interpreted

language without such a direct tie to a backing type system. XAML enables a workflow where separate parties

can work on the UI and the logic of an app, using potentially different tools.

When represented as text, XAML files are XML files that generally have the .xaml extension. The files can be

encoded by any XML encoding, but encoding as UTF-8 is typical.

The following example shows how you might create a button as part of a UI. This example is intended to give

you a flavor of how XAML represents common UI programming metaphors (it's not a complete sample).

The following sections explain the basic forms of XAML syntax, and give a short markup example. These sections

aren't intended to provide complete information about each syntax form, such as how these are represented in

the backing type system. For more information about the specifics of XAML syntax, see XAML Syntax In Detail.

Much of the material in the next few sections will be elementary to you if you have previous familiarity with the

XML language. This is a consequence of one of the basic design principles of XAML. The XAML language defines

concepts of its own, but these concepts work within the XML language and markup form.

An object element typically declares an instance of a type. That type is defined in the assemblies referenced by

the technology that uses XAML as a language.

Object element syntax always starts with an opening angle bracket (<). This is followed by the name of the type

where you want to create an instance. (The name can include a prefix, a concept that will be explained later.)

After this, you can optionally declare attributes on the object element. To complete the object element tag, end

with a closing angle bracket (>). You can instead use a self-closing form that doesn't have any content, by

completing the tag with a forward slash and closing angle bracket in succession (/>). For example, look at the

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/net/wpf/xaml/index.md
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/xaml-syntax-in-detail

<StackPanel>
 <Button Content="Click Me"/>
</StackPanel>

 Attribute syntax (properties)

<Button Background="Blue" Foreground="Red" Content="This is a button"/>

 Property element syntax

<Button>
 <Button.Background>
 <SolidColorBrush Color="Blue"/>
 </Button.Background>
 <Button.Foreground>
 <SolidColorBrush Color="Red"/>
 </Button.Foreground>
 <Button.Content>
 This is a button
 </Button.Content>
</Button>

 Collection syntax

previously shown markup snippet again.

This specifies two object elements: <StackPanel> (with content, and a closing tag later), and <Button .../> (the

self-closing form, with several attributes). The object elements StackPanel and Button each map to the name

of a class that is defined by WPF and is part of the WPF assemblies. When you specify an object element tag,

you create an instruction for XAML processing to create a new instance of the underlying type. Each instance is

created by calling the parameterless constructor of the underlying type when parsing and loading the XAML.

Properties of an object can often be expressed as attributes of the object element. The attribute syntax names

the object property that is being set, followed by the assignment operator (=). The value of an attribute is always

specified as a string that is contained within quotation marks.

Attribute syntax is the most streamlined property setting syntax and is the most intuitive syntax to use for

developers who have used markup languages in the past. For example, the following markup creates a button

that has red text and a blue background with a display text of Content .

For some properties of an object element, attribute syntax isn't possible, because the object or information

necessary to provide the property value can't be adequately expressed within the quotation mark and string

restrictions of attribute syntax. For these cases, a different syntax known as property element syntax can be

used.

The syntax for the property element start tag is <TypeName.PropertyName> . Generally, the content of that tag is an

object element of the type that the property takes as its value. After specifying the content, you must close the

property element with an end tag. The syntax for the end tag is </TypeName.PropertyName> .

If an attribute syntax is possible, using the attribute syntax is typically more convenient and enables a more

compact markup, but that is often just a matter of style, not a technical limitation. The following example shows

the same properties being set as in the previous attribute syntax example, but this time by using property

element syntax for all properties of the Button .

The XAML language includes some optimizations that produce more human-readable markup. One such

optimization is that if a particular property takes a collection type, then items that you declare in markup as

child elements within that property's value become part of the collection. In this case, a collection of child object

<LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <!-- no explicit new GradientStopCollection, parser knows how to find or create -->
 <GradientStop Offset="0.0" Color="Red" />
 <GradientStop Offset="1.0" Color="Blue" />
 </LinearGradientBrush.GradientStops>
</LinearGradientBrush>

 XAML content properties

<Border>
 <TextBox Width="300"/>
</Border>
<!--explicit equivalent-->
<Border>
 <Border.Child>
 <TextBox Width="300"/>
 </Border.Child>
</Border>

<Button>I am a
 <Button.Background>Blue</Button.Background>
 blue button</Button>

 Text content

elements is the value being set to the collection property.

The following example shows collection syntax for setting values of the GradientStops property.

XAML specifies a language feature whereby a class can designate exactly one of its properties to be the XAML

content property. Child elements of that object element are used to set the value of that content property. In

other words, for the content property uniquely, you can omit a property element when setting that property in

XAML markup and produce a more visible parent/child metaphor in the markup.

For example, Border specifies a content property of Child. The following two Border elements are treated

identically. The first one takes advantage of the content property syntax and omits the Border.Child property

element. The second one shows Border.Child explicitly.

As a rule of the XAML language, the value of a XAML content property must be given either entirely before or

entirely after any other property elements on that object element. For instance, the following markup doesn't

compile.

For more information about the specifics of XAML syntax, see XAML Syntax In Detail.

A small number of XAML elements can directly process text as their content. To enable this, one of the following

cases must be true:

The class must declare a content property, and that content property must be of a type assignable to a

string (the type could be Object). For instance, any ContentControl uses Content as its content property

and it's type Object, and this supports the following usage on a ContentControl such as a Button:

<Button>Hello</Button> .

The type must declare a type converter, in which case the text content is used as initialization text for that

type converter. For example, <Brush>Blue</Brush> converts the content value of Blue into a brush. This

case is less common in practice.

The type must be a known XAML language primitive.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.media.gradientbrush.gradientstops
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.border
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.decorator.child
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.border
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/xaml-syntax-in-detail
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol.content
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentcontrol
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button

 Content properties and collection syntax combined

<StackPanel>
 <Button>First Button</Button>
 <Button>Second Button</Button>
</StackPanel>

<StackPanel>
 <StackPanel.Children>
 <Button>First Button</Button>
 <Button>Second Button</Button>
 </StackPanel.Children>
</StackPanel>

 Attribute syntax (events)

<Button Click="Button_Click" >Click Me!</Button>

 Case and white space in XAML

Consider this example.

Here, each Button is a child element of StackPanel. This is a streamlined and intuitive markup that omits two tags

for two different reasons.

Omitted StackPanel.Children proper ty element: StackPanel derives from Panel. Panel defines

Panel.Children as its XAML content property.

Omitted UIElementCollection object element: The Panel.Children property takes the type

UIElementCollection, which implements IList. The collection's element tag can be omitted, based on the

XAML rules for processing collections such as IList. (In this case, UIElementCollection actually can't be

instantiated because it doesn't expose a parameterless constructor, and that is why the

UIElementCollection object element is shown commented out).

Attribute syntax can also be used for members that are events rather than properties. In this case, the attribute's

name is the name of the event. In the WPF implementation of events for XAML, the attribute's value is the name

of a handler that implements that event's delegate. For example, the following markup assigns a handler for the

Click event to a Button created in markup:

There's more to events and XAML in WPF than just this example of the attribute syntax. For example, you might

wonder what the ClickHandler referenced here represents and how it's defined. This will be explained in the

upcoming Events and XAML code-behind section of this article.

In general, XAML is case-sensitive. For purposes of resolving backing types, WPF XAML is case-sensitive by the

same rules that the CLR is case-sensitive. Object elements, property elements, and attribute names must all be

specified by using the sensitive casing when compared by name to the underlying type in the assembly, or to a

member of a type. XAML language keywords and primitives are also case-sensitive. Values aren't always case-

sensitive. Case sensitivity for values will depend on the type converter behavior associated with the property

that takes the value, or the property value type. For example, properties that take the Boolean type can take

either true or True as equivalent values, but only because the native WPF XAML parser type conversion for

string to Boolean already permits these as equivalents.

WPF XAML processors and serializers will ignore or drop all nonsignificant white space, and will normalize any

significant white space. This is consistent with the default white-space behavior recommendations of the XAML

specification. This behavior is only of consequence when you specify strings within XAML content properties. In

simplest terms, XAML converts space, linefeed, and tab characters into spaces, and then preserves one space if

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.panel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.panel.children
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.panel.children
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.uielementcollection
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ilist
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ilist
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.uielementcollection
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.uielementcollection
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.boolean
https://docs.microsoft.com/en-us/dotnet/api/system.boolean

 Markup extensions

<Window x:Class="index.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="100" Width="300">
 <Window.Resources>
 <SolidColorBrush x:Key="MyBrush" Color="Gold"/>
 <Style TargetType="Border" x:Key="PageBackground">
 <Setter Property="BorderBrush" Value="Blue"/>
 <Setter Property="BorderThickness" Value="5" />
 </Style>
 </Window.Resources>
 <Border Style="{StaticResource PageBackground}">
 <StackPanel>
 <TextBlock Text="Hello" />
 </StackPanel>
 </Border>
</Window>

 Type converters

found at either end of a contiguous string. The full explanation of XAML white-space handling isn't covered in

this article. For more information, see White space processing in XAML.

Markup extensions are a XAML language concept. When used to provide the value of an attribute syntax, curly

braces ({ and }) indicate a markup extension usage. This usage directs the XAML processing to escape from

the general treatment of attribute values as either a literal string or a string-convertible value.

The most common markup extensions used in WPF app programming are Binding , used for data binding

expressions, and the resource references StaticResource and DynamicResource . By using markup extensions,

you can use attribute syntax to provide values for properties even if that property doesn't support an attribute

syntax in general. Markup extensions often use intermediate expression types to enable features such as

deferring values or referencing other objects that are only present at run-time.

For example, the following markup sets the value of the Style property using attribute syntax. The Style property

takes an instance of the Style class, which by default could not be instantiated by an attribute syntax string. But

in this case, the attribute references a particular markup extension, StaticResource . When that markup

extension is processed, it returns a reference to a style that was previously instantiated as a keyed resource in a

resource dictionary.

For a reference listing of all markup extensions for XAML implemented specifically in WPF, see WPF XAML

Extensions. For a reference listing of the markup extensions that are defined by System.Xaml and are more

widely available for .NET Core XAML implementations, see XAML Namespace (x:) Language Features. For more

information about markup extension concepts, see Markup Extensions and WPF XAML.

In the XAML Syntax in Brief section, it was stated that the attribute value must be able to be set by a string. The

basic, native handling of how strings are converted into other object types or primitive values is based on the

String type itself, along with native processing for certain types such as DateTime or Uri. But many WPF types or

members of those types extend the basic string attribute processing behavior in such a way that instances of

more complex object types can be specified as strings and attributes.

The Thickness structure is an example of a type that has a type conversion enabled for XAML usages. Thickness

indicates measurements within a nested rectangle and is used as the value for properties such as Margin. By

placing a type converter on Thickness, all properties that use a Thickness are easier to specify in XAML because

they can be specified as attributes. The following example uses a type conversion and attribute syntax to provide

a value for a Margin:

https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/white-space-processing
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/binding-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/dynamicresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.style
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-xaml-extensions
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/namespace-language-features
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/markup-extensions-and-wpf-xaml
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/api/system.uri
https://docs.microsoft.com/en-us/dotnet/api/system.windows.thickness
https://docs.microsoft.com/en-us/dotnet/api/system.windows.thickness
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.margin
https://docs.microsoft.com/en-us/dotnet/api/system.windows.thickness
https://docs.microsoft.com/en-us/dotnet/api/system.windows.thickness
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.margin

<Button Margin="10,20,10,30" Content="Click me"/>

<Button Content="Click me">
 <Button.Margin>
 <Thickness Left="10" Top="20" Right="10" Bottom="30"/>
 </Button.Margin>
</Button>

NOTE

 Root elements and namespaces

<Page x:Class="index.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Page1">

</Page>

The previous attribute syntax example is equivalent to the following more verbose syntax example, where the

Margin is instead set through property element syntax containing a Thickness object element. The four key

properties of Thickness are set as attributes on the new instance:

There are also a limited number of objects where the type conversion is the only public way to set a property to that type

without involving a subclass, because the type itself doesn't have a parameterless constructor. An example is Cursor.

For more information on type conversion, see TypeConverters and XAML.

A XAML file must have only one root element, to be both a well-formed XML file and a valid XAML file. For

typical WPF scenarios, you use a root element that has a prominent meaning in the WPF app model (for

example, Window or Page for a page, ResourceDictionary for an external dictionary, or Application for the app

definition). The following example shows the root element of a typical XAML file for a WPF page, with the root

element of Page.

The root element also contains the attributes xmlns and xmlns:x . These attributes indicate to a XAML

processor which XAML namespaces contain the type definitions for backing types that the markup will reference

as elements. The xmlns attribute specifically indicates the default XAML namespace. Within the default XAML

namespace, object elements in the markup can be specified without a prefix. For most WPF app scenarios, and

for almost all of the examples given in the WPF sections of the SDK, the default XAML namespace is mapped to

the WPF namespace http://schemas.microsoft.com/winfx/2006/xaml/presentation . The xmlns:x attribute

indicates an additional XAML namespace, which maps the XAML language namespace

http://schemas.microsoft.com/winfx/2006/xaml .

This usage of xmlns to define a scope for usage and mapping of a namescope is consistent with the XML 1.0

specification. XAML namescopes are different from XML namescopes only in that a XAML namescope also

implies something about how the namescope's elements are backed by types when it comes to type resolution

and parsing the XAML.

The xmlns attributes are only strictly necessary on the root element of each XAML file. xmlns definitions will

apply to all descendant elements of the root element (this behavior is again consistent with the XML 1.0

specification for xmlns .) xmlns attributes are also permitted on other elements underneath the root, and would

apply to any descendant elements of the defining element. However, frequent definition or redefinition of XAML

namespaces can result in a XAML markup style that is difficult to read.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.margin
https://docs.microsoft.com/en-us/dotnet/api/system.windows.thickness
https://docs.microsoft.com/en-us/dotnet/api/system.windows.thickness
https://docs.microsoft.com/en-us/dotnet/api/system.windows.input.cursor
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/typeconverters-and-xaml
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.page
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/system.windows.application
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.page

 The x: prefix

 Custom prefixes and custom types

The WPF implementation of its XAML processor includes an infrastructure that has awareness of the WPF core

assemblies. The WPF core assemblies are known to contain the types that support the WPF mappings to the

default XAML namespace. This is enabled through configuration that is part of your project build file and the

WPF build and project systems. Therefore, declaring the default XAML namespace as the default xmlns is all

that is necessary to reference XAML elements that come from WPF assemblies.

In the previous root element example, the prefix x: was used to map the XAML namespace

http://schemas.microsoft.com/winfx/2006/xaml , which is the dedicated XAML namespace that supports XAML

language constructs. This x: prefix is used for mapping this XAML namespace in the templates for projects, in

examples, and in documentation throughout this SDK. The XAML namespace for the XAML language contains

several programming constructs that you will use frequently in your XAML. The following is a listing of the most

common x: prefix programming constructs you will use:

x:Key: Sets a unique key for each resource in a ResourceDictionary (or similar dictionary concepts in other

frameworks). x:Key will probably account for 90 percent of the x: usages you will see in a typical WPF

app's markup.

x:Class: Specifies the CLR namespace and class name for the class that provides code-behind for a XAML

page. You must have such a class to support code-behind per the WPF programming model, and

therefore you almost always see x: mapped, even if there are no resources.

x:Name: Specifies a run-time object name for the instance that exists in run-time code after an object

element is processed. In general, you will frequently use a WPF-defined equivalent property for x:Name.

Such properties map specifically to a CLR backing property and are thus more convenient for app

programming, where you frequently use run-time code to find the named elements from initialized

XAML. The most common such property is FrameworkElement.Name. You might still use x:Name when

the equivalent WPF framework-level Name property isn't supported in a particular type. This occurs in

certain animation scenarios.

x:Static: Enables a reference that returns a static value that isn't otherwise a XAML-compatible property.

x:Type: Constructs a Type reference based on a type name. This is used to specify attributes that take Type,

such as Style.TargetType, although frequently the property has native string-to-Type conversion in such a

way that the x:Type markup extension usage is optional.

There are additional programming constructs in the x: prefix/XAML namespace, which aren't as common. For

details, see XAML Namespace (x:) Language Features.

For your own custom assemblies, or for assemblies outside the WPF core of PresentationCore,

PresentationFramework and WindowsBase, you can specify the assembly as part of a custom xmlns

mapping. You can then reference types from that assembly in your XAML, so long as that type is correctly

implemented to support the XAML usages you are attempting.

The following is a basic example of how custom prefixes work in XAML markup. The prefix custom is defined in

the root element tag, and mapped to a specific assembly that is packaged and available with the app. This

assembly contains a type NumericUpDown , which is implemented to support general XAML usage as well as using

a class inheritance that permits its insertion at this particular point in a WPF XAML content model. An instance

of this NumericUpDown control is declared as an object element, using the prefix so that a XAML parser knows

which XAML namespace contains the type, and therefore where the backing assembly is that contains the type

definition.

https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xkey-directive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xclass-directive
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xname-directive
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xname-directive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.name
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xname-directive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.name
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xstatic-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xtype-markup-extension
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/api/system.windows.style.targettype
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xtype-markup-extension
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/namespace-language-features

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:custom="clr-namespace:NumericUpDownCustomControl;assembly=CustomLibrary"
 >
 <StackPanel Name="LayoutRoot">
 <custom:NumericUpDown Name="numericCtrl1" Width="100" Height="60"/>
...
 </StackPanel>
</Page>

 Events and XAML code-behind

<Window x:Class="index.Window2"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window2" Height="450" Width="800">
 <StackPanel>
 <Button Click="Button_Click">Click me</Button>
 </StackPanel>
</Window>

private void Button_Click(object sender, RoutedEventArgs e)
{
 var buttonControl = (Button)e.Source;
 buttonControl.Foreground = Brushes.Red;
}

Private Sub Button_Click(sender As Object, e As RoutedEventArgs)
 Dim buttonControl = DirectCast(e.Source, Button)
 buttonControl.Foreground = Brushes.Red
End Sub

For more information about custom types in XAML, see XAML and Custom Classes for WPF.

For more information about how XML namespaces and code namespaces in assemblies are related, see XAML

Namespaces and Namespace Mapping for WPF XAML.

Most WPF apps consist of both XAML markup and code-behind. Within a project, the XAML is written as a

.xaml file, and a CLR language such as Microsoft Visual Basic or C# is used to write a code-behind file. When a

XAML file is markup compiled as part of the WPF programming and application models, the location of the

XAML code-behind file for a XAML file is identified by specifying a namespace and class as the x:Class

attribute of the root element of the XAML.

In the examples so far, you have seen several buttons, but none of these buttons had any logical behavior

associated with them yet. The primary application-level mechanism for adding a behavior for an object element

is to use an existing event of the element class, and to write a specific handler for that event that is invoked

when that event is raised at run-time. The event name and the name of the handler to use are specified in the

markup, whereas the code that implements your handler is defined in the code-behind.

Notice that the code-behind file uses the CLR namespace ExampleNamespace and declares ExamplePage as a

partial class within that namespace. This parallels the x:Class attribute value of ExampleNamespace . ExamplePage

that was provided in the markup root. The WPF markup compiler will create a partial class for any compiled

XAML file, by deriving a class from the root element type. When you provide code-behind that also defines the

same partial class, the resulting code is combined within the same namespace and class of the compiled app.

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/xaml-and-custom-classes-for-wpf
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/xaml-namespaces-and-namespace-mapping-for-wpf-xaml

 Routed events

 Named elements

<StackPanel Name="buttonContainer">
 <Button Click="RemoveThis_Click">Click to remove this button</Button>
</StackPanel>

private void RemoveThis_Click(object sender, RoutedEventArgs e)
{
 var element = (FrameworkElement)e.Source;

 if (buttonContainer.Children.Contains(element))
 buttonContainer.Children.Remove(element);
}

For more information about requirements for code-behind programming in WPF, see Code-behind, Event

Handler, and Partial Class Requirements in WPF.

If you don't want to create a separate code-behind file, you can also inline your code in a XAML file. However,

inline code is a less versatile technique that has substantial limitations. For more information, see Code-Behind

and XAML in WPF.

A particular event feature that is fundamental to WPF is a routed event. Routed events enable an element to

handle an event that was raised by a different element, as long as the elements are connected through a tree

relationship. When specifying event handling with a XAML attribute, the routed event can be listened for and

handled on any element, including elements that don't list that particular event in the class members table. This

is accomplished by qualifying the event name attribute with the owning class name. For instance, the parent

StackPanel in the ongoing StackPanel / Button example could register a handler for the child element

button's Click event by specifying the attribute Button.Click on the StackPanel object element, with your

handler name as the attribute value. For more information, see Routed Events Overview.

By default, the object instance that is created in an object graph by processing a XAML object element doesn't

have a unique identifier or object reference. In contrast, if you call a constructor in code, you almost always use

the constructor result to set a variable to the constructed instance, so that you can reference the instance later in

your code. To provide standardized access to objects that were created through a markup definition, XAML

defines the x:Name attribute. You can set the value of the x:Name attribute on any object element. In your code-

behind, the identifier you choose is equivalent to an instance variable that refers to the constructed instance. In

all respects, named elements function as if they were object instances (the name references that instance), and

your code-behind can reference the named elements to handle run-time interactions within the app. This

connection between instances and variables is accomplished by the WPF XAML markup compiler, and more

specifically involve features and patterns such as InitializeComponent that won't be discussed in detail in this

article.

WPF framework-level XAML elements inherit a Name property, which is equivalent to the XAML defined x:Name

attribute. Certain other classes also provide property-level equivalents for x:Name , which is also usually defined

as a Name property. Generally speaking, if you can't find a Name property in the members table for your chosen

element/type, use x:Name instead. The x:Name values will provide an identifier to a XAML element that can be

used at run-time, either by specific subsystems or by utility methods such as FindName.

The following example sets Name on a StackPanel element. Then, a handler on a Button within that StackPanel

references the StackPanel through its instance reference buttonContainer as set by Name.

https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/code-behind-and-xaml-in-wpf
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/code-behind-and-xaml-in-wpf
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase.click
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/routed-events-overview
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xname-directive
https://docs.microsoft.com/en-us/dotnet/api/system.windows.markup.icomponentconnector.initializecomponent
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.name
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.findname
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.name
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.name

Private Sub RemoveThis_Click(sender As Object, e As RoutedEventArgs)
 Dim element = DirectCast(e.Source, FrameworkElement)

 If buttonContainer.Children.Contains(element) Then
 buttonContainer.Children.Remove(element)
 End If
End Sub

 Attached properties and attached events

<DockPanel>
 <Button DockPanel.Dock="Left" Width="100" Height="20">I am on the left</Button>
 <Button DockPanel.Dock="Right" Width="100" Height="20">I am on the right</Button>
</DockPanel>

 Base types

Just like a variable, the XAML name for an instance is governed by a concept of scope, so that names can be

enforced to be unique within a certain scope that is predictable. The primary markup that defines a page

denotes one unique XAML namescope, with the XAML namescope boundary being the root element of that

page. However, other markup sources can interact with a page at run-time, such as styles or templates within

styles, and such markup sources often have their own XAML namescopes that don't necessarily connect with the

XAML namescope of the page. For more information on x:Name and XAML namescopes, see Name, x:Name

Directive, or WPF XAML Namescopes.

XAML specifies a language feature that enables certain properties or events to be specified on any element,

even if the property or event doesn't exists in the type's definitions for the element it's being set on. The

properties version of this feature is called an attached property, the events version is called an attached event.

Conceptually, you can think of attached properties and attached events as global members that can be set on

any XAML element/object instance. However, that element/class or a larger infrastructure must support a

backing property store for the attached values.

Attached properties in XAML are typically used through attribute syntax. In attribute syntax, you specify an

attached property in the form ownerType.propertyName .

Superficially, this resembles a property element usage, but in this case the ownerType you specify is always a

different type than the object element where the attached property is being set. ownerType is the type that

provides the accessor methods that are required by a XAML processor to get or set the attached property value.

The most common scenario for attached properties is to enable child elements to report a property value to

their parent element.

The following example illustrates the DockPanel.Dock attached property. The DockPanel class defines the

accessors for DockPanel.Dock and owns the attached property. The DockPanel class also includes logic that

iterates its child elements and specifically checks each element for a set value of DockPanel.Dock. If a value is

found, that value is used during layout to position the child elements. Use of the DockPanel.Dock attached

property and this positioning capability is in fact the motivating scenario for the DockPanel class.

In WPF, most or all the attached properties are also implemented as dependency properties. For more

information, see Attached Properties Overview.

Attached events use a similar ownerType.eventName form of attribute syntax. Just like the non-attached events,

the attribute value for an attached event in XAML specifies the name of the handler method that is invoked

when the event is handled on the element. Attached event usages in WPF XAML are less common. For more

information, see Attached Events Overview.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement.name
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/xname-directive
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-xaml-namescopes
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel.dock
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.dockpanel
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/attached-properties-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/attached-events-overview

 Security

 Code Access Security (CAS) in WPF

 Load XAML from code

 See also

Underlying WPF XAML and its XAML namespace is a collection of types that correspond to CLR objects and

markup elements for XAML. However, not all classes can be mapped to elements. Abstract classes, such as

ButtonBase, and certain non-abstract base classes, are used for inheritance in the CLR objects model. Base

classes, including abstract ones, are still important to XAML development because each of the concrete XAML

elements inherits members from some base class in its hierarchy. Often these members include properties that

can be set as attributes on the element, or events that can be handled. FrameworkElement is the concrete base

UI class of WPF at the WPF framework level. When designing UI, you will use various shape, panel, decorator, or

control classes, which all derive from FrameworkElement. A related base class, FrameworkContentElement,

supports document-oriented elements that work well for a flow layout presentation, using APIs that deliberately

mirror the APIs in FrameworkElement. The combination of attributes at the element level and a CLR object

model provides you with a set of common properties that are settable on most concrete XAML elements,

regardless of the specific XAML element and its underlying type.

XAML is a markup language that directly represents object instantiation and execution. That's why elements

created in XAML have the same ability to interact with system resources (network access, file system IO, for

example) as your app code does. XAML also has the same access to the system resources as the hosting app

does.

Unlike .NET Framework, WPF for .NET doesn't support CAS. For more information, see Code Access Security

differences.

XAML can be used to define all of the UI, but it's sometimes also appropriate to define just a piece of the UI in

XAML. This capability could be used to:

Enable partial customization.

Local storage of UI information.

Model a business object.

The key to these scenarios is the XamlReader class and its Load method. The input is a XAML file, and the output

is an object that represents all of the run-time tree of objects that was created from that markup. You then can

insert the object to be a property of another object that already exists in the app. As long as the property is in

the content model and has display capabilities that will notify the execution engine that new content has been

added into the app, you can modify a running app's contents easily by dynamically loading in XAML.

XAML Syntax In Detail

XAML and Custom Classes for WPF

XAML Namespace (x:) Language Features

WPF XAML Extensions

Base Elements Overview

Trees in WPF

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.primitives.buttonbase
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkcontentelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement
https://docs.microsoft.com/en-us/dotnet/api/system.windows.markup.xamlreader
https://docs.microsoft.com/en-us/dotnet/api/system.windows.markup.xamlreader.load
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/xaml-syntax-in-detail
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/xaml-and-custom-classes-for-wpf
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/namespace-language-features
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-xaml-extensions
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/base-elements-overview
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/trees-in-wpf

XAML Services
 4/15/2021 • 7 minutes to read • Edit Online

 About This Documentation

 .NET XAML Services and System.Xaml in the .NET Architecture

This topic describes the capabilities of a technology set known as .NET XAML Services. The majority of the

services and APIs described are located in the assembly System.Xaml . Services include readers and writers,

schema classes and schema support, factories, attributing of classes, XAML language intrinsic support, and other

XAML language features.

Conceptual documentation for .NET XAML Services assumes that you have previous experience with the XAML

language and how it might apply to a specific framework, for example Windows Presentation Foundation (WPF)

or Windows Workflow Foundation, or a specific technology feature area, for example the build customization

features in Microsoft.Build.Framework.XamlTypes. This documentation does not attempt to explain the basics of

XAML as a markup language, XAML syntax terminology, or other introductory material. Instead, this

documentation focuses on specifically using .NET XAML Services that are enabled in the System.Xaml assembly

library. Most of these APIs are for scenarios of XAML language integration and extensibility. This might include

any of the following scenarios:

Extending the capabilities of the base XAML readers or XAML writers (processing the XAML node stream

directly; deriving your own XAML reader or XAML writer).

Defining XAML-usable custom types that do not have specific framework dependencies, and attributing

the types to convey their XAML type system characteristics to .NET XAML Services.

Hosting XAML readers or XAML writers as a component of an application, such as a visual designer or

interactive editor for XAML markup sources.

Writing XAML value converters (markup extensions; type converters for custom types).

Defining a custom XAML schema context (using alternate assembly-loading techniques for backing type

sources; using known-types lookup techniques instead of always reflecting assemblies; using loaded

assembly concepts that do not use the common language runtime (CLR) AppDomain and its associated

security model).

Extending the base XAML type system.

Using the Lookup or Invoker techniques to influence the XAML type system and how type backings are

evaluated.

If you are looking for introductory material on XAML as a language, you might try XAML overview (WPF .NET).

That topic discusses XAML for an audience that is new both to Windows Presentation Foundation (WPF) and

also to using XAML markup and XAML language features. Another useful document is the introductory material

in the XAML language specification.

.NET XAML Services and the System.Xaml assembly define much of what is needed for supporting XAML

language features. This includes base classes for XAML readers and XAML writers. The most important feature

added to .NET XAML Services that was not present in any of the framework-specific XAML implementations is a

type system representation for XAML. The type system representation presents XAML in an object-oriented way

that centers on XAML capabilities without taking dependencies on specific capabilities of frameworks.

https://github.com/dotnet/docs-desktop/blob/main/dotnet-desktop-guide/xaml-services/index.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.build.framework.xamltypes
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff650760(v=pandp.10)

 XAML Node Streams, XAML Readers, and XAML Writers

The XAML type system is not limited by the markup form or run-time specifics of the XAML origin; nor is it

limited by any specific backing type system. The XAML type system includes object representations for types,

members, XAML schema contexts, XML-level concepts, and other XAML language concepts or XAML intrinsics.

Using or extending the XAML type system makes it possible to derive from classes like XAML readers and XAML

writers, and extend the functionality of XAML representations into specific features enabled by a framework, a

technology, or an application that consumes or emits XAML. The concept of a XAML schema context enables

practical object graph write operations from the combination of a XAML object writer implementation, a

technology's backing type system as communicated through assembly information in the context, and the XAML

node source. For more information on the XAML schema concept. see Default XAML Schema Context and WPF

XAML Schema Context.

To understand the role that .NET XAML Services plays in the relationship between the XAML language and

specific technologies that use XAML as a language, it is helpful to understand the concept of a XAML node

stream and how that concept shapes the API and terminology. The XAML node stream is a conceptual

intermediate between a XAML language representation and the object graph that the XAML represents or

defines.

A XAML reader is an entity that processes XAML in some form, and produces a XAML node stream. In the

API, a XAML reader is represented by the base class XamlReader.

A XAML writer is an entity that processes a XAML node stream and produces something else. In the API, a

XAML writer is represented by the base class XamlWriter.

The two most common scenarios involving XAML are loading XAML to instantiate an object graph, and

saving an object graph from an application or tool and producing a XAML representation (typically in

markup form saved as text file). Loading XAML and creating an object graph is often referred to in this

documentation as the load path. Saving or serializing an existing object graph to XAML is often referred

to in this documentation as the save path.

The most common type of load path can be described as follows:

Start with a XAML representation, in UTF-encoded XML format and saved as a text file.

Load that XAML into XamlXmlReader. XamlXmlReader is a XamlReader subclass.

The result is a XAML node stream. You can access individual nodes of the XAML node stream using

XamlXmlReader / XamlReader API. The most typical operation here is to advance through the XAML node

stream, processing each node using a "current record" metaphor.

Pass the resulting nodes from the XAML node stream to a XamlObjectWriter API. XamlObjectWriter is a

XamlWriter subclass.

The XamlObjectWriter writes an object graph, one object at a time, in accordance to progress through the

source XAML node stream. Object writing is done with the assistance of a XAML schema context and an

implementation that can access the assemblies and types of a backing type system and framework.

Call Result at the end of the XAML node stream to obtain the root object of the object graph.

The most common type of save path can be described as follows:

Start with the object graph of an entire application run time, the UI content and state of a run time, or a

smaller segment of an overall application's object representation at run time.

From a logical start object, such as an application root or document root, load the objects into

XamlObjectReader. XamlObjectReader is a XamlReader subclass.

https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/default-schema-context
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlxmlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlxmlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlxmlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlobjectwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlobjectwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlobjectwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlobjectwriter.result
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlobjectreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlobjectreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlreader

 The XamlServices Class

 XAML Type System

 Reference for XAML Language Features

The result is a XAML node stream. You can access individual nodes of the XAML node stream using

XamlObjectReader and XamlReader API. The most typical operation here is to advance through the XAML

node stream, processing each node using a "current record" metaphor.

Pass the resulting nodes from the XAML node stream to a XamlXmlWriter API. XamlXmlWriter is a

XamlWriter subclass.

The XamlXmlWriter writes XAML in an XML UTF encoding. You can save this as a text file, as a stream, or

in other forms.

Call Flush to obtain the final output.

For more information about XAML node stream concepts, see Understanding XAML Node Stream Structures

and Concepts.

It is not always necessary to deal with a XAML node stream. If you want a basic load path or a basic save path,

you can use APIs in the XamlServices class.

Various signatures of Load implement a load path. You can either load a file or stream, or can load an

XmlReader, TextReader or XamlReader that wrap your XAML input by loading with that reader's APIs.

Various signatures of Save save an object graph and produce output as a stream, file, or

XmlWriter/TextWriter instance.

Transform converts XAML by linking a load path and a save path as a single operation. A different schema

context or different backing type system could be used for XamlReader and XamlWriter, which is what

influences how the resulting XAML is transformed.

For more information about how to use XamlServices, see XAMLServices Class and Basic XAML Reading or

Writing.

The XAML type system provides the APIs that are required to work with a given individual node of a XAML node

stream.

XamlType is the representation for an object - what you are processing between a start object node and end

object node.

XamlMember is the representation for a member of an object - what you are processing between a start

member node and end member node.

APIs such as GetAllMembers and GetMember and DeclaringType report the relationships between a XamlType

and XamlMember.

The default behavior of the XAML type system as implemented by .NET XAML Services is based on the common

language runtime (CLR), and static analysis of CLR types in assemblies by using reflection. Therefore, for a

specific CLR type, the default implementation of the XAML type system can expose the XAML schema of that

type and its members and report it in terms of the XAML type system. In the default XAML type system, the

concept of assignability of types is mapped onto CLR inheritance, and the concepts of instances, value types, and

so on, are also mapped to the supporting behaviors and features of the CLR.

To support XAML, .NET XAML Services provides specific implementation of XAML language concepts as defined

for the XAML language XAML namespace. These are documented as specific reference pages. The language

features are documented from the perspective of how these language features behave when they are processed

https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlobjectreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlxmlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlxmlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlxmlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlxmlwriter.flush
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/understanding-xaml-node-stream-structures-and-concepts
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlservices
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlservices.load
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/en-us/dotnet/api/system.io.textreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlservices.save
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.io.textwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlservices.transform
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlservices
https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/basic-reading-writing
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamltype
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlmember
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamltype.getallmembers
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamltype.getmember
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlmember.declaringtype
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamltype
https://docs.microsoft.com/en-us/dotnet/api/system.xaml.xamlmember

by a XAML reader or XAML writer that is defined by .NET XAML Services. For more information, see XAML

Namespace (x:) Language Features.

https://docs.microsoft.com/en-us/dotnet/desktop/xaml-services/namespace-language-features

	Cover Page
	Windows Presentation Foundation for .NET Core
	Get started
	Overview
	Create a WPF application

	Migration
	Differences from .NET Framework
	Migrate from .NET Framework

	Fundamentals
	Windows
	Overview
	Dialogs boxes
	Common tasks
	Display a message box
	Open a window
	Close a window
	Display a system dialog box
	Get or set the main window

	Controls
	Styles and templates
	Overview
	Common tasks
	Create and apply a style
	Create and apply a template

	Data binding
	Overview
	Declare a binding
	Binding sources
	Common tasks
	Bind to an enumeration

	Systems
	Resources
	Overview
	Merged dictionaries
	Resources in code
	Common tasks
	Define and reference resources
	Use application resources
	Use system resources

	XAML with WPF
	Overview

	XAML Language Reference

