
ContentsContents

 Xamarin.Android
 Get Started

 Setup and Installation
 Windows Installation
 Android SDK Setup
 Android Emulator Setup

 Hardware Acceleration (Hyper-V & HAXM)
 Device Manager
 Device Properties
 Troubleshooting

 Android Device Setup
 Microsoft Mobile OpenJDK Preview

 Hello, Android
 Part 1: Quickstart
 Part 2: Deep Dive

 Hello, Android Multiscreen
 Part 1: Quickstart
 Part 2: Deep Dive

 Xamarin for Java Developers
 Application Fundamentals

 Accessibility
 Android API Levels
 Android Resources

 Android Resource Basics
 Default Resources
 Alternate Resources
 Creating Resources for Varying Screens
 Application Localization and String Resources
 Using Android Assets

file:///T:/c1uy/n1bv/xamarin/android/index.html#body

 Fonts
 Activity Lifecycle

 Walkthrough - Saving the Activity state
 Android Services

 Creating a Service
 Bound Services
 Intent Services
 Started Services

 Foreground Services
 Out of Process Services
 Service Notifications

 Broadcast Receivers
 Localization
 Permissions
 Graphics and Animation
 CPU Architectures
 Handling Rotation
 Audio
 Notifications

 Local Notifications
 Local Notifications Walkthrough

 Touch
 Touch in Android
 Walkthrough – Using Touch in Android
 Multi-Touch Tracking

 HttpClient Stack and SSL/TLS
 Writing Responsive Apps

 User Interface
 Android Designer

 Using the Android Designer
 Designer Basics
 Resource Qualifiers and Visualization Options

 Alternative Layout Views
 Material Design Features
 Android Layout Diagnostics
 Android Designer Diagnostic Analyzers

 Material Theme
 User Profile
 Splash Screen
 Layouts

 LinearLayout
 RelativeLayout
 TableLayout
 RecyclerView

 Parts and Functionality
 RecyclerView Example
 Extending the Example

 ListView
 ListView Parts and Functionality
 Populating a ListView With Data
 Customizing a ListView's Appearance
 Using CursorAdapters
 Using a ContentProvider
 ListView and the Activity Lifecycle

 GridView
 GridLayout
 Tabbed Layouts

 Navigation Tabs with the ActionBar
 Controls

 ActionBar
 Auto Complete
 Buttons

 Radio Button
 Toggle Button

 CheckBox
 Custom Button

 Calendar
 CardView
 EditText
 Gallery
 Navigation Bar
 Pickers

 Date Picker
 Time Picker

 Popup Menu
 RatingBar
 Spinner
 Switch
 TextureView
 Toolbar

 Replacing the Action Bar
 Adding a Second Toolbar
 Toolbar Compatibility

 ViewPager
 ViewPager with Views
 ViewPager with Fragments

 WebView
 Platform Features

 Android Beam
 Android Manifest
 File Access with Xamarin.Android

 External Storage
 Fingerprint Authentication

 Getting Started
 Scanning for Fingerprints
 Creating the CryptoObject

 Responding to Authentication Callbacks
 Guidance & Summary
 Enrolling a Fingerprint

 Android Job Scheduler
 Firebase Job Dispatcher
 Fragments

 Implementing Fragments
 Fragments Walkthrough - Part 1
 Fragments Walkthrough - Part 2

 Creating a Fragment
 Managing Fragments
 Specialized Fragment Classes
 Providing Backwards Compatibility

 App Linking
 AndroidX
 Android 10
 Android 9 Pie
 Android 8 Oreo
 Android 7 Nougat
 Android 6 Marshmallow
 Android 5 Lollipop
 Android 4.4 KitKat
 Android 4.1 Jelly Bean
 Android 4.0 Ice Cream Sandwich
 Content Providers

 How it Works
 Using the Contacts ContentProvider
 Creating a Custom ContentProvider

 Maps and Location
 Location
 Maps

 Maps Application

 Maps API
 Obtaining a Google Maps API Key

 Using Android.Speech
 Java Integration

 Android Callable Wrappers
 Working With JNI
 Porting Java to C#

 Binding a Java Library
 Binding a .JAR
 Binding an .AAR
 Binding an Eclipse Library Project
 Customizing Bindings

 Java Bindings Metadata
 Naming Parameters with Javadoc

 Troubleshooting Bindings
 Bind a Kotlin Library

 Walkthrough
 Using Native Libraries
 Renderscript

 Xamarin.Essentials
 Getting Started
 Platform & Feature Support
 Accelerometer
 App Actions
 App Information
 App Theme
 Barometer
 Battery
 Clipboard
 Color Converters
 Compass
 Connectivity

 Contacts
 Detect Shake
 Device Display Information
 Device Information
 Email
 File Picker
 File System Helpers
 Flashlight
 Geocoding
 Geolocation
 Gyroscope
 Haptic Feedback
 Launcher
 Magnetometer
 Main Thread
 Maps
 Media Picker
 Open Browser
 Orientation Sensor
 Permissions
 Phone Dialer
 Platform Extensions
 Preferences
 Screenshot
 Secure Storage
 Share
 SMS
 Text-to-Speech
 Unit Converters
 Version Tracking
 Vibrate
 Web Authenticator

 Xamarin.Essentials release notes
 Troubleshooting
 Xamarin.Essentials on Q&A

 Data and Cloud Services
 Azure Active Directory

 Getting Started
 Step 1. Register
 Step 2. Configure

 Accessing the Graph API
 Azure Mobile Apps
 Data Access

 Introduction
 Configuration
 Using SQLite.NET ORM
 Using ADO.NET
 Using Data in an App

 Google Messaging
 Firebase Cloud Messaging
 FCM Notifications Walkthrough
 Google Cloud Messaging
 GCM Notifications Walkthrough

 Web Services
 Deployment and Testing

 App Package Size
 Apply Changes
 Building Apps

 Build Process
 Build Items
 Build Properties
 Build Targets
 Building ABI-Specific APKs

 Command Line Emulator

https://docs.microsoft.com/xamarin/essentials/release-notes/
https://docs.microsoft.com/answers/topics/dotnet-xamarinessentials.html

 Debugging
 Debug on the Emulator
 Debug on a Device
 Android Debug Log

 Debuggable Attribute
 Environment
 GDB
 Custom Linker Settings
 Multi-core devices
 Performance
 Profiling
 Preparing for Release

 ProGuard
 Signing the APK

 Manually Signing the APK
 Finding Your Keystore Signature

 Publishing an App
 Publishing to Google Play

 Google Licensing Services
 APK Expansion Files
 Manually Uploading the APK

 Publishing to Amazon
 Publishing Independently

 Install as System App
 Advanced Concepts and Internals

 Architecture
 Available Assemblies
 API Design
 Garbage Collection
 Limitations

 Troubleshooting
 Troubleshooting Tips

 Frequently Asked Questions
 Which Android SDK packages should I install?
 Where can I set my Android SDK locations?
 How do I update the Java Development Kit (JDK) version?
 Can I use Java Development Kit (JDK) version 9 or later?
 How can I manually install the Android Support libraries required by the

Xamarin.Android.Support packages?
 What USB drivers do I need to debug Android on Windows?
 Is it possible to connect to Android emulators running on a Mac from a Windows

VM?
 How do I automate an Android NUnit Test project?
 Why can't my Android release build connect to the Internet?
 Smarter Xamarin Android Support v4 / v13 NuGet Packages
 How do I resolve a PathTooLongException?
 What version of Xamarin.Android added Lollipop support?
 Android.Support.v7.AppCompat - No resource found that matches the given

name: attr 'android:actionModeShareDrawable'
 Adjusting Java memory parameters for the Android designer
 My Android Resource.designer.cs file will not update

 Resolving Library Installation Errors
 Changes to the Android SDK Tooling
 Xamarin.Android errors and warnings reference

 Wear
 Get Started

 Introduction to Android Wear
 Setup & Installation
 Hello, Wear

 User Interface
 Controls

 GridViewPager
 Platform Features

 Creating a Watch Face
 Screen Sizes

file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/questions/index.html#body
https://docs.microsoft.com/xamarin/android/errors-and-warnings/

 Deployment & Testing
 Debug on an Emulator
 Debug on a Wear Device
 Packaging

 Xamarin.Android on Q&A
 Release Notes
 Samples

https://docs.microsoft.com/answers/topics/dotnet-android.html
https://docs.microsoft.com/xamarin/android/release-notes/

Get Started with Xamarin.Android
 10/28/2019 • 2 minutes to read • Edit Online

 Setup and Installation

 Hello, Android

 Hello, Android Multiscreen

 Xamarin for Java Developers

 Video

Get Xamarin.Android set up and running in Visual Studio. This section covers downloading, installation,

emulator configuration, device provisioning, and more.

In this two-part guide, you'll build your first Xamarin.Android application using Visual Studio, and you'll develop

an understanding of the fundamentals of Android application development with Xamarin. Along the way, this

guide introduces you to the tools, concepts, and steps required to build and deploy a Xamarin.Android

application.

In this two-part guide, you'll expand the application created in Hello, Android so that it implements a second

screen. Along the way, you will be introduced to the basic Android Application Building Blocks and dive deeper

into Android architecture as you develop a better understanding of Android application structure and

functionality.

This article provides an introduction to C# programming for Java developers, focusing primarily on the C#

language features that Java developers will encounter while learning about Xamarin.Android app development.

Building Your First Android App with Xamarin for Visual StudioBuilding Your First Android App with Xamarin for Visual Studio

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/index.md
https://www.youtube-nocookie.com/embed/rkNikCa5D48

Install and setup Xamarin.Android
 11/2/2020 • 2 minutes to read • Edit Online

 Windows Installation

 Mac Installation

 Android SDK Setup

 Android Emulator Setup

 Android Device Setup

 Microsoft Mobile OpenJDK Preview

The topics in this section explain how to install and configure Xamarin.Android to work with Visual Studio on

Windows and macOS, how to use the Android SDK Manager to download and install Android SDK tools and

components that are required for building and testing your app, how to configure the Android emulator for

debugging, and how to connect a physical Android device to your development computer for debugging and

final testing your app.

This guide walks you through the installation steps and configuration details required to install Xamarin.Android

on Windows. By the end of this article, you will have a working Xamarin.Android installation integrated into

Visual Studio, and you'll be ready to start building your first Xamarin.Android application.

This article walks you through the installation steps and configuration details required to install

Xamarin.Android on a Mac. By the end of this article, you will have a working Xamarin.Android installation

integrated into Visual Studio for Mac, and you'll be ready to start building your first Xamarin.Android

application.

Visual Studio includes an Android SDK Manager that replaces Google's standalone Android SDK Manager. This

article explains how to use the SDK Manager to download Android SDK tools, platforms, and other components

that you need for developing Xamarin.Android apps.

These articles explain how to setup the Android Emulator for testing and debugging Xamarin.Android

applications.

This article explains how to setup a physical Android device and connect it to a development computer so that

the device may be used to run and debug Xamarin.Android applications.

This guide describes the steps for switching to the preview release of Microsoft's distribution of the OpenJDK.

This distribution of the OpenJDK is intended for mobile development.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/index.md
https://docs.microsoft.com/en-us/visualstudio/mac/installation

Windows Installation
 7/8/2021 • 5 minutes to read • Edit Online

 Overview

 Installation

 Configuration

This guide describes the steps for installing Xamarin.Android for Visual Studio on Windows, and it explains how

to configure Xamarin.Android for building your first Xamarin.Android application.

Because Xamarin is now included with all editions of Visual Studio at no extra cost and does not require a

separate license, you can use the Visual Studio installer to download and install Xamarin.Android tools. (The

manual installation and licensing steps that were required for earlier versions of Xamarin.Android are no longer

necessary.) In this guide, you will learn the following:

How to configure custom locations for the Java Development Kit, Android SDK, and Android NDK.

How to launch the Android SDK Manager to download and install additional Android SDK components.

How to prepare an Android device or emulator for debugging and testing.

How to create your first Xamarin.Android app project.

By the end of this guide, you will have a working Xamarin.Android installation integrated into Visual Studio, and

you will be ready to start building your first Xamarin.Android application.

For detailed information on installing Xamarin for use with Visual Studio on Windows, see the Windows Install

guide.

Xamarin.Android uses the Java Development Kit (JDK) and the Android SDK to build apps. During installation,

the Visual Studio installer places these tools in their default locations and configures the development

environment with the appropriate path configuration. You can view and change these locations by clicking ToolsTools

> Options > Xamarin > Android Settings> Options > Xamarin > Android Settings :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/windows.md
https://docs.microsoft.com/en-us/xamarin/get-started/installation/windows

IMPORTANTIMPORTANT

 Android SDK ManagerAndroid SDK Manager

For most users these default locations will work without further changes. However, you may wish to configure

Visual Studio with custom locations for these tools (for example, if you have installed the Java JDK, Android SDK,

or NDK in a different location). Click ChangeChange next to a path that you want to change, then navigate to the new

location.

Xamarin.Android uses JDK 8, which is required if you are developing for API level 24 or greater (JDK 8 also

supports API levels earlier than 24). You can continue to use JDK 7 if you are developing specifically for API level

23 or earlier.

Xamarin.Android does not support JDK 9.

Android uses multiple Android API level settings to determine your app's compatibility across the various

versions of Android (for more information about Android API levels, see Understanding Android API Levels).

Depending on what Android API level(s) you want to target, you may need to download and install additional

Android SDK components. In addition, you may need to install optional tools and emulator images provided in

the Android SDK. To do this, use the Android SDK ManagerAndroid SDK Manager . You can launch the Android SDK ManagerAndroid SDK Manager by

clicking Tools > Android > Android SDK ManagerTools > Android > Android SDK Manager :

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/windows-images/08-sdk-manager.png#lightbox

 Android EmulatorAndroid Emulator

By default, Visual Studio installs the Google Android SDK Manager :

You can use the Google Android SDK Manager to install versions of the Android SDK Tools package up to

version 25.2.3. However, if you need to use a later version of the Android SDK Tools package, you must install

the Xamarin Android SDK Manager plugin for Visual Studio (available from the Visual Studio Marketplace). This

is necessary because Google's standalone SDK Manager was deprecated in version 25.2.3 of the Android SDK

Tools package.

For more information about using the Xamarin Android SDK Manager, see Android SDK Setup.

The Android Emulator can be helpful tool to develop and test a Xamarin.Android app. For example, a physical

device such as a tablet may not be readily available during development, or a developer may want to run some

integration tests on their computer before committing code.

Emulating an Android device on a computer involves the following components:

Google Android EmulatorGoogle Android Emulator – This is an emulator based on QEMU that creates a virtualized device running

on the developer's workstation.

An Emulator ImageAn Emulator Image – An emulator image is a template or a specification of the hardware and operating

system that is meant to be virtualized. For example, one emulator image would identify the hardware

requirements for a Nexus 5X running Android 7.0 with Google Play Services installed. Another emulator

image might specific a 10" table running Android 6.0.

Android Vir tual Device (AVD)Android Vir tual Device (AVD) – An Android Virtual Device is an emulated Android device created from an

emulator image. When running and testing Android apps, Xamarin.Android will start the Android Emulator,

starting a specific AVD, install the APK, and then run the app.

A significant improvement in performance when developing on x86 based computers can be achieved by using

special emulator images that are optimized for x86 architecture and one of two virtualization technologies:

1. Microsoft's Hyper-V – Available on computers running the Windows 10 April 2018 Update or later.

2. Intel's Hardware Accelerated Execution Manager (HAXM) – Available on x86 computers running OS X,

macOS, or older versions of Windows.

For more information about the Android Emulator, Hyper-V, and HAXM, please see Hardware Acceleration for

Emulator Performance guide.

https://developer.android.com/studio/run/emulator
https://www.qemu.org/

NOTENOTE

 Android DeviceAndroid Device

 Create an Application

 Summary

On versions of Windows prior to Windows 10 April 2018 Update, HAXM is not compatible with Hyper-V. In this scenario

it is necessary to either disable Hyper-V or to use the slower emulator images that do not have the x86 optimizations.

If you have a physical Android device to use for testing, this is a good time to set it up for development use. See

Set Up Device for Development to configure your Android device for development, then connect it to your

computer for running and debugging Xamarin.Android applications.

Now that you have installed Xamarin.Android, you can launch Visual Studio create a new project. Click File >File >

New > ProjectNew > Project to begin creating your app:

In the New ProjectNew Project dialog, select AndroidAndroid under TemplatesTemplates and click Android AppAndroid App in the right pane. Enter a

name for your app (in the screenshot below, the app is called MyAppMyApp), then click OKOK:

That's it! Now you are ready to use Xamarin.Android to create Android applications!

In this article, you learned how to set up and install the Xamarin.Android platform on Windows, how to

(optionally) configure Visual Studio with custom Java JDK and Android SDK installation locations, how to launch

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/windows-images/11-first-app.w157.png#lightbox

 Related Links

the SDK Manager to install additional Android SDK components, how to setup an Android device or emulator,

and how to start building your first application.

The next step is to have a look at the Hello, Android tutorials to learn how to create a working Xamarin.Android

app.

Download Visual Studio

Installing Visual Studio Tools for Xamarin

System Requirements

Android SDK Setup

Android Emulator Setup

Set Up Device For Development

Run Apps on the Android Emulator

https://visualstudio.microsoft.com/vs/
https://docs.microsoft.com/en-us/xamarin/get-started/installation/windows
https://docs.microsoft.com/en-us/xamarin/cross-platform/get-started/requirements
https://developer.android.com/studio/run/emulator#Requirements

Setting up the Android SDK for Xamarin.Android
 7/8/2021 • 9 minutes to read • Edit Online

 Overview

NOTENOTE

 Requirements

IMPORTANTIMPORTANT

 SDK Manager

Visual Studio includes an Android SDK Manager that you use to download Android SDK tools, platforms, and

other components that you need for developing Xamarin.Android apps.

This guide explains how to use the Xamarin Android SDK Manager in Visual Studio and Visual Studio for Mac.

This guide applies to Visual Studio 2019, Visual Studio 2017, and Visual Studio for Mac.

The Xamarin Android SDK Manager (installed as part of the Mobile development with .NETMobile development with .NET workload) helps

you download the latest Android components that you need for developing your Xamarin.Android app. It

replaces Google's standalone SDK Manager, which has been deprecated.

Visual Studio

Visual Studio for Mac

To use the Xamarin Android SDK Manager, you will need the following:

Visual Studio 2019 Community, Professional, or Enterprise.

OR Visual Studio 2017 (Community, Professional, or Enterprise edition). Visual Studio 2017 version 15.7

or later is required.

Visual Studio Tools for Xamarin version 4.10.0 or later (installed as part of the Mobile developmentMobile development

with .NETwith .NET workload).

The Xamarin Android SDK Manager also requires the Java Development Kit (which is automatically installed

with Xamarin.Android). There are several JDK alternatives to choose from:

By default, Xamarin.Android uses JDK 8, which is required if you are developing for API level 24 or

greater (JDK 8 also supports API levels earlier than 24).

You can continue to use JDK 7 if you are developing specifically for API level 23 or earlier.

If you are using Visual Studio 15.8 Preview 5 or later, you can try using Microsoft's Mobile OpenJDK

Distribution rather than JDK 8.

Xamarin.Android does not support JDK 9.

To start the SDK Manager in Visual Studio, click Tools > Android > Android SDK ManagerTools > Android > Android SDK Manager :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/android-sdk.md
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

 Android SDK locationAndroid SDK location

The Android SDK Manager opens in the Android SDKs and ToolsAndroid SDKs and Tools screen. This screen has two tabs –

PlatformsPlatforms and ToolsTools :

The Android SDKs and ToolsAndroid SDKs and Tools screen is described in more detail in the following sections.

The Android SDK location is configured at the top of the Android SDKs and ToolsAndroid SDKs and Tools screen, as seen in the

previous screenshot. This location must be configured correctly before the PlatformsPlatforms and ToolsTools tabs will

function properly. You may need to set the location of the Android SDK for one or more of the following reasons:

1. The Android SDK Manager was unable to locate the Android SDK.

2. You have installed the Android SDK in a alternate (non-default) location.

To set the location of the Android SDK, click the ellipsis (…) button to the far right of Android SDK LocationAndroid SDK Location.

This opens the Browse For FolderBrowse For Folder dialog to use for navigating to the location of the Android SDK. In the

following screenshot, the Android SDK under Program Files (x86)\AndroidProgram Files (x86)\Android is being selected:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-sdk-images/win/02-sdk-manager-menu-item.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-sdk-images/win/03-sdk-manager-platforms.png#lightbox

 Tools tabTools tab

When you click OKOK, the SDK Manager will manage the Android SDK that is installed at the selected location.

The ToolsTools tab displays a list of tools and extras. Use this tab to install the Android SDK tools, platform tools, and

build tools. Also, you can install the Android Emulator, the low-level debugger (LLDB), the NDK, HAXM

acceleration, and Google Play libraries.

For example, to download the Google Android Emulator package, click the check mark next to AndroidAndroid

EmulatorEmulator and click the Apply ChangesApply Changes button:

A dialog may be shown with the message, The following package requires that you accept its license terms

before installing:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-sdk-images/win/06-install-emulator.png#lightbox

 Platforms tabPlatforms tab

Click AcceptAccept if you accept the Terms and Conditions. At the bottom of the window, a progress bar indicates

download and installation progress. After the installation completes, the ToolsTools tab will show that the selected

tools and extras were installed.

The PlatformsPlatforms tab displays a list of platform SDK versions along with other resources (like system images) for

each platform:

This screen lists the Android version (such as Android 8.0Android 8.0), the code name (OreoOreo), the API level (such as 2626),

and the sizes of the components for that platform (such as 1 GB1 GB). You use the PlatformsPlatforms tab to install

components for the Android API level that you want to target. For more information about Android versions and

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-sdk-images/win/08-platforms-pane.png#lightbox

API levels, see Understanding Android API Levels.

When all components of a platform are installed, a checkmark appears next to the platform name. If not all

components of a platform are installed, the box for that platform is filled. You can expand a platform to see its

components (and which components are installed) by clicking the ++ box to the left of the platform. Click -- to

unexpand the component listing for a platform.

To add another platform to the SDK, click the box next to the platform until the checkmark appears to install all

of its components, then click Apply ChangesApply Changes :

To install only specific components, click the box next to the platform once. You can then select any individual

components that you need:

Notice that the number of components to install appears next to the Apply ChangesApply Changes button. After you click the

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-sdk-images/win/09-adding-a-platform.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-sdk-images/win/10-adding-some-components.png#lightbox

 Repository selectionRepository selection

 Summary

 Related Links

Apply ChangesApply Changes button, you will see the L icense AcceptanceLicense Acceptance screen as shown earlier. Click AcceptAccept if you

accept the Terms and Conditions. You may see this dialog more than one time when there are multiple

components to install. At the bottom of the window, a progress bar will indicate download and installation

progress. When the download and installation process completes (this can take many minutes, depending on

how many components need to be downloaded), the added components are marked with a checkmark and

listed as InstalledInstalled.

By default, the Android SDK Manager downloads platform components and tools from a Microsoft-managed

repository. If you need access to experimental alpha/beta platforms and tools that are not yet available in the

Microsoft repository, you can switch the SDK Manager to use Google's repository. To make this switch, click the

gear icon in the lower right-hand corner and select Repositor y > Google (Unsuppor ted)Repositor y > Google (Unsuppor ted) :

When the Google repository is selected, additional packages may appear in the PlatformsPlatforms tab that were not

available previously. (In the above screenshot, Android SDK Platform 28Android SDK Platform 28 was added by switching to the

Google repository.) Keep in mind that use of the Google repository is unsupported and is therefore not

recommended for everyday development.

To switch back to the supported repository of platforms and tools, click Microsoft (Recommended)Microsoft (Recommended) . This

restores the list of packages and tools to the default selection.

This guide explained how to install and use the Xamarin Android SDK Manager tool in Visual Studio and Visual

Studio for Mac.

Understanding Android API levels

Changes to the Android SDK Tooling

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-sdk-images/win/11-google-repo-w157.png#lightbox

Android Emulator Setup
 4/7/2021 • 2 minutes to read • Edit Online

 Overview

 Sections
 Hardware Acceleration for Emulator PerformanceHardware Acceleration for Emulator Performance

 Managing Virtual Devices with the Android Device ManagerManaging Virtual Devices with the Android Device Manager

 Editing Android Virtual Device PropertiesEditing Android Virtual Device Properties

 Android Emulator TroubleshootingAndroid Emulator Troubleshooting

NOTENOTE

NOTENOTE

This guide explains how to prepare the Android Emulator for testing your app.

The Android Emulator can be run in a variety of configurations to simulate different devices. Each configuration

is called a virtual device. When you deploy and test your app on the emulator, you select a pre-configured or

custom virtual device that simulates a physical Android device such as a Nexus or Pixel phone.

The sections listed below describe how to accelerate the Android emulator for maximum performance, how to

use the Android Device Manager to create and customize virtual devices, and how to customize the profile

properties of a virtual device. In addition, a troubleshooting section explains common emulator problems and

workarounds.

How to prepare your computer for maximum Android Emulator performance by using either Hyper-V or HAXM

virtualization technology. Because the Android Emulator can be prohibitively slow without hardware

acceleration, we recommend that you enable hardware acceleration on your computer before you use the

emulator.

How to use the Android Device Manager to create and customize virtual devices.

How to use the Android Device Manager to edit the profile properties of a virtual device.

In this article, the most common warning messages and issues that occur while running the Android Emulator

are described, along with workarounds and tips.

If you are using a Mac with an Apple chip, such as the M1, you will need to install the Android Emulator for M1 preview

from GitHub.

After you have configured the Android Emulator, see Debugging on the Android Emulator for information about

how to launch the emulator and use it for testing and debugging your app.

As of Android SDK Tools version 26.0.126.0.1 and later, Google has removed support for existing AVD/SDK managers in favor

of their new CLI (Command Line Interface) tools. Because of this deprecation change, Xamarin SDK/Device Managers are

now used instead of Google SDK/Device Managers for Android Tools 26.0.1 and later. For more information about the

Xamarin SDK Manager, see Setting up the Android SDK for Xamarin.Android.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/android-emulator/index.md
https://github.com/google/android-emulator-m1-preview/releases

Hardware acceleration for emulator performance
(Hyper-V & HAXM)

 7/8/2021 • 7 minutes to read • Edit Online

SC EN A RIOSC EN A RIO H A XMH A XM W H P XW H P X H Y P ERVISO R. F RA M EW O RKH Y P ERVISO R. F RA M EW O RK

You have an Intel Processor X X X

You have an AMD
Processor

X

You want to support Hyper-
V

X

You want to support nested
Virtualization

Limited

You want to use
technologies like Docker

(with WSL2) X X

 Accelerating Android emulators on Windows

This article explains how to use your computer's hardware acceleration features to maximize Android Emulator

performance.

Visual Studio makes it easier for developers to test and debug their Xamarin.Android applications by using the

Android emulator in situations where an Android device is unavailable or impractical. However, the Android

emulator runs too slowly if hardware acceleration is not available on the computer that runs it. You can

drastically improve the performance of the Android emulator by using special x86 virtual device images in

conjunction with the virtualization features of your computer.

The following virtualization technologies are available for accelerating the Android emulator :

1. Microsoft's Hyper-V and the Windows Hyper visor Platform (WHPX)Microsoft's Hyper-V and the Windows Hyper visor Platform (WHPX) . Hyper-V is a virtualization

feature of Windows that makes it possible to run virtualized computer systems on a physical host

computer.

2. Intel's Hardware Accelerated Execution Manager (HAXM)Intel's Hardware Accelerated Execution Manager (HAXM) . HAXM is a virtualization engine for

computers running Intel CPUs.

For the best experience on Windows, it is recommended that you use WHPX to accelerate the Android emulator.

If WHPX is not available on your computer, then HAXM can be used. The Android emulator will automatically

make use of hardware acceleration if the following criteria are met:

Hardware acceleration is available and enabled on your development computer.

The emulator is running a system image created for an x86x86-based virtual device.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/android-emulator/hardware-acceleration.md
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/

IMPORTANTIMPORTANT

 Accelerating with Hyper-V

 Verifying support for Hyper-VVerifying support for Hyper-V

systeminfo

You can't run a VM-accelerated emulator inside another VM, such as a VM hosted by VirtualBox, VMware, or Docker

(unless using WSL2). You must run the Android emulator directly on your system hardware.

For information about launching and debugging with the Android emulator, see Debugging on the Android

Emulator.

Before enabling Hyper-V, read the following section to verify that your computer supports Hyper-V.

Hyper-V runs on the Windows Hypervisor Platform. To use the Android emulator with Hyper-V, your computer

must meet the following criteria to support the Windows Hypervisor Platform:

Your computer hardware must meet the following requirements:

A 64-bit Intel or AMD Ryzen CPU with Second Level Address Translation (SLAT).

CPU support for VM Monitor Mode Extension (VT-c on Intel CPUs).

Minimum of 4-GB memory.

In your computer's BIOS, the following items must be enabled:

Virtualization Technology (may have a different label depending on motherboard manufacturer).

Hardware Enforced Data Execution Prevention.

Your computer must be updated to Windows 10 April 2018 update (build 1803) or later. You can verify

that your Windows version is up-to-date by using the following steps:

1. Enter AboutAbout in the Windows search box.

2. Select About your PCAbout your PC in the search results.

3. Scroll down in the AboutAbout dialog to the Windows specificationsWindows specifications section.

4. Verify that the VersionVersion is at least 1803:

To verify that your computer hardware and software is compatible with Hyper-V, open a command prompt and

type the following command:

If all listed Hyper-V requirements have a value of YesYes , then your computer can support Hyper-V. For example:

https://developer.android.com/studio/run/emulator-acceleration.html#extensions
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/hardware-acceleration-images/win/01-about-windows-w10.png#lightbox

 Enabling Hyper-V accelerationEnabling Hyper-V acceleration

IMPORTANTIMPORTANT

If your computer meets the above criteria, use the following steps to accelerate the Android emulator with

Hyper-V:

1. Enter windows featureswindows features in the Windows search box and select Turn Windows features on or offTurn Windows features on or off in

the search results. In the Windows FeaturesWindows Features dialog, enable both Hyper-VHyper-V and Windows Hyper visorWindows Hyper visor

PlatformPlatform :

After making these changes, reboot your computer.

On Windows 10 October 2018 Update (RS5) and higher, you only need to enable Hyper-V, as it will use Windows

Hypervisor Platform (WHPX) automatically.

2. Install Install Visual Studio 15.8 or laterVisual Studio 15.8 or later (this version of Visual Studio provides IDE support for running the

Android emulator with Hyper-V).

3. Install the Android Emulator package 27.2.7 or laterInstall the Android Emulator package 27.2.7 or later . To install this package, navigate to Tools >Tools >

Android > Android SDK ManagerAndroid > Android SDK Manager in Visual Studio. Select the ToolsTools tab and ensure that the Android

emulator version is at least 27.2.7. Also ensure that the Android SDK Tools version is 26.1.1 or later :

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/hardware-acceleration-images/win/02-systeminfo-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/hardware-acceleration-images/win/03-hyper-v-settings-w158.png#lightbox
https://visualstudio.microsoft.com/vs/

 Accelerating with HAXM

 Verifying HAXM supportVerifying HAXM support

When you create a virtual device (see Managing Virtual Devices with the Android Device Manager), be sure to

select an x86x86-based system image. If you use an ARM-based system image, the virtual device will not be

accelerated and will run slowly.

Hyper-V should now be enabled and you can run your accelerated Android emulator.

If your computer does not support Hyper-V, you may use HAXM to accelerate the Android emulator. You must

disable Device Guard if you want to use HAXM.

To determine if your hardware supports HAXM, follow the steps in Does My Processor Support Intel

Virtualization Technology?. If your hardware supports HAXM, you can check to see if HAXM is already installed

by using the following steps:

sc query intelhaxm

1. Open a command prompt window and enter the following command:

2. Examine the output to see if the HAXM process is running. if it is, you should see output listing the

intelhaxm state as RUNNING . For example:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/hardware-acceleration-images/win/04-sdk-manager-w158.png#lightbox
https://www.intel.com/content/www/us/en/support/processors/000005486.html

 Installing HAXMInstalling HAXM

 Troubleshooting

 Accelerating Android emulators on macOS

If STATE is not set to RUNNING , then HAXM is not installed.

If your computer can support HAXM but HAXM is not installed, use the steps in the next section to install HAXM.

HAXM install packages for Windows are available from the Intel Hardware Accelerated Execution Manager

GitHub releases page. Use the following steps to download and install HAXM:

1. From the Intel website, download the latest HAXM virtualization engine installer for Windows. The

advantage of downloading the HAXM installer directly from the Intel website is that you can be assured

of using the latest version.

2. Run intelhaxm-android.exeintelhaxm-android.exe to start the HAXM installer. Accept the default values in the installer

dialogs:

When you create a virtual device (see Managing Virtual Devices with the Android Device Manager), be sure to

select an x86x86-based system image. If you use an ARM-based system image, the virtual device will not be

accelerated and will run slowly.

For help with troubleshooting hardware acceleration issues, see the Android emulator Troubleshooting guide.

https://github.com/intel/haxm/releases
https://github.com/intel/haxm/releases

IMPORTANTIMPORTANT

 Accelerating with the Hypervisor Framework

 Accelerating with HAXM

 Verifying HAXM supportVerifying HAXM support

The following virtualization technologies are available for accelerating the Android emulator :

1. Apple's Hyper visor FrameworkApple's Hyper visor Framework . Hypervisor is a feature of macOS 10.10 and later that makes it

possible to run virtual machines on a Mac.

2. Intel's Hardware Accelerated Execution Manager (HAXM)Intel's Hardware Accelerated Execution Manager (HAXM) . HAXM is a virtualization engine for

computers running Intel CPUs.

It is recommended that you use the Hypervisor Framework to accelerate the Android emulator. If the Hypervisor

Framework is not available on your Mac, then HAXM can be used. The Android emulator will automatically make

use of hardware acceleration if the following criteria are met:

Hardware acceleration is available and enabled on the development computer.

The emulator is running a system image created for an x86x86-based virtual device.

You can't run a VM-accelerated emulator inside another VM, such as a VM hosted by VirtualBox, VMware, or Docker. You

must run the Android emulator directly on your system hardware.

For information about launching and debugging with the Android emulator, see Debugging on the Android

Emulator.

To use the Android emulator with the Hypervisor Framework, your Mac must meet the following criteria:

Your Mac must be running macOS 10.10 or later.

Your Mac's CPU must be able to support the Hypervisor Framework.

If your Mac meets these criteria, the Android emulator will automatically use the Hypervisor Framework for

acceleration. If you are not sure if Hypervisor Framework is supported on your Mac, see the Troubleshooting

guide for ways to verify that your Mac supports Hypervisor.

If the Hypervisor Framework is not supported by your Mac, you can use HAXM to accelerate the Android

emulator (described next).

If your Mac does not support the Hypervisor framework (or you are using a version of macOS earlier than

10.10), you can use Intel's Hardware Accelerated Execution ManagerIntel's Hardware Accelerated Execution Manager (HAXM) to speed up the Android

emulator.

Before using the Android emulator with HAXM for the first time, it's a good idea to verify that HAXM is installed

and available for the Android emulator to use.

You can check to see if HAXM is already installed by using the following steps:

~/Library/Developer/Xamarin/android-sdk-macosx/tools/emulator -accel-check

1. Open a Terminal and enter the following command:

This command assumes that the Android SDK is installed at the default location of

https://developer.apple.com/documentation/hypervisor
https://software.intel.com/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://developer.android.com/studio/run/emulator-acceleration.html#extensions
https://software.intel.com/articles/intel-hardware-accelerated-execution-manager-intel-haxm

 Installing HAXMInstalling HAXM

 Troubleshooting

 Related Links

HAXM version 7.2.0 (3) is installed and usable.

HAXM is not installed on this machine (/dev/HAX is missing).

~/Librar y/Developer/Xamarin/android-sdk-macosx~/Librar y/Developer/Xamarin/android-sdk-macosx; if not, modify the above path for the location

of the Android SDK on your Mac.

2. If HAXM is installed, the above command will return a message similar to the following result:

If HAXM is not installed, a message similar to the following output is returned:

If HAXM is not installed, use the steps in the next section to install HAXM.

HAXM installation packages for macOS are available from the Intel Hardware Accelerated Execution Manager

page. Use the following steps to download and install HAXM:

1. From the Intel website, download the latest HAXM virtualization engine installer for macOS.

2. Run the HAXM installer. Accept the default values in the installer dialogs:

For help with troubleshooting hardware acceleration issues, see the Android emulator Troubleshooting guide.

Run Apps on the Android Emulator

https://software.intel.com/android/articles/intel-hardware-accelerated-execution-manager
https://software.intel.com/android/articles/intel-hardware-accelerated-execution-manager/
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/hardware-acceleration-images/mac/01-haxm-installer.png#lightbox
https://developer.android.com/studio/run/emulator

Managing Virtual Devices with the Android Device
Manager

 7/8/2021 • 14 minutes to read • Edit Online

 Android Device Manager on Windows

 Requirements

This article explains how to use the Android Device Manager to create and configure Android Virtual Devices

(AVDs) that emulate physical Android devices. You can use these virtual devices to run and test your app without

having to rely on a physical device.

After you have verified that hardware acceleration is enabled (as described in Hardware Acceleration for

Emulator Performance), the next step is to use the Android Device Manager (also referred to as the Xamarin

Android Device Manager) to create virtual devices that you can use to test and debug your app.

This article explains how to use the Android Device Manager to create, duplicate, customize, and launch Android

virtual devices.

You use the Android Device Manager to create and configure Android Virtual Devices (AVDs) that run in the

Android Emulator. Each AVD is an emulator configuration that simulates a physical Android device. This makes it

possible to run and test your app in a variety of configurations that simulate different physical Android devices.

To use the Android Device Manager, you will need the following items:

Visual Studio 2019 Community, Professional, or Enterprise.

OR Visual Studio 2017 version 15.8 or later is required. Visual Studio Community, Professional, and

Enterprise editions are supported.

Visual Studio Tools for Xamarin version 4.9 or later.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/android-emulator/device-manager.md
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/01-devices-dialog.png#lightbox

 Launching the Device Manager

The Android SDK must be installed (see Setting up the Android SDK for Xamarin.Android). Be sure to

install the Android SDK at its default location if it is not already installed: C:\Program FilesC:\Program Files

(x86)\Android\android-sdk(x86)\Android\android-sdk .

The following packages must be installed (via the Android SDK Manager):

Android SDK Tools version 26.1.1Android SDK Tools version 26.1.1 or later

Android SDK Platform-Tools 27.0.1Android SDK Platform-Tools 27.0.1 or later

Android SDK Build-Tools 27.0.3Android SDK Build-Tools 27.0.3 or later

Android Emulator 27.2.7Android Emulator 27.2.7 or later.

These packages should be displayed with InstalledInstalled status as seen in the following screenshot:

Launch the Android Device Manager from the ToolsTools menu by clicking Tools > Android > Android DeviceTools > Android > Android Device

ManagerManager :

If the following error dialog is presented on launch, see the Troubleshooting section for workaround

instructions:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/02-sdk-tools.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/03-tools-menu.png#lightbox

 Main Screen
When you first launch the Android Device Manager, it presents a screen that displays all currently-configured

virtual devices. For each virtual device, the NameName, OSOS (Android Version), ProcessorProcessor , Memor yMemor y size, and screen

ResolutionResolution are displayed:

When you select a device in the list, the Star tStar t button appears on the right. You can click the Star tStar t button to

launch the emulator with this virtual device:

After the emulator starts with the selected virtual device, the Star tStar t button changes to a StopStop button that you

can use to halt the emulator :

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/05-installed-list.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/06-start-button.png#lightbox

 New DeviceNew Device
To create a new device, click the NewNew button (located in the upper right-hand area of the screen):

Clicking NewNew launches the New DeviceNew Device screen:

To configure a new device in the New DeviceNew Device screen, use the following steps:

1. Give the device a new name. In the following example, the new device is named Pixel_API_27Pixel_API_27 :

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/07-stop-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/08-new-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/09-new-device-editor.png#lightbox

2. Select a physical device to emulate by clicking the Base DeviceBase Device pull-down menu:

3. Select a processor type for this virtual device by clicking the ProcessorProcessor pull-down menu. Selecting x86x86

will provide the best performance because it enables the emulator to take advantage of hardware

acceleration. The x86_64x86_64 option will also make use of hardware acceleration, but it runs slightly slower

than x86x86 (x86_64x86_64 is normally used for testing 64-bit apps):

4. Select the Android version (API level) by clicking the OSOS pull-down menu. For example, select Oreo 8.1 -Oreo 8.1 -

API 27API 27 to create a virtual device for API level 27:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/10-device-name.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/11-device-menu.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/12-processor-type-menu.png#lightbox

If you select an Android API level that has not yet been installed, the Device Manager will display A newA new

device will be downloadeddevice will be downloaded message at the bottom of the screen – it will download and install the

necessary files as it creates the new virtual device:

5. If you want to include Google Play Services APIs in your virtual device, enable the Google APIsGoogle APIs option.

To include the Google Play Store app, enable the Google Play StoreGoogle Play Store option:

Note that Google Play Store images are available only for some base device types such as Pixel, Pixel 2,

Nexus 5, and Nexus 5X.

6. Edit any properties that you need to modify. To make changes to properties, see Editing Android Virtual

Device Properties.

7. Add any additional properties that you need to explicitly set. The New DeviceNew Device screen lists only the most

commonly-modified properties, but you can click the Add Proper tyAdd Proper ty pull-down menu (at the bottom) to

add additional properties:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/13-android-version-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/15-google-play-services.png#lightbox

You can also define a custom property by selecting Custom...Custom... at the top of the property list.

8. Click the CreateCreate button (lower right-hand corner) to create the new device:

9. You might get a L icense AcceptanceLicense Acceptance screen. Click AcceptAccept if you agree to the license terms:

10. The Android Device Manager adds the new device to the list of installed virtual devices while displaying a

CreatingCreating progress indicator during device creation:

11. When the creation process is complete, the new device is shown in the list of installed virtual devices with

a Star tStar t button, ready to launch:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/16-add-property-menu.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/17-create-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/18-license-acceptance.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/19-creating-the-device.png#lightbox

 Edit DeviceEdit Device
To edit an existing virtual device, select the device and click the EditEdit button (located in the upper right-hand

corner of the screen):

Clicking EditEdit launches the Device Editor for the selected virtual device:

The Device EditorDevice Editor screen lists the properties of the virtual device under the Proper tyProper ty column, with the

corresponding values of each property in the ValueValue column. When you select a property, a detailed description

of that property is displayed on the right.

To change a property, edit its value in the ValueValue column. For example, in the following screenshot the

hw.lcd.density property is being changed from 480480 to 240240 :

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/20-created-device.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/21-edit-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/22-device-editor.png#lightbox

 Additional OptionsAdditional Options

After you have made the necessary configuration changes, click the SaveSave button. For more information about

changing virtual device properties, see Editing Android Virtual Device Properties.

Additional options for working with devices are available from the Additional OptionsAdditional Options (…) pull-down menu in

the upper right-hand corner :

The additional options menu contains the following items:

Duplicate and EditDuplicate and Edit – Duplicates the currently-selected device and opens it in the New DeviceNew Device screen

with a different unique name. For example, selecting Pixel_API_27Pixel_API_27 and clicking Duplicate and EditDuplicate and Edit

appends a counter to the name:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/23-device-editing.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/24-overflow-menu.png#lightbox

Reveal in ExplorerReveal in Explorer – Opens a Windows Explorer window in the folder that holds the files for the virtual

device. For example, selecting Pixel_API_27Pixel_API_27 and clicking Reveal in ExplorerReveal in Explorer opens a window like the

following example:

Factor y ResetFactor y Reset – Resets the selected device to its default settings, erasing any user changes made to the

internal state of the device while it was running (this also erases the current Quick Boot snapshot, if any).

This change does not alter modifications that you make to the virtual device during creation and editing.

A dialog box will appear with the reminder that this reset cannot be undone. Click Factor y ResetFactor y Reset to

confirm the reset:

DeleteDelete – Permanently deletes the selected virtual device. A dialog box will appear with the reminder that

deleting a device cannot be undone. Click DeleteDelete if you are certain that you want to delete the device.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/25-dupe-and-edit.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/26-reveal-in-explorer.png#lightbox

NOTENOTE

 Android Device Manager on macOS

 Requirements

If you are using a Mac with an Apple chip, such as the M1, you will need to install the Android Emulator for M1 preview

from GitHub.

This article explains how to use the Android Device Manager to create, duplicate, customize, and launch Android

virtual devices.

You use the Android Device Manager to create and configure Android Virtual Devices (AVDs) that run in the

Android Emulator. Each AVD is an emulator configuration that simulates a physical Android device. This makes it

possible to run and test your app in a variety of configurations that simulate different physical Android devices.

To use the Android Device Manager, you will need the following items:

Visual Studio for Mac 7.6 or later.

The Android SDK must be installed (see Setting up the Android SDK for Xamarin.Android).

The following packages must be installed (via the Android SDK Manager):

SDK tools version 26.1.1SDK tools version 26.1.1 or later

https://github.com/google/android-emulator-m1-preview/releases
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/01-devices-dialog.png#lightbox

 Launching the Device Manager

Android SDK Platform-Tools 28.0.1Android SDK Platform-Tools 28.0.1 or later

Android SDK Build-Tools 26.0.3Android SDK Build-Tools 26.0.3 or later

These packages should be displayed with InstalledInstalled status as seen in the following screenshot:

Launch the Android Device Manager by clicking Tools > Device ManagerTools > Device Manager :

If the following error dialog is presented on launch, see the Troubleshooting section for workaround

instructions:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/02-sdk-tools.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/03-tools-menu.png#lightbox

 Main Screen
When you first launch the Android Device Manager, it presents a screen that displays all currently-configured

virtual devices. For each virtual device, the NameName, OSOS (Android Version), ProcessorProcessor , Memor yMemor y size, and screen

ResolutionResolution are displayed:

When you select a device in the list, the PlayPlay button appears on the right. You can click the PlayPlay button to

launch the emulator with this virtual device:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/05-devices-list.png#lightbox

 New DeviceNew Device

After the emulator starts with the selected virtual device, the PlayPlay button changes to a StopStop button that you can

use to halt the emulator :

When you stop the emulator, you may get a prompt asking if you want to save the current state for the next

quick boot:

Saving the current state will make the emulator boot faster when this virtual device is launched again. For more

information about Quick Boot, see Quick Boot.

To create a new device, click the New DeviceNew Device button (located in the upper left-hand area of the screen):

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/06-start-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/07-stop-button.png#lightbox

Clicking New DeviceNew Device launches the New DeviceNew Device screen:

Use the following steps to configure a new device in the New DeviceNew Device screen:

1. Give the device a new name. In the following example, the new device is named Pixel_API_27Pixel_API_27 :

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/09-new-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/10-new-device-editor.png#lightbox

2. Select a physical device to emulate by clicking the Base DeviceBase Device pull-down menu:

3. Select a processor type for this virtual device by clicking the ProcessorProcessor pull-down menu. Selecting x86x86

will provide the best performance because it enables the emulator to take advantage of hardware

acceleration. The x86_64x86_64 option will also make use of hardware acceleration, but it runs slightly slower

than x86x86 (x86_64x86_64 is normally used for testing 64-bit apps):

4. Select the Android version (API level) by clicking the OSOS pull-down menu. For example, select Oreo 8.1 -Oreo 8.1 -

API 27API 27 to create a virtual device for API level 27:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/11-device-name-m76.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/12-device-menu-m76.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/13-processor-type-menu-m76.png#lightbox

If you select an Android API level that has not yet been installed, the Device Manager will display A newA new

device will be downloadeddevice will be downloaded message at the bottom of the screen – it will download and install the

necessary files as it creates the new virtual device:

5. If you want to include Google Play Services APIs in your virtual device, enable the Google APIsGoogle APIs option.

To include the Google Play Store app, enable the Google Play StoreGoogle Play Store option:

Note that Google Play Store images are available only for some base device types such as Pixel, Pixel 2,

Nexus 5, and Nexus 5X.

6. Edit any properties that you need to modify. To make changes to properties, see Editing Android Virtual

Device Properties.

7. Add any additional properties that you need to explicitly set. The New DeviceNew Device screen lists only the most

commonly-modified properties, but you can click the Add Proper tyAdd Proper ty pull-down menu (at the bottom) to

add additional properties:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/14-android-screenshot-m76.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/16-google-play-services-m76.png#lightbox

You can also define a custom property by clicking Custom...Custom... at the top of this property list.

8. Click the CreateCreate button (lower right-hand corner) to create the new device:

9. The Android Device Manager adds the new device to the list of installed virtual devices while displaying a

CreatingCreating progress indicator during device creation:

10. When the creation process is complete, the new device is shown in the list of installed virtual devices with

a Star tStar t button, ready to launch:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/17-add-property-menu-m76.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/19-creating-the-device-m76.png#lightbox

 Edit DeviceEdit Device
To edit an existing virtual device, select the Additional OptionsAdditional Options pull-down menu (gear icon) and select EditEdit:

Clicking EditEdit launches the Device Editor for the selected virtual device:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/20-created-device-m76.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/21-edit-button-m76.png#lightbox

 Additional OptionsAdditional Options

The Device EditorDevice Editor screen lists the properties of the virtual device under the Proper tyProper ty column, with the

corresponding values of each property in the ValueValue column. When you select a property, a detailed description

of that property is displayed on the right.

To change a property, edit its value in the ValueValue column. For example, in the following screenshot the

hw.lcd.density property is being changed from 480480 to 240240 :

After you have made the necessary configuration changes, click the SaveSave button. For more information about

changing virtual device properties, see Editing Android Virtual Device Properties.

Additional options for working with a device are available from the pull-down menu located to the left of the

PlayPlay button:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/22-device-editor.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/23-device-editing.png#lightbox

The additional options menu contains the following items:

EditEdit – Opens the currently-selected device in the device editor as described earlier.

Duplicate and EditDuplicate and Edit – Duplicates the currently-selected device and opens it in the New DeviceNew Device screen

with a different unique name. For example, selecting Pixel 2 API 28Pixel 2 API 28 and clicking Duplicate and EditDuplicate and Edit

appends a counter to the name:

Reveal in FinderReveal in Finder – Opens a macOS Finder window in the folder that holds the files for the virtual

device. For example, selecting Pixel 2 API 28Pixel 2 API 28 and clicking Reveal in FinderReveal in Finder opens a window like the

following example:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/24-overflow-menu.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/25-dupe-and-edit.png#lightbox

 Troubleshooting

Factor y ResetFactor y Reset – Resets the selected device to its default settings, erasing any user changes made to the

internal state of the device while it was running (this also erases the current Quick Boot snapshot, if any).

This change does not alter modifications that you make to the virtual device during creation and editing.

A dialog box will appear with the reminder that this reset cannot be undone. Click Factor y ResetFactor y Reset to

confirm the reset.

DeleteDelete – Permanently deletes the selected virtual device. A dialog box will appear with the reminder that

deleting a device cannot be undone. Click DeleteDelete if you are certain that you want to delete the device.

The following sections explain how to diagnose and work around problems that may occur when using the

Android Device Manager to configure virtual devices.

Visual Studio

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/mac/26-reveal-in-finder.png#lightbox

 Android SDK in Non-Standard LocationAndroid SDK in Non-Standard Location

 Wrong Version of Android SDK ToolsWrong Version of Android SDK Tools

Visual Studio for Mac

Typically, the Android SDK is installed at the following location:

C:\Program Files (x86)\Android\android-sdkC:\Program Files (x86)\Android\android-sdk

If the SDK is not installed at this location, you may get this error when you launch the Android Device Manager :

To work around this problem, use the following steps:

<UserSettings SdkLibLastWriteTimeUtcTicks="636409365200000000" AndroidSdkPath="C:ProgramsAndroidSDK"
/>

1. From the Windows desktop, navigate to

C:\Users\C:\Users\usernameusername\AppData\Roaming\XamarinDeviceManager\AppData\Roaming\XamarinDeviceManager :

2. Double-click to open one of the log files and locate the Config file pathConfig file path. For example:

3. Navigate to this location and double-click user.configuser.config to open it.

4. In user.configuser.config, locate the <UserSettings> element and add an AndroidSdkPathAndroidSdkPath attribute to it. Set this

attribute to the path where the Android SDK is installed on your computer and save the file. For example,

<UserSettings> would look like the following if the Android SDK was installed at

C:\Programs\Android\SDKC:\Programs\Android\SDK:

After making this change to user.configuser.config, you should be able to launch the Android Device Manager.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/31-config-file-path.png#lightbox

 Snapshot disables WiFi on Android OreoSnapshot disables WiFi on Android Oreo

 Generating a Bug ReportGenerating a Bug Report

If Android SDK tools 26.1.1 or later is not installed, you may see this error dialog on launch:

If you see this error dialog, click Open SDK ManagerOpen SDK Manager to open the Android SDK Manager. In the Android SDK

Manager, click the ToolsTools tab and install the following packages:

Android SDK Tools 26.1.1Android SDK Tools 26.1.1 or later

Android SDK Platform-Tools 27.0.1Android SDK Platform-Tools 27.0.1 or later

Android SDK Build-Tools 27.0.3Android SDK Build-Tools 27.0.3 or later

If you have an AVD configured for Android Oreo with simulated Wi-Fi access, restarting the AVD after a

snapshot may cause Wi-Fi access to become disabled.

To work around this problem,

1. Select the AVD in the Android Device Manager.

2. From the additional options menu, click Reveal in ExplorerReveal in Explorer .

3. Navigate to snapshots > default_bootsnapshots > default_boot.

4. Delete the snapshot.pbsnapshot.pb file:

5. Restart the AVD.

After these changes are made, the AVD will restart in a state that allows Wi-Fi to work again.

Visual Studio

Visual Studio for Mac

If you find a problem with the Android Device Manager that cannot be resolved using the above

troubleshooting tips, please file a bug report by right-clicking the title bar and selecting Generate Bug Repor tGenerate Bug Repor t:

 Summary

 Related Links

 Related Video

This guide introduced the Android Device Manager available in Visual Studio Tools for Xamarin and Visual

Studio for Mac. It explained essential features such as starting and stopping the Android emulator, selecting an

Android virtual device (AVD) to run, creating new virtual devices, and how to edit a virtual device. It explained

how to edit profile hardware properties for further customization, and it provided troubleshooting tips for

common problems.

Changes to the Android SDK Tooling

Debugging on the Android Emulator

SDK Tools Release Notes (Google)

avdmanager

sdkmanager

Find more Xamarin videos on Channel 9 and YouTube.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-manager-images/win/34-bug-report.png#lightbox
https://developer.android.com/studio/releases/sdk-tools
https://developer.android.com/studio/command-line/avdmanager.html
https://developer.android.com/studio/command-line/sdkmanager.html
https://channel9.msdn.com/Shows/XamarinShow/How-to-Create-and-Manage-Your-Own-Android-Emulators/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Editing Android Virtual Device Properties
 7/8/2021 • 16 minutes to read • Edit Online

 Android Device Manager on Windows

This article explains how to use the Android Device Manager to edit the profile properties of an Android virtual

device.

The Android Device ManagerAndroid Device Manager supports the editing of individual Android virtual device profile properties. The

New DeviceNew Device and Device EditDevice Edit screens list the properties of the virtual device in the first column, with the

corresponding values of each property in the second column (as seen in this example):

When you select a property, a detailed description of that property is displayed on the right. You can modify

hardware profile properties and AVD properties. Hardware profile properties (such as hw.ramSize and

hw.accelerometer) describe the physical characteristics of the emulated device. These characteristics include

screen size, the amount of available RAM, whether or not an accelerometer is present. AVD properties specify

the operation of the AVD when it runs. For example, AVD properties can be configured to specify how the AVD

uses your development computer's graphics card for rendering.

You can change properties by using the following guidelines:

To change a boolean property, click the check mark to the right of the boolean property:

To change an enum (enumerated) property, click the down-arrow to the right of the property and choose

a new value.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/android-emulator/device-properties.md
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-properties-images/win/01-new-device-editor.png#lightbox

 Android Device Manager on macOS

To change a string or integer property, double-click the current string or integer setting in the value

column and enter a new value.

The Android Device ManagerAndroid Device Manager supports the editing of individual Android virtual device profile properties. The

New DeviceNew Device and Device EditDevice Edit screens list the properties of the virtual device in the first column, with the

corresponding values of each property in the second column (as seen in this example):

When you select a property, a detailed description of that property is displayed on the right. You can modify

hardware profile properties and AVD properties. Hardware profile properties (such as hw.ramSize and

hw.accelerometer) describe the physical characteristics of the emulated device. These characteristics include

screen size, the amount of available RAM, whether or not an accelerometer is present. AVD properties specify

the operation of the AVD when it runs. For example, AVD properties can be configured to specify how the AVD

uses your development computer's graphics card for rendering.

You can change properties by using the following guidelines:

To change a boolean property, click the check mark to the right of the boolean property:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/device-properties-images/mac/01-new-device-editor.png#lightbox

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

abi.type ABI typeABI type – Specifies the ABI
(application binary interface) type of
the emulated device. The x86x86 option is
for the instruction set commonly
referred to as "x86" or "IA-32." The
x86_64x86_64 option is for the 64-bit x86
instruction set. The armeabi-v7aarmeabi-v7a
option is for the ARM instruction set
with v7-a ARM extensions. The
arm64-v8aarm64-v8a option is for the ARM
instruction set that supports AArch64.

x86, x86_64, armeabi-v7a, arm64-v8a

disk.cachePartition Cache par titionCache par tition – Determines
whether the emulated device will use a
/cache/cache partition on the device. The
/cache/cache partition (which is initially
empty) is the location where Android
stores frequently accessed data and
app components. If set to nono, the
emulator will not use a /cache/cache
partition and the other disk.cache

settings will be ignored.

yes, no

disk.cachePartition.path Cache par tition pathCache par tition path – Specifies a
cache partition image file on your
development computer. The emulator
will use this file for the /cache/cache
partition. Enter an absolute path or a
path relative to the emulator's data
directory. If not set, the emulator
creates an empty temporary file called
cache.imgcache.img on your development
computer. If the file does not exist, it is
created as an empty file. This option is
ignored if disk.cachePartition is

set to nono.

To change an enum (enumerated) property, click the pull-down menu to the right of the property and

choose a new value.

To change a string or integer property, double-click the current string or integer setting in the value

column and enter a new value.

The following table provides a detailed explanation of the properties listed in the New DeviceNew Device and DeviceDevice

EditorEditor screens:

disk.cachePartition.size Cache par tition sizeCache par tition size – The size of
the cache partition file (in bytes).
Normally you do not need to set this
option unless the app will be
downloading very large files that are
larger than the default cache size of 66
megabytes. This option is ignored if
disk.cachePartition is set to nono. If

this value is an integer, it specifies the
size in bytes. You can also specify the
size in kilobytes, megabytes, and
gigabytes by appending KK, MM, or GG to
the value. The minimum size is 9M9M
and the maximum size is 1023G1023G .

disk.dataPartition.initPath Initial path to the data par titionInitial path to the data par tition –
Specifies the initial contents of the data
partition. After wiping user data, the
emulator copies the contents of the
specified file to user data (by default,
userdata-qemu.imguserdata-qemu.img) instead of
using userdata.imguserdata.img as the initial
version.

disk.dataPartition.path Path to the data par titionPath to the data par tition –
Specifies the user data partition file. To
configure a persistent user data file,
enter a filename and a path on your
development computer. If the file
doesn't exist, the emulator creates an
image from the default file
userdata.imguserdata.img, stores it in the
filename specified by
disk.dataPartition.path , and

persists user data to it when the
emulator shuts down. If you don't
specify a path, the default file is named
userdata-qemu.imguserdata-qemu.img. The special
value <temp><temp> causes the emulator to
create and use a temporary file. If
disk.dataPartition.initPath is set,

its content will be copied to the
disk.dataPartition.path file at

boot-time. Note that this option
cannot be left blank.

disk.dataPartition.size Data par tition sizeData par tition size – Specifies the
size of the user data partition in bytes.
If this value is an integer, it specifies
the size in bytes. You can also specify
the size in kilobytes, megabytes, and
gigabytes by appending KK, MM, or GG to
the value. The minimum size is 9M9M
and the maximum size is 1023G1023G .

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

disk.ramdisk.path Ramdisk pathRamdisk path – Path to the boot
partition (ramdisk) image. The ramdisk
image is a subset of the system image
that is loaded by the kernel before the
system image is mounted. The ramdisk
image typically contains boot-time
binaries and initialization scripts. If this
option is not specified, the default is
ramdisk .imgramdisk .img in the emulator system
directory.

disk.snapStorage.path Snapshot storage pathSnapshot storage path – Path to
the snapshot storage file where all
snapshots are stored. All snapshots
made during execution will be saved to
this file. Only snapshots that are saved
to this file can be restored during the
emulator run. If this option is not
specified, the default is snapshots.img
in the emulator data directory.

disk.systemPartition.initPath System par tition init pathSystem par tition init path – Path
to the read-only copy of the system
image file; specifically, the partition
containing the system libraries and
data corresponding to the API level
and any variant. If this path is not
specified, the default is system.img in
the emulator system directory.

disk.systemPartition.path System par tition pathSystem par tition path – Path to the
read/write system partition image. If
this path is not set, a temporary file
will be created and initialized from the
contents of the file specified by
disk.systemPartition.initPath .

disk.systemPartition.size System par tition sizeSystem par tition size – The ideal
size of the system partition (in bytes).
The size is ignored if the actual system
partition image is larger than this
setting; otherwise, it specifies the
maximum size that the system
partition file can grow to. If this value
is an integer, it specifies the size in
bytes. You can also specify the size in
kilobytes, megabytes, and gigabytes
by appending KK, MM, or GG to the value.
The minimum size is 9M9M and the
maximum size is 1023G1023G .

hw.accelerometer AccelerometerAccelerometer – Determines whether
the emulated device contains an
accelerometer sensor. The
accelerometer helps the device
determine orientation (used for auto-
rotation). The accelerometer reports
the acceleration of the device along
three sensor axes.

yes, no

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

hw.audioInput Audio recording suppor tAudio recording suppor t –
Determines whether the emulated
device can record audio.

yes, no

hw.audioOutput Audio playback suppor tAudio playback suppor t –
Determines whether the emulated
device can play audio.

yes, no

hw.battery Batter y suppor tBatter y suppor t – Determines
whether the emulated device can run
on a battery.

yes, no

hw.camera Camera suppor tCamera suppor t – Determines
whether the emulated device has a
camera.

yes, no

hw.camera.back Back-facing cameraBack-facing camera – Configures
the back-facing camera (the lens faces
away from the user). If you are using a
webcam on your development
computer to simulate the back-facing
camera on the emulated device, this
value must be set to webcamn, where
n selects the webcam (if you have only
one webcam, choose webcam0webcam0). If set
to emulated, the emulator simulates
the camera in software. To disable the
back-facing camera, set this value to
none. If you enable the back-facing
camera, be sure to also enable
hw.camera .

emulated, none, webcam0

hw.camera.front Front-facing cameraFront-facing camera – Configures
the front-facing camera (the lens faces
towards the user). If you are using a
webcam on your development
computer to simulate the front-facing
camera on the emulated device, this
value must be set to webcamn, where
n selects the webcam (if you have only
one webcam, choose webcam0webcam0). If set
to emulated, the emulator simulates a
camera in software. To disable the
front-facing camera, set this value to
none. If you enable the front-facing
camera, be sure to also enable
hw.camera .

emulated, none, webcam0

hw.camera.maxHorizontalPixels Maximum horizontal cameraMaximum horizontal camera
pixelspixels – Configures the maximum
horizontal resolution of the emulated
device's camera (in pixels).

hw.camera.maxVerticalPixels Maximum ver tical camera pixelsMaximum ver tical camera pixels –
Configures the maximum vertical
resolution of the emulated device's
camera (in pixels).

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

hw.cpu.arch CPU architectureCPU architecture – The CPU
architecture to be emulated by the
virtual device. If you are using Intel
HAXM for hardware acceleration, select
x86x86 for a 32-bit CPU. Select x86_64x86_64
for a 64-bit HAXM-accelerated device.
(Be sure to install the corresponding
Intel x86 system image in the SDK
Manager: for example, Intel x86 Atom
or Intel x86 Atom_64.) To simulate an
ARM CPU, select armarm for 32-bit or
select arm64arm64 for a 64-bit ARM CPU.
Keep in mind that ARM-based virtual
devices will run much slower than
those that are x86-based because
hardware acceleration is not available
for ARM.

x86, x86_64, arm, arm64

hw.cpu.model CPU modelCPU model – This value is normally
left unset (it will be set to a value that
is derived from hw.cpu.arch if it is

not explicitly set). However, it can be
set to an emulator-specific string for
experimental use.

hw.dPad DPad keysDPad keys – Determines whether the
emulated device supports directional
pad (DPad) keys. A DPad typically has
four keys to indicate directional
control.

yes, no

hw.gps GPS suppor tGPS suppor t – Determines whether
the emulated device has a GPS (Global
Positioning System) receiver.

yes, no

hw.gpu.enabled GPU emulationGPU emulation – Determines
whether the emulated device supports
GPU emulation. When enabled, GPU
emulation uses Open GL for
Embedded Systems (OpenGL ES) for
rendering both 2D and 3D graphics on
the screen, and the associated GPU
Emulation Mode setting determines
how the GPU emulation is
implemented.

yes, no

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

hw.gpu.mode GPU emulation modeGPU emulation mode – Determines
how GPU emulation is implemented by
the emulator. If you select auto, the
emulator will choose hardware and
software acceleration based on your
development computer setup. If you
select host, the emulator will use your
development computer's graphics
processor to perform GPU emulation
for faster rendering. If your GPU is not
compatible with the emulator and you
are on Windows, you can try angle
instead of host. The angle mode uses
DirectX to provide performance similar
to host. If you select mesa, the
emulator will use the Mesa 3D
software library to render graphics.
Select mesa if you have problems
rendering via your development
computer's graphics processor. The
swiftshader mode can be used to
render graphics in software with
slightly less performance than using
your computer's GPU. The off option
(disable graphics hardware emulation)
is a deprecated option that can cause
improper rendering for some items
and is therefore not recommended.

auto, host, mesa, angle, swiftshader, off

hw.gsmModem GSM modem suppor tGSM modem suppor t – Determines
whether the emulated device includes
a modem that supports the GSM
(Global System for Mobile
Communications) telephony radio
system.

yes, no

hw.initialOrientation Initial screen orientationInitial screen orientation –
Configures the initial orientation of the
screen on the emulated device
(portrait or landscape mode). In
portrait mode, the screen is taller than
it is wide. In landscape mode, the
screen is wider than it is tall. When
running the emulated device, you can
change the orientation if both portrait
and landscape are supported in the
device profile.

portrait, landscape

hw.keyboard Keyboard suppor tKeyboard suppor t – Determines
whether the emulated device supports
a QWERTY keyboard.

yes, no

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

hw.keyboard.charmap Keyboard charmap nameKeyboard charmap name – The
name of the hardware charmap for this
device. NOTE: This should always be
the default qwer ty2qwer ty2 unless you have
modified the system image
accordingly. This name is sent to the
kernel at boot time. Using an incorrect
name will result in an unusable virtual
device.

hw.keyboard.lid Keyboard lid suppor tKeyboard lid suppor t – If keyboard
support is enabled, this setting
determines whether the QWERTY
keyboard can be closed/hidden or
opened/visible. This setting will be
ignored if hw.keyboard is set to false.
NOTE: the default value is false if the
emulated device targets API level 12 or
higher.

yes, no

hw.lcd.backlight LCD backlightLCD backlight – Determines whether
an LCD backlight is simulated by the
emulated device.

yes, no

hw.lcd.density LCD densityLCD density – The density of the
emulated LCD display, measured in
density-independent pixels, or dp (dp
is a virtual pixel unit). When the setting
is 160 dp, each dp corresponds to one
physical pixel. At runtime, Android uses
this value to select and scale the
appropriate resources/assets for
correct display rendering.

120, 160, 240, 213, 320

hw.lcd.depth LCD color depthLCD color depth – The color bit-
depth of the emulated framebuffer
that holds the bitmap for driving the
LCD display. This value can be 16 bits
(65,536 possible colors) or 32 bits
(16,777,216 colors plus transparency).
The 32-bit setting can make the
emulator run slightly slower but with
better color accuracy.

16, 32

hw.lcd.height LCD pixel heightLCD pixel height – The number of
pixels that make up the vertical
dimension of the emulated LCD
display.

hw.lcd.width LCD pixel widthLCD pixel width – The number of
pixels that make up the horizontal
dimension of the emulated LCD
display.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

hw.mainKeys Hardware Back/Home keysHardware Back/Home keys –
Determines whether the emulated
device supports hardware Back and
Home navigation buttons. You can set
this value to yesyes if the buttons are
implemented only in software. If
hw.mainKeys is set to yesyes , the

emulator will not display navigation
buttons on the screen, but you can
use the emulator side panel to "press"
these buttons.

yes, no

hw.ramSize Device RAM SizeDevice RAM Size – The amount of
physical RAM on the emulated device,
in megabytes. The default value will be
computed from the screen size or the
skin version. Increasing the size can
provide faster emulator operation, but
at the expense of demanding more
resources from your development
computer.

hw.screen Touch screen typeTouch screen type – Defines the
type of screen on the emulated device.
A multi-touch screen can track two or
more fingers on the touch interface. A
touch screen can detect only single-
finger touch events. A no-touch screen
does not detect touch events.

touch, multi-touch, no-touch

hw.sdCard SDCard suppor tSDCard suppor t – Determines
whether the emulated device supports
insertion and removal of virtual SD
(Secure Digital) cards. The emulator
uses mountable disk images stored on
your development computer to
simulate the partitions of actual SD
card devices (see hw.sdCard.path).

yes, no

sdcard.size SDCard sizeSDCard size – Specifies the size of the
virtual SD card file at the location
specified by hw.sdCard.path .

available on the device (in bytes). If this
value is an integer, it specifies the size
in bytes. You can also specify the size
in kilobytes, megabytes, and gigabytes
by appending KK, MM, or GG to the value.
The minimum size is 9M9M and the
maximum size is 1023G1023G .

hw.sdCard.path SDCard Image PathSDCard Image Path – Specifies the
filename and path to an SD card
partition image file on your
development computer. For example,
this path could be set to
C:\sd\sdcard.imgC:\sd\sdcard.img on Windows.

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

hw.sensors.magnetic_field Magnetic Field SensorMagnetic Field Sensor –
Determines whether the emulated
device supports a magnetic field
sensor. The magnetic field sensor (also
known as magnetometer) reports the
ambient geomagnetic field as
measured along three sensor axes.
Enable this setting for apps that need
access to a compass reading. For
example, a navigation app might use
this sensor to detect which direction
the user faces.

yes, no

hw.sensors.orientation Orientation SensorOrientation Sensor – Determines
whether the emulated device provides
orientation sensor values. The
orientation sensor measures degrees
of rotation that a device makes around
all three physical axes (x, y, z). Note
that the orientation sensor was
deprecated as of Android 2.2 (API level
8).

yes, no

hw.sensors.proximity Proximity SensorProximity Sensor – Determines
whether the emulated device supports
a proximity sensor. This sensor
measures the proximity of an object
relative to the view screen of a device.
This sensor is typically used to
determine whether a handset is being
held up to a person's ear.

yes, no

hw.sensors.temperature Temperature SensorTemperature Sensor – Determines
whether the emulated device supports
a temperature sensor. This sensor
measures the temperature of the
device in degrees Celsius (°C).

yes, no

hw.touchScreen Touch-screen suppor tTouch-screen suppor t – Determines
whether the emulated device supports
a touch screen. The touch screen is
used for direct manipulation of objects
on the screen.

yes, no

hw.trackBall Trackball suppor tTrackball suppor t – Determines
whether the emulated device supports
a trackball.

yes, no

hw.useext4 EXT4 file system suppor tEXT4 file system suppor t –
Determines whether the emulated
device uses the Linux EXT4 file system
for partitions. Because the file system
type is now auto-detected, this option
is deprecated and ignored.

no

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

kernel.newDeviceNaming Kernel new device namingKernel new device naming – Used
to specify whether the kernel requires
a new device naming scheme. This is
typically used with Linux 3.10 kernels
and later. If set to autodetectautodetect , the
emulator will automatically detect
whether the kernel requires a new
device naming scheme.

autodetect, yes, no

kernel.parameters Kernel parametersKernel parameters – Specifies the
string of Linux kernel boot parameters.
By default, this setting is left blank.

kernel.path Kernel pathKernel path – Specifies the path to
the Linux kernel. If this path is not
specified, the emulator looks in the
emulator system directory for kernel-
ranchu.

kernel.supportsYaffs2 YAFFS2 par tition suppor tYAFFS2 par tition suppor t –
Determines whether the kernel
supports YAFFS2 (Yet Another Flash
File System 2) partitions. Typically, this
applies only to kernels before Linux
3.10. If set to autodetectautodetect the
emulator will automatically detect
whether the kernel can mount YAFFS2
file systems.

autodetect, yes, no

skin.name Skin nameSkin name – The name for an
Android emulator skin. A skin is a
collection of files that defines the visual
and control elements of an emulator
display; it describes what the window
of the AVD will look like on your
development computer. A skin
describes screen size, buttons, and the
overall design, but it does not affect
the operation of your app.

skin.path Skin pathSkin path – Path to the directory that
contains the emulator skin files
specified in skin.name This directory
contains hardware.ini layout files, and
image files for the display elements of
the skin.

skin.dynamic Skin dynamicSkin dynamic – Whether or not the
skin is dynamic. The emulator skin is a
dynamic skin if the emulator is to
construct a skin of a given size based
on a specified width and height.

no

P RO P ERT YP RO P ERT Y DESC RIP T IO NDESC RIP T IO N O P T IO N SO P T IO N S

For more information about these properties, see Hardware Profile Properties.

https://developer.android.com/studio/run/managing-avds.html#hpproperties

Android emulator troubleshooting
 7/8/2021 • 15 minutes to read • Edit Online

 Deployment issues on Windows

 Deployment errorsDeployment errors

 MMIO access errorMMIO access error

 Missing Google Play Services

This article describes the most common warning messages and issues that occur while configuring and running

the Android Emulator. In addition, it describes solutions for resolving these errors as well as various

troubleshooting tips to help you diagnose emulator problems.

Some error messages may be displayed by the emulator when you deploy your app. The most common errors

and solutions are explained here.

If you see an error about a failure to install the APK on the emulator or a failure to run the Android Debug

Bridge (adbadb), verify that the Android SDK can connect to your emulator. To verify emulator connectivity, use the

following steps:

adb devices

List of devices attached
emulator-5554 device

1. Launch the emulator from the Android Device ManagerAndroid Device Manager (select your virtual device and click Star tStar t).

2. Open a command prompt and go to the folder where adbadb is installed. If the Android SDK is installed at its

default location, adbadb is located at C:\Program Files (x86)\Android\android-sdk\platform-C:\Program Files (x86)\Android\android-sdk\platform-

tools\adb.exetools\adb.exe; if not, modify this path for the location of the Android SDK on your computer.

3. Type the following command:

4. If the emulator is accessible from the Android SDK, the emulator should appear in the list of attached

devices. For example:

5. If the emulator does not appear in this list, start the Android SDK ManagerAndroid SDK Manager , apply all updates, then try

launching the emulator again.

If the message An MMIO access error has occurredAn MMIO access error has occurred is displayed, restart the emulator.

If the virtual device you are running in the emulator does not have Google Play Services or Google Play Store

installed, this condition is often caused by creating a virtual device without including these packages. When you

create a virtual device (see Managing Virtual Devices with the Android Device Manager), be sure to select one or

both of the following options:

Google APIsGoogle APIs – includes Google Play Services in the virtual device.

Google Play StoreGoogle Play Store – includes Google Play Store in the virtual device.

For example, this virtual device will include Google Play Services and Google Play Store:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/android-emulator/troubleshooting.md

NOTENOTE

 Performance issues

 Hardware acceleration is not enabledHardware acceleration is not enabled

 Acceleration is enabled but the emulator runs too slowlyAcceleration is enabled but the emulator runs too slowly

Google Play Store images are available only for some base device types such as Pixel, Pixel 2, Nexus 5, and Nexus 5X.

Performance issues are typically caused by one of the following problems:

The emulator is running without hardware acceleration.

The virtual device running in the emulator is not using an x86-based system image.

The following sections cover these scenarios in more detail.

If hardware acceleration is not enabled, starting a virtual device from the Device Manager will produce a dialog

with an error message indicating that the Windows Hypervisor Platform (WHPX) is not configured properly:

If this error message is displayed, see Hardware acceleration issues below for steps you can take to verify and

enable hardware acceleration.

A common cause for this problem is not using an x86-based image in your virtual device (AVD). When you

create a virtual device (see Managing Virtual Devices with the Android Device Manager), be sure to select an

x86-based system image:

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/troubleshooting-images/win/00-add-gps-w158.png#lightbox

 Hardware acceleration issues

"C:\Program Files (x86)\Android\android-sdk\emulator\emulator-check.exe" accel

 Hardware acceleration not availableHardware acceleration not available

HAXM is not installed, but Windows Hypervisor Platform is available.

HAXM version 6.2.1 (4) is installed and usable.

HAXM is not installed on this machine

 Incorrect BIOS settingsIncorrect BIOS settings

VT feature disabled in BIOS/UEFI

Whether you are using Hyper-V or HAXM for hardware acceleration, you may run into configuration problems

or conflicts with other software on your computer. You can verify that hardware acceleration is enabled (and

which acceleration method the emulator is using) by opening a command prompt and entering the following

command:

This command assumes that the Android SDK is installed at the default location of C:\Program FilesC:\Program Files

(x86)\Android\android-sdk(x86)\Android\android-sdk ; if not, modify the above path for the location of the Android SDK on your

computer.

If Hyper-V is available, a message like the following example will be returned from the emulator-check .exeemulator-check .exe

accelaccel command:

If HAXM is available, a message like the following example will be returned:

If hardware acceleration is not available, a message like the following example will be displayed (the emulator

looks for HAXM if it is unable to find Hyper-V):

If hardware acceleration is not available, see Accelerating with Hyper-V to learn how to enable hardware

acceleration on your computer.

If the BIOS has not been configured properly to support hardware acceleration, a message similar to the

following example will be displayed when you run the emulator-check .exe accelemulator-check .exe accel command:

To correct this problem, reboot into your computer's BIOS and enable the following options:

Virtualization Technology (may have a different label depending on motherboard manufacturer).

Hardware Enforced Data Execution Prevention.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/troubleshooting-images/win/02-x86-virtual-device-w158.png#lightbox

 Hyper-V issuesHyper-V issues

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V -All
Enable-WindowsOptionalFeature -Online -FeatureName HypervisorPlatform -All

 HAXM issuesHAXM issues

If hardware acceleration is enabled and the BIOS is configured properly, the emulator should run successfully

with hardware acceleration. However, problems may still result due to issues that are specific to Hyper-V and

HAXM, as explained next.

In some cases, enabling both Hyper-VHyper-V and Windows Hyper visor PlatformWindows Hyper visor Platform in the Turn Windows featuresTurn Windows features

on or offon or off dialog may not properly enable Hyper-V. To verify that Hyper-V is enabled, use the following steps:

Get-WindowsOptionalFeature -FeatureName Microsoft-Hyper-V-All -Online

FeatureName : Microsoft-Hyper-V-All
DisplayName : Hyper-V
Description : Provides services and management tools for creating and running virtual machines
and their resources.
RestartRequired : Possible
State : Disabled
CustomProperties :

Get-WindowsOptionalFeature -FeatureName HypervisorPlatform -Online

FeatureName : HypervisorPlatform
DisplayName : Windows Hypervisor Platform
Description : Enables virtualization software to run on the Windows hypervisor
RestartRequired : Possible
State : Disabled
CustomProperties :

1. Enter powershellpowershell in the Windows search box.

2. Right-click Windows PowerShellWindows PowerShell in the search results and select Run as administratorRun as administrator .

3. In the PowerShell console, enter the following command:

If Hyper-V is not enabled, a message similar to the following example will be displayed to indicate that

the state of Hyper-V is DisabledDisabled:

4. In the PowerShell console, enter the following command:

If the Hypervisor is not enabled, a message similar to the following example will be displayed to indicate

that the state of HypervisorPlatform is DisabledDisabled:

If Hyper-V and/or HypervisorPlatform are not enabled, use the following PowerShell commands to enable them:

After these commands complete, reboot.

For more information about enabling Hyper-V (including techniques for enabling Hyper-V using the

Deployment Image Servicing and Management tool), see Install Hyper-V.

HAXM issues are often the result of conflicts with other virtualization technologies, incorrect settings, or an out-

of-date HAXM driver.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v

HAXM process is not runningHAXM process is not running

sc query intelhaxm

SERVICE_NAME: intelhaxm
 TYPE : 1 KERNEL_DRIVER
 STATE : 4 RUNNING
 (STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

 HAXM virtualization conflictsHAXM virtualization conflicts

 Incorrect BIOS settingsIncorrect BIOS settings

 Disabling Hyper-VDisabling Hyper-V

If HAXM is installed, you can verify that the HAXM process is running by opening a command prompt and

entering the following command:

If the HAXM process is running, you should see output similar to the following result:

If STATE is not set to RUNNING , see How to Use the Intel Hardware Accelerated Execution Manager to resolve the

problem.

HAXM can conflict with other technologies that use virtualization, such as Hyper-V, Windows Device Guard, and

some antivirus software:

Hyper-VHyper-V – If you are using a version of Windows before the Windows 10 April 2018 update (buildWindows 10 April 2018 update (build

1803)1803) and Hyper-V is enabled, follow the steps in Disabling Hyper-V so that HAXM can be enabled.

Device GuardDevice Guard – Device Guard and Credential Guard can prevent Hyper-V from being disabled on

Windows machines. To disable Device Guard and Credential Guard, see Disabling Device Guard.

Antivirus SoftwareAntivirus Software – If you are running antivirus software that uses hardware-assisted virtualization

(such as Avast), disable or uninstall this software, reboot, and retry the Android emulator.

If you are using HAXM on a Windows PC, HAXM will not work unless virtualization technology (Intel VT-x) is

enabled in the BIOS. If VT-x is disabled, you will get an error similar to the following when you attempt to start

the Android Emulator :

This computer meets the requirements for HAXM, but Intel Vir tualization Technology (VT-x) is notThis computer meets the requirements for HAXM, but Intel Vir tualization Technology (VT-x) is not

turned on.turned on.

To correct this error, boot the computer into the BIOS, enable both VT-x and SLAT (Second-Level Address

Translation), then restart the computer back into Windows.

If you are using a version of Windows before the Windows 10 April 2018 Update (build 1803)Windows 10 April 2018 Update (build 1803) and Hyper-

V is enabled, you must disable Hyper-V and reboot your computer to install and use HAXM. If you are using

Windows 10 April 2018 Update (build 1803)Windows 10 April 2018 Update (build 1803) or later, Android Emulator version 27.2.7 or later can use

Hyper-V (instead of HAXM) for hardware acceleration, so it is not necessary to disable Hyper-V.

You can disable Hyper-V from the Control Panel by following these steps:

1. Enter windows featureswindows features in the Windows search box and select Turn Windows features on or offTurn Windows features on or off in

the search results.

2. Uncheck Hyper-VHyper-V :

https://software.intel.com/android/articles/how-to-use-the-intel-hardware-accelerated-execution-manager-intel-haxm-android-emulator

 Disabling Device GuardDisabling Device Guard

3. Restart the computer.

Alternately, you can use the following PowerShell command to disable the Hyper-V Hypervisor :

Disable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V-Hypervisor

Intel HAXM and Microsoft Hyper-V cannot both be active at the same time. Unfortunately, there is no way to

switch between Hyper-V and HAXM without restarting your computer.

In some cases, using the above steps will not succeed in disabling Hyper-V if Device Guard and Credential Guard

are enabled. If you are unable to disable Hyper-V (or it seems to be disabled but HAXM installation still fails), use

the steps in the next section to disable Device Guard and Credential Guard.

Device Guard and Credential Guard can prevent Hyper-V from being disabled on Windows machines. This

situation is often a problem for domain-joined machines that are configured and controlled by an owning

organization. On Windows 10, use the following steps to see if Device GuardDevice Guard is running:

1. Enter System infoSystem info in the Windows search box and select System InformationSystem Information in the search results.

2. In the System Summar ySystem Summar y , look to see if Device Guard Vir tualization based securityDevice Guard Vir tualization based security is present and

is in the RunningRunning state:

If Device Guard is enabled, use the following steps to disable it:

1. Ensure that Hyper-VHyper-V is disabled (under Turn Windows Features on or offTurn Windows Features on or off) as described in the

previous section.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/troubleshooting-images/win/04-device-guard.png#lightbox

mountvol Z: /s
copy %WINDIR%\System32\SecConfig.efi Z:\EFI\Microsoft\Boot\SecConfig.efi /Y
bcdedit /create {0cb3b571-2f2e-4343-a879-d86a476d7215} /d "DebugTool" /application osloader
bcdedit /set {0cb3b571-2f2e-4343-a879-d86a476d7215} path "\EFI\Microsoft\Boot\SecConfig.efi"
bcdedit /set {bootmgr} bootsequence {0cb3b571-2f2e-4343-a879-d86a476d7215}
bcdedit /set {0cb3b571-2f2e-4343-a879-d86a476d7215} loadoptions DISABLE-LSA-ISO,DISABLE-VBS
bcdedit /set {0cb3b571-2f2e-4343-a879-d86a476d7215} device partition=Z:
mountvol Z: /d

2. In the Windows Search Box, enter gpedit.mscgpedit.msc and select the Edit group policyEdit group policy search result. These

steps launch the Local Group Policy EditorLocal Group Policy Editor .

3. In the Local Group Policy EditorLocal Group Policy Editor , navigate to Computer Configuration > AdministrativeComputer Configuration > Administrative

Templates > System > Device GuardTemplates > System > Device Guard:

4. Change Turn On Vir tualization Based SecurityTurn On Vir tualization Based Security to DisabledDisabled (as shown above) and exit the LocalLocal

Group Policy EditorGroup Policy Editor .

5. In the Windows Search Box, enter cmdcmd. When Command PromptCommand Prompt appears in the search results, right-

click Command PromptCommand Prompt and select Run as AdministratorRun as Administrator .

6. Copy and paste the following commands into the command prompt window (if drive Z:Z: is in use, pick an

unused drive letter to use instead):

7. Restart your computer. On the boot screen, you should see a prompt similar to the following message:

Do you want to disable Credential Guard?Do you want to disable Credential Guard?

Press the indicated key to disable Credential Guard as prompted.

8. After the computer reboots, check again to ensure that Hyper-V is disabled (as described in the previous

steps).

If Hyper-V is still not disabled, the policies of your domain-joined computer may prevent you from disabling

Device Guard or Credential Guard. In this case, you can request an exemption from your domain administrator

to allow you to opt out of Credential Guard. Alternately, you can use a computer that is not domain-joined if you

must use HAXM.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/troubleshooting-images/win/05-group-policy-editor.png#lightbox

Additional troubleshooting tips

 Starting the emulator from the command lineStarting the emulator from the command line

"C:\Program Files (x86)\Android\android-sdk\emulator\emulator.exe" -partition-size 512 -no-boot-anim -
verbose -feature WindowsHypervisorPlatform -avd Pixel_API_27 -prop monodroid.avdname=Pixel_API_27

emulator: CPU Acceleration: working
emulator: CPU Acceleration status: HAXM version 6.2.1 (4) is installed and usable.

 Viewing Device Manager logsViewing Device Manager logs

Component Intel x86 Emulator Accelerator (HAXM installer) r6.2.1 [Extra: (Intel Corporation)] not present on
the system

 Deployment issues on macOS

 Deployment errorsDeployment errors

The following suggestions are often helpful in diagnosing Android emulator issues.

If the emulator is not already running, you can start it from the command line (rather than from within Visual

Studio) to view its output. Typically, Android emulator AVD images are stored at the following location (replace

username with your Windows user name):

C:\Users\C:\Users\usernameusername\.android\avd\.android\avd

You can launch the emulator with an AVD image from this location by passing in the folder name of the AVD. For

example, this command launches an AVD named Pixel_API_27Pixel_API_27 :

This example assumes that the Android SDK is installed at the default location of C:\Program FilesC:\Program Files

(x86)\Android\android-sdk(x86)\Android\android-sdk ; if not, modify the above path for the location of the Android SDK on your

computer.

When you run this command, it will produce many lines of output while the emulator starts up. In particular,

lines such as the following example will be printed if hardware acceleration is enabled and working properly (in

this example, HAXM is used for hardware acceleration):

Often you can diagnose emulator problems by viewing the Device Manager logs. These logs are written to the

following location:

C:\Users\C:\Users\usernameusername\AppData\Local\Xamarin\Logs\16.0\AppData\Local\Xamarin\Logs\16.0

You can view each DeviceManager.logDeviceManager.log file by using a text editor such as Notepad. The following example log

entry indicates that HAXM was not found on the computer :

Some error messages may be displayed by the emulator when you deploy your app. The most common errors

and solutions are explained below.

If you see an error about a failure to install the APK on the emulator or a failure to run the Android Debug

Bridge (adbadb), verify that the Android SDK can connect to your emulator. To verify connectivity, use the following

steps:

1. Launch the emulator from the Android Device ManagerAndroid Device Manager (select your virtual device and click Star tStar t).

2. Open a command prompt and go to the folder where adbadb is installed. If the Android SDK is installed at its

default location, adbadb is located at ~/Librar y/Developer/Xamarin/android-sdk-macosx/platform-~/Librar y/Developer/Xamarin/android-sdk-macosx/platform-

tools/adbtools/adb; if not, modify this path for the location of the Android SDK on your computer.

 MMIO access errorMMIO access error

 Missing Google Play Services

NOTENOTE

 Performance issues

adb devices

List of devices attached
emulator-5554 device

3. Type the following command:

4. If the emulator is accessible from the Android SDK, the emulator should appear in the list of attached

devices. For example:

5. If the emulator does not appear in this list, start the Android SDK ManagerAndroid SDK Manager , apply all updates, then try

launching the emulator again.

If An MMIO access error has occurredAn MMIO access error has occurred is displayed, restart the emulator.

If the virtual device you are running in the emulator does not have Google Play Services or Google Play Store

installed, this condition is usually caused by creating a virtual device without including these packages. When

you create a virtual device (see Managing Virtual Devices with the Android Device Manager), be sure to select

one or both of the following:

Google APIsGoogle APIs – includes Google Play Services in the virtual device.

Google Play StoreGoogle Play Store – includes Google Play Store in the virtual device.

For example, this virtual device will include Google Play Services and Google Play Store:

Google Play Store images are available only for some base device types such as Pixel, Pixel 2, Nexus 5, and Nexus 5X.

Performance issues are typically caused by one of the following problems:

The emulator is running without hardware acceleration.

The virtual device running in the emulator is not using an x86-based system image.

The following sections cover these scenarios in more detail.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/troubleshooting-images/mac/01-google-play-services-m75.png#lightbox

 Hardware acceleration is not enabledHardware acceleration is not enabled

 Acceleration is enabled but the emulator runs too slowlyAcceleration is enabled but the emulator runs too slowly

 Hardware acceleration issues

 Hypervisor Framework issuesHypervisor Framework issues

sysctl kern.hv_support

kern.hv_support: 1

 HAXM issuesHAXM issues

If hardware acceleration is not enabled, a dialog may pop up with a message such as device will rundevice will run

unacceleratedunaccelerated when you deploy your app to the Android emulator. If you are not certain whether hardware

acceleration is enabled on your computer (or you would like to know which technology is providing the

acceleration), see Hardware acceleration issues below for steps you can take to verify and enable hardware

acceleration.

A common cause for this problem is not using an x86-based image in your virtual device. When you create

virtual device (see Managing Virtual Devices with the Android Device Manager), be sure to select an x86-based

system image:

Whether you are using the Hypervisor Framework or HAXM for hardware acceleration of the emulator, you may

run into problems caused by installation issues or an out-of-date version of macOS. The following sections can

help you resolve this issue.

If you are using macOS 10.10 or later on a newer Mac, the Android emulator will automatically use the

Hypervisor Framework for hardware acceleration. However, some older Macs or Macs running a version of

macOS earlier than 10.10 may not provide Hypervisor Framework support.

To determine whether or not your Mac supports the Hypervisor Framework, open a Terminal and enter the

following command:

If your Mac supports the Hypervisor Framework, the above command will return the following result:

If the Hypervisor Framework is not available on your Mac, you can follow the steps in Accelerating with HAXM

to use HAXM for acceleration instead.

If the Android Emulator does not start properly, this problem is often caused by problems with HAXM. HAXM

issues are often the result of conflicts with other virtualization technologies, incorrect settings, or an out-of-date

HAXM driver. Try reinstalling the HAXM driver, using the steps detailed in Installing HAXM.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/android-emulator/troubleshooting-images/mac/02-x86-virtual-device-m75.png#lightbox

 Additional troubleshooting tips

 Starting the emulator from the command lineStarting the emulator from the command line

~/Library/Developer/Xamarin/android-sdk-macosx/emulator/emulator -partition-size 512 -no-boot-anim -verbose
-feature WindowsHypervisorPlatform -avd Pixel_2_API_28 -prop monodroid.avdname=Pixel_2_API_28

emulator: CPU Acceleration: working
emulator: CPU Acceleration status: Hypervisor.Framework OS X Version 10.13

 Viewing Device Manager logsViewing Device Manager logs

Component Intel x86 Emulator Accelerator (HAXM installer) r6.2.1 [Extra: (Intel Corporation)] not present on
the system

The following suggestions are often helpful in diagnosing Android emulator issues.

If the emulator is not already running, you can start it from the command line (rather than from within Visual

Studio for Mac) to view its output. Typically, Android emulator AVD images are stored at the following location:

~/.android/avd~/.android/avd

You can launch the emulator with an AVD image from this location by passing in the folder name of the AVD. For

example, this command launches an AVD named Pixel_2_API_28Pixel_2_API_28 :

If the Android SDK is installed at its default location, the emulator is located in the

~/Librar y/Developer/Xamarin/android-sdk-macosx/emulator~/Librar y/Developer/Xamarin/android-sdk-macosx/emulator directory; if not, modify this path for the

location of the Android SDK on your Mac.

When you run this command, it will produce many lines of output while the emulator starts up. In particular,

lines such as the following example will be printed if hardware acceleration is enabled and working properly (in

this example, Hypervisor Framework is used for hardware acceleration):

Often you can diagnose emulator problems by viewing the Device Manager logs. These logs are written to the

following location:

~/Librar y/Logs/XamarinDeviceManager~/Librar y/Logs/XamarinDeviceManager

You can view each Android Devices.logAndroid Devices.log file by double-clicking it to open it in the Console app. The following

example log entry indicates that HAXM was not found:

Set Up Device for Development
 7/8/2021 • 5 minutes to read • Edit Online

 Enable Debugging on the Device

 Android 9.0+Android 9.0+

 Android 8.0 and Android 8.1Android 8.0 and Android 8.1

 Android 7.1 and lowerAndroid 7.1 and lower

 Verify that USB debugging is enabledVerify that USB debugging is enabled

 Android 9.0+Android 9.0+

 Android 8.0 and Android 8.1Android 8.0 and Android 8.1

This article explains how to setup an Android device and connect it to a computer so that the device may be

used to run and debug Xamarin.Android applications.

After testing on an Android emulator, you will want to see and test your apps running on an Android device. You

will need to enable debugging and connect the device to the computer.

Each of these steps will be covered in more detail in the sections below.

A device must be enabled for debugging in order to test an Android application. Developer options on Android

have been hidden by default since version 4.2, and enabling them can vary based on the Android version.

For Android 9.0 and higher, debugging is enabled by following these steps:

1. Go to the SettingsSettings screen.

2. Select About PhoneAbout Phone .

3. Tap Build NumberBuild Number 7 times until You are now a developer!You are now a developer! is visible.

1. Go to the SettingsSettings screen.

2. Select SystemSystem.

3. Select About PhoneAbout Phone

4. Tap Build NumberBuild Number 7 times until You are now a developer!You are now a developer! is visible.

1. Go to the SettingsSettings screen.

2. Select About PhoneAbout Phone.

3. Tap Build NumberBuild Number 7 times until You are now a developer!You are now a developer! is visible.

After enabling developer mode on your device, you must ensure that USB debugging is enabled on the device.

This also varies based on the Android version.

Navigate to Settings > System > Advanced > Developer OptionsSettings > System > Advanced > Developer Options and enable USB DebuggingUSB Debugging.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/set-up-device-for-development.md
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/set-up-device-for-development-images/build-version.png#lightbox

 Android 7.1 and lowerAndroid 7.1 and lower

 Connect the device to the computer

Navigate to Settings > System > Developer OptionsSettings > System > Developer Options and enable USB DebuggingUSB Debugging.

Navigate to Settings > Developer OptionsSettings > Developer Options and enable USB DebuggingUSB Debugging.

Once the Developer OptionsDeveloper Options tab is available under Settings > SystemSettings > System, open it to reveal developer settings:

This is the place to enable developer options such as USB debugging and stay awake mode.

The final step is to connect the device to the computer. The easiest and most reliable way is to do so over USB.

You will receive a prompt to trust the computer on your device if you have not used it for debugging before. You

can also check Always allow from this computerAlways allow from this computer to prevent requiring this prompt each time you connect the

device.

file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/set-up-device-for-development-images/usb-debugging.png#lightbox

Alternate connection via Wifi

 Connecting over WiFiConnecting over WiFi

It is possible to connect an Android device to a computer without using a USB cable, over WiFi. This technique

requires more effort but could be useful when the device is too far from the computer to remain constantly

plugged-in via cable.

By default, the Android Debug Bridge (ADB) is configured to communicate with an Android device via USB. It is

possible to reconfigure it to use TCP/IP instead of USB. To do this, both the device and the computer must be on

the same WiFi network. To setup your environment to debug over WiFi complete the following steps from the

command line:

adb tcpip 5555

adb connect 192.168.1.28:5555

1. Determine the IP address of your Android device. One way to find out the IP address is to look under

Settings > Network & internet > Wi-FiSettings > Network & internet > Wi-Fi , then tap on the WiFi network that the device is connected to,

and then tap on AdvancedAdvanced. This will open a dropdown showing information about the network

connection, similar to what is seen in the screenshot below:

On some versions of Android the IP address won't be listed there but can be found instead under

Settings > About phone > StatusSettings > About phone > Status .

2. Connect your Android device to your computer via USB.

3. Next, restart ADB so that it using TCP on port 5555. From a command prompt, type the following

command:

After this command is issued, your computer will not be able to listen to devices that are connected via

USB.

4. Disconnect the USB cable connecting your device to your computer.

5. Configure ADB so that it will connect to your Android device on the port that was specified in step 1

above:

Once this command finishes the Android device is connected to the computer via WiFi.

When you're finished debugging via WiFi, it's possible to reset ADB back to USB mode with the following

command:

https://developer.android.com/tools/help/adb.html
file:///T:/c1uy/n1bv/xamarin/android/get-started/installation/set-up-device-for-development-images/ip-settings.png#lightbox

 Troubleshooting

 Install USB Drivers

NOTENOTE

 Download the USB DriversDownload the USB Drivers

adb usb

adb devices

It's possible to request ADB to list the devices that are connected to the computer. Regardless of how the

devices are connected, you can issue the following command at the command prompt to see what is

connected:

In some cases you might find that your device cannot connect to the computer. In this case you may want to

verify that USB drivers are installed.

This step is not necessary for macOS; just connect the device to the Mac with a USB cable.

It may be necessary to install some extra drivers before a Windows computer will recognize an Android device

connected by USB.

These are the steps to set up a Google Nexus device and are provided as a reference. Steps for your specific device may

vary, but will follow a similar pattern. Search the internet for your device if you have trouble.

Run the android.batandroid.bat application in the [Android SDK install path]\tools[Android SDK install path]\tools directory. By default, the

Xamarin.Android installer will put the Android SDK in following location on a Windows computer :

C:\Users\[username]\AppData\Local\Android\android-sdk

Google Nexus devices (with the exception of the Galaxy Nexus) require the Google USB Driver. The driver for the

Galaxy Nexus is distributed by Samsung. All other Android devices should use the USB driver from their

respective manufacturer.

Install the Google USB DriverGoogle USB Driver package by starting the Android SDK Manager, and expanding the ExtrasExtras folder,

as can be seen in the follow screenshot:

https://www.samsung.com/us/support/downloads/
https://developer.android.com/tools/extras/oem-usb.html#Drivers

 Installing the USB DriverInstalling the USB Driver

 Summary

 Related Links

Check the Google USB DriverGoogle USB Driver box, and click the Apply ChangesApply Changes button. The driver files are downloaded to

the following location:

[Android SDK install path]\extras\google\usb_driver

The default path for a Xamarin.Android installation is:

C:\Users\[username]\AppData\Local\Android\android-sdk\extras\google\usb_driver

After the USB drivers are downloaded, it is necessary to install them. To install the drivers on Windows 7:

1. Connect your device to the computer with a USB cable.

2. Right-click on the Computer from your desktop or Windows Explorer, and select ManageManage .

3. Select DevicesDevices in the left pane.

4. Locate and expand Other DevicesOther Devices in the right pane.

5. Right-click the device name and select Update Driver SoftwareUpdate Driver Software . This will launch the Hardware Update

Wizard.

6. Select Browse my computer for dr iver softwareBrowse my computer for dr iver software and click NextNext .

7. Click BrowseBrowse and locate the USB driver folder (the Google USB driver is located in [Android SDK[Android SDK

install path]\extras\google\usb_driverinstall path]\extras\google\usb_driver).

8. Click NextNext to install the driver.

This article discussed how to configure an Android device for development by enabling debugging on the

device. It also covered how to connect the device to a computer using either USB or WiFi.

Android Debug Bridge

Using Hardware Devices

https://developer.android.com/tools/help/adb.html
https://developer.android.com/tools/device.html

Samsung Driver Downloads

OEM USB Drivers

Google USB Driver

XDA Developers : Windows 8 - ADB/fastboot driver problem solved

https://www.samsung.com/us/support/downloads/
https://developer.android.com/tools/extras/oem-usb.html#Drivers
https://developer.android.com/sdk/win-usb.html
https://forum.xda-developers.com/showthread.php?t=1583801

Microsoft's Mobile OpenJDK Distribution
 7/8/2021 • 2 minutes to read • Edit Online

 Overview

 Download

 Troubleshooting

This guide describes the steps for switching to an internal distribution of OpenJDK. This distribution is intended

for mobile development.

Beginning with Visual Studio 15.9 and Visual Studio for Mac 7.7, Visual Studio Tools for Xamarin has moved

from Oracle’s JDK to a lightweight version of the OpenJDK that is intended solely for Androidlightweight version of the OpenJDK that is intended solely for Android

developmentdevelopment. This is a required migration as Oracle is ending support for commercial distribution of JDK 8 in

2019, and JDK 8 is a required dependency for all Android development.

The benefits of this move are:

You will always have an OpenJDK version that works for Android development.

Downloading Oracle's JDK 9 or greater won’t affect the development experience.

Reduced download size and footprint.

No more issues with 3rd party servers and installers.

If you’d like to move to the improved experience sooner, builds of the Microsoft Mobile OpenJDK distribution are

available for you to test on both Windows and Mac. The setup process is described below, and you can revert

back to the Oracle JDK at any time.

The mobile OpenJDK distribution is automatically installed for you if you select the Android SDK packages in the

Visual Studio installer on Windows.

On Mac, the mobile OpenJDK will be installed for you as part of the Android workload for new installs. For

existing Visual Studio for Mac users, you will be prompted to install it as part of your update. The IDE will

prompt you to move to the new JDK, and will switch to using it at the next restart.

If you encounter issues with the setup on Mac or Windows, you can take the following steps for manual setup:

Check if OpenJDK is installed on the machine in the correct location:

MacMac – $HOME/Librar y/Developer/Xamarin/jdk/microsoft_dist_openjdk_1.8.0 .x$HOME/Librar y/Developer/Xamarin/jdk/microsoft_dist_openjdk_1.8.0 .x

WindowsWindows – C:\Program Files\Android\jdk\microsoft_dist_openjdk_1.8.0 .xC:\Program Files\Android\jdk\microsoft_dist_openjdk_1.8.0 .x

Point the IDE to the new JDK:

MacMac – Click Tools > SDK Manager > LocationsTools > SDK Manager > Locations and change the Java SDK (JDK) LocationJava SDK (JDK) Location to the full

path of the OpenJDK installation. In the following example, this path is set to

$HOME/Librar y/Developer/Xamarin/jdk/microsoft_dist_openjdk_1.8.0 .9$HOME/Librar y/Developer/Xamarin/jdk/microsoft_dist_openjdk_1.8.0 .9 but your version may be

newer.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/installation/openjdk.md

 Known Issues
 Package 'OpenJDKV1.RegKey,version=1.8.0.25,chip=x64' failed to installPackage 'OpenJDKV1.RegKey,version=1.8.0.25,chip=x64' failed to install

WindowsWindows – Click Tools > Options > Xamarin > Android SettingsTools > Options > Xamarin > Android Settings and change the Java DevelopmentJava Development

Kit LocationKit Location to the full path of the OpenJDK installation. In the following example, this path is set to

C:\Program Files\Android\jdk\microsoft_dist_openjdk_1.8.0 .9C:\Program Files\Android\jdk\microsoft_dist_openjdk_1.8.0 .9 , but your version may be newer:

This may be an issue in some corporate environments. OpenJDK is already on the machine - follow the

troubleshooting steps above to point your IDE to the correct location. You can follow the status of the issues

 Summary

here.

In this article, you learned how to configure your IDE to use Microsoft's Mobile OpenJDK distribution, and how

to troubleshoot should you encounter issues.

https://developercommunity.visualstudio.com/content/problem/382549/packageidopenjdkv1regkeypackageactioninstallreturn.html

Hello, Android
 11/2/2020 • 2 minutes to read • Edit Online

 Part 1: Quickstart

 Part 2: Deep Dive

 Related Links

In this two-part guide, you will build your first Xamarin.Android application using Visual Studio for Mac or

Visual Studio and develop an understanding of the fundamentals of Android application development with

Xamarin. Along the way, the tools, concepts, and steps required to build and deploy a Xamarin.Android

application will be introduced.

In the first part of this guide you'll create an application that translates an alphanumeric phone number entered

by the user into a numeric phone number, and then calls that number.

In the second part of this document, you'll review what was built and develop a fundamental understanding of

how Android applications work.

Android Getting Started

Debugging in Visual Studio

Visual Studio for Mac Recipes - Debugging

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/hello-android/index.md
https://developer.android.com/training/index.html
https://docs.microsoft.com/en-us/visualstudio/debugger/
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging

Hello, Android: Quickstart
 7/8/2021 • 13 minutes to read • Edit Online

 Windows requirements

 macOS requirements

 Configuring emulators

 Create the project

In this two-part guide, you will build your first Xamarin.Android application with Visual Studio and develop an

understanding of the fundamentals of Android application development with Xamarin.

 Download the sample

You will create an application that translates an alphanumeric phone number (entered by the user) into a

numeric phone number and display the numeric phone number to the user. The final application looks like this:

To follow along with this walkthrough, you will need the following:

Windows 10.

Visual Studio 2019 or Visual Studio 2017 (version 15.8 or later): Community, Professional, or Enterprise.

To follow along with this walkthrough, you will need the following:

The latest version of Visual Studio for Mac.

A Mac running macOS High Sierra (10.13) or later.

This walkthrough assumes that the latest version of Xamarin.Android is installed and running on your platform

of choice. For a guide to installing Xamarin.Android, refer to the Xamarin.Android Installation guides.

If you are using the Android emulator, we recommend that you configure the emulator to use hardware

acceleration. Instructions for configuring hardware acceleration are available in Hardware Acceleration for

Emulator Performance.

Start Visual Studio. Click File > New > ProjectFile > New > Project to create a new project.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/hello-android/hello-android-quickstart.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/phoneword
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/15-running-app.png#lightbox

 Create a layout

TIPTIP

In the New ProjectNew Project dialog, click the Android AppAndroid App template. Name the new project Phoneword and click OKOK:

In the New Android AppNew Android App dialog, click Blank AppBlank App and click OKOK to create the new project:

Newer releases of Visual Studio support opening .xml files inside the Android Designer.

Both .axml and .xml files are supported in the Android Designer.

After the new project is created, expand the ResourcesResources folder and then the layoutlayout folder in the SolutionSolution

ExplorerExplorer . Double-click activity_main.axmlactivity_main.axml to open it in the Android Designer. This is the layout file for the

app's screen:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/01-new-project-name-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/02-blank-app-w158.png#lightbox

TIPTIP
Newer releases of Visual Studio contain a slightly different app template.

1. Instead of activity_main.axmlactivity_main.axml, the layout is in content_main.axmlcontent_main.axml.

2. The default layout will be a RelativeLayout . For the rest of the steps on this page to work you should change the

<RelativeLayout> tag to <LinearLayout> and add another attribute android:orientation="vertical" to the

LinearLayout opening tag.

From the ToolboxToolbox (the area on the left), enter text into the search field and drag a Text (Large)Text (Large) widget onto

the design surface (the area in the center):

With the Text (Large)Text (Large) control selected on the design surface, use the Proper tiesProper ties pane to change the Text

property of the Text (Large)Text (Large) widget to Enter a Phoneword: :

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/03-open-layout-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/04-large-text-w158.png#lightbox

Drag a Plain TextPlain Text widget from the ToolboxToolbox to the design surface and place it underneath the Text (Large)Text (Large)

widget. Placement of the widget will not occur until you move the mouse pointer to a place in the layout that

can accept the widget. In the screenshots below, the widget cannot be placed (as seen on the left) until the

mouse pointer is moved just below the previous TextView (as shown on the right):

When the Plain TextPlain Text (an EditText widget) is placed correctly, it will appear as illustrated in the following

screenshot:

With the Plain TextPlain Text widget selected on the design surface, use the Proper tiesProper ties pane to change the Id property

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/05-enter-a-phoneword-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/06a-cant-drop-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/06b-plain-text-w158.png#lightbox

of the Plain TextPlain Text widget to @+id/PhoneNumberText and change the Text property to 1-855-XAMARIN :

Drag a ButtonButton from the ToolboxToolbox to the design surface and place it underneath the Plain TextPlain Text widget:

With the ButtonButton selected on the design surface, use the Proper tiesProper ties pane to change its Text property to

Translate and its Id property to @+id/TranslateButton :

Drag a TextViewTextView from the ToolboxToolbox to the design surface and place it under the ButtonButton widget. Change the

Text property of the TextViewTextView to an empty string and set its Id property to @+id/TranslatedPhoneword :

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/07-add-properties-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/08-drag-button-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/09-translate-button-w158.png#lightbox

 Write some code

Save your work by pressing CTRL+SCTRL+S .

The next step is to add some code to translate phone numbers from alphanumeric to numeric. Add a new file to

the project by right-clicking the PhonewordPhoneword project in the Solution ExplorerSolution Explorer pane and choosing Add > NewAdd > New

Item...Item... as shown below:

In the Add New ItemAdd New Item dialog, select Visual C# > Code > Code FileVisual C# > Code > Code File and name the new code file

PhoneTranslator.csPhoneTranslator.cs :

This creates a new empty C# class. Insert the following code into this file:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/10-textview-properties-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/12-add-new-item-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/14-add-class-w158.png#lightbox

using System.Text;
using System;
namespace Core
{
 public static class PhonewordTranslator
 {
 public static string ToNumber(string raw)
 {
 if (string.IsNullOrWhiteSpace(raw))
 return "";
 else
 raw = raw.ToUpperInvariant();

 var newNumber = new StringBuilder();
 foreach (var c in raw)
 {
 if (" -0123456789".Contains(c))
 {
 newNumber.Append(c);
 }
 else
 {
 var result = TranslateToNumber(c);
 if (result != null)
 newNumber.Append(result);
 }
 // otherwise we've skipped a non-numeric char
 }
 return newNumber.ToString();
 }
 static bool Contains (this string keyString, char c)
 {
 return keyString.IndexOf(c) >= 0;
 }
 static int? TranslateToNumber(char c)
 {
 if ("ABC".Contains(c))
 return 2;
 else if ("DEF".Contains(c))
 return 3;
 else if ("GHI".Contains(c))
 return 4;
 else if ("JKL".Contains(c))
 return 5;
 else if ("MNO".Contains(c))
 return 6;
 else if ("PQRS".Contains(c))
 return 7;
 else if ("TUV".Contains(c))
 return 8;
 else if ("WXYZ".Contains(c))
 return 9;
 return null;
 }
 }
}

 Wire up the user interface

Save the changes to the PhoneTranslator.csPhoneTranslator.cs file by clicking File > SaveFile > Save (or by pressing CTRL+SCTRL+S), then close

the file.

The next step is to add code to wire up the user interface by inserting backing code into the MainActivity class.

Begin by wiring up the TranslateTranslate button. In the MainActivity class, find the OnCreate method. The next step is

using Android.App;
using Android.OS;
using Android.Support.V7.App;
using Android.Runtime;
using Android.Widget;

namespace Phoneword
{
 [Activity(Label = "@string/app_name", Theme = "@style/AppTheme", MainLauncher = true)]
 public class MainActivity : AppCompatActivity
 {
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 // Set our view from the "main" layout resource
 SetContentView(Resource.Layout.activity_main);

 // New code will go here
 }
 }
}

// Get our UI controls from the loaded layout
EditText phoneNumberText = FindViewById<EditText>(Resource.Id.PhoneNumberText);
TextView translatedPhoneWord = FindViewById<TextView>(Resource.Id.TranslatedPhoneword);
Button translateButton = FindViewById<Button>(Resource.Id.TranslateButton);

// Add code to translate number
translateButton.Click += (sender, e) =>
{
 // Translate user's alphanumeric phone number to numeric
 string translatedNumber = Core.PhonewordTranslator.ToNumber(phoneNumberText.Text);
 if (string.IsNullOrWhiteSpace(translatedNumber))
 {
 translatedPhoneWord.Text = string.Empty;
 }
 else
 {
 translatedPhoneWord.Text = translatedNumber;
 }
};

to add the button code inside OnCreate , below the base.OnCreate(savedInstanceState) and

SetContentView(Resource.Layout.activity_main) calls. First, modify the template code so that the OnCreate

method resembles the following:

Get a reference to the controls that were created in the layout file via the Android Designer. Add the following

code inside the OnCreate method, after the call to SetContentView :

Add code that responds to user presses of the TranslateTranslate button. Add the following code to the OnCreate

method (after the lines added in the previous step):

Save your work by selecting File > Save AllFile > Save All (or by pressing CTRL-SHIFT-SCTRL-SHIFT-S) and build the application by

selecting Build > Rebuild SolutionBuild > Rebuild Solution (or by pressing CTRL-SHIFT-BCTRL-SHIFT-B).

If there are errors, go through the previous steps and correct any mistakes until the application builds

successfully. If you get a build error such as, Resource does not exist in the current context, verify that the

namespace name in MainActivity.csMainActivity.cs matches the project name (Phoneword) and then completely rebuild the

solution. If you still get build errors, verify that you have installed the latest Visual Studio updates.

 Set the app name

<resources>
 <string name="app_name">Phone Word</string>
 <string name="action_settings">Settings</string>
</resources>

 Run the app

You should now have a working application – it's time to set the name of the app. Expand the valuesvalues folder

(inside the ResourcesResources folder) and open the file str ings.xmlstr ings.xml . Change the app name string to Phone Word as

shown here:

Test the application by running it on an Android device or emulator. Tap the TRANSL ATETRANSL ATE button to translate 1-1-

855-XAMARIN855-XAMARIN into a phone number:

To run the app on an Android device, see how to set up your device for development.

Launch Visual Studio for Mac from the ApplicationsApplications folder or from SpotlightSpotlight.

Click New Project...New Project... to create a new project.

In the Choose a template for your new projectChoose a template for your new project dialog, click Android > AppAndroid > App and select the Android AppAndroid App

template. Click NextNext.

In the Configure your Android appConfigure your Android app dialog, name the new app Phoneword and click NextNext.

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/vs/15-running-app.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/03-choose-template.png#lightbox

 Create a layout

TIPTIP

In the Configure your new Android AppConfigure your new Android App dialog, leave the Solution and Project names set to Phoneword and

click CreateCreate to create the project.

Newer releases of Visual Studio support opening .xml files inside the Android Designer.

Both .axml and .xml files are supported in the Android Designer.

After the new project is created, expand the ResourcesResources folder and then the layoutlayout folder in the SolutionSolution pad.

Double-click Main.axmlMain.axml to open it in the Android Designer. This is the layout file for the screen when it is

viewed in the Android Designer :

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/04-configure-android-app.png#lightbox

Select the Hello World, Click Me!Hello World, Click Me! ButtonButton on the design surface and press the DeleteDelete key to remove it.

From the ToolboxToolbox (the area on the right), enter text into the search field and drag a Text (Large)Text (Large) widget onto

the design surface (the area in the center):

With the Text (Large)Text (Large) widget selected on the design surface, you can use the Proper tiesProper ties pad to change the

Text property of the Text (Large)Text (Large) widget to Enter a Phoneword: as shown below:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/05-open-layout.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/06-large-text.png#lightbox

Next, drag a Plain TextPlain Text widget from the ToolboxToolbox to the design surface and place it underneath the TextText

(Large)(Large) widget. Notice that you can use the search field to help locate widgets by name:

With the Plain TextPlain Text widget selected on the design surface, you can use the Proper tiesProper ties pad to change the Id

property of the Plain TextPlain Text widget to @+id/PhoneNumberText and change the Text property to 1-855-XAMARIN :

Drag a ButtonButton from the ToolboxToolbox to the design surface and place it underneath the Plain TextPlain Text widget:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/07-enter-a-phoneword.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/08-plain-text.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/09-add-properties.png#lightbox

 Write some code

With the ButtonButton selected on the design surface, you can use the Proper tiesProper ties pad to change the Id property of

the ButtonButton to @+id/TranslateButton and change the Text property to Translate :

Drag a TextViewTextView from the ToolboxToolbox to the design surface and place it under the ButtonButton widget. With the

TextViewTextView selected, set the id property of the TextViewTextView to @+id/TranslatedPhoneWord and change the text to

an empty string:

Save your work by pressing ⌘⌘ + S + S .

Now, add some code to translate phone numbers from alphanumeric to numeric. Add a new file to the project

by clicking the gear icon next to the PhonewordPhoneword project in the SolutionSolution pad and choosing Add > New File...Add > New File... :

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/10-drag-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/11-translate-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/12-textview-properties.png#lightbox

In the New FileNew File dialog, select General > Empty ClassGeneral > Empty Class , name the new file PhoneTranslatorPhoneTranslator , and click NewNew .

This creates a new empty C# class for us.

Remove all of the template code in the new class and replace it with the following code:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/14-add-new-file.png#lightbox

using System.Text;
using System;
namespace Core
{
 public static class PhonewordTranslator
 {
 public static string ToNumber(string raw)
 {
 if (string.IsNullOrWhiteSpace(raw))
 return "";
 else
 raw = raw.ToUpperInvariant();

 var newNumber = new StringBuilder();
 foreach (var c in raw)
 {
 if (" -0123456789".Contains(c))
 {
 newNumber.Append(c);
 }
 else
 {
 var result = TranslateToNumber(c);
 if (result != null)
 newNumber.Append(result);
 }
 // otherwise we've skipped a non-numeric char
 }
 return newNumber.ToString();
 }
 static bool Contains (this string keyString, char c)
 {
 return keyString.IndexOf(c) >= 0;
 }
 static int? TranslateToNumber(char c)
 {
 if ("ABC".Contains(c))
 return 2;
 else if ("DEF".Contains(c))
 return 3;
 else if ("GHI".Contains(c))
 return 4;
 else if ("JKL".Contains(c))
 return 5;
 else if ("MNO".Contains(c))
 return 6;
 else if ("PQRS".Contains(c))
 return 7;
 else if ("TUV".Contains(c))
 return 8;
 else if ("WXYZ".Contains(c))
 return 9;
 return null;
 }
 }
}

 Wire up the user interface

Save the changes to the PhoneTranslator.csPhoneTranslator.cs file by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S), then close

the file. Ensure that there are no compile-time errors by rebuilding the solution.

The next step is to add code to wire up the user interface by adding the backing code into the MainActivity

class. Double-click MainActivity.csMainActivity.cs in the Solution PadSolution Pad to open it.

using System;
using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;

namespace Phoneword
{
 [Activity (Label = "Phone Word", MainLauncher = true)]
 public class MainActivity : Activity
 {
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Set our view from the "main" layout resource
 SetContentView (Resource.Layout.Main);

 // Our code will go here
 }
 }
}

// Get our UI controls from the loaded layout
EditText phoneNumberText = FindViewById<EditText>(Resource.Id.PhoneNumberText);
TextView translatedPhoneWord = FindViewById<TextView>(Resource.Id.TranslatedPhoneWord);
Button translateButton = FindViewById<Button>(Resource.Id.TranslateButton);

// Add code to translate number
string translatedNumber = string.Empty;

translateButton.Click += (sender, e) =>
{
 // Translate user's alphanumeric phone number to numeric
 translatedNumber = PhonewordTranslator.ToNumber(phoneNumberText.Text);
 if (string.IsNullOrWhiteSpace(translatedNumber))
 {
 translatedPhoneWord.Text = string.Empty;
 }
 else
 {
 translatedPhoneWord.Text = translatedNumber;
 }
};

Begin by adding an event handler to the TranslateTranslate button. In the MainActivity class, find the OnCreate

method. Add the button code inside OnCreate , below the base.OnCreate(bundle) and

SetContentView (Resource.Layout.Main) calls. Remove any existing button handling code (i.e., code that

references Resource.Id.myButton and creates a click handler for it) so that the OnCreate method resembles the

following:

Next, a reference is needed to the controls that were created in the layout file with the Android Designer. Add the

following code inside the OnCreate method (after the call to SetContentView):

Add code that responds to user presses of the TranslateTranslate button by adding the following code to the OnCreate

method (after the lines added in the last step):

Save your work and build the application by selecting Build > Build AllBuild > Build All (or by pressing ⌘⌘ + B + B). If the

 Set the label and app icon

namespace Phoneword
{
 [Activity (Label = "Phone Word", MainLauncher = true)]
 public class MainActivity : Activity
 {
 ...
 }
}

application compiles, you will get a success message at the top of Visual Studio for Mac:

If there are errors, go through the previous steps and correct any mistakes until the application builds

successfully. If you get a build error such as, Resource does not exist in the current context, verify that the

namespace name in MainActivity.csMainActivity.cs matches the project name (Phoneword) and then completely rebuild the

solution. If you still get build errors, verify that you have installed the latest Xamarin.Android and Visual Studio

for Mac updates.

Now that you have a working application, it's time to add the finishing touches! Start by editing the Label for

MainActivity . The Label is what Android displays at the top of the screen to let users know where they are in

the application. At the top of the MainActivity class, change the Label to Phone Word as shown here:

Now it's time to set the application icon. By default, Visual Studio for Mac will provide a default icon for the

project. Delete these files from the solution, and replace them with a different icon. Expand the ResourcesResources

folder in the Solution PadSolution Pad. Notice that there are five folders that are prefixed with mipmap-mipmap-, and that each of

these folders contains a single Icon.pngIcon.png file:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/23-mipmap-folders.png#lightbox

It is necessary to delete each of these icon files from the project. Right click on each of Icon.pngIcon.png files, and select

RemoveRemove from the context menu:

Click on the DeleteDelete button in the dialog.

Next, download and unzip Xamarin App Icons set. This zip file holds the icons for the application. Each icon is

visually identical but at different resolutions it renders correctly on different devices with different screen

densities. The set of files must be copied into the Xamarin.Android project. In Visual Studio for Mac, in the

Solution PadSolution Pad, right-click the mipmap-hdpimipmap-hdpi folder and select Add > Add FilesAdd > Add Files :

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/23-delete-icon.png#lightbox
https://github.com/xamarin/monodroid-samples/blob/master/Phoneword/Resources/XamarinAndroidIcons.zip?raw=true

From the selection dialog, navigate to the unzipped Xamarin AdApp Icons directory and open the mipmap-mipmap-

hdpihdpi folder. Select Icon.pngIcon.png and click OpenOpen.

In the Add File to FolderAdd File to Folder dialog box, select Copy the file into the director yCopy the file into the director y and click OKOK:

Repeat these steps for each of the mipmap-mipmap- folders until the contents of the mipmap-mipmap- Xamarin App Icons

folders are copied to their counterpart mipmap-mipmap- folders in the PhonewordPhoneword project.

After all the icons are copied to the Xamarin.Android project, open the Project OptionsProject Options dialog by right clicking

on the project in the Solution PadSolution Pad. Select Build > Android ApplicationBuild > Android Application and select @mipmap/icon from the

Application iconApplication icon combo box:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/24-add-files.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/26-copy-to-directory.png#lightbox

 Run the app
Finally, test the application by running it on an Android device or emulator and translating a Phoneword:

To run the app on an Android device, see how to set up your device for development.

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/xs/28-set-project-icon.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-quickstart-images/intro-app-examples.png#lightbox

 Related links

Congratulations on completing your first Xamarin.Android application! Now it's time to dissect the tools and

skills you have just learned. Next up is the Hello, Android Deep Dive.

Xamarin Android App Icons (ZIP)

Phoneword (sample)

https://github.com/xamarin/monodroid-samples/blob/master/Phoneword/Resources/XamarinAndroidIcons.zip?raw=true
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/phoneword

Hello, Android: Deep Dive
 7/8/2021 • 17 minutes to read • Edit Online

 Introduction to Visual Studio

In this two-part guide, you'll build your first Xamarin.Android application and develop an understanding of the

fundamentals of Android application development with Xamarin. Along the way, you will be introduced to the

tools, concepts, and steps required to build and deploy a Xamarin.Android application.

In the Hello, Android Quickstart, you built and ran your first Xamarin.Android application. Now it's time to

develop a deeper understanding of how Android applications work so that you can build more sophisticated

programs. This guide reviews the steps that you took in the Hello, Android walkthrough so that you can

understand what you did and begin to develop a fundamental understanding of Android application

development.

This guide will touch upon the following topics:

Introduction to Visual StudioIntroduction to Visual Studio – Introduction to Visual Studio and creating a new Xamarin.Android

application.

Anatomy of a Xamarin.Android ApplicationAnatomy of a Xamarin.Android Application - Tour of the essential parts of a Xamarin.Android

application.

App Fundamentals and Architecture BasicsApp Fundamentals and Architecture Basics – Introduction to Activities, the Android Manifest, and

the general flavor of Android development.

User Interface (UI)User Interface (UI) – Creating user interfaces with the Android Designer.

Activities and the Activity L ifecycleActivities and the Activity L ifecycle – An introduction to the Activity Lifecycle and wiring up the user

interface in code.

Testing, Deployment, and Finishing TouchesTesting, Deployment, and Finishing Touches – Complete your application with advice on testing,

deployment, generating artwork, and more.

Introduction to Visual Studio for MacIntroduction to Visual Studio for Mac – Introduction to Visual Studio for Mac and creating a new

Xamarin.Android application.

Anatomy of a Xamarin.Android ApplicationAnatomy of a Xamarin.Android Application – Tour of the essential parts of a Xamarin.Android

application.

App Fundamentals and Architecture BasicsApp Fundamentals and Architecture Basics – Introduction to Activities, the Android Manifest, and

the general flavor of Android development.

User Interface (UI)User Interface (UI) – Creating user interfaces with the Android Designer.

Activities and the Activity L ifecycleActivities and the Activity L ifecycle – An introduction to the Activity Lifecycle and wiring up the user

interface in code.

Testing, Deployment, and Finishing TouchesTesting, Deployment, and Finishing Touches – Complete your application with advice on testing,

deployment, generating artwork, and more.

This guide helps you develop the skills and knowledge required to build a single-screen Android application.

After you work through it, you should understand the different parts of a Xamarin.Android application and how

they fit together.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/hello-android/hello-android-deepdive.md

 Introduction to Visual Studio for Mac

 Anatomy of a Xamarin.Android application

Visual Studio is a powerful IDE from Microsoft. It features a fully integrated visual designer, a text editor that

includes refactoring tools, an assembly browser, source code integration, and more. In this guide you'll learn to

use some basic Visual Studio features with the Xamarin plug-in.

Visual Studio organizes code into Solutions and Projects. A Solution is a container that can hold one or more

Projects. A Project can be an application (such as for iOS or Android), a supporting library, a test application, and

more. In the PhonewordPhoneword app, you added a new Android Project using the Android ApplicationAndroid Application template to

the PhonewordPhoneword Solution created in the Hello, Android guide.

Visual Studio for Mac is a free, open-source IDE similar to Visual Studio. It features a fully integrated visual

designer, a text editor complete with refactoring tools, an assembly browser, source code integration, and more.

In this guide, you'll learn to use some basic Visual Studio for Mac features. If you're new to Visual Studio for Mac,

you may want to check out the more in-depth Introduction to Visual Studio for Mac.

Visual Studio for Mac follows the Visual Studio practice of organizing code into Solutions and Projects. A

Solution is a container that can hold one or more Projects. A Project can be an application (such as for iOS or

Android), a supporting library, a test application, and more. In the PhonewordPhoneword app, you added a new Android

Project using the Android ApplicationAndroid Application template to the PhonewordPhoneword Solution created in the Hello, Android

guide.

The following screenshot lists the Solution's contents. This is the Solution Explorer, which contains the directory

structure and all of the files associated with the Solution:

The following screenshot lists the Solution's contents. This is the Solution Pad, which contains the directory

structure and all of the files associated with the Solution:

https://docs.microsoft.com/en-us/visualstudio/mac/
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/vs/02-solution-structure.png#lightbox

 ResourcesResources

A Solution called PhonewordPhoneword was created and the Android project PhonewordPhoneword was placed inside of it.

Look at the items inside the Project to see each folder and its purpose:

Proper tiesProper ties – Contains the AndroidManifest.xml file that describes all of the requirements for the

Xamarin.Android application, including name, version number, and permissions. The Proper tiesProper ties folder

also houses AssemblyInfo.cs, a .NET assembly metadata file. It is a good practice to fill this file with some

basic information about your application.

ReferencesReferences – Contains the assemblies required to build and run the application. If you expand the

References directory, you'll see references to .NET assemblies such as System, System.Core, and

System.Xml, as well as a reference to Xamarin's Mono.Android assembly.

AssetsAssets – Contains the files the application needs to run including fonts, local data files, and text files. Files

included here are accessible through the generated Assets class. For more information on Android

Assets, see the Xamarin Using Android Assets guide.

ResourcesResources – Contains application resources such as strings, images, and layouts. You can access these

resources in code through the generated Resource class. The Android Resources guide provides more

details about the ResourcesResources directory. The application template also includes a concise guide to

Resources in the AboutResources.txtAboutResources.txt file.

The ResourcesResources directory contains four folders named drawabledrawable, layoutlayout, mipmapmipmap and valuesvalues , as well as a file

named Resource.designer.csResource.designer.cs .

The items are summarized in the table below:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/02-solution-structure.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.applicationservices.assemblyinfo
https://docs.microsoft.com/en-us/dotnet/api/system
https://docs.microsoft.com/en-us/dotnet/api/system.xml

 App fundamentals and architecture basics

 Phoneword scenario - starting with an activityPhoneword scenario - starting with an activity

drawabledrawable – The drawable directories house drawable resources such as images and bitmaps.

mipmapmipmap – The mipmap directory holds drawable files for different launcher icon densities. In the default

template, the drawable directory houses the application icon file, Icon.pngIcon.png.

layoutlayout – The layout directory contains Android designer files (.axml) that define the user interface for each

screen or Activity. The template creates a default layout called activity_main.axmlactivity_main.axml .

layoutlayout – The layout directory contains Android designer files (.axml) that define the user interface for each

screen or Activity. The template creates a default layout called Main.axmlMain.axml .

valuesvalues – This directory houses XML files that store simple values such as strings, integers, and colors.

The template creates a file to store string values called Str ings.xmlStr ings.xml .

Resource.designer.csResource.designer.cs – Also known as the Resource class, this file is a partial class that holds the

unique IDs assigned to each resource. It is automatically created by the Xamarin.Android tools and is

regenerated as necessary. This file should not be manually edited, as Xamarin.Android will overwrite any

manual changes made to it.

Android applications do not have a single entry point; that is, there is no single line of code in the application

that the operating system calls to start the application. Instead, an application starts when Android instantiates

one of its classes, during which time Android loads the entire application's process into memory.

This unique feature of Android can be extremely useful when designing complicated applications or interacting

with the Android operating system. However, these options also make Android complex when dealing with a

basic scenario like the PhonewordPhoneword application. For this reason, exploration of Android architecture is split in

two. This guide dissects an application that uses the most common entry point for an Android app: the first

screen. In Hello, Android Multiscreen, the full complexities of Android architecture are explored as different ways

to launch an application are discussed.

When you open the PhonewordPhoneword application for the first time in an emulator or device, the operating system

creates the first Activity. An Activity is a special Android class that corresponds to a single application screen, and

it is responsible for drawing and powering the user interface. When Android creates an application's first

Activity, it loads the entire application:

https://developer.android.com/guide/topics/resources/drawable-resource.html

Since there is no linear progression through an Android application (you can launch the application from several

points), Android has a unique way of keeping track of what classes and files make up an application. In the

PhonewordPhoneword example, all the parts that make up the application are registered with a special XML file called the

Android ManifestAndroid Manifest. The role of the Android ManifestAndroid Manifest is to keep track of an application's contents, properties,

and permissions and to disclose them to the Android operating system. You can think of the PhonewordPhoneword

application as a single Activity (screen) and a collection of resource and helper files tied together by the Android

Manifest file, as illustrated by the diagram below:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/01-activity-load.png#lightbox

 User Interface

TIPTIP

The next few sections explore the relationships between the various parts of the PhonewordPhoneword application; this

should provide you with a better understanding of the diagram above. This exploration begins with the user

interface as it discusses the Android designer and layout files.

Newer releases of Visual Studio support opening .xml files inside the Android Designer.

Both .axml and .xml files are supported in the Android Designer.

activity_main.axmlactivity_main.axml is the user interface layout file for the first screen in the application. The .axml indicates

that this is an Android designer file (AXML stands for Android XML). The name Main is arbitrary from Android's

point of view – the layout file could have been named something else. When you open activity_main.axmlactivity_main.axml in

the IDE, it brings up the visual editor for Android layout files called the Android Designer:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/02-resources-helpers.png#lightbox

In the PhonewordPhoneword app, the TranslateButtonTranslateButton's ID is set to @+id/TranslateButton :

Main.axmlMain.axml is the user interface layout file for the first screen in the application. The .axml indicates that this is

an Android designer file (AXML stands for Android XML). The name Main is arbitrary from Android's point of

view – the layout file could have been named something else. When you open Main.axmlMain.axml in the IDE, it brings

up the visual editor for Android layout files called the Android Designer:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/vs/03-android-designer.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/vs/04-translatebutton.png#lightbox

 Source viewSource view

In the PhonewordPhoneword app, the TranslateButtonTranslateButton's ID is set to @+id/TranslateButton :

When you set the id property of the TranslateButtonTranslateButton, the Android Designer maps the TranslateButtonTranslateButton

control to the Resource class and assigns it a resource ID of TranslateButton . This mapping of visual control to

class makes it possible to locate and use the TranslateButtonTranslateButton and other controls in app code. This will be

covered in more detail when you break apart the code that powers the controls. All you need to know for now is

that the code representation of a control is linked to the visual representation of the control in the designer via

the id property.

Everything defined on the design surface is translated into XML for Xamarin.Android to use. The Android

Designer provides a source view that contains the XML that was generated from the visual designer. You can

view this XML by switching to the SourceSource panel in the lower left of the designer view, as illustrated by the

screenshot below:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/03-android-designer.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/04-translatebutton.png#lightbox

This XML source code should contain four control elements: Two TextViewTextView s, one EditTextEditText and one ButtonButton

element. For a more in-depth tour of the Android Designer, refer to the Xamarin Android Designer Overview

guide.

The tools and concepts behind the visual part of the user interface have now been covered. Next, it's time to

jump into the code that powers the user interface as Activities and the Activity Lifecycle are explored.

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/vs/05-source-view.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/05-source-view.png#lightbox

 Activities and the Activity Lifecycle

 Activity classActivity class

[Activity (Label = "Phone Word", MainLauncher = true)]
public class MainActivity : Activity
{
 ...
}

 Activity lifecycleActivity lifecycle

The Activity class contains the code that powers the user interface. The Activity is responsible for responding

to user interaction and creating a dynamic user experience. This section introduces the Activity class, discusses

the Activity Lifecycle, and dissects the code that powers the user interface in the PhonewordPhoneword application.

The PhonewordPhoneword application has only one screen (Activity). The class that powers the screen is called

MainActivity and lives in the MainActivity.csMainActivity.cs file. The name MainActivity has no special significance in

Android – although the convention is to name the first Activity in an application MainActivity , Android does not

care if it is named something else.

When you open MainActivity.csMainActivity.cs , you can see that the MainActivity class is a subclass of the Activity class,

and that the Activity is adorned with the Activity attribute:

The Activity Attribute registers the Activity with the Android Manifest; this lets Android know that this class is

part of the PhonewordPhoneword application managed by this manifest. The Label property sets the text that will be

displayed at the top of the screen.

The MainLauncher property tells Android to display this Activity when the application starts up. This property

becomes important as you add more Activities (screens) to the application as explained in the Hello, Android

Multiscreen guide.

Now that the basics of MainActivity have been covered, it's time to dive deeper into the Activity code by

introducing the Activity Lifecycle.

In Android, Activities go through different stages of a lifecycle depending on their interactions with the user.

Activities can be created, started and paused, resumed and destroyed, and so on. The Activity class contains

methods that the system calls at certain points in the screen's lifecycle. The following diagram illustrates a

typical life of an Activity as well as some of the corresponding lifecycle methods:

https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute

By overriding Activity lifecycle methods, you can control how the Activity loads, how it reacts to the user, and

even what happens after it disappears from the device screen. For example, you can override the lifecycle

methods in the diagram above to perform some important tasks:

OnCreateOnCreate – Creates views, initializes variables, and performs other prep work that must be done before

the user sees the Activity. This method is called only once when the Activity is loaded into memory.

OnResumeOnResume – Performs any tasks that must happen every time the Activity returns to the device screen.

OnPauseOnPause – Performs any tasks that must happen every time the Activity leaves the device screen.

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/04-lifecycle.png#lightbox

 OnCreateOnCreate

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // Set our view from the "main" layout resource
 SetContentView (Resource.Layout.Main);
 // Additional setup code will go here
}

SetContentView (Resource.Layout.activity_main);

SetContentView (Resource.Layout.Main);

EditText phoneNumberText = FindViewById<EditText>(Resource.Id.PhoneNumberText);
Button translateButton = FindViewById<Button>(Resource.Id.TranslateButton);
TextView translatedPhoneWord = FindViewById<TextView>(Resource.Id.TranslatedPhoneWord);

 Responding to user interactionResponding to user interaction

When you add custom code to a lifecycle method in the Activity , you override that lifecycle method's base

implementation. You tap into the existing lifecycle method (which has some code already attached to it), and you

extend that method with your own code. You call the base implementation from inside your method to ensure

that the original code runs before your new code. An example of this is illustrated in the next section.

The Activity Lifecycle is an important and complex part of Android. If you'd like to learn more about Activities

after you finish the Getting Started series, read the Activity Lifecycle guide. In this guide, the next focus is the first

stage of the Activity Lifecycle, OnCreate .

Android calls the Activity 's OnCreate method when it creates the Activity (before the screen is presented to

the user). You can override the OnCreate lifecycle method to create views and prepare your Activity to meet the

user :

In the PhonewordPhoneword app, the first thing to do in OnCreate is load the user interface created in the Android

Designer. To load the UI, call SetContentView and pass it the resource layout name for the layout file:

activ ity_main.axmlactivity_main.axml . The layout is located at Resource.Layout.activity_main :

When MainActivity starts up, it creates a view that is based on the contents of the activity_main.axmlactivity_main.axml file.

In the PhonewordPhoneword app, the first thing to do in OnCreate is load the user interface created in the Android

Designer. To load the UI, call SetContentView and pass it the resource layout name for the layout file: Main.axmlMain.axml .

The layout is located at Resource.Layout.Main :

When MainActivity starts up, it creates a view that is based on the contents of the Main.axmlMain.axml file. Note that

the layout file name is matched to the Activity name – Main.axml is the layout for MainActivity. This isn't

required from Android's point of view, but as you begin to add more screens to the application, you'll find that

this naming convention makes it easier to match the code file to the layout file.

After the layout file is prepared, you can start looking up controls. To look up a control, call FindViewById and

pass in the resource ID of the control:

Now that you have references to the controls in the layout file, you can start programming them to respond to

user interaction.

In Android, the Click event listens for the user's touch. In this app, the Click event is handled with a lambda,

translateButton.Click += (sender, e) =>
{
 // Translate user's alphanumeric phone number to numeric
 translatedNumber = PhonewordTranslator.ToNumber(phoneNumberText.Text);
 if (string.IsNullOrWhiteSpace(translatedNumber))
 {
 translatedPhoneWord.Text = string.Empty;
 }
 else
 {
 translatedPhoneWord.Text = translatedNumber;
 }
};

 Testing, deployment, and finishing touches

 Debugging toolsDebugging tools

 Deploy to a deviceDeploy to a device

but a delegate or a named event handler could be used instead. The final TranslateButtonTranslateButton code resembled the

following:

Both Visual Studio for Mac and Visual Studio provide many options for testing and deploying an application.

This section covers debugging options, demonstrates testing applications on a device, and introduces tools for

creating custom app icons for different screen densities.

Issues in application code can be difficult to diagnose. To help diagnose complex code issues, you can Set a

Breakpoint, Step Through Code, or Output Information to the Log Window.

The emulator is a good start for deploying and testing an application, but users will not consume the final app in

an emulator. It's a good practice to test applications on a real device early and often.

Before an Android device can be used for testing applications, it needs to be configured for development. The

Set Up Device for Development guide provides thorough instructions on getting a device ready for

development.

After the device is configured, you can deploy to it by plugging it in, selecting it from the Select DeviceSelect Device dialog,

and starting the application:

After the device is configured, you can deploy to it by plugging it in, pressing Star t (Play)Star t (Play) , selecting it from the

https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging/set_a_breakpoint
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging/step_through_code
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging/output_information_to_log_window

 Set icons for different screen densitiesSet icons for different screen densities

Select DeviceSelect Device dialog, and pressing OKOK:

This launches the application on the device:

Android devices come in different screen sizes and resolutions, and not all images look good on all screens. For

example, here is a screenshot of a low-density icon on a high-density Nexus 5. Notice how blurry it is compared

to the surrounding icons:

To account for this, it is good practice to add icons of different resolutions to the ResourcesResources folder. Android

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/06-select-device.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/05-enter-phoneword.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/06-blurry-icon.png#lightbox

provides different versions of the mipmapmipmap folder to handle launcher icons of different densities, mdpi for

medium, hdpi for high, and xhdpi, xxhdpi, xxxhdpi for very high density screens. Icons of varying sizes are stored

in the appropriate mipmap-mipmap- folders:

 Generate custom iconsGenerate custom icons

Android will pick the icon with the appropriate density:

Not everyone has a designer available to create the custom icons and launch images that an app needs to stand

out. Here are several alternate approaches to generating custom app artwork:

Android Asset Studio – A web-based, in-browser generator for all types of Android icons, with links to

other useful community tools. It works best in Google Chrome.

Visual Studio – You can use this to create a simple icon set for your app directly in the IDE.

Fiverr – Choose from a variety of designers to create an icon set for you, starting at $5. Can be hit or miss

but a good resource if you need icons designed on the fly.

Android Asset Studio – A web-based, in-browser generator for all types of Android icons, with links to

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/07-mipmap-folders.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/07-appropriate-density.png#lightbox
https://romannurik.github.io/AndroidAssetStudio/index.html
https://www.fiverr.com/
https://romannurik.github.io/AndroidAssetStudio/index.html

 Adding Google Play Services packagesAdding Google Play Services packages

other useful community tools. It works best in Google Chrome.

Pixelmator – A versatile image editing app for Mac that costs about $30.

Fiverr – Choose from a variety of designers to create an icon set for you, starting at $5. Can be hit or miss

but a good resource if you need icons designed on the fly.

For more information about icon sizes and requirements, refer to the Android Resources guide.

Google Play Services is a set of add-on libraries that allows Android developers to take advantage of the most

recent features from Google such as Google Maps, Google Cloud Messaging, and in-app billing. Previously,

bindings to all Google Play Services libraries were provided by Xamarin in the form of a single package –

beginning with Visual Studio for Mac, a new project dialog is available for selecting which Google Play Services

packages to include in your app.

To add one or more Google Play Service libraries, right-click the PackagesPackages node in your project tree and click

Add Google Play Ser vice...Add Google Play Ser vice... :

When the Add Google Play Ser vicesAdd Google Play Ser vices dialog is presented, select the packages (nugets) that you want to add to

your project:

https://www.pixelmator.com/
https://www.fiverr.com/
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/08-add-google-play-services.png#lightbox

 Summary

When you select a service and click Add PackageAdd Package, Visual Studio for Mac downloads and installs the package

you select as well as any dependent Google Play Services packages that it requires. In some cases, you may see

a L icense AcceptanceLicense Acceptance dialog that requires you to click AcceptAccept before the packages are installed:

Congratulations! You should now have a solid understanding of the components of a Xamarin.Android

application as well as the tools required to create it.

In the next tutorial of the Getting Started series, you will extend your application to handle multiple screens as

you explore more advanced Android architecture and concepts.

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/09-add-dialog.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android/hello-android-deepdive-images/xs/10-license-acceptance.png#lightbox

Hello, Android Multiscreen
 11/2/2020 • 2 minutes to read • Edit Online

 Part 1: Quickstart

 Part 2: Deep Dive

 Related Links

In this two-part guide, you expand the Phoneword application that you created in the Hello, Android guide to

handle a second screen. Along the way, this guide will introduce the basic Android Application Building Blocks

and dive deeper into Android architecture as you develop a better understanding of Android application

structure and functionality.

In the first part of this guide, you'll add a second screen to the Phoneword application to keep track of the

history of numbers called from the app. The final app will display a second screen that lists the call history.

In the second part of this document, you will review what you've built and discusses architecture, navigation,

and other new Android concepts that are encountered along the way.

Android Getting Started

Debugging in Visual Studio

Visual Studio for Mac Recipes - Debugging

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/hello-android-multiscreen/index.md
https://developer.android.com/training/index.html
https://docs.microsoft.com/en-us/visualstudio/debugger/
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging

Hello, Android Multiscreen: Quickstart
 7/8/2021 • 6 minutes to read • Edit Online

 Requirements

This two-part guide expands the Phoneword application to handle a second screen. Along the way, basic

Android Application Building Blocks are introduced with a deeper dive into Android architecture.

In the walkthrough portion of this guide, you'll add a second screen to the Phoneword application to keep track

of the history of numbers translated using the app. The final application will have a second screen that displays

the numbers that were "translated", as illustrated by the screenshot on the right:

The accompanying Deep Dive reviews what was built and discusses architecture, navigation, and other new

Android concepts encountered along the way.

Because this guide picks up where Hello, Android leaves off, it requires completion of the Hello, Android

Quickstart. If you would like to jump directly into the walkthrough below, you can download the completed

version of Phoneword (from the Hello, Android Quickstart) and use it to start the walkthrough.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/phoneword
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/phonewordmultiscreen
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/screenshot.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/phoneword

Walkthrough

TIPTIP

 Updating the layoutUpdating the layout

In this walkthrough you'll add a Translation Histor yTranslation Histor y screen to the PhonewordPhoneword application.

Start by opening the PhonewordPhoneword application in Visual Studio and editing the Main.axmlMain.axml file from the

Solution ExplorerSolution Explorer .

Newer releases of Visual Studio support opening .xml files inside the Android Designer.

Both .axml and .xml files are supported in the Android Designer.

From the ToolboxToolbox, drag a ButtonButton onto the design surface and place it below the TranslatedPhoneWordTranslatedPhoneWord

TextView. In the Proper tiesProper ties pane, change the button IdId to @+id/TranslationHistoryButton

Set the TextText property of the button to @string/translationHistory . The Android Designer will interpret this

literally, but you're going to make a few changes so that the button's text shows up correctly:

Expand the valuesvalues node under the ResourcesResources folder in the Solution ExplorerSolution Explorer and double-click the string

resources file, Str ings.xmlStr ings.xml :

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/vs/02-new-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/vs/03-translation-history-string.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="translationHistory">Translation History</string>
 <string name="ApplicationName">Phoneword</string>
</resources>

Add the translationHistory string name and value to the Str ings.xmlStr ings.xml file and save it:

The Translation Histor yTranslation Histor y button text should update to reflect the new string value:

With the Translation Histor yTranslation Histor y button selected on the design surface, find the enabled setting in the

Proper tiesProper ties pane and set its value to false to disable the button. This will cause the button to become darker

on the design surface:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/vs/04-strings-resources-file.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/vs/05-new-string-value.png#lightbox

 Creating the second activityCreating the second activity

using System;
using System.Collections.Generic;
using Android.App;
using Android.OS;
using Android.Widget;
namespace Phoneword
{
 [Activity(Label = "@string/translationHistory")]
 public class TranslationHistoryActivity : ListActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 // Create your application here
 var phoneNumbers = Intent.Extras.GetStringArrayList("phone_numbers") ?? new string[0];
 this.ListAdapter = new ArrayAdapter<string>(this, Android.Resource.Layout.SimpleListItem1,
phoneNumbers);
 }
 }
}

Create a second Activity to power the second screen. In the Solution ExplorerSolution Explorer , right-click the PhonewordPhoneword

project and choose Add > New Item...Add > New Item...:

In the Add New ItemAdd New Item dialog, choose Visual C# > ActivityVisual C# > Activity and name the Activity file

TranslationHistor yActivity.csTranslationHistor yActivity.cs .

Replace the template code in TranslationHistor yActivity.csTranslationHistor yActivity.cs with the following:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/vs/06-enabled-false.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/vs/07-add-new-file.png#lightbox

 Adding a listAdding a list

using System.Collections.Generic;
using Android.Content;

[Activity(Label = "Phoneword", MainLauncher = true)]
public class MainActivity : Activity
{
 static readonly List<string> phoneNumbers = new List<string>();
 ...// OnCreate, etc.
}

Button translationHistoryButton = FindViewById<Button> (Resource.Id.TranslationHistoryButton);

translationHistoryButton.Click += (sender, e) =>
{
 var intent = new Intent(this, typeof(TranslationHistoryActivity));
 intent.PutStringArrayListExtra("phone_numbers", phoneNumbers);
 StartActivity(intent);
};

// Add code to translate number
string translatedNumber = string.Empty;
translateButton.Click += (sender, e) =>
{
 // Translate user's alphanumeric phone number to numeric
 translatedNumber = Core.PhonewordTranslator.ToNumber(phoneNumberText.Text);
 if (string.IsNullOrWhiteSpace(translatedNumber))
 {
 translatedPhoneWord.Text = "";
 }
 else
 {
 translatedPhoneWord.Text = translatedNumber;
 phoneNumbers.Add(translatedNumber);
 translationHistoryButton.Enabled = true;
 }
};

In this class, you're creating a ListActivity and populating it programmatically, so you don't need to create a

new layout file for this Activity. This is discussed in more detail in the Hello, Android Multiscreen Deep Dive.

This app collects phone numbers (that the user has translated on the first screen) and passes them to the second

screen. The phone numbers are stored as a list of strings. To support lists (and Intents, which are used later), add

the following using directives to the top of MainActivity.csMainActivity.cs :

Next, create an empty list that can be filled with phone numbers. The MainActivity class will look like this:

In the MainActivity class, add the following code to register the Translation Histor yTranslation Histor y button (place this line

after the translateButton declaration):

Add the following code to the end of the OnCreate method to wire up the Translation Histor yTranslation Histor y button:

Update the TranslateTranslate button to add the phone number to the list of phoneNumbers . The Click handler for the

translateButton should resemble the following code:

Save and build the application to make sure there are no errors.

 Running the appRunning the app

TIPTIP

 Updating the layoutUpdating the layout

Deploy the application to an emulator or device. The following screenshots illustrate the running PhonewordPhoneword

application:

Start by opening the PhonewordPhoneword project in Visual Studio for Mac and editing the Main.axmlMain.axml file from the

Solution PadSolution Pad.

Newer releases of Visual Studio support opening .xml files inside the Android Designer.

Both .axml and .xml files are supported in the Android Designer.

From the ToolboxToolbox, drag a ButtonButton onto the design surface and place it below the TranslatedPhoneWordTranslatedPhoneWord

TextView. In the Proper tiesProper ties pad, change the button IdId to @+id/TranslationHistoryButton :

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/screenshot.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="translationHistory">Translation History</string>
 <string name="ApplicationName">Phoneword</string>
</resources>

Set the TextText property of the button to @string/translationHistory . The Android Designer will interpret this

literally, but you're going to make a few changes so that the button's text shows up correctly:

Expand the valuesvalues node under the ResourcesResources folder in the Solution PadSolution Pad and double-click the string resources

file, Str ings.xmlStr ings.xml :

Add the translationHistory string name and value to the Str ings.xmlStr ings.xml file and save it:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/xs/02-new-button.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/xs/03-call-history-string.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/xs/04-strings-resources-file.png#lightbox

 Creating the second activityCreating the second activity

The Translation Histor yTranslation Histor y button text should update to reflect the new string value:

With the Translation Histor yTranslation Histor y button selected on the design surface, open the BehaviorBehavior tab in the Proper tiesProper ties

PadPad and double-click the EnabledEnabled checkbox to disable the button. This will cause the button to become darker

on the design surface:

Create a second Activity to power the second screen. In the Solution PadSolution Pad, click the gray gear icon next to the

PhonewordPhoneword project and choose Add > New File...Add > New File... :

From the New FileNew File dialog, choose Android > ActivityAndroid > Activity , name the Activity TranslationHistoryActivity , then

click AddAdd.

Replace the template code in TranslationHistoryActivity with the following:

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/xs/05-new-string-value.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/xs/06-enabled-false.png#lightbox

using System;
using System.Collections.Generic;
using Android.App;
using Android.OS;
using Android.Widget;
namespace Phoneword
{
 [Activity(Label = "@string/translationHistory")]
 public class TranslationHistoryActivity : ListActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 // Create your application here
 var phoneNumbers = Intent.Extras.GetStringArrayList("phone_numbers") ?? new string[0];
 this.ListAdapter = new ArrayAdapter<string>(this, Android.Resource.Layout.SimpleListItem1,
phoneNumbers);
 }
 }
}

 Adding a listAdding a list

using System.Collections.Generic;
using Android.Content;

[Activity(Label = "Phoneword", MainLauncher = true)]
public class MainActivity : Activity
{
 static readonly List<string> phoneNumbers = new List<string>();
 ...// OnCreate, etc.
}

Button translationHistoryButton = FindViewById<Button> (Resource.Id.TranslationHistoryButton);

translationHistoryButton.Click += (sender, e) =>
{
 var intent = new Intent(this, typeof(TranslationHistoryActivity));
 intent.PutStringArrayListExtra("phone_numbers", phoneNumbers);
 StartActivity(intent);
};

In this class, a ListActivity is created and populated programmatically, so you don't have to create a new

layout file for this Activity. This is explained in more detail in the Hello, Android Multiscreen Deep Dive.

This app collects phone numbers (that the user has translated on the first screen) and passes them to the second

screen. The phone numbers are stored as a list of strings. To support lists (and Intents, which are used later), add

the following using directives to the top of MainActivity.csMainActivity.cs :

Next, create an empty list that can be filled with phone numbers. The MainActivity class will look like this:

In the MainActivity class, add the following code to register the TranslationHistor y Histor yTranslationHistor y Histor y button (place

this line after the TranslationHistoryButton declaration):

Add the following code to the end of the OnCreate method to wire up the Translation Histor yTranslation Histor y button:

Update the TranslateTranslate button to add the phone number to the list of phoneNumbers . The Click handler for the

TranslateHistoryButton should resemble the following code:

translateButton.Click += (sender, e) =>
{
 // Translate user's alphanumeric phone number to numeric
 translatedNumber = Core.PhonewordTranslator.ToNumber(phoneNumberText.Text);
 if (string.IsNullOrWhiteSpace(translatedNumber))
 {
 translatedPhoneWord.Text = "";
 }
 else
 {
 translatedPhoneWord.Text = translatedNumber;
 phoneNumbers.Add(translatedNumber);
 translationHistoryButton.Enabled = true;
 }
};

 Running the appRunning the app

 Related links

Deploy the application to an emulator or device. The following screenshots illustrate the running PhonewordPhoneword

application:

Congratulations on completing your first multi-screen Xamarin.Android application! Now it's time to dissect the

tools and skills you just learned – next up is the Hello, Android Multiscreen Deep Dive.

file:///T:/c1uy/n1bv/xamarin/android/get-started/hello-android-multiscreen/hello-android-multiscreen-quickstart-images/screenshot.png#lightbox

Xamarin App Icons & Launch Screens (ZIP)

Phoneword (sample)

PhonewordMultiscreen (sample)

https://github.com/xamarin/monodroid-samples/blob/master/Phoneword/Resources/XamarinAndroidIcons.zip?raw=true
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/phoneword
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/phonewordmultiscreen

Hello, Android Multiscreen: Deep Dive
 10/28/2019 • 6 minutes to read • Edit Online

 Android architecture basics

 Android application building blocksAndroid application building blocks

 IntentsIntents

In this two-part guide, the basic Phoneword application (created in the Hello, Android guide) is expanded to

handle a second screen. Along the way, the basic Android application building blocks are introduced. A deeper

dive into Android architecture is included to help you develop a better understanding of Android application

structure and functionality.

In the Hello, Android Multiscreen Quickstart, you built and ran your first multi-screen Xamarin.Android

application.

In this guide you will explore more advanced Android architecture. Android navigation with Intents is explained,

and Android hardware navigation options are explored. New additions to the Phoneword app are dissected as

you develop a more holistic view of the application's relationship with the operating system and other

applications.

In the Hello, Android Deep Dive, you learned that Android applications are unique programs because they lack a

single entry point. Instead, the operating system (or another application) starts any one of the application's

registered Activities, which in turn starts the process for the application. This deep dive into Android architecture

expands your understanding of how Android applications are constructed by introducing the Android

Application Building Blocks and their functions.

An Android application consists of a collection of special Android classes called Application Blocks bundled

together with any number of app resources - images, themes, helper classes, etc. – these are coordinated by an

XML file called the Android Manifest.

Application Blocks form the backbone of Android applications because they allow you to do things you couldn't

normally accomplish with a regular class. The two most important ones are Activities and Services:

ActivityActivity – An Activity corresponds to a screen with a user interface, and it is conceptually similar to a web

page in a web application. For example, in a newsfeed application, the login screen would be the first

Activity, the scrollable list of news items would be another Activity, and the details page for each item

would be a third. You can learn more about Activities in the Activity Lifecycle guide.

Ser viceSer vice – Android Services support Activities by taking over long-running tasks and running them in the

background. Services don't have a user interface and are used to handle tasks that aren't tied to screens –

for example, playing a song in the background or uploading photos to a server. For more information

about Services, see the Creating Services and Android Services guides.

An Android application may not use all types of Blocks, and often has several Blocks of one type. For example,

the Phoneword application from the Hello, Android Quickstart was composed of just one Activity (screen) and

some resource files. A simple music player app might have several Activities and a Service for playing music

when the app is in the background.

Another fundamental concept in Android applications is the Intent. Android is designed around the principle of

least privilege – applications have access only to the Blocks they require to work, and they have limited access to

the Blocks that make up the operating system or other applications. Similarly, Blocks are loosely-coupled – they

are designed to have little knowledge of and limited access to other Blocks (even blocks that are part of the

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/hello-android-multiscreen/hello-android-multiscreen-deepdive.md

 AndroidManifest.XMLAndroidManifest.XML

 Android navigation

 Launching a second activity with an intentLaunching a second activity with an intent

Intent intent = new Intent(this, typeof(TranslationHistoryActivity));

translationHistoryButton.Click += (sender, e) =>
{
 var intent = new Intent(this, typeof(TranslationHistoryActivity));
 intent.PutStringArrayListExtra("phone_numbers", _phoneNumbers);
 StartActivity(intent);
};

 Additional concepts introduced in phoneword

same application).

To communicate, Application Blocks send asynchronous messages called Intents back and forth. Intents contain

information about the receiving Block and sometimes some data. An Intent sent from one App component

triggers something to happen in another App component, binding the two App components and allowing them

to communicate. By sending Intents back and forth, you can get Blocks to coordinate complex actions such as

launching the camera app to take and save, gathering location information, or navigating from one screen to the

next.

When you add a Block to the application, it is registered with a special XML file called the Android ManifestAndroid Manifest.

The Manifest keeps track of all Application Blocks in an application, as well as version requirements,

permissions, and linked libraries – everything that the operating system needs to know for your application to

run. The Android ManifestAndroid Manifest also works with Activities and Intents to control what actions are appropriate for a

given Activity. These advanced features of the Android Manifest are covered in the Working with the Android

Manifest guide.

In the single-screen version of the Phoneword application, only one Activity, one Intent, and the

AndroidManifest.xml were used, alongside additional resources like icons. In the multi-screen version of

Phoneword, an additional Activity was added; it was launched from the first Activity using an Intent. The next

section explores how Intents help to create navigation in Android applications.

Intents were used to navigate between screens. It's time to dive into this code to see how Intents work and

understand their role in Android navigation.

In the Phoneword application, an Intent was used to launch a second screen (Activity). Start by creating an Intent,

passing in the current Context (this , referring to the current ContextContext) and the type of Application Block that

you're looking for (TranslationHistoryActivity):

The ContextContext is an interface to global information about the application environment – it lets newly-created

objects know what's going on with the application. If you think of an Intent as a message, you are providing the

name of the message recipient (TranslationHistoryActivity) and the receiver's address (Context).

Android provides an option to attach simple data to an Intent (complex data is handled differently). In the

Phoneword example, PutStringArrayExtra is used to attach a list of phone numbers to the Intent and

StartActivity is called on the recipient of the Intent. The completed code looks like this:

The Phoneword application introduced several concepts not covered in this guide. These concepts include:

Str ing ResourcesStr ing Resources – In the Phoneword application, the text of the TranslationHistoryButton was set to

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="translationHistory">Call History</string>
</resources>

this.ListAdapter = new ArrayAdapter<string>(this, Android.Resource.Layout.SimpleListItem1, phoneNumbers);

 Summary

"@string/translationHistory" . The @string syntax means that the string's value is stored in the string

resources file, Str ings.xmlStr ings.xml . The following value for the translationHistory string was added to Str ings.xmlStr ings.xml :

For more information on string resources and other Android resources, refer to the Android Resources guide.

L istView and ArrayAdapterL istView and ArrayAdapter – A ListView is a UI component that provides a simple way to present a scrolling

list of rows. A ListView instance requires an Adapter to feed it with data contained in row views. The following

line of code was used to populate the user interface of TranslationHistoryActivity :

ListViews and Adapters are beyond the scope of this document, but they are covered in the very comprehensive

ListViews and Adapters guide. Populating a ListView With Data deals specifically with using built-in

ListActivity and ArrayAdapter classes to create and populate a ListView without defining a custom layout, as

was done in the Phoneword example.

Congratulations, you've completed your first multi-screen Android application! This guide introduced Android

Application Building Blocks and Intents and used them to build a multi-screened Android application. You now

have the solid foundation you need to start developing your own Xamarin.Android applications.

Next, you'll learn to build cross-platform applications with Xamarin in the Building Cross-Platform Applications

guides.

https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/index

Xamarin for Java developers
 11/2/2020 • 24 minutes to read • Edit Online

 Overview

If you are a Java developer, you are well on your way to leveraging your skills and existing code on the Xamarin

platform while reaping the code reuse benefits of C#. You will find that C# syntax is very similar to Java syntax,

and that both languages provide very similar features. In addition, you'll discover features unique to C# that will

make your development life easier.

This article provides an introduction to C# programming for Java developers, focusing primarily on the C#

language features that you will encounter while developing Xamarin.Android applications. Also, this article

explains how these features differ from their Java counterparts, and it introduces important C# features

(relevant to Xamarin.Android) that are not available in Java. Links to additional reference material are included,

so you can use this article as a "jumping off" point for further study of C# and .NET.

If you are familiar with Java, you will feel instantly at home with the syntax of C#. C# syntax is very similar to

Java syntax – C# is a "curly brace" language like Java, C, and C++. In many ways, C# syntax reads like a superset

of Java syntax, but with a few renamed and added keywords.

Many key characteristics of Java can be found in C#:

Class-based object-oriented programming

Strong typing

Support for interfaces

Generics

Garbage collection

Runtime compilation

Both Java and C# are compiled to an intermediate language that is run in a managed execution environment.

Both C# and Java are statically-typed, and both languages treat strings as immutable types. Both languages use

a single-rooted class hierarchy. Like Java, C# supports only single inheritance and does not allow for global

methods. In both languages, objects are created on the heap using the new keyword, and objects are garbage-

collected when they are no longer used. Both languages provide formal exception handling support with try /

catch semantics. Both provide thread management and synchronization support.

However, there are many differences between Java and C#. For example:

Java (as used on Android) does not support implicitly-typed local variables (C# supports the var

keyword).

In Java, you can pass parameters only by value, while in C# you can pass by reference as well as by value.

(C# provides the ref and out keywords for passing parameters by reference; there is no equivalent to

these in Java).

Java does not support preprocessor directives like #define .

Java does not support unsigned integer types, while C# provides unsigned integer types such as ulong ,

uint , ushort and byte .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/java-developers.md

NOTENOTE

 Going from Java to C# development

Java does not support operator overloading; in C# you can overload operators and conversions.

In a Java switch statement, code can fall through into the next switch section, but in C# the end of every

switch section must terminate the switch (the end of each section must close with a break statement).

In Java, you specify the exceptions thrown by a method with the throws keyword, but C# has no concept

of checked exceptions – the throws keyword is not supported in C#.

C# supports Language-Integrated Query (LINQ), which lets you use the reserved words from , select ,

and where to write queries against collections in a way that is similar to database queries.

Of course, there are many more differences between C# and Java than can be covered in this article. Also, both

Java and C# continue to evolve (for example, Java 8, which is not yet in the Android toolchain, supports C#-style

lambda expressions) so these differences will change over time. Only the most important differences currently

encountered by Java developers new to Xamarin.Android are outlined here.

Going from Java to C# Development provides an introduction to the fundamental differences between C#

and Java.

Object-Oriented Programming Features outlines the most important object-oriented feature differences

between the two languages.

Keyword Differences provides a table of useful keyword equivalents, C#-only keywords, and links to C#

keyword definitions.

C# brings many key features to Xamarin.Android that are not currently readily available to Java developers on

Android. These features can help you to write better code in less time:

Properties – With C#'s property system, you can access member variables safely and directly without

having to write setter and getter methods.

Lambda Expressions – In C# you can use anonymous methods (also called lambdas) to express your

functionality more succinctly and more efficiently. You can avoid the overhead of having to write one-

time-use objects, and you can pass local state to a method without having to add parameters.

Event Handling – C# provides language-level support for event-driven programming, where an object

can register to be notified when an event of interest occurs. The event keyword defines a multicast

broadcast mechanism that a publisher class can use to notify event subscribers.

Asynchronous Programming – The asynchronous programming features of C# (async / await) keep

apps responsive. The language-level support of this feature makes async programming easy to

implement and less error-prone.

Finally, Xamarin allows you to leverage existing Java assets via a technology known as binding. You can call your

existing Java code, frameworks, and libraries from C# by making use of Xamarin's automatic binding generators.

To do this, you simply create a static library in Java and expose it to C# via a binding.

Android programming uses a specific version of the Java language that supports all Java 7 features and a subset of Java

8.

Some features mentioned on this page (such as the var keyword in C#) are available in newer versions of Java (e.g.

var in Java 10), but are still not available to Android developers.

https://developer.android.com/studio/write/java8-support.html
https://developer.oracle.com/java/jdk-10-local-variable-type-inference.html

 Libraries vs. assembliesLibraries vs. assemblies

 Packages vs. namespacesPackages vs. namespaces

namespace WeatherApp
{
 ...

 Importing typesImporting types

import javax.swing.JButton

import javax.swing.*

using System;
using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using System.Net;
using System.IO;
using System.Json;
using System.Threading.Tasks;

 GenericsGenerics

The following sections outline the basic "getting started" differences between C# and Java; a later section

describes the object-oriented differences between these languages.

Java typically packages related classes in .jar.jar files. In C# and .NET, however, reusable bits of precompiled code

are packaged into assemblies, which are typically packaged as .dll files. An assembly is a unit of deployment for

C#/.NET code, and each assembly is typically associated with a C# project. Assemblies contain intermediate code

(IL) that is just-in-time compiled at runtime.

For more information about assemblies, see the Assemblies and the Global Assembly Cache topic.

C# uses the namespace keyword to group related types together ; this is similar to Java's package keyword.

Typically, a Xamarin.Android app will reside in a namespace created for that app. For example, the following C#

code declares the WeatherApp namespace wrapper for a weather-reporting app:

When you make use of types defined in external namespaces, you import these types with a using statement

(which is very similar to the Java import statement). In Java, you might import a single type with a statement

like the following:

You might import an entire Java package with a statement like this:

The C# using statement works in a very similar way, but it allows you to import an entire package without

specifying a wildcard. For example, you will often see a series of using statements at the beginning of

Xamarin.Android source files, as seen in this example:

These statements import functionality from the System , Android.App , Android.Content , etc. namespaces.

Both Java and C# support generics, which are placeholders that let you plug in different types at compile time.

However, generics work slightly differently in C#. In Java, type erasure makes type information available only at

compile time, but not at run time. By contrast, the .NET common language runtime (CLR) provides explicit

support for generic types, which means that C# has access to type information at runtime. In day-to-day

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/assemblies-gac/
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html

TextView label = FindViewById<TextView> (Resource.Id.Label);

 Object-oriented programming features

 Class inheritanceClass inheritance

Xamarin.Android development, the importance of this distinction is not often apparent, but if you are using

reflection, you will depend on this feature to access type information at run time.

In Xamarin.Android, you will often see the generic method FindViewById used to get a reference to a layout

control. This method accepts a generic type parameter that specifies the type of control to look up. For example:

In this code example, FindViewById gets a reference to the TextView control that is defined in the layout as

LabelLabel , then returns it as a TextView type.

For more information about generics, see the Generics topic. Note that there are some limitations in

Xamarin.Android support for generic C# classes; for more information, see Limitations.

Both Java and C# use very similar object-oriented programming idioms:

All classes are ultimately derived from a single root object – all Java objects derive from

java.lang.Object , while all C# objects derive from System.Object .

Instances of classes are reference types.

When you access the properties and methods of an instance, you use the " . " operator.

All class instances are created on the heap via the new operator.

Because both languages use garbage collection, there is no way to explicitly release unused objects (i.e.,

there is not a delete keyword as there is in C++).

You can extend classes through inheritance, and both languages only allow a single base class per type.

You can define interfaces, and a class can inherit from (i.e., implement) multiple interface definitions.

However, there are also some important differences:

Java has two powerful features that C# does not support: anonymous classes and inner classes.

(However, C# does allow nesting of class definitions – C#'s nested classes are like Java's static nested

classes.)

C# supports C-style structure types (struct) while Java does not.

In C#, you can implement a class definition in separate source files by using the partial keyword.

C# interfaces cannot declare fields.

C# uses C++-style destructor syntax to express finalizers. The syntax is different from Java's finalize

method, but the semantics are nearly the same. (Note that in C#, destructors automatically call the base-

class destructor – in contrast to Java where an explicit call to super.finalize is used.)

To extend a class in Java, you use the extends keyword. To extend a class in C#, you use a colon (:) to indicate

derivation. For example, in Xamarin.Android apps, you will often see class derivations that resemble the

following code fragment:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/index

public class MainActivity : Activity
{
 ...

public class SensorsActivity : Activity, ISensorEventListener
{
 ...

 PropertiesProperties

int width = rulerView.MeasuredWidth;
int height = rulerView.MeasuredHeight;
...
rulerView.DrawingCacheEnabled = true;

In this example, MainActivity inherits from the Activity class.

To declare support for an interface in Java, you use the implements keyword. However, in C#, you simply add

interface names to the list of classes to inherit from, as shown in this code fragment:

In this example, SensorsActivity inherits from Activity and implements the functionality declared in the

ISensorEventListener interface. Note that the list of interfaces must come after the base class (or you will get a

compile-time error). By convention, C# interface names are prepended with an upper-case "I"; this makes it

possible to determine which classes are interfaces without requiring an implements keyword.

When you want to prevent a class from being further subclassed in C#, you precede the class name with

sealed – in Java, you precede the class name with final .

For more about C# class definitions, see the Classes and Inheritance topics.

In Java, mutator methods (setters) and inspector methods (getters) are often used to control how changes are

made to class members while hiding and protecting these members from outside code. For example, the

Android TextView class provides getText and setText methods. C# provides a similar but more direct

mechanism known as properties. Users of a C# class can access a property in the same way as they would

access a field, but each access actually results in a method call that is transparent to the caller. This "under the

covers" method can implement side effects such as setting other values, performing conversions, or changing

object state.

Properties are often used for accessing and modifying UI (user interface) object members. For example:

In this example, width and height values are read from the rulerView object by accessing its MeasuredWidth and

MeasuredHeight properties. When these properties are read, values from their associated (but hidden) field

values are fetched behind the scenes and returned to the caller. The rulerView object may store width and

height values in one unit of measurement (say, pixels) and convert these values on-the-fly to a different unit of

measurement (say, millimeters) when the MeasuredWidth and MeasuredHeight properties are accessed.

The rulerView object also has a property called DrawingCacheEnabled – the example code sets this property to

true to enable the drawing cache in rulerView . Behind the scenes, an associated hidden field is updated with

the new value, and possibly other aspects of rulerView state are modified. For example, when

DrawingCacheEnabled is set to false , rulerView may also erase any drawing cache information already

accumulated in the object.

Access to properties can be read/write, read-only, or write-only. Also, you can use different access modifiers for

reading and writing. For example, you can define a property that has public read access but private write access.

For more information about C# properties, see the Properties topic.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties

 Calling base class methodsCalling base class methods

public class PictureLayout : ViewGroup
{
 ...
 public PictureLayout (Context context)
 : base (context)
 {
 ...
 }
 ...
}

public class MainActivity : Activity
{
 ...
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 Access modifiersAccess modifiers

 Virtual and override methodsVirtual and override methods

To call a base-class constructor in C#, you use a colon (:) followed by the base keyword and an initializer list;

this base constructor call is placed immediately after the derived constructor parameter list. The base-class

constructor is called on entry to the derived constructor ; the compiler inserts the call to the base constructor at

the start of the method body. The following code fragment illustrates a base constructor called from a derived

constructor in a Xamarin.Android app:

In this example, the PictureLayout class is derived from the ViewGroup class. The PictureLayout constructor

shown in this example accepts a context argument and passes it to the ViewGroup constructor via the

base(context) call.

To call a base-class method in C#, use the base keyword. For example, Xamarin.Android apps often make calls

to base methods as shown here:

In this case, the OnCreate method defined by the derived class (MainActivity) calls the OnCreate method of the

base class (Activity).

Java and C# both support the public , private , and protected access modifiers. However, C# supports two

additional access modifiers:

internal – The class member is accessible only within the current assembly.

protected internal – The class member is accessible within the defining assembly, the defining class,

and derived classes (derived classes both inside and outside the assembly have access).

For more information about C# access modifiers, see the Access Modifiers topic.

Both Java and C# support polymorphism, the ability to treat related objects in the same manner. In both

languages, you can use a base-class reference to refer to a derived-class object, and the methods of a derived

class can override the methods of its base classes. Both languages have the concept of a virtual method, a

method in a base class that is designed to be replaced by a method in a derived class. Like Java, C# supports

abstract classes and methods.

However, there are some differences between Java and C# in how you declare virtual methods and override

them:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers

 Lambda expressions

(arg1, arg2, ...) => {
 // implementation code
};

button.Click += (sender, args) => {
 clickCount += 1; // access variable in surrounding code
 button.Text = string.Format ("Clicked {0} times.", clickCount);
};

 Event handling

In C#, methods are non-virtual by default. Parent classes must explicitly label which methods are to be

overridden by using the virtual keyword. By contrast, all methods in Java are virtual methods by

default.

To prevent a method from being overridden in C#, you simply leave off the virtual keyword. By

contrast, Java uses the final keyword to mark a method with "override is not allowed."

C# derived classes must use the override keyword to explicitly indicate that a virtual base-class method

is being overridden.

For more information about C#'s support for polymorphism, see the Polymorphism topic.

C# makes it possible to create closures: inline, anonymous methods that can access the state of the method in

which they are enclosed. Using lambda expressions, you can write fewer lines of code to implement the same

functionality that you might have implemented in Java with many more lines of code.

Lambda expressions make it possible for you to skip the extra ceremony involved in creating a one-time-use

class or anonymous class as you would in Java – instead, you can just write the business logic of your method

code inline. Also, because lambdas have access to the variables in the surrounding method, you don't have to

create a long parameter list to pass state to your method code.

In C#, lambda expressions are created with the => operator as shown here:

In Xamarin.Android, lambda expressions are often used for defining event handlers. For example:

In this example, the lambda expression code (the code within the curly braces) increments a click count and

updates the button text to display the click count. This lambda expression is registered with the button object

as a click event handler to be called whenever the button is tapped. (Event handlers are explained in more detail

below.) In this simple example, the sender and args parameters are not used by the lambda expression code,

but they are required in the lambda expression to meet the method signature requirements for event

registration. Under the hood, the C# compiler translates the lambda expression into an anonymous method that

is called whenever button click events take place.

For more information about C# and lambda expressions, see the Lambda Expressions topic.

An event is a way for an object to notify registered subscribers when something interesting happens to that

object. Unlike in Java, where a subscriber typically implements a Listener interface that contains a callback

method, C# provides language-level support for event handling through delegates. A delegate is like an object-

oriented type-safe function pointer – it encapsulates an object reference and a method token. If a client object

wants to subscribe to an event, it creates a delegate and passes the delegate to the notifying object. When the

event occurs, the notifying object invokes the method represented by the delegate object, notifying the

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions

startActivityButton.Click += delegate {
 Intent intent = new Intent (this, typeof (MyActivity));
 StartActivity (intent);
};

startActivityButton.Click += (sender, e) => {
 Intent intent = new Intent (this, typeof (MyActivity));
 StartActivity (intent);
};

 Asynchronous programming

subscribing client object of the event. In C#, event handlers are essentially nothing more than methods that are

invoked through delegates.

For more information about delegates, see the Delegates topic.

In C#, events are multicast; that is, more than one listener can be notified when an event takes place. This

difference is observed when you consider the syntactical differences between Java and C# event registration. In

Java you call SetXXXListener to register for event notifications; in C# you use the += operator to register for

event notifications by "adding" your delegate to the list of event listeners. In Java, you call SetXXXListener to

unregister, while in C# you use the -= to "subtract" your delegate from the list of listeners.

In Xamarin.Android, events are often used for notifying objects when a user does something to a UI control.

Normally, a UI control will have members that are defined using the event keyword; you attach your delegates

to these members to subscribe to events from that UI control.

To subscribe to an event:

1. Create a delegate object that refers to the method that you want to be invoked when the event occurs.

2. Use the += operator to attach your delegate to the event you are subscribing to.

The following example defines a delegate (with an explicit use of the delegate keyword) to subscribe to button

clicks. This button-click handler starts a new activity:

However, you also can use a lambda expression to register for events, skipping the delegate keyword

altogether. For example:

In this example, the startActivityButton object has an event that expects a delegate with a certain method

signature: one that accepts sender and event arguments and returns void. However, because we don't want to go

to the trouble to explicitly define such a delegate or its method, we declare the signature of the method with

(sender, e) and use a lambda expression to implement the body of the event handler. Note that we have to

declare this parameter list even though we aren't using the sender and e parameters.

It is important to remember that you can unsubscribe a delegate (via the -= operator), but you cannot

unsubscribe a lambda expression – attempting to do so can cause memory leaks. Use the lambda form of event

registration only when your handler will not unsubscribe from the event.

Typically, lambda expressions are used to declare event handlers in Xamarin.Android code. This shorthand way

to declare event handlers may seem cryptic at first, but it saves an enormous amount of time when you are

writing and reading code. With increasing familiarity, you become accustomed to recognizing this pattern

(which occurs frequently in Xamarin.Android code), and you spend more time thinking about the business logic

of your application and less time wading through syntactical overhead.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/index

downloadButton.Click += downloadAsync;
...
async void downloadAsync(object sender, System.EventArgs e)
{
 webClient = new WebClient ();
 var url = new Uri ("http://photojournal.jpl.nasa.gov/jpeg/PIA15416.jpg");
 byte[] bytes = null;

 bytes = await webClient.DownloadDataTaskAsync(url);

 // display the downloaded image ...

 Keyword differences

Asynchronous programming is a way to improve the overall responsiveness of your application. Asynchronous

programming features make it possible for the rest of your app code to continue running while some part of

your app is blocked by a lengthy operation. Accessing the web, processing images, and reading/writing files are

examples of operations that can cause an entire app to appear to freeze up if it is not written asynchronously.

C# includes language-level support for asynchronous programming via the async and await keywords. These

language features make it very easy to write code that performs long-running tasks without blocking the main

thread of your application. Briefly, you use the async keyword on a method to indicate that the code in the

method is to run asynchronously and not block the caller's thread. You use the await keyword when you call

methods that are marked with async . The compiler interprets the await as the point where your method

execution is to be moved to a background thread (a task is returned to the caller). When this task completes,

execution of the code resumes on the caller's thread at the await point in your code, returning the results of the

async call. By convention, methods that run asynchronously have Async suffixed to their names.

In Xamarin.Android applications, async and await are typically used to free up the UI thread so that it can

respond to user input (such as the tapping of a CancelCancel button) while a long-running operation takes place in a

background task.

In the following example, a button click event handler causes an asynchronous operation to download an image

from the web:

In this example, when the user clicks the downloadButton control, the downloadAsync event handler creates a

WebClient object and a Uri object to fetch an image from the specifed URL. Next, it calls the WebClient

object's DownloadDataTaskAsync method with this URL to retrieve the image.

Notice that the method declaration of downloadAsync is prefaced by the async keyword to indicate that it will

run asynchronously and return a task. Also note that the call to DownloadDataTaskAsync is preceded by the

await keyword. The app moves the execution of the event handler (starting at the point where await appears)

to a background thread until DownloadDataTaskAsync completes and returns. Meanwhile, the app's UI thread can

still respond to user input and fire event handlers for the other controls. When DownloadDataTaskAsync

completes (which may take several seconds), execution resumes where the bytes variable is set to the result of

the call to DownloadDataTaskAsync , and the remainder of the event handler code displays the downloaded image

on the caller's (UI) thread.

For an introduction to async / await in C#, see the Asynchronous Programming with Async and Await topic. For

more information about Xamarin support of asynchronous programming features, see Async Support

Overview.

Many language keywords used in Java are also used in C#. There are also a number of Java keywords that have

an equivalent but differently-named counterpart in C#, as listed in this table:

https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async

JAVAJAVA C #C # DESC RIP T IO NDESC RIP T IO N

boolean bool Used for declaring the boolean values
true and false.

extends : Precedes the class and interfaces to
inherit from.

implements : Precedes the class and interfaces to
inherit from.

import using Imports types from a namespace, also
used for creating a namespace alias.

final sealed Prevents class derivation; prevents
methods and properties from being
overridden in derived classes.

instanceof is Evaluates whether an object is
compatible with a given type.

native extern Declares a method that is
implemented externally.

package namespace Declares a scope for a related set of
objects.

T... params T Specifies a method parameter that
takes a variable number of arguments.

super base Used to access members of the parent
class from within a derived class.

synchronized lock Wraps a critical section of code with
lock acquisition and release.

C #C # DESC RIP T IO NDESC RIP T IO N

as Performs conversions between compatible reference types or
nullable types.

async Specifies that a method or lambda expression is
asynchronous.

await Suspends the execution of a method until a task completes.

byte Unsigned 8-bit integer type.

delegate Used to encapsulate a method or anonymous method.

enum Declares an enumeration, a set of named constants.

Also, there are many keywords that are unique to C# and have no counterpart in the Java used on Android.

Xamarin.Android code often makes use of the following C# keywords (this table is useful to refer to when you

are reading through Xamarin.Android sample code):

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/namespace
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.android
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/as
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/byte
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/delegate
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum

event Declares an event in a publisher class.

fixed Prevents a variable from being relocated.

get Defines an accessor method that retrieves the value of a
property.

in Enables a parameter to accept a less derived type in a
generic interface.

object An alias for the Object type in the .NET framework.

out Parameter modifier or generic type parameter declaration.

override Extends or modifies the implementation of an inherited
member.

partial Declares a definition to be split into multiple files, or splits a
method definition from its implementation.

readonly Declares that a class member can be assigned only at
declaration time or by the class constructor.

ref Causes an argument to be passed by reference rather than
by value.

set Defines an accessor method that sets the value of a
property.

string Alias for the String type in the .NET framework.

struct A value type that encapsulates a group of related variables.

typeof Obtains the type of an object.

var Declares an implicitly-typed local variable.

value References the value that client code wants to assign to a
property.

virtual Allows a method to be overridden in a derived class.

C #C # DESC RIP T IO NDESC RIP T IO N

 Interoperating with existing java code

If you have existing Java functionality that you do not want to convert to C#, you can reuse your existing Java

libraries in Xamarin.Android applications via two techniques:

Create a Java Bindings L ibrar yCreate a Java Bindings L ibrar y – Using this approach, you use Xamarin tools to generate C#

wrappers around Java types. These wrappers are called bindings. As a result, your Xamarin.Android

application can use your .jar file by calling into these wrappers.

Java Native InterfaceJava Native Interface – The Java Native Interface (JNI) is a framework that makes it possible for C#

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/fixed-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-generic-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/override
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/partial-method
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/readonly
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/set
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/typeof
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual

 Further reading

 Summary

 Related links

apps to call or be called by Java code.

For more information about these techniques, see Java Integration Overview.

The MSDN C# Programming Guide is a great way to get started in learning the C# programming language, and

you can use the C# Reference to look up particular C# language features.

In the same way that Java knowledge is at least as much about familiarity with the Java class libraries as

knowing the Java language, practical knowledge of C# requires some familiarity with the .NET framework.

Microsoft's Moving to C# and the .NET Framework, for Java Developers learning packet is a good way to learn

more about the .NET framework from a Java perspective (while gaining a deeper understanding of C#).

When you are ready to tackle your first Xamarin.Android project in C#, our Hello, Android series can help you

build your first Xamarin.Android application and further advance your understanding of the fundamentals of

Android application development with Xamarin.

This article provided an introduction to the Xamarin.Android C# programming environment from a Java

developer's perspective. It pointed out the similarities between C# and Java while explaining their practical

differences. It introduced assemblies and namespaces, explained how to import external types, and provided an

overview of the differences in access modifiers, generics, class derivation, calling base-class methods, method

overriding, and event handling. It introduced C# features that are not available in Java, such as properties,

async / await asynchronous programming, lambdas, C# delegates, and the C# event handling system. It

included tables of important C# keywords, explained how to interoperate with existing Java libraries, and

provided links to related documentation for further study.

Java Integration Overview

C# Programming Guide

C# Reference

Moving to C# and the .NET Framework, for Java Developers

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
https://www.microsoft.com/download/details.aspx?id=6073
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://www.microsoft.com/download/details.aspx?id=6073

Xamarin.Android Application Fundamentals
 10/28/2019 • 3 minutes to read • Edit Online

 Accessibility

 Understanding Android API Levels

 Resources in Android

 Activity Lifecycle

 Localization

 Services

 Broadcast Receivers

This section provides a guide on some of the more common things tasks or concepts that developers need to be

aware of when developing Android applications.

This page describes how to use the Android Accessibility APIs to build apps according to the accessibility

checklist.

This guide describes how Android uses API levels to manage app compatibility across different versions of

Android, and it explains how to configure Xamarin.Android project settings to deploy these API levels in your

app. In addition, this guide explains how to write runtime code that deals with different API levels, and it

provides a reference list of all Android API levels, version numbers (such as Android 8.0), Android code names

(such as Oreo), and build version codes.

This article introduces the concept of Android resources in Xamarin.Android and documents how to use them. It

covers how to use resources in your Android application to support application localization, and multiple

devices including varying screen sizes and densities.

Activities are a fundamental building block of Android Applications and they can exist in a number of different

states. The activity lifecycle begins with instantiation and ends with destruction, and includes many states in

between. When an activity changes state, the appropriate lifecycle event method is called, notifying the activity

of the impending state change and allowing it to execute code to adapt to that change. This article examines the

lifecycle of activities and explains the responsibility that an activity has during each of these state changes to be

part of a well-behaved, reliable application.

This article explains how to localize a Xamarin.Android into other languages by translating strings and providing

alternate images.

This article covers Android services, which are Android components that allow work to be done in the

background. It explains the different scenarios that services are suited for and shows how to implement them

both for performing long-running background tasks as well as to provide an interface for remote procedure

calls.

This guide covers how to create and use broadcast receivers, an Android component that responds to system-

wide broadcasts, in Xamarin.Android.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/index.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/accessibility

 Permissions

 Graphics and Animation

 CPU Architectures

 Handling Rotation

 Android Audio

 Notifications

 Touch

 HttpClient Stack and SSL/TLS

 Writing Responsive Applications

You can use the tooling support built into Visual Studio for Mac or Visual Studio to create and add permissions

to the Android Manifest. This document describes how to add permissions in Visual Studio and Xamarin Studio.

Android provides a very rich and diverse framework for supporting 2D graphics and animations. This document

introduces these frameworks and discusses how to create custom graphics and animations and use them in a

Xamarin.Android application.

Xamarin.Android supports several CPU architectures, including 32-bit and 64-bit devices. This article explains

how to target an app to one or more Android-supported CPU architectures.

This article describes how to handle device orientation changes in Xamarin.Android. It covers how to work with

the Android resource system to automatically load resources for a particular device orientation as well as how

to programmatically handle orientation changes. Then it describes techniques for maintaining state when a

device is rotated.

The Android OS provides extensive support for multimedia, encompassing both audio and video. This guide

focuses on audio in Android and covers playing and recording audio using the built-in audio player and

recorder classes, as well as the low-level audio API. It also covers working with Audio events broadcast by other

applications, so that developers can build well-behaved applications.

This section explains how to implement local and remote notifications in Xamarin.Android. It describes the

various UI elements of an Android notification and discusses the API's involved with creating and displaying a

notification. For remote notifications, both Google Cloud Messaging and Firebase Cloud Messaging are

explained. Step-by-step walkthroughs and code samples are included.

This section explains the concepts and details of implementing touch gestures on Android. Touch APIs are

introduced and explained followed by an exploration of gesture recognizers.

This section explains the HttpClient Stack and SSL/TLS Implementation selectors for Android. These settings

determine the HttpClient and SSL/TLS implementation that will be used by your Xamarin.Android apps.

This article discusses how to use threading to keep a Xamarin.Android application responsive by moving long-

running tasks on to a background thread.

Accessibility on Android
 10/28/2019 • 3 minutes to read • Edit Online

 Describing UI Elements

saveButton.ContentDescription = "Save data";

<ImageButton
 android:id=@+id/saveButton"
 android:src="@drawable/save_image"
 android:contentDescription="Save data" />

 Use Hint for TextViewUse Hint for TextView

someText.Hint = "Enter some text"; // displays (and is "read") when control is empty

<EditText
 android:id="@+id/someText"
 android:hint="Enter some text" />

 LabelFor links input fields with labelsLabelFor links input fields with labels

This page describes how to use the Android Accessibility APIs to build apps according to the accessibility

checklist. Refer to the iOS accessibility and OS X accessibility pages for other platform APIs.

Android provides a ContentDescription property that is used by screen reading APIs to provide an accessible

description of the control's purpose.

The content description can be set in either C# or in the AXML layout file.

C#C#

The description can be set in code to any string (or a string resource):

AXML layoutAXML layout

In XML layouts use the android:contentDescription attribute:

For EditText and TextView controls for data input, use the Hint property to provide a description of what

input is expected (instead of ContentDescription). When some text has been entered, the text itself will be "read"

instead of the hint.

C#C#

Set the Hint property in code:

AXML layoutAXML layout

In XML layout files use the android:hint attribute:

To associate a label with a data input control, use the LabelFor property to

C#C#

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/accessibility.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/xamarin/mac/app-fundamentals/accessibility

EditText edit = FindViewById<EditText> (Resource.Id.editFirstName);
TextView tv = FindViewById<TextView> (Resource.Id.labelFirstName);
tv.LabelFor = Resource.Id.editFirstName;

<TextView
 android:id="@+id/labelFirstName"
 android:hint="Enter some text"
 android:labelFor="@+id/editFirstName" />
<EditText
 android:id="@+id/editFirstName"
 android:hint="Enter some text" />

 Announce for AccessibilityAnnounce for Accessibility

button.Click += delegate {
 button.Text = string.Format ("{0} clicks!", count++);
 button.AnnounceForAccessibility (button.Text);
};

 Changing Focus Settings

label.Focusable = false;

<android:focusable="false" />

In C#, set the LabelFor property to the resource ID of the control that this content describes (typically this

property is set on a label and references some other input control):

AXML layoutAXML layout

In layout XML use the android:labelFor property to reference another control's identifier :

Use the AnnounceForAccessibility method on any view control to communicate an event or status change to

users when accessibility is enabled. This method isn't required for most operations where the built-in narration

provides sufficient feedback, but should be used where additional information would be helpful for the user.

The code below shows a simple example calling AnnounceForAccessibility :

Accessible navigation relies on controls having focus to aid the user in understanding what operations are

available. Android provides a Focusable property which can tag controls as specifically able to receive focus

during navigation.

C#C#

To prevent a control from gaining focus with C#, set the Focusable property to false :

AXML layoutAXML layout

In layout XML files set the android:focusable attribute:

You can also control focus order with the nextFocusDown , nextFocusLeft , nextFocusRight , nextFocusUp

attributes, typically set in the layout AXML. Use these attributes to ensure the user can navigate easily through

the controls on the screen.

Accessibility and Localization

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="enter_info">Enter some text</string>
 <string name="save_info">Save data</string>
</resources>

someText.Hint = Resources.GetText (Resource.String.enter_info);
saveButton.ContentDescription = Resources.GetText (Resource.String.save_info);

<TextView
 android:id="@+id/someText"
 android:hint="@string/enter_info" />
<ImageButton
 android:id=@+id/saveButton"
 android:src="@drawable/save_image"
 android:contentDescription="@string/save_info" />

 Testing Accessibility

 Related Links

In the examples above the hint and content description are set directly to the display value. It is preferable to use

values in a Str ings.xmlStr ings.xml file, such as this:

Using text from a strings file is shown below in C# and AXML layout files:

C#C#

Instead of using string literals in code, look up translated values from strings files with Resources.GetText :

AXMLAXML

In layout XML accessibility attributes like hint and contentDescription can be set to a string identifier :

The benefit of storing text in a separate file is multiple language translations of the file can be provided in your

app. See the Android localization guide to learn how add localized string files to an application project.

Follow these steps to enable TalkBack and Explore by Touch to test accessibility on Android devices.

You may need to install TalkBack from Google Play if it does not appear in Settings > AccessibilitySettings > Accessibility .

Cross-platform Accessibility

Android Accessibility APIs

https://developer.android.com/training/accessibility/testing.html#how-to
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/accessibility
https://developer.android.com/guide/topics/ui/accessibility/index.html

Understanding Android API levels
 7/8/2021 • 18 minutes to read • Edit Online

 Quick start

NOTENOTE

Xamarin.Android has several Android API level settings that determine your app's compatibility with multiple

versions of Android. This guide explains what these settings mean, how to configure them, and what effect they

have on your app at run time.

Xamarin.Android exposes three Android API level project settings:

Target Framework – Specifies which framework to use in building your application. This API level is used

at compile time by Xamarin.Android.

Minimum Android Version – Specifies the oldest Android version that you want your app to support. This

API level is used at run time by Android.

Target Android Version – Specifies the version of Android that your app is intended to run on. This API

level is used at run time by Android.

Before you can configure an API level for your project, you must install the SDK platform components for that

API level. For more information about downloading and installing Android SDK components, see Android SDK

Setup.

Beginning in August 2020, the Google Play Console requires that new apps target API level 29 (Android 10.0) or higher.

Existing apps are required to target API level 29 or higher beginning in November 2020. For more information, see Target

API level requirements for the Play Console in "Create and set up your app" in the Play Console documentation.

Visual Studio

Visual Studio for Mac

Normally, all three Xamarin.Android API levels are set to the same value. On the ApplicationApplication page, set CompileCompile

using Android version (Target Framework)using Android version (Target Framework) to the latest stable API version (or, at a minimum, to the

Android version that has all of the features you need). In the following screenshot, the Target Framework is set

to Android 7.1 (API Level 25 - Nougat)Android 7.1 (API Level 25 - Nougat) :

On the Android ManifestAndroid Manifest page, set the Minimum Android version to Use Compile using SDK versionUse Compile using SDK version and

set the Target Android version to the same value as the Target Framework version (in the following screenshot,

the Target Android Framework is set to Android 7.1 (Nougat)Android 7.1 (Nougat)):

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/android-api-levels.md
https://support.google.com/googleplay/android-developer/answer/9859152#targetsdk
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/android-api-levels-images/vs-defaults.png#lightbox

 Android versions and API levels

 Android versionsAndroid versions

If you want to maintain backward compatibility with an earlier version of Android, set Minimum AndroidMinimum Android

version to targetversion to target to the oldest version of Android that you want your app to support. (Note that API Level 14

is the minimum API level required for Google Play services and Firebase support.) The following example

configuration supports Android versions from API Level 14 through API level 25:

If your app supports multiple Android versions, your code must include runtime checks to ensure that your app

works with the Minimum Android version setting (see Runtime Checks for Android Versions below for details). If

you are consuming or creating a library, see API Levels and Libraries below for best practices in configuring API

level settings for libraries.

As the Android platform evolves and new Android versions are released, each Android version is assigned a

unique integer identifier, called the API Level. Therefore, each Android version corresponds to a single Android

API Level. Because users install apps on older as well as the most recent versions of Android, real-world Android

apps must be designed to work with multiple Android API levels.

Each release of Android goes by multiple names:

The Android version, such as Android 9.0Android 9.0

A code (or dessert) name, such as Pie

A corresponding API level, such as API level 28API level 28

An Android code name may correspond to multiple versions and API levels (as seen in the table below), but each

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/android-api-levels-images/vs-manifest-defaults.png#lightbox
https://android-developers.googleblog.com/2016/11/google-play-services-and-firebase-for-android-will-support-api-level-14-at-minimum.html
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/android-api-levels-images/vs-minimum.png#lightbox

N A M EN A M E VERSIO NVERSIO N A P I L EVELA P I L EVEL REL EA SEDREL EA SED
B UIL D VERSIO NB UIL D VERSIO N
C O DEC O DE

Q 10.0 29 Aug 2020 BuildVersionCodes.Q

Pie 9.0 28 Aug 2018 BuildVersionCodes.P

Oreo 8.1 27 Dec 2017 BuildVersionCodes.OMr1

Oreo 8.0 26 Aug 2017 BuildVersionCodes.O

Nougat 7.1 25 Dec 2016 BuildVersionCodes.NMr1

Nougat 7.0 24 Aug 2016 BuildVersionCodes.N

Marshmallow 6.0 23 Aug 2015 BuildVersionCodes.M

Lollipop 5.1 22 Mar 2015 BuildVersionCodes.LollipopMr1

Lollipop 5.0 21 Nov 2014 BuildVersionCodes.Lollipop

Kitkat Watch 4.4W 20 Jun 2014 BuildVersionCodes.KitKatWatch

Kitkat 4.4 19 Oct 2013 BuildVersionCodes.KitKat

Jelly Bean 4.3 18 Jul 2013 BuildVersionCodes.JellyBeanMr2

Jelly Bean 4.2-4.2.2 17 Nov 2012 BuildVersionCodes.JellyBeanMr1

Jelly Bean 4.1-4.1.1 16 Jun 2012 BuildVersionCodes.JellyBean

Ice Cream Sandwich 4.0.3-4.0.4 15 Dec 2011 BuildVersionCodes.IceCreamSandwichMr1

Ice Cream Sandwich 4.0-4.0.2 14 Oct 2011 BuildVersionCodes.IceCreamSandwich

Honeycomb 3.2 13 Jun 2011 BuildVersionCodes.HoneyCombMr2

Honeycomb 3.1.x 12 May 2011 BuildVersionCodes.HoneyCombMr1

Honeycomb 3.0.x 11 Feb 2011 BuildVersionCodes.HoneyComb

Gingerbread 2.3.3-2.3.4 10 Feb 2011 BuildVersionCodes.GingerBreadMr1

Gingerbread 2.3-2.3.2 9 Nov 2010 BuildVersionCodes.GingerBread

Froyo 2.2.x 8 Jun 2010 BuildVersionCodes.Froyo

Eclair 2.1.x 7 Jan 2010 BuildVersionCodes.EclairMr1

Eclair 2.0.1 6 Dec 2009 BuildVersionCodes.Eclair01

Android version corresponds to exactly one API level.

In addition, Xamarin.Android defines build version codes that map to the currently known Android API levels.

The following table can help you translate between API level, Android version, code name, and Xamarin.Android

build version code (build version codes are defined in the Android.OS namespace):

Eclair 2.0 5 Nov 2009 BuildVersionCodes.Eclair

Donut 1.6 4 Sep 2009 BuildVersionCodes.Donut

Cupcake 1.5 3 May 2009 BuildVersionCodes.Cupcake

Base 1.1 2 Feb 2009 BuildVersionCodes.Base11

Base 1.0 1 Oct 2008 BuildVersionCodes.Base

N A M EN A M E VERSIO NVERSIO N A P I L EVELA P I L EVEL REL EA SEDREL EA SED
B UIL D VERSIO NB UIL D VERSIO N
C O DEC O DE

 Android API levelsAndroid API levels

 Project API level settings

 Android SDK platformsAndroid SDK platforms

 Target FrameworkTarget Framework

As this table indicates, new Android versions are released frequently – sometimes more than one release per

year. As a result, the universe of Android devices that might run your app includes of a wide variety of older and

newer Android versions. How can you guarantee that your app will run consistently and reliably on so many

different versions of Android? Android's API levels can help you manage this problem.

Each Android device runs at exactly one API level – this API level is guaranteed to be unique per Android

platform version. The API level precisely identifies the version of the API set that your app can call into; it

identifies the combination of manifest elements, permissions, etc. that you code against as a developer.

Android's system of API levels helps Android determine whether an application is compatible with an Android

system image prior to installing the application on a device.

When an application is built, it contains the following API level information:

The target API level of Android that the app is built to run on.

The minimum Android API level that an Android device must have to run your app.

These settings are used to ensure that the functionality needed to run the app correctly is available on the

Android device at installation time. If not, the app is blocked from running on that device. For example, if the API

level of an Android device is lower than the minimum API level that you specify for your app, the Android device

will prevent the user from installing your app.

The following sections explain how to use the SDK Manager to prepare your development environment for the

API levels you want to target, followed by detailed explanations of how to configure Target Framework,

Minimum Android version, and Target Android version settings in Xamarin.Android.

Before you can select a Target or Minimum API level in Xamarin.Android, you must install the Android SDK

platform version that corresponds to that API level. The range of available choices for Target Framework,

Minimum Android version, and Target Android version is limited to the range of Android SDK versions that you

have installed. You can use the SDK Manager to verify that the required Android SDK versions are installed, and

you can use it to add any new API levels that you need for your app. If you are not familiar with how to install

API levels, see Android SDK Setup.

The Target Framework (also known as compileSdkVersion) is the specific Android framework version (API level)

that your app is compiled for at build time. This setting specifies what APIs your app expects to use when it runs,

but it has no effect on which APIs are actually available to your app when it is installed. As a result, changing the

Target Framework setting does not change runtime behavior.

The Target Framework identifies which library versions your application is linked against – this setting

determines which APIs you can use in your app. For example, if you want to use the

NotificationBuilder.SetCategory method that was introduced in Android 5.0 Lollipop, you must set the Target

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setcategory

 Minimum Android VersionMinimum Android Version

Framework to API Level 21 (Lollipop)API Level 21 (Lollipop) or later. If you set your project's Target Framework to an API level such

as API Level 19 (KitKat)API Level 19 (KitKat) and try to call the SetCategory method in your code, you will get a compile error.

We recommend that you always compile with the latest available Target Framework version. Doing so provides

you with helpful warning messages for any deprecated APIs that might be called by your code. Using the latest

Target Framework version is especially important when you use the latest support library releases – each library

expects your app to be compiled at that support library's minimum API level or greater.

Visual Studio

Visual Studio for Mac

To access the Target Framework setting in Visual Studio, open the project properties in Solution ExplorerSolution Explorer and

select the ApplicationApplication page:

Set the Target Framework by selecting an API level in the drop-down menu under Compile using AndroidCompile using Android

versionversion as shown above.

The Minimum Android version (also known as minSdkVersion) is the oldest version of the Android OS (i.e., the

lowest API level) that can install and run your application. By default, an app can only be installed on devices

matching the Target Framework setting or higher ; if the Minimum Android version setting is lower than the

Target Framework setting, your app can also run on earlier versions of Android. For example, if you set the

Target Framework to Android 7.1 (Nougat)Android 7.1 (Nougat) and set the Minimum Android version to Android 4.0 .3 (IceAndroid 4.0 .3 (Ice

Cream Sandwich)Cream Sandwich) , your app can be installed on any platform from API level 15 to API level 25, inclusive.

Although your app may successfully build and install on this range of platforms, this does not guarantee that it

will successfully run on all of these platforms. For example, if your app is installed on Android 5.0 (Lollipop)Android 5.0 (Lollipop)

and your code calls an API that is available only in Android 7.1 (Nougat)Android 7.1 (Nougat) and newer, your app will get a

runtime error and possibly crash. Therefore, your code must ensure – at runtime – that it calls only those APIs

that are supported by the Android device that it is running on. In other words, your code must include explicit

runtime checks to ensure that your app uses newer APIs only on devices that are recent enough to support

them. Runtime Checks for Android Versions, later in this guide, explains how to add these runtime checks to

your code.

Visual Studio

Visual Studio for Mac

To access the Minimum Android version setting in Visual Studio, open the project properties in SolutionSolution

ExplorerExplorer and select the Android ManifestAndroid Manifest page. In the drop-down menu under Minimum Android versionMinimum Android version

you can select the Minimum Android version for your application:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/android-api-levels-images/vs-target-framework.png#lightbox

 Target Android VersionTarget Android Version

If you select Use Compile using SDK versionUse Compile using SDK version, the Minimum Android version will be the same as the Target

Framework setting.

The Target Android Version (also known as targetSdkVersion) is the API level of the Android device where the

app expects to run. Android uses this setting to determine whether to enable any compatibility behaviors – this

ensures that your app continues to work the way you expect. Android uses the Target Android version setting of

your app to figure out which behavior changes can be applied to your app without breaking it (this is how

Android provides forward compatibility).

The Target Framework and the Target Android version, while having very similar names, are not the same thing.

The Target Framework setting communicates target API level information to Xamarin.Android for use at compile

time, while the Target Android version communicates target API level information to Android for use at run time

(when the app is installed and running on a device).

Visual Studio

Visual Studio for Mac

To access this setting in Visual Studio, open the project properties in Solution ExplorerSolution Explorer and select the AndroidAndroid

ManifestManifest page. In the drop-down menu under Target Android versionTarget Android version you can select the Target Android

version for your application:

We recommend that you explicitly set the Target Android version to the latest version of Android that you use to

test your app. Ideally, it should be set to the latest Android SDK version – this allows you to use new APIs prior to

working through the behavior changes. For most developers, we do not recommend setting the Target Android

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/android-api-levels-images/vs-minimum-version.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/android-api-levels-images/vs-target-version.png#lightbox

 Runtime checks for Android versions

if (Android.OS.Build.VERSION.SdkInt >= Android.OS.BuildVersionCodes.Lollipop)
{
 builder.SetCategory(Notification.CategoryEmail);
}

if (Android.OS.Build.VERSION.SdkInt >= Android.OS.BuildVersionCodes.Lollipop)
{
 // Do things the Lollipop way
}
else
{
 // Do things the pre-Lollipop way
}

version to Use Compile using SDK versionUse Compile using SDK version.

In general, the Target Android Version should be bounded by the Minimum Android Version and the Target

Framework. That is:

Minimum Android Version <= Target Android Version <= Target FrameworkMinimum Android Version <= Target Android Version <= Target Framework

For more information about SDK levels, see the Android Developer uses-sdk documentation.

As each new version of Android is released, the framework API is updated to provide new or replacement

functionality. With few exceptions, API functionality from earlier Android versions is carried forward into newer

Android versions without modifications. As a result, if your app runs on a particular Android API level, it will

typically be able to run on a later Android API level without modifications. But what if you also want to run your

app on earlier versions of Android?

If you select a Minimum Android version that is lower than your Target Framework setting, some APIs may not

be available to your app at runtime. However, your app can still run on an earlier device, but with reduced

functionality. For each API that is not available on Android platforms corresponding to your Minimum Android

version setting, your code must explicitly check the value of the Android.OS.Build.VERSION.SdkInt property to

determine the API level of the platform the app is running on. If the API level is lower than the Minimum

Android version that supports the API you want to call, then your code has to find a way to function properly

without making this API call.

For example, let's suppose that we want to use the NotificationBuilder.SetCategory method to categorize a

notification when running on Android 5.0 LollipopAndroid 5.0 Lollipop (and later), but we still want our app to run on earlier

versions of Android such as Android 4.1 Jelly BeanAndroid 4.1 Jelly Bean (where SetCategory is not available). Referring to the

Android version table at the beginning of this guide, we see that the build version code for Android 5.0Android 5.0

LollipopLollipop is Android.OS.BuildVersionCodes.Lollipop . To support older versions of Android where SetCategory is

not available, our code can detect the API level at runtime and conditionally call SetCategory only when the API

level is greater than or equal to the Lollipop build version code:

In this example, our app's Target Framework is set to Android 5.0 (API Level 21)Android 5.0 (API Level 21) and its Minimum Android

version is set to Android 4.1 (API Level 16)Android 4.1 (API Level 16) . Because SetCategory is available in API level

Android.OS.BuildVersionCodes.Lollipop and later, this example code will call SetCategory only when it is actually

available – it will not attempt to call SetCategory when the API level is 16, 17, 18, 19, or 20. The functionality is

reduced on these earlier Android versions only to the extent that notifications are not sorted properly (because

they are not categorized by type), yet the notifications are still published to alert the user. Our app still works,

but its functionality is slightly diminished.

In general, the build version check helps your code decide at runtime between doing something the new way

versus the old way. For example:

There's no fast and simple rule that explains how to reduce or modify your app's functionality when it runs on

older Android versions that are lacking one or more APIs. In some cases (such as in the SetCategory example

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setcategory

 API levels and libraries

 Summary

 Related Links

above), it's sufficient to omit the API call when it's not available. However, in other cases, you may need to

implement alternate functionality for when Android.OS.Build.VERSION.SdkInt is detected to be less than the API

level that your app needs to present its optimum experience.

Visual Studio

Visual Studio for Mac

When you create a Xamarin.Android library project (such as a class library or a bindings library), you can

configure only the Target Framework setting – the Minimum Android version and the Target Android version

settings are not available. That is because there is no Android ManifestAndroid Manifest page:

The Minimum Android version and Target Android version settings are not available because the resulting

library is not a stand-alone app – the library could be run on any Android version, depending on the app that it

is packaged with. You can specify how the library is to be compiled, but you can't predict which platform API

level the library will be run on. With this in mind, the following best practices should be observed when

consuming or creating libraries:

When consuming an Android librar yWhen consuming an Android librar y – If you are consuming an Android library in your application,

be sure to set your app's Target Framework setting to an API level that is at least as high as the Target

Framework setting of the library.

When creating an Android librar yWhen creating an Android librar y – If you are creating an Android library for use by other

applications, be sure to set its Target Framework setting to the minimum API level that it needs in order to

compile.

These best practices are recommended to help prevent the situation where a library attempts to call an API that

is not available at runtime (which can cause the app to crash). If you are a library developer, you should strive to

restrict your usage of API calls to a small and well-established subset of the total API surface area. Doing so

helps to ensure that your library can be used safely across a wider range of Android versions.

This guide explained how Android API levels are used to manage app compatibility across different versions of

Android. It provided detailed steps for configuring the Xamarin.Android Target Framework, Minimum Android

version, and Target Android version project settings. It provided instructions for using the Android SDK Manager

to install SDK packages, included examples of how to write code to deal with different API levels at runtime, and

explained how to manage API levels when creating or consuming Android libraries. It also provided a

comprehensive list that relates API levels to Android version numbers (such as Android 4.4), Android version

names (such as Kitkat), and Xamarin.Android build version codes.

Android SDK Setup

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/android-api-levels-images/vs-library-options.png#lightbox

SDK CLI Tooling Changes

Picking your compileSdkVersion, minSdkVersion, and targetSdkVersion

What is API Level?

Codenames, Tags, and Build Numbers

https://medium.com/google-developers/picking-your-compilesdkversion-minsdkversion-targetsdkversion-a098a0341ebd
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
https://source.android.com/source/build-numbers

Android Resources
 7/8/2021 • 2 minutes to read • Edit Online

 Overview

This article introduces the concept of Android resources in Xamarin.Android and will document how to use

them. It covers how to use resources in your Android application to support application localization, and

multiple devices including varying screen sizes and densities.

An Android application is seldom just source code. There are often many other files that make up an application:

video, images, fonts, and audio files just to name a few. Collectively, these non-source code files are referred to

as resources and are compiled (along with the source code) during the build process and packaged as an APK

for distribution and installation onto devices:

Resources offer several advantages to an Android application:

Code-SeparationCode-Separation – Separates source code from images, strings, menus, animations, colors, etc. As such

resources can help considerably when localizing.

Target multiple devicesTarget multiple devices – Provides simpler support of different device configurations without code

changes.

Compile-time CheckingCompile-time Checking – Resources are static and compiled into the application. This allows the usage

of the resources to be checked at compile time, when it will be easy to catch and correct the mistakes, as

opposed to run-time when it is more difficult to locate and costly to correct.

When a new Xamarin.Android project is started, a special directory called Resources is created, along with some

subdirectories:

Visual Studio

Visual Studio for Mac

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/index.md

In the image above, the application resources are organized according to their type into these subdirectories:

images will go in the drawabledrawable directory; views go in the layoutlayout subdirectory, etc.

There are two ways to access these resources in a Xamarin.Android application: programmatically in code and

declaratively in XML using a special XML syntax.

These resources are called Default Resources and are used by all devices unless a more specific match is

specified. Additionally, every type of resource may optionally have Alternate Resources that Android may use to

target specific devices. For example, resources may be provided to target the user's locale, the screen size, or if

the device is rotated 90 degrees from portrait to landscape, etc. In each of these cases, Android will load the

resources for use by the application without any extra coding effort by the developer.

Alternate resources are specified by adding a short string, called a qualifier, to the end of the directory holding a

given type of resources.

For example, resources/drawable-deresources/drawable-de will specify the images for devices that are set to a German locale, while

resources/drawable-frresources/drawable-fr would hold images for devices set to a French locale. An example of providing

alternate resources can be seen in the image below where the same application is being run with just the locale

of the device changing:

This article will take a comprehensive look at using resources and cover the following topics:

 Related Links

Android Resource BasicsAndroid Resource Basics – Using default resources programmatically and declaratively, adding

resource types such as images and fonts to an application.

Device Specific ConfigurationsDevice Specific Configurations – Supporting the different screen resolutions and densities in an

application.

LocalizationLocalization – Using resources to support the different regions an application may be used.

Using Android Assets

Application Fundamentals

Application Resources

Supporting Multiple Screens

https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/resources/index.html
https://developer.android.com/guide/practices/screens_support.html

Android Resource Basics
 7/8/2021 • 4 minutes to read • Edit Online

 Creating and Accessing Resources

Almost all Android applications will have some sort of resources in them; at a minimum they often have the

user interface layouts in the form of XML files. When a Xamarin.Android application is first created, default

resources are setup by the Xamarin.Android project template:

Visual Studio

Visual Studio for Mac

The five files that make up the default resources were created in the Resources folder :

Icon.pngIcon.png – The default icon for the application

Main.axmlMain.axml – The default user interface layout file for an application. Note that while Android uses the

.xml.xml file extension, Xamarin.Android uses the .axml.axml file extension.

Str ings.xmlStr ings.xml – A string table to help with localization of the application

AboutResources.txtAboutResources.txt – This is not necessary and may safely be deleted. It just provides a high level

overview of the Resources folder and the files in it.

Resource.designer.csResource.designer.cs – This file is automatically generated and maintained by Xamarin.Android and

holds the unique ID's assigned to each resource. This is very similar and identical in purpose to the R.java

file that an Android application written in Java would have. It is automatically created by the

Xamarin.Android tools and will be regenerated from time to time.

Creating resources is as simple as adding files to the directory for the resource type in question. The screen shot

below shows string resources for German locales were added to a project. When Str ings.xmlStr ings.xml was added to the

file, the Build ActionBuild Action was automatically set to AndroidResourceAndroidResource by the Xamarin.Android tools:

Visual Studio

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/android-resource-basics.md

 Referencing Resources Programmatically

Visual Studio for Mac

This allows the Xamarin.Android tools to properly compile and embed the resources in to the APK file. If for

some reason the Build ActionBuild Action is not set to Android ResourceAndroid Resource, then the files will be excluded from the APK,

and any attempt to load or access the resources will result in a run-time error and the application will crash.

Also, it's important to note that while Android only supports lowercase filenames for resource items,

Xamarin.Android is a bit more forgiving; it will support both uppercase and lowercase filenames. The convention

for image names is to use lowercase with underscores as separators (for example, my_image_name.pngmy_image_name.png).

Note that resource names cannot be processed if dashes or spaces are used as separators.

Once resources have been added to a project, there are two ways to use them in an application –

programmatically (inside code) or from XML files.

To access these files programmatically, they are assigned a unique resource ID. This resource ID is an integer

defined in a special class called Resource , which is found in the file Resource.designer.csResource.designer.cs , and looks

something like this:

public partial class Resource
{
 public partial class Attribute
 {
 }
 public partial class Drawable {
 public const int Icon=0x7f020000;
 }
 public partial class Id
 {
 public const int Textview=0x7f050000;
 }
 public partial class Layout
 {
 public const int Main=0x7f030000;
 }
 public partial class String
 {
 public const int App_Name=0x7f040001;
 public const int Hello=0x7f040000;
 }
}

[<PackageName>.]Resource.<ResourceType>.<ResourceName>

 Referencing Resources from XML

@[<PackageName>:]<ResourceType>/<ResourceName>

Each resource ID is contained inside a nested class that corresponds to the resource type. For example, when the

file Icon.pngIcon.png was added to the project, Xamarin.Android updated the Resource class, creating a nested class

called Drawable with a constant inside named Icon . This allows the file Icon.pngIcon.png to be referred to in code as

Resource.Drawable.Icon . The Resource class should not be manually edited, as any changes that are made to it

will be overwritten by Xamarin.Android.

When referencing resources programmatically (in code), they can be accessed via the Resources class hierarchy

which uses the following syntax:

PackageNamePackageName – The package which is providing the resource and is only required when resources from

other packages are being used.

ResourceTypeResourceType – This is the nested resource type that is within the Resource class described above.

Resource NameResource Name – this is the filename of the resource (without the extension) or the value of the

android:name attribute for resources that are in an XML element.

Resources in an XML file are accessed by a following a special syntax:

PackageNamePackageName – the package which is providing the resource and is only required when resources from

other packages are being used.

ResourceTypeResourceType – This is the nested resource type that is within the Resource class.

Resource NameResource Name – this is the filename of the resource (without the file type extension) or the value of the

android:name attribute for resources that are in an XML element.

For example the contents of a layout file, Main.axmlMain.axml , are as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView android:id="@+id/myImage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/flag" />
</LinearLayout>

This example has an ImageView that requires a drawable resource named flagflag. The ImageView has its src

attribute set to @drawable/flag . When the activity starts, Android will look inside the directory

Resource/DrawableResource/Drawable for a file named flag.pngflag.png (the file extension could be another image format, like

flag.jpgflag.jpg) and load that file and display it in the ImageView . When this application is run, it would look

something like the following image:

https://github.com/xamarin/recipes/tree/master/Recipes/android/controls/imageview

Default Resources
 7/8/2021 • 4 minutes to read • Edit Online

Default resources are items that are not specific to any particular device or form factor, and therefore are the

default choice by the Android OS if no more specific resources can be found. As such, they're the most common

type of resource to create. They're organized into sub-directories of the ResourcesResources directory according to their

resource type:

Visual Studio

Visual Studio for Mac

In the image above, the project has default values for drawable resources, layouts, and values (XML files that

contain simple values).

A complete list of resource types is provided below:

animatoranimator – XML files that describe property animations. Property animations were introduced in API

level 11 (Android 3.0) and provides for the animation of properties on an object. Property animations are

a more flexible and powerful way to describe animations on any type of object.

animanim – XML files that describe tween animations. Tween animations are a series of animation

instructions to perform transformations on the contents of a View object, or example, rotation an image

or growing the size of text. Tween animations are limited to only View objects.

colorcolor – XML files that describe a state list of colors. To understand color state lists, consider a UI widget

such as a Button. It may have different states such as pressed or disabled, and the button may change

color with each change in state. The list is expressed in a state list.

drawabledrawable – Drawable resources are a general concept for graphics that can be compiled into the

application and then accessed by API calls or referenced by other XML resources. Some examples of

drawables are bitmap files (.png, .gif, .jpg), special resizable bitmaps known as Nine-Patches, state lists,

generic shapes defined in XML, etc.

layoutlayout – XML files that describe a user interface layout, such as an activity or a row in a list.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/default-resources.md
https://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch

menumenu – XML files that describe application menus such as Options Menus, Context Menus, and

submenus. For an example of menus, see the Popup Menu Demo or the Standard Controls sample.

rawraw – Arbitrary files that are saved in their raw, binary form. These files are compiled into an Android

application in a binary format.

valuesvalues – XML files that contain simple values. An XML file in the values directory does not define a single

resource, but instead can define multiple resources. For example one XML file may hold a list of string

values, while another XML file may hold a list of color values.

xmlxml – XML files that are similar in function to the .NET configuration files. These are arbitrary XML that

can be read at run time by the application.

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/popupmenudemo
https://docs.microsoft.com/en-us/samples/xamarin/mobile-samples/standardcontrols/

Alternate Resources
 7/8/2021 • 8 minutes to read • Edit Online

Alternate resources are those resources that target a specific device or run-time configuration such as the

current language, particular screen size, or pixel density. If Android can match a resource that is more specific for

a particular device or configuration than the default resource, then that resource will be used instead. If it does

not find an alternate resource that matches the current configuration, then the default resources will be loaded.

How Android decides what resources will be used by an application will be covered in more detail below, in the

section Resource Location

Alternate resources are organized as a sub-directory inside the Resources folder according to the resource type,

just like default resources. The name of the alternate resource subdirectory is in the form:

ResourceType-Qualifier

Qualifier is a name that identifies a specific device configuration. There may be more than one qualifier in a

name, each of them separated by a dash. For example, the screenshot below shows a simple project that has

alternate resources for various configurations such as locale, screen density, screen size, and orientation:

Visual Studio

Visual Studio for Mac

The following rules apply when adding qualifiers to a resource type:

1. There may be more than one qualifier, with each qualifier separated by a dash.

2. The qualifiers maybe specified only once.

3. Qualifiers must be in the order they appear in the table below.

The possible qualifiers are listed below for reference:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/alternate-resources.md

MCC and MNCMCC and MNC – The mobile country code (MCC) and optionally the mobile network code (MNC). The

SIM card will provide the MCC, while the network the device is connected to will provide the MNC.

Although it is possible to target locales using the mobile country code, the recommend approach is to

use the Language qualifier specified below. For example, to target resources to Germany, the qualifier

would be mcc262 . To target resources for T-Mobile in the U.S., the qualifier is mcc310-mnc026 . For a

complete list of mobile country codes and mobile network codes see http://mcc-mnc.com/.

LanguageLanguage – The two-letter ISO 639-1 language code and optionally followed by the two-letter ISO-

3166-alpha-2 region code. If both qualifiers are provided, then they are separated by an -r . For

example, to target French-speaking locales then the qualifier of fr is used. To target French-Canadian

locales, the fr-rCA would be used. For a complete list of language codes and region codes, see Codes for

the Representation of Names Of Languages and Country names and code elements.

Smallest WidthSmallest Width – Specifies the smallest screen width the application is meant to execute on. Covered in

more detail in Creating Resources for Varying Screens. Available in API level 13 (Android 3.2) and above.

For example, the qualifier sw320dp is used to target devices whose height and width is at least 320dp.

Available WidthAvailable Width – The minimum width of the screen in the format wNdp, where N is the width in

density independent pixels. This value may change as the user rotates the device. Covered in more detail

in Creating Resources for Varying Screens. Available in API level 13 (Android 3.2) and above. Example: the

qualifier w720dp is used to target devices that have a width of least 720dp.

Available HeightAvailable Height – The minimum height of the screen in the format hNdp, where N is the height in dp.

This value may change as the user rotates the device. Covered in more detail in Creating Resources for

Varying Screens. Available in API level 13 (Android 3.2) and above. For example, the qualifier h720dp is

used to target devices that have a height of least 720dp

Screen S izeScreen S ize – This qualifier is a generalization of the screen size that these resources are for. It is covered

in more detail in Creating Resources for Varying Screens. Possible values are small , normal , large , and

xlarge . Added in API level 9 (Android 2.3/Android 2.3.1/Android 2.3.2)

Screen AspectScreen Aspect – This is based on the aspect ratio, not the screen orientation. A long screen is wider.

Added in API level 4 (Android 1.6). Possible values are long and notlong.

Screen OrientationScreen Orientation – Portrait or landscape screen orientation. This can change during the lifetime of an

application. Possible values are port and land .

Dock ModeDock Mode – For devices in a car dock or a desk dock. Added in API level 8 (Android 2.2.x). Possible

values are car and desk .

Night ModeNight Mode – Whether or not the application is running at night or in the day. This may change during

the lifetime of an application and is meant to give developers an opportunity to use darker versions of an

interface at night. Added in API level 8 (Android 2.2.x). Possible values are night and notnight .

Screen Pixel Density (dpi)Screen Pixel Density (dpi) – The number of pixels in a given area on the physical screen. Typically

expressed as dots per inch (dpi). Possible values are:

ldpi – Low density screens.

mdpi – Medium density screens

hdpi – High density screens

xhdpi – Extra high density screens

nodpi – Resources that are not to be scaled

tvdpi – Introduced in API level 13 (Android 3.2) for screens between mdpi and hdpi.

https://en.wikipedia.org/wiki/List_of_mobile_country_codes
https://en.wikipedia.org/wiki/Mobile_Network_Code
http://mcc-mnc.com/
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://www.loc.gov/standards/iso639-2/php/English_list.php
https://www.iso.org/iso-3166-country-codes.html

 How Android Determines What Resources to Use

Touchscreen TypeTouchscreen Type – Specifies the type of touchscreen a device may have. Possible values are notouch

(no touch screen), stylus (a resistive touchscreen suitable for a stylus), and finger (a touchscreen).

Keyboard AvailabilityKeyboard Availability – Specifies what kind of keyboard is available. This may change during the

lifetime of an application – for example when a user opens a hardware keyboard. Possible values are:

keysexposed – The device has a keyboard available. If there is no software keyboard enabled, then

this is only used when the hardware keyboard is opened.

keyshidden – The device does have a hardware keyboard but it is hidden and no software

keyboard is enabled.

keyssoft – the device has a software keyboard enabled.

Pr imar y Text Input MethodPrimar y Text Input Method – Use to specify what kinds of hardware keys are available for input.

Possible values are:

nokeys – There are no hardware keys for input.

qwerty – There is a qwerty keyboard available.

12key – There is a 12-key hardware keyboard

Navigation Key AvailabilityNavigation Key Availability – For when 5-way or d-pad (directional-pad) navigation is available. This

can change during the lifetime of your application. Possible values are:

navexposed – the navigational keys are available to the user

navhidden – the navigational keys are not available.

Pr imar y Non-Touch Navigation MethodPrimar y Non-Touch Navigation Method – The kind of navigation available on the device. Possible

values are:

nonav – the only navigation facility available is the touch screen

dpad – a d-pad (directional-pad) is available for navigation

trackball – the device has a trackball for navigation

wheel – the uncommon scenario where there are one or more directional wheels available

Platform Version (API level)Platform Version (API level) – The API level supported by the device in the format vN, where N is the

API level that is being targeted. For example, v11 will target an API level 11 (Android 3.0) device.

For more complete information about resource qualifiers see Providing Resources on the Android Developers

website.

It is very possible and likely that an Android application will contain many resources. It is important to

understand how Android will select the resources for an application when it runs on a device.

Android determines the resources base by iterating over the following test of rules:

Eliminate contradictor y qualifiersEliminate contradictor y qualifiers – for example, if the device orientation is portrait, then all

landscape resource directories will be rejected.

Ignore qualifiers not suppor tedIgnore qualifiers not suppor ted – Not all qualifiers are available to all API levels. If a resource

directory contains a qualifier that is not supported by the device, then that resource directory will be

ignored.

https://developer.android.com/guide/topics/resources/providing-resources.html

drawable
drawable-en
drawable-fr-rCA
drawable-en-port
drawable-en-notouch-12key
drawable-en-port-ldpi
drawable-port-ldpi
drawable-port-notouch-12key

Identify the next highest pr ior ity qualifierIdentify the next highest pr ior ity qualifier – referring to the table above select the next highest

priority qualifier (from top to bottom).

Keep any resource director ies for qualifierKeep any resource director ies for qualifier – if there are any resource directories that match the

qualifier to the table above select the next highest priority qualifier (from top to bottom).

These rules are also illustrated in the following flowchart:

When the system is looking for density-specific resources and cannot find them, it will attempt to locate other

density specific resources and scale them. Android may not necessarily use the default resources. For example,

when looking for a low-density resource and it is not available, Android may select high-density version of the

resource over the default or medium-density resources. It does this because the high-density resource can be

scaled down by a factor of 0.5, which will result in fewer visibility issues than scaling down a medium-density

resource which would require a factor of 0.75.

As an example, consider an application that has the following drawable resource directories:

And now the application is run on a device with the following configuration:

LocaleLocale – en-GB

OrientationOrientation – port

Screen densityScreen density – hdpi

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/resources-in-android/alternate-resources-images/flowchart.png#lightbox

drawable
drawable-en
drawable-en-port
drawable-en-notouch-12key
drawable-en-port-ldpi
drawable-port-ldpi
drawable-port-notouch-12key

drawable-en-port
drawable-en-notouch-12key
drawable-en-port-ldpi

drawable-en-port
drawable-en-port-ldpi

drawable-en-port-ldpi

NOTENOTE

Touchscreen typeTouchscreen type – notouch

Primar y input methodPrimar y input method – 12key

To begin with, the French resources are eliminated as they conflict with the locale of en-GB , leaving us with:

Next, the first qualifier is selected from the qualifiers table above: MCC and MNC. There are no resource

directories that contain this qualifier so the MCC/MNC code is ignored.

The next qualifier is selected, which is Language. There are resources that match the language code. All resource

directories that do not match the language code of en are rejected, so that the list of resources is now:

The next qualifier that is present is for screen orientation, so all resource directories that do not match the screen

orientation of port are eliminated:

Next is the qualifier for screen density, ldpi , which results in the exclusion of one more resource directory:

As a result of this process, Android will use the drawable resources in the resource directory

drawable-en-port-ldpi for the device.

The screen size qualifiers provide one exception to this selection process. It is possible for Android to select resources that

are designed for a smaller screen than what the current device provides. For example, a large screen device may use the

resources provide for a normal sized screen. However the reverse of this is not true: the same large screen device will not

use the resources provided for an xlarge screen. If Android cannot find a resource set that matches a given screen size,

the application will crash.

Creating resources for varying screens
 7/8/2021 • 7 minutes to read • Edit Online

 Concepts

 Supporting various screen sizes and densities

 Declare the supported screen sizeDeclare the supported screen size

Android itself runs on many different devices, each having a wide variety of resolutions, screen sizes, and screen

densities. Android will perform scaling and resizing to make your application work on these devices, but this

may result in a sub-optimal user experience. For example, images could appear blurry, or they may be

positioned as expected on a view.

A few terms and concepts are important to understand to support multiple screens.

Screen S izeScreen S ize – The amount of physical space for displaying your application

Screen DensityScreen Density – The number of pixels in any given area on the screen. The typical unit of measure is

dots per inch (dpi).

ResolutionResolution – The total number of pixels on the screen. When developing applications, resolution is not

as important as screen size and density.

Density-independent pixel (dp)Density-independent pixel (dp) – A virtual unit of measure to allow layouts to be designed

independent of density. This formula is used to convert dp into screen pixels:

px = dp × dpi ÷ 160

OrientationOrientation – The screen's orientation is considered to be landscape when it is wider than it is tall. In

contrast, portrait orientation is when the screen is taller than it is wide. The orientation can change during

the lifetime of an application as the user rotates the device.

Notice that the first three of these concepts are inter-related – increasing the resolution without increasing the

density will increase the screen size. However if both the density and resolution are increased, then the screen

size can remain unchanged. This relationship between screen size, density, and resolution complicate screen

support quickly.

To help deal with this complexity, the Android framework prefers to use density-independent pixels (dp) for

screen layouts. By using density independent pixels, UI elements will appear to the user to have the same

physical size on screens with different densities.

Android handles most of the work to render the layouts properly for each screen configuration. However, there

are some actions that can be taken to help the system out.

The use of density-independent pixels instead of actual pixels in layouts is sufficient in most cases to ensure

density independence. Android will scale the drawables at runtime to the appropriate size. However, it is possible

that scaling will cause bitmaps to appear blurry. To work around this problem, supply alternate resources for the

different densities. When designing devices for multiple resolutions and screen densities, it will prove easier to

start with the higher resolution or density images and then scale down.

Declaring the screen size ensures that only supported devices can download the application. This is

accomplished by setting the supports-screens element in the AndroidManifest.xmlAndroidManifest.xml file. This element is used

to specify what screen sizes are supported by the application. A given screen is considered to be supported if

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/resources-for-varying-screens.md
https://developer.android.com/guide/topics/manifest/supports-screens-element.html

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0"
 package="HelloWorld.HelloWorld">
 <uses-sdk android:minSdkVersion="21" android:targetSdkVersion="27" />
 <supports-screens android:resizable="true"
 android:smallScreens="true"
 android:normalScreens="true"
 android:largeScreens="true" />
 <application android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true" android:theme="@style/AppTheme">
 </application>
</manifest>

 Provide alternate layouts for different screen sizesProvide alternate layouts for different screen sizes

the application can properly place its layouts to fill screen. By using this manifest element, the application will

not show up in Google Play for devices that do not meet the screen specifications. However, the application will

still run on devices with unsupported screens, but the layouts may appear blurry and pixelated.

Supported screen sixes are declared in the Properites/AndroidManifest.xmlProperites/AndroidManifest.xml file of the solution:

Visual Studio

Visual Studio for Mac

Edit AndroidManifest.xmlAndroidManifest.xml to include supports-screens:

Alternate layouts make it possible to customize a view for a specifc screen size, changing the positioning or size

of the component UI elements.

Starting with API Level 13 (Android 3.2), the screen sizes are deprecated in favor of using the swNdp qualifier.

This new qualifier declares the amount of space a given layout needs. It is recommended that applications that

are meant to run on Android 3.2 or higher should be using these newer qualifiers.

For example, if a layout required a minimum 700 dp of screen width, the alternate layout would go in a folder

layout-sw700dplayout-sw700dp:

Visual Studio

Visual Studio for Mac

As a guideline, here are some numbers for various devices:

https://play.google.com/
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/resources-in-android/resources-for-varying-screens-images/01-android-manifest.w1581.png#lightbox
https://developer.android.com/guide/topics/manifest/supports-screens-element.html

 Provide different bitmaps for different screen densitiesProvide different bitmaps for different screen densities

Typical phoneTypical phone – 320 dp: a typical phone

A 5" tablet / "tweener" deviceA 5" tablet / "tweener" device – 480 dp: such as the Samsung Note

A 7" tabletA 7" tablet – 600 dp: such as the Barnes & Noble Nook

A 10" tabletA 10" tablet – 720 dp: such as the Motorola Xoom

For applications that target API levels up to 12 (Android 3.1), the layouts should go in directories that use the

qualifiers smallsmall /normalnormal/largelarge/xlargexlarge as generalizations of the various screen sizes that are available in most

devices. For example, in the image below, there are alternate resources for the four different screen sizes:

Visual Studio

Visual Studio for Mac

The following is a comparison of how the older pre-API Level 13 screen size qualifiers compare to density-

independent pixels:

426 dp x 320 dp is smallsmall

470 dp x 320 dp is normalnormal

640 dp x 480 dp is largelarge

960 dp x 720 dp is xlargexlarge

The newer screen size qualifiers in API level 13 and up have a higher precedence than the older screen qualifiers

of API levels 12 and lower. For applications that will span the old and the new API levels, it may be necessary to

create alternate resources using both sets of qualifiers as shown in the following screenshot:

Visual Studio

Visual Studio for Mac

Although Android will scale bitmaps as necessary for a device, the bitmaps themselves may not elegantly scale

up or down: they may become fuzzy or blurry. Providing bitmaps appropriate for the screen density will

mitigate this problem.

For example, the image below is an example of layout and appearance problems that may occur when density-

specify resources are not provided.

 Create varying density resources with Android Asset StudioCreate varying density resources with Android Asset Studio

 Tips for multiple screens

Compare this to a layout that is designed with density-specific resources:

The creation of these bitmaps of various densities can be a bit tedious. As such, Google has created an online

utility that can reduce some of the tedium involved with the creation of these bitmaps called the Android AssetAndroid Asset

StudioStudio.

This website will help with creation of bitmaps that target the four common screen densities by providing one

image. Android Asset Studio will then create the bitmaps with some customizations and then allow them to be

downloaded as a zip file.

Android runs on a bewildering number of devices, and the combination of screen sizes and screen densities can

seem overwhelming. The following tips can help minimize the effort necessary to support various devices:

https://romannurik.github.io/AndroidAssetStudio/
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/resources-in-android/resources-for-varying-screens-images/08-android-asset-studio.png#lightbox

 Testing multiple screens

Only design and develop for what you needOnly design and develop for what you need – There are many different devices out there, but some

exist in rare form factors that may take significant effort to design and develop for. The Screen S ize andScreen S ize and

DensityDensity dashboard is a page provided by Google that provides data on breakdown of the screen

size/screen density matrix. This breakdown provides insight on how to development effort on supporting

screens.

Use DPs rather than PixelsUse DPs rather than Pixels - Pixels become troublesome as screen density changes. Do not hardcode

pixel values. Avoid pixels in favor of dp (density-independent pixels).

AvoidAvoid AbsoluteLayout Wherever PossibleWherever Possible – it is deprecated in API level 3 (Android 1.5) and will result

in brittle layouts. It should not be used. Instead, try to use more flexible layout widgets such as

LinearLayoutLinearLayout, RelativeLayoutRelativeLayout, or the new GridLayoutGridLayout.

Pick one layout or ientation as your defaultPick one layout or ientation as your default – For example, instead of providing the alternate

resources layout-landlayout-land and layout-por tlayout-por t, put the resources for landscape in layoutlayout, and the resources

for portrait into layout-por tlayout-por t.

Use LayoutParams for Height and WidthUse LayoutParams for Height and Width - When defining UI elements in an XML layout file, an

Android application using the wrap_contentwrap_content and fill_parentfill_parent values will have more success ensure a

proper look across different devices than using pixel or density-independent units. These dimension

values cause Android to scale bitmap resources as appropriate. For this same reason, density-

independent units are best reserved for when specifying the margins and padding of UI elements.

An Android application must be tested against all configurations that will be supported. Ideally devices should

be tested on the actual devices themselves but in many cases this is not possible or practical. In this case, the use

of the emulator and Android Virtual Devices setup for each device configuration will be useful.

The Android SDK provides some emulator skins may be used to create AVDs will replicate the size, density, and

resolution of many devices. Many of the hardware vendors likewise provide skins for their devices.

Another option is to use the services of a third party testing service. These services will take an APK, run it on

many different devices, and then provide feedback how the application worked.

https://developer.android.com/resources/dashboard/screens.html
https://docs.microsoft.com/en-us/dotnet/api/android.widget.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gridlayout

Application Localization and String Resources
 7/8/2021 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/myButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
android:text="@string/hello"
 />
</LinearLayout>

Application localization is the act of providing alternate resources to target a specific region or locale. For

example, you might provide localized language strings for various countries, or you might change colors or

layout to match particular cultures. Android will load and use the resources appropriate for the device's locale at

runtime time without any changes to the source code.

For example, the image below shows the same application running in three different device locales, but the text

displayed in each button is specific to the locale that each device is set to:

In this example, the contents of a layout file, Main.axmlMain.axml looks something like this:

In the example above, the string for the button was loaded from the resources by providing the resource ID for

the string:

Visual Studio

Visual Studio for Mac

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/application-localization.md
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/resources-in-android/application-localization-images/01-click-me.png#lightbox

 Localizing Android Apps

 Related Links

Read the Introduction to Localization for tips and guidance on localizing mobile apps.

The Localizing Android Apps guide contains more specific examples on how to translate strings and localize

images using Xamarin.Android.

Localizing Android Apps

Cross-Platform Localization Overview

https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/localization
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/localization

Using Android Assets
 7/8/2021 • 2 minutes to read • Edit Online

 Add Asset to Project

 Reading Assets

Assets provide a way to include arbitrary files like text, xml, fonts, music, and video in your application. If you try

to include these files as "resources", Android will process them into its resource system and you will not be able

to get the raw data. If you want to access data untouched, Assets are one way to do it.

Assets added to your project will show up just like a file system that can read from by your application using

AssetManager. In this simple demo, we are going to add a text file asset to our project, read it using

AssetManager , and display it in a TextView.

Assets go in the Assets folder of your project. Add a new text file to this folder called read_asset.txt . Place

some text in it like "I came from an asset!".

Visual Studio

Visual Studio for Mac

Visual Studio should have set the Build ActionBuild Action for this file to AndroidAssetAndroidAsset:

Selecting the correct BuildActionBuildAction ensures that the file will be packaged into the APK at compile time.

Assets are read using an AssetManager. An instance of the AssetManager is available by accessing the Assets

property on an Android.Content.Context , such as an Activity. In the following code, we open our read_asset.txtread_asset.txt

asset, read the contents, and display it using a TextView.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/android-assets.md
https://docs.microsoft.com/en-us/dotnet/api/android.content.res.assetmanager
https://docs.microsoft.com/en-us/dotnet/api/android.content.res.assetmanager
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.assets#android_content_context_assets

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // Create a new TextView and set it as our view
 TextView tv = new TextView (this);

 // Read the contents of our asset
 string content;
 AssetManager assets = this.Assets;
 using (StreamReader sr = new StreamReader (assets.Open ("read_asset.txt")))
 {
 content = sr.ReadToEnd ();
 }

 // Set TextView.Text to our asset content
 tv.Text = content;
 SetContentView (tv);
}

 Reading Binary AssetsReading Binary Assets

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // Read the contents of our asset
 const int maxReadSize = 256 * 1024;
 byte[] content;
 AssetManager assets = this.Assets;
 using (BinaryReader br = new BinaryReader (assets.Open ("mydatabase.db")))
 {
 content = br.ReadBytes (maxReadSize);
 }

 // Do something with it...

}

 Running the Application

The use of StreamReader in the above example is ideal for text assets. For binary assets, use the following code:

Run the application and you should see the following:

 Related Links
AssetManager

Context

https://docs.microsoft.com/en-us/dotnet/api/android.content.res.assetmanager
https://docs.microsoft.com/en-us/dotnet/api/android.content.context

Fonts
 11/2/2020 • 11 minutes to read • Edit Online

 Overview

<?xml version="1.0" encoding="utf-8"?>
<font-family
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <font android:font="@font/sourcesanspro_regular"
 android:fontStyle="normal"
 android:fontWeight="400"
 app:font="@font/sourcesanspro_regular"
 app:fontStyle="normal"
 app:fontWeight="400" />

</font-family>

<TextView
 android:text="The quick brown fox jumped over the lazy dog."
 android:fontFamily="@font/sourcesanspro_regular"
 app:fontFamily="@font/sourcesanspro_regular"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

Beginning with API level 26, the Android SDK allows fonts to be treated as resources, just like a layouts or

drawables. The Android Support Library 26 NuGet will backport the new font API's to those apps that target API

level 14 or higher.

After targeting API 26 or installing the Android Support Library v26, there are two ways to use fonts in an

Android application:

1. Package the font as an Android resourcePackage the font as an Android resource – this ensures that the font is always available to the

application, but will increase the size of the APK.

2. Download the fontsDownload the fonts – Android also supports downloading a font from a font provider. The font provider

checks if the font is already on the device. If necessary, the font will be downloaded and cached on the device.

This font can be shared between multiple applications.

Similar fonts (or a font that may have several different styles) may be grouped into font families. This allows

developers to specify certain attributes of the font, such as it's weight, and Android will automatically select the

appropriate font from the font family.

The Android Support Library v26 will backport support for fonts to API level 26. When targeting the older API

levels, it is necessary to declare the app XML namespace and to name the various font attributes using the

android: namespace and the app: namespace. If only the android: namespace is used, then the fonts will not

be displayed devices running API level 25 or less. For example, this XML snippet declares a new font family

resource that will work in API level 14 and higher :

As long as fonts are provided to an Android application in a proper way, they can be applied to a UI widget by

setting the fontFamily attribute. For example, the following snippet demonstrates how to display a font in a

TextView:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/resources-in-android/fonts.md
https://www.nuget.org/packages/Xamarin.Android.Support.Compat/26.1.0.1
https://developer.android.com/reference/android/widget/TextView.html#attr_android:fontFamily

 Fonts as a Resource

NOTENOTE

 Font FamiliesFont Families

<?xml version="1.0" encoding="utf-8"?>
<font-family xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <font android:font="@font/sourcesanspro_regular"
 android:fontStyle="normal"
 android:fontWeight="400"
 app:font="@font/sourcesanspro_regular"
 app:fontStyle="normal"
 app:fontWeight="400" />
 <font android:font="@font/sourcesanspro_bold"
 android:fontStyle="normal"
 android:fontWeight="800"
 app:font="@font/sourcesanspro_bold"
 app:fontStyle="normal"
 app:fontWeight="800" />
 <font android:font="@font/sourcesanspro_italic"
 android:fontStyle="italic"
 android:fontWeight="400"
 app:font="@font/sourcesanspro_italic"
 app:fontStyle="italic"
 app:fontWeight="400" />
</font-family>

This guide will first discuss how to use fonts as an Android resource, and then move on to discuss how to

download fonts at runtime.

Packaging a font into an Android APK ensures that it is always available to the application. A font file (either a

.TTF or a .OTF file) is added to a Xamarin.Android application just like any other resource, by copying files to a

subdirectory in the ResourcesResources folder of a Xamarin.Android project. Fonts resources are kept in a fontfont sub-

directory of the ResourcesResources folder of the project.

The fonts should have a Build ActionBuild Action of AndroidResourceAndroidResource or they will not be packaged into the final APK. The build

action should be automatically set by the IDE.

When there are many similar font files (for example, the same font with different weights or styles) it is possible

to group them into a font family.

A font family is a set of fonts that have different weights and styles. For example, there might be separate font

files for bold or italic fonts. The font family is defined by font elements in an XML file that is kept in the

Resources/fontResources/font directory. Each font family should have it's own XML file.

To create a font family, first add all the fonts to the Resources/fontResources/font folder. Then create a new XML file in the

font folder for the font family. The name of the XML file has no affinity or relationship to the fonts being

referenced; the resource file can be any legal Android resource file name. This XML file will have a root

font-family element that contains one or more font elements. Each font element declares the attributes of a

font.

The following XML is an example of a font family for the Sources Sans Pro font that defines many different font

weights. This is saved as file in the Resources/fontResources/font folder named sourcesanspro.xmlsourcesanspro.xml :

The fontStyle attribute has two possible values:

normalnormal – a normal font

<TextView
 android:text="Sans Source Pro semi-bold italic, 600 weight, italic"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:fontFamily="@font/sourcesanspro"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:gravity="center_horizontal"
 android:fontWeight="600"
 android:textStyle="italic"
 />

 Programmatically Assigning FontsProgrammatically Assigning Fonts

Android.Graphics.Typeface typeface = this.Resources.GetFont(Resource.Font.caveat_regular);
textView1.Typeface = typeface;
textView1.Text = "Changed the font";

var typeface = Typeface.Create("", Android.Graphics.TypefaceStyle.Bold);
textView1.Typeface = typeface;

 Downloading Fonts

italicitalic – an italic font

The fontWeight attribute corresponds to the CSS font-weight attribute and refers to the thickness of the font.

This is a value in the range of 100 - 900. The following list describes the common font weight values and their

name:

ThinThin – 100

Extra L ightExtra L ight – 200

LightL ight – 300

NormalNormal – 400

MediumMedium – 500

Semi BoldSemi Bold – 600

BoldBold – 700

Extra BoldExtra Bold – 800

BlackBlack – 900

Once a font family has been defined, it can be used declaratively by setting the fontFamily , textStyle , and

fontWeight attributes in the layout file. For example the following XML snippet sets a 600 weight font (normal)

and an italic text style:

Fonts can be programmatically set by using the Resources.GetFont method to retrieve a Typeface object. Many

views have a TypeFace property that can be used to assign the font to the widget. This code snippet shows how

to programmatically set the font on a TextView:

The GetFont method will automatically load the first font within a font family. To load a font that matches a

specific style, use the Typeface.Create method. This method will try to load a font that matches the specified

style. As an example, this snippet will try to load a bold Typeface object from a font family that is defined in

Resources/fontsResources/fonts :

Instead of packaging fonts as an application resource, Android can download fonts from a remote source. This

will have the desirable effect of reducing the size of the APK.

https://developer.android.com/reference/android/content/res/Resources.html#getFont(int)
https://developer.android.com/reference/android/graphics/Typeface.html

<?xml version="1.0" encoding="utf-8"?>
<font-family xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:fontProviderAuthority="com.google.android.gms.fonts"
 android:fontProviderPackage="com.google.android.gms"
 android:fontProviderQuery="VT323"
 android:fontProviderCerts="@array/com_google_android_gms_fonts_certs"
 app:fontProviderAuthority="com.google.android.gms.fonts"
 app:fontProviderPackage="com.google.android.gms"
 app:fontProviderQuery="VT323"
 app:fontProviderCerts="@array/com_google_android_gms_fonts_certs"
>
</font-family>

Fonts are downloaded with the assistance of a font provider. This is a specialized content provider that manages

the downloading and caching of fonts to all applications on the device. Android 8.0 includes a font provider to

download fonts from the Google Font Repository. This default font provider is backported to API level 14 with

the Android Support Library v26.

When an app makes a request for a font, the font provider will first check to see if the font is already on the

device. If not, it will then attempt to download the font. If the font cannot be downloaded, then Android will use

the default system font. Once the font has been downloaded, it is available to all applications on the device, not

just the app that made the initial request.

When a request is made to download a font, the app does not directly query the font provider. Instead, apps will

use an instance of the FontsContract API (or the FontsContractCompat if the Support Library 26 is being used).

Android 8.0 supports downloading fonts in two different ways:

1. Declare Downloadable Fonts as a ResourceDeclare Downloadable Fonts as a Resource – An app may declare downloadable fonts to Android via

XML resource files. These files will contain all of the meta-data that Android needs to asynchronously

download the fonts when the app starts and cache them on the device.

2. ProgrammaticallyProgrammatically – APIs in Android API level 26 allow an application to download the fonts

programmatically, while the application is running. Apps will create a FontRequest object for a given font,

and pass this object to the FontsContract class. The FontsContract takes the FontRequest and retrieves the

font from a font provider. Android will synchronously download the font. An example of creating a

FontRequest will be shown later in this guide.

Regardless of which approach is used, resources files that must be added to the Xamarin.Android application

before fonts can be downloaded. First, the font(s) must be declared in an XML file in the Resources/fontResources/font

directory as part of a font family. This snippet is an example of how to download fonts from the Google Fonts

Open Source collection using the default font provider that comes with Android 8.0 (or Support Library v26):

The font-family element contains the following attributes, declaring the information that Android requires to

download the fonts:

1. fontProviderAuthorityfontProviderAuthority – The authority of the Font Provider to be used for the request.

2. fontPackagefontPackage – The package for the Font Provider to be used for the request. This is used to verify the

identity of the provider.

3. fontQuer yfontQuer y – This is a string that will help the font provider locate the requested font. Details on the font

query are specific to the font provider. The QueryBuilder class in the Downloadable Fonts sample app

provides some information on the query format for fonts from the Google Fonts Open Source Collection.

4. fontProviderCer tsfontProviderCer ts – A resource array with the list of sets of hashes for the certificates that the provider

should be signed with.

Once the fonts are defined, it may be necessary to provide information about the font certificates involved with

the download.

https://fonts.google.com
https://developer.android.com/reference/android/provider/FontsContract.html
https://developer.android.com/reference/android/support/v4/provider/FontsContractCompat.html
https://fonts.google.com
https://github.com/xamarin/monodroid-samples/blob/master/android-o/DownloadableFonts/DownloadableFonts/QueryBuilder.cs
https://github.com/xamarin/monodroid-samples/blob/master/android-o/DownloadableFonts/

 Font CertificatesFont Certificates

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <array name="com_google_android_gms_fonts_certs">
 <item>@array/com_google_android_gms_fonts_certs_dev</item>
 <item>@array/com_google_android_gms_fonts_certs_prod</item>
 </array>
 <string-array name="com_google_android_gms_fonts_certs_dev">
 <item>

MIIEqDCCA5CgAwIBAgIJANWFuGx90071MA0GCSqGSIb3DQEBBAUAMIGUMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQG
A1UEBxMNTW91bnRhaW4gVmlldzEQMA4GA1UEChMHQW5kcm9pZDEQMA4GA1UECxMHQW5kcm9pZDEQMA4GA1UEAxMHQW5kcm9pZDEiMCAGCSqG
SIb3DQEJARYTYW5kcm9pZEBhbmRyb2lkLmNvbTAeFw0wODA0MTUyMzM2NTZaFw0zNTA5MDEyMzM2NTZaMIGUMQswCQYDVQQGEwJVUzETMBEG
A1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNTW91bnRhaW4gVmlldzEQMA4GA1UEChMHQW5kcm9pZDEQMA4GA1UECxMHQW5kcm9pZDEQMA4G
A1UEAxMHQW5kcm9pZDEiMCAGCSqGSIb3DQEJARYTYW5kcm9pZEBhbmRyb2lkLmNvbTCCASAwDQYJKoZIhvcNAQEBBQADggENADCCAQgCggEB
ANbOLggKv+IxTdGNs8/TGFy0PTP6DHThvbbR24kT9ixcOd9W+EaBPWW+wPPKQmsHxajtWjmQwWfna8mZuSeJS48LIgAZlKkpFeVyxW0qMBuj
b8X8ETrWy550NaFtI6t9+u7hZeTfHwqNvacKhp1RbE6dBRGWynwMVX8XW8N1+UjFaq6GCJukT4qmpN2afb8sCjUigq0GuMwYXrFVee74bQgL
HWGJwPmvmLHC69EH6kWr22ijx4OKXlSIx2xT1AsSHee70w5iDBiK4aph27yH3TxkXy9V89TDdexAcKk/cVHYNnDBapcavl7y0RiQ4biu8ymM
8Ga/nmzhRKya6G0cGw8CAQOjgfwwgfkwHQYDVR0OBBYEFI0cxb6VTEM8YYY6FbBMvAPyT+CyMIHJBgNVHSMEgcEwgb6AFI0cxb6VTEM8YYY6
FbBMvAPyT+CyoYGapIGXMIGUMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNTW91bnRhaW4gVmlldzEQMA4G
A1UEChMHQW5kcm9pZDEQMA4GA1UECxMHQW5kcm9pZDEQMA4GA1UEAxMHQW5kcm9pZDEiMCAGCSqGSIb3DQEJARYTYW5kcm9pZEBhbmRyb2lk
LmNvbYIJANWFuGx90071MAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEEBQADggEBABnTDPEF+3iSP0wNfdIjIz1AlnrPzgAIHVvXxunW7SBr
DhEglQZBbKJEk5kT0mtKoOD1JMrSu1xuTKEBahWRbqHsXclaXjoBADb0kkjVEJu/Lh5hgYZnOjvlba8Ld7HCKePCVePoTJBdI4fvugnL8Tsg
K05aIskyY0hKI9L8KfqfGTl1lzOv2KoWD0KWwtAWPoGChZxmQ+nBli+gwYMzM1vAkP+aayLe0a1EQimlOalO762r0GXO0ks+UeXde2Z4e+8S
/pf7pITEI/tP+MxJTALw9QUWEv9lKTk+jkbqxbsh8nfBUapfKqYn0eidpwq2AzVp3juYl7//fKnaPhJD9gs=
 </item>
 </string-array>
 <string-array name="com_google_android_gms_fonts_certs_prod">
 <item>

MIIEQzCCAyugAwIBAgIJAMLgh0ZkSjCNMA0GCSqGSIb3DQEBBAUAMHQxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYD
VQQHEw1Nb3VudGFpbiBWaWV3MRQwEgYDVQQKEwtHb29nbGUgSW5jLjEQMA4GA1UECxMHQW5kcm9pZDEQMA4GA1UEAxMHQW5kcm9pZDAeFw0w
ODA4MjEyMzEzMzRaFw0zNjAxMDcyMzEzMzRaMHQxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1Nb3VudGFp
biBWaWV3MRQwEgYDVQQKEwtHb29nbGUgSW5jLjEQMA4GA1UECxMHQW5kcm9pZDEQMA4GA1UEAxMHQW5kcm9pZDCCASAwDQYJKoZIhvcNAQEB
BQADggENADCCAQgCggEBAKtWLgDYO6IIrgqWbxJOKdoR8qtW0I9Y4sypEwPpt1TTcvZApxsdyxMJZ2JORland2qSGT2y5b+3JKkedxiLDmpH
pDsz2WCbdxgxRczfey5YZnTJ4VZbH0xqWVW/8lGmPav5xVwnIiJS6HXk+BVKZF+JcWjAsb/GEuq/eFdpuzSqeYTcfi6idkyugwfYwXFU1+5f
ZKUaRKYCwkkFQVfcAs1fXA5V+++FGfvjJ/CxURaSxaBvGdGDhfXE28LWuT9ozCl5xw4Yq5OGazvV24mZVSoOO0yZ31j7kYvtwYK6NeADwbSx
DdJEqO4k//0zOHKrUiGYXtqw/A0LFFtqoZKFjnkCAQOjgdkwgdYwHQYDVR0OBBYEFMd9jMIhF1Ylmn/Tgt9r45jk14alMIGmBgNVHSMEgZ4w
gZuAFMd9jMIhF1Ylmn/Tgt9r45jk14aloXikdjB0MQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNTW91bnRh
aW4gVmlldzEUMBIGA1UEChMLR29vZ2xlIEluYy4xEDAOBgNVBAsTB0FuZHJvaWQxEDAOBgNVBAMTB0FuZHJvaWSCCQDC4IdGZEowjTAMBgNV
HRMEBTADAQH/MA0GCSqGSIb3DQEBBAUAA4IBAQBt0lLO74UwLDYKqs6Tm8/yzKkEu116FmH4rkaymUIE0P9KaMftGlMexFlaYjzmB2OxZyl6
euNXEsQH8gjwyxCUKRJNexBiGcCEyj6z+a1fuHHvkiaai+KL8W1EyNmgjmyy8AW7P+LLlkR+ho5zEHatRbM/YAnqGcFh5iZBqpknHf1SKMXF
h4dd239FJ1jWYfbMDMy3NS5CTMQ2XFI1MvcyUTdZPErjQfTbQe3aDQsQcafEQPD+nqActifKZ0Np0IS9L9kR/wbNvyz6ENwPiTrjV2KRkEjH
78ZMcUQXg0L3BYHJ3lc69Vs5Ddf9uUGGMYldX3WfMBEmh/9iFBDAaTCK
 </item>
 </string-array>
</resources>

 Declaring Downloadable Fonts as ResourcesDeclaring Downloadable Fonts as Resources

If the font provider is not preinstalled on the device, or if the app is using the Xamarin.Android.Support.Compat

library, Android requires the security certificates of the font provider. These certificates will be listed in an array

resource file that is kept in Resources/valuesResources/values directory.

For example, the following XML is named Resources/values/fonts_cer t.xmlResources/values/fonts_cer t.xml and stores the certificates for the

Google font provider :

With these resource files in place, the app is capable of downloading the fonts.

By listing the downloadable fonts in the AndroidManifest.XMLAndroidManifest.XML , Android will asynchronously download the

fonts when the app first starts. The font's themselves are listed in an array resource file, similar to this one:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <array name="downloadable_fonts" translatable="false">
 <item>@font/vt323</item>
 </array>
</resources>

<meta-data android:name="downloadable_fonts" android:resource="@array/downloadable_fonts" />

 Downloading a Font with the Font APIsDownloading a Font with the Font APIs

FontRequest request = new FontRequest("com.google.android.gms.fonts", "com.google.android.gms",
<FontToDownload>, Resource.Array.com_google_android_gms_fonts_certs);

To download these fonts, they have to be declared in AndroidManifest.XMLAndroidManifest.XML by adding meta-data as a child of

the application element. For example, if the downloadable fonts are declared in a resource file at

Resources/values/downloadable_fonts.xmlResources/values/downloadable_fonts.xml , then this snippet would have to be added to the manifest:

It is possible to programmatically download a font by instantiating a FontRequest object and passing that to the

FontContractCompat.RequestFont method. The FontContractCompat.RequestFont method will first check to see if

the font exists on the device, and then if necessary will asynchronously query the font provider and try to

download the font for the app. If FontRequest is unable to download the font, then Android will use the default

system font.

A FontRequest object contains information that will be used by the font provider to locate and download a font.

A FontRequest requires four pieces of information:

1. Font Provider AuthorityFont Provider Authority – The authority of the Font Provider to be used for the request.

2. Font PackageFont Package – The package for the Font Provider to be used for the request. This is used to verify the

identity of the provider.

3. Font Quer yFont Quer y – This is a string that will help the font provider locate the requested font. Details on the font

query are specific to the font provider. The details of the string are specific to the font provider. The

QueryBuilder class in the Downloadable Fonts sample app provides some information on the query format

for fonts from the Google Fonts Open Source Collection.

4. Font Provider Cer tificatesFont Provider Cer tificates – A resource array with the list of sets of hashes for the certificates the provider

should be signed with.

This snippet is an example of instantiating a new FontRequest object:

In the previous snippet FontToDownload is a query that will help the font from the Google Fonts Open Source

collection.

Before passing the FontRequest to the FontContractCompat.RequestFont method, there are two objects that must

be created:

FontsContractCompat.FontRequestCallback – This is an abstract class which must be extended. It is a callback

that will be invoked when RequestFont is finished. A Xamarin.Android app must subclass

FontsContractCompat.FontRequestCallback and override the OnTypefaceRequestFailed and

OnTypefaceRetrieved , providing the actions to be taken when the download fails or succeeds respectively.

Handler – This is a Handler which will be used by RequestFont to download the font on a thread, if

necessary. Fonts should notnot be downloaded on the UI thread.

This snippet is an example of a C# class that will asynchronously download a font from Google Fonts Open

Source collection. It implements the FontRequestCallback interface, and raises a C# event when FontRequest

https://developer.android.com/reference/android/support/v4/provider/FontRequest.html
https://github.com/xamarin/monodroid-samples/blob/master/android-o/DownloadableFonts/DownloadableFonts/QueryBuilder.cs
https://github.com/xamarin/monodroid-samples/blob/master/android-o/DownloadableFonts/

public class FontDownloadHelper : FontsContractCompat.FontRequestCallback
{
 // A very simple font query; replace as necessary
 public static readonly String FontToDownload = "Courgette";

 Android.OS.Handler Handler = null;

 public event EventHandler<FontDownloadEventArg> FontDownloaded = delegate
 {
 // just an empty delegate to avoid null reference exceptions.
 };

 public void DownloadFonts(Context context)
 {
 FontRequest request = new FontRequest("com.google.android.gms.fonts",
"com.google.android.gms",FontToDownload , Resource.Array.com_google_android_gms_fonts_certs);
 FontsContractCompat.RequestFont(context, request, this, GetHandlerThreadHandler());
 }

 public override void OnTypefaceRequestFailed(int reason)
 {
 base.OnTypefaceRequestFailed(reason);
 FontDownloaded(this, new FontDownloadEventArg(null));
 }

 public override void OnTypefaceRetrieved(Android.Graphics.Typeface typeface)
 {
 base.OnTypefaceRetrieved(typeface);
 FontDownloaded(this, new FontDownloadEventArg(typeface));
 }

 Handler GetHandlerThreadHandler()
 {
 if (Handler == null)
 {
 HandlerThread handlerThread = new HandlerThread("fonts");
 handlerThread.Start();
 Handler = new Handler(handlerThread.Looper);
 }
 return Handler;
 }
}

public class FontDownloadEventArg : EventArgs
{
 public FontDownloadEventArg(Android.Graphics.Typeface typeface)
 {
 Typeface = typeface;
 }
 public Android.Graphics.Typeface Typeface { get; private set; }
 public bool RequestFailed
 {
 get
 {
 return Typeface != null;
 }
 }
}

has finished.

To use this helper, a new FontDownloadHelper is created, and an event handler is assigned:

var fontHelper = new FontDownloadHelper();

fontHelper.FontDownloaded += (object sender, FontDownloadEventArg e) =>
{
 //React to the request
};
fontHelper.DownloadFonts(this); // this is an Android Context instance.

 Summary

 Related Links

This guide discussed the new APIs in Android 8.0 to support downloadable fonts and fonts as resources. It

discussed how to embed existing fonts in an APK and to use them in a layout. It also discussed how Android 8.0

supports downloading fonts from a font provider, either programmatically or by declaring the font meta-data in

resource files.

fontFamily

FontConfig

FontRequest

FontsContractCompat

Resources.GetFont

Typeface

Android Support Library 26 NuGet

Using Fonts in Android

CSS font weight specification

Google Fonts Open Source collection

Source Sans Pro

https://developer.android.com/reference/android/widget/TextView.html#attr_android:fontFamily
https://developer.android.com/reference/android/text/FontConfig.html
https://developer.android.com/reference/android/support/v4/provider/FontRequest.html
https://developer.android.com/reference/android/support/v4/provider/FontsContractCompat.html
https://developer.android.com/reference/android/content/res/Resources.html#getFont(int)
https://developer.android.com/reference/android/graphics/Typeface.html
https://www.nuget.org/packages/Xamarin.Android.Support.Compat/
https://www.youtube.com/watch?v=TfB-TsLFJdM
https://www.w3.org/TR/css-fonts-3/#font-weight-numeric-values
https://fonts.google.com/
https://fonts.google.com/specimen/Source+Sans+Pro

Activity Lifecycle
 7/30/2021 • 17 minutes to read • Edit Online

 Activity Lifecycle Overview

 Activity Lifecycle

 Activity StatesActivity States

Activities are a fundamental building block of Android applications and they can exist in a number of different

states. The activity lifecycle begins with instantiation and ends with destruction, and includes many states in

between. When an activity changes state, the appropriate lifecycle event method is called, notifying the activity

of the impending state change and allowing it to execute code to adapt to that change. This article examines the

lifecycle of activities and explains the responsibility that an activity has during each of these state changes to be

part of a well-behaved, reliable application.

Activities are an unusual programming concept specific to Android. In traditional application development there

is usually a static main method, which is executed to launch the application. With Android, however, things are

different; Android applications can be launched via any registered activity within an application. In practice, most

applications will only have a specific activity that is specified as the application entry point. However, if an

application crashes, or is terminated by the OS, the OS can try to restart the application at the last open activity

or anywhere else within the previous activity stack. Additionally, the OS may pause activities when they're not

active, and reclaim them if it is low on memory. Careful consideration must be made to allow the application to

correctly restore its state in the event that an activity is restarted, especially if that activity depends on data from

previous activities.

The activity lifecycle is implemented as a collection of methods the OS calls throughout the lifecycle of an

activity. These methods allow developers to implement the functionality that is necessary to satisfy the state and

resource management requirements of their applications.

It is extremely important for the application developer to analyze the requirements of each activity to determine

which methods exposed by the activity lifecycle need to be implemented. Failure to do this can result in

application instability, crashes, resource bloat, and possibly even underlying OS instability.

This chapter examines the activity lifecycle in detail, including:

Activity States

Lifecycle Methods

Retaining the State of an Application

This section also includes a walkthrough that provide practical examples on how to efficiently save state during

the Activity lifecycle. By the end of this chapter you should have an understanding of the Activity lifecycle and

how to support it in an Android application.

The Android activity lifecycle comprises a collection of methods exposed within the Activity class that provide

the developer with a resource management framework. This framework allows developers to meet the unique

state management requirements of each activity within an application and properly handle resource

management.

The Android OS arbitrates Activities based on their state. This helps Android identify activities that are no longer

in use, allowing the OS to reclaim memory and resources. The following diagram illustrates the states an

Activity can go through during its lifetime:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/activity-lifecycle/index.md

 Activity Re-Creation in Response to Configuration ChangesActivity Re-Creation in Response to Configuration Changes

 Activity Lifecycle MethodsActivity Lifecycle Methods

These states can be broken into 4 main groups as follows:

1. Active or Running – Activities are considered active or running if they are in the foreground, also known

as the top of the activity stack. This is considered the highest priority activity in Android, and as such will

only be killed by the OS in extreme situations, such as if the activity tries to use more memory than is

available on the device as this could cause the UI to become unresponsive.

2. Paused – When the device goes to sleep, or an activity is still visible but partially hidden by a new, non-

full-sized or transparent activity, the activity is considered paused. Paused activities are still alive, that is,

they maintain all state and member information, and remain attached to the window manager. This is

considered to be the second highest priority activity in Android and, as such, will only be killed by the OS

if killing this activity will satisfy the resource requirements needed to keep the Active/Running Activity

stable and responsive.

3. Stopped/Backgrounded – Activities that are completely obscured by another activity are considered

stopped or in the background. Stopped activities still try to retain their state and member information for

as long as possible, but stopped activities are considered to be the lowest priority of the three states and,

as such, the OS will kill activities in this state first to satisfy the resource requirements of higher priority

activities.

4. Restarted – It is possible for an activity that is anywhere from paused to stopped in the lifecycle to be

removed from memory by Android. If the user navigates back to the activity it must be restarted,

restored to its previously saved state, and then displayed to the user.

To make matters more complicated, Android throws one more wrench in the mix called Configuration Changes.

Configuration changes are rapid activity destruction/re-creation cycles that occur when the configuration of an

activity changes, such as when the device is rotated (and the activity needs to get re-built in landscape or

portrait mode), when the keyboard is displayed (and the activity is presented with an opportunity to resize

itself), or when the device is placed in a dock, among others.

Configuration changes still cause the same Activity State changes that would occur during stopping and

restarting an activity. However, in order to make sure that an application feels responsive and performs well

during configuration changes, it's important that they are handled as quickly as possible. Because of this,

Android has a specific API that can be used to persist state during configuration changes. We'll cover this later in

the Managing State Throughout the Lifecycle section.

The Android SDK and, by extension, the Xamarin.Android framework provide a powerful model for managing

the state of activities within an application. When an activity's state is changing, the activity is notified by the OS,

which calls specific methods on that activity. The following diagram illustrates these methods in relation to the

Activity Lifecycle:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/images/image1.png#lightbox

 OnCreateOnCreate

As a developer, you can handle state changes by overriding these methods within an activity. It's important to

note, however, that all lifecycle methods are called on the UI thread and will block the OS from performing the

next piece of UI work, such as hiding the current activity, displaying a new activity, etc. As such, code in these

methods should be as brief as possible to make an application feel well performing. Any long-running tasks

should be executed on a background thread.

Let's examine each of these lifecycle methods and their use:

OnCreate is the first method to be called when an activity is created. OnCreate is always overridden to perform

any startup initializations that may be required by an Activity such as:

Creating views

Initializing variables

Binding static data to lists

OnCreate takes a Bundle parameter, which is a dictionary for storing and passing state information and objects

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/images/image2.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.os.bundle

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 string intentString;
 bool intentBool;

 if (bundle != null)
 {
 intentString = bundle.GetString("myString");
 intentBool = bundle.GetBoolean("myBool");
 }

 // Set our view from the "main" layout resource
 SetContentView(Resource.Layout.Main);
}

 OnStartOnStart

 OnResumeOnResume

protected override void OnResume()
{
 base.OnResume(); // Always call the superclass first.

 if (_camera==null)
 {
 // Do camera initializations here
 }
}

 OnPauseOnPause

between activities If the bundle is not null, this indicates the activity is restarting and it should restore its state

from the previous instance. The following code illustrates how to retrieve values from the bundle:

Once OnCreate has finished, Android will call OnStart .

OnStart is always called by the system after OnCreate is finished. Activities may override this method if they

need to perform any specific tasks right before an activity becomes visible such as refreshing current values of

views within the activity. Android will call OnResume immediately after this method.

The system calls OnResume when the Activity is ready to start interacting with the user. Activities should

override this method to perform tasks such as:

Ramping up frame rates (a common task in game development)

Starting animations

Listening for GPS updates

Display any relevant alerts or dialogs

Wire up external event handlers

As an example, the following code snippet shows how to initialize the camera:

OnResume is important because any operation that is done in OnPause should be un-done in OnResume , since it's

the only lifecycle method that is guaranteed to execute after OnPause when bringing the activity back to life.

OnPause is called when the system is about to put the activity into the background or when the activity becomes

partially obscured. Activities should override this method if they need to:

Commit unsaved changes to persistent data

Destroy or clean up other objects consuming resources

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onstart#android_app_activity_onstart
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onresume#android_app_activity_onresume
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onpause#android_app_activity_onpause

protected override void OnPause()
{
 base.OnPause(); // Always call the superclass first

 // Release the camera as other activities might need it
 if (_camera != null)
 {
 _camera.Release();
 _camera = null;
 }
}

 OnStopOnStop

 OnDestroyOnDestroy

 OnRestartOnRestart

Ramp down frame rates and pausing animations

Unregister external event handlers or notification handlers (i.e. those that are tied to a service). This must

be done to prevent Activity memory leaks.

Likewise, if the Activity has displayed any dialogs or alerts, they must be cleaned up with the .Dismiss()

method.

As an example, the following code snippet will release the camera, as the Activity cannot make use of it while

paused:

There are two possible lifecycle methods that will be called after OnPause :

1. OnResume will be called if the Activity is to be returned to the foreground.

2. OnStop will be called if the Activity is being placed in the background.

OnStop is called when the activity is no longer visible to the user. This happens when one of the following

occurs:

A new activity is being started and is covering up this activity.

An existing activity is being brought to the foreground.

The activity is being destroyed.

OnStop may not always be called in low-memory situations, such as when Android is starved for resources and

cannot properly background the Activity. For this reason, it is best not to rely on OnStop getting called when

preparing an Activity for destruction. The next lifecycle methods that may be called after this one will be

OnDestroy if the Activity is going away, or OnRestart if the Activity is coming back to interact with the user.

OnDestroy is the final method that is called on an Activity instance before it's destroyed and completely

removed from memory. In extreme situations Android may kill the application process that is hosting the

Activity, which will result in OnDestroy not being invoked. Most Activities will not implement this method

because most clean up and shut down has been done in the OnPause and OnStop methods. The OnDestroy

method is typically overridden to clean up long running tasks that might leak resources. An example of this

might be background threads that were started in OnCreate .

There will be no lifecycle methods called after the Activity has been destroyed.

OnRestart is called after your activity has been stopped, prior to it being started again. A good example of this

would be when the user presses the home button while on an activity in the application. When this happens

OnPause and then OnStop methods are called, and the Activity is moved to the background but is not

destroyed. If the user were then to restore the application by using the task manager or a similar application,

Android will call the OnRestart method of the activity.

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onstop#android_app_activity_onstop
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.ondestroy#android_app_activity_ondestroy
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onrestart#android_app_activity_onrestart

 Back vs. HomeBack vs. Home

 Managing State Throughout the Lifecycle

 Bundle StateBundle State

There are no general guidelines for what kind of logic should be implemented in OnRestart . This is because

OnStart is always invoked regardless of whether the Activity is being created or being restarted, so any

resources required by the Activity should be initialized in OnStart , rather than OnRestart .

The next lifecycle method called after OnRestart will be OnStart .

Many Android devices have two distinct buttons: a "Back" button and a "Home" button. An example of this can

be seen in the following screenshot of Android 4.0.3:

There is a subtle difference between the two buttons, even though they appear to have the same effect of

putting an application in the background. When a user clicks the Back button, they are telling Android that they

are done with the activity. Android will destroy the Activity. In contrast, when the user clicks the Home button the

activity is merely placed into the background – Android will not kill the activity.

When an Activity is stopped or destroyed the system provides an opportunity to save the state of the Activity for

later rehydration. This saved state is referred to as instance state. Android provides three options for storing

instance state during the Activity lifecycle:

1. Storing primitive values in a Dictionary known as a Bundle that Android will use to save state.

2. Creating a custom class that will hold complex values such as bitmaps. Android will use this custom class

to save state.

3. Circumventing the configuration change lifecycle and assuming complete responsibility for maintaining

state in the activity.

This guide covers the first two options.

The primary option for saving instance state is to use a key/value dictionary object known as a Bundle. Recall

that when an Activity is created that the OnCreate method is passed a bundle as a parameter, this bundle can be

used to restore the instance state. It is not recommended to use a bundle for more complex data that won't

quickly or easily serialize to key/value pairs (such as bitmaps); rather, it should be used for simple values like

strings.

An Activity provides methods to help with saving and retrieving the instance state in the Bundle:

OnSaveInstanceState – This is invoked by Android when the activity is being destroyed. Activities can

implement this method if they need to persist any key/value state items.

OnRestoreInstanceState – This is called after the OnCreate method is finished, and provides another

opportunity for an Activity to restore its state after initialization is complete.

The following diagram illustrates how these methods are used:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/images/image4.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.os.bundle
https://docs.microsoft.com/en-us/dotnet/api/android.os.bundle
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onsaveinstancestate
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onrestoreinstancestate

 OnSaveInstanceStateOnSaveInstanceState

int c;

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 this.SetContentView (Resource.Layout.SimpleStateView);

 var output = this.FindViewById<TextView> (Resource.Id.outputText);

 if (bundle != null) {
 c = bundle.GetInt ("counter", -1);
 } else {
 c = -1;
 }

 output.Text = c.ToString ();

 var incrementCounter = this.FindViewById<Button> (Resource.Id.incrementCounter);

 incrementCounter.Click += (s,e) => {
 output.Text = (++c).ToString();
 };
}

OnSaveInstanceState will be called as the Activity is being stopped. It will receive a bundle parameter that the

Activity can store its state in. When a device experiences a configuration change, an Activity can use the Bundle

object that is passed in to preserve the Activity state by overriding OnSaveInstanceState . For example, consider

the following code:

The code above increments an integer named c when a button named incrementCounter is clicked, displaying

the result in a TextView named output . When a configuration change happens - for example, when the device

is rotated - the above code would lose the value of c because the bundle would be null , as shown in the

figure below:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/images/image3.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onsaveinstancestate

protected override void OnSaveInstanceState (Bundle outState)
{
 outState.PutInt ("counter", c);
 base.OnSaveInstanceState (outState);
}

c = bundle.GetInt ("counter", -1);

NOTENOTE

 Vi e w St a t eVi e w St a t e

<EditText android:id="@+id/myText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

To preserve the value of c in this example, the Activity can override OnSaveInstanceState , saving the value in

the bundle as shown below:

Now when the device is rotated to a new orientation, the integer is saved in the bundle and is retrieved with the

line:

It is important to always call the base implementation of OnSaveInstanceState so that the state of the view hierarchy

can also be saved.

Overriding OnSaveInstanceState is an appropriate mechanism for saving transient data in an Activity across

orientation changes, such as the counter in the above example. However, the default implementation of

OnSaveInstanceState will take care of saving transient data in the UI for every view, so long as each view has an

ID assigned. For example, say an application has an EditText element defined in XML as follows:

Since the EditText control has an id assigned, when the user enters some data and rotates the device, the

data is still displayed, as shown below:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/images/07.png#lightbox

 OnRestoreInstanceStateOnRestoreInstanceState

protected override void OnRestoreInstanceState(Bundle savedState)
{
 base.OnRestoreInstanceState(savedState);
 var myString = savedState.GetString("myString");
 var myBool = savedState.GetBoolean("myBool");
}

 Bundle LimitationsBundle Limitations

OnRestoreInstanceState will be called after OnStart . It provides an activity the opportunity to restore any state

that was previously saved to a Bundle during the previous OnSaveInstanceState . This is the same bundle that is

provided to OnCreate , however.

The following code demonstrates how state can be restored in OnRestoreInstanceState :

This method exists to provide some flexibility around when state should be restored. Sometimes it is more

appropriate to wait until all initializations are done before restoring instance state. Additionally, a subclass of an

existing Activity may only want to restore certain values from the instance state. In many cases, it's not

necessary to override OnRestoreInstanceState , since most activities can restore state using the bundle provided

to OnCreate .

For an example of saving state using a Bundle , refer to the Walkthrough - Saving the Activity state.

Although OnSaveInstanceState makes it easy to save transient data, it has some limitations:

It is not called in all cases. For example, pressing HomeHome or BackBack to exit an Activity will not result in

OnSaveInstanceState being called.

The bundle passed into OnSaveInstanceState is not designed for large objects, such as images. In the case

of large objects, saving the object from OnRetainNonConfigurationInstance is preferable, as discussed

below.

Data saved by using the bundle is serialized, which can lead to delays.

Bundle state is useful for simple data that doesn't use much memory, whereas non-configuration instance data

is useful for more complex data, or data that is expensive to retrieve, such as from a web service call or a

complicated database query. Non-configuration instance data gets saved in an object as needed. The next

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/images/08.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onrestoreinstancestate
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onretainnonconfigurationinstance#android_app_activity_onretainnonconfigurationinstance

 Persisting Complex DataPersisting Complex Data

public class NonConfigInstanceActivity : ListActivity
{
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);
 SearchTwitter ("xamarin");
 }

 public void SearchTwitter (string text)
 {
 string searchUrl = String.Format("http://search.twitter.com/search.json?" + "q=
{0}&rpp=10&include_entities=false&" + "result_type=mixed", text);

 var httpReq = (HttpWebRequest)HttpWebRequest.Create (new Uri (searchUrl));
 httpReq.BeginGetResponse (new AsyncCallback (ResponseCallback), httpReq);
 }

 void ResponseCallback (IAsyncResult ar)
 {
 var httpReq = (HttpWebRequest)ar.AsyncState;

 using (var httpRes = (HttpWebResponse)httpReq.EndGetResponse (ar)) {
 ParseResults (httpRes);
 }
 }

 void ParseResults (HttpWebResponse httpRes)
 {
 var s = httpRes.GetResponseStream ();
 var j = (JsonObject)JsonObject.Load (s);

 var results = (from result in (JsonArray)j ["results"] let jResult = result as JsonObject select jResult
["text"].ToString ()).ToArray ();

 RunOnUiThread (() => {
 PopulateTweetList (results);
 });
 }

 void PopulateTweetList (string[] results)
 {
 ListAdapter = new ArrayAdapter<string> (this, Resource.Layout.ItemView, results);
 }
}

section introduces OnRetainNonConfigurationInstance as a way of preserving more complex data types through

configuration changes.

In addition to persisting data in the bundle, Android also supports saving data by overriding

OnRetainNonConfigurationInstance and returning an instance of a Java.Lang.Object that contains the data to

persist. There are two primary benefits of using OnRetainNonConfigurationInstance to save state:

The object returned from OnRetainNonConfigurationInstance performs well with larger, more complex

data types because memory retains this object.

The OnRetainNonConfigurationInstance method is called on demand, and only when needed. This is more

economical than using a manual cache.

Using OnRetainNonConfigurationInstance is suitable for scenarios where it is expensive to retrieve the data

multiple times, such as in web service calls. For example, consider the following code that searches Twitter :

This code retrieves results from the web formatted as JSON, parses them, and then presents the results in a list,

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onretainnonconfigurationinstance#android_app_activity_onretainnonconfigurationinstance

as shown in the following screenshot:

public class NonConfigInstanceActivity : ListActivity
{
 TweetListWrapper _savedInstance;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 var tweetsWrapper = LastNonConfigurationInstance as TweetListWrapper;

 if (tweetsWrapper != null) {
 PopulateTweetList (tweetsWrapper.Tweets);
 } else {
 SearchTwitter ("xamarin");
 }

 public override Java.Lang.Object OnRetainNonConfigurationInstance ()
 {
 base.OnRetainNonConfigurationInstance ();
 return _savedInstance;
 }

 ...

 void PopulateTweetList (string[] results)
 {
 ListAdapter = new ArrayAdapter<string> (this, Resource.Layout.ItemView, results);
 _savedInstance = new TweetListWrapper{Tweets=results};
 }
}

class TweetListWrapper : Java.Lang.Object
{
 public string[] Tweets { get; set; }
}

When a configuration change occurs - for example, when a device is rotated - the code repeats the process. To

reuse the originally retrieved results and not cause needless, redundant network calls, we can use

OnRetainNonconfigurationInstance to save the results, as shown below:

Now when the device is rotated, the original results are retrieved from the LastNonConfiguartionInstance

property. In this example, the results consist of a string[] containing tweets. Since

OnRetainNonConfigurationInstance requires that a Java.Lang.Object be returned, the string[] is wrapped in a

class that subclasses Java.Lang.Object , as shown below:

For example, attempting to use a TextView as the object returned from OnRetainNonConfigurationInstance will

leak the Activity, as illustrated by the code below:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/images/06.png#lightbox

TextView _textView;

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 var tv = LastNonConfigurationInstance as TextViewWrapper;

 if(tv != null) {
 _textView = tv;
 var parent = _textView.Parent as FrameLayout;
 parent.RemoveView(_textView);
 } else {
 _textView = new TextView (this);
 _textView.Text = "This will leak.";
 }

 SetContentView (_textView);
}

public override Java.Lang.Object OnRetainNonConfigurationInstance ()
{
 base.OnRetainNonConfigurationInstance ();
 return _textView;
}

 Summary

 Related Links

In this section, we learned how to preserve simple state data with the Bundle , and persist more complex data

types with OnRetainNonConfigurationInstance .

The Android activity lifecycle provides a powerful framework for state management of activities within an

application but it can be tricky to understand and implement. This chapter introduced the different states that an

activity may go through during its lifetime, as well as the lifecycle methods that are associated with those states.

Next, guidance was provided as to what kind of logic should be performed in each of these methods.

Handling Rotation

Android Activity

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity

Walkthrough - Saving the Activity state
 7/8/2021 • 4 minutes to read • Edit Online

 Activity State Walkthrough

 Viewing State TransitionsViewing State Transitions

[ActivityLifecycle.MainActivity] Activity A - OnCreate
[ActivityLifecycle.MainActivity] Activity A - OnStart
[ActivityLifecycle.MainActivity] Activity A - OnResume

We have covered the theory behind saving state in the Activity Lifecycle guide; now, let's walk through an

example.

Let's open the ActivityL ifecycle_Star tActivityL ifecycle_Star t project (in the ActivityLifecycle sample), build it, and run it. This is a very

simple project that has two activities to demonstrate the activity lifecycle and how the various lifecycle methods

are called. When you start the application, the screen of MainActivity is displayed:

Each method in this sample writes to the IDE application output window to indicate activity state. (To open the

output window in Visual Studio, type CTRL-ALT-OCTRL-ALT-O; to open the output window in Visual Studio for Mac, click

View > Pads > Application OutputView > Pads > Application Output.)

When the app first starts, the output window displays the state changes of Activity A:

When we click the Star t Activity BStar t Activity B button, we see Activity A pause and stop while Activity B goes through its

state changes:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/activity-lifecycle/saving-state.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/activitylifecycle
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/saving-state-images/01-activity-a.png#lightbox

[ActivityLifecycle.MainActivity] Activity A - OnPause
[ActivityLifecycle.SecondActivity] Activity B - OnCreate
[ActivityLifecycle.SecondActivity] Activity B - OnStart
[ActivityLifecycle.SecondActivity] Activity B - OnResume
[ActivityLifecycle.MainActivity] Activity A - OnStop

[ActivityLifecycle.SecondActivity] Activity B - OnPause
[ActivityLifecycle.MainActivity] Activity A - OnRestart
[ActivityLifecycle.MainActivity] Activity A - OnStart
[ActivityLifecycle.MainActivity] Activity A - OnResume
[ActivityLifecycle.SecondActivity] Activity B - OnStop
[ActivityLifecycle.SecondActivity] Activity B - OnDestroy

 Adding a Click CounterAdding a Click Counter

int _counter = 0;

As a result, Activity B is started and displayed in place of Activity A:

When we click the BackBack button, Activity B is destroyed and Activity A is resumed:

Next, we're going to change the application so that we have a button that counts and displays the number of

times it is clicked. First, let's add a _counter instance variable to MainActivity :

Next, let's edit the Resource/layout/Main.axmlResource/layout/Main.axml layout file and add a new clickButton that displays the

number of times the user has clicked the button. The resulting Main.axmlMain.axml should resemble the following:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/saving-state-images/02-activity-b.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/myButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/mybutton_text" />
 <Button
 android:id="@+id/clickButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/counterbutton_text" />
</LinearLayout>

var clickbutton = FindViewById<Button> (Resource.Id.clickButton);
clickbutton.Text = Resources.GetString (
 Resource.String.counterbutton_text, _counter);
clickbutton.Click += (object sender, System.EventArgs e) =>
{
 _counter++;
 clickbutton.Text = Resources.GetString (
 Resource.String.counterbutton_text, _counter);
} ;

Let's add the following code to the end of the OnCreate method in MainActivity – this code handles click events

from the clickButton :

When we build and run the app again, a new button appears that increments and displays the value of

_counter on each click:

But when we rotate the device to landscape mode, this count is lost:

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/saving-state-images/03-touched.png#lightbox

[ActivityLifecycle.MainActivity] Activity A - OnPause
[ActivityLifecycle.MainActivity] Activity A - OnStop
[ActivityLifecycle.MainActivity] Activity A - On Destroy

[ActivityLifecycle.MainActivity] Activity A - OnCreate
[ActivityLifecycle.MainActivity] Activity A - OnStart
[ActivityLifecycle.MainActivity] Activity A - OnResume

 Adding Code to Preserve Instance StateAdding Code to Preserve Instance State

protected override void OnSaveInstanceState (Bundle outState)
{
 outState.PutInt ("click_count", _counter);
 Log.Debug(GetType().FullName, "Activity A - Saving instance state");

 // always call the base implementation!
 base.OnSaveInstanceState (outState);
}

Examining the application output, we see that Activity A was paused, stopped, destroyed, recreated, restarted,

then resumed during the rotation from portrait to landscape mode:

Because Activity A is destroyed and recreated again when the device is rotated, its instance state is lost. Next, we

will add code to save and restore the instance state.

Let's add a method to MainActivity to save the instance state. Before Activity A is destroyed, Android

automatically calls OnSaveInstanceState and passes in a Bundle that we can use to store our instance state. Let's

use it to save our click count as an integer value:

When Activity A is recreated and resumed, Android passes this Bundle back into our OnCreate method. Let's

add code to OnCreate to restore the _counter value from the passed-in Bundle . Add the following code just

before the line where clickbutton is defined:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/saving-state-images/05-rotate-nosave.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onsaveinstancestate
https://docs.microsoft.com/en-us/dotnet/api/android.os.bundle

if (bundle != null)
{
 _counter = bundle.GetInt ("click_count", 0);
 Log.Debug(GetType().FullName, "Activity A - Recovered instance state");
}

[ActivityLifecycle.MainActivity] Activity A - OnPause
[ActivityLifecycle.MainActivity] Activity A - Saving instance state
[ActivityLifecycle.MainActivity] Activity A - OnStop
[ActivityLifecycle.MainActivity] Activity A - On Destroy

[ActivityLifecycle.MainActivity] Activity A - OnCreate
[ActivityLifecycle.MainActivity] Activity A - Recovered instance state
[ActivityLifecycle.MainActivity] Activity A - OnStart
[ActivityLifecycle.MainActivity] Activity A - OnResume

 Summary

 Related Links

Build and run the app again, then click the second button a few times. When we rotate the device to landscape

mode, the count is preserved!

Let's take a look at the output window to see what happened:

Before the OnStop method was called, our new OnSaveInstanceState method was called to save the _counter

value in a Bundle . Android passed this Bundle back to us when it called our OnCreate method, and we were

able to used it to restore the _counter value to where we left off.

In this walkthough, we have used our knowledge of the Activity Lifecycle to preserve state data.

ActivityLifecycle (sample)

Activity Lifecycle

Android Activity

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/activity-lifecycle/saving-state-images/06-rotate-save.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onstop#android_app_activity_onstop
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/activitylifecycle
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity

Creating Android Services
 7/8/2021 • 9 minutes to read • Edit Online

 Android Services Overview

This guide discusses Xamarin.Android services, which are Android components that allow work to be done

without an active user interface. Services are very commonly used for tasks that are performed in the

background, such as time consuming calculations, downloading files, playing music, and so on. It explains the

different scenarios that services are suited for and shows how to implement them both for performing long-

running background tasks as well as for providing an interface for remote procedure calls.

Mobile apps are not like desktop apps. Desktops have copious amounts of resources such as screen real estate,

memory, storage space, and a connected power supply, mobile devices do not. These constraints force mobile

apps to behave differently. For example, the small screen on a mobile device typically means that only one app

(i.e. Activity) is visible at a time. Other Activities are moved to the background and pushed into a suspended

state where they cannot perform any work. However, just because an Android application is in the background

does not mean that it is impossible for app to keep working.

Android applications are made up of at least one of the following four primary components: Activities, Broadcast

Receivers, Content Providers, and Services. Activities are the cornerstone of many great Android applications

because they provide the UI that allows a user to interact with the application. However, when it comes to

performing concurrent or background work, Activities are not always the best choice.

The primary mechanism for background work in Android is the service. An Android service is a component that

is designed to do some work without a user interface. A service might download a file, play music, or apply a

filter to an image. Services can also be used for interprocess communication (IPC) between Android

applications. For example one Android app might use the music player service that is from another app or an

app might expose data (such as a person's contact information) to other apps via a service.

Services, and their ability to perform background work, are crucial to providing a smooth and fluid user

interface. All Android applications have a main thread (also known as a UI thread) on which the Activities are

run. To keep the device responsive, Android must be able to update the user interface at the rate of 60 frames

per second. If an Android app performs too much work on the main thread, then Android will drop frames,

which in turn causes the UI to appear jerky (also sometimes referred to as janky). This means that any work

performed on the UI thread should complete in the time span between two frames, approximately 16

milliseconds (1 second every 60 frames).

To address this concern, a developer may use threads in an Activity to perform some work that would block the

UI. However, this could cause problems. It is very possible that Android will destroy and recreate the multiple

instances of the Activity. However, Android will not automatically destroy the threads, which could result in

memory leaks. A prime example of this is when the device is rotated – Android will try to destroy the instance of

the Activity and then recreate a new one:

This is a potential memory leak – the thread created by the first instance of the Activity will still be running. If the

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/index.md

thread has a reference to the first instance of the Activity, this will prevent Android from garbage collecting the

object. However, the second instance of the Activity is still created (which in turn might create a new thread).

Rotating the device several times in rapid succession may exhaust all the RAM and force Android to terminate

the entire application to reclaim memory.

As a rule of thumb, if the work to be performed should outlive an Activity, then a service should be created to

perform that work. However, if the work is only applicable in the context of an Activity, then creating a thread to

perform the work might be more appropriate. For example, creating a thumbnail for a photo that was just added

to a photo gallery app should probably occur in a service. However, a thread might be more appropriate to play

some music that should only be heard while an Activity is in the foreground.

Background work can be broken down into two broad classifications:

1. Long Running TaskLong Running Task – This is work that is ongoing until explicitly stopped. An example of a long running

task is an app that streams music or that must monitor data collected from a sensor. These tasks must run

even though the application has no visible user interface.

2. Per iodic TasksPeriodic Tasks – (sometimes referred to as a job) A periodic task is one that is of relatively short in duration

(several seconds) and is run on a schedule (i.e. once a day for a week or perhaps just once in the next 60

seconds). An example of this is downloading a file from the internet or generating a thumbnail for an image.

There are four different types of Android services:

Bound Ser viceBound Ser vice – A bound service is a service that has some other component (typically an Activity)

bound to it. A bound service provides an interface that allows the bound component and the service to

interact with each other. Once there are no more clients bound to the service, Android will shut the

service down.

IntentService – An IntentService is a specialized subclass of the Service class that simplifies service

creation and usage. An IntentService is meant to handle individual autonomous calls. Unlike a service,

which can concurrently handle multiple calls, an IntentService is more like a work queue processor –

work is queued up and an IntentService processes each job one at a time on a single worker thread.

Typically, an IntentService is not bound to an Activity or a Fragment.

Star ted Ser viceStar ted Ser vice – A started service is a service that has been started by some other Android

component (such as an Activity) and is run continuously in the background until something explicitly tells

the service to stop. Unlike a bound service, a started service does not have any clients directly bound to

it. For this reason, it is important to design started services so that they may be gracefully restarted as

necessary.

Hybrid Ser viceHybrid Ser vice – A hybrid service is a service that has the characteristics of a started service and a

bound service. A hybrid service can be started by when a component binds to it or it may be started by

some event. A client component may or may not be bound to the hybrid service. A hybrid service will

keep running until it is explicitly told to stop, or until there are no more clients bound to it.

Which type of service to use is very dependent on application requirements. As a rule of thumb, an

IntentService or a bound service are sufficient for most tasks that an Android application must perform, so

preference should be given to one of those two types of services. An IntentService is a good choice for "one-

shot" tasks, such as downloading a file, while a bound service would be suitable when frequent interactions with

an Activity/Fragment is required.

While most services run in the background, there is a special sub-category known as a foreground service. This

is a service that is given a higher priority (compared to a normal service) to perform some work for the user

(such as playing music).

It is also possible to run a service in its own process on the same device, this is sometimes referred to as a

remote service or as an out-of-process service. This does require more effort to create, but can be useful for

 Background Execution Limits in Android 8.0Background Execution Limits in Android 8.0

 Related Links

when an application needs to share functionality with other applications, and can, in some cases, improve the

user experience of an application.

Starting in Android 8.0 (API level 26), an Android application no longer have the ability to run freely in the

background. When in the foreground, an app can start and run services without restriction. When an application

moves into the background, Android will grant the app a certain amount of time to start and use services. Once

that time has elapsed, the app can no longer start any services and any services that were started will be

terminated. At this point it is not possible for the app to perform any work. Android considers an application to

be in the foreground if one of the following conditions are met:

There is a visible activity (either started or paused).

The app has started a foreground service.

Another app is in the foreground and is using components from an app that would be otherwise in the

background. An example of this is if Application A, which is in the foreground, is bound to a service provided

by Application B. Application B would then also be considered in the foreground, and not terminated by

Android for being in the background.

There are some situations where, even though an app is in the background, Android will wake up the app and

relax these restrictions for a few minutes, allowing the app to perform some work:

A high priority Firebase Cloud Message is received by the app.

The app receives a broadcast.

The application receives and executes a PendingIntent in response to a Notification.

Existing Xamarin.Android applications may have to change how they perform background work to avoid any

issues that might arise on Android 8.0. Here are some practical alternatives to an Android service:

Schedule work to run in the background using the Android Job Scheduler or the Schedule work to run in the background using the Android Job Scheduler or the Firebase JobFirebase Job

DispatcherDispatcher – These two libraries provide a framework for applications to segregate background work in to

jobs, a discrete unit of work. Apps can then schedule the job with the operating system along with some

criteria about when the job can run.

Star t the ser vice in the foregroundStar t the ser vice in the foreground – a foreground service is useful for when the app must perform

some task in the background and the user may need to periodically interact with that task. The foreground

service will display a persistent notification so that the user is aware that the app is running a background

task and also provides a way to monitor or interact with the task. An example of this would be a podcasting

app that is playing back a podcast to the user or perhaps downloading a podcast episode so that it can be

enjoyed later.

Use a high pr ior ity Firebase Cloud Message (FCM)Use a high pr ior ity Firebase Cloud Message (FCM) – When Android receives a high priority FCM for

an app, it will allow that app to run services in the background for a short period of time. This would be a

good alternative to having a background service that polls an app in the background.

Defer work for when the app comes into the foregroundDefer work for when the app comes into the foreground – If none of the previous solutions are

viable, then apps must develop their own way to pause and resume work when the app comes to the

foreground.

Android Oreo Background Execution Limits

https://www.youtube.com/watch?v=Pumf_4yjTMc

Creating a Service
 7/8/2021 • 4 minutes to read • Edit Online

[Service]
public class DemoService : Service
{
 // Magical code that makes the service do wonderful things.
}

<service android:name="md5a0cbbf8da641ae5a4c781aaf35e00a86.DemoService" />

[Service(Exported=true, Name="com.xamarin.example.DemoService")]
public class DemoService : Service
{
 // Magical code that makes the service do wonderful things.
}

<service android:exported="true" android:name="com.xamarin.example.DemoService" />

Xamarin.Android services must obey two inviolable rules of Android services:

They must extend the Android.App.Service .

They must be decorated with the Android.App.ServiceAttribute .

Another requirement of Android services is that they must be registered in the AndroidManifest.xmlAndroidManifest.xml and

given a unique name. Xamarin.Android will automatically register the service in the manifest at build time with

the necessary XML attribute.

This code snippet is the simplest example of creating a service in Xamarin.Android that meets these two

requirements:

At compile time, Xamarin.Android will register the service by injecting the following XML element into

AndroidManifest.xmlAndroidManifest.xml (notice that Xamarin.Android generated a random name for the service):

It is possible to share a service with other Android applications by exporting it. This is accomplished by setting

the Exported property on the ServiceAttribute . When exporting a service, the ServiceAttribute.Name

property should also be set to provide a meaningful public name for the service. This snippet demonstrates how

to export and name a service:

The AndroidManifest.xmlAndroidManifest.xml element for this service will then look something like:

Services have their own lifecycle with callback methods that are invoked as the service is created. Exactly which

methods are invoked depends on the type of service. A started service must implement different lifecycle

methods than a bound service, while a hybrid service must implement the callback methods for both a started

service and a bound service. These methods are all members of the Service class; how the service is started

will determine what lifecycle methods will be invoked. These lifecycle methods will be discussed in more detail

later.

By default, a service will start in the same process as an Android application. It is possible to start a service in its

own process by setting the ServiceAttribute.IsolatedProcess property to true:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/creating-a-service/index.md
https://docs.microsoft.com/en-us/dotnet/api/android.app.service
https://docs.microsoft.com/en-us/dotnet/api/android.app.serviceattribute

[Service(IsolatedProcess=true)]
public class DemoService : Service
{
 // Magical code that makes the service do wonderful things, in it's own process!
}

NOTENOTE

 Starting A Service

The next step is to examine how to start a service and then move on to examine how to implement the three

different types of services.

A service runs on the UI thread, so if any work is to be performed which blocks the UI, the service must use threads to

perform the work.

The most basic way to start a service in Android is to dispatch an Intent which contains meta-data to help

identify which service should be started. There are two different styles of Intents that can be used to start a

service:

// Example of creating an explicit Intent in an Android Activity
Intent downloadIntent = new Intent(this, typeof(DownloadService));
downloadIntent.data = Uri.Parse(fileToDownload);

Intent sendIntent = new Intent("common.xamarin.DemoService");
sendIntent.Data = Uri.Parse(fileToDownload);

Explicit IntentExplicit Intent – An explicit Intent will identify exactly what service should be used to complete a given

action. An explicit Intent can be thought of as a letter that has a specific address; Android will route the

intent to the service that is explicitly identified. This snippet is one example of using an explicit Intent to

start a service called DownloadService :

Implicit IntentImplicit Intent – This type of Intent loosely identifies the type of action that the user wishes to perform,

but the exact service to complete that action is unknown. An implicit Intent can be thought of as a letter

that is addressed "To Whom It May Concern...". Android will examine the contents of the Intent, and

determine if there is an existing service which matches the intent.

An intent filter is used to help match the implicit intent with a registered service. An intent filter is an XML

element that is added to AndroidManifest.xmlAndroidManifest.xml which contains the necessary meta-data to help match a

Service with an implicit intent.

If Android has more than one possible match for an implicit intent, then it may ask the user to select the

component to handle the action:

IMPORTANTIMPORTANT

 Creating an Intent Filter for Implicit IntentsCreating an Intent Filter for Implicit Intents

[Service]
[IntentFilter(new String[]{"com.xamarin.DemoService"})]
public class DemoService : Service
{
}

Starting in Android 5.0 (AP level 21) an implicit intent cannot be used to start a service.

Where possible, applications should use explicit Intents to start a service. An implicit Intent does not ask for a

specific service to start – it is a request for some service installed on the device to handle the request. This

ambiguous request can result in the wrong service handling the request or another app needlessly starting

(which increases the pressure for resources on the device).

How the Intent is dispatched depends on the type of service and will be discussed in more detail later in the

guides specific to each type of service.

To associate a service with an implicit Intent, an Android app must provide some meta-data to identify the

capabilities of the service. This meta-data is provided by intent filters. Intent filters contain some information,

such as an action or a type of data, that must be present in an Intent to start a service. In Xamarin.Android, the

intent filter is registered in AndroidManifest.xmlAndroidManifest.xml by decorating a service with the IntentFilterAttribute . For

example, the following code adds an intent filter with an associated action of com.xamarin.DemoService :

This results in an entry being included in the AndroidManifest.xmlAndroidManifest.xml file – an entry that is packaged with the

application in a way analogous to the following example:

https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute

<service android:name="demoservice.DemoService">
 <intent-filter>
 <action android:name="com.xamarin.DemoService" />
 </intent-filter>
</service>

 Related Links

With the basics of a Xamarin.Android service out of the way, let's examine the different subtypes of services in

more detail.

Android.App.Service

Android.App.ServiceAttribute

Android.App.Intent

Android.App.IntentFilterAttribute

https://docs.microsoft.com/en-us/dotnet/api/android.app.service
https://docs.microsoft.com/en-us/dotnet/api/android.app.serviceattribute
https://docs.microsoft.com/en-us/dotnet/api/android.content.intent
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute

Bound Services in Xamarin.Android
 7/8/2021 • 11 minutes to read • Edit Online

 Bound Services Overview

Bound services are Android services that provide a client-server interface that a client (such as an Android

Activity) can interact with. This guide will discuss the key components involved with creating a bound service

and how to use it in a Xamarin.Android application.

Services that provide a client-server interface for clients to directly interact with the service are referred to as

bound services. There can be multiple clients connected to a single instance of a service at the same time. The

bound service and the client are isolated from each other. Instead, Android provides a series of intermediate

objects that manage the state of the connection between the two. This state is maintained by an object that

implements the Android.Content.IServiceConnection interface. This object is created by the client and passed as

a parameter to the BindService method. The BindService is available on any Android.Content.Context object

(such as an Activity). It is a request to the Android operating system to start up the service and bind a client to it.

There are three ways to a client may bind to a service using the BindService method:

A ser vice binderA ser vice binder – A service binder is a class that implements the Android.OS.IBinder interface. Most

applications will not implement this interface directly, instead they will extend the Android.OS.Binder class.

This is the most common approach and is suitable for when the service and the client exist in the same

process.

Using a MessengerUsing a Messenger – This technique is suitable for when the service might exist in a separate process.

Instead, service requests are marshalled between the client and service via an Android.OS.Messenger . An

Android.OS.Handler is created in the service which will handle the Messenger requests. This will be covered

in another guide.

Using Android Interface Definition Language (AIDL)Using Android Interface Definition Language (AIDL) – AIDL is an advanced technique that will not be

covered in this guide.

Once a client has been bound to a service, communication between the two is occurs via Android.OS.IBinder

object. This object is responsible for the interface that will allow the client to interact with the service. It is not

necessary for each Xamarin.Android application to implement this interface from scratch, the Android SDK

provides the Android.OS.Binder class which takes care of most of the code required with marshalling the object

between the client and the service.

When a client is done with the service, it must unbind from it by calling the UnbindService method. Once the

last client has unbound from a service, Android will stop and dispose of the bound service.

This diagram illustrates how the Activity, service connection, binder, and service all related to each other :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/creating-a-service/bound-services.md
https://docs.microsoft.com/en-us/dotnet/api/android.content.iserviceconnection
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.bindservice
https://docs.microsoft.com/en-us/dotnet/api/android.content.context
https://docs.microsoft.com/en-us/dotnet/api/android.os.ibinder
https://docs.microsoft.com/en-us/dotnet/api/android.os.binder
https://docs.microsoft.com/en-us/dotnet/api/android.os.messenger
https://docs.microsoft.com/en-us/dotnet/api/android.os.handler
https://developer.android.com/guide/components/aidl
https://docs.microsoft.com/en-us/dotnet/api/android.os.binder

This guide will discuss how to extend the Service class to implement a bound service. It will also cover

implementing IServiceConnection and extending Binder to allow a client to communicate with the service. A

sample app accompanies this guide, which contain a solution with a single Xamarin.Android project called

BoundSer viceDemoBoundSer viceDemo . This is a very basic application which demonstrates how to implement a service and

how to bind an activity to it. The bound service has a very simple API with only one method,

GetFormattedTimestamp , which returns a string that tells the user when the service has started and how long it

has been running. The app also allows the user to manually unbind and bind to the service.

https://github.com/xamarin/monodroid-samples/tree/master/ApplicationFundamentals/ServiceSamples/BoundServiceDemo

 Implementing and Consuming a Bound Service

 Extend the Extend the Service Class Class

There are three components that must be implemented in order for an Android application to consume a bound

service:

1. Extend the Extend the Service class and Implement the L ifecycle Callback Methods class and Implement the L ifecycle Callback Methods – This class will contain the

code that will perform the work that will be requested of the service. This will be covered in more detail

below.

2. Create a Class that Implements Create a Class that Implements IServiceConnection – This interface provides callback methods will

invoked by Android to notify the client when the connection to the service has changed, i.e. the client has

connected or disconnected to the service. The service connection will also provide a reference to an object

that the client can use to directly interact with the service. This reference is known as the binder.

3. Create a Class that Implements Create a Class that Implements IBinder – A Binder implementation provides the API that a client uses to

communicate with the service. The Binder can either provide a reference to the bound service, allowing

methods to be directly invoked or the Binder can provide a client API that encapsulates and hides the bound

service from the application. An IBinder must provide the necessary code for remote procedure calls. It is

not necessary (or recommended) to implement the IBinder interface directly. Instead applications should

extend the Binder type which provides most of the base functionality required by an IBinder .

4. Star ting and Binding to a Ser viceStar ting and Binding to a Ser vice – Once the service connection, binder, and service have been created

the Android application is responsible for starting the service and binding to it.

Each of these steps will be discussed in the following sections in more detail.

To create a service using Xamarin.Android, it is necessary to subclass Service and to adorn the class with the

ServiceAttribute . The attribute is used by the Xamarin.Android build tools to properly register the service in

the app's AndroidManifest.xmlAndroidManifest.xml file Much like an activity, a bound service has it's own lifecycle and callback

methods associated with the significant events in it's lifecycle. The following list is an example of some of the

more common callback methods that a service will implement:

OnCreate – This method is invoked by Android as it is instantiating the service. It is used to initialize any

variables or objects that are required by the service during it's lifetime. This method is optional.

OnBind – This method must be implemented by all bound services. It is invoked when the first client tries to

connect to the service. It will return an instance of IBinder so that the client may interact with the service. As

long as the service is running, the IBinder object will be used to fulfill any future client requests to bind to

the service.

OnUnbind – This method is called when all bound clients have unbound. By returning true from this

method, the service will later call OnRebind with the intent passed to OnUnbind when new clients bind to it.

You would do this when a service continues running after it has been unbound. This would happen if the

recently unbound service were also a started service, and StopService or StopSelf hadn’t been called. In

such a scenario, OnRebind allows the intent to be retrieved. The default returns false , which does nothing.

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/services/creating-a-service/bound-services-images/bound-services-03.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.serviceattribute

Optional.

OnDestroy – This method is called when Android is destroying the service. Any necessary cleanup, such as

releasing resources, should be performed in this method. Optional.

The key lifecycle events of a bound service are shown in this diagram:

The following code snippet, from the companion application that accompanies this guide, shows how to

implement a bound service in Xamarin.Android:

using Android.App;
using Android.Util;
using Android.Content;
using Android.OS;

namespace BoundServiceDemo
{
 [Service(Name="com.xamarin.ServicesDemo1")]
 public class TimestampService : Service, IGetTimestamp
 {
 static readonly string TAG = typeof(TimestampService).FullName;
 IGetTimestamp timestamper;

 public IBinder Binder { get; private set; }

 public override void OnCreate()
 {
 // This method is optional to implement
 base.OnCreate();
 Log.Debug(TAG, "OnCreate");
 timestamper = new UtcTimestamper();
 }

 public override IBinder OnBind(Intent intent)
 {
 // This method must always be implemented
 Log.Debug(TAG, "OnBind");
 this.Binder = new TimestampBinder(this);
 return this.Binder;
 }

 public override bool OnUnbind(Intent intent)
 {
 // This method is optional to implement
 Log.Debug(TAG, "OnUnbind");
 return base.OnUnbind(intent);
 }

 public override void OnDestroy()
 {
 // This method is optional to implement
 Log.Debug(TAG, "OnDestroy");
 Binder = null;
 timestamper = null;
 base.OnDestroy();
 }

 /// <summary>
 /// This method will return a formatted timestamp to the client.
 /// </summary>
 /// <returns>A string that details what time the service started and how long it has been running.
</returns>
 public string GetFormattedTimestamp()
 {
 return timestamper?.GetFormattedTimestamp();
 }
 }
}

 Implementing IBinderImplementing IBinder

In the sample, the OnCreate method initializes an object that holds the logic for retrieving and formatting a

timestamp that would be requested by a client. When the first client tries to bind to the service, Android will

invoke the OnBind method. This service will instantiate a TimestampBinder object that will allow the clients to

access this instance of the running service. The TimestampBinder class is discussed in the next section.

public class TimestampBinder : Binder
{
 public TimestampBinder(TimestampService service)
 {
 this.Service = service;
 }

 public TimestampService Service { get; private set; }
}

string currentTimestamp = serviceConnection.Binder.Service.GetFormattedTimestamp()

 Creating the Service ConnectionCreating the Service Connection

As mentioned, an IBinder object provides the communication channel between a client and a service. Android

applications should not implement the IBinder interface, the Android.OS.Binder should be extended. The

Binder class provides much of the necessary infrastructure which is necessary marshal the binder object from

the service (which may be running in a separate process) to the client. In most cases, the Binder subclass is

only a few lines of code and wraps a reference to the service. In this example, TimestampBinder has a property

that exposes the TimestampService to the client:

This Binder makes it possible to invoke the public methods on the service; for example:

Once Binder has been extended, it is necessary to implement IServiceConnection to connect everything

together.

The IServiceConnection will present|introduce|expose|connect the Binder object to the client. In addition to

implementing the IServiceConnection interface, the class must extend Java.Lang.Object . The service

connection should also provide some way that the client can access the Binder (and therefore communicate

with the bound service).

This code is from the accompanying sample project is one possible way to implement IServiceConnection :

https://docs.microsoft.com/en-us/dotnet/api/android.os.binder

using Android.Util;
using Android.OS;
using Android.Content;

namespace BoundServiceDemo
{
 public class TimestampServiceConnection : Java.Lang.Object, IServiceConnection, IGetTimestamp
 {
 static readonly string TAG = typeof(TimestampServiceConnection).FullName;

 MainActivity mainActivity;
 public TimestampServiceConnection(MainActivity activity)
 {
 IsConnected = false;
 Binder = null;
 mainActivity = activity;
 }

 public bool IsConnected { get; private set; }
 public TimestampBinder Binder { get; private set; }

 public void OnServiceConnected(ComponentName name, IBinder service)
 {
 Binder = service as TimestampBinder;
 IsConnected = this.Binder != null;

 string message = "onServiceConnected - ";
 Log.Debug(TAG, $"OnServiceConnected {name.ClassName}");

 if (IsConnected)
 {
 message = message + " bound to service " + name.ClassName;
 mainActivity.UpdateUiForBoundService();
 }
 else
 {
 message = message + " not bound to service " + name.ClassName;
 mainActivity.UpdateUiForUnboundService();
 }

 Log.Info(TAG, message);
 mainActivity.timestampMessageTextView.Text = message;

 }

 public void OnServiceDisconnected(ComponentName name)
 {
 Log.Debug(TAG, $"OnServiceDisconnected {name.ClassName}");
 IsConnected = false;
 Binder = null;
 mainActivity.UpdateUiForUnboundService();
 }

 public string GetFormattedTimestamp()
 {
 if (!IsConnected)
 {
 return null;
 }

 return Binder?.GetFormattedTimestamp();
 }
 }
}

 Starting and Binding to a Service with an Explicit Intent

protected override void OnStart ()
{
 base.OnStart ();

 if (serviceConnection == null)
 {
 this.serviceConnection = new TimestampServiceConnection(this);
 }

 Intent serviceToStart = new Intent(this, typeof(TimestampService));
 BindService(serviceToStart, this.serviceConnection, Bind.AutoCreate);

}

IMPORTANTIMPORTANT

 Architectural Notes About the Service Connection and the Binder.

As a part of the binding process, Android will invoke the OnServiceConnected method, providing the name of the

service that is being bound and the binder that holds a reference to the service itself. In this example, the

service connection has two properties, one that holds a reference to the Binder and a boolean flag for if the

client is connected to the service or not.

The OnServiceDisconnected method is only invoked when the connection between a client and a service is

unexpectedly lost or broken. This method allows the client a chance to respond to the interruption in service.

To use a bound service, a client (such as an Activity) must instantiate an object that implements

Android.Content.IServiceConnection and invoke the BindService method. BindService will return true if the

service is bound to, false if it is not. The BindService method takes three parameters:

An An Intent – The Intent should explicitly identify which service to connect to.

An An IServiceConnection Object Object – This object is an intermediary that provides callback methods to notify the

client when the bound service is started and stopped.

Android.Content.Bind enum enum – This parameter is a set of flags are used by the system to when bind the

object. The most commonly used value is Bind.AutoCreate , which will automatically start the service if it isn't

already running.

The following Code snippet is an example of how to start a bound service in an Activity using an explicit intent:

Starting with Android 5.0 (API level 21) it is only possible to bind to a service with an explicit intent.

Some OOP purists may disapprove of the previous implementation of the TimestampBinder class as it is a

violation of the Law of Demeter which, in it's simplest form states "Don't talk to strangers; only talk to your

friends". This particular implementation exposes the concrete TimestampService class to all clients.

Strictly speaking, it is not necessary for the client to know about the TimestampService and exposing that

concrete class to clients can make an application more brittle and harder to maintain over it's lifetime. An

alternate approach is to use an interface which exposes the GetFormattedTimestamp() method, and proxy calls to

the service through the Binder (or possible the service connection class):

https://docs.microsoft.com/en-us/dotnet/api/android.content.bind
https://docs.microsoft.com/en-us/dotnet/api/android.content.bind#android_content_bind_autocreate
https://en.wikipedia.org/wiki/Law_of_Demeter

public class TimestampBinder : Binder, IGetTimestamp
{
 TimestampService service;
 public TimestampBinder(TimestampService service)
 {
 this.service = service;
 }

 public string GetFormattedTimestamp()
 {
 return service?.GetFormattedTimestamp();
 }
}

// In this example the Activity is only talking to a friend, i.e. the IGetTimestamp interface provided by
the Binder.
string currentTimestamp = serviceConnection.Binder.GetFormattedTimestamp()

 Related Links

This particular example allow an activity to invoke methods on the service itself:

Android.App.Service

Android.Content.Bind

Android.Content.Context

Android.Content.IServiceConnection

Android.OS.Binder

Android.OS.IBinder

BoundServiceDemo (sample)

https://docs.microsoft.com/en-us/dotnet/api/android.app.service
https://docs.microsoft.com/en-us/dotnet/api/android.content.bind
https://docs.microsoft.com/en-us/dotnet/api/android.content.context
https://docs.microsoft.com/en-us/dotnet/api/android.content.iserviceconnection
https://docs.microsoft.com/en-us/dotnet/api/android.os.binder
https://docs.microsoft.com/en-us/dotnet/api/android.os.ibinder
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-servicesamples-boundservicedemo

Intent Services in Xamarin.Android
 3/19/2020 • 2 minutes to read • Edit Online

[Service]
public class DemoIntentService: IntentService
{
 public DemoIntentService () : base("DemoIntentService")
 {
 }

 protected override void OnHandleIntent (Android.Content.Intent intent)
 {
 Console.WriteLine ("perform some long running work");
 ...
 Console.WriteLine ("work complete");
 }
}

Both started and bound services run on the main thread, which means that to keep performance smooth, a

service needs to perform the work asynchronously. One of the simplest ways to address this concern is with a

worker queue processor pattern, where the work to be done is placed in a queue that is serviced by a single

thread.

The IntentService is a subclass of the Service class that provides an Android specific implementation of this

pattern. It will manage queueing work, starting up a worker thread to service the queue, and pulling requests off

the queue to be run on the worker thread. An IntentService will quietly stop itself and remove the worker

thread when there is no more work in the queue.

Work is submitted to the queue by creating an Intent and then passing that Intent to the StartService

method.

It is not possible to stop or interrupt the OnHandleIntent method IntentService while it is working. Because of

this design, an IntentService should be kept stateless – it should not rely on an active connection or

communication from the rest of the application. An IntentService is meant to statelessly process the work

requests.

There are two requirements for subclassing IntentService :

1. The new type (created by subclassing IntentService) only overrides the OnHandleIntent method.

2. The constructor for the new type requires a string which is used to name the worker thread that will handle

the requests. The name of this worker thread is primarily used when debugging the application.

The following code shows an IntentService implementation with the overridden OnHandleIntent method:

Work is sent to an IntentService by instantiating an Intent and then calling the StartService method with

that Intent as a parameter. The Intent will be passed to the service as a parameter in the OnHandleIntent method.

This code snippet is an example of sending a work request to an Intent:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/creating-a-service/intent-services.md
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentservice
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.startservice

// This code might be called from within an Activity, for example in an event
// handler for a button click.
Intent downloadIntent = new Intent(this, typeof(DemoIntentService));

// This is just one example of passing some values to an IntentService via the Intent:
downloadIntent.PutExtra("file_to_download", "http://www.somewhere.com/file/to/download.zip");

StartService(downloadIntent);

protected override void OnHandleIntent (Android.Content.Intent intent)
{
 string fileToDownload = intent.GetStringExtra("file_to_download");

 Log.Debug("DemoIntentService", $"File to download: {fileToDownload}.");
}

 Related Links

The IntentService can extract the values from the Intent, as demonstrated in this code snippet:

IntentService

StartService

https://docs.microsoft.com/en-us/dotnet/api/android.app.intentservice
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.startservice

Started Services with Xamarin.Android
 7/8/2021 • 5 minutes to read • Edit Online

 Started Services Overview

public override StartCommandResult OnStartCommand (Android.Content.Intent intent, StartCommandFlags flags,
int startId)
{
 // This method executes on the main thread of the application.
 Log.Debug ("DemoService", "DemoService started");
 ...
 return StartCommandResult.Sticky;
}

Started services typically perform a unit of work without providing any direct feedback or results to the client.

An example of a unit of work is a service that uploads a file to a server. The client will make a request to a

service to upload a file from the device to a website. The service will quietly upload the file (even if the app has

no Activities in the foreground), and terminate itself when the upload is finished. It is important to realize that a

started service will run on the UI thread of an application. This means that if a service is to perform work that

will block the UI thread, it must create and dispose of threads as necessary.

Unlike a bound service, there is no communication channel between a "pure" started service and its clients. This

means that a started service will implement some different lifecycle methods than a bound service. The

following list highlights the common lifecycle methods in a started service:

OnCreate – Called one time when the service is first started. This is where initialization code should be

implemented.

OnBind – This method must be implemented by all service classes, however a started service does not

typically have a client bound to it. Because of this, a started service just returns null . In contrast, a hybrid

service (which is the combination of a bound service and a started service) has to implement and return a

Binder for the client.

OnStartCommand – Called for each request to start the service, either in response to a call to StartService or

a restart by the system. This is where the service can begin any long-running task. The method returns a

StartCommandResult value that indicates how or if the system should handle restarting the service after a

shutdown due to low memory. This call takes place on the main thread. This method is described in more

detail below.

OnDestroy – This method is called when the Service is being destroyed. It is used to perform any final clean

up required.

The important method for a started service is the OnStartCommand method. It will be invoked each time the

service receives a request to do some work. The following code snippet is an example of OnStartCommand :

The first parameter is an Intent object containing the meta-data about the work to perform. The second

parameter contains a StartCommandFlags value that provides some information about the method call. This

parameter has one of two possible values:

StartCommandFlag.Redelivery – This means that the Intent is a re-delivery of a previous Intent . This value

is provided when the service had returned StartCommandResult.RedeliverIntent but was stopped before it

could be properly shut down. - StartCommandFlag.Retry This value is received when a previous

OnStartCommand call failed and Android is trying to start the service again with the same intent as the

previous failed attempt.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/creating-a-service/started-services.md

Finally, the third parameter is an integer value that is unique to the application that identifies the request. It is

possible that multiple callers may invoke the same service object. This value is used to associate a request to

stop a service with a given request to start a service. It will be discussed in more detail in the section Stopping

the Service.

The value StartCommandResult is returned by the service as a suggestion to Android on what to do if the service

is killed due to resource constraints. There are three possible values for StartCommandResult :

Star tCommandResult.NotStickyStar tCommandResult.NotSticky – This value tells Android that it is not necessary to restart the service

that it has killed. As an example of this, consider a service that generates thumbnails for a gallery in an app. If

the service is killed, it isn't crucial to recreate the thumbnail immediately – the thumbnail can be recreated

the next time the app is run.

Star tCommandResult.StickyStar tCommandResult.Sticky – This tells Android to restart the Service, but not to deliver the last Intent

that started the Service. If there are no pending Intents to handle, then a null will be provided for the Intent

parameter. An example of this might be a music player app; the service will restart ready to play music, but it

will play the last song.

Star tCommandResult.RedeliverIntentStar tCommandResult.RedeliverIntent – This value is will tell Android to restart the service and re-deliver

the last Intent . An example of this is a service that downloads a data file for an app. If the service is killed,

the data file still needs to be downloaded. By returning StartCommandResult.RedeliverIntent , when Android

restarts the service it will also provide the Intent (which holds the URL of the file to download) to the service.

This will enable the download to either restart or resume (depending on the exact implementation of the

code).

There is a fourth value for StartCommandResult – StartCommandResult.ContinuationMask . This value is returned by

OnStartCommand and it describes how Android will continue the service it has killed. This value isn't typically used

to start a service.

The key lifecycle events of a started service are shown in this diagram:

https://docs.microsoft.com/en-us/dotnet/api/android.app.startcommandresult#android_app_startcommandresult_notsticky
https://docs.microsoft.com/en-us/dotnet/api/android.app.startcommandresult#android_app_startcommandresult_sticky
https://docs.microsoft.com/en-us/dotnet/api/android.app.startcommandresult#android_app_startcommandresult_redeliverintent

 Stopping the Service

A started service will keep running indefinitely; Android will keep the service running as long as there are

sufficient system resources. Either the client must stop the service, or the service may stop itself when it is done

its work. There are two ways to stop a service:

StopService(new Intent(this, typeof(DemoService));

Android.Content.Context.StopSer vice()Android.Content.Context.StopSer vice() – A client (such as an Activity) can request a service stop by

calling the StopService method:

https://docs.microsoft.com/en-us/dotnet/api/android.content.context.stopservice

 Using startId to Stop a ServiceUsing startId to Stop a Service

 Related Links

StopSelf();

Android.App.Ser vice.StopSelf()Android.App.Ser vice.StopSelf() – A service may shut itself down by invoking the StopSelf :

Multiple callers can request that a service be started. If there is an outstanding start request, the service can use

the startId that is passed into OnStartCommand to prevent the service from being stopped prematurely. The

startId will correspond to the latest call to StartService , and will be incremented each time it is called.

Therefore, if a subsequent request to StartService has not yet resulted in a call to OnStartCommand , the service

can call StopSelfResult , passing it the latest value of startId it has received (instead of simply calling

StopSelf). If a call to StartService has not yet resulted in a corresponding call to OnStartCommand , the system

will not stop the service, because the startId used in the StopSelf call will not correspond to the latest

StartService call.

StartedServicesDemo (sample)

Android.App.Service

Android.App.StartCommandFlags

Android.App.StartCommandResult

Android.Content.BroadcastReceiver

Android.Content.Intent

Android.OS.Handler

Android.Widget.Toast

Status Bar Icons

https://docs.microsoft.com/en-us/dotnet/api/android.app.service.stopself
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-servicesamples-startedservicesdemo
https://docs.microsoft.com/en-us/dotnet/api/android.app.service
https://docs.microsoft.com/en-us/dotnet/api/android.app.startcommandflags
https://docs.microsoft.com/en-us/dotnet/api/android.app.startcommandresult
https://docs.microsoft.com/en-us/dotnet/api/android.content.broadcastreceiver
https://docs.microsoft.com/en-us/dotnet/api/android.content.intent
https://docs.microsoft.com/en-us/dotnet/api/android.os.handler
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html

Foreground Services
 7/8/2021 • 3 minutes to read • Edit Online

public static void StartForegroundServiceCompat<T>(this Context context, Bundle args = null) where T :
Service
{
 var intent = new Intent(context, typeof(T));
 if (args != null)
 {
 intent.PutExtras(args);
 }

 if (Android.OS.Build.VERSION.SdkInt >= Android.OS.BuildVersionCodes.O)
 {
 context.StartForegroundService(intent);
 }
 else
 {
 context.StartService(intent);
 }
}

 Registering as a Foreground Service

A foreground service is a special type of a bound service or a started service. Occasionally services will perform

tasks that users must be actively aware of, these services are known as foreground services. An example of a

foreground service is an app that is providing the user with directions while driving or walking. Even if the app

is in the background, it is still important that the service has sufficient resources to work properly and that the

user has a quick and handy way to access the app. For an Android app, this means that a foreground service

should receive higher priority than a "regular" service and a foreground service must provide a Notification

that Android will display as long as the service is running.

To start a foreground service, the app must dispatch an Intent that tells Android to start the service. Then the

service must register itself as a foreground service with Android. Apps that are running on Android 8.0 (or

higher) should use the Context.StartForegroundService method to start the service, while apps that are running

on devices with an older version of Android should use Context.StartService

This C# extension method is an example of how to start a foreground service. On Android 8.0 and higher it will

use the StartForegroundService method, otherwise the older StartService method will be used.

Once a foreground service has started, it must register itself with Android by invoking the StartForeground . If

the service is started with the Service.StartForegroundService method but does not register itself, then Android

will stop the service and flag the app as non-responsive.

StartForeground takes two parameters, both of which are mandatory:

An integer value that is unique within the application to identify the service.

A Notification object that Android will display in the status bar for as long as the service is running.

Android will display the notification in the status bar for as long as the service is running. The notification, at

minimum, will provide a visual cue to the user that the service is running. Ideally, the notification should provide

the user with a shortcut to the application or possibly some action buttons to control the application. An

example of this is a music player – the notification that is displayed may have buttons to pause/play music, to

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/foreground-services.md
https://docs.microsoft.com/en-us/dotnet/api/android.app.service.startforeground

// This is any integer value unique to the application.
public const int SERVICE_RUNNING_NOTIFICATION_ID = 10000;

public override StartCommandResult OnStartCommand(Intent intent, StartCommandFlags flags, int startId)
{
 // Code not directly related to publishing the notification has been omitted for clarity.
 // Normally, this method would hold the code to be run when the service is started.

 var notification = new Notification.Builder(this)
 .SetContentTitle(Resources.GetString(Resource.String.app_name))
 .SetContentText(Resources.GetString(Resource.String.notification_text))
 .SetSmallIcon(Resource.Drawable.ic_stat_name)
 .SetContentIntent(BuildIntentToShowMainActivity())
 .SetOngoing(true)
 .AddAction(BuildRestartTimerAction())
 .AddAction(BuildStopServiceAction())
 .Build();

 // Enlist this instance of the service as a foreground service
 StartForeground(SERVICE_RUNNING_NOTIFICATION_ID, notification);
}

rewind to the previous song, or to skip to the next song.

This code snippet is an example of registering a service as a foreground service:

The previous notification will display a status bar notification that is similar to the following:

This screenshot shows the expanded notification in the notification tray with two actions that allow the user to

control the service:

 Unregistering as a Foreground Service

StopForeground(true);

 Related Links

More information about notifications is available in the Local Notifications section of the Android Notifications

guide.

A service can de-list itself as a foreground service by calling the method StopForeground . StopForeground will

not stop the service, but it will remove the notification icon and signals Android that this service can be shut

down if necessary.

The status bar notification that is displayed can also be removed by passing true to the method:

If the service is halted with a call to StopSelf or StopService , the status bar notification will be removed.

Android.App.Service

Android.App.Service.StartForeground

Local Notifications

ForegroundServiceDemo (sample)

https://docs.microsoft.com/en-us/dotnet/api/android.app.service
https://docs.microsoft.com/en-us/dotnet/api/android.app.service.startforeground
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-servicesamples-foregroundservicedemo

Running Android Services in Remote Processes
 7/8/2021 • 26 minutes to read • Edit Online

 Out of Process Services Overview

Generally, all components in an Android application will run in the same process. Android services are a notable

exception to this in that they can be configured to run in their own processes and shared with other applications,

including those from other Android developers. This guide will discuss how to create and use an Android

remote service using Xamarin.

When an application starts up, Android creates a process in which to run the application. Typically, all the

components the application will run in this one process. Android services are a notable exception to this in that

they can be configured to run in their own processes and shared with other applications, including those from

other Android developers. These types of services are referred to as remote services or out-of-process services.

The code for these services will be contained in the same APK as the main application; however, when the

service is started Android will create a new process for just that service. In contrast, a service that runs in the

same process as the rest of the application is sometimes referred to as a local service.

In general, it is not necessary for an application to implement a remote service. A local service is sufficient (and

desirable) for an app's requirements in many cases. An out-of-process has it's own memory space which must

be managed by Android. Although this does introduce more overhead to the overall application, there are some

scenarios where it can be advantageous to run a service in its own process:

1. Sharing FunctionalitySharing Functionality – Some application developers may have multiple apps and functionality that is

shared between all the applications. Packaging that functionality in an Android service which runs in its

own process may simplify application maintenance. It is also possible to package the service in its own

stand-alone APK and deploy it separately from the rest of the application.

2. Improving the User ExperienceImproving the User Experience – There are two possible ways that an out-of-process service can

improve the user experience of the application. The first way deals with memory management. When a

garbage collection (GC) cycle occurs, Android will pause all activity in the process until the GC is

complete. The user might perceive this pause as a "stutter" or "jank". When a service is running in it's own

process, it is the service process that is paused, not the application process. This pause will be much less

noticeable to the user as the application process (and therefore the user interface) is not paused.

Secondly, if the memory requirements of a process becomes too large, Android may kill that process to

free up resources for the device. If a service does have a large memory footprint and it is running in the

same process as the UI, then when Android forcibly reclaims those resources the UI will be shut down,

forcing the user to start the app. However, if a service, running in its own process is shut down by

Android, the UI process remains unaffected. The UI can bind (and restart) the service, transparent to the

user, and resume normal functioning.

3. Improving Application PerformanceImproving Application Performance – The UI process may be terminated or shut down independent

of the service process. By moving lengthy startup tasks to an out-of-process service, it is possible that the

startup time of the UI maybe improved (assuming that the service process is kept alive in between the

times that UI is launched).

In many ways, binding to a service running in another process is the same as binding to a local service. The

client will invoke BindService to bind (and start, if necessary) the service. An Android.OS.IServiceConnection

object will be created to manage the connection between the client and the service. If the client successfully

binds to the service, then Android will return an object via the IServiceConnection that can be used to invoke

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/out-of-process-services.md

methods on the service. The client then interacts with the service using this object. To review, here are the steps

to bind to a service:

Create an IntentCreate an Intent – An explicit intent must be used to binding to the service.

Implement and Instantiate an Implement and Instantiate an IServiceConnection object object – The IServiceConnection object acts as an

intermediary between the client and the service. It is responsible for monitoring the connection between

client and server.

Invoke the Invoke the BindService method method – Calling BindService will dispatch the intent and the service connection

created in the previous steps to Android, which will take care of starting the service and establishing

communication between client and service.

The need to cross process boundaries does introduce extra complexity: the communication is one-way (client to

server) and the client can't directly invoke methods on the service class. Recall that when a service is running the

same process as the client, Android provides an IBinder object which may allow for two-way communication.

This is not the case with service running in its own process. A client communicates with a remote service with

the help of the Android.OS.Messenger class.

When a client requests to bind with the remote service, Android will invoke the Service.OnBind lifecycle

method, which will return the internal IBinder object that is encapsulated by the Messenger . The Messenger is

a thin wrapper over a special IBinder implementation that is provided by the Android SDK. The Messenger

takes care of the communication between the two different processes. The developer is unconcerned with the

details of serializing a message, marshalling the message across the process boundary, and then deserializing it

on the client. This work is handled by the Messenger object. This diagram shows the client-side Android

components that are involved when a client initiates binding to an out-of-process service:

The Service class in the remote process will go through the same lifecycle callbacks that a bound service in a

local process will go through, and many of the APIs involved are the same. Service.OnCreate is used to initialize

a Handler and inject that into Messenger object. Likewise, OnBind is overridden, but instead of returning an

IBinder object, the service will return the Messenger . This diagram illustrates what happens in the service

when a client is binding to it:

When a Message is received by a service, it is processed by in instance of Android.OS.Handler . The service will

implement its own Handler subclass that must override the HandleMessage method. This method is invoked by

the Messenger and receives the Message as a parameter. The Handler will inspect the Message meta-data and

use that information to invoke methods on the service.

One-way communication occurs when a client creates a Message object and dispatches it to the service using

the Messenger.Send method. Messenger.Send will serialize the Message and hand that serialized data off to

IMPORTANTIMPORTANT

 Requirements

 Create a Service that Runs in a Separate Process

Android, which will route the message across the process boundary and to the service. The Messenger that is

hosted by the service will create a Message object from the incoming data. This Message is placed into a queue,

where messages are submitted one at a time to the Handler . The Handler will inspect the meta-data contained

in the Message and invoke the appropriate methods on the Service . The following diagram illustrates these

various concepts in action:

This guide will discuss the details of implementing an out-of-process service. It will discuss how to implement a

service that is meant to run in its own process and how a client may communicate with that service using the

Messenger framework. It will also briefly discuss two-way communication: the client sending a message to a

service and the service sending a message back to the client. Because services can be shared between different

applications, this guide will also discuss one technique for limiting client access to the service by using Android

permissions.

Bugzilla 51940/GitHub 1950 - Services with isolated processes and custom Application class fail to resolve overloads

properly reports that a Xamarin.Android service will not start up properly when the IsolatedProcess is set to true .

This guide is provided for a reference. A Xamarin.Android application should still be able to communicate with an out-of-

process service that is written in Java.

This guide assumes familiarity with creating services.

Although it is possible to use implicit intents with apps that target older Android APIs, this guide will focus

exclusively on the use of explicit intents. Apps targeting Android 5.0 (API level 21) or higher must use an explicit

intent to bind with a service; this is the technique that will be demonstrated in this guide..

As described above, the fact that a service is running in its own process means that some different APIs are

involved. As a quick overview, here are the steps to bind with and consume a remote service:

https://github.com/xamarin/xamarin-android/issues/1950

Create the Create the Service subclass subclass – Subclass the Service type and implement the lifecycle methods for a

bound service. It is also necessary to set meta-data that will inform Android that the service is to run in its

own process.

Implement a Implement a Handler – The Handler is responsible for analyzing the client requests, extracting any

parameters that were passed from the client, and invoking the appropriate methods on the service.

Instantiate a Instantiate a Messenger – As described above, each Service must maintain an instance of the Messenger

class that will route client requests to the Handler that was created in the previous step.

A service that is meant to run in its own process is, fundamentally, still a bound service. The service class will

extend the base Service class and is decorated with the ServiceAttribute containing the meta-data that

Android needs to bundle in the Android manifest. To begin with, the following properties of the

ServiceAttribute that are important to an out-of-process service:

1. Exported – This property must be set to true to allow other applications to interact with the service. The

default value of this property is false .

2. Process – This property must be set. It is used to specify the name of the process that the service will run in.

3. IsolatedProcess – This property will enable extra security, telling Android to run the service in an isolated

sandbox with minimal permission to interact with the rest of the system. See Bugzilla 51940 - Services with

isolated processes and custom Application class fail to resolve overloads properly.

4. Permission – It is possible to control client access to the service by specifying a permission that clients must

request (and be granted).

To run a service its own process, the Process property on the ServiceAttribute must be set to the name of the

service. To interact with outside applications, the Exported property should be set to true . If Exported is

false , then only clients in the same APK (i.e. the same application) and running in the same process will be able

to interact with the service.

What kind of process the service will run in depends on the value of the Process property. Android identifies

three different types of processes:

[Service(Name = "com.xamarin.TimestampService",
 Process=":timestampservice_process",
 Exported=true)]

[Service(Name = "com.xamarin.TimestampService",
 Process="com.xamarin.xample.messengerservice.timestampservice_process",
 Exported=true)]

Private ProcessPrivate Process – A private process is one that is only available to the application that started it. To

identify a process as private, its name must start with a :: (semi-colon). The service depicted in the

previous code snippet and screenshot is a private process. The following code snippet is an example of

the ServiceAttribute :

Global ProcessGlobal Process – A service that is run in a global process is accessible to all applications running on the

device. A global process must be a fully qualified class name that starts with a lower case character.

(Unless steps are taken to secure the service, other applications may bind and interact with it. Securing

the service against unauthorized use will be discussed later in this guide.)

Isolated ProcessIsolated Process – An isolated process is a process that runs in its own sandbox, isolated from the rest

of the system and with no special permissions of its own. To run a service in an isolated process, the

IsolatedProcess property of the ServiceAttribute is set to true as shown in this code snippet:

https://bugzilla.xamarin.com/show_bug.cgi?id=51940

IMPORTANTIMPORTANT

IMPORTANTIMPORTANT

[Service(Name = "com.xamarin.TimestampService",
 IsolatedProcess= true,
 Process="com.xamarin.xample.messengerservice.timestampservice_process",
 Exported=true)]

See Bugzilla 51940 - Services with isolated processes and custom Application class fail to resolve overloads properly

An isolated service is a simple way to secure an application and the device against untrusted code. For example,

an app may download and execute a script from a website. In this case, performing this in an isolated process

provides an additional layer of security against untrusted code compromising the Android device.

Once a service has been exported, the name of the service should not change. Changing the name of the service may

break other applications that are using the service.

To see the effect that the Process property has, the following screenshot shows a service running in its own

private process:

This next screenshot shows Process="com.xamarin.xample.messengerservice.timestampservice_process" and the

service running in a global process:

https://bugzilla.xamarin.com/show_bug.cgi?id=51940

 Implementing a HandlerImplementing a Handler

public class TimestampRequestHandler : Android.OS.Handler
{
 // other code omitted for clarity

 public override void HandleMessage(Message msg)
 {
 int messageType = msg.What;
 Log.Debug(TAG, $"Message type: {messageType}.");

 switch (messageType)
 {
 case Constants.SAY_HELLO_TO_TIMESTAMP_SERVICE:
 // The client has sent a simple Hello, say in the Android Log.
 break;

 case Constants.GET_UTC_TIMESTAMP:
 // Call methods on the service to retrieve a timestamp message.
 break;
 default:
 Log.Warn(TAG, $"Unknown messageType, ignoring the value {messageType}.");
 base.HandleMessage(msg);
 break;
 }
 }
}

Once the ServiceAttribute has been set, the service needs to implement a Handler .

To process client requests, the service must implement a Handler and override the HandleMessage method. This

is the method takes a Message instance which encapsulates the method call from the client and translates that

call into some action or task that the service will perform. The Message object exposes a property called What

which is an integer value, the meaning of which is shared between the client and the service and relates to some

task that the service is to perform for the client.

The following code snippet from the sample application shows one example of HandleMessage . In this example,

there are two actions that a client can request of the service:

The first action is a Hello, World message, the client has sent a simple message to the service.

The second action will invoke a method on the service and retrieve a string, in this case the string is a

message that returns what time the service started and how long it has been running:

 Instantiating the MessengerInstantiating the Messenger

private Messenger messenger; // Instance variable for the Messenger

public override void OnCreate()
{
 base.OnCreate();
 messenger = new Messenger(new TimestampRequestHandler(this));
 Log.Info(TAG, $"TimestampService is running in process id {Android.OS.Process.MyPid()}.");
}

 Implementing Service.OnBindImplementing Service.OnBind

public override IBinder OnBind(Intent intent)
{
 Log.Debug(TAG, "OnBind");
 return messenger.Binder;
}

 Consuming the Service

It is also possible to package parameters for the service in the Message . This will be discussed later in this guide.

The next topic to consider is creating the Messenger object to process the incoming Message s.

As previously discussed, deserializing the Message object and invoking Handler.HandleMessage is the

responsibility of the Messenger object. The Messenger class also provides an IBinder object that the client will

use to send messages to the service.

When the service starts, it will instantiate the Messenger and inject the Handler . A good place to perform this

initialization is on the OnCreate method of the service. This code snippet is one example of a service that

initializes its own Handler and Messenger :

At this point, the final step is for the Service to override OnBind .

All bound services, whether they run in their own process or not, must implement the OnBind method. The

return value of this method is some object that the client can use to interact with the service. Exactly what that

object is depends whether the service is a local service or a remote service. While a local service will return a

custom IBinder implementation, a remote service will return the IBinder that is encapsulated but the

Messenger that was created in the previous section:

Once these three steps are accomplished, the remote service can be considered complete.

All clients must implement some code to be able to bind and consume the remote service. Conceptually, from

the client's viewpoint, there are very few differences between binding to local service or a remote service. The

client invokes the BindService method, passing an explicit intent to identify the service and an

IServiceConnection that helps manage the connection between the client and the service.

This code snippet is an example of how to create an explicit intentexplicit intent for binding to a remote service. The intent

must identify the package that contains the service and the name of the service. One way to set this information

is to use an Android.Content.ComponentName object and to provide that to the intent. This code snippet is one

example:

// This is the package name of the APK, set in the Android manifest
const string REMOTE_SERVICE_COMPONENT_NAME = "com.xamarin.TimestampService";
// This is the name of the service, according the value of ServiceAttribute.Name
const string REMOTE_SERVICE_PACKAGE_NAME = "com.xamarin.xample.messengerservice";

// Provide the package name and the name of the service with a ComponentName object.
ComponentName cn = new ComponentName(REMOTE_SERVICE_PACKAGE_NAME, REMOTE_SERVICE_COMPONENT_NAME);
Intent serviceToStart = new Intent();
serviceToStart.SetComponent(cn);

public class TimestampServiceConnection : Java.Lang.Object, IServiceConnection
{
 static readonly string TAG = typeof(TimestampServiceConnection).FullName;

 MainActivity mainActivity;
 Messenger messenger;

 public TimestampServiceConnection(MainActivity activity)
 {
 IsConnected = false;
 mainActivity = activity;
 }

 public bool IsConnected { get; private set; }
 public Messenger Messenger { get; private set; }

 public void OnServiceConnected(ComponentName name, IBinder service)
 {
 Log.Debug(TAG, $"OnServiceConnected {name.ClassName}");

 IsConnected = service != null;
 Messenger = new Messenger(service);

 if (IsConnected)
 {
 // things to do when the connection is successful. perhaps notify the client? enable UI
features?
 }
 else
 {
 // things to do when the connection isn't successful.
 }
 }

 public void OnServiceDisconnected(ComponentName name)
 {
 Log.Debug(TAG, $"OnServiceDisconnected {name.ClassName}");
 IsConnected = false;
 Messenger = null;

 // Things to do when the service disconnects. perhaps notify the client? disable UI features?

 }
}

When the service is bound, the IServiceConnection.OnServiceConnected method is invoked and provides an

IBinder to a client. However, the client will not directly use the IBinder . Instead, it will instantiate a Messenger

object from that IBinder . This is the Messenger that the client will use to interact with the remote service.

The following is an example of a very basic IServiceConnection implementation that demonstrates how a client

would handle connecting to and disconnecting from a service. Notice that the OnServiceConnected method

receives and IBinder , and the client creates a Messenger from that IBinder :

var serviceConnection = new TimestampServiceConnection(this);
BindService(serviceToStart, serviceConnection, Bind.AutoCreate);

 Sending Messages to the Service

Message msg = Message.Obtain(null, Constants.SAY_HELLO_TO_TIMESTAMP_SERVICE);
try
{
 serviceConnection.Messenger.Send(msg);
}
catch (RemoteException ex)
{
 Log.Error(TAG, ex, "There was a error trying to send the message.");
}

 Passing Additional Values to the ServicePassing Additional Values to the Service

Once the service connection and the intent are created, it is possible for the client to call BindService and

initiate the binding process:

After the client has successfully bound to the service and the Messenger is available, it is possible for the client

to send Messages to the service.

Once the client is connected and has a Messenger object, it is possible to communicate with the service by

dispatching Message objects via the Messenger . This communication is one-way, the client sends the message

but there is no return message from the service to the client. In this regard, the Message is a fire-and-forget

mechanism.

The preferred way to create a Message object is to use the Message.Obtain factory method. This method will

pull a Message object from a global pool that is maintained by Android. Message.Obtain also has some

overloaded methods that allow the Message object to be initialized with the values and parameters required by

the service. Once the Message is instantiated, it dispatched to the service by calling Messenger.Send . This snippet

is one example of creating and dispatching a Message to the service process:

There are several different forms of the Message.Obtain method. The previous example uses the

Message.Obtain(Handler h, Int32 what) . Because this is an asynchronous request to an out-of-process service;

there will be no response from the service, so the Handler is set to null . The second parameter, Int32 what ,

will be stored in the .What property of the Message object. The .What property is used by code in the service

process to invoke methods on the service.

The Message class also exposes two additional properties that may be of use to the recipient: Arg1 and Arg2 .

These two properties are integer values that may have some special agreed upon values that have meaning

between the client and the service. For example, Arg1 may hold a customer ID and Arg2 may hold a purchase

order number for that customer. The Method.Obtain(Handler h, Int32 what, Int32 arg1, Int32 arg2) can be used

to set the two properties when the Message is created. Another way to populate these two values is to set the

.Arg and .Arg2 properties directly on the Message object after it has been created.

It is possible to pass more complex data to the service by using a Bundle . In this case, extra values can be placed

in a Bundle and sent along with the Message by setting the .Data property property before sending.

https://docs.microsoft.com/en-us/dotnet/api/android.os.message
https://docs.microsoft.com/en-us/dotnet/api/android.os.message.obtain#android_os_message_obtain
https://docs.microsoft.com/en-us/dotnet/api/android.os.message.obtain#android_os_message_obtain
https://docs.microsoft.com/en-us/dotnet/api/android.os.message.data#android_os_message_data

Bundle serviceParameters = new Bundle();
serviceParameters.

var msg = Message.Obtain(null, Constants.SERVICE_TASK_TO_PERFORM);
msg.Data = serviceParameters;

messenger.Send(msg);

NOTENOTE

 Returning Values from the Service

In general, a Message should not have a payload larger than 1MB. The size limit may vary according the version of

Android and on any proprietary changes the vendor might have made to their implementation of the Android Open

Source Project (AOSP) that is bundled with the device.

The messaging architecture that has been discussed to this point is one-way, the client sends a message to the

service. If it is necessary for the service to return a value to a client then everything that has been discussed to

this point is reversed. The service must create a Message , packaged any return values, and dispatch the Message

via a Messenger to the client. However, the service does not create its own Messenger ; instead, it relies on the

client instantiating and package a Messenger as part of the initial request. The service will Send the message

using this client-provided Messenger .

The sequence of events for two-way communication is this:

1. The client binds to the service. When the service and the client connect, the IServiceConnection that is

maintained by the client will have a reference to a Messenger object that is used to transmit Message s to the

service. To avoid confusion, this will be referred to as the Service Messenger.

2. Client instantiates a Handler (referred to as the Client Handler) and uses that to initialize its own Messenger

(the Client Messenger). Note that the Service Messenger and the Client Messenger are two different objects

that handle traffic in two different directions. The Service Messenger handles messages from the client to the

service, while the Client Messenger will handle messages from the service to the client.

3. The client creates a Message object, and sets the ReplyTo property with the Client Messenger. The message

is then sent to the service using the Service Messenger.

4. The service receives the message from the client, and performs the requested work.

5. When it is time for the service to send the response to the client, it will use Message.Obtain to create a new

Message object.

6. To send this message to the client, the service will extract the Client Messenger from the .ReplyTo property

of the client message and use that to .Send the Message back to the client.

7. When the response is received by the client, it has its own Handler that will process the Message by

inspecting the .What property (and if necessary, extracting any parameters contained by the Message).

This sample code demonstrates how the client will instantiate the Message and package a Messenger that the

service should use for its response:

Handler clientHandler = new ActivityHandler();
Messenger clientMessenger = new Messenger(activityHandler);

Message msg = Message.Obtain(null, Constants.GET_UTC_TIMESTAMP);
msg.ReplyTo = clientMessenger;

try
{
 serviceConnection.Messenger.Send(msg);
}
catch (RemoteException ex)
{
 Log.Error(TAG, ex, "There was a problem sending the message.");
}

// This is the message that the service will send to the client.
Message responseMessage = Message.Obtain(null, Constants.RESPONSE_TO_SERVICE);
Bundle dataToReturn = new Bundle();
dataToReturn.PutString(Constants.RESPONSE_MESSAGE_KEY, "This is the result from the service.");
responseMessage.Data = dataToReturn;

// The msg object here is the message that was received by the service. The service will not instantiate a
client,
// It will use the client that is encapsulated by the message from the client.
Messenger clientMessenger = msg.ReplyTo;
if (clientMessenger!= null)
{
 try
 {
 clientMessenger.Send(responseMessage);
 }
 catch (Exception ex)
 {
 Log.Error(TAG, ex, "There was a problem sending the message.");
 }
}

 Securing the Service with Android Permissions

The service must make some changes to its own Handler to extract the Messenger and use that to send replies

to the client. This code snippet is an example of how the service's Handler would create a Message and send it

back to the client:

Note that in the code samples above, the Messenger instance that is created by the client is not the same object

that is received by the service. These are two different Messenger objects running in two separate processes that

represent the communication channel.

A service that runs in a global process is accessible by all applications running on that Android device. In some

situations, this openness and availability is undesirable, and it is necessary to secure the service against access

from unauthorized clients. One way to limit access to the remote service is to use Android Permissions.

Permissions can be identified by the Permission property of the ServiceAttribute that decorates the Service

sub-class. This will name a permission that the client must be granted when binding to the service. If the client

does not have the appropriate permissions, then Android will throw a Java.Lang.SecurityException when the

client tries to bind to the service.

There are four different permission levels that Android provides:

normalnormal – This is the default permission level. It is used to identify low-risk permissions that can be

automatically granted by Android to clients that request it. The user does not have to explicitly grant these

NOTENOTE

 Creating a Custom PermissionCreating a Custom Permission

permissions, but the permissions can be viewed in the app settings.

signaturesignature – This is a special category of permission that will be granted automatically by Android to

applications that are all signed with the same certificate. This permission is designed to make it easily for an

application developer to share components or data between their apps without bothering the user for

constant approvals.

signatureOrSystemsignatureOrSystem – This is very similar to the signaturesignature permissions described above. In addition to

being automatically granted to apps that are signed by the same certificate, this permission will also be

granted to apps that are signed the same certificate that was used to sign the apps installed with the Android

system image. This permission is typically only used by Android ROM developers to allow their applications

to work with third party apps. It is not commonly used by apps that are meant general distribution for the

public at large.

dangerousdangerous – Dangerous permissions are those that could cause problems for the user. For this reason,

dangerousdangerous permissions must be explicitly approved by the user.

Because signature and normal permissions are automatically granted at installed time by Android, it is crucial

that APK hosting the service be installed beforebefore the APK containing the client. If the client is installed first,

Android will not grant the permissions. In this case, it will be necessary to uninstall the client APK, install the

service APK, and then re-install the client APK.

There are two common ways to secure a service with Android permissions:

[Service(Name = "com.xamarin.TimestampService",
 Process="com.xamarin.TimestampService.timestampservice_process",
 Permission="signature")]
public class TimestampService : Service
{
}

1. Implement signature level securityImplement signature level security – Signature level security means that permission is automatically

granted to those applications that are signed with the same key that was used to sign the APK holding the

service. This is a simple way for developers to secure their service yet keep them accessible from their

own applications. Signature level permissions are declared by setting the Permission property of the

ServiceAttribute to signature :

2. Create a custom permissionCreate a custom permission – It is possible for the developer of the service to create a custom

permission for the service. This is best for when a developer wants to share their service with

applications from other developers. A custom permission requires a bit more effort to implement and

will be covered below.

A simplified example of creating a custom normal permission will be described in the next section. For more

information about Android permissions, please consult Google's documentation for Best Practices & Security.

For more information about Android permissions, see the Permissions section of the Android documentation for

the application manifest for more information about Android permissions.

In general, Google discourages the use of custom permissions as they may prove confusing to users.

To use a custom permission, it is declared by the service while the client explicitly requests that permission.

To create a permission in the service APK, a permission element is added to the manifest element in

AndroidManifest.xmlAndroidManifest.xml . This permission must have the name , protectionLevel , and label attributes set. The

name attribute must be set to a string that uniquely identifies the permission. The name will be displayed in the

https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html#perms
https://developer.android.com/training/articles/security-tips.html#RequestingPermissions

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0"
 package="com.xamarin.xample.messengerservice">

 <uses-sdk android:minSdkVersion="21" />

 <permission android:name="com.xamarin.xample.messengerservice.REQUEST_TIMESTAMP"
 android:protectionLevel="signature"
 android:label="@string/permission_label"
 android:description="@string/permission_description"
 />

 <application android:allowBackup="true"
 android:icon="@mipmap/icon"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">

 </application>
</manifest>

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0"
 package="com.xamarin.xample.messengerclient">

 <uses-sdk android:minSdkVersion="21" />

 <uses-permission android:name="com.xamarin.xample.messengerservice.REQUEST_TIMESTAMP" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/icon"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 </application>
 </manifest>

 View the Permissions Granted to an AppView the Permissions Granted to an App

App InfoApp Info view of the Android SettingsAndroid Settings (as shown in the next section).

The protectionLevel attribute must be set to one of the four string values that were described above. The

label and description must refer to string resources and are used to provide a user-friendly name and

description to the user.

This snippet is an example of declaring a custom permission attribute in AndroidManifest.xmlAndroidManifest.xml of the APK that

contains the service:

Then, the AndroidManifest.xmlAndroidManifest.xml of the client APK must explicitly request this new permission. This is done by

adding the users-permission attribute to the AndroidManifest.xmlAndroidManifest.xml :

To view the permissions that an application has been granted, open the Android Settings app, and select AppsApps .

Find and select the application in the list. From the App InfoApp Info screen, tap PermissionsPermissions which will bring up a

view that shows all the permissions granted to the app:

 Summary

 Related Links

This guide was an advanced discussion about how to run an Android service in a remote process. The

differences between a local and a remote service was explained, along with some reasons why a remote service

can be helpful to stability and performance of an Android app. After explaining how to implement a remote

service and how a client can communicate with the service, the guide went on to provide one way to limit access

to the service from only authorized clients.

Handler

Message

Messenger

ServiceAttribute

The Exported attribute

Services with isolated processes and custom Application class fail to resolve overloads properly

Processes and Threads

Android Manifest - Permissions

Security Tips

MessengerServiceDemo (sample)

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/services/out-of-process-services-images/ipc-06.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.os.handler
https://docs.microsoft.com/en-us/dotnet/api/android.os.message
https://docs.microsoft.com/en-us/dotnet/api/android.os.messenger
https://docs.microsoft.com/en-us/dotnet/api/android.app.serviceattribute
https://developer.android.com/guide/topics/manifest/service-element.html#exported
https://bugzilla.xamarin.com/show_bug.cgi?id=51940
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html#perms
https://developer.android.com/training/articles/security-tips.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-servicesamples-messengerservicedemo

Service Notifications
 7/8/2021 • 2 minutes to read • Edit Online

 Service Notifications Overview

[Service]
public class MyService: Service
{
 // A notification requires an id that is unique to the application.
 const int NOTIFICATION_ID = 9000;

 public override StartCommandResult OnStartCommand(Intent intent, StartCommandFlags flags, int startId)
 {
 // Code omitted for clarity - here is where the service would do something.

 // Work has finished, now dispatch anotification to let the user know.
 Notification.Builder notificationBuilder = new Notification.Builder(this)
 .SetSmallIcon(Resource.Drawable.ic_notification_small_icon)
 .SetContentTitle(Resources.GetString(Resource.String.notification_content_title))
 .SetContentText(Resources.GetString(Resource.String.notification_content_text));

 var notificationManager = (NotificationManager)GetSystemService(NotificationService);
 notificationManager.Notify(NOTIFICATION_ID, notificationBuilder.Build());
 }
}

This guide discusses how an Android service may use local notifications to dispatch information to a user.

Service notifications allow an app to display information to the user, even if the Android application is not in the

foreground. It is possible for a notification to provide actions for the user, such as displaying an Activity from an

application. The following code sample demonstrates how a service might dispatch a notification to a user :

This screenshot is an example of the notification that is displayed:

When the user slides down the notification screen from the top, the full notification is displayed:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/services/service-notifications.md
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/services/service-notifications-images/01-notification.png#lightbox

 Updating A Notification
To update a notification, the service will republish the notification using the same notification ID. Android will

display or update the notification in the status bar as necessary.

void UpdateNotification(string content)
{
 var notification = GetNotification(content, pendingIntent);

 NotificationManager notificationManager =
(NotificationManager)GetSystemService(Context.NotificationService);
 notificationManager.Notify(NOTIFICATION_ID, notification);
}

Notification GetNotification(string content, PendingIntent intent)
{
 return new Notification.Builder(this)
 .SetContentTitle(tag)
 .SetContentText(content)
 .SetSmallIcon(Resource.Drawable.NotifyLg)
 .SetLargeIcon(BitmapFactory.DecodeResource(Resources, Resource.Drawable.Icon))
 .SetContentIntent(intent).Build();
}

 Related Links

More information about notifications is available in the Local Notifications section of the Android Notifications

guide.

Local Notifications in Android

Broadcast Receivers in Xamarin.Android
 11/2/2020 • 8 minutes to read • Edit Online

 Broadcast Receiver Overview

This section discusses how to use a Broadcast Receiver.

A broadcast receiver is an Android component that allows an application to respond to messages (an Android

Intent) that are broadcast by the Android operating system or by an application. Broadcasts follow a publish-

subscribe model – an event causes a broadcast to be published and received by those components that are

interested in the event.

Android identifies two types of broadcasts:

Explicit broadcastExplicit broadcast – These types of broadcasts target a specific application. The most common use of an

explicit broadcast is to start an Activity. An example of an explicit broadcast when an app needs to dial a

phone number; it will dispatch an Intent that targets the Phone app on Android and pass along the phone

number to be dialed. Android will then route the intent to the Phone app.

Implicit broadcastImplicit broadcast – These broadcasts are dispatched to all apps on the device. An example of an implicit

broadcast is the ACTION_POWER_CONNECTED intent. This intent is published each time Android detects that the

battery on the device is charging. Android will route this intent to all apps that have registered for this event.

The broadcast receiver is a subclass of the BroadcastReceiver type and it must override the OnReceive method.

Android will execute OnReceive on the main thread, so this method should be designed to execute quickly. Care

should be taken when spawning threads in OnReceive because Android may terminate the process when the

method finishes. If a broadcast receiver must perform long running work then it is recommended to schedule a

job using the JobScheduler or the Firebase Job Dispatcher. Scheduling work with a job will be discussed in a

separate guide.

An intent filter is used to register a broadcast receiver so that Android can properly route messages. The intent

filter can be specified at runtime (this is sometimes referred to as a context-registered receiver or as dynamic

registration) or it can be statically defined in the Android Manifest (a manifest-registered receiver).

Xamarin.Android provides a C# attribute, IntentFilterAttribute , that will statically register the intent filter (this

will be discussed in more detail later in this guide). Starting in Android 8.0, it is not possible for an application to

statically register for an implicit broadcast.

The primary difference between the manifest-registered receiver and the context-registered receiver is that a

context-registered receiver will only respond to broadcasts while an application is running, while a manifest-

registered receiver can respond to broadcasts even though the app may not be running.

There are two sets of APIs for managing a broadcast receiver and sending broadcasts:

1. Context – The Android.Content.Context class can be used to register a broadcast receiver that will respond

to system-wide events. The Context is also used to publish system-wide broadcasts.

2. LocalBroadcastManager – This is an API that is available through the Xamarin Support Library v4 NuGet

package. This class is used to keep broadcasts and broadcast receivers isolated in the context of the

application that is using them. This class can be useful for preventing other applications from responding to

application-only broadcasts or sending messages to private receivers.

A broadcast receiver may not display dialogs, and it is strongly discouraged to start an activity from within a

broadcast receiver. If a broadcast receiver must notify the user, then it should publish a notification.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/broadcast-receivers.md
https://docs.microsoft.com/en-us/dotnet/api/android.content.intent
https://docs.microsoft.com/en-us/dotnet/api/android.content.broadcastreceiver.onreceive
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html#sendBroadcast(android.content.Intent)
https://www.nuget.org/packages/Xamarin.Android.Support.v4/

 Creating a Broadcast Receiver

[BroadcastReceiver(Enabled = true, Exported = false)]
public class SampleReceiver : BroadcastReceiver
{
 public override void OnReceive(Context context, Intent intent)
 {
 // Do stuff here.

 String value = intent.GetStringExtra("key");
 }
}

 Statically registering a Broadcast Receiver with an Intent FilterStatically registering a Broadcast Receiver with an Intent Filter

[BroadcastReceiver(Enabled = true)]
[IntentFilter(new[] { Android.Content.Intent.ActionBootCompleted })]
public class MyBootReceiver : BroadcastReceiver
{
 public override void OnReceive(Context context, Intent intent)
 {
 // Work that should be done when the device boots.
 }
}

NOTENOTE

It is not possible to bind to or start a service from within a broadcast receiver.

This guide will cover how to create a broadcast receiver and how to register it so that it may receive broadcasts.

To create a broadcast receiver in Xamarin.Android, an application should subclass the BroadcastReceiver class,

adorn it with the BroadcastReceiverAttribute , and override the OnReceive method:

When Xamarin.Android compiles the class, it will also update the AndroidManifest with the necessary meta-data

to register the receiver. For a statically-registered broadcast receiver, the Enabled properly must be set to true ,

otherwise Android will not be able to create an instance of the receiver.

The Exported property controls whether the broadcast receiver can receive messages from outside the

application. If the property is not explicitly set, the default value of the property is determined by Android based

on if there are any intent-filters associated with the broadcast receiver. If there is at least one intent-filter for the

broadcast receiver then Android will assume that the Exported property is true . If there are no intent-filters

associated with the broadcast receiver, then Android will assume that the value is false .

The OnReceive method receives a reference to the Intent that was dispatched to the broadcast receiver. This

makes it possible for the sender of the intent to pass values to the broadcast receiver.

When a BroadcastReceiver is decorated with the IntentFilterAttribute , Xamarin.Android will add the

necessary <intent-filter> element to the Android manifest at compile time. The following snippet is an

example of a broadcast receiver that will run when a device has finished booting (if the appropriate Android

permissions were granted by the user):

In Android 8.0 (API 26 and above), Google placed limitations on what apps can do while users aren't directly interacting

with them. These limitations affect background services and implicit broadcast receivers such as

Android.Content.Intent.ActionBootCompleted . Because of these limitations, you might have difficulties registering a

Boot Completed broadcast receiver on newer versions of Android. If this is the case, note that these restrictions do not

apply to foreground services, which can be called from your broadcast receiver.

https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute
https://developer.android.com/about/versions/oreo/background

[BroadcastReceiver(Enabled = true)]
[IntentFilter(new[] { "com.xamarin.example.TEST" })]
public class MySampleBroadcastReceiver : BroadcastReceiver
{
 public override void OnReceive(Context context, Intent intent)
 {
 // Do stuff here
 }
}

 Context-Registering a Broadcast ReceiverContext-Registering a Broadcast Receiver

[Activity(Label = "MainActivity", MainLauncher = true, Icon = "@mipmap/icon")]
public class MainActivity: Activity
{
 MySampleBroadcastReceiver receiver;

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 receiver = new MySampleBroadcastReceiver();

 // Code omitted for clarity
 }

 protected override void OnResume()
 {
 base.OnResume();
 RegisterReceiver(receiver, new IntentFilter("com.xamarin.example.TEST"));
 // Code omitted for clarity
 }

 protected override void OnPause()
 {
 UnregisterReceiver(receiver);
 // Code omitted for clarity
 base.OnPause();
 }
}

It is also possible to create an intent filter that will respond to custom intents. Consider the following example:

Apps that target Android 8.0 (API level 26) or higher may not statically register for an implicit broadcast. Apps

may still statically register for an explicit broadcast. There is a small list of implicit broadcasts that are exempt

from this restriction. These exceptions are described in the Implicit Broadcast Exceptions guide in the Android

documentation. Apps that are interested in implicit broadcasts must do so dynamically using the

RegisterReceiver method. This is described next.

Context-registration (also referred to as dynamic registration) of a receiver is performed by invoking the

RegisterReceiver method, and the broadcast receiver must be unregistered with a call to the

UnregisterReceiver method. To prevent leaking resources, it is important to unregister the receiver when it is no

longer relevant for the context (the Activity or service). For example, a service may broadcast an intent to inform

an Activity that updates are available to be displayed to the user. When the Activity starts, it would register for

those Intents. When the Activity is moved into the background and no longer visible to the user, it should

unregister the receiver because the UI for displaying the updates is no longer visible. The following code snippet

is an example of how to register and unregister a broadcast receiver in the context of an Activity:

In the previous example, when the Activity comes into the foreground, it will register a broadcast receiver that

will listen for a custom intent by using the OnResume lifecycle method. As the Activity moves into the

background, the OnPause() method will unregister the receiver.

https://developer.android.com/guide/components/broadcast-exceptions.html

 Publishing a Broadcast

 LocalBroadcastManagerLocalBroadcastManager

Android.Support.V4.Content.LocalBroadcastManager.GetInstance(this). RegisterReceiver(receiver, new
IntentFilter("com.xamarin.example.TEST"));

Intent message = new Intent("com.xamarin.example.TEST");
// If desired, pass some values to the broadcast receiver.
message.PutExtra("key", "value");
Android.Support.V4.Content.LocalBroadcastManager.GetInstance(this).SendBroadcast(message);

 Related Links

A broadcast may be published to all apps installed on the device creating an Intent object and dispatching it with

the SendBroadcast or the SendOrderedBroadcast method.

Intent message = new Intent("com.xamarin.example.TEST");
// If desired, pass some values to the broadcast receiver.
message.PutExtra("key", "value");
SendBroadcast(message);

Intent intent = new Intent();
intent.SetAction("com.xamarin.example.TEST");
intent.PutExtra("key", "value");
SendBroadcast(intent);

1. Context.SendBroadcast methodsContext.SendBroadcast methods – There are several implementations of this method. These methods

will broadcast the intent to the entire system. Broadcast receivers that will receive the intent in an

indeterminate order. This provides a great deal of flexibility but means that it is possible for other

applications to register and receive the intent. This can pose a potential security risk. Applications may

need to implement addition security to prevent unauthorized access. One possible solution is to use the

LocalBroadcastManager which will only dispatch messages within the private space of the app. This code

snippet is one example of how to dispatch an intent using one of the SendBroadcast methods:

This snippet is another example of sending a broadcast by using the Intent.SetAction method to identify

the action:

2. Context.SendOrderedBroadcastContext.SendOrderedBroadcast – This is method is very similar to Context.SendBroadcast , with the

difference being that the intent will be published one at time to receivers, in the order that the receivers

were registered.

The Xamarin Support Library v4 provides a helper class called LocalBroadcastManager . The

LocalBroadcastManager is intended for apps that do not want to send or receive broadcasts from other apps on

the device. The LocalBroadcastManager will only publish messages within the context of the application, and only

to those broadcast receivers that are registered with the LocalBroadcastManager . This code snippet is an example

of registering a broadcast receiver with LocalBroadcastManager :

Other apps on the device cannot receive the messages that are published with the LocalBroadcastManager . This

code snippet shows how to dispatch an Intent using the LocalBroadcastManager :

BroadcastReceiver API

Context.RegisterReceiver API

https://www.nuget.org/packages/Xamarin.Android.Support.v4/
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://docs.microsoft.com/en-us/dotnet/api/android.content.broadcastreceiver
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.registerreceiver

Context.SendBroadcast API

Context.UnregisterReceiver API

Intent API

IntentFilter API

LocalBroadcastManager (Android docs)

Local Notifications in Android guide

Android Support Library v4 (NuGet)

https://docs.microsoft.com/en-us/dotnet/api/android.content.context.sendbroadcast
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.unregisterreceiver
https://docs.microsoft.com/en-us/dotnet/api/android.content.intent
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html#sendBroadcast(android.content.Intent)
https://www.nuget.org/packages/Xamarin.Android.Support.v4/

Android Localization
 7/8/2021 • 6 minutes to read • Edit Online

 Android Platform Features

 LocaleLocale

var lang = Resources.Configuration.Locale; // eg. "es_ES"

 LOCALE_CHANGEDLOCALE_CHANGED

[Activity (Label = "@string/app_name", MainLauncher = true, Icon="@drawable/launcher",
 ConfigurationChanges = ConfigChanges.Locale | ConfigChanges.ScreenSize | ConfigChanges.Orientation)]

 Internationalization Basics in Android

 Resource FoldersResource Folders

This document introduces the localization features of the Android SDK and how to access them with Xamarin.

This section describes the main localization features of Android. Skip to the next section to see specific code and

examples.

Users choose their language in Settings > Language & inputSettings > Language & input. This selection controls both the language

displayed and regional settings used (eg. for date and number formatting).

The current locale can be queried via the current context's Resources :

This value will be a locale identifier that contains both a language code and a locale code, separated by an

underscore. For reference, here is a list of Java locales and Android-supported locales via StackOverflow.

Common examples include:

en_US for English (United States)

es_ES for Spanish (Spain)

ja_JP for Japanese (Japan)

zh_CN for Chinese (China)

zh_TW for Chinese (Taiwan)

pt_PT for Portuguese (Portugal)

pt_BR for Portuguese (Brazil)

Android generates android.intent.action.LOCALE_CHANGED when the user changes their language selection.

Activities can opt to handle this by setting the android:configChanges attribute on the activity, like this:

Android's localization strategy has the following key parts:

Resource folders to contain localized strings, images, and other resources.

GetText method, which is used to retrieve localized strings in code

@string/id in AXML files, to automatically place localized strings in layouts.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/localization.md
https://www.oracle.com/technetwork/java/javase/locales-137662.html
https://stackoverflow.com/questions/7973023/what-is-the-list-of-supported-languages-locales-on-android

NOTENOTE

 Strings.xml file formatStrings.xml file format

<string name="app_name">TaskyL10n</string>

Android applications manage most content in resource folders, such as:

layoutlayout - contains AXML layout files.

drawabledrawable - contains images and other drawable resources.

valuesvalues - contains strings.

rawraw - contains data files.

Most developers are already familiar with the use of dpidpi suffixes on the drawabledrawable directory to provide multiple

versions of an image, letting Android choose the correct version for each device. The same mechanism is used

to provide multiple language translations by suffixing resource directories with language and culture identifiers.

When specifying a top-level language like es only two characters are required; however when specifying a full locale, the

directory name format requires a dash and lowercase rr to separate the two parts, for example pt-rBRpt-rBR or zh-rCNzh-rCN.

Compare this to the value returned in code, which has an underscore (eg. pt_BR). Both of these are different to the

value .NET CultureInfo class uses, which has a dash only (eg. pt-BR). Keep these differences in mind when working

across Xamarin platforms.

A localized valuesvalues directory (eg. values-esvalues-es or values-pt-rBRvalues-pt-rBR) should contain a file called Str ings.xmlStr ings.xml that will

contain the translated text for that locale.

Each translatable string is an XML element with the resource ID specified as the name attribute and the

translated string as the value:

You need to escape according to normal XML rules, and the name must be a valid Android resource ID (no

spaces or dashes). Here is an example of the default (English) strings file for the example:

values/Str ings.xmlvalues/Str ings.xml

<resources>
 <string name="app_name">TaskyL10n</string>
 <string name="taskadd">Add Task</string>
 <string name="taskname">Name</string>
 <string name="tasknotes">Notes</string>
 <string name="taskdone">Done</string>
 <string name="taskcancel">Cancel</string>
</resources>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">TaskyLeon</string>
 <string name="taskadd">agregar tarea</string>
 <string name="taskname">Nombre</string>
 <string name="tasknotes">Notas</string>
 <string name="taskdone">Completo</string>
 <string name="taskcancel">Cancelar</string>
</resources>

 AXML Layout FilesAXML Layout Files

<TextView
 android:id="@+id/NameLabel"
 android:text="@string/taskname"
 ... />
<CheckBox
 android:id="@+id/chkDone"
 android:text="@string/taskdone"
 ... />

 GetText MethodGetText Method

var cancelText = Resources.GetText (Resource.String.taskcancel);

 Quantity StringsQuantity Strings

The Spanish directory values-esvalues-es contains a file with the same name (Str ings.xmlStr ings.xml) that contains the

translations:

values-es/Str ings.xmlvalues-es/Str ings.xml

With the strings files set-up, the translated values can be referenced in both layouts and code.

To reference localized strings in layout files, use the @string/id syntax. This XML snippet from the sample

shows text properties being set with localized resource IDs (some other attributes have been omitted):

To retrieve translated strings in code, use the GetText method and pass the resource ID:

Android string resources also let you create quantity strings which allow translators to provide different

<plurals name="numberOfTasks">
 <!--
 As a developer, you should always supply "one" and "other"
 strings. Your translators will know which strings are actually
 needed for their language.
 -->
 <item quantity="one">There is %d task left.</item>
 <item quantity="other">There are %d tasks still to do.</item>
 </plurals>

var translated = Resources.GetQuantityString (
 Resource.Plurals.numberOfTasks, taskcount, taskcount);`

 ImagesImages

translations for different quantities, such as:

"There is 1 task left."

"There are 2 tasks still to do."

(rather than a generic "There are n task(s) left").

In the Str ings.xmlStr ings.xml

To render the complete string use the GetQuantityString method, passing the resource ID and the value to be

displayed (which is passed twice). The second parameter is used by Android to determine which quantity

string to use, the third parameter is the value actually substituted into the string (both are required).

Valid quantity switches are:

zero

one

two

few

many

other

They're described in more detail in the Android docs. If a given language does not require 'special' handling,

those quantity strings will be ignored (for example, English only uses one and other ; specifying a zero

string will have no effect, it will not be used).

Localized images follow the same rules as strings files: all images referenced in the application should be placed

in drawabledrawable directories so there is a fallback.

Locale-specific images should then be placed in qualified drawable folders such as drawable-esdrawable-es or drawable-drawable-

jaja (dpi specifiers can also be added).

In this screenshot, four images are saved in the drawabledrawable directory, but only one, flag.pngflag.png, has localized copies

in other directories.

https://developer.android.com/guide/topics/resources/string-resource.html#Plurals

 Other Resource TypesOther Resource Types

 App nameApp name

[Activity (Label = "@string/app_name", MainLauncher = true, Icon="@drawable/launcher",
 ConfigurationChanges = ConfigChanges.Orientation | ConfigChanges.Locale)]

 Right-to-Left (RTL) LanguagesRight-to-Left (RTL) Languages

You can also provide other types of alternative, language-specific resources including layouts, animations, and

raw files. This means you could provide a specific screen layout for one or more of your target languages, for

example you could create a layout specifically for German that allows for very long text labels.

Android 4.2 introduced support for right to left (RTL) languages if you set the application setting

android:supportsRtl="true" . The resource qualifier "ldrtl" can be included in a directory name to contain

custom layouts that are designed for RTL display.

For more information on resource directory naming and fallback, refer to the Android docs for providing

alternative resources.

The application name is easy to localize by using a @string/id in for the MainLauncher activity:

Android 4.2 and newer provides full support for RTL layouts, described in detail in the Native RTL Support blog.

When using Android 4.2 (API level 17) and newer, alignment values can be specified with start and end

instead of left and right (for example android:paddingStart). There are also new APIs like LayoutDirection ,

TextDirection , and TextAlignment to help build screens that adapt for RTL readers.

The following screenshot shows the localized TaskyTasky sample in Arabic:

The next screenshot shows the localized TaskyTasky sample in Hebrew:

https://android-developers.blogspot.fr/2013/03/native-rtl-support-in-android-42.html
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
https://android-developers.blogspot.dk/2013/03/native-rtl-support-in-android-42.html
https://github.com/conceptdev/xamarin-samples/tree/master/TaskyL10n
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/localization-images/rtl-ar.png#lightbox
https://github.com/conceptdev/xamarin-samples/tree/master/TaskyL10n

 Testing

 Emulator TestingEmulator Testing

adb shell setprop persist.sys.locale fr-CA;stop;sleep 5;start

 Device TestingDevice Testing

TIPTIP

 Summary

 Related Links

RTL text is localized using Str ings.xmlStr ings.xml files in the same way as LTR text.

Make sure to thoroughly test the default locale. Your application will crash if the default resources cannot be

loaded for some reason (i.e. they are missing).

Refer to Google's Testing on an Android Emulator section for instructions on how to set an emulator to a specific

locale using the ADB shell.

To test on a device, change the language in the SettingsSettings app.

Make a note of the icons and location of the menu items so that you can revert the language to the original setting.

This article covers the basics of localizing Android applications using the built-in resource handling. You can

learn more about i18n and L10n for iOS, Android and cross-platform (including Xamarin.Forms) apps in this

cross-platform guide.

Tasky (localized in code) (sample)

Android Localizing with Resources

Cross-Platform Localization Overview

Xamarin.Forms Localization

iOS Localization

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/localization-images/rtl-he.png#lightbox
https://developer.android.com/guide/topics/resources/localization.html#testing
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/localization
https://github.com/conceptdev/xamarin-samples/tree/master/TaskyL10n
https://developer.android.com/guide/topics/resources/localization.html
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/localization
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/localization/index
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/localization/index

Permissions In Xamarin.Android
 7/8/2021 • 9 minutes to read • Edit Online

 Overview

IMPORTANTIMPORTANT

Android applications run in their own sandbox and for security reasons do not have access to certain system

resources or hardware on the device. The user must explicitly grant permission to the app before it may use

these resources. For example, an application cannot access the GPS on a device without explicit permission from

the user. Android will throw a Java.Lang.SecurityException if an app tries to access a protected resource without

permission.

Permissions are declared in the AndroidManifest.xmlAndroidManifest.xml by the application developer when the app is developed.

Android has two different workflows for obtaining the user's consent for those permissions:

For apps that targeted Android 5.1 (API level 22) or lower, the permission request occurred when the app was

installed. If the user did not grant the permissions, then the app would not be installed. Once the app is

installed, there is no way to revoke the permissions except by uninstalling the app.

Starting in Android 6.0 (API level 23), users were given more control over permissions; they can grant or

revoke permissions as long as the app is installed on the device. This screenshot shows the permission

settings for the Google Contacts app. It lists the various permissions and allows the user to enable or disable

permissions:

Android apps must check at run-time to see if they have permission to access a protected resource. If the app

does not have permission, then it must make requests using the new APIs provided by the Android SDK for the

user to grant the permissions. Permissions are divided into two categories:

Normal PermissionsNormal Permissions – These are permissions which pose little security risk to the user's security or privacy.

Android 6.0 will automatically grant normal permissions at the time of installation. Please consult the

Android documentation for a complete list of normal permissions.

Dangerous PermissionsDangerous Permissions – In contrast to normal permissions, dangerous permissions are those that

protect the user's security or privacy. These must be explicitly granted by the user. Sending or receiving an

SMS message is an example of an action requiring a dangerous permission.

The category that a permission belongs to may change over time. It is possible that a permission which was categorized

as a "normal" permission may be elevated in future API levels to a dangerous permission.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/permissions.md
https://developer.android.com/guide/topics/permissions/normal-permissions.html

Dangerous permissions are further sub-divided into permission groups. A permission group will hold

permissions that are logically related. When the user grants permission to one member of a permission group,

Android automatically grants permission to all members of that group. For example, the STORAGE permission

group holds both the WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE permissions. If the user grants

permission to READ_EXTERNAL_STORAGE , then the WRITE_EXTERNAL_STORAGE permission is automatically granted at

the same time.

Before requesting one or more permissions, it is a best practice to provide a rationale as to why the app requires

the permission before requesting the permission. Once the user understands the rationale, the app can request

permission from the user. By understanding the rationale, the user can make an informed decision if they wish

to grant the permission and understand the repercussions if they do not.

The whole workflow of checking and requesting permissions is known as a run-time permissions check, and can

be summarized in the following diagram:

The Android Support Library backports some of the new APIs for permissions to older versions of Android.

These backported APIs will automatically check the version of Android on the device so it is not necessary to

https://developer.android.com/guide/topics/permissions/requesting.html#perm-groups
https://developer.android.com/reference/android/Manifest.permission_group.html#STORAGE
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/permissions-images/02-permissions-workflow.png#lightbox

NOTENOTE

 Requirements

 Requesting System Permissions

NOTENOTE

 Declaring Permissions in the ManifestDeclaring Permissions in the Manifest

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

perform an API level check each time.

This document will discuss how to add permissions to a Xamarin.Android application and how apps that target

Android 6.0 (API level 23) or higher should perform a run-time permission check.

It is possible that permissions for hardware may affect how the app is filtered by Google Play. For example, if the app

requires permission for the camera, then Google Play will not show the app in the Google Play Store on a device that does

not have a camera installed.

It is strongly recommended that Xamarin.Android projects include the Xamarin.Android.Support.Compat NuGet

package. This package will backport permission specific APIs to older versions of Android, providing one

common interface without the need to constantly check the version of Android that the app is running on.

The first step in working with Android permissions is to declare the permissions in the Android manifest file.

This must be done regardless of the API level that the app is targetting.

Apps that target Android 6.0 or higher cannot assume that because the user granted permission at some point

in the past, that the permission will be valid the next time. An app that targets Android 6.0 must always perform

a runtime permission check. Apps that target Android 5.1 or lower do not need to perform a run-time

permission check.

Applications should only request the permissions that they require.

Permissions are added to the AndroidManifest.xmlAndroidManifest.xml with the uses-permission element. For example, if an

application is to locate the position of the device, it requires fine and course location permissions. The following

two elements are added to the manifest:

Visual Studio

Visual Studio for Mac

It is possible to declare the permissions using the tool support built into Visual Studio:

1. Double-click Proper tiesProper ties in the Solution ExplorerSolution Explorer and select the Android ManifestAndroid Manifest tab in the

Properties window:

https://www.nuget.org/packages/Xamarin.Android.Support.Compat/

2. If the application does not already have an AndroidManifest.xml, click No AndroidManifest.xml found.No AndroidManifest.xml found.

Click to add oneClick to add one as shown below:

3. Select any permissions your application needs from the Required permissionsRequired permissions list and save:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/permissions-images/04-required-permissions-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/permissions-images/05-no-manifest-vs.png#lightbox

 Runtime Permission Checks in Android 6.0Runtime Permission Checks in Android 6.0

if (ContextCompat.CheckSelfPermission(this, Manifest.Permission.Camera) == (int)Permission.Granted)
{
 // We have permission, go ahead and use the camera.
}
else
{
 // Camera permission is not granted. If necessary display rationale & request.
}

Xamarin.Android will automatically add some permissions at build time to Debug builds. This will make

debugging the application easier. In particular, two notable permissions are INTERNET and

READ_EXTERNAL_STORAGE . These automatically-set permissions will not appear to be enabled in the RequiredRequired

permissionspermissions list. Release builds, however, use only the permissions that are explicitly set in the RequiredRequired

permissionspermissions list.

For apps that target Android 5.1(API level 22) or lower, there is nothing more that needs to be done. Apps that

will run on Android 6.0 (API 23 level 23) or higher should proceed on to the next section on how to perform run

time permission checks.

The ContextCompat.CheckSelfPermission method (available with the Android Support Library) is used to check if

a specific permission has been granted. This method will return a Android.Content.PM.Permission enum which

has one of two values:

Permission.Granted – The specified permission has been granted.

Permission.Denied – The specified permission has not been granted.

This code snippet is an example of how to check for the Camera permission in an Activity:

It is a best practice to inform the user as to why a permission is necessary for an application so that an informed

decision can be made to grant the permission. An example of this would be an app that takes photos and geo-

tags them. It is clear to the user that the camera permission is necessary, but it might not be clear why the app

also needs the location of the device. The rationale should display a message to help the user understand why

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/permissions-images/06-selected-permission-vs.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.content.pm.permission

if (ActivityCompat.ShouldShowRequestPermissionRationale(this, Manifest.Permission.AccessFineLocation))
{
 // Provide an additional rationale to the user if the permission was not granted
 // and the user would benefit from additional context for the use of the permission.
 // For example if the user has previously denied the permission.
 Log.Info(TAG, "Displaying camera permission rationale to provide additional context.");

 var requiredPermissions = new String[] { Manifest.Permission.AccessFineLocation };
 Snackbar.Make(layout,
 Resource.String.permission_location_rationale,
 Snackbar.LengthIndefinite)
 .SetAction(Resource.String.ok,
 new Action<View>(delegate(View obj) {
 ActivityCompat.RequestPermissions(this, requiredPermissions, REQUEST_LOCATION);
 }
)
).Show();
}
else
{
 ActivityCompat.RequestPermissions(this, new String[] { Manifest.Permission.Camera }, REQUEST_LOCATION);
}

the location permission is desirable and that the camera permission is required.

The ActivityCompat.ShouldShowRequestPermissionRationale method is used to determine if the rationale should

be shown to the user. This method will return true if the rationale for a given permission should be displayed.

This screenshot shows an example of a Snackbar displayed by an application that explains why the app needs to

know the location of the device:

If the user grants the permission, the

ActivityCompat.RequestPermissions(Activity activity, string[] permissions, int requestCode) method should

be called. This method requires the following parameters:

activityactivity – This is the activity that is requesting the permissions and is to be informed by Android of the

results.

permissionspermissions – A list of the permissions that are being requested.

requestCoderequestCode – An integer value that is used to match the results of the permission request to a

RequestPermissions call. This value should be greater than zero.

This code snippet is an example of the two methods that were discussed. First, a check is made to determine if

the permission rationale should be shown. If the rationale is to be shown, then a Snackbar is displayed with the

rationale. If the user clicks OKOK in the Snackbar, then the app will request the permissions. If the user does not

accept the rationale, then the app should not proceed to request permissions. If the rationale is not shown, then

the Activity will request the permission:

RequestPermission can be called even if the user has already granted permission. Subsequent calls are not

necessary, but they provide the user with the opportunity to confirm (or revoke) the permission. When

RequestPermission is called, control is handed off to the operating system, which will display a UI for accepting

the permissions:

public override void OnRequestPermissionsResult(int requestCode, string[] permissions, Permission[]
grantResults)
{
 if (requestCode == REQUEST_LOCATION)
 {
 // Received permission result for camera permission.
 Log.Info(TAG, "Received response for Location permission request.");

 // Check if the only required permission has been granted
 if ((grantResults.Length == 1) && (grantResults[0] == Permission.Granted)) {
 // Location permission has been granted, okay to retrieve the location of the device.
 Log.Info(TAG, "Location permission has now been granted.");
 Snackbar.Make(layout, Resource.String.permission_available_camera, Snackbar.LengthShort).Show();
 }
 else
 {
 Log.Info(TAG, "Location permission was NOT granted.");
 Snackbar.Make(layout, Resource.String.permissions_not_granted, Snackbar.LengthShort).Show();
 }
 }
 else
 {
 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
 }
}

 Summary

 Related Links

After the user is finished, Android will return the results to the Activity via a callback method,

OnRequestPermissionResult . This method is a part of the interface

ActivityCompat.IOnRequestPermissionsResultCallback which must be implemented by the Activity. This interface

has a single method, OnRequestPermissionsResult , which will be invoked by Android to inform the Activity of the

user's choices. If the user has granted the permission, then the app can go ahead and use the protected resource.

An example of how to implement OnRequestPermissionResult is shown below:

This guide discussed how to add and check for permissions in an Android device. The differences in how

permissions work between old Android apps (API level < 23) and new Android apps (API level > 22). It

discussed how to perform run-time permission checks in Android 6.0.

List of Normal Permissions

Runtime Permissions Sample App

Handling Permissions in Xamarin.Android

https://developer.android.com/guide/topics/permissions/normal-permissions.html
https://github.com/xamarin/monodroid-samples/tree/master/android-m/RuntimePermissions
https://github.com/xamarin/recipes/tree/master/Recipes/android/general/projects/add_permissions_to_android_manifest

Android Graphics and Animation
 7/8/2021 • 17 minutes to read • Edit Online

 Overview

Android provides a very rich and diverse framework for supporting 2D graphics and animations. This topic

introduces these frameworks and discusses how to create custom graphics and animations for use in a

Xamarin.Android application.

Despite running on devices that are traditionally of limited power, the highest rated mobile applications often

have a sophisticated User Experience (UX), complete with high quality graphics and animations that provide an

intuitive, responsive, dynamic feel. As mobile applications get more and more sophisticated, users have begun

to expect more and more from applications.

Luckily for us, modern mobile platforms have very powerful frameworks for creating sophisticated animations

and custom graphics while retaining ease of use. This enables developers to add rich interactivity with very little

effort.

UI API frameworks in Android can roughly be split into two categories: Graphics and Animation.

Graphics are further split into different approaches for doing 2D and 3D graphics. 3D graphics are available via

a number of built in frameworks such as OpenGL ES (a mobile specific version of OpenGL), and third-party

frameworks such as MonoGame (a cross platform toolkit compatible with the XNA toolkit). Although 3D

graphics are not within the scope of this article, we will examine the built-in 2D drawing techniques.

Android provides two different API's for creating 2D graphics. One is a high level declarative approach and the

other a programmatic low-level API:

Drawable ResourcesDrawable Resources – These are used to create custom graphics either programmatically or (more

typically) by embedding drawing instructions in XML files. Drawable resources are typically defined as

XML files that contain instructions or actions for Android to render a 2D graphic.

CanvasCanvas – this is a low level API that involves drawing directly on an underlying bitmap. It provides very

fine-grained control over what is displayed.

In addition to these 2D graphics techniques, Android also provides several different ways to create animations:

Drawable AnimationsDrawable Animations – Android also supports frame-by-frame animations known as Drawable

Animation. This is the simplest animation API. Android sequentially loads and displays Drawable

resources in sequence (much like a cartoon).

View AnimationsView Animations – View Animations are the original animation API's in Android and are available in all

versions of Android. This API is limited in that it will only work with View objects and can only perform

simple transformations on those Views. View animations are typically defined in XML files found in the

/Resources/anim folder.

Proper ty AnimationsProper ty Animations – Android 3.0 introduced a new set of animation API's known as Property

Animations. These new API's introduced an extensible and flexible system that can be used to animate the

properties of any object, not just View objects. This flexibility allows animations to be encapsulated in

distinct classes that will make code sharing easier.

View Animations are more suitable for applications that must support the older pre-Android 3.0 API's (API level

11). Otherwise applications should use the newer Property Animation API's for the reasons that were mentioned

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/graphics-and-animation.md

 Accessibility

 2D Graphics

 Drawable ResourcesDrawable Resources

above.

All of these frameworks are viable options, however where possible, preference should be given to Property

Animations, as it is a more flexible API to work with. Property Animations allow for animation logic to be

encapsulated in distinct classes that makes code sharing easier and simplifies code maintenance.

Graphics and animations help to make Android apps attractive and fun to use; however, it is important to

remember that some interactions occur via screenreaders, alternate input devices, or with assisted zoom. Also,

some interactions may occur without audio capabilities.

Apps are more usable in these situations if they have been designed with accessibility in mind: providing hints

and navigation assistance in the user-interface, and ensuring there is text-content or descriptions for pictorial

elements of the UI.

Refer to Google's Accessibility Guide for more information on how to utilize Android's accessibility APIs.

Drawable Resources are a popular technique in Android applications. As with other resources, Drawable

Resources are declarative – they're defined in XML files. This approach allows for a clean separation of code

from resources. This can simplify development and maintenance because it is not necessary to change code to

update or change the graphics in an Android application. However, while Drawable Resources are useful for

many simple and common graphic requirements, they lack the power and control of the Canvas API.

The other technique, using the Canvas object, is very similar to other traditional API frameworks such as

System.Drawing or iOS's Core Drawing. Using the Canvas object provides the most control of how 2D graphics

are created. It is appropriate for situations where a Drawable Resource will not work or will be difficult to work

with. For example, it may be necessary to draw a custom slider control whose appearance will change based on

calculations related to the value of the slider.

Let's examine Drawable Resources first. They are simpler and cover the most common custom drawing cases.

Drawable Resources are defined in an XML file in the directory /Resources/drawable . Unlike embedding PNG or

JPEG's, it is not necessary to provide density-specific versions of Drawable Resources. At runtime, an Android

application will load these resources and use the instructions contained in these XML files to create 2D graphics.

Android defines several different types of Drawable Resources:

ShapeDrawable – This is a Drawable object that draws a primitive geometric shape and applies a limited

set of graphical effects on that shape. They are very useful for things such as customizing Buttons or

setting the background of TextViews. We will see an example of how to use a ShapeDrawable later in this

article.

StateListDrawable – This is a Drawable Resource that will change appearance based on the state of a

widget/control. For example, a button may change its appearance depending on whether it is pressed or

not.

LayerDrawable – This Drawable Resource that will stack several other drawables one on top of another.

An example of a LayerDrawable is shown in the following screenshot:

https://developer.android.com/guide/topics/ui/accessibility/
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.canvas
https://developer.android.com/guide/topics/resources/drawable-resource.html#Shape
https://developer.android.com/guide/topics/resources/drawable-resource.html#StateList
https://developer.android.com/guide/topics/resources/drawable-resource.html#LayerList

 Drawable ExampleDrawable Example

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android" android:shape="rectangle">
<!-- Specify a gradient for the background -->
<gradient android:angle="45"
 android:startColor="#55000066"
 android:centerColor="#00000000"
 android:endColor="#00000000"
 android:centerX="0.75" />

<padding android:left="5dp"
 android:right="5dp"
 android:top="5dp"
 android:bottom="5dp" />

<corners android:topLeftRadius="10dp"
 android:topRightRadius="10dp"
 android:bottomLeftRadius="10dp"
 android:bottomRightRadius="10dp" />
</shape>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#33000000">
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:background="@drawable/shape_rounded_blue_rect"
 android:text="@string/message_shapedrawable" />
</RelativeLayout>

TransitionDrawable – This is a LayerDrawable but with one difference. A TransitionDrawable is able to

animate one layer showing up over top another.

LevelListDrawable – This is very similar to a StateListDrawable in that it will display an image based on

certain conditions. However, unlike a StateListDrawable, the LevelListDrawable displays an image based

on an integer value. An example of a LevelListDrawable would be to display the strength of a WiFi signal.

As the strength of the WiFi signal changes, the drawable that is displayed will change accordingly.

ScaleDrawable/ClipDrawable – As their name implies, these Drawables provide both scaling and clipping

functionality. The ScaleDrawable will scale another Drawable, while the ClipDrawable will clip another

Drawable.

InsetDrawable – This Drawable will apply insets on the sides of another Drawable resource. It is used

when a View needs a background that is smaller than the View's actual bounds.

XML BitmapDrawable – This file is a set of instructions, in XML, that are to be performed on an actual

bitmap. Some actions that Android can perform are tiling, dithering, and anti-aliasing. One of the very

common uses of this is to tile a bitmap across the background of a layout.

Let's look at a quick example of how to create a 2D graphic using a ShapeDrawable . A ShapeDrawable can define

one of the four basic shapes: rectangle, oval, line, and ring. It is also possible to apply basic effects, such as

gradient, colour, and size. The following XML is a ShapeDrawable that may be found in the AnimationsDemo

companion project (in the file Resources/drawable/shape_rounded_blue_rect.xml). It defines a rectangle with a

purple gradient background and rounded corners:

We can reference this Drawable Resource declaratively in a Layout or other Drawable as shown in the following

XML:

https://developer.android.com/guide/topics/resources/drawable-resource.html#Transition
https://developer.android.com/guide/topics/resources/drawable-resource.html#LevelList
https://developer.android.com/guide/topics/resources/drawable-resource.html#Scale
https://developer.android.com/guide/topics/resources/drawable-resource.html#Clip
https://developer.android.com/guide/topics/resources/drawable-resource.html#Inset
https://developer.android.com/guide/topics/resources/drawable-resource.html#Bitmap

TextView tv = FindViewById<TextView>(Resource.Id.shapeDrawableTextView);
tv.SetBackgroundResource(Resource.Drawable.shape_rounded_blue_rect);

 Using the Canvas Drawing APIUsing the Canvas Drawing API

Bitmap bitmap = Bitmap.CreateBitmap(100, 100, Bitmap.Config.Argb8888);
Canvas canvas = new Canvas(b);

Drawable Resources can also be applied programmatically. The following code snippet shows how to

programmatically set the background of a TextView:

To see what this would look like, run the AnimationsDemo project and select the Shape Drawable item from the

main menu. We should see something similar to the following screenshot:

For more details about the XML elements and syntax of Drawable Resources, consult Google's documentation.

Drawables are powerful but have their limitations. Certain things are either not possible or very complex (for

example: applying a filter to a picture that was taken by a camera on the device). It would be very difficult to

apply red-eye reduction by using a Drawable Resource. Instead, the Canvas API allows an application to have

very fine-grained control to selectively change colors in a specific part of the picture.

One class that is commonly used with the Canvas is the Paint class. This class holds colour and style information

about how to draw. It is used to provide things such a color and transparency.

The Canvas API uses the painter's model to draw 2D graphics. Operations are applied in successive layers on top

of each other. Each operation will cover some area of the underlying bitmap. When the area overlaps a

previously painted area, the new paint will partially or completely obscure the old. This is the same way that

many other drawing APIs such as System.Drawing and iOS's Core Graphics work.

There are two ways to obtain a Canvas object. The first way involves defining a Bitmap object, and then

instantiating a Canvas object with it. For example, the following code snippet creates a new canvas with an

underlying bitmap:

The other way to obtain a Canvas object is by the OnDraw callback method that is provided the View base class.

Android calls this method when it decides a View needs to draw itself and passes in a Canvas object for the

View to work with.

The Canvas class exposes methods to programmatically provide the draw instructions. For example:

Canvas.DrawPaint – Fills the entire canvas's bitmap with the specified paint.

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/graphics-and-animation-images/image2.png#lightbox
https://developer.android.com/guide/topics/resources/drawable-resource.html#Shape
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.paint
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.bitmap
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.ondraw
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.canvas.drawpaint

 Drawing with the Canvas APIDrawing with the Canvas API

public class MyView : View
{
 protected override void OnDraw(Canvas canvas)
 {
 base.OnDraw(canvas);
 Paint green = new Paint {
 AntiAlias = true,
 Color = Color.Rgb(0x99, 0xcc, 0),
 };
 green.SetStyle(Paint.Style.FillAndStroke);

 Paint red = new Paint {
 AntiAlias = true,
 Color = Color.Rgb(0xff, 0x44, 0x44)
 };
 red.SetStyle(Paint.Style.FillAndStroke);

 float middle = canvas.Width * 0.25f;
 canvas.DrawPaint(red);
 canvas.DrawRect(0, 0, middle, canvas.Height, green);
 }
}

 Animation

Canvas.DrawPath – Draws the specified geometric shape using the specified paint.

Canvas.DrawText – Draws the text on the canvas with the specified colour. The text is drawn at location

x,y .

Here's an example of the Canvas API in action. The following code snippet shows how to draw a view:

This code above first creates a red paint and a green paint object. It fills the content of the canvas with red, and

then instructs the canvas to draw a green rectangle that is 25% of the width of the canvas. An example of this

can be seen by in AnimationsDemo project that is included with the source code for this article. By starting up the

application and selecting the Drawing item from the main menu, we should a screen similar to the following:

Users like things that move in their applications. Animations are a great way to improve the user experience of

an application and help it stand out. The best animations are the ones that users don't notice because they feel

natural. Android provides the following three API's for animations:

View AnimationView Animation – This is the original API. These animations are tied to a specific View and can perform

simple transformations on the contents of the View. Because of it's simplicity, this API still useful for

things like alpha animations, rotations, and so forth.

Proper ty AnimationProper ty Animation – Property animations were introduced in Android 3.0. They enable an application

to animate almost anything. Property animations can be used to change any property of any object, even

if that object is not visible on the screen.

https://docs.microsoft.com/en-us/dotnet/api/android.graphics.canvas.drawpath
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.canvas.drawtext
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/graphics-and-animation-images/image3.png#lightbox

 View AnimationsView Animations

Drawable AnimationDrawable Animation – This a special Drawable resource that is used to apply a very simple animation

effect to layouts.

In general, property animation is the preferred system to use as it is more flexible and offers more features.

View animations are limited to Views and can only perform animations on values such as start and end points,

size, rotation, and transparency. These types of animations are typically referred to as tween animations. View

animations can be defined two ways – programmatically in code or by using XML files. XML files are the

preferred way to declare view animations, as they are more readable and easier to maintain.

The animation XML files will be stored in the /Resources/anim directory of a Xamarin.Android project. This file

must have one of the following elements as the root element :

alpha – A fade-in or fade-out animation.

rotate – A rotation animation.

scale – A resizing animation.

translate – A horizontal and/or vertical motion.

set – A container that may hold one or more of the other animation elements.

By default, all animations in an XML file will be applied simultaneously. To make animations occur sequentially,

set the android:startOffset attribute on one of the elements defined above.

It is possible to affect the rate of change in an animation by using an interpolator. An interpolator makes it

possible for animation effects to be accelerated, repeated, or decelerated. The Android framework provides

several interpolators out of the box, such as (but not limited to):

AccelerateInterpolator / DecelerateInterpolator – these interpolators increase or decrease the rate of

change in an animation.

BounceInterpolator – the change bounces at the end.

LinearInterpolator – the rate of changes is constant.

The following XML shows an example of an animation file that combines some of these elements:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android=http://schemas.android.com/apk/res/android
 android:shareInterpolator="false">

 <scale android:interpolator="@android:anim/accelerate_decelerate_interpolator"
 android:fromXScale="1.0"
 android:toXScale="1.4"
 android:fromYScale="1.0"
 android:toYScale="0.6"
 android:pivotX="50%"
 android:pivotY="50%"
 android:fillEnabled="true"
 android:fillAfter="false"
 android:duration="700" />

 <set android:interpolator="@android:anim/accelerate_interpolator">
 <scale android:fromXScale="1.4"
 android:toXScale="0.0"
 android:fromYScale="0.6"
 android:toYScale="0.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:fillEnabled="true"
 android:fillBefore="false"
 android:fillAfter="true"
 android:startOffset="700"
 android:duration="400" />

 <rotate android:fromDegrees="0"
 android:toDegrees="-45"
 android:toYScale="0.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:fillEnabled="true"
 android:fillBefore="false"
 android:fillAfter="true"
 android:startOffset="700"
 android:duration="400" />
 </set>
</set>

Animation myAnimation = AnimationUtils.LoadAnimation(Resource.Animation.MyAnimation);
ImageView myImage = FindViewById<ImageView>(Resource.Id.imageView1);
myImage.StartAnimation(myAnimation);

 Property AnimationsProperty Animations

This animation will perform all of the animations simultaneously. The first scale animation will stretch the image

horizontally and shrink it vertically, and then the image will simultaneously be rotated 45 degrees counter-

clockwise and shrink, disappearing from the screen.

The animation can be programmatically applied to a View by inflating the animation and then applying it to a

View. Android provides the helper class Android.Views.Animations.AnimationUtils that will inflate an animation

resource and return an instance of Android.Views.Animations.Animation . This object is applied to a View by

calling StartAnimation and passing the Animation object. The following code snippet shows an example of this:

Now that we have a fundamental understanding of how View Animations work, lets move to Property

Animations.

Property animators are a new API that was introduced in Android 3.0. They provide a more extensible API that

can be used to animate any property on any object.

 Using the ValueAnimatorUsing the ValueAnimator

ValueAnimator animator = ValueAnimator.OfInt(0, 100);
animator.SetDuration(1000);
animator.Start();

All property animations are created by instances of the Animator subclass. Applications do not directly use this

class, instead they use one of it's subclasses:

ValueAnimator – This class is the most important class in the entire property animation API. It calculates

the values of properties that need to be changed. The ViewAnimator does not directly update those

values; instead, it raises events that can be used to update animated objects.

ObjectAnimator – This class is a subclass of ValueAnimator . It is meant to simplify the process of

animating objects by accepting a target object and property to update.

AnimationSet – This class is responsible for orchestrating how animations run in relation to one another.

Animations may run simultaneously, sequentially, or with a specified delay between them.

Evaluators are special classes that are used by animators to calculate the new values during an animation. Out of

the box, Android provides the following evaluators:

IntEvaluator – Calculates values for integer properties.

FloatEvaluator – Calculates values for float properties.

ArgbEvaluator – Calculates values for colour properties.

If the property that is being animated is not a float , int or colour, applications may create their own

evaluator by implementing the ITypeEvaluator interface. (Implementing custom evaluators is beyond the scope

of this topic.)

There are two parts to any animation: calculating animated values and then setting those values on properties

on some object. ValueAnimator will only calculate the values, but it will not operate on objects directly. Instead,

objects will be updated inside event handlers that will be invoked during the animation lifespan. This design

allows several properties to be updated from one animated value.

You obtain an instance of ValueAnimator by calling one of the following factory methods:

ValueAnimator.OfInt

ValueAnimator.OfFloat

ValueAnimator.OfObject

Once that is done, the ValueAnimator instance must have its duration set, and then it can be started. The

following example shows how to animate a value from 0 to 1 over the span of 1000 milliseconds:

But itself, the code snippet above is not very useful – the animator will run but there is no target for the updated

value. The Animator class will raise the Update event when it decides that it is necessary to inform listeners of a

new value. Applications may provide an event handler to respond to this event as shown in the following code

snippet:

https://docs.microsoft.com/en-us/dotnet/api/android.animation.animator
https://docs.microsoft.com/en-us/dotnet/api/android.animation.valueanimator
https://docs.microsoft.com/en-us/dotnet/api/android.animation.objectanimator
https://docs.microsoft.com/en-us/dotnet/api/android.animation.animatorset
https://docs.microsoft.com/en-us/dotnet/api/android.animation.intevaluator
https://docs.microsoft.com/en-us/dotnet/api/android.animation.floatevaluator
https://docs.microsoft.com/en-us/dotnet/api/android.animation.argbevaluator
https://docs.microsoft.com/en-us/dotnet/api/android.animation.valueanimator

MyCustomObject myObj = new MyCustomObject();
myObj.SomeIntegerValue = -1;

animator.Update += (object sender, ValueAnimator.AnimatorUpdateEventArgs e) =>
{
 int newValue = (int) e.Animation.AnimatedValue;
 // Apply this new value to the object being animated.
 myObj.SomeIntegerValue = newValue;
};

 Using the ObjectAnimatorUsing the ObjectAnimator

MyCustomObject myObj = new MyCustomObject();
myObj.SomeIntegerValue = -1;

ObjectAnimator animator = ObjectAnimator.OfFloat(myObj, "SomeIntegerValue", 0, 100);
animator.SetDuration(1000);
animator.Start();

 Drawable AnimationsDrawable Animations

<animation-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/asteroid01" android:duration="100" />
 <item android:drawable="@drawable/asteroid02" android:duration="100" />
 <item android:drawable="@drawable/asteroid03" android:duration="100" />
 <item android:drawable="@drawable/asteroid04" android:duration="100" />
 <item android:drawable="@drawable/asteroid05" android:duration="100" />
 <item android:drawable="@drawable/asteroid06" android:duration="100" />
</animation-list>

Now that we have an understanding of ValueAnimator , lets learn more about the ObjectAnimator .

ObjectAnimator is a subclass of ViewAnimator that combines the timing engine and value computation of the

ValueAnimator with the logic required to wire up event handlers. The ValueAnimator requires applications to

explicitly wire up an event handler – ObjectAnimator will take care of this step for us.

The API for ObjectAnimator is very similar to the API for ViewAnimator , but requires that you provide the object

and the name of the property to update. The following example shows an example of using ObjectAnimator :

As you can see from the previous code snippet, ObjectAnimator can reduce and simplify the code that is

necessary to animate an object.

The final animation API is the Drawable Animation API. Drawable animations load a series of Drawable

resources one after the other and display them sequentially, similar to a flip-it cartoon.

Drawable resources are defined in an XML file that has an <animation-list> element as the root element and a

series of <item> elements that define each frame in the animation. This XML file is stored in the

/Resource/drawable folder of the application. The following XML is an example of a drawable animation:

This animation will run through six frames. The android:duration attribute declares how long each frame will be

displayed. The next code snippet shows an example of creating a Drawable animation and starting it when the

user clicks a button on the screen:

https://docs.microsoft.com/en-us/dotnet/api/android.animation.objectanimator

AnimationDrawable _asteroidDrawable;

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);

 _asteroidDrawable = (Android.Graphics.Drawables.AnimationDrawable)
 Resources.GetDrawable(Resource.Drawable.spinning_asteroid);

 ImageView asteroidImage = FindViewById<ImageView>(Resource.Id.imageView2);
 asteroidImage.SetImageDrawable((Android.Graphics.Drawables.Drawable) _asteroidDrawable);

 Button asteroidButton = FindViewById<Button>(Resource.Id.spinAsteroid);
 asteroidButton.Click += (sender, e) =>
 {
 _asteroidDrawable.Start();
 };
}

 Summary

 Related Links

At this point we have covered the foundations of the animation APIs available in an Android application.

This article introduced a lot of new concepts and API's to help add some graphics to an Android application. First

it discussed the various 2D graphics API's and demonstrated how Android allows applications to draw directly to

the screen using a Canvas object. We also saw some alternate techniques that allow graphics to be declaratively

created using XML files. Then we went on to discuss the old and new API's for creating animations in Android.

Animation Demo (sample)

Animation and Graphics

Using Animations to Bring your Mobile Apps to Life

AnimationDrawable

Canvas

Object Animator

Value Animator

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/animationdemo
https://developer.android.com/guide/topics/graphics/index.html
https://youtu.be/ikSk_ILg3d0
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.drawables.animationdrawable
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.canvas
https://docs.microsoft.com/en-us/dotnet/api/android.animation.objectanimator
https://docs.microsoft.com/en-us/dotnet/api/android.animation.valueanimator

CPU Architectures
 7/8/2021 • 3 minutes to read • Edit Online

 CPU Architectures Overview

 How to Specify Supported Architectures

Xamarin.Android supports several CPU architectures, including 32-bit and 64-bit devices. This article explains

how to target an app to one or more Android-supported CPU architectures.

When you prepare your app for release, you must specify which platform CPU architectures your app supports.

A single APK can contain machine code to support multiple, different architectures. Each collection of

architecture-specific code is associated with an Application Binary Interface (ABI). Each ABI defines how this

machine code is expected to interact with Android at run time. For more information about how this works, see

Multi-Core Devices & Xamarin.Android.

Visual Studio

Visual Studio for Mac

Typically, you explicitly select an architecture (or architectures) when your app is configured for ReleaseRelease. When

your app is configured for DebugDebug, the Use Shared RuntimeUse Shared Runtime and Use Fast DeploymentUse Fast Deployment options are enabled,

which disable explicit architecture selection.

In Visual Studio, right-click on your project under the Solution ExplorerSolution Explorer and select Proper tiesProper ties . Under the

Android OptionsAndroid Options page check the Packaging proper tiesPackaging proper ties section and verify that Use Shared RuntimeUse Shared Runtime is

disabled (turning this off allows you to explicitly select which ABIs to support). Click the AdvancedAdvanced button and,

under Suppor ted architecturesSuppor ted architectures , check the architectures that you want to support:

Xamarin.Android supports the following architectures:

armeabiarmeabi – ARM-based CPUs that support at least the ARMv5TE instruction set. Note that armeabi is not

thread-safe and should not be used on multi-CPU devices.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/cpu-architectures.md
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/cpu-architectures-images/vs/01-abi-selections.png#lightbox

NOTENOTE

 Targeting Multiple Platforms

NOTENOTE

 Additional Information

As of Xamarin.Android 9.2, armeabi is no longer supported.

armeabi-v7aarmeabi-v7a – ARM-based CPUs with hardware floating-point operations and multiple CPU (SMP)

devices. Note that armeabi-v7a machine code will not run on ARMv5 devices.

arm64-v8aarm64-v8a – CPUs based on the 64-bit ARMv8 architecture.

x86x86 – CPUs that support the x86 (or IA-32) instruction set. This instruction set is equivalent to that of the

Pentium Pro, including MMX, SSE, SSE2, and SSE3 instructions.

x86_64x86_64 CPUs that support the 64-bit x86 (also referred as x64 and AMD64) instruction set.

Xamarin.Android defaults to armeabi-v7a for ReleaseRelease builds. This setting provides significantly better

performance than armeabi . If you are targeting a 64-bit ARM platform (such as the Nexus 9), select arm64-v8a .

If you are deploying your app to an x86 device, select x86 . If the target x86 device uses a 64-bit CPU

architecture, select x86_64 .

To target multiple CPU architectures, you can select more than one ABI (at the expense of larger APK file size).

You can use the Generate one package (.apk) per selected ABIGenerate one package (.apk) per selected ABI option (described in Set Packaging

Properties) to create a separate APK for each supported architecture.

You do not have to select arm64-v8aarm64-v8a or x86_64x86_64 to target 64-bit devices; 64-bit support is not required to run

your app on 64-bit hardware. For example, 64-bit ARM devices (such as the Nexus 9) can run apps configured

for armeabi-v7a . The primary advantage of enabling 64-bit support is to make it possible for your app to

address more memory.

From August 2018 new apps will be required to target API level 26, and from August 2019 apps will be required to

provide 64-bit versions in addition to the 32-bit version.

In some situations, you may need to create a separate APK for each architecture (to reduce the size of your APK,

or because your app has shared libraries that are specific to a particular CPU architecture). For more information

about this approach, see Build ABI-Specific APKs.

https://docs.microsoft.com/en-us/xamarin/android/release-notes/9/9.2#removal-of-support-for-armeabi-cpu-architecture
https://www.google.com/nexus/9/
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html

Handling Rotation
 7/8/2021 • 8 minutes to read • Edit Online

 Overview

 Handling Rotation Declaratively with Layouts

 Layout ResourcesLayout Resources

This topic describes how to handle device orientation changes in Xamarin.Android. It covers how to work with

the Android resource system to automatically load resources for a particular device orientation as well as how

to programmatically handle orientation changes.

Because mobile devices are easily rotated, built-in rotation is a standard feature in mobile OSes. Android

provides a sophisticated framework for dealing with rotation within applications, whether the user interface is

created declaratively in XML or programmatically in code. When automatically handling declarative layout

changes on a rotated device, an application can benefit from the tight integration with the Android resource

system. For programmatic layout, changes must be handled manually. This allows finer control at runtime, but at

the expense of more work for the developer. An application can also choose to opt out of the Activity restart and

take manual control of orientation changes.

This guide examines the following orientation topics:

Declarative Layout RotationDeclarative Layout Rotation – How to use the Android resource system to build orientation-aware

applications, including how to load both layouts and drawables for particular orientations.

Programmatic Layout RotationProgrammatic Layout Rotation – How to add controls programmatically as well as how to handle

orientation changes manually.

By including files in folders that follow naming conventions, Android automatically loads the appropriate files

when the orientation changes. This includes support for :

Layout Resources – Specifying which layout files are inflated for each orientation.

Drawable Resources – Specifying which drawables are loaded for each orientation.

By default, Android XML (AXML) files included in the Resources/layoutResources/layout folder are used for rendering views for

an Activity. This folder's resources are used for both portrait and landscape orientation if no additional layout

resources are provided specifically for landscape. Consider the project structure created by the default project

template:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/handling-rotation.md

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<Button
 android:id="@+id/myButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"/>
</LinearLayout>

This project creates a single Main.axmlMain.axml file in the Resources/layoutResources/layout folder. When the Activity's OnCreate

method is called, it inflates the view defined in Main.axml,Main.axml, which declares a button as shown in the XML below:

If the device is rotated to landscape orientation, the Activity's OnCreate method is called again and the same

Main.axmlMain.axml file is inflated, as shown in the screenshot below:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/handling-rotation-images/00.png#lightbox

 Orientation-Specific LayoutsOrientation-Specific Layouts

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:text="This is portrait"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent" />
</RelativeLayout>

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:text="This is landscape"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent" />
</RelativeLayout>

In addition to the layout folder (which defaults to portrait and can also be explicitly named layout-port by

including a folder named layout-land), an application can define the views it needs when in landscape without

any code changes.

Suppose the Main.axmlMain.axml file contained the following XML:

If a folder named layout-land that contains an additional Main.axmlMain.axml file is added to the project, inflating the

layout when in landscape will now result in Android loading the newly added Main.axml.Main.axml. Consider the

landscape version of the Main.axmlMain.axml file that contains the following code (for simplicity, this XML is similar to

the default portrait version of the code, but uses a different string in the TextView):

Running this code and rotating the device from portrait to landscape demonstrates the new XML loading, as

shown below:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/handling-rotation-images/01.png#lightbox

 Drawable ResourcesDrawable Resources

<ImageView
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:src="@drawable/monkey"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

During rotation, Android treats drawable resources similarly to layout resources. In this case, the system gets the

drawables from the Resources/drawableResources/drawable and Resources/drawable-landResources/drawable-land folders, respectively.

For example, say the project includes an image named Monkey.png in the Resources/drawableResources/drawable folder, where

the drawable is referenced from an ImageView in XML like this:

Let's further assume that a different version of Monkey.pngMonkey.png is included under Resources/drawable-landResources/drawable-land.

Just like with the layout files, when the device is rotated, the drawable changes for the given orientation, as

shown below:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/handling-rotation-images/02.png#lightbox

 Handling Rotation Programmatically

 Adding Controls in CodeAdding Controls in Code

Sometimes we define layouts in code. This can happen for a variety of reasons, including technical limitations,

developer preference, etc. When we add controls programmatically, an application must manually account for

device orientation, which is handled automatically when we use XML resources.

To add controls programmatically, an application needs to perform the following steps:

Create a layout.

Set layout parameters.

Create controls.

Set control layout parameters.

Add controls to the layout.

Set the layout as the content view.

For example, consider a user interface consisting of a single TextView control added to a RelativeLayout , as

shown in the following code.

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/handling-rotation-images/03.png#lightbox

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // create a layout
 var rl = new RelativeLayout (this);

 // set layout parameters
 var layoutParams = new RelativeLayout.LayoutParams (ViewGroup.LayoutParams.FillParent,
ViewGroup.LayoutParams.FillParent);
 rl.LayoutParameters = layoutParams;

 // create TextView control
 var tv = new TextView (this);

 // set TextView's LayoutParameters
 tv.LayoutParameters = layoutParams;
 tv.Text = "Programmatic layout";

 // add TextView to the layout
 rl.AddView (tv);

 // set the layout as the content view
 SetContentView (rl);
}

 Detecting Orientation in CodeDetecting Orientation in Code

This code creates an instance of a RelativeLayout class and sets its LayoutParameters property. The

LayoutParams class is Android's way of encapsulating how controls are positioned in a reusable way. Once an

instance of a layout is created, controls can be created and added to it. Controls also have LayoutParameters ,

such as the TextView in this example. After the TextView is created, adding it to the RelativeLayout and setting

the RelativeLayout as the content view results in the application displaying the TextView as shown:

If an application tries to load a different user interface for each orientation when OnCreate is called (this will

happen each time a device is rotated), it must detect the orientation, and then load the desired user interface

code. Android has a class called the WindowManager , which can be used to determine the current device rotation

via the WindowManager.DefaultDisplay.Rotation property, as shown below:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/handling-rotation-images/04.png#lightbox

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // create a layout
 var rl = new RelativeLayout (this);

 // set layout parameters
 var layoutParams = new RelativeLayout.LayoutParams (ViewGroup.LayoutParams.FillParent,
ViewGroup.LayoutParams.FillParent);
 rl.LayoutParameters = layoutParams;

 // get the initial orientation
 var surfaceOrientation = WindowManager.DefaultDisplay.Rotation;
 // create layout based upon orientation
 RelativeLayout.LayoutParams tvLayoutParams;

 if (surfaceOrientation == SurfaceOrientation.Rotation0 || surfaceOrientation ==
SurfaceOrientation.Rotation180) {
 tvLayoutParams = new RelativeLayout.LayoutParams (ViewGroup.LayoutParams.FillParent,
ViewGroup.LayoutParams.WrapContent);
 } else {
 tvLayoutParams = new RelativeLayout.LayoutParams (ViewGroup.LayoutParams.FillParent,
ViewGroup.LayoutParams.WrapContent);
 tvLayoutParams.LeftMargin = 100;
 tvLayoutParams.TopMargin = 100;
 }

 // create TextView control
 var tv = new TextView (this);
 tv.LayoutParameters = tvLayoutParams;
 tv.Text = "Programmatic layout";

 // add TextView to the layout
 rl.AddView (tv);

 // set the layout as the content view
 SetContentView (rl);
}

This code sets the TextView to be positioned 100 pixels from the top left of the screen, automatically animating

to the new layout, when rotated to landscape, as shown here:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/handling-rotation-images/05.png#lightbox

 Preventing Activity RestartPreventing Activity Restart

[Activity (Label = "CodeLayoutActivity", ConfigurationChanges=Android.Content.PM.ConfigChanges.Orientation |
Android.Content.PM.ConfigChanges.ScreenSize)]

[Activity (Label = "CodeLayoutActivity", ConfigurationChanges=Android.Content.PM.ConfigChanges.Orientation |
Android.Content.PM.ConfigChanges.ScreenSize)]
public class CodeLayoutActivity : Activity
{
 TextView _tv;
 RelativeLayout.LayoutParams _layoutParamsPortrait;
 RelativeLayout.LayoutParams _layoutParamsLandscape;

 protected override void OnCreate (Bundle bundle)
 {
 // create a layout
 // set layout parameters
 // get the initial orientation

 // create portrait and landscape layout for the TextView
 _layoutParamsPortrait = new RelativeLayout.LayoutParams (ViewGroup.LayoutParams.FillParent,
ViewGroup.LayoutParams.WrapContent);

 _layoutParamsLandscape = new RelativeLayout.LayoutParams (ViewGroup.LayoutParams.FillParent,
ViewGroup.LayoutParams.WrapContent);
 _layoutParamsLandscape.LeftMargin = 100;
 _layoutParamsLandscape.TopMargin = 100;

 _tv = new TextView (this);

 if (surfaceOrientation == SurfaceOrientation.Rotation0 || surfaceOrientation ==
SurfaceOrientation.Rotation180) {
 _tv.LayoutParameters = _layoutParamsPortrait;
 } else {
 _tv.LayoutParameters = _layoutParamsLandscape;
 }

 _tv.Text = "Programmatic layout";
 rl.AddView (_tv);
 SetContentView (rl);
 }

 public override void OnConfigurationChanged (Android.Content.Res.Configuration newConfig)
 {
 base.OnConfigurationChanged (newConfig);

 if (newConfig.Orientation == Android.Content.Res.Orientation.Portrait) {
 _tv.LayoutParameters = _layoutParamsPortrait;
 _tv.Text = "Changed to portrait";
 } else if (newConfig.Orientation == Android.Content.Res.Orientation.Landscape) {
 _tv.LayoutParameters = _layoutParamsLandscape;
 _tv.Text = "Changed to landscape";
 }
 }
}

In addition to handling everything in OnCreate , an application can also prevent an Activity from being restarted

when the orientation changes by setting ConfigurationChanges in the ActivityAttribute as follows:

Now when the device is rotated, the Activity is not restarted. In order to manually handle the orientation change

in this case, an Activity can override the OnConfigurationChanged method and determine the orientation from the

Configuration object that is passed in, as in the new implementation of the Activity below:

Here the TextView's layout parameters are initialized for both landscape and portrait. Class variables hold the

 Preventing Activity Restart for Declarative Layouts

 Maintaining State During Orientation Changes

 Summary

 Related Links

parameters, along with the TextView itself, since the Activity will not be re-created when orientation changes.

The code still uses the surfaceOrientartion in OnCreate to set the initial layout for the TextView . After that,

OnConfigurationChanged handles all subsequent layout changes.

When we run the application, Android loads the user interface changes as device rotation occurs, and does not

restart the Activity.

Activity restarts caused by device rotation can also be prevented if we define the layout in XML. For example, we

can use this approach if we want to prevent an Activity restart (for performance reasons, perhaps) and we don't

need to load new resources for different orientations.

To do this, we follow the same procedure that we use with a programmatic layout. Simply set

ConfigurationChanges in the ActivityAttribute , as we did in the CodeLayoutActivity earlier. Any code that does

need to run for the orientation change can again be implemented in the OnConfigurationChanged method.

Whether handling rotation declaratively or programmatically, all Android applications should implement the

same techniques for managing state when device orientation changes. Managing state is important because the

system restarts a running Activity when an Android device is rotated. Android does this to make it easy to load

alternate resources, such as layouts and drawables that are designed specifically for a particular orientation.

When it restarts, the Activity loses any transient state it may have stored in local class variables. Therefore, if an

Activity is state reliant, it must persist its state at the application level. An application needs to handle saving and

restoring any application state that it wants to preserve across orientation changes.

For more information on persisting state in Android, refer to the Activity Lifecycle guide.

This article covered how to use Android's built-in capabilities to work with rotation. First, it explained how to use

the Android resource system to create orientation aware applications. Then it presented how to add controls in

code as well as how to handle orientation changes manually.

Rotation Demo (sample)

Activity Lifecycle

Handling Runtime Changes

Fast Screen Orientation Change

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-rotationdemo
https://developer.android.com/guide/topics/resources/runtime-changes.html
https://android-developers.blogspot.com/2009/02/faster-screen-orientation-change.html

Android Audio
 7/8/2021 • 10 minutes to read • Edit Online

 Overview

 Requirements

The Android OS provides extensive support for multimedia, encompassing both audio and video. This guide

focuses on audio in Android and covers playing and recording audio using the built-in audio player and

recorder classes, as well as the low-level audio API. It also covers working with Audio events broadcast by other

applications, so that developers can build well-behaved applications.

Modern mobile devices have adopted functionality that formerly would have required dedicated pieces of

equipment – cameras, music players and video recorders. Because of this, multimedia frameworks have become

a first-class feature in mobile APIs.

Android provides extensive support for multimedia. This article examines working with audio in Android, and

covers the following topics

1. Playing Audio with MediaPlayerPlaying Audio with MediaPlayer – Using the built-in MediaPlayer class to play audio, including local

audio files and streamed audio files with the AudioTrack class.

2. Recording AudioRecording Audio – Using the built-in MediaRecorder class to record audio.

3. Working with Audio NotificationsWorking with Audio Notifications – Using audio notifications to create well-behaved applications

that respond correctly to events (such as incoming phone calls) by suspending or canceling their audio

outputs.

4. Working with Low-Level AudioWorking with Low-Level Audio – Playing audio using the AudioTrack class by writing directly to

memory buffers. Recording audio using the AudioRecord class and reading directly from memory

buffers.

This guide requires Android 2.0 (API level 5) or higher. Please note that debugging audio on Android must be

done on a device.

It is necessary to request the RECORD_AUDIO permissions in AndroidManifest.XMLAndroidManifest.XML :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/android-audio.md

 Playing Audio with the MediaPlayer Class

 Initializing and PlayingInitializing and Playing

The simplest way to play audio in Android is with the built-in MediaPlayer class. MediaPlayer can play either

local or remote files by passing in the file path. However, MediaPlayer is very state-sensitive and calling one of

its methods in the wrong state will cause an exception to be thrown. It's important to interact with MediaPlayer

in the order described below to avoid errors.

Playing audio with MediaPlayer requires the following sequence:

1. Instantiate a new MediaPlayer object.

2. Configure the file to play via the SetDataSource method.

3. Call the Prepare method to initialize the player.

4. Call the Start method to start the audio playing.

The code sample below illustrates this usage:

https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer.setdatasource
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer.prepare#android_media_mediaplayer_prepare
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer.start#android_media_mediaplayer_start

protected MediaPlayer player;
public void StartPlayer(String filePath)
{
 if (player == null) {
 player = new MediaPlayer();
 } else {
 player.Reset();
 player.SetDataSource(filePath);
 player.Prepare();
 player.Start();
 }
}

 Suspending and Resuming PlaybackSuspending and Resuming Playback

player.Pause();

player.Start();

player.Stop();

player.Release();

 Using the MediaRecorder Class to Record Audio

 Initializing and RecordingInitializing and Recording

The playback can be suspended by calling the Pause method:

To resume paused playback, call the Start method. This will resume from the paused location in the playback:

Calling the Stop method on the player ends an ongoing playback:

When the player is no longer needed, the resources must be released by calling the Release method:

The corollary to MediaPlayer for recording audio in Android is the MediaRecorder class. Like the MediaPlayer , it

is state-sensitive and transitions through several states to get to the point where it can start recording. In order

to record audio, the RECORD_AUDIO permission must be set. For instructions on how to set application

permissions see Working with AndroidManifest.xml.

Recording audio with the MediaRecorder requires the following steps:

1. Instantiate a new MediaRecorder object.

2. Specify which hardware device to use to capture the audio input via the SetAudioSource method.

3. Set the output file audio format using the SetOutputFormat method. For a list of supported audio types

see Android Supported Media Formats.

4. Call the SetAudioEncoder method to set the audio encoding type.

5. Call the SetOutputFile method to specify the name of the output file that the audio data is written to.

6. Call the Prepare method to initialize the recorder.

7. Call the Start method to start recording.

https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer.pause#android_media_mediaplayer_pause
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer.start#android_media_mediaplayer_start
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer.stop#android_media_mediaplayer_stop
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer.release#android_media_mediaplayer_release
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.setaudiosource
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.setoutputformat
https://developer.android.com/guide/appendix/media-formats.html
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.setaudioencoder
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.setoutputfile
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.prepare#android_media_mediarecorder_prepare
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.start#android_media_mediarecorder_start

protected MediaRecorder recorder;
void RecordAudio (String filePath)
{
 try {
 if (File.Exists (filePath)) {
 File.Delete (filePath);
 }
 if (recorder == null) {
 recorder = new MediaRecorder (); // Initial state.
 } else {
 recorder.Reset ();
 recorder.SetAudioSource (AudioSource.Mic);
 recorder.SetOutputFormat (OutputFormat.ThreeGpp);
 recorder.SetAudioEncoder (AudioEncoder.AmrNb);
 // Initialized state.
 recorder.SetOutputFile (filePath);
 // DataSourceConfigured state.
 recorder.Prepare (); // Prepared state
 recorder.Start (); // Recording state.
 }
 } catch (Exception ex) {
 Console.Out.WriteLine(ex.StackTrace);
 }
}

 Stopping recordingStopping recording

recorder.Stop();

 Cleaning upCleaning up

recorder.Reset();

recorder.Release();

 Managing Audio Notifications
 The AudioManager ClassThe AudioManager Class

 Managing Audio FocusManaging Audio Focus

The following code sample illustrates this sequence:

To stop the recording, call the Stop method on the MediaRecorder :

Once the MediaRecorder has been stopped, call the Reset method to put it back into its idle state:

When the MediaRecorder is no longer needed, its resources must be released by calling the Release method:

The AudioManager class provides access to audio notifications that let applications know when audio events

occur. This service also provides access to other audio features, such as volume and ringer mode control. The

AudioManager allows an application to handle audio notifications to control audio playback.

The audio resources of the device (the built-in player and recorder) are shared by all running applications.

Conceptually, this is similar to applications on a desktop computer where only one application has the keyboard

focus: after selecting one of the running applications by mouse-clicking it, the keyboard input goes only to that

application.

Audio focus is a similar idea and prevents more than one application from playing or recording audio at the

https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.reset#android_media_mediarecorder_reset
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder.release#android_media_mediarecorder_release
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiomanager

 Registering the Callback for Audio FocusRegistering the Callback for Audio Focus

 Requesting Audio FocusRequesting Audio Focus

same time. It is more complicated than keyboard focus because it is voluntary – the application can ignore that

fact that it does not currently have audio focus and play regardless – and because there are different types of

audio focus that can be requested. For example, if the requestor is only expected to play audio for a very short

time, it may request transient focus.

Audio focus may be granted immediately, or initially denied and granted later. For example, if an application

requests audio focus during a phone call, it will be denied, but focus may well be granted once the phone call is

finished. In this case, a listener is registered in order to respond accordingly if audio focus is taken away.

Requesting audio focus is used to determine whether or not it is OK to play or record audio.

For more information about audio focus, see Managing Audio Focus.

Registering the FocusChangeListener callback from the IOnAudioChangeListener is an important part of

obtaining and releasing audio focus. This is because the granting of audio focus may be deferred until a later

time. For example, an application may request to play music while there is a phone call in progress. Audio focus

will not be granted until the phone call is finished.

For this reason, the callback object is passed as a parameter into the GetAudioFocus method of the

AudioManager , and it is this call that registers the callback. If audio focus is initially denied but later granted, the

application is informed by invoking OnAudioFocusChange on the callback. The same method is used to tell the

application that audio focus is being taken away.

When the application has finished using the audio resources, it calls the AbandonFocus method of the

AudioManager , and again passes in the callback. This deregisters the callback and releases the audio resources,

so that other applications may obtain audio focus.

The steps required to request the audio resources of the device are as follow:

1. Obtain a handle to the AudioManager system service.

2. Create an instance of the callback class.

3. Request the audio resources of the device by calling the RequestAudioFocus method on the AudioManager

. The parameters are the callback object, the stream type (music, voice call, ring etc.) and the type of the

access right being requested (the audio resources can be requested momentarily or for an indefinite

period, for example).

4. If the request is granted, the playMusic method is invoked immediately, and the audio starts to play

back.

5. If the request is denied, no further action is taken. In this case, the audio will only play if the request is

granted at a later time.

The code sample below shows these steps:

https://developer.android.com/training/managing-audio/audio-focus.html

Boolean RequestAudioResources(INotificationReceiver parent)
{
 AudioManager audioMan = (AudioManager) GetSystemService(Context.AudioService);
 AudioManager.IOnAudioFocusChangeListener listener = new MyAudioListener(this);
 var ret = audioMan.RequestAudioFocus (listener, Stream.Music, AudioFocus.Gain);
 if (ret == AudioFocusRequest.Granted) {
 playMusic();
 return (true);
 } else if (ret == AudioFocusRequest.Failed) {
 return (false);
 }
 return (false);
}

 Releasing Audio FocusReleasing Audio Focus

 Low Level Audio API

 AudioTrack ClassAudioTrack Class

 Initializing and PlayingInitializing and Playing

When the playback of the track is complete, the AbandonFocus method on AudioManager is invoked. This allows

another application to gain the audio resources of the device. Other applications will receive a notification of this

audio focus change if they have registered their own listeners.

The low-level audio APIs provide a greater control over audio playing and recording because they interact

directly with memory buffers instead of using file URIs. There are some scenarios where this approach is

preferable. Such scenarios include:

1. When playing from encrypted audio files.

2. When playing a succession of short clips.

3. Audio streaming.

The AudioTrack class uses the low-level audio APIs for recording, and is the low-level equivalent of the

MediaPlayer class.

To play audio, a new instance of AudioTrack must be instantiated. The argument list passed into the constructor

specifies how to play the audio sample contained in the buffer. The arguments are:

1. Stream type – Voice, ringtone, music, system or alarm.

2. Frequency – The sampling rate expressed in Hz.

3. Channel Configuration – Mono or stereo.

4. Audio format – 8 bit or 16 bit encoding.

5. Buffer size – in bytes.

6. Buffer mode – streaming or static.

After construction, the Play method of AudioTrack is invoked, to set it up to start playing. Writing the audio

buffer to the AudioTrack starts the playback:

https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotrack
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotrack
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotrack.play#android_media_audiotrack_play

void PlayAudioTrack(byte[] audioBuffer)
{
 AudioTrack audioTrack = new AudioTrack(
 // Stream type
 Stream.Music,
 // Frequency
 11025,
 // Mono or stereo
 ChannelOut.Mono,
 // Audio encoding
 Android.Media.Encoding.Pcm16bit,
 // Length of the audio clip.
 audioBuffer.Length,
 // Mode. Stream or static.
 AudioTrackMode.Stream);

 audioTrack.Play();
 audioTrack.Write(audioBuffer, 0, audioBuffer.Length);
}

 Pausing and Stopping the PlaybackPausing and Stopping the Playback

audioTrack.Pause();

audioTrack.Stop();

 CleanupCleanup

audioTrack.Release();

 The AudioRecord ClassThe AudioRecord Class

 Initializing and RecordingInitializing and Recording

Call the Pause method to pause the playback:

Calling the Stop method will terminate the playback permanently:

When the AudioTrack is no longer needed, its resources must be released by calling Release:

The AudioRecord class is the equivalent of AudioTrack on the recording side. Like AudioTrack , it uses memory

buffers directly, in place of files and URIs. It requires that the RECORD_AUDIO permission be set in the manifest.

The first step is to construct a new AudioRecord object. The argument list passed into the constructor provides

all the information required for recording. Unlike in AudioTrack , where the arguments are largely enumerations,

the equivalent arguments in AudioRecord are integers. These include:

1. Hardware audio input source such as microphone.

2. Stream type – Voice, ringtone, music, system or alarm.

3. Frequency – The sampling rate expressed in Hz.

4. Channel Configuration – Mono or stereo.

5. Audio format – 8 bit or 16 bit encoding.

6. Buffer size-in bytes

Once the AudioRecord is constructed, its StartRecording method is invoked. It is now ready to begin recording.

The AudioRecord continuously reads the audio buffer for input, and writes this input out to an audio file.

https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotrack.pause#android_media_audiotrack_pause
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotrack.stop#android_media_audiotrack_stop
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotrack.release#android_media_audiotrack_release
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiorecord
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiorecord
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiorecord
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiorecord.startrecording#android_media_audiorecord_startrecording

void RecordAudio()
{
 byte[] audioBuffer = new byte[100000];
 var audRecorder = new AudioRecord(
 // Hardware source of recording.
 AudioSource.Mic,
 // Frequency
 11025,
 // Mono or stereo
 ChannelIn.Mono,
 // Audio encoding
 Android.Media.Encoding.Pcm16bit,
 // Length of the audio clip.
 audioBuffer.Length
);
 audRecorder.StartRecording();
 while (true) {
 try
 {
 // Keep reading the buffer while there is audio input.
 audRecorder.Read(audioBuffer, 0, audioBuffer.Length);
 // Write out the audio file.
 } catch (Exception ex) {
 Console.Out.WriteLine(ex.Message);
 break;
 }
 }
}

 Stopping the RecordingStopping the Recording

audRecorder.Stop();

 CleanupCleanup

audRecorder.Release();

 Summary

 Related Links

Calling the Stop method terminates the recording:

When the AudioRecord object is no longer needed, calling its Release method releases all resources associated

with it:

The Android OS provides a powerful framework for playing, recording and managing audio. This article covered

how to play and record audio using the high-level MediaPlayer and MediaRecorder classes. Next, it explored

how to use audio notifications to share the audio resources of the device between different applications. Finally,

it dealt with how to playback and record audio using the low-level APIs, which interface directly with memory

buffers.

Working With Audio (sample)

Media Player

Media Recorder

Audio Manager

Audio Track

Audio Recorder

https://docs.microsoft.com/en-us/dotnet/api/android.media.audiorecord.stop#android_media_audiorecord_stop
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiorecord.release#android_media_audiorecord_release
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/example-workingwithaudio
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediaplayer
https://docs.microsoft.com/en-us/dotnet/api/android.media.mediarecorder
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiomanager
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotrack
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiorecord

Notifications in Xamarin.Android
 11/2/2020 • 2 minutes to read • Edit Online

 Local notifications in Android

 Walkthrough - using local notifications in Xamarin.Android

 Further reading

 Related links

This section explains how to implement notifications in Xamarin.Android. It describes the various UI elements of

an Android notification and discusses the API's involved with creating and displaying a notification.

This section explains how to implement local notifications in Xamarin.Android. It describes the various UI

elements of an Android notification and discuss the APIs involved with creating and displaying a notification.

This walkthrough covers how to use local notifications in a Xamarin.Android application. It demonstrates the

basics of creating and publishing a notification. When the user clicks on the notification in the notification

drawer it starts up a second Activity.

Firebase Cloud Messaging – Firebase Cloud Messaging (FCM) is a service that facilitates messaging between

mobile apps and server applications. Firebase Cloud Messaging can be used to implement remote notifications

(also called push notifications) in Xamarin.Android applications.

Notifications – This Android Developer topic is the definitive guide for Android notifications. It includes a design

considerations section that helps you design your notifications so that they conform to the guidelines of the

Android user interface. It provides more background information about preserving navigation when starting an

Activity, and it explains how to display progress in a notification and control media playback on the Lock Screen.

NotificationListenerService – This Android service makes it possible for your app to listen to (and interact with)

all notifications posted on the Android device, not just the notifications that your app is registered to receive.

Note that the user must explicitly give permission to your app for it to be able to listen for notifications on the

device.

Local Notifications (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/notifications/index.md
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://docs.microsoft.com/en-us/dotnet/api/android.service.notification.notificationlistenerservice
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/localnotifications

Local notifications on Android
 7/8/2021 • 29 minutes to read • Edit Online

 Local notifications overview

This section shows how to implement local notifications in Xamarin.Android. It explains the various UI elements

of an Android notification and discusses the API's involved with creating and displaying a notification.

Android provides two system-controlled areas for displaying notification icons and notification information to

the user. When a notification is first published, its icon is displayed in the notification area, as shown in the

following screenshot:

To obtain details about the notification, the user can open the notification drawer (which expands each

notification icon to reveal notification content) and perform any actions associated with the notifications. The

following screenshot shows a notification drawer that corresponds to the notification area displayed above:

Android notifications use two types of layouts:

Base layoutBase layout – a compact, fixed presentation format.

Expanded layoutExpanded layout – a presentation format that can expand to a larger size to reveal more information.

Each of these layout types (and how to create them) is explained in the following sections.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/notifications/local-notifications.md
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-images/02-notification-drawer.png#lightbox

NOTENOTE

 Base layoutBase layout

This guide focuses on the NotificationCompat APIs from the Android support library. These APIs will ensure maximum

backwards compatibility to Android 4.0 (API level 14).

All Android notifications are built on the base layout format, which, at a minimum, includes the following

elements:

1. A notification icon, which represents the originating app, or the notification type if the app supports

different types of notifications.

2. The notification title, or the name of the sender if the notification is a personal message.

3. The notification message.

4. A timestamp.

These elements are displayed as illustrated in the following diagram:

Base layouts are limited to 64 density-independent pixels (dp) in height. Android creates this basic notification

style by default.

Optionally, notifications can display a large icon that represents the application or the sender's photo. When a

large icon is used in a notification in Android 5.0 and later, the small notification icon is displayed as a badge

over the large icon:

Beginning with Android 5.0, notifications can also appear on the lock screen:

https://developer.android.com/reference/android/support/v4/app/NotificationCompat.html
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-images/03-notification-callouts.png#lightbox

The user can double-tap the lock screen notification to unlock the device and jump to the app that originated

that notification, or swipe to dismiss the notification. Apps can set the visibility level of a notification to control

what is shown on the lock screen, and users can choose whether to allow sensitive content to be shown in lock

screen notifications.

Android 5.0 introduced a high-priority notification presentation format called Heads-up. Heads-up notifications

slide down from the top of the screen for a few seconds and then retreat back up to the notification area:

Heads-up notifications make it possible for the system UI to put important information in front of the user

without disrupting the state of the currently running activity.

Android includes support for notification metadata so that notifications can be sorted and displayed

intelligently. Notification metadata also controls how notifications are presented on the lock screen and in

Heads-up format. Applications can set the following types of notification metadata:

Pr ior ityPr ior ity – The priority level determines how and when notifications are presented. For example, In

Android 5.0, high-priority notifications are displayed as Heads-up notifications.

VisibilityVisibility – Specifies how much notification content is to be displayed when the notification appears on

the lock screen.

Categor yCategor y – Informs the system how to handle the notification in various circumstances, such as when

the device is in Do Not Disturb mode.

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-images/05-lockscreen-notification.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-images/06-heads-up-notification.png#lightbox

NOTENOTE

 Expanded layoutsExpanded layouts

 Notification channels

VisibilityVisibility and Categor yCategor y were introduced in Android 5.0 and are not available in earlier versions of Android. Beginning

with Android 8.0, notification channels are used to control how notifications are presented to the user.

Beginning with Android 4.1, notifications can be configured with expanded layout styles that allow the user to

expand the height of the notification to view more content. For example, the following example illustrates an

expanded layout notification in contracted mode:

When this notification is expanded, it reveals the entire message:

Android supports three expanded layout styles for single-event notifications:

Big TextBig Text – In contracted mode, displays an excerpt of the first line of the message followed by two

periods. In expanded mode, displays the entire message (as seen in the above example).

InboxInbox – In contracted mode, displays the number of new messages. In expanded mode, displays the first

email message or a list of the messages in the inbox.

ImageImage – In contracted mode, displays only the message text. In expanded mode, displays the text and an

image.

Beyond the Basic Notification (later in this article) explains how to create Big Text, Inbox, and Image notifications.

Beginning with Android 8.0 (Oreo), you can use the notification channels feature to create a user-customizable

channel for each type of notification that you want to display. Notification channels make it possible for you to

group notifications so that all notifications posted to a channel exhibit the same behavior. For example, you

might have a notification channel that is intended for notifications that require immediate attention, and a

separate "quieter" channel that is used for informational messages.

The YouTubeYouTube app that is installed with Android Oreo lists two notification categories: Download notificationsDownload notifications

and General notificationsGeneral notifications :

Each of these categories corresponds to a notification channel. The YouTube app implements a DownloadDownload

NotificationsNotifications channel and a General NotificationsGeneral Notifications channel. The user can tap Download notificationsDownload notifications ,

which displays the settings screen for the app's download notifications channel:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-images/27-youtube.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-images/28-yt-download.png#lightbox

 Notification creation

In this screen, the user can modify the behavior of the DownloadDownload notifications channel by doing the following:

Set the Importance level to UrgentUrgent, HighHigh, MediumMedium, or LowLow , which configures the level of sound and

visual interruption.

Turn the notification dot on or off.

Turn the blinking light on or off.

Show or hide notifications on the lock screen.

Override the Do Not DisturbDo Not Disturb setting.

The General NotificationsGeneral Notifications channel has similar settings:

Notice that you do not have absolute control over how your notification channels interact with the user – the

user can modify the settings for any notification channel on the device as seen in the screenshots above.

However, you can configure default values (as will be described below). As these examples illustrate, the new

notification channels feature makes it possible for you to give users fine-grained control over different kinds of

notifications.

To create a notification in Android, you use the NotificationCompat.Builder class from the

Xamarin.Android.Support.v4 NuGet package. This class makes it possible to create and publish notifications on

older versions of Android. NotificationCompat.Builder is also discussed.

NotificationCompat.Builder provides methods for setting the various options in a notification, such as:

The content, including the title, the message text, and the notification icon.

The style of the notification, such as Big Text, Inbox, or Image style.

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-images/29-yt-general.png#lightbox
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder
https://www.nuget.org/packages/Xamarin.Android.Support.v4/

 Creating a notification channelCreating a notification channel

void CreateNotificationChannel()
{
 if (Build.VERSION.SdkInt < BuildVersionCodes.O)
 {
 // Notification channels are new in API 26 (and not a part of the
 // support library). There is no need to create a notification
 // channel on older versions of Android.
 return;
 }

 var channelName = Resources.GetString(Resource.String.channel_name);
 var channelDescription = GetString(Resource.String.channel_description);
 var channel = new NotificationChannel(CHANNEL_ID, channelName, NotificationImportance.Default)
 {
 Description = channelDescription
 };

 var notificationManager = (NotificationManager) GetSystemService(NotificationService);
 notificationManager.CreateNotificationChannel(channel);
}

 Creating and publishing a notificationCreating and publishing a notification

The priority of the notification: minimum, low, default, high, or maximum. On Android 8.0 and higher, the

priority is set via a notification channel.

The visibility of the notification on the lock screen: public, private, or secret.

Category metadata that helps Android classify and filter the notification.

An optional intent that indicates an activity to launch when the notification is tapped.

The ID of the notification channel that the notification will be published on (Android 8.0 and higher).

After you set these options in the builder, you generate a notification object that contains the settings. To publish

the notification, you pass this notification object to the Notification Manager. Android provides the

NotificationManager class, which is responsible for publishing notifications and displaying them to the user. A

reference to this class can be obtained from any context, such as an activity or a service.

Apps that are running on Android 8.0 must create a notification channel for their notifications. A notification

channel requires the following three pieces of information:

An ID string that is unique to the package that will identify the channel.

The name of the channel that will be displayed to the user. The name must be between one and 40

characters.

The importance of the channel.

Apps will need to check the version of Android that they are running. Devices running versions older than

Android 8.0 should not create a notification channel. The following method is one example of how to create a

notification channel in an activity:

The notification channel should be created each time the activity is created. For the CreateNotificationChannel

method, it should be called in the OnCreate method of an activity.

To generate a notification in Android, follow these steps:

1. Instantiate a NotificationCompat.Builder object.

2. Call various methods on the NotificationCompat.Builder object to set notification options.

https://docs.microsoft.com/en-us/dotnet/api/android.app.notificationmanager

// Instantiate the builder and set notification elements:
NotificationCompat.Builder builder = new NotificationCompat.Builder(this, CHANNEL_ID)
 .SetContentTitle ("Sample Notification")
 .SetContentText ("Hello World! This is my first notification!")
 .SetSmallIcon (Resource.Drawable.ic_notification);

// Build the notification:
Notification notification = builder.Build();

// Get the notification manager:
NotificationManager notificationManager =
 GetSystemService (Context.NotificationService) as NotificationManager;

// Publish the notification:
const int notificationId = 0;
notificationManager.Notify (notificationId, notification);

3. Call the Build method of the NotificationCompat.Builder object to instantiate a notification object.

4. Call the Notify method of the notification manager to publish the notification.

You must provide at least the following information for each notification:

A small icon (24x24 dp in size)

A short title

The text of the notification

The following code example illustrates how to use NotificationCompat.Builder to generate a basic notification.

Notice that NotificationCompat.Builder methods support method chaining; that is, each method returns the

builder object so you can use the result of the last method call to invoke the next method call:

In this example, a new NotificationCompat.Builder object called builder is instantiated, along with the ID of the

notification channel to be used. The title and text of the notification are set, and the notification icon is loaded

from Resources/drawable/ic_notification.pngResources/drawable/ic_notification.png. The call to the notification builder's Build method creates a

notification object with these settings. The next step is to call the Notify method of the notification manager. To

locate the notification manager, you call GetSystemService , as shown above.

The Notify method accepts two parameters: the notification identifier and the notification object. The

notification identifier is a unique integer that identifies the notification to your application. In this example, the

notification identifier is set to zero (0); however, in a production application, you will want to give each

notification a unique identifier. Reusing the previous identifier value in a call to Notify causes the last

notification to be overwritten.

When this code runs on an Android 5.0 device, it generates a notification that looks like the following example:

The notification icon is displayed on the left hand side of the notification – this image of a circled “i” has an alpha

channel so that Android can draw a gray circular background behind it. You can also supply an icon without an

alpha channel. To display a photographic image as an icon, see Large Icon Format later in this topic.

The timestamp is set automatically, but you can override this setting by calling the SetWhen method of the

notification builder. For example, the following code example sets the timestamp to the current time:

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.build#android_app_notification_builder_build
https://docs.microsoft.com/en-us/dotnet/api/android.app.notificationmanager.notify
https://en.wikipedia.org/wiki/Method_chaining
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setwhen

builder.SetWhen (Java.Lang.JavaSystem.CurrentTimeMillis());

 Enabling sound and vibrationEnabling sound and vibration

// Instantiate the notification builder and enable sound:
NotificationCompat.Builder builder = new NotificationCompat.Builder(this, CHANNEL_ID)
 .SetContentTitle ("Sample Notification")
 .SetContentText ("Hello World! This is my first notification!")
 .SetDefaults (NotificationDefaults.Sound)
 .SetSmallIcon (Resource.Drawable.ic_notification);

builder.SetDefaults (NotificationDefaults.Sound | NotificationDefaults.Vibrate);

builder.SetSound (RingtoneManager.GetDefaultUri(RingtoneType.Alarm));

builder.SetSound (RingtoneManager.GetDefaultUri(RingtoneType.Ringtone));

// Build the notification:
Notification notification = builder.Build();

// Turn on vibrate:
notification.Defaults |= NotificationDefaults.Vibrate;

 Updating a notificationUpdating a notification

If you want your notification to also play a sound, you can call the notification builder's SetDefaults method and

pass in the NotificationDefaults.Sound flag:

This call to SetDefaults will cause the device to play a sound when the notification is published. If you want the

device to vibrate rather than play a sound, you can pass NotificationDefaults.Vibrate to SetDefaults. If you

want the device to play a sound and vibrate the device, you can pass both flags to SetDefaults :

If you enable sound without specifying a sound to play, Android uses the default system notification sound.

However, you can change the sound that will be played by calling the notification builder's SetSound method.

For example, to play the alarm sound with your notification (instead of the default notification sound), you can

get the URI for the alarm sound from the RingtoneManager and pass it to SetSound :

Alternatively, you can use the system default ringtone sound for your notification:

After you create a notification object, it's possible to set notification properties on the notification object (rather

than configure them in advance through NotificationCompat.Builder methods). For example, instead of calling

the SetDefaults method to enable vibration on a notification, you can directly modify the bit flag of the

notification's Defaults property:

This example causes the device to vibrate when the notification is published.

If you want to update the content of a notification after it has been published, you can reuse the existing

NotificationCompat.Builder object to create a new notification object and publish this notification with the

identifier of the last notification. For example:

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setdefaults
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setsound
https://docs.microsoft.com/en-us/dotnet/api/android.media.ringtonemanager
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.defaults#android_app_notification_defaults

// Update the existing notification builder content:
builder.SetContentTitle ("Updated Notification");
builder.SetContentText ("Changed to this message.");

// Build a notification object with updated content:
notification = builder.Build();

// Publish the new notification with the existing ID:
notificationManager.Notify (notificationId, notification);

 Starting an activity from a notificationStarting an activity from a notification

In this example, the existing NotificationCompat.Builder object is used to create a new notification object with a

different title and message. The new notification object is published using the identifier of the previous

notification, and this updates the content of the previously-published notification:

The body of the previous notification is reused – only the title and the text of the notification changes while the

notification is displayed in the notification drawer. The title text changes from "Sample Notification" to "Updated

Notification" and the message text changes from "Hello World! This is my first notification!" to "Changed to this

message."

A notification remains visible until one of three things happens:

The user dismisses the notification (or taps Clear All).

The application makes a call to NotificationManager.Cancel , passing in the unique notification ID that was

assigned when the notification was published.

The application calls NotificationManager.CancelAll .

For more about updating Android notifications, see Modify a Notification.

In Android, it's common for a notification to be associated with an action – an activity that's launched when the

user taps the notification. This activity can reside in another application or even in another task. To add an action

to a notification, you create a PendingIntent object and associate the PendingIntent with the notification. A

PendingIntent is a special type of intent that allows the recipient application to run a predefined piece of code

with the permissions of the sending application. When the user taps the notification, Android starts up the

activity specified by the PendingIntent .

The following code snippet illustrates how to create a notification with a PendingIntent that will launch the

activity of the originating app, MainActivity :

https://developer.android.com/training/notify-user/managing.html#Updating
https://docs.microsoft.com/en-us/dotnet/api/android.app.pendingintent

// Set up an intent so that tapping the notifications returns to this app:
Intent intent = new Intent (this, typeof(MainActivity));

// Create a PendingIntent; we're only using one PendingIntent (ID = 0):
const int pendingIntentId = 0;
PendingIntent pendingIntent =
 PendingIntent.GetActivity (this, pendingIntentId, intent, PendingIntentFlags.OneShot);

// Instantiate the builder and set notification elements, including pending intent:
NotificationCompat.Builder builder = new NotificationCompat.Builder(this, CHANNEL_ID)
 .SetContentIntent (pendingIntent)
 .SetContentTitle ("Sample Notification")
 .SetContentText ("Hello World! This is my first action notification!")
 .SetSmallIcon (Resource.Drawable.ic_notification);

// Build the notification:
Notification notification = builder.Build();

// Get the notification manager:
NotificationManager notificationManager =
 GetSystemService (Context.NotificationService) as NotificationManager;

// Publish the notification:
const int notificationId = 0;
notificationManager.Notify (notificationId, notification);

This code is very similar to the notification code in the previous section, except that a PendingIntent is added to

the notification object. In this example, the PendingIntent is associated with the activity of the originating app

before it is passed to the notification builder's SetContentIntent method. The PendingIntentFlags.OneShot flag is

passed to the PendingIntent.GetActivity method so that the PendingIntent is used only once. When this code

runs, the following notification is displayed:

Tapping this notification takes the user back to the originating activity.

In a production app, your app must handle the back stack when the user presses the BackBack button within the

notification activity (if you are not familiar with Android tasks and the back stack, see Tasks and Back Stack). In

most cases, navigating backward out of the notification activity should return the user out of the app and back

to Home screen. To manage the back stack, your app uses the TaskStackBuilder class to create a PendingIntent

with a back stack.

Another real-world consideration is that the originating activity may need to send data to the notification

activity. For example, the notification may indicate that a text message has arrived, and the notification activity (a

message viewing screen), requires the ID of the message to display the message to the user. The activity that

creates the PendingIntent can use the Intent.PutExtra method to add data (for example, a string) to the intent so

that this data is passed to the notification activity.

The following code sample illustrates how to use TaskStackBuilder to manage the back stack, and it includes an

example of how to send a single message string to a notification activity called SecondActivity :

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setcontentintent
https://developer.android.com/guide/components/tasks-and-back-stack.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.taskstackbuilder
https://docs.microsoft.com/en-us/dotnet/api/android.content.intent.putextra

// Setup an intent for SecondActivity:
Intent secondIntent = new Intent (this, typeof(SecondActivity));

// Pass some information to SecondActivity:
secondIntent.PutExtra ("message", "Greetings from MainActivity!");

// Create a task stack builder to manage the back stack:
TaskStackBuilder stackBuilder = TaskStackBuilder.Create(this);

// Add all parents of SecondActivity to the stack:
stackBuilder.AddParentStack (Java.Lang.Class.FromType (typeof (SecondActivity)));

// Push the intent that starts SecondActivity onto the stack:
stackBuilder.AddNextIntent (secondIntent);

// Obtain the PendingIntent for launching the task constructed by
// stackbuilder. The pending intent can be used only once (one shot):
const int pendingIntentId = 0;
PendingIntent pendingIntent =
 stackBuilder.GetPendingIntent (pendingIntentId, PendingIntentFlags.OneShot);

// Instantiate the builder and set notification elements, including
// the pending intent:
NotificationCompat.Builder builder = new NotificationCompat.Builder(this, CHANNEL_ID)
 .SetContentIntent (pendingIntent)
 .SetContentTitle ("Sample Notification")
 .SetContentText ("Hello World! This is my second action notification!")
 .SetSmallIcon (Resource.Drawable.ic_notification);

// Build the notification:
Notification notification = builder.Build();

// Get the notification manager:
NotificationManager notificationManager =
 GetSystemService (Context.NotificationService) as NotificationManager;

// Publish the notification:
const int notificationId = 0;
notificationManager.Notify (notificationId, notification);

// Get the message from the intent:
string message = Intent.Extras.GetString ("message", "");

In this code example, the app consists of two activities: MainActivity (which contains the notification code

above), and SecondActivity , the screen the user sees after tapping the notification. When this code is run, a

simple notification (similar to the previous example) is presented. Tapping on the notification takes the user to

the SecondActivity screen:

The string message (passed into the intent's PutExtra method) is retrieved in SecondActivity via this line of

code:

 Beyond the basic notification

 Large icon formatLarge icon format

builder.SetLargeIcon (BitmapFactory.DecodeResource (Resources, Resource.Drawable.monkey_icon));

 Big text styleBig text style

This retrieved message, "Greetings from MainActivity!," is displayed in the SecondActivity screen, as shown in

the above screenshot. When the user presses the BackBack button while in SecondActivity , navigation leads out of

the app and back to the screen preceding the launch of the app.

For more information about creating pending intents, see PendingIntent.

Notifications default to a simple base layout format in Android, but you can enhance this basic format by

making additional NotificationCompat.Builder method calls. In this section, you'll learn how to add a large

photo icon to your notification, and you'll see examples of how to create expanded layout notifications.

Android notifications typically display the icon of the originating app (on the left side of the notification).

However, notifications can display an image or a photo (a large icon) instead of the standard small icon. For

example, a messaging app could display a photo of the sender rather than the app icon.

Here is an example of a basic Android 5.0 notification – it displays only the small app icon:

And here is a screenshot of the notification after modifying it to display a large icon – it uses an icon created

from an image of a Xamarin code monkey:

Notice that when a notification is presented in large icon format, the small app icon is displayed as a badge on

the lower right corner of the large icon.

To use an image as a large icon in a notification, you call the notification builder's SetLargeIcon method and pass

in a bitmap of the image. Unlike SetSmallIcon , SetLargeIcon only accepts a bitmap. To convert an image file

into a bitmap, you use the BitmapFactory class. For example:

This example code opens the image file at Resources/drawable/monkey_icon.pngResources/drawable/monkey_icon.png, converts it to a bitmap,

and passes the resulting bitmap to NotificationCompat.Builder . Typically, the source image resolution is larger

than the small icon – but not much larger. An image that is too large might cause unnecessary resizing

operations that could delay the posting of the notification.

The Big Text style is an expanded layout template that you use for displaying long messages in notifications. Like

all expanded layout notifications, the Big Text notification is initially displayed in a compact presentation format:

https://docs.microsoft.com/en-us/dotnet/api/android.app.pendingintent
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setlargeicon
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.bitmapfactory

// Instantiate the Big Text style:
Notification.BigTextStyle textStyle = new Notification.BigTextStyle();

// Fill it with text:
string longTextMessage = "I went up one pair of stairs.";
longTextMessage += " / Just like me. ";
//...
textStyle.BigText (longTextMessage);

// Set the summary text:
textStyle.SetSummaryText ("The summary text goes here.");

// Plug this style into the builder:
builder.SetStyle (textStyle);

// Create the notification and publish it ...

 Image styleImage style

In this format, only an excerpt of the message is shown, terminated by two periods. When the user drags down

on the notification, it expands to reveal the entire notification message:

This expanded layout format also includes summary text at the bottom of the notification. The maximum height

of the Big Text notification is 256 dp.

To create a Big Text notification, you instantiate a NotificationCompat.Builder object, as before, and then

instantiate and add a BigTextStyle object to the NotificationCompat.Builder object. Here is an example:

In this example, the message text and summary text are stored in the BigTextStyle object (textStyle) before it

is passed to NotificationCompat.Builder.

The Image style (also called the Big Picture style) is an expanded notification format that you can use to display

an image in the body of a notification. For example, a screenshot app or a photo app can use the Image

notification style to provide the user with a notification of the last image that was captured. Note that the

maximum height of the Image notification is 256 dp – Android will resize the image to fit into this maximum

height restriction, within the limits of available memory.

Like all expanded layout notifications, Image notifications are first displayed in a compact format that displays

an excerpt of the accompanying message text:

When the user drags down on the Image notification, it expands to reveal an image. For example, here is the

expanded version of the previous notification:

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.bigtextstyle

// Instantiate the Image (Big Picture) style:
Notification.BigPictureStyle picStyle = new Notification.BigPictureStyle();

// Convert the image to a bitmap before passing it into the style:
picStyle.BigPicture (BitmapFactory.DecodeResource (Resources, Resource.Drawable.x_bldg));

// Set the summary text that will appear with the image:
picStyle.SetSummaryText ("The summary text goes here.");

// Plug this style into the builder:
builder.SetStyle (picStyle);

// Create the notification and publish it ...

Notice that when the notification is displayed in compact format, it displays notification text (the text that is

passed to the notification builder's SetContentText method, as shown earlier). However, when the notification is

expanded to reveal the image, it displays summary text above the image.

To create an Image notification, you instantiate a NotificationCompat.Builder object as before, and then create

and insert a BigPictureStyle object into the NotificationCompat.Builder object. For example:

Like the SetLargeIcon method of NotificationCompat.Builder , the BigPicture method of BigPictureStyle

requires a bitmap of the image that you want to display in the body of the notification. In this example, the

DecodeResource method of BitmapFactory reads the image file located at Resources/drawable/x_bldg.pngResources/drawable/x_bldg.png

and converts it into a bitmap.

You can also display images that are not packaged as a resource. For example, the following sample code loads

an image from the local SD card and displays it in an Image notification:

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.bigpicturestyle
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.bigpicturestyle.bigpicture
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.bitmapfactory.decoderesource

// Using the Image (Big Picture) style:
Notification.BigPictureStyle picStyle = new Notification.BigPictureStyle();

// Read an image from the SD card, subsample to half size:
BitmapFactory.Options options = new BitmapFactory.Options();
options.InSampleSize = 2;
string imagePath = "/sdcard/Pictures/my-tshirt.jpg";
picStyle.BigPicture (BitmapFactory.DecodeFile (imagePath, options));

// Set the summary text that will appear with the image:
picStyle.SetSummaryText ("Check out my new T-Shirt!");

// Plug this style into the builder:
builder.SetStyle (picStyle);

// Create notification and publish it ...

 Inbox styleInbox style

In this example, the image file located at /sdcard/Pictures/my-tshir t.jpg/sdcard/Pictures/my-tshir t.jpg is loaded, resized to half of its

original size, and then converted to a bitmap for use in the notification:

If you don't know the size of the image file in advance, it's a good idea to wrap the call to

BitmapFactory.DecodeFile in an exception handler – an OutOfMemoryError exception might be thrown if the

image is too large for Android to resize.

For more about loading and decoding large bitmap images, see Load Large Bitmaps Efficiently.

The Inbox format is an expanded layout template intended for displaying separate lines of text (such as an email

inbox summary) in the body of the notification. The Inbox format notification is first displayed in a compact

format:

When the user drags down on the notification, it expands to reveal an email summary as seen in the screenshot

below:

https://docs.microsoft.com/en-us/dotnet/api/android.graphics.bitmapfactory.decodefile
https://github.com/xamarin/recipes/tree/master/Recipes/android/resources/general/load_large_bitmaps_efficiently

// Instantiate the Inbox style:
Notification.InboxStyle inboxStyle = new Notification.InboxStyle();

// Set the title and text of the notification:
builder.SetContentTitle ("5 new messages");
builder.SetContentText ("chimchim@xamarin.com");

// Generate a message summary for the body of the notification:
inboxStyle.AddLine ("Cheeta: Bananas on sale");
inboxStyle.AddLine ("George: Curious about your blog post");
inboxStyle.AddLine ("Nikko: Need a ride to Evolve?");
inboxStyle.SetSummaryText ("+2 more");

// Plug this style into the builder:
builder.SetStyle (inboxStyle);

 Configuring metadata

 Priority settingsPriority settings

To create an Inbox notification, you instantiate a NotificationCompat.Builder object, as before, and add an

InboxStyle object to the NotificationCompat.Builder . Here is an example:

To add new lines of text to the notification body, call the Addline method of the InboxStyle object (the

maximum height of the Inbox notification is 256 dp). Note that, unlike Big Text style, the Inbox style supports

individual lines of text in the notification body.

You can also use the Inbox style for any notification that needs to display individual lines of text in an expanded

format. For example, the Inbox notification style can be used to combine multiple pending notifications into a

summary notification – you can update a single Inbox style notification with new lines of notification content

(see Updating a Notification above), rather than generate a continuous stream of new, mostly similar

notifications.

NotificationCompat.Builder includes methods that you can call to set metadata about your notification, such as

priority, visibility, and category. Android uses this information — along with user preference settings — to

determine how and when to display notifications.

Apps running on Android 7.1 and lower need to set the priority directly on the notification itself. The priority

setting of a notification determines two outcomes when the notification is published:

Where the notification appears in relation to other notifications. For example, high priority notifications

are presented above lower priority notifications in the notifications drawer, regardless of when each

notification was published.

Whether the notification is displayed in the Heads-up notification format (Android 5.0 and later). Only

high and maximum priority notifications are displayed as Heads-up notifications.

Xamarin.Android defines the following enumerations for setting notification priority:

NotificationPriority.Max – Alerts the user to an urgent or critical condition (for example, an incoming

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.inboxstyle
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.inboxstyle.addline

builder.SetPriority (NotificationPriority.High);

call, turn-by-turn directions, or an emergency alert). On Android 5.0 and later devices, maximum priority

notifications are displayed in Heads-up format.

NotificationPriority.High – Informs the user of important events (such as important emails or the

arrival of real-time chat messages). On Android 5.0 and later devices, high priority notifications are

displayed in Heads-up format.

NotificationPriority.Default – Notifies the user of conditions that have a medium level of importance.

NotificationPriority.Low – For non-urgent information that the user needs to be informed of (for

example, software update reminders or social network updates).

NotificationPriority.Min – For background information that the user notices only when viewing

notifications (for example, location or weather information).

To set the priority of a notification, call the SetPriority method of the NotificationCompat.Builder object, passing

in the priority level. For example:

In the following example, the high priority notification, "An important message!" appears at the top of the

notification drawer:

Because this is a high-priority notification, it is also displayed as a Heads-up notification above the user's current

activity screen in Android 5.0:

In the next example, the low-priority "Thought for the day" notification is displayed under a higher-priority

battery level notification:

https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setpriority

NOTENOTE

 Visibility settingsVisibility settings

builder.SetVisibility (NotificationVisibility.Private);

 Category settingsCategory settings

Because the "Thought for the day" notification is a low-priority notification, Android will not display it in Heads-

up format.

On Android 8.0 and higher, the priority of the notification channel and user settings will determine the priority of the

notification.

Beginning with Android 5.0, the visibility setting is available to control how much notification content appears

on the secure lock screen. Xamarin.Android defines the following enumerations for setting notification visibility:

NotificationVisibility.Public – The full content of the notification is displayed on the secure lock

screen.

NotificationVisibility.Private – Only essential information is displayed on the secure lock screen (such

as the notification icon and the name of the app that posted it), but the rest of the notification's details are

hidden. All notifications default to NotificationVisibility.Private .

NotificationVisibility.Secret – Nothing is displayed on the secure lock screen, not even the notification

icon. The notification content is available only after the user unlocks the device.

To set the visibility of a notification, apps call the SetVisibility method of the NotificationCompat.Builder

object, passing in the visibility setting. For example, this call to SetVisibility makes the notification Private :

When a Private notification is posted, only the name and icon of the app is displayed on the secure lock screen.

Instead of the notification message, the user sees "Unlock your device to see this notification":

In this example, NotificationsLabNotificationsLab is the name of the originating app. This redacted version of the notification

appears only when the Lock screen is secure (i.e., secured via PIN, pattern, or password) – if the lock screen is

not secure, the full content of the notification is available on the lock screen.

Beginning with Android 5.0, predefined categories are available for ranking and filtering notifications.

builder.SetCategory (Notification.CategoryCall);

Xamarin.Android provides the following enumerations for these categories:

Notification.CategoryCall – Incoming phone call.

Notification.CategoryMessage – Incoming text message.

Notification.CategoryAlarm – An alarm condition or timer expiration.

Notification.CategoryEmail – Incoming email message.

Notification.CategoryEvent – A calendar event.

Notification.CategoryPromo – A promotional message or advertisement.

Notification.CategoryProgress – The progress of a background operation.

Notification.CategorySocial – Social networking update.

Notification.CategoryError – Failure of a background operation or authentication process.

Notification.CategoryTransport – Media playback update.

Notification.CategorySystem – Reserved for system use (system or device status).

Notification.CategoryService – Indicates that a background service is running.

Notification.CategoryRecommendation – A recommendation message related to the currently running app.

Notification.CategoryStatus – Information about the device.

When notifications are sorted, the notification's priority takes precedence over its category setting. For example,

a high-priority notification will be displayed as Heads-up even if it belongs to the Promo category. To set the

category of a notification, you call the SetCategory method of the NotificationCompat.Builder object, passing in

the category setting. For example:

The Do not disturb feature (new in Android 5.0) filters notifications based on categories. For example, the Do not

disturb screen in SettingsSettings allows the user to exempt notifications for phone calls and messages:

When the user configures Do not disturb to block all interrupts except for phone calls (as illustrated in the above

screenshot), Android allows notifications with a category setting of Notification.CategoryCall to be presented

while the device is in Do not disturb mode. Note that Notification.CategoryAlarm notifications are never

blocked in Do not disturb mode.

 Notification stylesNotification styles

NotificationCompat.BigTextStyle textStyle = new NotificationCompat.BigTextStyle();

// Plug this style into the builder:
builder.SetStyle (textStyle);

 Notification priority and categoryNotification priority and category

if (Android.OS.Build.VERSION.SdkInt >= Android.OS.BuildVersionCodes.Lollipop) {
 builder.SetCategory (Notification.CategoryEmail);
}

 Lock screen visibilityLock screen visibility

if (Android.OS.Build.VERSION.SdkInt >= Android.OS.BuildVersionCodes.Lollipop) {
 builder.SetVisibility (Notification.Public);
}

 Summary

The LocalNotifications sample demonstrates how to use NotificationCompat.Builder to launch a second activity

from a notification. This sample code is explained in the Using Local Notifications in Xamarin.Android

walkthrough.

To create Big Text, Image, or Inbox style notifications with NotificationCompat.Builder , your app must use the

compatibility versions of these styles. For example, to use the Big Text style, instantiate

NotificationCompat.BigTextstyle :

Similarly, your app can use NotificationCompat.InboxStyle and NotificationCompat.BigPictureStyle for Inbox

and Image styles, respectively.

NotificationCompat.Builder supports the SetPriority method (available starting with Android 4.1). However,

the SetCategory method is not supported by NotificationCompat.Builder because categories are part of the

new notification metadata system that was introduced in Android 5.0.

To support older versions of Android, where SetCategory is not available, your code can check the API level at

runtime to conditionally call SetCategory when the API level is equal to or greater than Android 5.0 (API level

21):

In this example, the app's Target FrameworkTarget Framework is set to Android 5.0 and the Minimum Android VersionMinimum Android Version is set

to Android 4.1 (API Level 16)Android 4.1 (API Level 16) . Because SetCategory is available in API level 21 and later, this example code

will call SetCategory only when it is available – it will not call SetCategory when the API level is less than 21.

Because Android did not support lock screen notifications before Android 5.0 (API level 21),

NotificationCompat.Builder does not support the SetVisibility method. As explained above for SetCategory ,

your code can check the API level at runtime and call SetVisiblity only when it is available:

This article explained how to create local notifications in Android. It described the anatomy of a notification, it

explained how to use NotificationCompat.Builder to create notifications, how to style notifications in large icon,

Big Text, Image and Inbox formats, how to set notification metadata settings such as priority, visibility, and

category, and how to launch an activity from a notification. This article also described how these notification

settings work with the new Heads-up, lock screen, and Do not disturb features introduced in Android 5.0. Finally,

you learned how to use NotificationCompat.Builder to maintain notification compatibility with earlier versions

of Android.

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/localnotifications

 Related Links

For guidelines about designing notifications for Android, see Notifications.

NotificationsLab (sample)

LocalNotifications (sample)

Local Notifications In Android Walkthrough

Notifying the User

Notification

NotificationManager

NotificationCompat.Builder

PendingIntent

https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-notificationslab
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/localnotifications
https://developer.android.com/training/notify-user/index.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification
https://docs.microsoft.com/en-us/dotnet/api/android.app.notificationmanager
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.pendingintent

Walkthrough - Using local notifications in
Xamarin.Android

 7/8/2021 • 5 minutes to read • Edit Online

 Overview

NOTENOTE

 Creating the project

This walkthrough demonstrates how to use local notifications in Xamarin.Android applications. It demonstrates

the basics of creating and publishing a local notification. When the user clicks the notification in the notification

area, it starts up a second Activity.

In this walkthrough, we will create an Android application that raises a notification when the user clicks a button

in an Activity. When the user clicks the notification, it launches a second Activity that displays the number of

times the user had clicked the button in the first Activity.

The following screenshots illustrate some examples of this application:

This guide focuses on the NotificationCompat APIs from the Android support library. These APIs will ensure maximum

backwards compatibility to Android 4.0 (API level 14).

To begin, let's create a new Android project using the Android AppAndroid App template. Let's call this project

LocalNotificationsLocalNotifications . (If you are not familiar with creating Xamarin.Android projects, see Hello, Android.)

Edit the resource file values/Str ings.xmlvalues/Str ings.xml so that it contains two extra string resources that will be used when it

is time to create the notification channel:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/notifications/local-notifications-walkthrough.md
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-walkthrough-images/1-overview.png#lightbox
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.html
https://www.nuget.org/packages/Xamarin.Android.Support.v4/

<?xml version="1.0" encoding="utf-8"?>

<resources>
 <string name="Hello">Hello World, Click Me!</string>
 <string name="ApplicationName">Notifications</string>

 <string name="channel_name">Local Notifications</string>
 <string name="channel_description">The count from MainActivity.</string>
</resources>

 Add the Android.Support.V4 NuGet packageAdd the Android.Support.V4 NuGet package

using Android.Support.V4.App;

using TaskStackBuilder = Android.Support.V4.App.TaskStackBuilder;

 Create the notification channelCreate the notification channel

void CreateNotificationChannel()
{
 if (Build.VERSION.SdkInt < BuildVersionCodes.O)
 {
 // Notification channels are new in API 26 (and not a part of the
 // support library). There is no need to create a notification
 // channel on older versions of Android.
 return;
 }

 var name = Resources.GetString(Resource.String.channel_name);
 var description = GetString(Resource.String.channel_description);
 var channel = new NotificationChannel(CHANNEL_ID, name, NotificationImportance.Default)
 {
 Description = description
 };

 var notificationManager = (NotificationManager) GetSystemService(NotificationService);
 notificationManager.CreateNotificationChannel(channel);
}

In this walkthrough, we are using NotificationCompat.Builder to build our local notification. As explained in

Local Notifications, we must include the Android Support Library v4 NuGet in our project to use

NotificationCompat.Builder .

Next, let's edit MainActivity.csMainActivity.cs and add the following using statement so that the types in

Android.Support.V4.App are available to our code:

Also, we must make it clear to the compiler that we are using the Android.Support.V4.App version of

TaskStackBuilder rather than the Android.App version. Add the following using statement to resolve any

ambiguity:

Next, add a method to MainActivity that will create a notification channel (if necessary):

Update the OnCreate method to call this new method:

https://www.nuget.org/packages/Xamarin.Android.Support.v4/

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);

 CreateNotificationChannel();
}

 Define the notification IDDefine the notification ID

static readonly int NOTIFICATION_ID = 1000;
static readonly string CHANNEL_ID = "location_notification";
internal static readonly string COUNT_KEY = "count";

 Add code to generate the notificationAdd code to generate the notification

void ButtonOnClick(object sender, EventArgs eventArgs)
{
 // Pass the current button press count value to the next activity:
 var valuesForActivity = new Bundle();
 valuesForActivity.PutInt(COUNT_KEY, count);

 // When the user clicks the notification, SecondActivity will start up.
 var resultIntent = new Intent(this, typeof(SecondActivity));

 // Pass some values to SecondActivity:
 resultIntent.PutExtras(valuesForActivity);

 // Construct a back stack for cross-task navigation:
 var stackBuilder = TaskStackBuilder.Create(this);
 stackBuilder.AddParentStack(Class.FromType(typeof(SecondActivity)));
 stackBuilder.AddNextIntent(resultIntent);

 // Create the PendingIntent with the back stack:
 var resultPendingIntent = stackBuilder.GetPendingIntent(0, (int) PendingIntentFlags.UpdateCurrent);

 // Build the notification:
 var builder = new NotificationCompat.Builder(this, CHANNEL_ID)
 .SetAutoCancel(true) // Dismiss the notification from the notification area when the user
clicks on it
 .SetContentIntent(resultPendingIntent) // Start up this activity when the user clicks the
intent.
 .SetContentTitle("Button Clicked") // Set the title
 .SetNumber(count) // Display the count in the Content Info
 .SetSmallIcon(Resource.Drawable.ic_stat_button_click) // This is the icon to display
 .SetContentText($"The button has been clicked {count} times."); // the message to display.

 // Finally, publish the notification:
 var notificationManager = NotificationManagerCompat.From(this);
 notificationManager.Notify(NOTIFICATION_ID, builder.Build());

 // Increment the button press count:
 count++;
}

We will need a unique ID for our notification and notification channel. Let's edit MainActivity.csMainActivity.cs and add the

following static instance variable to the MainActivity class:

Next, we need to create a new event handler for the button Click event. Add the following method to

MainActivity :

The OnCreate method of MainActivity must make the call to create the notification channel and assign the

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);

 CreateNotificationChannel();

 // Display the "Hello World, Click Me!" button and register its event handler:
 var button = FindViewById<Button>(Resource.Id.MyButton);
 button.Click += ButtonOnClick;
}

 Create a second activityCreate a second activity

using System;
using Android.App;
using Android.OS;
using Android.Widget;

namespace LocalNotifications
{
 [Activity(Label = "Second Activity")]
 public class SecondActivity : Activity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Get the count value passed to us from MainActivity:
 var count = Intent.Extras.GetInt(MainActivity.COUNT_KEY, -1);

 // No count was passed? Then just return.
 if (count <= 0)
 {
 return;
 }

 // Display the count sent from the first activity:
 SetContentView(Resource.Layout.Second);
 var txtView = FindViewById<TextView>(Resource.Id.textView1);
 txtView.Text = $"You clicked the button {count} times in the previous activity.";
 }
 }
}

ButtonOnClick method to the Click event of the button (replace the delegate event handler provided by the

template):

Now we need to create another activity that Android will display when the user clicks our notification. Add

another Android Activity to your project called SecondActivitySecondActivity . Open SecondActivity.csSecondActivity.cs and replace its

contents with this code:

We must also create a resource layout for SecondActivitySecondActivity . Add a new Android LayoutAndroid Layout file to your project

called Second.axmlSecond.axml . Edit Second.axmlSecond.axml and paste in the following layout code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:minWidth="25px"
 android:minHeight="25px">
 <TextView
 android:text=""
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textView1" />
</LinearLayout>

 Add a notification iconAdd a notification icon

 Run the applicationRun the application

Finally, add a small icon that will appear in the notification area when the notification is launched. You can copy

this icon to your project or create your own custom icon. Name the icon file ic_stat_button_click .pngic_stat_button_click .png and

copy it to the Resources/drawableResources/drawable folder. Remember to use Add > Existing Item ...Add > Existing Item ... to include this icon file in

your project.

Build and run the application. You should be presented with the first activity, similar to the following screenshot:

As you click the button, you should notice that the small icon for the notification appears in the notification area:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-walkthrough-images/ic-stat-button-click.png
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-walkthrough-images/2-start-screen.png#lightbox

If you swipe down and expose the notification drawer, you should see the notification:

When you click the notification, it should disappear, and our other activity should be launched – looking

somewhat like the following screenshot:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-walkthrough-images/3-notification-icon.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-walkthrough-images/4-notifications.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/notifications/local-notifications-walkthrough-images/5-second-activity.png#lightbox

 Summary

 Related Links

Congratulations! At this point you have completed the Android local notification walkthrough and you have a

working sample that you can refer to. There is a lot more to notifications than we have shown here, so if you

want more information, take a look at Google's documentation on notifications.

This walkthrough used NotificationCompat.Builder to create and display notifications. It showed a basic

example of how to start up a second Activity as a way to respond to user interaction with the notification, and it

demonstrated the transfer of data from the first Activity to the second Activity.

LocalNotifications (sample)

Android Oreo Notification Channels

Notification

NotificationManager

NotificationCompat.Builder

PendingIntent

https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/localnotifications
https://blog.xamarin.com/android-oreo-notification-channels/
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification
https://docs.microsoft.com/en-us/dotnet/api/android.app.notificationmanager
https://developer.android.com/reference/android/support/v4/app/NotificationCompat.Builder.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.pendingintent

Touch and Gestures in Xamarin.Android
 11/2/2020 • 2 minutes to read • Edit Online

 Touch Overview

 Sections

 Summary

 Related Links

Touch screens on many of today's devices allow users to quickly and efficiently interact with devices in a natural

and intuitive way. This interaction is not limited just to simple touch detection - it is possible to use gestures as

well. For example, the pinch-to-zoom gesture is a very common example of this by pinching a part of the screen

with two fingers the user can zoom in or out. This guide examines touch and gestures in Android.

iOS and Android are similar in the ways they handle touch. Both can support multi-touch - many points of

contact on the screen - and complex gestures. This guide introduces some of the similarities in concepts, as well

as the particularities of implementing touch and gestures on both platforms.

Android uses a MotionEvent object to encapsulate touch data, and methods on the View object to listen for

touches.

In addition to capturing touch data, both iOS and Android provide means for interpreting patterns of touches

into gestures. These gesture recognizers can in turn be used to interpret application-specific commands, such as

a rotation of an image or a turn of a page. Android provides a handful of supported gestures, as well as

resources to make adding complex custom gestures easy.

Whether you are working on Android or iOS, the choice between touches and gesture recognizers can be a

confusing one. This guide recommends that in general, preference should be given to gesture recognizers.

Gesture recognizers are implemented as discrete classes, which provide greater separation of concerns and

better encapsulation. This makes it easy to share the logic between different views, minimizing the amount of

code written.

This guide follows a similar format for each operating system: first, the platform’s touch APIs are introduced and

explained, as they are the foundation on which touch interactions are built. Then, we dive into the world of

gesture recognizers – first by exploring some common gestures, and finishing up with creating custom gestures

for applications. Finally, you'll see how to track individual fingers using low-level touch tracking to create a

finger-paint program.

Touch in Android

Walkthrough: Using Touch in Android

Multi-Touch tracking

In this guide we examined touch in Android. For both operating systems, we learned how to enable touch and

how to respond to the touch events. Next, we learned about gestures and some of the gesture recognizers that

both Android and iOS provide to handle some of the more common scenarios. We examined how to create

custom gestures and implement them in applications. A walkthrough demonstrated the concepts and APIs for

each operating system in action, and you also saw how to track individual fingers.

Android Touch Start (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/touch/index.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-touch-start

Android Touch Final (sample)

FingerPaint (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-touch-final
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-fingerpaint

Touch in Android
 7/8/2021 • 6 minutes to read • Edit Online

NOTENOTE

<uses-configuration android:reqTouchScreen="finger" />

 Gestures

Much like iOS, Android creates an object that holds data about the user's physical interaction with the screen –

an Android.View.MotionEvent object. This object holds data such as what action is performed, where the touch

took place, how much pressure was applied, etc. A MotionEvent object breaks down the movement into to the

following values:

An action code that describes the type of motion, such as the initial touch, the touch moving across the

screen, or the touch ending.

A set of axis values that describe the position of the MotionEvent and other movement properties such as

where the touch is taking place, when the touch took place, and how much pressure was used. The axis

values may be different depending on the device, so the previous list does not describe all axis values.

The MotionEvent object will be passed to an appropriate method in an application. There are three ways for a

Xamarin.Android application to respond to a touch event:

Assign an event handler to View.Touch - The Android.Views.View class has an

EventHandler<View.TouchEventArgs> which applications can assign a handler to. This is typical .NET

behavior.

Implementing View.IOnTouchListener - Instances of this interface may be assigned to a view object using

the View. SetOnListener method.This is functionally equivalent to assigning an event handler to the

View.Touch event. If there is some common or shared logic that many different views may need when

they are touched, it will be more efficient to create a class and implement this method than to assign each

view its own event handler.

Override View.OnTouchEvent - All views in Android subclass Android.Views.View . When a View is touched,

Android will call the OnTouchEvent and pass it a MotionEvent object as a parameter.

Not all Android devices support touch screens.

Adding the following tag to your manifest file causes Google Play to only display your app to those devices that

are touch enabled:

A gesture is a hand-drawn shape on the touch screen. A gesture can have one or more strokes to it, each stroke

consisting of a sequence of points created by a different point of contact with the screen. Android can support

many different types of gestures, from a simple fling across the screen to complex gestures that involve multi-

touch.

Android provides the Android.Gestures namespace specifically for managing and responding to gestures. At the

heart of all gestures is a special class called Android.Gestures.GestureDetector . As the name implies, this class

will listen for gestures and events based on MotionEvents supplied by the operating system.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/touch/touch-in-android.md

GestureOverlayView.IOnGestureListener myListener = new MyGestureListener();
_gestureDetector = new GestureDetector(this, myListener);

public override bool OnTouchEvent(MotionEvent e)
{
 // This method is in an Activity
 return _gestureDetector.OnTouchEvent(e);
}

 Custom Gestures

 Creating Custom GesturesCreating Custom Gestures

To implement a gesture detector, an Activity must instantiate a GestureDetector class and provide an instance of

IOnGestureListener , as illustrated by the following code snippet:

An Activity must also implement the OnTouchEvent and pass the MotionEvent to the gesture detector. The

following code snippet shows an example of this:

When an instance of GestureDetector identifies a gesture of interest, it will notify the activity or application

either by raising an event or through a callback provided by GestureDetector.IOnGestureListener . This interface

provides six methods for the various gestures:

OnDown - Called when a tap occurs but is not released.

OnFling - Called when a fling occurs and provides data on the start and end touch that triggered the

event.

OnLongPress - Called when a long press occurs.

OnScroll - Called when a scroll event occurs.

OnShowPress - Called after an OnDown has occurred and a move or up event has not been performed.

OnSingleTapUp - Called when a single tap occurs.

In many cases applications may only be interested in a subset of gestures. In this case, applications should

extend the class GestureDetector.SimpleOnGestureListener and override the methods that correspond to the

events that they are interested in.

Gestures are a great way for users to interact with an application. The APIs we have seen so far would suffice for

simple gestures, but might prove a bit onerous for more complicated gestures. To help with more complicated

gestures, Android provides another set of API's in the Android.Gestures namespace that will ease some of the

burden associated with custom gestures.

Since Android 1.6, the Android SDK comes with an application pre-installed on the emulator called Gestures

Builder. This application allows a developer to create pre-defined gestures that can be embedded in an

application. The following screen shot shows an example of Gestures Builder :

An improved version of this application called Gesture Tool can be found Google Play. Gesture Tool is very much

like Gestures Builder except that it allows you to test gestures after they have been created. This next screenshot

shows Gestures Builder :

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/touch-in-android-images/image11.png#lightbox

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/touch-in-android-images/image12.png#lightbox

$ adb pull /storage/sdcard0/gestures <projectdirectory>/Resources/raw

GestureLibrary myGestures = GestureLibraries.FromRawResources(this, Resource.Raw.gestures);
if (!myGestures.Load())
{
 // The library didn't load, so close the activity.
 Finish();
}

 Using Custom GesturesUsing Custom Gestures

GestureOverlayView gestureOverlayView = new GestureOverlayView(this);
gestureOverlayView.AddOnGesturePerformedListener(this);
SetContentView(gestureOverlayView);

<android.gesture.GestureOverlayView
 android:id="@+id/gestures"
 android:layout_width="match_parent "
 android:layout_height="match_parent" />

Gesture Tool is a bit more useful for creating custom gestures as it allows the gestures to be tested as they are

being created and is easily available through Google Play.

Gesture Tool allows you create a gesture by drawing on the screen and assigning a name. After the gestures are

created they are saved in a binary file on the SD card of your device. This file needs to be retrieved from the

device, and then packaged with an application in the folder /Resources/raw. This file can be retrieved from the

emulator using the Android Debug Bridge. The following example shows copying the file from a Galaxy Nexus

to the Resource directory of an application:

Once you have retrieved the file it must be packaged with your application inside the directory /Resources/raw.

The easiest way to use this gesture file is to load the file into a GestureLibrary, as shown in the following snippet:

To recognize custom gestures in an Activity, it must have an Android.Gesture.GestureOverlay object added to its

layout. The following code snippet shows how to programmatically add a GestureOverlayView to an Activity:

The following XML snippet shows how to add a GestureOverlayView declaratively:

The GestureOverlayView has several events that will be raised during the process of drawing a gesture. The most

interesting event is GesturePerformed . This event is raised when the user has completed drawing their gesture.

When this event is raised, the Activity asks a GestureLibrary to try and match the gesture that the user with one

of the gestures created by Gesture Tool. GestureLibrary will return a list of Prediction objects.

Each Prediction object holds a score and name of one of the gestures in the GestureLibrary . The higher the

score, the more likely the gesture named in the Prediction matches the gesture drawn by the user. Generally

speaking, scores lower than 1.0 are considered poor matches.

The following code shows an example of matching a gesture:

private void GestureOverlayViewOnGesturePerformed(object sender,
GestureOverlayView.GesturePerformedEventArgs gesturePerformedEventArgs)
{
 // In this example _gestureLibrary was instantiated in OnCreate
 IEnumerable<Prediction> predictions = from p in
_gestureLibrary.Recognize(gesturePerformedEventArgs.Gesture)
 orderby p.Score descending
 where p.Score > 1.0
 select p;
 Prediction prediction = predictions.FirstOrDefault();

 if (prediction == null)
 {
 Log.Debug(GetType().FullName, "Nothing matched the user's gesture.");
 return;
 }

 Toast.MakeText(this, prediction.Name, ToastLength.Short).Show();
}

 Related Links

With this done, you should have an understanding of how to use touch and gestures in a Xamarin.Android

application. Let us now move on to a walkthrough and see all of the concepts in a working sample application.

Android Touch Start (sample)

Android Touch Final (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-touch-start
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-touch-final

Walkthrough - Using Touch in Android
 7/8/2021 • 8 minutes to read • Edit Online

 Touch Sample Activity

Let us see how to use the concepts from the previous section in a working application. We will create an

application with four activities. The first activity will be a menu or a switchboard that will launch the other

activities to demonstrate the various APIs. The following screenshot shows the main activity:

The first Activity, Touch Sample, will show how to use event handlers for touching the Views. The Gesture

Recognizer activity will demonstrate how to subclass Android.View.Views and handle events as well as show

how to handle pinch gestures. The third and final activity, Custom GestureCustom Gesture, will show how use custom

gestures. To make things easier to follow and absorb, we'll break this walkthrough up into sections, with each

section focusing on one of the Activities.

Open the project TouchWalkthrough_Star tTouchWalkthrough_Star t. The MainActivityMainActivity is all set to go – it is up to us to

implement the touch behaviour in the activity. If you run the application and click Touch SampleTouch Sample, the

following activity should start up:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/touch/android-touch-walkthrough.md
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image14.png#lightbox

_touchMeImageView.Touch += TouchMeImageViewOnTouch;

private void TouchMeImageViewOnTouch(object sender, View.TouchEventArgs touchEventArgs)
{
 string message;
 switch (touchEventArgs.Event.Action & MotionEventActions.Mask)
 {
 case MotionEventActions.Down:
 case MotionEventActions.Move:
 message = "Touch Begins";
 break;

 case MotionEventActions.Up:
 message = "Touch Ends";
 break;

 default:
 message = string.Empty;
 break;
 }

 _touchInfoTextView.Text = message;
}

Now that we have confirmed that the Activity starts up, open the file TouchActivity.csTouchActivity.cs and add a handler

for the Touch event of the ImageView :

Next, add the following method to TouchActivity.csTouchActivity.cs :

Notice in the code above that we treat the Move and Down action as the same. This is because even though the

user may not lift their finger off the ImageView , it may move around or the pressure exerted by the user may

change. These types of changes will generate a Move action.

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image15.png#lightbox

Each time the user touches the ImageView , the Touch event will be raised and our handler will display the

message Touch BeginsTouch Begins on the screen, as shown in the following screenshot:

As long as the user is touching the ImageView , Touch BeginsTouch Begins will be displayed in the TextView . When the user

is no longer touching the ImageView , the message Touch EndsTouch Ends will be displayed in the TextView , as shown in

the following screenshot:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image15.png#lightbox

 Gesture Recognizer Activity
Now lets implement the Gesture Recognizer activity. This activity will demonstrate how to drag a view around

the screen and illustrate one way to implement pinch-to-zoom.

public class GestureRecognizerActivity : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 View v = new GestureRecognizerView(this);
 SetContentView(v);
 }
}

Add a new Activity to the application called GestureRecognizer . Edit the code for this activity so that it

resembles the following code:

Add a new Android view to the project, and name it GestureRecognizerView . Add the following variables

to this class:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image16.png#lightbox

private static readonly int InvalidPointerId = -1;

private readonly Drawable _icon;
private readonly ScaleGestureDetector _scaleDetector;

private int _activePointerId = InvalidPointerId;
private float _lastTouchX;
private float _lastTouchY;
private float _posX;
private float _posY;
private float _scaleFactor = 1.0f;

public GestureRecognizerView(Context context): base(context, null, 0)
{
 _icon = context.Resources.GetDrawable(Resource.Drawable.Icon);
 _icon.SetBounds(0, 0, _icon.IntrinsicWidth, _icon.IntrinsicHeight);
 _scaleDetector = new ScaleGestureDetector(context, new MyScaleListener(this));
}

protected override void OnDraw(Canvas canvas)
{
 base.OnDraw(canvas);
 canvas.Save();
 canvas.Translate(_posX, _posY);
 canvas.Scale(_scaleFactor, _scaleFactor);
 _icon.Draw(canvas);
 canvas.Restore();
}

Add the following constructor to GestureRecognizerView . This constructor will add an ImageView to our

activity. At this point the code still will not compile – we need to create the class MyScaleListener that will

help with resizing the ImageView when the user pinches it:

To draw the image on our activity, we need to override the OnDraw method of the View class as shown in

the following snippet. This code will move the ImageView to the position specified by _posX and _posY

as well as resize the image according to the scaling factor :

Next we need to update the instance variable _scaleFactor as the user pinches the ImageView . We will

add a class called MyScaleListener . This class will listen for the scale events that will be raised by Android

when the user pinches the ImageView . Add the following inner class to GestureRecognizerView . This class

is a ScaleGesture.SimpleOnScaleGestureListener . This class is a convenience class that listeners can

subclass when you are interested in a subset of gestures:

private class MyScaleListener : ScaleGestureDetector.SimpleOnScaleGestureListener
{
 private readonly GestureRecognizerView _view;

 public MyScaleListener(GestureRecognizerView view)
 {
 _view = view;
 }

 public override bool OnScale(ScaleGestureDetector detector)
 {
 _view._scaleFactor *= detector.ScaleFactor;

 // put a limit on how small or big the image can get.
 if (_view._scaleFactor > 5.0f)
 {
 _view._scaleFactor = 5.0f;
 }
 if (_view._scaleFactor < 0.1f)
 {
 _view._scaleFactor = 0.1f;
 }

 _view.Invalidate();
 return true;
 }
}

The next method we need to override in GestureRecognizerView is OnTouchEvent . The following code lists

the full implementation of this method. There is a lot of code here, so lets take a minute and look what is

going on here. The first thing this method does is scale the icon if necessary – this is handled by calling

_scaleDetector.OnTouchEvent . Next we try to figure out what action called this method:

If the user touched the screen with, we record the X and Y positions and the ID of the first pointer

that touched the screen.

If the user moved their touch on the screen, then we figure out how far the user moved the pointer.

If the user has lifted his finger off the screen, then we will stop tracking the gestures.

public override bool OnTouchEvent(MotionEvent ev)
{
 _scaleDetector.OnTouchEvent(ev);

 MotionEventActions action = ev.Action & MotionEventActions.Mask;
 int pointerIndex;

 switch (action)
 {
 case MotionEventActions.Down:
 _lastTouchX = ev.GetX();
 _lastTouchY = ev.GetY();
 _activePointerId = ev.GetPointerId(0);
 break;

 case MotionEventActions.Move:
 pointerIndex = ev.FindPointerIndex(_activePointerId);
 float x = ev.GetX(pointerIndex);
 float y = ev.GetY(pointerIndex);
 if (!_scaleDetector.IsInProgress)
 {
 // Only move the ScaleGestureDetector isn't already processing a gesture.
 float deltaX = x - _lastTouchX;
 float deltaY = y - _lastTouchY;
 _posX += deltaX;
 _posY += deltaY;
 Invalidate();
 }

 _lastTouchX = x;
 _lastTouchY = y;
 break;

 case MotionEventActions.Up:
 case MotionEventActions.Cancel:
 // We no longer need to keep track of the active pointer.
 _activePointerId = InvalidPointerId;
 break;

 case MotionEventActions.PointerUp:
 // check to make sure that the pointer that went up is for the gesture we're tracking.
 pointerIndex = (int) (ev.Action & MotionEventActions.PointerIndexMask) >> (int)
MotionEventActions.PointerIndexShift;
 int pointerId = ev.GetPointerId(pointerIndex);
 if (pointerId == _activePointerId)
 {
 // This was our active pointer going up. Choose a new
 // action pointer and adjust accordingly
 int newPointerIndex = pointerIndex == 0 ? 1 : 0;
 _lastTouchX = ev.GetX(newPointerIndex);
 _lastTouchY = ev.GetY(newPointerIndex);
 _activePointerId = ev.GetPointerId(newPointerIndex);
 }
 break;

 }
 return true;
}

Now run the application, and start the Gesture Recognizer activity. When it starts the screen should look

something like the screenshot below:

Now touch the icon, and drag it around the screen. Try the pinch-to-zoom gesture. At some point your

screen may look something like the following screen shot:

At this point you should give yourself a pat on the back: you have just implemented pinch-to-zoom in an

Android application! Take a quick break and lets move on to the third and final Activity in this walkthrough –

using custom gestures.

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image17.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image18.png#lightbox

Custom Gesture Activity
The final screen in this walkthrough will use custom gestures.

For the purposes of this Walkthrough, the gestures library has already been created using Gesture Tool and

added to the project in the file Resources/raw/gesturesResources/raw/gestures . With this bit of housekeeping out of the way, lets get

on with the final Activity in the walkthrough.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1" />
 <ImageView
 android:src="@drawable/check_me"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="3"
 android:id="@+id/imageView1"
 android:layout_gravity="center_vertical" />
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1" />
</LinearLayout>

private GestureLibrary _gestureLibrary;
private ImageView _imageView;

Add a layout file named custom_gesture_layout.axmlcustom_gesture_layout.axml to the project with the following contents. The

project already has all the images in the ResourcesResources folder :

Next add a new Activity to the project and name it CustomGestureRecognizerActivity.cs . Add two instance

variables to the class, as showing in the following two lines of code:

Edit the OnCreate method of the this Activity so that it resembles the following code. Lets take a minute

to explain what is going on in this code. The first thing we do is instantiate a GestureOverlayView and set

that as the root view of the Activity. We also assign an event handler to the GesturePerformed event of

GestureOverlayView . Next we inflate the layout file that was created earlier, and add that as a child view of

the GestureOverlayView . The final step is to initialize the variable _gestureLibrary and load the gestures

file from the application resources. If the gestures file cannot be loaded for some reason, there is not

much this Activity can do, so it is shutdown:

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 GestureOverlayView gestureOverlayView = new GestureOverlayView(this);
 SetContentView(gestureOverlayView);
 gestureOverlayView.GesturePerformed += GestureOverlayViewOnGesturePerformed;

 View view = LayoutInflater.Inflate(Resource.Layout.custom_gesture_layout, null);
 _imageView = view.FindViewById<ImageView>(Resource.Id.imageView1);
 gestureOverlayView.AddView(view);

 _gestureLibrary = GestureLibraries.FromRawResource(this, Resource.Raw.gestures);
 if (!_gestureLibrary.Load())
 {
 Log.Wtf(GetType().FullName, "There was a problem loading the gesture library.");
 Finish();
 }
}

private void GestureOverlayViewOnGesturePerformed(object sender,
GestureOverlayView.GesturePerformedEventArgs gesturePerformedEventArgs)
{
 IEnumerable<Prediction> predictions = from p in
_gestureLibrary.Recognize(gesturePerformedEventArgs.Gesture)
 orderby p.Score descending
 where p.Score > 1.0
 select p;
 Prediction prediction = predictions.FirstOrDefault();

 if (prediction == null)
 {
 Log.Debug(GetType().FullName, "Nothing seemed to match the user's gesture, so don't do
anything.");
 return;
 }

 Log.Debug(GetType().FullName, "Using the prediction named {0} with a score of {1}.",
prediction.Name, prediction.Score);

 if (prediction.Name.StartsWith("checkmark"))
 {
 _imageView.SetImageResource(Resource.Drawable.checked_me);
 }
 else if (prediction.Name.StartsWith("erase", StringComparison.OrdinalIgnoreCase))
 {
 // Match one of our "erase" gestures
 _imageView.SetImageResource(Resource.Drawable.check_me);
 }
}

The final thing we need to do implement the method GestureOverlayViewOnGesturePerformed as shown in

the following code snippet. When the GestureOverlayView detects a gesture, it calls back to this method.

The first thing we try to get an IList<Prediction> objects that match the gesture by calling

_gestureLibrary.Recognize() . We use a bit of LINQ to get the Prediction that has the highest score for

the gesture.

If there was no matching gesture with a high enough score, then the event handler exits without doing

anything. Otherwise we check the name of the prediction and change the image being displayed based

on the name of the gesture:

Run the application and start up the Custom Gesture Recognizer activity. It should look something like

the following screenshot:

Now draw a checkmark on the screen, and the bitmap being displayed should look something like that

shown in the next screenshots:

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image19.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image20.png#lightbox

 Related Links

Finally, draw a scribble on the screen. The checkbox should change back to its original image as shown in

these screenshots:

You now have an understanding of how to integrate touch and gestures in an Android application using

Xamarin.Android.

Android Touch Start (sample)

Android Touch Final (sample)

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/android-touch-walkthrough-images/image21.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-touch-start
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-touch-final

Multi-Touch Finger Tracking
 7/8/2021 • 5 minutes to read • Edit Online

class FingerPaintPolyline
{
 public FingerPaintPolyline()
 {
 Path = new Path();
 }

 public Color Color { set; get; }

 public float StrokeWidth { set; get; }

 public Path Path { private set; get; }
}

Dictionary<int, FingerPaintPolyline> inProgressPolylines = new Dictionary<int, FingerPaintPolyline>();

List<FingerPaintPolyline> completedPolylines = new List<FingerPaintPolyline>();

This topic demonstrates how to track touch events from multiple fingers

There are times when a multi-touch application needs to track individual fingers as they move simultaneously

on the screen. One typical application is a finger-paint program. You want the user to be able to draw with a

single finger, but also to draw with multiple fingers at once. As your program processes multiple touch events, it

needs to distinguish which events correspond to each finger. Android supplies an ID code for this purpose, but

obtaining and handling that code can be a little tricky.

For all the events associated with a particular finger, the ID code remains the same. The ID code is assigned

when a finger first touches the screen, and becomes invalid after the finger lifts from the screen. These ID codes

are generally very small integers, and Android reuses them for later touch events.

Almost always, a program that tracks individual fingers maintains a dictionary for touch tracking. The dictionary

key is the ID code that identifies a particular finger. The dictionary value depends on the application. In the

FingerPaint program, each finger stroke (from touch to release) is associated with an object that contains all the

information necessary to render the line drawn with that finger. The program defines a small

FingerPaintPolyline class for this purpose:

Each polyline has a color, a stroke width, and an Android graphics Path object to accumulate and render

multiple points of the line as it's being drawn.

The remainder of the code shown below is contained in a View derivative named FingerPaintCanvasView . That

class maintains a dictionary of objects of type FingerPaintPolyline during the time that they are actively being

drawn by one or more fingers:

This dictionary allows the view to quickly obtain the FingerPaintPolyline information associated with a

particular finger.

The FingerPaintCanvasView class also maintains a List object for the polylines that have been completed:

The objects in this List are in the same order that they were drawn.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/touch/touch-tracking.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-fingerpaint
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.path

public override bool OnTouchEvent(MotionEvent args)
{
 // Get the pointer index
 int pointerIndex = args.ActionIndex;

 // Get the id to identify a finger over the course of its progress
 int id = args.GetPointerId(pointerIndex);

 // Use ActionMasked here rather than Action to reduce the number of possibilities
 switch (args.ActionMasked)
 {
 // ...
 }

 // Invalidate to update the view
 Invalidate();

 // Request continued touch input
 return true;
}

FingerPaintCanvasView overrides two methods defined by View : OnDraw and OnTouchEvent . In its OnDraw

override, the view draws the completed polylines and then draws the in-progress polylines.

The override of the OnTouchEvent method begins by obtaining a pointerIndex value from the ActionIndex

property. This ActionIndex value differentiates between multiple fingers, but it is not consistent across multiple

events. For that reason, you use the pointerIndex to obtain the pointer id value from the GetPointerId

method. This ID is consistent across multiple events:

Notice that the override uses the ActionMasked property in the switch statement rather than the Action

property. Here's why:

When you're dealing with multi-touch, the Action property has a value of MotionEventsAction.Down for the first

finger to touch the screen, and then values of Pointer2Down and Pointer3Down as the second and third fingers

also touch the screen. As the fourth and fifth fingers make contact, the Action property has numeric values that

don't even correspond to members of the MotionEventsAction enumeration! You'd need to examine the values

of bit flags in the values to interpret what they mean.

Similarly, as the fingers leave contact with the screen, the Action property has values of Pointer2Up and

Pointer3Up for the second and third fingers, and Up for the first finger.

The ActionMasked property takes on a fewer number of values because it's intended to be used in conjunction

with the ActionIndex property to differentiate between multiple fingers. When fingers touch the screen, the

property can only equal MotionEventActions.Down for the first finger and PointerDown for subsequent fingers. As

the fingers leave the screen, ActionMasked has values of Pointer1Up for the subsequent fingers and Up for the

first finger.

When using ActionMasked , the ActionIndex distinguishes among the subsequent fingers to touch and leave the

screen, but you usually don't need to use that value except as an argument to other methods in the MotionEvent

object. For multi-touch, one of the most important of these methods is GetPointerId called in the code above.

That method returns a value that you can use for a dictionary key to associate particular events to fingers.

The OnTouchEvent override in the FingerPaint program processes the MotionEventActions.Down and PointerDown

events identically by creating a new FingerPaintPolyline object and adding it to the dictionary:

https://docs.microsoft.com/en-us/dotnet/api/android.views.view.ondraw
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.ontouchevent
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-fingerpaint

public override bool OnTouchEvent(MotionEvent args)
{
 // Get the pointer index
 int pointerIndex = args.ActionIndex;

 // Get the id to identify a finger over the course of its progress
 int id = args.GetPointerId(pointerIndex);

 // Use ActionMasked here rather than Action to reduce the number of possibilities
 switch (args.ActionMasked)
 {
 case MotionEventActions.Down:
 case MotionEventActions.PointerDown:

 // Create a Polyline, set the initial point, and store it
 FingerPaintPolyline polyline = new FingerPaintPolyline
 {
 Color = StrokeColor,
 StrokeWidth = StrokeWidth
 };

 polyline.Path.MoveTo(args.GetX(pointerIndex),
 args.GetY(pointerIndex));

 inProgressPolylines.Add(id, polyline);
 break;
 // ...
 }
 // ...
}

public override bool OnTouchEvent(MotionEvent args)
{
 // ...
 switch (args.ActionMasked)
 {
 // ...
 case MotionEventActions.Up:
 case MotionEventActions.Pointer1Up:

 inProgressPolylines[id].Path.LineTo(args.GetX(pointerIndex),
 args.GetY(pointerIndex));

 // Transfer the in-progress polyline to a completed polyline
 completedPolylines.Add(inProgressPolylines[id]);
 inProgressPolylines.Remove(id);
 break;

 case MotionEventActions.Cancel:
 inProgressPolylines.Remove(id);
 break;
 }
 // ...
}

Notice that the pointerIndex is also used to obtain the position of the finger within the view. All the touch

information is associated with the pointerIndex value. The id uniquely identifies fingers across multiple

messages, so that's used to create the dictionary entry.

Similarly, the OnTouchEvent override also handles the MotionEventActions.Up and Pointer1Up identically by

transferring the completed polyline to the completedPolylines collection so they can be drawn during the

OnDraw override. The code also removes the id entry from the dictionary:

public override bool OnTouchEvent(MotionEvent args)
{
 // ...
 switch (args.ActionMasked)
 {
 // ...
 case MotionEventActions.Move:

 // Multiple Move events are bundled, so handle them differently
 for (pointerIndex = 0; pointerIndex < args.PointerCount; pointerIndex++)
 {
 id = args.GetPointerId(pointerIndex);

 inProgressPolylines[id].Path.LineTo(args.GetX(pointerIndex),
 args.GetY(pointerIndex));
 }
 break;
 // ...
 }
 // ...
}

Now for the tricky part.

Between the down and up events, generally there are many MotionEventActions.Move events. These are bundled

in a single call to OnTouchEvent , and they must be handled differently from the Down and Up events. The

pointerIndex value obtained earlier from the ActionIndex property must be ignored. Instead, the method must

obtain multiple pointerIndex values by looping between 0 and the PointerCount property, and then obtain an

id for each of those pointerIndex values:

This type of processing allows the FingerPaint program to track individual fingers and draw the results on the

screen:

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-fingerpaint

 Related Links

You've now seen how you can track individual fingers on the screen and distinguish among them.

Equivalent Xamarin iOS guide

FingerPaint (sample)

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/touch/touch-tracking-images/image01.png#lightbox
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/touch/touch-tracking
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-fingerpaint

HttpClient Stack and SSL/TLS Implementation
Selector for Android

 7/8/2021 • 4 minutes to read • Edit Online

WARNINGWARNING

 Alternative configuration options
 AndroidClientHandlerAndroidClientHandler

 ProsPros

 ConsCons

 Managed (HttpClientHandler)Managed (HttpClientHandler)

The HttpClient Stack and SSL/TLS Implementation selectors determine the HttpClient and SSL/TLS

implementation that will be used by your Xamarin.Android apps.

Projects must reference the System.Net.HttpSystem.Net.Http assembly.

April, 2018April, 2018 – Due to increased security requirements, including PCI compliance, major cloud providers and web servers

are expected to stop supporting TLS versions older than 1.2. Xamarin projects created in previous versions of Visual

Studio default to use older versions of TLS.

In order to ensure your apps continue to work with these servers and services, you should update your Xamarinyou should update your Xamarin

projects with the projects with the Android HttpClient and and Native TLS 1.2 settings shown below, then re-build and re- settings shown below, then re-build and re-

deploy your appsdeploy your apps to your users.

Visual Studio

Visual Studio for Mac

The Xamarin.Android HttpClient configuration is in Project Options > Android OptionsProject Options > Android Options , then click the

Advanced OptionsAdvanced Options button.

These are the recommended settings for TLS 1.2 support:

AndroidClientHandler is the new handler that delegates to native Java/OS code instead of implementing

everything in managed code. This is the recommended option.This is the recommended option.

Use native API for better performance and smaller executable size.

Support for the latest standards, eg. TLS 1.2.

Requires Android 4.1 or later.

Some HttpClient features/options are not available.

Managed handler is the fully managed HttpClient handler that has been shipped with previous Xamarin.Android

versions.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/http-stack.md
file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/http-stack-images/android-win.png#lightbox

 ProsPros

 ConsCons

 Choosing a HandlerChoosing a Handler

 Programatically Using Programatically Using AndroidClientHandler

// Android 4.1 or higher, Xamarin.Android 6.1 or higher
HttpClient client = new HttpClient(new Xamarin.Android.Net.AndroidClientHandler ());

NOTENOTE

 SSL/TLS implementation build option

It is the most compatible (features) with MS .NET and older Xamarin versions.

It is not fully integrated with the OS (eg. limited to TLS 1.0).

It is usually much slower (eg. encryption) than native API.

It requires more managed code, creating larger applications.

The choice between AndroidClientHandler and HttpClientHandler depends upon the needs of your application.

AndroidClientHandler is recommended for the most up-to-date security support, eg.

You require TLS 1.2+ support.

Your app is targeting Android 4.1 (API 16) or later.

You need TLS 1.2+ support for HttpClient .

You don't need TLS 1.2+ support for WebClient .

HttpClientHandler is a good choice if you need TLS 1.2+ support but must support versions of Android earlier

than Android 4.1. It is also a good choice if you need TLS 1.2+ support for WebClient .

Beginning with Xamarin.Android 8.3, HttpClientHandler defaults to Boring SSL (btls) as the underlying TLS

provider. The Boring SSL TLS provider offers the following advantages:

It supports TLS 1.2+.

It supports all Android versions.

It provides TLS 1.2+ support for both HttpClient and WebClient .

The disadvantage of using Boring SSL as the underling TLS provider is that it can increase the size of the

resulting APK (it adds about 1MB of additional APK size per supported ABI).

Beginning with Xamarin.Android 8.3, the default TLS provider is Boring SSL (btls). If you do not want to use

Boring SSL, you can revert to the historical managed SSL implementation by setting the $(AndroidTlsProvider)

property to legacy (for more information about setting build properties, see Build Process).

The Xamarin.Android.Net.AndroidClientHandler is an HttpMessageHandler implementation specifically for

Xamarin.Android. Instances of this class will use the native java.net.URLConnection implementation for all HTTP

connections. This will theoretically provide an increase in HTTP performance and smaller APK sizes.

This code snippet is an example of how to explicitly for a single instance of the HttpClient class:

The underlying Android device must support TLS 1.2 (ie. Android 4.1 and later). Please note that the official support for

TLS 1.2 is in Android 5.0+. However some devices support TLS 1.2 in Android 4.1+.

This project option controls what underlying TLS library will be used by all web request, both HttpClient and

WebRequest . By default, TLS 1.2 is selected:

var client = new HttpClient();

 Other ways to control SSL/TLS configuration

 Declare Environment VariablesDeclare Environment Variables

Visual Studio

Visual Studio for Mac

For example:

If the HttpClient implementation was set to ManagedManaged and the TLS implementation was set to Native TLSNative TLS

1.2+1.2+, then the client object would automatically use the managed HttpClientHandler and TLS 1.2 (provided

by the BoringSSL library) for its HTTP requests.

However, if the HttpClient implementationHttpClient implementation is set to AndroidHttpClient , then all HttpClient objects will use

the underlying Java class java.net.URLConnection and will be unaffected by the TLS/SSL implementationTLS/SSL implementation

value. WebRequest objects would use the BoringSSL library.

There are three ways that a Xamarin.Android application can control the TLS settings:

1. Select the HttpClient implementation and default TLS library in the Project Options.

2. Programatically using Xamarin.Android.Net.AndroidClientHandler .

3. Declare environment variables (optional).

Of the three choices, the recommended approach is to use the Xamarin.Android project options to declare the

default HttpMessageHandler and TLS for the entire app. Then, if necessary, programmatically instantiate

Xamarin.Android.Net.AndroidClientHandler objects. These options are described above.

The third option – using environment variables – is explained below.

There are two environment variables that are related to the use of TLS in Xamarin.Android:

XA_HTTP_CLIENT_HANDLER_TYPE=Xamarin.Android.Net.AndroidClientHandler

XA_TLS_PROVIDER=btls

XA_HTTP_CLIENT_HANDLER_TYPE – This environment variable declares the default HttpMessageHandler that

the application will use. For example:

XA_TLS_PROVIDER – This environment variable will declare which TLS library will be used, either btls ,

legacy , or default (which is the same as omitting this variable):

This environment variable is set by adding an environment file to the project. An environment file is a Unix-

formatted plain-text file with a build action of AndroidEnvironmentAndroidEnvironment:

Visual Studio

Visual Studio for Mac

file:///T:/c1uy/n1bv/xamarin/android/app-fundamentals/http-stack-images/tls05-vs.png#lightbox

 Related Links

Please see the Xamarin.Android Environment guide for more details about environment variables and

Xamarin.Android.

Transport Layer Security (TLS)

https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/transport-layer-security

Writing Responsive Applications
 10/28/2019 • 2 minutes to read • Edit Online

public class ThreadDemo : Activity
{
 TextView textview;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Create a new TextView and set it as our view
 textview = new TextView (this);
 textview.Text = "Working..";

 SetContentView (textview);

 SlowMethod ();
 }

 private void SlowMethod ()
 {
 Thread.Sleep (5000);
 textview.Text = "Method Complete";
 }
}

public class ThreadDemo : Activity
{
 TextView textview;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Create a new TextView and set it as our view
 textview = new TextView (this);
 textview.Text = "Working..";

 SetContentView (textview);

 ThreadPool.QueueUserWorkItem (o => SlowMethod ());
 }

 private void SlowMethod ()
 {
 Thread.Sleep (5000);
 textview.Text = "Method Complete";
 }
}

One of the keys to maintaining a responsive GUI is to do long-running tasks on a background thread so the GUI

doesn't get blocked. Let's say we want to calculate a value to display to the user, but that value takes 5 seconds

to calculate:

This will work, but the application will "hang" for 5 seconds while the value is calculated. During this time, the

app will not respond to any user interaction. To get around this, we want to do our calculations on a background

thread:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/app-fundamentals/writing-responsive-apps.md

E/mono (11207): EXCEPTION handling: Android.Util.AndroidRuntimeException: Exception of type
'Android.Util.AndroidRuntimeException' was thrown.
E/mono (11207):
E/mono (11207): Unhandled Exception: Android.Util.AndroidRuntimeException: Exception of type
'Android.Util.AndroidRuntimeException' was thrown.
E/mono (11207): at Android.Runtime.JNIEnv.CallVoidMethod (IntPtr jobject, IntPtr jmethod,
Android.Runtime.JValue[] parms)
E/mono (11207): at Android.Widget.TextView.set_Text (IEnumerable`1 value)
E/mono (11207): at MonoDroidDebugging.Activity1.SlowMethod ()

public class ThreadDemo : Activity
{
 TextView textview;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Create a new TextView and set it as our view
 textview = new TextView (this);
 textview.Text = "Working..";

 SetContentView (textview);

 ThreadPool.QueueUserWorkItem (o => SlowMethod ());
 }

 private void SlowMethod ()
 {
 Thread.Sleep (5000);
 RunOnUiThread (() => textview.Text = "Method Complete");
 }
}

Now we calculate the value on a background thread so our GUI stays responsive during the calculation.

However, when the calculation is done, our app crashes, leaving this in the log:

This is because you must update the GUI from the GUI thread. Our code updates the GUI from the ThreadPool

thread, causing the app to crash. We need to calculate our value on the background thread, but then do our

update on the GUI thread, which is handled with Activity.RunOnUIThread:

This code works as expected. This GUI stays responsive and gets properly updated once the calculation is

comple.

Note this technique isn't just used for calculating an expensive value. It can be used for any long-running task

that can be done in the background, like a web service call or downloading internet data.

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.runonuithread

User Interfaces with Xamarin.Android
 11/2/2020 • 2 minutes to read • Edit Online

 Android Designer

 Material Theme

 User Profile

 Splash Screen

 Layouts

 Controls

The following sections explain the various tools and building blocks that are used to compose user interfaces in

Xamarin.Android apps.

This section explains how to use the Android Designer to lay out controls visually and edit properties. It also

explains how to use the Designer to work with user interfaces and resources across various configurations, such

as themes, languages, and device configurations, as well as how to design for alternative views like landscape

and portrait.

Material Theme is the user interface style that determines the look and feel of views and activities in Android.

Material Theme is built into Android, so it is used by the system UI as well as by applications. This guide

introduces Material Design principles and explains how to theme an app using either built-in Material Themes or

a custom theme.

This guide explains how to access the personal profile for the owner of a device, including contact data such as

the device owner's name and phone number.

An Android app takes some time to start up, especially when the app is first launched on a device. A splash

screen may display start up progress to the user. This guide explains how to create a splash screen for your app.

Layouts are used to define the visual structure for a user interface. Layouts such as ListView and RecyclerView

are the most fundamental building blocks of Android applications. Typically, a layout will use an Adapter to act

as a bridge from the layout to the underlying data that is used to populate data items in the layout. This section

explains how to use layouts such as LinearLayout , RelativeLayout , TableLayout , RecyclerView , and GridView .

Android controls (also called widgets) are the UI elements that you use to build a user interface. This section

explains how to use controls such as buttons, toolbars, date/time pickers, calendars, spinners, switches, pop-up

menus, view pagers, and web views.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/index.md

Xamarin.Android Designer
 4/8/2020 • 2 minutes to read • Edit Online

 Overview

 Sections

 Summary

This article describes the features of the Xamarin.Android Designer. It explains designer basics, demonstrating

how to use the Designer to lay out widgets visually and edit properties. It also illustrates how to use the

Designer to work with user interfaces and resources across various configurations, such as themes, languages,

and device configurations, as well as how to design for alternative views such as landscape and portrait.

Xamarin.Android supports both a declarative style of user interface design based in XML files, as well as

programmatic user interface creation in code. When using the declarative approach, XML files can be either

hand-edited or modified visually by using the Xamarin.Android Designer. Use of a designer allows immediate

feedback during UI creation, speeds up development, and makes the process of UI creation less laborious.

This article surveys the many features of the Xamarin.Android Designer. It explains the following:

1. The basics of using the Designer.

2. The various parts that make up the Designer.

3. How to load an Android layout into the Designer.

4. How to add widgets.

5. How to edit properties.

6. How to work with various resources and device configurations.

7. How to modify a user interface for alternative views such as landscape and portrait.

8. How to handle conflicts that may arise when working with alternative views.

9. How to use Material Design tools to build Material Design-compliant apps.

Using the Android Designer

Designer Basics

Resource Qualifiers and Visualization Options

Alternative Layout Views

Material Design Features

Android Layout Diagnostics

Android Designer Diagnostic Analyzers

This article discussed the feature set of the Xamarin.Android Designer. It showed how to get started with the

Designer, and explained its various parts. It described how to load a layout, as well as how to add and modify

widgets, by using both the Designer SurfaceDesigner Surface as well as the SourceSource view. It also explained how to work with

various resources and device configurations. Finally, it examined how to use the Designer to develop user

interfaces that are built specifically for alternative views, such as landscape and portrait, as well as how to

resolve conflicts that may arise between such views.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/index.md

 Related links
Designer walkthrough

Android resources

Using the Xamarin.Android Designer
 7/8/2021 • 14 minutes to read • Edit Online

 Overview

TIPTIP

 Walkthrough

 Creating a new projectCreating a new project

This article is a walkthrough of the Xamarin.Android Designer. It demonstrates how to create a user interface for

a small color browser app; this user interface is created entirely in the Designer.

Android user interfaces can be created declaratively by using XML files or programmatically by writing code. The

Xamarin.Android Designer allows developers to create and modify declarative layouts visually, without requiring

hand-editing of XML files. The Designer also provides real-time feedback that lets the developer evaluate UI

changes without having to redeploy the application to a device or to an emulator. These Designer features can

speed up Android UI development tremendously. This article demonstrates how to use the Xamarin.Android

Designer to visually create a user interface.

Newer releases of Visual Studio support opening .xml files inside the Android Designer.

Both .axml and .xml files are supported in the Android Designer.

The objective of this walkthrough is to use the Android Designer to create a user interface for an example color

browser app. The color browser app presents a list of colors, their names, and their RGB values. You'll learn how

to add widgets to the Design SurfaceDesign Surface as well as how to lay out these widgets visually. After that, you'll learn

how to modify widgets interactively on the Design SurfaceDesign Surface or by using the Designer's Proper tiesProper ties pane.

Finally, you'll see how the design looks when the app runs on a device or emulator.

Visual Studio

Visual Studio for Mac

The first step is to create a new Xamarin.Android project. Launch Visual Studio, click New Project...New Project... , and choose

the Visual C# > Android > Android App (Xamarin)Visual C# > Android > Android App (Xamarin) template. Name the new app DesignerWalkthroughDesignerWalkthrough

and click OKOK.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/designer-walkthrough.md

 Adding a layoutAdding a layout

In the New Android AppNew Android App dialog, choose Blank AppBlank App and click OKOK:

The next step is to create a L inearLayoutLinearLayout that will hold the user interface elements. Right-click

Resources/layoutResources/layout in the Solution ExplorerSolution Explorer and select Add > New Item...Add > New Item.... In the Add New ItemAdd New Item dialog,

select Android LayoutAndroid Layout. Name the file list_ itemlist_ item and click AddAdd:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/01-android-app-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/02-blank-app-w158.png#lightbox

The new list_ itemlist_ item layout is displayed in the Designer. Notice that two panes are displayed – the Design Surface

for the list_ itemlist_ item is visible in the left pane while its XML source is shown on the right pane. You can swap the

positions of the Design SurfaceDesign Surface and SourceSource panes by clicking the Swap PanesSwap Panes icon located between the two

panes:

From the ViewView menu, click Other Windows > Document OutlineOther Windows > Document Outline to open the Document OutlineDocument Outline. The

Document OutlineDocument Outline shows that the layout currently contains a single L inearLayoutLinearLayout widget:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/03-new-layout-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/04-designer-view-w158.png#lightbox

 Creating the List Item user interfaceCreating the List Item user interface

The next step is to create the user interface for the color browser app within this LinearLayout .

If the ToolboxToolbox pane is not showing, click the ToolboxToolbox tab on the left. In the ToolboxToolbox, scroll down to the ImagesImages

& Media& Media section and scroll down further until you locate an ImageView :

Alternately, you can enter ImageView into the search bar to locate the ImageView :

Drag this ImageView onto the Design Surface (this ImageView will be used to display a color swatch in the color

browser app):

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/06-document-outline-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/07-locate-imageview-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/08-imageview-search-w158.png#lightbox

Next, drag a LinearLayout (Vertical) widget from the ToolboxToolbox into the Designer. Notice that a blue outline

indicates the boundaries of the added LinearLayout . The Document OutlineDocument Outline shows that it is a child of

LinearLayout , located under imageView1 (ImageView) :

When you select the ImageView in the Designer, the blue outline moves to surround the ImageView . In addition,

the selection moves to imageView1 (ImageView) in the Document OutlineDocument Outline:

Next, drag a Text (Large) widget from the ToolboxToolbox into the newly-added LinearLayout . Notice that the

Designer uses green highlights to indicate where the new widget will be inserted:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/09-imageview-on-canvas-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/10-blue-outline-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/11-select-imageview-w158.png#lightbox

Next, add a Text (Small) widget below the Text (Large) widget:

At this point, the Designer surface should resemble the following screenshot:

If the two textView widgets are not inside linearLayout1 , you can drag them to linearLayout1 in the

Document OutlineDocument Outline and position them so they appear as shown in the previous screenshot (indented under

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/12-green-highlight-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/13-add-small-text-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/14-raw-layout-w158.png#lightbox

 Arranging the user interfaceArranging the user interface

linearLayout1).

The next step is to modify the UI to display the ImageView on the left, with the two TextView widgets stacked to

the right of the ImageView .

1. Select the ImageView .

2. In the Proper ties windowProper ties window , enter width in the search box and locate Layout WidthLayout Width.

3. Change the Layout WidthLayout Width setting to wrap_content :

Another way to change the Width setting is to click the triangle on the right-hand side of the widget to toggle

its width setting to wrap_content :

Clicking the triangle again returns the Width setting to match_parent . Next, go to the Document OutlineDocument Outline pane

and select the root LinearLayout :

With the root LinearLayout selected, return to the Proper tiesProper ties pane, enter orientation into the search box and

locate the OrientationOrientation setting. Change OrientationOrientation to horizontal :

At this point, the Designer surface should resemble the following screenshot. Notice that the TextView widgets

have been moved to the right of the ImageView :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/16-root-linearlayout-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/18-designer-layout-w158.png#lightbox

 Modifying the spacingModifying the spacing
The next step is to modify padding and margin settings in the UI to provide more space between the widgets.

Select the ImageView on the Design surface. In the Proper tiesProper ties pane, enter min in the search box. Enter 70dp

for Min HeightMin Height and 50dp for Min WidthMin Width:

In the Proper tiesProper ties pane, enter padding in the search box and enter 10dp for PaddingPadding. These minHeight ,

minWidth and padding settings add padding around all sides of the ImageView and elongate it vertically. Notice

that the layout XML changes as you enter these values:

The bottom, left, right, and top padding settings can be set independently by entering values into the PaddingPadding

BottomBottom, Padding LeftPadding Left, Padding RightPadding Right, and Padding TopPadding Top fields, respectively. For example, set the PaddingPadding

LeftLeft field to 5dp and the Padding BottomPadding Bottom, Padding RightPadding Right, and Padding TopPadding Top fields to 10dp :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/18b-set-height-width.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/19-padding-widths-w158.png#lightbox

 Removing the default imageRemoving the default image

Next, adjust the position of the LinearLayout widget that contains the two TextView widgets. In the DocumentDocument

OutlineOutline, select linearLayout1 . In the Proper tiesProper ties window, enter margin in the search box. Set Layout MarginLayout Margin

BottomBottom, Layout Margin LeftLayout Margin Left, and Layout Margin TopLayout Margin Top to 5dp . Set Layout Margin RightLayout Margin Right to 0dp :

Because the ImageView is being used to display colors (rather than images), the next step is to remove the

default image source added by the template.

1. Select the ImageView on the Designer SurfaceDesigner Surface.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/20-custom-padding-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/21-margins-w158.png#lightbox

 Adding a ListView containerAdding a ListView container

2. In Proper tiesProper ties , enter src in the search box.

3. Click the small square to the right of the SrcSrc property setting and select ResetReset:

This removes android:src="@android:drawable/ic_menu_gallery" from the source XML for that ImageView .

Now that the list_ itemlist_ item layout is defined, the next step is to add a ListView to the Main layout. This ListView

will contain a list of list_ itemlist_ item.

In the Solution ExplorerSolution Explorer , open Resources/layout/activity_main.axmlResources/layout/activity_main.axml . In the ToolBoxToolBox, locate the ListView

widget and drag it onto the Design SurfaceDesign Surface. The ListView in the Designer will be blank except for blue lines

that outline its border when it is selected. You can view the Document OutlineDocument Outline to verify that the L istViewListView was

added correctly:

By default, the ListView is given an Id value of @+id/listView1 . While listView1 is still selected in the

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/22-clear-img-src-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/23-new-listview-w158.png#lightbox

 Running the applicationRunning the application

using Android.App;
using Android.Widget;
using Android.Views;
using Android.OS;
using Android.Support.V7.App;
using System.Collections.Generic;

namespace DesignerWalkthrough
{
 [Activity(Label = "@string/app_name", Theme = "@style/AppTheme", MainLauncher = true)]
 public class MainActivity : AppCompatActivity
 {
 List<ColorItem> colorItems = new List<ColorItem>();
 ListView listView;

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 // Set our view from the "main" layout resource
 SetContentView(Resource.Layout.activity_main);
 listView = FindViewById<ListView>(Resource.Id.myListView);

 colorItems.Add(new ColorItem()
 {
 Color = Android.Graphics.Color.DarkRed,
 ColorName = "Dark Red",
 Code = "8B0000"
 });
 colorItems.Add(new ColorItem()
 {
 Color = Android.Graphics.Color.SlateBlue,
 ColorName = "Slate Blue",
 Code = "6A5ACD"
 });
 colorItems.Add(new ColorItem()
 {
 Color = Android.Graphics.Color.ForestGreen,
 ColorName = "Forest Green",
 Code = "228B22"
 });

 listView.Adapter = new ColorAdapter(this, colorItems);
 }

Document OutlineDocument Outline, open the Proper tiesProper ties pane, click Arrange byArrange by , and select Categor yCategor y . Open MainMain, locate

the IdId property, and change its value to @+id/myListView :

At this point, the user interface is ready to use.

Open MainActivity.csMainActivity.cs and replace its code with the following:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/24-change-id-w158.png#lightbox

 }

 public class ColorAdapter : BaseAdapter<ColorItem>
 {
 List<ColorItem> items;
 Activity context;
 public ColorAdapter(Activity context, List<ColorItem> items)
 : base()
 {
 this.context = context;
 this.items = items;
 }
 public override long GetItemId(int position)
 {
 return position;
 }
 public override ColorItem this[int position]
 {
 get { return items[position]; }
 }
 public override int Count
 {
 get { return items.Count; }
 }
 public override View GetView(int position, View convertView, ViewGroup parent)
 {
 var item = items[position];

 View view = convertView;
 if (view == null) // no view to re-use, create new
 view = context.LayoutInflater.Inflate(Resource.Layout.list_item, null);
 view.FindViewById<TextView>(Resource.Id.textView1).Text = item.ColorName;
 view.FindViewById<TextView>(Resource.Id.textView2).Text = item.Code;
 view.FindViewById<ImageView>(Resource.Id.imageView1).SetBackgroundColor(item.Color);

 return view;
 }
 }

 public class ColorItem
 {
 public string ColorName { get; set; }
 public string Code { get; set; }
 public Android.Graphics.Color Color { get; set; }
 }
}

This code uses a custom ListView adapter to load color information and to display this data in the UI that was

just created. To keep this example short, the color information is hard-coded in a list, but the adapter could be

modified to extract color information from a data source or to calculate it on the fly. For more information about

ListView adapters, see ListView.

Build and run the application. The following screenshot is an example of how the app appears when running on

a device:

 Summary
This article walked through the process of using the Xamarin.Android Designer in Visual Studio to create a user

interface for a basic app. It demonstrated how to create the interface for a single item in a list, and it illustrated

how to add widgets and lay them out visually. It also explained how to assign resources and then set various

properties on those widgets.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-walkthrough-images/vs/25-final-screenshot.png#lightbox

Xamarin.Android Designer basics
 7/8/2021 • 22 minutes to read • Edit Online

 Launching the Designer

This topic introduces Xamarin.Android Designer features, explains how to launch the Designer, describes the

Design Surface, and details how to use the Properties pane to edit widget properties.

Visual Studio

Visual Studio for Mac

The Designer is launched automatically when a layout is created, or it can be launched by double-clicking an

existing layout file. For example, double-clicking activity_main.axmlactivity_main.axml in the Resources > LayoutResources > Layout folder will

load the Designer as seen in this screenshot:

Likewise, you can add a new layout by right-clicking the layoutlayout folder in the Solution ExplorerSolution Explorer and selecting

Add > New Item... > Android LayoutAdd > New Item... > Android Layout:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/designer-basics.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/01-open-designer.png#lightbox

TIPTIP

 Designer features

This creates a new .axml.axml layout file and loads it into the Designer.

Newer releases of Visual Studio support opening .xml files inside the Android Designer.

Both .axml and .xml files are supported in the Android Designer.

The Designer is composed of several sections that support its various features, as shown in the following

screenshot:

When you edit a layout in the Designer, you use the following features to create and shape your design:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/02-add-new-layout.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/03-designer-features.png#lightbox

 Design Surface

 Designer ToolbarDesigner Toolbar

Design SurfaceDesign Surface – Facilitates the visual construction of the user interface by giving you an editable

representation of how the layout will appear on the device. The Design SurfaceDesign Surface is displayed inside the

Design PaneDesign Pane (with the Designer ToolbarDesigner Toolbar positioned above it).

Source PaneSource Pane – Provides a view of the underlying XML source that corresponds to the design presented

on the Design SurfaceDesign Surface.

Designer ToolbarDesigner Toolbar – Displays a list of selectors: DeviceDevice, VersionVersion, ThemeTheme, layout configuration, and

Action Bar settings. The Designer ToolbarDesigner Toolbar also includes icons for launching the Theme Editor and for

enabling the Material Design Grid.

ToolboxToolbox – Provides a list of widgets and layouts that you can drag and drop onto the Design SurfaceDesign Surface.

Proper ties WindowProper ties Window – Lists the properties of the selected widget for viewing and editing.

Document OutlineDocument Outline – Displays the tree of widgets that compose the layout. You can click an item in the

tree to cause it to be selected on the Design SurfaceDesign Surface. Also, clicking an item in the tree loads the item's

properties into the Proper tiesProper ties window.

The Designer makes it possible for you to drag and drop widgets from the toolbox onto the Design SurfaceDesign Surface.

When you interact with widgets in the Designer (by either adding new widgets or repositioning existing ones),

vertical and horizontal lines are displayed to mark the available insertion points. In the following example, a new

Button widget is being dragged to the Design SurfaceDesign Surface:

Additionally, widgets can be copied: you can use copy and paste to copy a widget, or you can drag and drop an

existing widget while pressing the CTRL key.

The Designer ToolbarDesigner Toolbar (positioned above the Design SurfaceDesign Surface) presents configuration selectors and tool

menus:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/05-insertion-points.png#lightbox

 Context menu commandsContext menu commands

The Designer ToolbarDesigner Toolbar provides access to the following features:

Alternative Layout SelectorAlternative Layout Selector – Allows you to select from different layout versions.

Device SelectorDevice Selector – Defines a set of qualifiers (such as screen size, resolution, and keyboard availability)

associated with a particular device. You can also add and delete new devices.

Android Version SelectorAndroid Version Selector – The Android version that the layout is targeting. The Designer will render

the layout according to the selected Android version.

Theme SelectorTheme Selector – Selects the UI theme for the layout.

Configuration SelectorConfiguration Selector – Selects the device configuration, such as portrait or landscape.

Resource Qualifier OptionsResource Qualifier Options – Opens a dialog that presents drop-down menus for selecting Language,

UI Mode, Night Mode, and Round Screen options.

Action Bar SettingsAction Bar Settings – Configures the Action Bar settings for the layout.

Theme EditorTheme Editor – Opens the Theme Editor, which makes it possible for you to customize elements of the

selected theme.

Mater ial Design GridMater ial Design Grid – Enables or disables the Material Design Grid. The drop-down menu item

adjacent to the Material Design Grid opens a dialog that enables you to customize the grid.

Each of these features is explained in more detail in these topics:

Resource Qualifiers and Visualization Options provides detailed information about the Device SelectorDevice Selector ,

Android Version SelectorAndroid Version Selector , Theme SelectorTheme Selector , Configuration SelectorConfiguration Selector , Resource QualificationsResource Qualifications

OptionsOptions , and Action Bar SettingsAction Bar Settings .

Alternative Layout Views explains how to use the Alternative Layout SelectorAlternative Layout Selector .

Xamarin.Android Designer Material Design Features provides a comprehensive overview of the ThemeTheme

EditorEditor and the Mater ial Design GridMater ial Design Grid.

A context menu is available both in the Design SurfaceDesign Surface and in the Document OutlineDocument Outline. This menu displays

commands that are available for the selected widget and its container, making it easier for you to perform

operations on containers (which are not always easy to select on the Design SurfaceDesign Surface). Here is an example of a

context menu:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/04-toolbar.png#lightbox

 Zoom controlsZoom controls

In this example, right-clicking a TextView opens a context menu that provides several options:

L inearLayoutLinearLayout – opens a submenu for editing the LinearLayout parent of the TextView .

DeleteDelete, CopyCopy , and CutCut – operations that apply to the right-clicked TextView .

The Design SurfaceDesign Surface supports zooming via several controls as shown:

These controls make it easier to see certain areas of the user interface in the Designer :

Highlight ContainersHighlight Containers – Highlights containers on the Design SurfaceDesign Surface so that they are easier to locate

while zooming in and out.

Normal S izeNormal S ize – Renders the layout pixel-for-pixel so that you can see how the layout will look at the

resolution of the selected device.

Fit to WindowFit to Window – Sets the zoom level so that the entire layout is visible on the Design Surface.

Zoom InZoom In – Zooms in incrementally with each click, magnifying the layout.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/06-context-menu.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/07-zoom-controls.png#lightbox

 Switching between Design and Source panes

Zoom OutZoom Out – Zooms out incrementally with each click, making the layout appear smaller on the Design

Surface.

Note that the chosen zoom setting does not affect the user interface of the application at runtime.

In the center strip between the DesignDesign and SourceSource panes, there are several buttons that are used to modify

how the DesignDesign and SourceSource panes are displayed:

These buttons do the following:

DesignDesign – This topmost button, DesignDesign, selects the DesignDesign pane. When this button is clicked, the

ToolboxToolbox and Proper tiesProper ties panes are enabled and the Text Editor ToolbarText Editor Toolbar is not displayed. When the

CollapseCollapse button is clicked (see below), the DesignDesign pane is presented alone without the SourceSource pane.

Swap PanesSwap Panes – This button (which resembles two opposing arrows) swaps the DesignDesign and SourceSource

panes so that the SourceSource pane is on the left and the DesignDesign pane is on the right. Clicking it again swaps

these panes back to their original locations.

SourceSource – This button (which resembles two opposing angle brackets) selects the SourceSource pane. When

this button is clicked, the ToolboxToolbox and Proper tiesProper ties panes are disabled and the Text Editor ToolbarText Editor Toolbar is

made visible at the top of Visual Studio. When the CollapseCollapse button is clicked (see below), clicking the

SourceSource button displays the SourceSource pane instead of the DesignDesign pane.

Ver tical SplitVer tical Split – This button (which resembles a vertical bar), displays the DesignDesign and SourceSource panes

side-by-side. This is the default arrangement.

Horizontal SplitHorizontal Split – This button (which resembles a horizontal bar), displays the DesignDesign pane above the

SourceSource pane. Swap PanesSwap Panes can be clicked to place the SourceSource pane above the DesignDesign pane.

Collapse PaneCollapse Pane – This button (which resembles two right-pointing angle brackets) "collapses" the dual-

pane display of DesignDesign and SourceSource into a single view of one of these panes. This button becomes the

Expand PaneExpand Pane button (resembling two left-pointing angle brackets), which can be clicked to return the

view back to dual-pane (DesignDesign and SourceSource) display mode.

When Collapse PaneCollapse Pane is clicked, only the DesignDesign pane is displayed. However, you can click the SourceSource button

to instead view only the SourceSource pane. Click the DesignDesign button again to return to the DesignDesign pane.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/25-pane-buttons.png#lightbox

 Source pane

 AutocompletionAutocompletion

The SourceSource pane displays the XML source underlying the design shown on the Design SurfaceDesign Surface. Because both

views are available at the same time, it is possible to create a UI design by going back and forth between a visual

representation of the design and the underlying XML source for the design:

Changes made to the XML source are immediately rendered on the Design SurfaceDesign Surface; changes made on the

Design SurfaceDesign Surface cause the XML source displayed in the SourceSource pane to be updated accordingly. When you

make changes to XML in the SourceSource pane, autocompletion and IntelliSense features are available to speed XML-

based UI development as explained next.

For greater navigational ease when working with long XML files, the SourceSource pane supports the Visual Studio

scrollbar (as seen on the right in the previous screenshot). For more information about the scrollbar, see How to

Track Your Code by Customizing the Scrollbar.

When you begin to type the name of an attribute for a widget, you can press CTRL+SPACE to see a list of

possible completions. For example, after entering android:lay in the following example (followed by typing

CTRL+SPACE), the following list is presented:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/22-source-pane-w158.png#lightbox
https://docs.microsoft.com/en-us/visualstudio/ide/how-to-track-your-code-by-customizing-the-scrollbar
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/23-autocompletion-w158.png#lightbox

 IntelliSenseIntelliSense

 Properties pane

 Default valuesDefault values

Press ENTER to accept the first listed completion, or use the arrow keys to scroll to the desired completion and

press ENTER. Alternatively, you can use the mouse to scroll to and click the desired completion.

After you enter a new attribute for a widget and begin to assign it a value, IntelliSense pops up after a trigger

character is typed and provides a list of valid values to use for that attribute. For example, after the first double-

quote is entered for android:layout_width in the following example, an autocompletion selector pops up to

provide the list of valid choices for this width:

At the bottom of this popup are two buttons (as outlined in red in the above screenshot). Clicking the ProjectProject

ResourcesResources button on the left restricts the list to resources that are part of the app project, while clicking the

Framework ResourcesFramework Resources button on the right restricts the list to display resources available from the framework.

These buttons toggle on or off: you can click them again to disable the filtering action that each provides.

The Designer supports the editing of widget properties through the Proper tiesProper ties pane:

The properties listed in the Proper tiesProper ties pane change depending on which widget is selected on the DesignDesign

SurfaceSurface.

The properties of most widgets will be blank in the Proper tiesProper ties window because their values inherit from the

selected Android theme. The Proper tiesProper ties window will only show values that are explicitly set for the selected

widget; it will not show values that are inherited from the theme.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/24-intellisense-w158.png#lightbox

 Referencing resourcesReferencing resources
Some properties can reference resources that are defined in files other than the layout .axml.axml file. The most

common cases of this type are string and drawable resources. However, references can also be used for other

resources, such as Boolean values and dimensions. When a property supports resource references, a browse

icon (a square) is shown next to the text entry for the property. This button opens a resource selector when

clicked.

For example, the following screenshot shows the options available when clicking the darkened square to the

right of the text field for a Text widget in the Proper tiesProper ties window:

When Resource...Resource... is clicked, the Select ResourceSelect Resource dialog is presented:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/09-text-options.png#lightbox

 Boolean property referencesBoolean property references

From this list, you can select a text resource to use for that widget instead of hard-coding the text in the

Proper tiesProper ties pane. The next example illustrates the resource selector for the Src property of an ImageView :

Clicking the blank square to the right of the Src property opens the Select ResourceSelect Resource dialog with a list of

resources ranging from colors (as shown above) to drawables.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/09b-resources-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/designer-basics-images/vs/10-src-resource.png#lightbox

 Editing properties inline

 TextText

Boolean properties are normally selected as check marks next to a property in the Properties window. You can

designate a true or false value by checking or unchecking this check box, or you can select a property

reference by clicking the dark-filled square to the right of the property. In the following example, text is changed

to all caps by clicking the Text All CapsText All Caps boolean property reference associated with the selected TextView :

The Android Designer supports direct editing of certain properties on the Design SurfaceDesign Surface (so you don't have

to search for these properties in the property list). Properties that can be directly edited include text, margin, and

size.

The text properties of some widgets (such as Button and TextView), can be edited directly on the DesignDesign

SurfaceSurface. Double-clicking a widget will put it into edit mode, as shown below:

You can enter a new text value or you can enter a new resource string. In the following example, the

@string/hello resource is being replaced with the text, CLICK THIS BUTTON :

 MarginMargin

This change is stored in the widget's text property; it does not modify the value assigned to the @string/hello

resource. When you key in a new text string, you can press Shift + Enter to automatically link the entered text

to a new resource.

When you select a widget, the Designer displays handles that allow you to change the size or margin of the

widget interactively. Clicking the widget while it is selected toggles between margin-editing mode and size-

editing mode.

When you click a widget for the first time, margin handles are displayed. If you move the mouse to one of the

handles, the Designer displays the property that the handle will change (as shown below for the

layout_marginLeft property):

If a margin has already been set, dotted lines are displayed, indicating the space that the margin occupies:

 SizeSize
As mentioned earlier, you can switch to size-editing mode by clicking a widget while it is already selected. Click

the triangular handle to set the size for the indicated dimension to wrap_content :

Clicking the Wrap ContentWrap Content handle shrinks the widget in that dimension so that it is no larger than necessary to

wrap the enclosed content. In this example, the button text shrinks horizontally as shown in the next screenshot.

When the size value is set to Wrap ContentWrap Content, the Designer displays a triangular handle pointing in the opposite

direction for changing the size to match_parent :

 Document Outline

Clicking the Match ParentMatch Parent handle restores the size in that dimension so that it is the same as the parent widget.

Also, you can drag the circular resize handle (as shown in the above screenshots) to resize the widget to an

arbitrary dp value. When you do so, both Wrap ContentWrap Content and Match ParentMatch Parent handles are presented for that

dimension:

Not all containers allow editing the Size of a widget. For example, notice that in the screenshot below with the

LinearLayout selected, the resize handles do not appear :

The Document OutlineDocument Outline displays the widget hierarchy of the layout. In the following example, the containing

LinearLayout widget is selected:

The outline of the selected widget (in this case, a LinearLayout) is also highlighted on the Design SurfaceDesign Surface. The

selected widget in the Document Outline stays in sync with its counterpart on the Design SurfaceDesign Surface. This is

useful for selecting view groups, which are not always easy to select on the Design SurfaceDesign Surface.

The Document OutlineDocument Outline supports copy and paste, or you can use drag and drop. Drag and drop is supported

from the Document OutlineDocument Outline to the Design SurfaceDesign Surface as well as from the Design SurfaceDesign Surface to the DocumentDocument

OutlineOutline. Also, right-clicking an item in the Document OutlineDocument Outline displays the context menu for that item (the

same context menu that appears when you right-click that same widget on the Design SurfaceDesign Surface).

Resource qualifiers and visualization options
 7/8/2021 • 7 minutes to read • Edit Online

 Resource qualifier options

 LanguageLanguage

This topic explains how to define resources that will be used only when some qualifier values are matched. A

simple example is a language-qualified string resource. A string resource can be defined as the default, with

other alternative resources defined to be used for additional languages. All resource types can be qualified,

including the layout itself.

Visual Studio

Visual Studio for Mac

Resource qualifier optionsResource qualifier options can be accessed by clicking the ellipsis icon to the right of the LandscapeLandscape mode

button:

This dialog presents pull-down menus for the following resource qualifiers:

LanguageLanguage – Displays available language resources and offers an option to add new language/region

resources.

UI ModeUI Mode – Lists display modes (such as Car DockCar Dock and Desk DockDesk Dock) as well as layout directions.

Each of these pull-down menus opens new dialog boxes where you can select and configure resource qualifiers

(as explained next).

The LanguageLanguage pull-down menu lists only those languages that have resources defined (or All languagesAll languages ,

which is the default). However, there is also an Add language/region...Add language/region... option that allows you to add a new

language to the list:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/resource-qualifiers.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/resource-qualifiers-images/vs/08-resource-qual-opt.png#lightbox

When you click Add language/region...Add language/region..., the Select LanguageSelect Language dialog opens to display drop-down lists of

available languages and regions:

In this example, we have chosen fr (French)fr (French) for the language and BEBE (Belgium) for the regional dialect of

French. Note that the RegionRegion field is optional because many languages can be specified without regard for

specific regions. When the LanguageLanguage pull-down menu is opened again, it displays the newly-added

language/region resource:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/resource-qualifiers-images/vs/09-add-language-region.png#lightbox

 UI ModeUI Mode

 Action Bar settings

Note that if you add a new language but you do not create new resources for it, the added language will no

longer be shown the next time you open the project.

When you click the UI ModeUI Mode pull-down menu, a list of modes is displayed, such as NormalNormal , Car DockCar Dock , DeskDesk

DockDock, TelevisionTelevision, ApplianceAppliance, and WatchWatch:

Below this list are the night modes Not NightNot Night and NightNight, followed by the layout directions Left to RightLeft to Right and

Right to LeftRight to Left (for information about Left to RightLeft to Right and Right to LeftRight to Left options, see LayoutDirection). The last

items in the Resource Qualifier OptionsResource Qualifier Options dialog are the Round screensRound screens (for use with Android Wear) or NotNot

Round screensRound screens . For information about round and non-round screens, see Layouts. For more information about

Android UI modes, see UiModeManager.

The Action bar settingsAction bar settings icon is available to the left of the paintbrush (Theme Editor) icon:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/resource-qualifiers-images/vs/12-ui-mode.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.util.layoutdirection
https://developer.android.com/training/wearables/ui/layouts.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.uimodemanager

 Themes

This icon opens a dialog popover that provides a way to select from one of three Action Bar modes:

StandardStandard – Consists of either a logo or an icon and title text with an optional subtitle.

L istL ist – List navigation mode. Instead of static title text, this mode presents a list menu for navigation

within the activity (that is, it can be presented to the user as a dropdown list).

TabsTabs – Tab navigation mode. Instead of static title text, this mode presents a series of tabs for navigation

within the activity.

The ThemeTheme drop-down menu displays all of the themes defined in the project. Selecting More ThemesMore Themes opens a

dialog with a list of all themes available from the installed Android SDK, as shown below:

When a theme is selected, the Design Surface is updated to show the effect of the new theme. Note that this

change is made permanent only if the OKOK button is clicked in the ThemeTheme dialog. Once a theme has been

selected, it will be included in the ThemeTheme drop-down menu as shown below:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/resource-qualifiers-images/vs/15-theme-menu.png#lightbox

 Android version
The Android VersionVersion selector sets the Android version that is used to render the layout in the Designer. The

selector displays all versions that are compatible with the target framework version of the project:

The target framework version can be set in the project's settings under Proper ties > Application > CompileProper ties > Application > Compile

using Android versionusing Android version. For more information about target framework version, see Understanding Android

API Levels.

The set of widgets available in the toolbox is determined by the target framework version of the project. This is

also true for the properties available in the Proper ties WindowProper ties Window . The available list of widgets is not determined

by the value selected in the VersionVersion selector of the toolbar. For example, if you set the target version of the

project to Android 4.4, you can still select Android 6.0 in the toolbar version selector to see what the project

looks like in Android 6.0, but you won't be able to add widgets that are specific to Android 6.0 – you will still be

limited to the widgets that are available in Android 4.4.

For more information about resource types, see Android Resources.

Alternative layout views
 7/8/2021 • 10 minutes to read • Edit Online

 Creating alternative layouts

This topic explains how you can version layouts by using resource qualifiers. For example, creating a version of a

layout that is only used when the device is in landscape mode and a layout version that is only for portrait

mode.

Visual Studio

Visual Studio for Mac

When you click the Alternative Layout ViewAlternative Layout View icon (to the left of DeviceDevice), a preview pane opens to list the

alternative layouts available in your project. If there are no alternative layouts, the DefaultDefault view is presented:

When you click the green plus sign next to New VersionNew Version, the Create Layout VariationCreate Layout Variation dialog opens so that

you can select the resource qualifiers for this layout variation:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/alternative-layout-views.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/01-alt-layout-view-pane.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/02-create-layout-variation.png#lightbox

 Editing alternative layouts

In the following example, the resource qualifier for Screen OrientationScreen Orientation is set to LandscapeLandscape, and the ScreenScreen

SizeSize is changed to LargeLarge. This creates a new layout version named large-landlarge-land:

Note that the preview pane on the left displays the effects of the resource qualifier selections. Clicking AddAdd

creates the alternative layout and switches the Designer to that layout. The Alternative Layout ViewAlternative Layout View preview

pane indicates which layout is loaded into the Designer via a small right pointer as indicated in the following

screenshot:

When you create alternative layouts, it is often desirable to make a single change that applies to all forked

versions of a layout. For example, you may want to change the button text to yellow in all layouts. If you have a

large number of layouts and you need to propagate a single change to all versions, maintenance can quickly

become cumbersome and error-prone.

To simplify the maintenance of multiple layout versions, the Designer provides a Multi-editMulti-edit mode that

propagates your changes across one or more layouts. When more than one layout is present, the Multi-editMulti-edit

icon is displayed:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/03-large-land.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/04-new-layout.png#lightbox

When you click the Multi-editMulti-edit icon, lines appear that indicate that the layouts are linked (as shown below); that

is, when you make a change to one layout, that change is propagated to any linked layouts. You can unlink all

layouts by clicking the circled icon indicated in the following screenshot:

If you have more than two layouts, you can selectively toggle the edit button to the left of each layout preview to

determine which layouts are linked together. For example, if you want to make a single change that propagates

to the first and last of three layouts, you would first unlink the middle layout as shown here:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/05-multi-layout-icon.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/06-multi-linked.png#lightbox

 Multi-Edit exampleMulti-Edit example

In this example, a change made to either the DefaultDefault or longlong layout will be propagated to the other layout but

not to the large-landlarge-land layout.

In general, when you make a change to one layout, that same change is propagated to all other linked layouts.

For example, adding a new TextView widget to the DefaultDefault layout and changing its text string to Portrait will

cause the same change to be made to all linked layouts. Here is how it looks in the DefaultDefault layout:

The TextView is also added to the large-landlarge-land layout view because it is linked to the DefaultDefault layout:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/07-unlink-middle-layout.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/08-add-textview.png#lightbox

 Making local changesMaking local changes

But what if you want to make a change that is local to only one layout (that is, you don't want the change to be

propagated to any of the other layouts)? To do this, you must unlink the layout that you want to change before

you modify it, as explained next.

Suppose we want both layouts to have the added TextView , but we also want to change the text string in the

large-landlarge-land layout to Landscape rather than Portrait . If we make this change to large-landlarge-land while both

layouts are linked, the change will propagate back to the DefaultDefault layout. Therefore, we must first unlink the two

layouts before we make the change. When we modify the text in large-landlarge-land to Landscape , the Designer marks

this change with a red frame to indicate that the change is local to the large-landlarge-land layout and is not propagated

back to the DefaultDefault layout:

When you click the DefaultDefault layout to view it, the TextView text string is still set to Portrait .

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/09-landscape-textview.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/10-local-change.png#lightbox

 Handling conflicts
If you decide to change the color of the text in the DefaultDefault layout to green, you'll see a warning icon appear on

the linked layout. Clicking that layout opens the layout to reveal the conflict. The widget that caused the conflict

is highlighted with a red frame and the following message is displayed: Recent changes have caused conflicts in

this alternative layout.

A conflict box is displayed on the right of the widget to explain the conflict:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/11-conflicting-change.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/xs/11-warning.png#lightbox

 View group conflictsView group conflicts

The conflict box shows the list of properties that have changed and it lists their values. Clicking Ignore ConflictIgnore Conflict

applies the property change only to this widget. Clicking ApplyApply applies the property change to this widget as

well as to the counterpart widget in the linked DefaultDefault layout. If all property changes are applied, the conflict is

automatically discarded.

Property changes are not the only source of conflicts. Conflicts can be detected when inserting or removing

widgets. For example, when the large-landlarge-land layout is unlinked from the DefaultDefault layout, and the TextView in the

large-landlarge-land layout is dragged and dropped above the Button , the Designer marks the moved widget to indicate

the conflict:

However, there is no marker on the Button . Although the position of the Button has changed, the Button

shows no applied changes that are specific to the large-landlarge-land configuration.

If a CheckBox is added to the DefaultDefault layout, another conflict is generated, and a warning icon is displayed over

the large-landlarge-land layout:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/12-view-group-conflict.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/13-checkbox-conflict.png#lightbox

Clicking the large-landlarge-land layout reveals the conflict. The following message is displayed: Recent changes have

caused conflicts in this alternative layout:

In addition, the conflict box displays the following message:

Adding the CheckBox causes a conflict because the large-landlarge-land layout has changes in the LinearLayout that

contains it. However, in this case the conflict box displays the widget that was just inserted into the DefaultDefault

layout (the CheckBox).

If you click Ignore ConflictIgnore Conflict, the Designer resolves the conflict, allowing the widget displayed in the conflict box

to be dragged and dropped into the layout where the widget is missing (in this case, the large-landlarge-land layout):

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/14-alt-layout-conflict.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/xs/15-conflict-message.png#lightbox

 Conflict persistenceConflict persistence

<!-- Widget Inserted Conflict | id:__root__ | @+id/checkBox1 -->

As seen in the previous example with the Button , the CheckBox does not have a red change marker because

only the LinearLayout has changes that were applied in the large-landlarge-land layout.

Conflicts are persisted in the layout file as XML comments, as shown here:

Therefore, when a project is closed and reopened, all the conflicts will still be there – even the ones that have

been ignored.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/alternative-layout-views-images/vs/15-resolved-group-conflict.png#lightbox

Xamarin.Android Designer Material Design features
 7/8/2021 • 11 minutes to read • Edit Online

 Overview

 Material Design Grid

This topic describes Designer features that make it easier for developers to create Material Design-compliant

layouts. This section introduces and explains how to use the Material Grid, the Material Color Palette, the

Typographic Scale, and the Theme Editor.

Evolve 2016: Ever yone Can Create Beautiful Apps with Mater ial DesignEvolve 2016: Ever yone Can Create Beautiful Apps with Mater ial Design

The Xamarin.Android Designer includes features that make it easier for you to create Material-Design-compliant

layouts. If you are not familiar with Material Design, see the Material Design introduction.

Visual Studio

Visual Studio for Mac

In this guide, we'll have a look at the following Designer features:

Material Grid – An overlay on the Design Surface that shows a grid, spacing, and keylines to help you

place layout widgets according to Material Design guidelines.

Theme Editor – A small color resource editor that lets you set color information for a subset of a theme.

For example, you can preview and modify Material colors such as colorPrimary , colorPrimaryDark , and

colorAccent .

We'll have look at each of these features and provide examples of how to use them.

The Material Design Grid menu is available from the toolbar at the top of the Designer :

When you click the Material Design Grid icon, the Designer displays an overlay on the Design Surface that

includes the following elements:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/material-design-features.md
https://www.youtube-nocookie.com/embed/E3_ZjIOzVzY
https://material.io/design/introduction
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/01-material-design-grid-w158.png#lightbox

 Theme Editor

Keylines (orange lines)

Spacing (green areas)

A grid (blue lines)

These elements can be seen in the previous screenshot. Each of these overlay items is configurable. When you

click the ellipsis next to the Material Design Grid menu, a dialog popover opens that allows you to

disable/enable the grid, configure the placement of keylines, and set spacings. Note that all values are expressed

in dp (density-independent pixels):

To add a new keyline, enter a new offset value in the OffsetOffset box, select a location (leftleft, toptop, r ightr ight, or bottombottom)

and click the + icon to add the new keyline. Similarly, to add a new spacing, enter the size and offset (in dp) into

the S izeSize and OffsetOffset boxes, respectively. Select a location (leftleft, toptop, r ightr ight, or bottombottom) and click the + icon to

add the new spacing.

When you change these configuration values, they are saved in the layout XML file and reused when you open

the layout again.

The Theme EditorTheme Editor lets you customize color information for a subset of theme attributes. To open the ThemeTheme

EditorEditor , click the paintbrush icon on the toolbar :

Although the Theme EditorTheme Editor is accessible from the toolbar for all target Android versions and API levels, only a

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/03-grid-configuration-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/04-theme-editor-icon-w158.png#lightbox

 Inherit tabInherit tab

subset of the capabilities described below are available if the target API level is earlier than API 21 (Android 5.0

Lollipop).

The left-hand panel of the Theme EditorTheme Editor displays the list of colors that make up the currently selected theme

(in this example, we are using the Default Theme):

When you select a color on the left, the right-hand panel provides the following tabs to help you edit that color :

InheritInherit – Displays a style inheritance diagram for the selected color and lists the resolved color and color

code assigned to that theme color.

Color PickerColor Picker – Lets you change the selected color to any arbitrary value.

Mater ial PaletteMater ial Palette – Lets you change the selected color to a value that conforms to Material Design.

ResourcesResources – Lets you change the selected color to one of the other existing color resources in the theme.

Let's look at each one of these tabs in detail.

As seen in the following example, the InheritInherit tab lists the style inheritance for the BackgroundBackground color of the

Default ThemeDefault Theme:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/05-theme-editor-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/06-inherit-tab-w158.png#lightbox

 Color PickerColor Picker

 ResourcesResources

In this example, the Default ThemeDefault Theme inherits from a style that uses @color/background_material_light but

overrides it with color/material_grey_50 , which has a color code value of #fffafafa . For more information

about style inheritance, see Styles and Themes.

The following screenshot illustrates the Color PickerColor Picker :

In this example, the BackgroundBackground color can be changed to any value through various means:

Clicking a color directly.

Entering hue, saturation, and brightness values.

Entering RGB (red, green, blue) values in decimal.

Setting the alpha (opacity) for the selected color.

Entering the hexadecimal color code directly.

The color you choose in the Color Picker is not restricted to Material Design guidelines or to the set of available

color resources.

The ResourcesResources tab offers a list of color resources that are already present in the theme:

https://developer.android.com/guide/topics/ui/themes.html#Inheritance
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/07-color-picker-w158.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/08-resources-w158.png#lightbox

 Material PaletteMaterial Palette

Using the ResourcesResources tab constrains your choices to this list of colors. Keep in mind that if you choose a color

resource that is already assigned to another part of the theme, two adjacent elements of the UI may "run

together" (because they have the same color) and become difficult for the user to distinguish.

The Mater ial PaletteMater ial Palette tab opens the Mater ial Design Color PaletteMater ial Design Color Palette. Choosing a color value from this palette

constrains your color choice so that it is consistent with Material Design guidelines:

The top of the color palette displays primary Material Design colors while the bottom of the palette displays a

range of hues for the selected primary color. For example, when you select IndigoIndigo, a collection of IndigoIndigo hues is

displayed at the bottom of the dialog. When you select a hue, the color of the property is changed to the

selected hue. In the following example, the Background Tint of the button is changed to Indigo 500:

Background Tint is set to the color code for Indigo 500 (#ff3f51b5), and the Designer updates the background

color to reflect this change:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/09-material-palette-w158.png#lightbox

 Creating a new themeCreating a new theme

For more information about the Material Design color palette, see the Material Design Color Palette Guide.

In the following example, we'll use the Material Palette to create a new custom theme. First, we'll change the

BackgroundBackground color to Blue 900:

When a color resource is changed, a message pops up with the message, The current theme has unsaved

changes:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/11-background-tint-w158.png#lightbox
https://material.io/design/color/
file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/13-unsaved-changes-w158.png#lightbox

 Summary

 Related Links

The BackgroundBackground color in the Designer has changed to the new color selection, but this change has not yet been

saved. At this point, you can do one of the following:

Click Discard ChangesDiscard Changes to discard the new color choice (or choices) and revert the theme to its original

state.

Press CTRL+S to save your changes to the currently theme.

In the following example, CTRL+S was pressed so that the changes were saved to AppThemeAppTheme:

This topic described the Material Design features available in the Xamarin.Android Designer. It explained how to

enable and configure the Material Design Grid, and it explained how to use the Theme Editor to create new

custom themes that conform to Material Design guidelines. For more information about Xamarin.Android

support for Material Design, see Material Theme.

Material Theme

Material Design introduction

file:///T:/c1uy/n1bv/xamarin/android/user-interface/android-designer/material-design-features-images/vs/14-custom-theme-w158.png#lightbox
https://material.io/design/introduction

Android layout diagnostics
 7/8/2021 • 3 minutes to read • Edit Online

 Enable Android layout diagnostics on Visual Studio 2019

Android layout diagnostics are designed to help improve the quality of Android layout files by highlighting

common quality issues and helpful optimizations. This feature is available for both Visual Studio 16.5+ and

Visual Studio for Mac 8.5+.

A default set of analyzers is provided for a wide range of issues and each can be customized to cover a project's

specific needs. The analyzers are loosely based on the Android linting system.

Visual Studio

Visual Studio for Mac

Make sure the layout diagnostics setting, Enable layout diagnosticsEnable layout diagnostics , is enabled. To access this options page,

choose ToolsTools > OptionsOptions , and then choose Text EditorText Editor > Android XMLAndroid XML > AdvancedAdvanced:

Once enabled, the Android layout editor will display issues:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/diagnostics.md

 Features

 AnalyzersAnalyzers

 Diagnostic configurationDiagnostic configuration

TIPTIP

The following sections outline the available features in Android layout diagnostics.

Analyzers are used to help detect issues in layout files, reduce hardcoded values, improve performance, and flag

errors. For a list of analyzers, see Android designer diagnostic analyzers

Analyzers can be configured using an XML file, allowing you to change the default severity level, ignore certain

files, and pass in variables.

You can use a baseline file if you have a set of configurations you want to share across multiple Android apps. To

use this feature, create a new configuration file and append -baseline to the file name. The baseline

configurations are applied first, and then the remaining configuration files.

This can be useful if you want to ignore a set of issues on a new or existing Android app.

The format is:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <issue id="DuplicateIDs" severity="warning">
 <ignore path="Resources/layout/layout1.xml" />
 </issue>
 <issue id="HardcodedText" severity="informational">
 <ignore path="Resources/layout/layout1.xml" />
 <ignore path="Resource/layout/layout2.xml" />
 </issue>
 <issue id="TooManyViews">
 <variable name="MAX_VIEW_COUNT" value="12" />
 </issue>
 <issue id="TooDeepLayout">
 <variable name="MAX_DEPTH" value="12" />
 </issue>
</configuration>

NOTENOTE

 Add a configuration fileAdd a configuration file

Currently the only variables are MAX_VIEW_COUNT (default: 80) and MAX_DEPTH (default: 10) for TooManyViews and

TooDeepLayout respectively.

The severity levels are:

Suggestion

Info

Warning

Error

Ignore

Create a new XML file in the root of an Android app project. The name of the file isn't important, but this

example uses AndroidLayoutDiagnostics.xml :

Once the new XML file is added, it should appear in the Android app project tree:

Make sure that the build action is set to AndroidResourceAnalysisConfigAndroidResourceAnalysisConfig in the properties panel. The easiest

way to pull up the property panel for the new file is to right-click on the file and select properties. Once the

properties panel is showing, you should change the Build ActionBuild Action to AndroidResourceAnalysisConfigAndroidResourceAnalysisConfig:

<issue="HardcodedText" severity="error">
</issue>

Now that you have a blank XML file you need to add the <configuration> root element. At this point, you can

adjust the default behavior of any supported issues. If you want to ensure that hard-coded strings are treated as

errors add:

Now that hard-coded text is considered an error, it's now flagged with a red squiggle in the layout editor :

NOTENOTE

 Troubleshooting

 Known issues

 Related links

For any new configuration file changes to take effect, any currently open layout files need to be reopened.

Here are some possible common problems.

Make sure there are no XML format error.

Build action is set correctly to AndroidResourceAnalysisConfigAndroidResourceAnalysisConfig.

The error pad isn't populated until after the file is changed the first time.

Android Lint Checks

Improve your code with lint checks

http://tools.android.com/tips/lint-checks
https://developer.android.com/studio/write/lint

Android designer diagnostic analyzers
 4/8/2020 • 3 minutes to read • Edit Online

 Accessibility

IDID T IT L ET IT L E SEVERIT YSEVERIT Y DESC RIP T IO NDESC RIP T IO N

ContentDescription Image without
contentDescription

Warning Missing
contentDescription

attribute on image

 Correctness

IDID T IT L ET IT L E SEVERIT YSEVERIT Y DESC RIP T IO NDESC RIP T IO N H EL PH EL P

AdapterViewChildren AdapterView with
children

Warning AdapterViews cannot
have children in XML

Link

MissingId Fragments should
specify an id or

tag

Warning This <fragment>

tag should specify an
id or a tag to

preserve state across
activity restarts

Link

NestedScrollingVertic
al

Nested vertically
scrolling elements

Warning Nested scrolling
widgets

NestedScrollingHoriz
ontal

Nested horizontally
scrolling elements

Warning Nested scrolling
widgets

ScrollViewSize ScrollView children
with wrong
fill_parent/match_par
ent sizes

Warning ScrollView children
with wrong
fill_parent/match_par
ent sizes

ScrollViewCount ScrollViews can have
only one child

Warning A scroll view can
have only one child

MissingAndroidName
space

Missing Android
namespace on
attribute

Error Missing Android XML
namespace; your
attribute will be
interpreted as a
custom attribute

DuplicateIDs Duplicate IDs Error Duplicate ids within a
single layout

This guide lists all of the currently supported Android layout diagnostic analyzers.

The following analyzers help to improve accessibility support:

The following analyzers help fix correctness issues in a layout:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/android-designer/diagnostic-analyzers.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.adapterview
https://docs.microsoft.com/en-us/dotnet/api/android.app.fragment

IncludeLayoutParams
MissingWidthAndHei
ght

Missing both width
and height

Error Ignored layout
params on include

Link

IncludeLayoutParams
MissingWidth

Missing width Error Ignored layout
params on include

Link

IncludeLayoutParams
MissingHeight

Missing height Error Ignored layout
params on include

Link

Orientation Missing explicit
orientation

Error Missing explicit
orientation

Suspicious0dp Suspicious 0dp
dimension

Error Suspicious 0dp
dimension

RequiredSizeWidth Missing width
attribute

Error Missing attribute:
layout_width

RequiredSizeHeight Missing height
attribute

Error Missing attribute:
layout_height

WebViewLayout WebViews in
wrap_content
parents

Error

WrongCase Wrong case for view
tag

Error Wrong case for view
tag

Link

IDID T IT L ET IT L E SEVERIT YSEVERIT Y DESC RIP T IO NDESC RIP T IO N H EL PH EL P

 Design

IDID T IT L ET IT L E SEVERIT YSEVERIT Y DESC RIP T IO NDESC RIP T IO N

HardcodedColor Hardcoded color Info Hardcoded color often leads
to inconsistency

HardcodedSize Hardcoded size Info Hardcoded size often leads
to inconsistency

HardcodedText Hardcoded text Warning Hardcoded text

UnresolvedResource Unresolved resource URL Warning This resource URL cannot
be resolved

XmlErrors XML syntax error Error XML syntax error

 Performance

The following analyzers help to improve how you join layout files:

The following analyzers help improve the performance of your layout:

https://stackoverflow.com/questions/2631614/does-android-xml-layouts-include-tag-really-work
https://stackoverflow.com/questions/2631614/does-android-xml-layouts-include-tag-really-work
https://stackoverflow.com/questions/2631614/does-android-xml-layouts-include-tag-really-work
https://docs.microsoft.com/en-us/dotnet/api/android.app.fragment

IDID T IT L ET IT L E SEVERIT YSEVERIT Y DESC RIP T IO NDESC RIP T IO N

NestedWeights Nested layout weights Warning Nested weights are bad for
performance

TooManyViews Layout has too many views Warning Layout has too many views

TooDeepLayout Layout hierarchy is too
deep

Warning Layout hierarchy is too
deep

UselessParent Useless parent layout Warning Useless parent layout

UselessLeaf Useless leaf layout Warning This %1$s view is useless

(no children, no
background , no id , no

style)

 Usability

IDID T IT L ET IT L E SEVERIT YSEVERIT Y DESC RIP T IO NDESC RIP T IO N

NegativeMargin Negative Margins Warning Negative Margins

MissingInputType EditText with no inputType Warning No input type specified

InputTypePhone EditText appears to be a
phone number

Warning The view name suggests
this is a phone number, but
it does not include phone

in the inputType

InputTypeNumber EditText appears to be a
number

Warning The view name suggests
this is a number, but it does
not include a numeric
inputType (such as

numberDecimal)

InputTypePassword EditText appears to be a
password

Warning The view name suggests
this is a password, but it
does not include
password in the

inputType (such as

textVisiblePassword)

InputTypePIN EditText appears to be a PIN Warning The view name suggests
this is a password (PIN), but
it does not include
numberPassword in the

inputType

The following analyzers help improve layout usability for your customers:

InputTypeEmail EditText appears to be an
email

Warning The view name suggests
this is an e-mail address,
but it does not include
email in the inputType

(such as
textEmailAddress)

InputTypeURI EditText appears to be a URI Warning The view name suggests
this is a URI, but it does not
include textUri in the

inputType

InputTypeDate EditText appears to be a
date

Warning The view name suggests
this is a date, but it does
not include date in the

inputType (such as

datetime)

IDID T IT L ET IT L E SEVERIT YSEVERIT Y DESC RIP T IO NDESC RIP T IO N

Material Theme
 7/8/2021 • 9 minutes to read • Edit Online

 Requirements

Material Theme is a user interface style that determines the look and feel of views and activities starting with

Android 5.0 (Lollipop). Material Theme is built into Android 5.0, so it is used by the system UI as well as by

applications. Material Theme is not a "theme" in the sense of a system-wide appearance option that a user can

dynamically choose from a settings menu. Rather, Material Theme can be thought of as a set of related built-in

base styles that you can use to customize the look and feel of your app.

Android provides three Material Theme flavors:

Theme.Material – Dark version of Material Theme; this is the default flavor in Android 5.0.

Theme.Material.Light – Light version of Material Theme.

Theme.Material.Light.DarkActionBar – Light version of Material Theme, but with a dark action bar.

Examples of these Material Theme flavors are displayed here:

You can derive from Material Theme to create your own theme, overriding some or all color attributes. For

example, you can create a theme that derives from Theme.Material.Light , but overrides the app bar color to

match the color of your brand. You can also style individual views; for example, you can create a style for

CardView that has more rounded corners and uses a darker background color.

You can use a single theme for an entire app, or you can use different themes for different screens (activities) in

an app. In the above screenshots, for example, a single app uses a different theme for each activity to

demonstrate the built-in color schemes. Radio buttons switch the app to different activities, and, as a result,

display different themes.

Because Material Theme is supported only on Android 5.0 and later, you cannot use it (or a custom theme

derived from Material Theme) to theme your app for running on earlier versions of Android. However, you can

configure your app to use Material Theme on Android 5.0 devices and gracefully fall back to an earlier theme

when it runs on older versions of Android (see the Compatibility section of this article for details).

The following is required to use the new Android 5.0 Material Theme features in Xamarin-based apps:

Xamarin.AndroidXamarin.Android – Xamarin.Android 4.20 or later must be installed and configured with either Visual

Studio or Visual Studio for Mac.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/material-theme.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/material-theme-images/three-flavors.png#lightbox

 Using the Built-in Themes

 Theming an ApplicationTheming an Application

<application android:label="MyApp"
 android:theme="@android:style/Theme.Material.Light">
</application>

[assembly: Application(Theme="@android:style/Theme.Material.Light")]

 Theming an ActivityTheming an Activity

[Activity(Theme = "@android:style/Theme.Material.Light",
 Label = "MyApp", MainLauncher = true, Icon = "@drawable/icon")]

 Using Custom Themes

Android SDKAndroid SDK – Android 5.0 (API 21) or later must be installed via the Android SDK Manager.

Java JDK 1.8Java JDK 1.8 – JDK 1.7 can be used if you are specifically targeting API level 23 and earlier. JDK 1.8 is

available from Oracle.

To learn how to configure an Android 5.0 app project, see Setting Up an Android 5.0 Project.

The easiest way to use Material Theme is to configure your app to use a built-in theme without customization. If

you don't want to explicitly configure a theme, your app will default to Theme.Material (the dark theme). If your

app has only one activity, you can configure a theme at the activity level. If your app has multiple activities, you

can configure a theme at the application level so that it uses the same theme across all activities, or you can

assign different themes to different activities. The following sections explain how to configure themes at the app

level and at the activity level.

To configure an entire application to use a Material Theme flavor, set the android:theme attribute of the

application node in AndroidManifest.xmlAndroidManifest.xml to one of the following:

@android:style/Theme.Material – Dark theme.

@android:style/Theme.Material.Light – Light theme.

@android:style/Theme.Material.Light.DarkActionBar – Light theme with dark action bar.

The following example configures the application MyApp to use the light theme:

Alternately, you can set the application Theme attribute in AssemblyInfo.csAssemblyInfo.cs (or Proper ties.csProper ties.cs). For example:

When the application theme is set to @android:style/Theme.Material.Light , every activity in MyApp will be

displayed using Theme.Material.Light .

To theme an activity, you add a Theme setting to the [Activity] attribute above your activity declaration and

assign Theme to the Material Theme flavor that you want to use. The following example themes an activity with

Theme.Material.Light :

Other activities in this app will use the default Theme.Material dark color scheme (or, if configured, the

application theme setting).

You can enhance your brand by creating a custom theme that styles your app with your brand’s colors. To create

a custom theme, you define a new style that derives from a built-in Material Theme flavor, overriding the color

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 Creating a Custom App ThemeCreating a Custom App Theme

attributes that you want to change. For example, you can define a custom theme that derives from

Theme.Material.Light.DarkActionBar and changes the screen background color to beige instead of white.

Material Theme exposes the following layout attributes for customization:

colorPrimary – The color of the app bar.

colorPrimaryDark – The color of the status bar and contextual app bars; this is normally a dark version of

colorPrimary .

colorAccent – The color of UI controls such as check boxes, radio buttons, and edit text boxes.

windowBackground – The color of the screen background.

textColorPrimary – The color of UI text in the app bar.

statusBarColor – The color of the status bar.

navigationBarColor – The color of the navigation bar.

These screen areas are labeled in the following diagram:

By default, statusBarColor is set to the value of colorPrimaryDark . You can set statusBarColor to a solid color,

or you can set it to @android:color/transparent to make the status bar transparent. The navigation bar can also

be made transparent by setting navigationBarColor to @android:color/transparent .

You can create a custom app theme by creating and modifying files in the ResourcesResources folder of your app project.

To style your app with a custom theme, use the following steps:

Create a colors.xmlcolors.xml file in Resources/valuesResources/values — you use this file to define your custom theme colors. For

example, you can paste the following code into colors.xmlcolors.xml to help you get started:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/material-theme-images/screen-attributes.png#lightbox

<?xml version="1.0" encoding="UTF-8" ?>
<resources>
 <color name="my_blue">#3498DB</color>
 <color name="my_green">#77D065</color>
 <color name="my_purple">#B455B6</color>
 <color name="my_gray">#738182</color>
</resources>

<?xml version="1.0" encoding="UTF-8" ?>
<resources>
 <!-- Inherit from the light Material Theme -->
 <style name="MyCustomTheme" parent="android:Theme.Material.Light">
 <!-- Customizations go here -->
 </style>
</resources>

Modify this example file to define the names and color codes for color resources that you will use in your

custom theme.

Create a Resources/values-v21Resources/values-v21 folder. In this folder, create a styles.xmlstyles.xml file:

Note that Resources/values-v21Resources/values-v21 is specific to Android 5.0 – older versions of Android will not read files

in this folder.

Add a resources node to styles.xmlstyles.xml and define a style node with the name of your custom theme. For

example, here is a styles.xmlstyles.xml file that defines MyCustomTheme (derived from the built-in

Theme.Material.Light theme style):

At this point, an app that uses MyCustomTheme will display the stock Theme.Material.Light theme

without customizations:

Add color customizations to styles.xmlstyles.xml by defining the colors of layout attributes that you want to

change. For example, to change the app bar color to my_blue and change the color of UI controls to

my_purple , add color overrides to styles.xmlstyles.xml that refer to color resources configured in colors.xmlcolors.xml :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/material-theme-images/values-v21.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/material-theme-images/custom-theme-before.png#lightbox

<?xml version="1.0" encoding="UTF-8" ?>
<resources>
 <!-- Inherit from the light Material Theme -->
 <style name="MyCustomTheme" parent="android:Theme.Material.Light">
 <!-- Override the app bar color -->
 <item name="android:colorPrimary">@color/my_blue</item>
 <!-- Override the color of UI controls -->
 <item name="android:colorAccent">@color/my_purple</item>
 </style>
</resources>

 Creating a Custom View StyleCreating a Custom View Style

<!-- Theme an individual view: -->
<style name="CardView.MyBlue">

 <!-- Change the background color to Xamarin blue: -->
 <item name="cardBackgroundColor">@color/my_blue</item>

 <!-- Make the corners very round: -->
 <item name="cardCornerRadius">18dp</item>
</style>

With these changes in place, an app that uses MyCustomTheme will display an app bar color in my_blue and UI

controls in my_purple , but use the Theme.Material.Light color scheme everywhere else:

In this example, MyCustomTheme borrows colors from Theme.Material.Light for the background color, status

bar, and text colors, but it changes the color of the app bar to my_blue and sets the color of the radio button to

my_purple .

Android 5.0 also makes it possible for you to style an individual view. After you create colors.xmlcolors.xml and

styles.xmlstyles.xml (as described in the previous section), you can add a view style to styles.xmlstyles.xml . To style an individual

view, use the following steps:

Edit Resources/values-v21/styles.xmlResources/values-v21/styles.xml and add a style node with the name of your custom view style.

Set the custom color attributes for your view within this style node. For example, to create a custom

CardView style that has more rounded corners and uses my_blue as the card background color, add a style

node to styles.xmlstyles.xml (inside the resources node) and configure the background color and corner radius:

In your layout, set the style attribute for that view to match the custom style name that you chose in the

previous step. For example:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/material-theme-images/custom-theme-after.png#lightbox

<android.support.v7.widget.CardView
 style="@style/CardView.MyBlue"
 android:layout_width="200dp"
 android:layout_height="100dp"
 android:layout_gravity="center_horizontal">

 Compatibility

<resources>
 <style name="MyCustomTheme" parent="android:Theme.Material.Light">
 <!-- Your customizations go here -->
 </style>
</resources>

<resources>
 <style name="MyCustomTheme" parent="android:Theme.Holo.Light">
 <!-- Your customizations go here -->
 </style>
</resources>

<application android:label="MyApp"
 android:theme="@style/MyCustomTheme">
</application>

[Activity(Label = "MyActivity", Theme = "@style/MyCustomTheme")]

The following screenshot provides an example of the default CardView (shown on the left) as compared to a

CardView that has been styled with the custom CardView.MyBlue theme (shown on the right):

In this example, the custom CardView is displayed with the background color my_blue and an 18dp corner

radius.

To style your app so that it uses Material Theme on Android 5.0 but automatically reverts to a downward-

compatible style on older Android versions, use the following steps:

Define a custom theme in Resources/values-v21/styles.xmlResources/values-v21/styles.xml that derives from a Material Theme style. For

example:

Define a custom theme in Resources/values/styles.xmlResources/values/styles.xml that derives from an older theme, but uses the

same theme name as above. For example:

In AndroidManifest.xmlAndroidManifest.xml , configure your app with the custom theme name. For example:

Alternately, you can style a specific activity using your custom theme:

If your theme uses colors defined in a colors.xmlcolors.xml file, be sure to place this file in Resources/valuesResources/values (rather

file:///T:/c1uy/n1bv/xamarin/android/user-interface/material-theme-images/custom-cardview.png#lightbox

 Summary

 Related Links

than Resources/values-v21Resources/values-v21) so that both versions of your custom theme can access your color definitions.

When your app runs on an Android 5.0 device, it will use the theme definition specified in Resources/values-Resources/values-

v21/styles.xmlv21/styles.xml . When this app runs on older Android devices, it will automatically fall back to the theme

definition specified in Resources/values/styles.xmlResources/values/styles.xml .

For more information about theme compatibility with older Android versions, see Alternate Resources.

This article introduced the new Material Theme user interface style included in Android 5.0 (Lollipop). It

described the three built-in Material Theme flavors that you can use to style your app, it explained how to create

a custom theme for branding your app, and it provided an example of how to theme an individual view. Finally,

this article explained how to use Material Theme in your app while maintaining downward compatibility with

older versions of Android.

ThemeSwitcher (sample)

Introduction to Lollipop

CardView

Alternate Resources

Android Lollipop

Android Pie Developer

Material Design

Material Design Principles

Maintaining Compatibility

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-themeswitcher
https://developer.android.com/about/versions/lollipop
https://developer.android.com/about/versions/pie/
https://developer.android.com/guide/topics/ui/look-and-feel/
https://material.io/design/
https://developer.android.com/training/backward-compatible-ui/

User Profile
 7/8/2021 • 2 minutes to read • Edit Online

// Get the URI for the user's contacts:
var uri = ContactsContract.Contacts.ContentUri;

// Setup the "projection" (columns we want) for only the ID and display name:
string[] projection = {
 ContactsContract.Contacts.InterfaceConsts.Id,
 ContactsContract.Contacts.InterfaceConsts.DisplayName };

// Use a CursorLoader to retrieve the user's contacts data:
CursorLoader loader = new CursorLoader(this, uri, projection, null, null, null);
ICursor cursor = (ICursor)loader.LoadInBackground();

// Print the contact data to the console if reading back succeeds:
if (cursor != null)
{
 if (cursor.MoveToFirst())
 {
 do
 {
 Console.WriteLine("Contact ID: {0}, Contact Name: {1}",
 cursor.GetString(cursor.GetColumnIndex(projection[0])),
 cursor.GetString(cursor.GetColumnIndex(projection[1])));
 } while (cursor.MoveToNext());
 }
}

 Required Permissions

 Updating Profile Data

var values = new ContentValues ();
values.Put (ContactsContract.Contacts.InterfaceConsts.DisplayName, "John Doe");

// Update the user profile with the name "John Doe":
ContentResolver.Update (ContactsContract.Profile.ContentRawContactsUri, values, null, null);

Android has supported enumerating contacts with the ContactsContract provider since API Level 5. For example,

listing contacts is as simple as using the ContactContracts.Contacts class as shown in the following code

example:

Beginning with Android 4 (API Level 14), the ContactsContact.Profile class is available through the

ContactsContract provider. The ContactsContact.Profile provides access to the personal profile for the owner

of a device, which includes contact data such as the device owner's name and phone number.

To read and write contact data, applications must request the READ_CONTACTS and WRITE_CONTACTS permissions,

respectively. Additionally, to read and edit the user profile, applications must request the READ_PROFILE and

WRITE_PROFILE permissions.

Once these permissions have been set, an application can use normal Android techniques to interact with the

user profile's data. For example, to update the profile's display name, call ContentResolver.Update with a Uri

retrieved through the ContactsContract.Profile.ContentRawContactsUri property, as shown below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/user-profile.md
https://docs.microsoft.com/en-us/dotnet/api/android.provider.contactscontract
https://docs.microsoft.com/en-us/dotnet/api/android.provider.contactscontract.contacts
https://docs.microsoft.com/en-us/dotnet/api/android.provider.contactscontract.profile
https://docs.microsoft.com/en-us/dotnet/api/android.content.contentresolver.update
https://docs.microsoft.com/en-us/dotnet/api/android.provider.contactscontract.profile.contentrawcontactsuri#android_provider_contactscontract_profile_contentrawcontactsuri

 Reading Profile Data

// Read the profile
var uri = ContactsContract.Profile.ContentUri;

// Setup the "projection" (column we want) for only the display name:
string[] projection = {
 ContactsContract.Contacts.InterfaceConsts.DisplayName };

// Use a CursorLoader to retrieve the data:
CursorLoader loader = new CursorLoader(this, uri, projection, null, null, null);
ICursor cursor = (ICursor)loader.LoadInBackground();
if (cursor != null)
{
 if (cursor.MoveToFirst ())
 {
 Console.WriteLine(cursor.GetString (cursor.GetColumnIndex (projection [0])));
 }
}

 Navigating to the User Profile

var intent = new Intent (Intent.ActionView,
 ContactsContract.Profile.ContentUri);
StartActivity (intent);

Issuing a query to the ContactsContact.Profile.ContentUri reads back the profile data. For example, the following

code will read the user profile's display name:

Finally, to navigate to the user profile, create an Intent with an ActionView action and a

ContactsContract.Profile.ContentUri then pass it to the StartActivity method like this:

When running the above code, the user profile is displayed as illustrated in the following screenshot:

https://docs.microsoft.com/en-us/dotnet/api/android.provider.contactscontract.profile.contenturi#android_provider_contactscontract_profile_contenturi

 Related Links

Working with the user profile is similar to interacting with other data in Android, and it offers an additional level

of device personalization.

ContactsProviderDemo (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/user-profile-images/01-profile-screen.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/contactsproviderdemo

Splash Screen
 7/8/2021 • 6 minutes to read • Edit Online

 Overview

 Download the sample

An Android app takes some time to start up, especially when the app is first launched on a device. A splash

screen may display start up progress to the user or to indicate branding.

An Android app takes some time to start up, especially during the first time the app is run on a device

(sometimes this is referred to as a cold start). The splash screen may display start up progress to the user, or it

may display branding information to identify and promote the application.

This guide discusses one technique to implement a splash screen in an Android application. It covers the

following steps:

1. Creating a drawable resource for the splash screen.

2. Defining a new theme that will display the drawable resource.

3. Adding a new Activity to the application that will be used as the splash screen defined by the theme

created in the previous step.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/splash-screen.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/splashscreen
file:///T:/c1uy/n1bv/xamarin/android/user-interface/splash-screen-images/splashscreen-01.png#lightbox

 Requirements

 Implementing A Splash Screen

 Creating a Drawable for the Splash ScreenCreating a Drawable for the Splash Screen

<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item>
 <color android:color="@color/splash_background"/>
 </item>
 <item>
 <bitmap
 android:src="@drawable/splash_logo"
 android:tileMode="disabled"
 android:gravity="center"/>
 </item>
</layer-list>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 ...
 <color name="splash_background">#FFFFFF</color>
</resources>

 Implementing a ThemeImplementing a Theme

This guide assumes that the application targets Android API level 21 or higher. The application must also have

the Xamarin.Android.Suppor t.v4Xamarin.Android.Suppor t.v4 and Xamarin.Android.Suppor t.v7.AppCompatXamarin.Android.Suppor t.v7.AppCompat NuGet packages added

to the project.

All of the code and XML in this guide may be found in the SplashScreen sample project for this guide.

The quickest way to render and display the splash screen is to create a custom theme and apply it to an Activity

that exhibits the splash screen. When the Activity is rendered, it loads the theme and applies the drawable

resource (referenced by the theme) to the background of the activity. This approach avoids the need for creating

a layout file.

The splash screen is implemented as an Activity that displays the branded drawable, performs any initializations,

and starts up any tasks. Once the app has bootstrapped, the splash screen Activity starts the main Activity and

removes itself from the application back stack.

The splash screen will display an XML drawable in the background of the splash screen Activity. It is necessary to

use a bitmapped image (such as a PNG or JPG) for the image to display.

The sample application defines a drawable called splash_screen.xmlsplash_screen.xml . This drawable uses a Layer List to center

the splash screen image in the application as shown in the following xml:

This layer-list centers the splash image on a background color specified by the @color/splash_background

resource. The sample application defines this color in the Resources/values/colors.xmlResources/values/colors.xml file:

For more information about Drawable objects see the Google documentation on Android Drawable.

To create a custom theme for the splash screen Activity, edit (or add) the file values/styles.xmlvalues/styles.xml and create a

new style element for the splash screen. A sample values/style.xmlvalues/style.xml file is shown below with a style named

MyTheme.SplashMyTheme.Splash:

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/splashscreen
https://developer.android.com/guide/topics/resources/drawable-resource.html#LayerList
https://developer.android.com/reference/android/graphics/drawable/Drawable

<resources>
 <style name="MyTheme.Base" parent="Theme.AppCompat.Light">
 </style>

 <style name="MyTheme" parent="MyTheme.Base">
 </style>

 <style name="MyTheme.Splash" parent ="Theme.AppCompat.Light.NoActionBar">
 <item name="android:windowBackground">@drawable/splash_screen</item>
 <item name="android:windowNoTitle">true</item>
 <item name="android:windowFullscreen">true</item>
 <item name="android:windowContentOverlay">@null</item>
 <item name="android:windowActionBar">true</item>
 </style>
</resources>

 Create a Splash ActivityCreate a Splash Activity

[Activity(Theme = "@style/MyTheme.Splash", MainLauncher = true, NoHistory = true)]
public class SplashActivity : AppCompatActivity
{
 static readonly string TAG = "X:" + typeof(SplashActivity).Name;

 public override void OnCreate(Bundle savedInstanceState, PersistableBundle persistentState)
 {
 base.OnCreate(savedInstanceState, persistentState);
 Log.Debug(TAG, "SplashActivity.OnCreate");
 }

 // Launches the startup task
 protected override void OnResume()
 {
 base.OnResume();
 Task startupWork = new Task(() => { SimulateStartup(); });
 startupWork.Start();
 }

 // Simulates background work that happens behind the splash screen
 async void SimulateStartup ()
 {
 Log.Debug(TAG, "Performing some startup work that takes a bit of time.");
 await Task.Delay (8000); // Simulate a bit of startup work.
 Log.Debug(TAG, "Startup work is finished - starting MainActivity.");
 StartActivity(new Intent(Application.Context, typeof (MainActivity)));
 }
}

MyTheme.SplashMyTheme.Splash is very spartan – it declares the window background, explicitly removes the title bar from the

window, and declares that it is full-screen. If you want to create a splash screen that emulates the UI of your app

before the activity inflates the first layout, you can use windowContentOverlay rather than windowBackground in

your style definition. In this case, you must also modify the splash_screen.xmlsplash_screen.xml drawable so that it displays an

emulation of your UI.

Now we need a new Activity for Android to launch that has our splash image and performs any startup tasks.

The following code is an example of a complete splash screen implementation:

SplashActivity explicitly uses the theme that was created in the previous section, overriding the default theme

of the application. There is no need to load a layout in OnCreate as the theme declares a drawable as the

background.

It is important to set the NoHistory=true attribute so that the Activity is removed from the back stack. To prevent

the back button from canceling the startup process, you can also override OnBackPressed and have it do

public override void OnBackPressed() { }

[Activity(Label = "@string/ApplicationName")]
public class MainActivity : AppCompatActivity
{
 // Code omitted for brevity
}

 Landscape Mode

nothing:

The startup work is performed asynchronously in OnResume . This is necessary so that the startup work does not

slow down or delay the appearance of the launch screen. When the work has completed, SplashActivity will

launch MainActivity and the user may begin interacting with the app.

This new SplashActivity is set as the launcher activity for the application by setting the MainLauncher attribute

to true . Because SplashActivity is now the launcher activity, you must edit MainActivity.cs , and remove the

MainLauncher attribute from MainActivity :

The splash screen implemented in the previous steps will display correctly in both portrait and landscape mode.

However, in some cases it is necessary to have separate splash screens for portrait and landscape modes (for

example, if the splash image is full-screen).

To add a splash screen for landscape mode, use the following steps:

<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item>
 <color android:color="@color/splash_background"/>
 </item>
 <item>
 <bitmap
 android:src="@drawable/splash_logo_land"
 android:tileMode="disabled"
 android:gravity="center"/>
 </item>
</layer-list>

1. In the Resources/drawableResources/drawable folder, add the landscape version of the splash screen image you want to

use. In this example, splash_logo_land.pngsplash_logo_land.png is the landscape version of the logo that was used in the

above examples (it uses white lettering instead of blue).

2. In the Resources/drawableResources/drawable folder, create a landscape version of the layer-list drawable that was

defined earlier (for example, splash_screen_land.xmlsplash_screen_land.xml). In this file, set the bitmap path to the landscape

version of the splash screen image. In the following example, splash_screen_land.xmlsplash_screen_land.xml uses

splash_logo_land.pngsplash_logo_land.png:

3. Create the Resources/values-landResources/values-land folder if it doesn't already exist.

4. Add the files colors.xmlcolors.xml and style.xmlstyle.xml to values-landvalues-land (these can be copied and modified from the

existing values/colors.xmlvalues/colors.xml and values/style.xmlvalues/style.xml files).

5. Modify values-land/style.xmlvalues-land/style.xml so that it uses the landscape version of the drawable for

windowBackground . In this example, splash_screen_land.xmlsplash_screen_land.xml is used:

<resources>
 <style name="MyTheme.Base" parent="Theme.AppCompat.Light">
 </style>
 <style name="MyTheme" parent="MyTheme.Base">
 </style>
 <style name="MyTheme.Splash" parent ="Theme.AppCompat.Light.NoActionBar">
 <item name="android:windowBackground">@drawable/splash_screen_land</item>
 <item name="android:windowNoTitle">true</item>
 <item name="android:windowFullscreen">true</item>
 <item name="android:windowContentOverlay">@null</item>
 <item name="android:windowActionBar">true</item>
 </style>
</resources>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary">#2196F3</color>
 <color name="primaryDark">#1976D2</color>
 <color name="accent">#FFC107</color>
 <color name="window_background">#F5F5F5</color>
 <color name="splash_background">#3498DB</color>
</resources>

6. Modify values-land/colors.xmlvalues-land/colors.xml to configure the colors you want to use for the landscape version of the

splash screen. In this example, the splash background color is changed to blue for landscape mode:

7. Build and run the app again. Rotate the device to landscape mode while the splash screen is still

displayed. The splash screen changes to the landscape version:

Note that the use of a landscape-mode splash screen does not always provide a seamless experience. By default,

Android launches the app in portrait mode and transitions it to landscape mode even if the device is already in

landscape mode. As a result, if the app is launched while the device is in landscape mode, the device briefly

presents the portrait splash screen and then animates rotation from the portrait to the landscape splash screen.

Unfortunately, this initial portrait-to-landscape transition takes place even when

ScreenOrientation = Android.Content.PM.ScreenOrientation.Landscape is specified in the splash Activity's flags.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/splash-screen-images/landscape-splash.png#lightbox

 Summary

 Related Links

The best way to work around this limitation is to create a single splash screen image that renders correctly in

both portrait and landscape modes.

This guide discussed one way to implement a splash screen in a Xamarin.Android application; namely, applying

a custom theme to the launch activity.

SplashScreen (sample)

layer-list Drawable

Material Design Patterns - Launch Screens

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/splashscreen
https://developer.android.com/guide/topics/resources/drawable-resource.html#LayerList
https://material.io/design/communication/launch-screen.html#usage

Xamarin.Android Layouts
 7/8/2021 • 2 minutes to read • Edit Online

Layouts are used to arrange the elements that make up the UI interface of a screen (such as an Activity). The

following sections explain how to use the most commonly-used layouts in Xamarin.Android apps.

LinearLayout is a view group that displays child view elements in a linear direction, either vertically or

horizontally.

RelativeLayout is view group that displays child view elements in a relative position. The position of a

view can be specified as relative to sibling elements.

TableLayout is a view group that displays child view elements in rows and columns.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/index.md

RecyclerView is a UI element that displays a collection of items in a list or a grid, enabling the user to

scroll through the collection.

ListView is a view group that creates a list of scrollable items. The list items are automatically inserted

into the list using a list adapter. The ListView is an important UI component of Android applications

because it is used everywhere from short lists of menu options to long lists of contacts or internet

favorites. It provides a simple way to present a scrolling list of rows that can either be formatted with a

built-in style or customized extensively. A ListView instance requires an Adapter to feed it with data

contained in row views.

GridView is a UI element that displays items in a two-dimensional grid that can be scrolled.

GridLayout is a view group that supports laying out views in a 2D grid, similar to an HTML table.

Tabbed Layouts are a popular user interface pattern in mobile applications because of their simplicity and

usability. They provide a consistent, easy way to navigate between various screens in an application.

Xamarin.Android LinearLayout
 7/8/2021 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation= "vertical"
 android:layout_width= "match_parent"
 android:layout_height= "match_parent" >

 <LinearLayout
 android:orientation= "horizontal"
 android:layout_width= "match_parent"
 android:layout_height= "match_parent"
 android:layout_weight= "1" >
 <TextView
 android:text= "red"
 android:gravity= "center_horizontal"
 android:background= "#aa0000"
 android:layout_width= "wrap_content"
 android:layout_height= "match_parent"
 android:layout_weight= "1" />
 <TextView
 android:text= "green"
 android:gravity= "center_horizontal"
 android:background= "#00aa00"
 android:layout_width= "wrap_content"
 android:layout_height= "match_parent"
 android:layout_weight= "1" />
 <TextView
 android:text= "blue"
 android:gravity= "center_horizontal"
 android:background= "#0000aa"
 android:layout_width= "wrap_content"
 android:layout_height= "match_parent"
 android:layout_weight= "1" />
 <TextView
 android:text= "yellow"
 android:gravity= "center_horizontal"
 android:background= "#aaaa00"
 android:layout_width= "wrap_content"
 android:layout_height= "match_parent"
 android:layout_weight= "1" />
 </LinearLayout>

 <LinearLayout
 android:orientation= "vertical"
 android:layout_width= "match_parent"
 android:layout_height= "match_parent"
 android:layout_weight= "1" >
 <TextView
 android:text= "row one"
 android:textSize= "15pt"

LinearLayout is a ViewGroup that displays child View elements in a linear direction, either vertically or

horizontally.

You should be careful about over-using the LinearLayout . If you begin nesting multiple LinearLayout s, you may

want to consider using a RelativeLayout instead.

Start a new project named HelloLinearLayoutHelloLinearLayout.

Open Resources/Layout/Main.axmlResources/Layout/Main.axml and insert the following:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/linear-layout.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.views.viewgroup
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout

 android:textSize= "15pt"
 android:layout_width= "match_parent"
 android:layout_height= "wrap_content"
 android:layout_weight= "1" />
 <TextView
 android:text= "row two"
 android:textSize= "15pt"
 android:layout_width= "match_parent"
 android:layout_height= "wrap_content"
 android:layout_weight= "1" />
 <TextView
 android:text= "row three"
 android:textSize= "15pt"
 android:layout_width= "match_parent"
 android:layout_height= "wrap_content"
 android:layout_weight= "1" />
 <TextView
 android:text= "row four"
 android:textSize= "15pt"
 android:layout_width= "match_parent"
 android:layout_height= "wrap_content"
 android:layout_weight= "1" />
 </LinearLayout>

</LinearLayout>

protected override void OnCreate (Bundle savedInstanceState)
{
 base.OnCreate (savedInstanceState);
 SetContentView (Resource.Layout.Main);
}

Carefully inspect this XML. There is a root LinearLayout that defines its orientation to be vertical – all child

View s (of which it has two) will be stacked vertically. The first child is another LinearLayout that uses a

horizontal orientation and the second child is a LinearLayout that uses a vertical orientation. Each of these

nested LinearLayout s contain several TextView elements, which are oriented with each other in the manner

defined by their parent LinearLayout .

Now open HelloLinearLayout.csHelloLinearLayout.cs and be sure it loads the Resources/Layout/Main.axmlResources/Layout/Main.axml layout in the

OnCreate() method:

The SetContentView(int)) method loads the layout file for the Activity , specified by the resource ID –

Resources.Layout.Main refers to the Resources/Layout/Main.axmlResources/Layout/Main.axml layout file.

Run the application. You should see the following:

Notice how the XML attributes define each View's behavior. Try experimenting with different values for

https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.setcontentview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/linear-layout-images/helloviews1.png#lightbox

 References

android:layout_weight to see how the screen real estate is distributed based on the weight of each element. See

the Common Layout Objects document for more about how LinearLayout handles the android:layout_weight

attribute.

LinearLayout

TextView

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://developer.android.com/guide/topics/ui/declaring-layout.html
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://creativecommons.org/licenses/by/2.5/

Xamarin.Android RelativeLayout
 7/8/2021 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/label"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Type here:"/>
 <EditText
 android:id="@+id/entry"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@android:drawable/editbox_background"
 android:layout_below="@id/label"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignParentRight="true"
 android:layout_marginLeft="10dip"
 android:text="OK" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

RelativeLayout is a ViewGroup that displays child View elements in relative positions. The position of a View

can be specified as relative to sibling elements (such as to the left-of or below a given element) or in positions

relative to the RelativeLayout area (such as aligned to the bottom, left of center).

A RelativeLayout is a very powerful utility for designing a user interface because it can eliminate nested

ViewGroup s. If you find yourself using several nested LinearLayout groups, you may be able to replace them

with a single RelativeLayout .

Start a new project named HelloRelativeLayoutHelloRelativeLayout.

Open the Resources/Layout/Main.axmlResources/Layout/Main.axml file and insert the following:

Notice each of the android:layout_* attributes, such as layout_below , layout_alignParentRight , and

layout_toLeftOf . When using a RelativeLayout , you can use these attributes to describe how you want to

position each View . Each one of these attributes define a different kind of relative position. Some attributes use

the resource ID of a sibling View to define its own relative position. For example, the last Button is defined to

lie to the left-of and aligned-with-the-top-of the View identified by the ID ok (which is the previous Button).

All of the available layout attributes are defined in RelativeLayout.LayoutParams .

Make sure you load this layout in the OnCreate() method:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/relative-layout.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.views.viewgroup
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.views.viewgroup
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout.layoutparams
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate

protected override void OnCreate (Bundle savedInstanceState)
{
 base.OnCreate (savedInstanceState);
 SetContentView (Resource.Layout.Main);
}

 Resources

The SetContentView(int) method loads the layout file for the Activity , specified by the resource ID —

Resource.Layout.Main refers to the Resources/Layout/Main.axmlResources/Layout/Main.axml layout file.

Run the application. You should see the following layout:

RelativeLayout

RelativeLayout.LayoutParams

TextView

EditText

Button

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.setcontentview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/relative-layout-images/helloviews2.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout.layoutparams
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.edittext
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
https://creativecommons.org/licenses/by/2.5/

Xamarin.Android TableLayout
 7/8/2021 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">

 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="1"
 android:text="Open..."
 android:padding="3dip"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Ctrl-O"
 android:gravity="right"
 android:padding="3dip"/>
 </TableRow>

 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="1"
 android:text="Save..."
 android:padding="3dip"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Ctrl-S"
 android:gravity="right"
 android:padding="3dip"/>
 </TableRow>

 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="1"
 android:text="Save As..."
 android:padding="3dip"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Ctrl-Shift-S"

TableLayout is a ViewGroup that displays child View elements in rows and columns.

Start a new project named HelloTableLayoutHelloTableLayout.

Open the Resources/Layout/content_main.xmlResources/Layout/content_main.xml file and insert the following:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/table-layout.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.tablelayout
https://docs.microsoft.com/en-us/dotnet/api/android.views.viewgroup
https://docs.microsoft.com/en-us/dotnet/api/android.views.view

 android:gravity="right"
 android:padding="3dip"/>
 </TableRow>

 <View
 android:layout_width="wrap_content"
 android:layout_height="2dip"
 android:background="#FF909090"/>

 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="X"
 android:padding="3dip"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Import..."
 android:padding="3dip"/>
 </TableRow>

 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="X"
 android:padding="3dip"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Export..."
 android:padding="3dip"/>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Ctrl-E"
 android:gravity="right"
 android:padding="3dip"/>
 </TableRow>

 <View
 android:layout_width="wrap_content"
 android:layout_height="2dip"
 android:background="#FF909090"/>

 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="1"
 android:text="Quit"
 android:padding="3dip"/>
 </TableRow>
</TableLayout>

Notice how this resembles the structure of an HTML table. The TableLayout element is like the HTML <table>

element; TableRow is like a <tr> element; but for the cells, you can use any kind of View element. In this

example, a TextView is used for each cell. In between some of the rows, there is also a basic View , which is

used to draw a horizontal line.

https://docs.microsoft.com/en-us/dotnet/api/android.widget.tablelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.tablerow
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.views.view

protected override void OnCreate (Bundle savedInstanceState)
{
 base.OnCreate (savedInstanceState);
 SetContentView (Resource.Layout.Main);
}

 References

Make sure your HelloTableLayoutHelloTableLayout Activity loads this layout in the OnCreate() method:

The SetContentView(int)) method loads the layout file for the Activity , specified by the resource ID —

Resource.Layout.Main refers to the Resources/Layout/Main.axmlResources/Layout/Main.axml layout file.

Run the application. You should see the following:

TableLayout

TableRow

TextView

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.setcontentview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/table-layout-images/helloviews3.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.tablelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.tablerow
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://creativecommons.org/licenses/by/2.5/

RecyclerView
 7/8/2021 • 3 minutes to read • Edit Online

 RecyclerView

 RequirementsRequirements

RecyclerView is a view group for displaying collections; it is designed to be a more flexible replacement for older

view groups such as ListView and GridView. This guide explains how to use and customize RecyclerView in

Xamarin.Android applications.

Many apps need to display collections of the same type (such as messages, contacts, images, or songs); often,

this collection is too large to fit on the screen, so the collection is presented in a small window that can smoothly

scroll through all items in the collection. RecyclerView is an Android widget that displays a collection of items in

a list or a grid, enabling the user to scroll through the collection. The following is a screenshot of an example app

that uses RecyclerView to display email inbox contents in a vertical scrolling list:

RecyclerView offers two compelling features:

It has a flexible architecture that lets you modify its behavior by plugging in your preferred components.

It is efficient with large collections because it reuses item views and requires the use of view holders to

cache view references.

This guide explains how to use RecyclerView in Xamarin.Android applications; it explains how to add the

RecyclerView package to your Xamarin.Android project, and it describes how RecyclerView functions in a

typical application. Real code examples are provided to show you how to integrate RecyclerView into your

application, how to implement item-view click, and how to refresh RecyclerView when its underlying data

changes. This guide assumes that you are familiar with Xamarin.Android development.

Although RecyclerView is often associated with Android 5.0 Lollipop, it is offered as a support library –

RecyclerView works with apps that target API level 7 (Android 2.1) and later. The following is required to use

RecyclerView in Xamarin-based applications:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/recycler-view/index.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/images/01-recyclerview-example.png#lightbox

 OverviewOverview

 SectionsSections
 RecyclerView Parts and FunctionalityRecyclerView Parts and Functionality

 A Basic RecyclerView ExampleA Basic RecyclerView Example

 Extending the RecyclerView ExampleExtending the RecyclerView Example

 SummarySummary

Xamarin.AndroidXamarin.Android – Xamarin.Android 4.20 or later must be installed and configured with either Visual

Studio or Visual Studio for Mac.

Your app project must include the Xamarin.Android.Suppor t.v7.RecyclerViewXamarin.Android.Suppor t.v7.RecyclerView package. For more

information about installing NuGet packages, see Walkthrough: Including a NuGet in your project.

RecyclerView can be thought of as a replacement for the ListView and GridView widgets in Android. Like its

predecessors, RecyclerView is designed to display a large data set in a small window, but RecyclerView offers

more layout options and is better optimized for displaying large collections. If you are familiar with ListView ,

there are several important differences between ListView and RecyclerView :

RecyclerView is slightly more complex to use: you have to write more code to use RecyclerView

compared to ListView .

RecyclerView does not provide a predefined adapter ; you must implement the adapter code that

accesses your data source. However, Android includes several predefined adapters that work with

ListView and GridView .

RecyclerView does not offer an item-click event when a user taps an item; instead, item-click events are

handled by helper classes. By contrast, ListView offers an item-click event.

RecyclerView enhances performance by recycling views and by enforcing the view-holder pattern, which

eliminates unnecessary layout resource lookups. Use of the view-holder pattern is optional in ListView .

RecyclerView is based on a modular design that makes it easier to customize. For example, you can plug

in a different layout policy without significant code changes to your app. By contrast, ListView is

relatively monolithic in structure.

RecyclerView includes built-in animations for item add and remove. ListView animations require some

additional effort on the part of the app developer.

This topic explains how the Adapter , LayoutManager , and ViewHolder work together as helper classes to

support RecyclerView . It provides a high-level overview of each of these helper classes and explains how you

use them in your app.

This topic builds on the information provided in RecyclerView Parts and Functionality by providing real code

examples of how the various RecyclerView elements are implemented to build a real-world photo-browsing

app.

This topic adds additional code to the example app presented in A Basic RecyclerView Example to demonstrate

how to handle item-click events and update RecyclerView when the underlying data source changes.

This guide introduced the Android RecyclerView widget; it explained how to add the RecyclerView support

library to Xamarin.Android projects, how RecyclerView recycles views, how it enforces the view-holder pattern

for efficiency, and how the various helper classes that make up RecyclerView collaborate to display collections.

It provided example code to demonstrate how RecyclerView is integrated into an application, it explained how

to tailor RecyclerView 's layout policy by plugging in different layout managers, and it described how to handle

item click events and notify RecyclerView of data source changes.

For more information about RecyclerView , see the RecyclerView class reference.

https://docs.microsoft.com/en-us/visualstudio/mac/nuget-walkthrough
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

 Related Links
RecyclerViewer (sample)

Introduction to Lollipop

RecyclerView

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

RecyclerView Parts and Functionality
 7/8/2021 • 8 minutes to read • Edit Online

RecyclerView handles some tasks internally (such as the scrolling and recycling of views), but it is essentially a

manager that coordinates helper classes to display a collection. RecyclerView delegates tasks to the following

helper classes:

Adapter – Inflates item layouts (instantiates the contents of a layout file) and binds data to views that are

displayed within a RecyclerView . The adapter also reports item-click events.

LayoutManager – Measures and positions item views within a RecyclerView and manages the policy for

view recycling.

ViewHolder – Looks up and stores view references. The view holder also helps with detecting item-view

clicks.

ItemDecoration – Allows an app to add special drawing and layout offsets to specific views for drawing

dividers between items, highlights, and visual grouping boundaries.

ItemAnimator – Defines the animations that take place during item actions or as changes are made to the

adapter.

The relationship between the RecyclerView , LayoutManager , and Adapter classes is depicted in the following

diagram:

As this figure illustrates, the LayoutManager can be thought of as the intermediary between the Adapter and the

RecyclerView . The LayoutManager makes calls into Adapter methods on behalf of the RecyclerView . For

example, the LayoutManager calls an Adapter method when it is time to create a new view for a particular item

position in the RecyclerView . The Adapter inflates the layout for that item and creates a ViewHolder instance

(not shown) to cache references to the views at that position. When the LayoutManager calls the Adapter to bind

a particular item to the data set, the Adapter locates the data for that item, retrieves it from the data set, and

copies it to the associated item view.

When using RecyclerView in your app, creating derived types of the following classes is required:

RecyclerView.Adapter – Provides a binding from your app's data set (which is specific to your app) to

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/recycler-view/parts-and-functionality.md

 How View Recycling Works

item views that are displayed within the RecyclerView . The adapter knows how to associate each item-

view position in the RecyclerView to a specific location in the data source. In addition, the adapter

handles the layout of the contents within each individual item view and creates the view holder for each

view. The adapter also reports item-click events that are detected by the item view.

RecyclerView.ViewHolder – Caches references to the views in your item layout file so that resource

lookups are not repeated unnecessarily. The view holder also arranges for item-click events to be

forwarded to the adapter when a user taps the view-holder's associated item view.

RecyclerView.LayoutManager – Positions items within the RecyclerView . You can use one of several

predefined layout managers or you can implement your own custom layout manager. RecyclerView

delegates the layout policy to the layout manager, so you can plug in a different layout manager without

having to make significant changes to your app.

Also, you can optionally extend the following classes to change the look and feel of RecyclerView in your app:

RecyclerView.ItemDecoration

RecyclerView.ItemAnimator

If you do not extend ItemDecoration and ItemAnimator , RecyclerView uses default implementations. This guide

does not explain how to create custom ItemDecoration and ItemAnimator classes; for more information about

these classes, see RecyclerView.ItemDecoration and RecyclerView.ItemAnimator.

RecyclerView does not allocate an item view for every item in your data source. Instead, it allocates only the

number of item views that fit on the screen and it reuses those item layouts as the user scrolls. When the view

first scrolls out of sight, it goes through the recycling process illustrated in the following figure:

1. When a view scrolls out of sight and is no longer displayed, it becomes a scrap view.

2. The scrap view is placed in a pool and becomes a recycle view. This pool is a cache of views that display

the same type of data.

3. When a new item is to be displayed, a view is taken from the recycle pool for reuse. Because this view

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ItemDecoration.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ItemAnimator.html
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/parts-and-functionality-images/02-view-recycling.png#lightbox

 The Layout Manager

 The View Holder

must be re-bound by the adapter before being displayed, it is called a dirty view.

4. The dirty view is recycled: the adapter locates the data for the next item to be displayed and copies this

data to the views for this item. References for these views are retrieved from the view holder associated

with the recycled view.

5. The recycled view is added to the list of items in the RecyclerView that are about to go on-screen.

6. The recycled view goes on-screen as the user scrolls the RecyclerView to the next item in the list.

Meanwhile, another view scrolls out of sight and is recycled according to the above steps.

In addition to item-view reuse, RecyclerView also uses another efficiency optimization: view holders. A view

holder is a simple class that caches view references. Each time the adapter inflates an item-layout file, it also

creates a corresponding view holder. The view holder uses FindViewById to get references to the views inside

the inflated item-layout file. These references are used to load new data into the views every time the layout is

recycled to show new data.

The layout manager is responsible for positioning items in the RecyclerView display; it determines the

presentation type (a list or a grid), the orientation (whether items are displayed vertically or horizontally), and

which direction items should be displayed (in normal order or in reverse order). The layout manager is also

responsible for calculating the size and position of each item in the RecycleViewRecycleView display.

The layout manager has an additional purpose: it determines the policy for when to recycle item views that are

no longer visible to the user. Because the layout manager is aware of which views are visible (and which are not),

it is in the best position to decide when a view can be recycled. To recycle a view, the layout manager typically

makes calls to the adapter to replace the contents of a recycled view with different data, as described previously

in How View Recycling Works.

You can extend RecyclerView.LayoutManager to create your own layout manager, or you can use a predefined

layout manager. RecyclerView provides the following predefined layout managers:

LinearLayoutManager – Arranges items in a column that can be scrolled vertically, or in a row that can be

scrolled horizontally.

GridLayoutManager – Displays items in a grid.

StaggeredGridLayoutManager – Displays items in a staggered grid, where some items have different

heights and widths.

To specify the layout manager, instantiate your chosen layout manager and pass it to the SetLayoutManager

method. Note that you must specify the layout manager – RecyclerView does not select a predefined layout

manager by default.

For more information about the layout manager, see the RecyclerView.LayoutManager class reference.

The view holder is a class that you define for caching view references. The adapter uses these view references to

bind each view to its content. Every item in the RecyclerView has an associated view holder instance that caches

the view references for that item. To create a view holder, use the following steps to define a class to hold the

exact set of views per item:

1. Subclass RecyclerView.ViewHolder .

2. Implement a constructor that looks up and stores the view references.

3. Implement properties that the adapter can use to access these references.

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.LayoutManager.html

 The Adapter

 Notifying RecyclerView of Data Changes

A detailed example of a ViewHolder implementation is presented in A Basic RecyclerView Example. For more

information about RecyclerView.ViewHolder , see the RecyclerView.ViewHolder class reference.

Most of the "heavy-lifting" of the RecyclerView integration code takes place in the adapter. RecyclerView

requires that you provide an adapter derived from RecyclerView.Adapter to access your data source and

populate each item with content from the data source. Because the data source is app-specific, you must

implement adapter functionality that understands how to access your data. The adapter extracts information

from the data source and loads it into each item in the RecyclerView collection.

The following drawing illustrates how the adapter maps content in a data source through view holders to

individual views within each row item in the RecyclerView :

The adapter loads each RecyclerView row with data for a particular row item. For row position P, for example,

the adapter locates the associated data at position P within the data source and copies this data to the row item

at position P in the RecyclerView collection. In the above drawing, for example, the adapter uses the view holder

to lookup the references for the ImageView and TextView at that position so it doesn't have to repeatedly call

FindViewById for those views as the user scrolls through the collection and reuses views.

When you implement an adapter, you must override the following RecyclerView.Adapter methods:

OnCreateViewHolder – Instantiates the item layout file and view holder.

OnBindViewHolder – Loads the data at the specified position into the views whose references are stored in

the given view holder.

ItemCount – Returns the number of items in the data source.

The layout manager calls these methods while it is positioning items within the RecyclerView .

RecyclerView does not automatically update its display when the contents of its data source changes; the

adapter must notify RecyclerView when there is a change in the data set. The data set can change in many ways;

for example, the contents within an item can change or the overall structure of the data may be altered.

RecyclerView.Adapter provides a number of methods that you can call so that RecyclerView responds to data

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/parts-and-functionality-images/03-recyclerviewer-adapter.png#lightbox

 Related Links

changes in the most efficient manner :

NotifyItemChanged – Signals that the item at the specified position has changed.

NotifyItemRangeChanged – Signals that the items in the specified range of positions have changed.

NotifyItemInserted – Signals that the item in the specified position has been newly inserted.

NotifyItemRangeInserted – Signals that the items in the specified range of positions have been newly

inserted.

NotifyItemRemoved – Signals that the item in the specified position has been removed.

NotifyItemRangeRemoved – Signals that the items in the specified range of positions have been removed.

NotifyDataSetChanged – Signals that the data set has changed (forces a full update).

If you know exactly how your data set has changed, you can call the appropriate methods above to refresh

RecyclerView in the most efficient manner. If you do not know exactly how your data set has changed, you can

call NotifyDataSetChanged , which is far less efficient because RecyclerView must refresh all the views that are

visible to the user. For more information about these methods, see RecyclerView.Adapter.

In the next topic, A Basic RecyclerView Example, an example app is implemented to demonstrate real code

examples of the parts and functionality outlined above.

RecyclerView

A Basic RecyclerView Example

Extending the RecyclerView Example

RecyclerView

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

A Basic RecyclerView Example
 7/8/2021 • 10 minutes to read • Edit Online

 An Example Data SourceAn Example Data Source

PhotoAlbum mPhotoAlbum = new PhotoAlbum ();

To understand how RecyclerView works in a typical application, this topic explores the RecyclerViewer sample

app, a simple code example that uses RecyclerView to display a large collection of photos:

RecyclerViewerRecyclerViewer uses CardView to implement each photograph item in the RecyclerView layout. Because of

RecyclerView 's performance advantages, this sample app is able to quickly scroll through a large collection of

photos smoothly and without noticeable delays.

In this example app, a "photo album" data source (represented by the PhotoAlbum class) supplies RecyclerView

with item content. PhotoAlbum is a collection of photos with captions; when you instantiate it, you get a ready-

made collection of 32 photos:

Each photo instance in PhotoAlbum exposes properties that allow you to read its image resource ID, PhotoID ,

and its caption string, Caption . The collection of photos is organized such that each photo can be accessed by

an indexer. For example, the following lines of code access the image resource ID and caption for the tenth photo

in the collection:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/recycler-view/recyclerview-example.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/recyclerview-example-images/01-recyclerviewer.png#lightbox

int imageId = mPhotoAlbum[9].ImageId;
string caption = mPhotoAlbum[9].Caption;

mPhotoAlbum.RandomSwap ();

 Layout and InitializationLayout and Initialization

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <android.support.v7.widget.RecyclerView
 android:id="@+id/recyclerView"
 android:scrollbars="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />
</LinearLayout>

public class MainActivity : Activity
{
 RecyclerView mRecyclerView;
 RecyclerView.LayoutManager mLayoutManager;
 PhotoAlbumAdapter mAdapter;
 PhotoAlbum mPhotoAlbum;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Prepare the data source:
 mPhotoAlbum = new PhotoAlbum ();

 // Instantiate the adapter and pass in its data source:
 mAdapter = new PhotoAlbumAdapter (mPhotoAlbum);

 // Set our view from the "main" layout resource:
 SetContentView (Resource.Layout.Main);

 // Get our RecyclerView layout:
 mRecyclerView = FindViewById<RecyclerView> (Resource.Id.recyclerView);

 // Plug the adapter into the RecyclerView:
 mRecyclerView.SetAdapter (mAdapter);

PhotoAlbum also provides a RandomSwap method that you can call to swap the first photo in the collection with a

randomly-chosen photo elsewhere in the collection:

Because the implementation details of PhotoAlbum are not relevant to understanding RecyclerView , the

PhotoAlbum source code is not presented here. The source code to PhotoAlbum is available at PhotoAlbum.cs in

the RecyclerViewer sample app.

The layout file, Main.axmlMain.axml , consists of a single RecyclerView within a LinearLayout :

Note that you must use the fully-qualified name android.suppor t.v7.widget.RecyclerViewandroid.suppor t.v7.widget.RecyclerView because

RecyclerView is packaged in a support library. The OnCreate method of MainActivity initializes this layout,

instantiates the adapter, and prepares the underlying data source:

This code does the following:

https://github.com/xamarin/monodroid-samples/blob/master/android5.0/RecyclerViewer/RecyclerViewer/PhotoAlbum.cs
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer

 Layout ManagerLayout Manager

mLayoutManager = new LinearLayoutManager (this);
mRecyclerView.SetLayoutManager (mLayoutManager);

 View HolderView Holder

1. Instantiates the PhotoAlbum data source.

2. Passes the photo album data source to the constructor of the adapter, PhotoAlbumAdapter (which is

defined later in this guide). Note that it is considered a best practice to pass the data source as a

parameter to the constructor of the adapter.

3. Gets the RecyclerView from the layout.

4. Plugs the adapter into the RecyclerView instance by calling the RecyclerView SetAdapter method as

shown above.

Each item in the RecyclerView is made up of a CardView that contains a photo image and photo caption (details

are covered in the View Holder section below). The predefined LinearLayoutManager is used to lay out each

CardView in a vertical scrolling arrangement:

This code resides in the main activity's OnCreate method. The constructor to the layout manager requires a

context, so the MainActivity is passed using this as seen above.

Instead of using the predefined LinearLayoutManager , you can plug in a custom layout manager that displays

two CardView items side-by-side, implementing a page-turning animation effect to traverse through the

collection of photos. Later in this guide, you will see an example of how to modify the layout by swapping in a

different layout manager.

The view holder class is called PhotoViewHolder . Each PhotoViewHolder instance holds references to the

ImageView and TextView of an associated row item, which is laid out in a CardView as diagrammed here:

PhotoViewHolder derives from RecyclerView.ViewHolder and contains properties to store references to the

ImageView and TextView shown in the above layout. PhotoViewHolder consists of two properties and one

constructor :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/recyclerview-example-images/02-cardview-layout.png#lightbox

public class PhotoViewHolder : RecyclerView.ViewHolder
{
 public ImageView Image { get; private set; }
 public TextView Caption { get; private set; }

 public PhotoViewHolder (View itemView) : base (itemView)
 {
 // Locate and cache view references:
 Image = itemView.FindViewById<ImageView> (Resource.Id.imageView);
 Caption = itemView.FindViewById<TextView> (Resource.Id.textView);
 }
}

 AdapterAdapter

public class PhotoAlbumAdapter : RecyclerView.Adapter
{
 public PhotoAlbum mPhotoAlbum;

 public PhotoAlbumAdapter (PhotoAlbum photoAlbum)
 {
 mPhotoAlbum = photoAlbum;
 }
 ...
}

 OnCreateViewHolderOnCreateViewHolder

In this code example, the PhotoViewHolder constructor is passed a reference to the parent item view (the

CardView) that PhotoViewHolder wraps. Note that you always forward the parent item view to the base

constructor. The PhotoViewHolder constructor calls FindViewById on the parent item view to locate each of its

child view references, ImageView and TextView , storing the results in the Image and Caption properties,

respectively. The adapter later retrieves view references from these properties when it updates this CardView 's

child views with new data.

For more information about RecyclerView.ViewHolder , see the RecyclerView.ViewHolder class reference.

The adapter loads each RecyclerView row with data for a particular photograph. For a given photograph at row

position P, for example, the adapter locates the associated data at position P within the data source and copies

this data to the row item at position P in the RecyclerView collection. The adapter uses the view holder to

lookup the references for the ImageView and TextView at that position so it doesn't have to repeatedly call

FindViewById for those views as the user scrolls through the photograph collection and reuses views.

In RecyclerViewerRecyclerViewer , an adapter class is derived from RecyclerView.Adapter to create PhotoAlbumAdapter :

The mPhotoAlbum member contains the data source (the photo album) that is passed into the constructor ; the

constructor copies the photo album into this member variable. The following required RecyclerView.Adapter

methods are implemented:

OnCreateViewHolder – Instantiates the item layout file and view holder.

OnBindViewHolder – Loads the data at the specified position into the views whose references are stored in

the given view holder.

ItemCount – Returns the number of items in the data source.

The layout manager calls these methods while it is positioning items within the RecyclerView . The

implementation of these methods is examined in the following sections.

The layout manager calls OnCreateViewHolder when the RecyclerView needs a new view holder to represent an

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:card_view="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <android.support.v7.widget.CardView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 card_view:cardElevation="4dp"
 card_view:cardUseCompatPadding="true"
 card_view:cardCornerRadius="5dp">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:padding="8dp">
 <ImageView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/imageView"
 android:scaleType="centerCrop" />
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:textColor="#333333"
 android:text="Caption"
 android:id="@+id/textView"
 android:layout_gravity="center_horizontal"
 android:layout_marginLeft="4dp" />
 </LinearLayout>
 </android.support.v7.widget.CardView>
</FrameLayout>

public override RecyclerView.ViewHolder
 OnCreateViewHolder (ViewGroup parent, int viewType)
{
 // Inflate the CardView for the photo:
 View itemView = LayoutInflater.From (parent.Context).
 Inflate (Resource.Layout.PhotoCardView, parent, false);

 // Create a ViewHolder to hold view references inside the CardView:
 PhotoViewHolder vh = new PhotoViewHolder (itemView);
 return vh;
}

item. OnCreateViewHolder inflates the item view from the view's layout file and wraps the view in a new

PhotoViewHolder instance. The PhotoViewHolder constructor locates and stores references to child views in the

layout as described previously in View Holder.

Each row item is represented by a CardView that contains an ImageView (for the photo) and a TextView (for the

caption). This layout resides in the file PhotoCardView.axmlPhotoCardView.axml :

This layout represents a single row item in the RecyclerView . The OnBindViewHolder method (described below)

copies data from the data source into the ImageView and TextView of this layout. OnCreateViewHolder inflates

this layout for a given photo location in the RecyclerView and instantiates a new PhotoViewHolder instance

(which locates and caches references to the ImageView and TextView child views in the associated CardView

layout):

The resulting view holder instance, vh , is returned back to the caller (the layout manager).

OnBindViewHolderOnBindViewHolder

public override void
 OnBindViewHolder (RecyclerView.ViewHolder holder, int position)
{
 PhotoViewHolder vh = holder as PhotoViewHolder;

 // Load the photo image resource from the photo album:
 vh.Image.SetImageResource (mPhotoAlbum[position].PhotoID);

 // Load the photo caption from the photo album:
 vh.Caption.Text = mPhotoAlbum[position].Caption;
}

 ItemCountItemCount

public override int ItemCount
{
 get { return mPhotoAlbum.NumPhotos; }
}

 Putting it All TogetherPutting it All Together

When the layout manager is ready to display a particular view in the RecyclerView 's visible screen area, it calls

the adapter's OnBindViewHolder method to fill the item at the specified row position with content from the data

source. OnBindViewHolder gets the photo information for the specified row position (the photo's image resource

and the string for the photo's caption) and copies this data to the associated views. Views are located via

references stored in the view holder object (which is passed in through the holder parameter):

The passed-in view holder object must first be cast into the derived view holder type (in this case,

PhotoViewHolder) before it is used. The adapter loads the image resource into the view referenced by the view

holder's Image property, and it copies the caption text into the view referenced by the view holder's Caption

property. This binds the associated view with its data.

Notice that OnBindViewHolder is the code that deals directly with the structure of the data. In this case,

OnBindViewHolder understands how to map the RecyclerView item position to its associated data item in the

data source. The mapping is straightforward in this case because the position can be used as an array index into

the photo album; however, more complex data sources may require extra code to establish such a mapping.

The ItemCount method returns the number of items in the data collection. In the example photo viewer app, the

item count is the number of photos in the photo album:

For more information about RecyclerView.Adapter , see the RecyclerView.Adapter class reference.

The resulting RecyclerView implementation for the example photo app consists of MainActivity code that

creates the data source, layout manager and the adapter. MainActivity creates the mRecyclerView instance,

instantiates the data source and the adapter, and plugs in the layout manager and adapter :

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html

public class MainActivity : Activity
{
 RecyclerView mRecyclerView;
 RecyclerView.LayoutManager mLayoutManager;
 PhotoAlbumAdapter mAdapter;
 PhotoAlbum mPhotoAlbum;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);
 mPhotoAlbum = new PhotoAlbum();
 SetContentView (Resource.Layout.Main);
 mRecyclerView = FindViewById<RecyclerView> (Resource.Id.recyclerView);

 // Plug in the linear layout manager:
 mLayoutManager = new LinearLayoutManager (this);
 mRecyclerView.SetLayoutManager (mLayoutManager);

 // Plug in my adapter:
 mAdapter = new PhotoAlbumAdapter (mPhotoAlbum);
 mRecyclerView.SetAdapter (mAdapter);
 }
}

public class PhotoViewHolder : RecyclerView.ViewHolder
{
 public ImageView Image { get; private set; }
 public TextView Caption { get; private set; }

 public PhotoViewHolder (View itemView) : base (itemView)
 {
 // Locate and cache view references:
 Image = itemView.FindViewById<ImageView> (Resource.Id.imageView);
 Caption = itemView.FindViewById<TextView> (Resource.Id.textView);
 }
}

PhotoViewHolder locates and caches the view references:

PhotoAlbumAdapter implements the three required method overrides:

public class PhotoAlbumAdapter : RecyclerView.Adapter
{
 public PhotoAlbum mPhotoAlbum;
 public PhotoAlbumAdapter (PhotoAlbum photoAlbum)
 {
 mPhotoAlbum = photoAlbum;
 }

 public override RecyclerView.ViewHolder
 OnCreateViewHolder (ViewGroup parent, int viewType)
 {
 View itemView = LayoutInflater.From (parent.Context).
 Inflate (Resource.Layout.PhotoCardView, parent, false);
 PhotoViewHolder vh = new PhotoViewHolder (itemView);
 return vh;
 }

 public override void
 OnBindViewHolder (RecyclerView.ViewHolder holder, int position)
 {
 PhotoViewHolder vh = holder as PhotoViewHolder;
 vh.Image.SetImageResource (mPhotoAlbum[position].PhotoID);
 vh.Caption.Text = mPhotoAlbum[position].Caption;
 }

 public override int ItemCount
 {
 get { return mPhotoAlbum.NumPhotos; }
 }
}

When this code is compiled and run, it creates the basic photo viewing app as shown in the following

screenshots:

android:hardwareAccelerated="true"

 Changing the LayoutManagerChanging the LayoutManager

mLayoutManager = new GridLayoutManager(this, 2, GridLayoutManager.Horizontal, false);

If shadows are not being drawn (as seen in the above screenshot), edit Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml and

add the following attribute setting to the <application> element:

This basic app only supports browsing of the photo album. It does not respond to item-touch events, nor does it

handle changes in the underlying data. This functionality is added in Extending the RecyclerView Example.

Because of RecyclerView 's flexibility, it's easy to modify the app to use a different layout manager. In the

following example, it is modified to display the photo album with a grid layout that scrolls horizontally rather

than with a vertical linear layout. To do this, the layout manager instantiation is modified to use the

GridLayoutManager as follows:

This code change replaces the vertical LinearLayoutManager with a GridLayoutManager that presents a grid made

up of two rows that scroll in the horizontal direction. When you compile and run the app again, you'll see that

the photographs are displayed in a grid and that scrolling is horizontal rather than vertical:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/recyclerview-example-images/03-recyclerviewer-basic.png#lightbox

 Related Links

By changing only one line of code, it is possible to modify the photo-viewing app to use a different layout with

different behavior. Notice that neither the adapter code nor the layout XML had to be modified to change the

layout style.

In the next topic, Extending the RecyclerView Example, this basic sample app is extended to handle item-click

events and update RecyclerView when the underlying data source changes.

RecyclerViewer (sample)

RecyclerView

RecyclerView Parts and Functionality

Extending the RecyclerView Example

RecyclerView

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/recyclerview-example-images/04-gridlayoutmanager.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

Extending the RecyclerView Example
 7/8/2021 • 5 minutes to read • Edit Online

 Handling Item-Click EventsHandling Item-Click Events

public event EventHandler<int> ItemClick;

void OnItemClick (object sender, int position)
{
 int photoNum = position + 1;
 Toast.MakeText(this, "This is photo number " + photoNum, ToastLength.Short).Show();
}

mAdapter = new PhotoAlbumAdapter (mPhotoAlbum);
mAdapter.ItemClick += OnItemClick;

The basic app described in A Basic RecyclerView Example actually doesn't do much – it simply scrolls and

displays a fixed list of photograph items to facilitate browsing. In real-world applications, users expect to be able

to interact with the app by tapping items in the display. Also, the underlying data source can change (or be

changed by the app), and the contents of the display must remain consistent with these changes. In the

following sections, you'll learn how to handle item-click events and update RecyclerView when the underlying

data source changes.

When a user touches an item in the RecyclerView , an item-click event is generated to notify the app as to which

item was touched. This event is not generated by RecyclerView – instead, the item view (which is wrapped in the

view holder) detects touches and reports these touches as click events.

To illustrate how to handle item-click events, the following steps explain how the basic photo-viewing app is

modified to report which photograph had been touched by the user. When an item-click event occurs in the

sample app, the following sequence takes place:

1. The photograph's CardView detects the item-click event and notifies the adapter.

2. The adapter forwards the event (with item position information) to the activity's item-click handler.

3. The activity's item-click handler responds to the item-click event.

First, an event handler member called ItemClick is added to the PhotoAlbumAdapter class definition:

Next, an item-click event handler method is added to MainActivity . This handler briefly displays a toast that

indicates which photograph item was touched:

Next, a line of code is needed to register the OnItemClick handler with PhotoAlbumAdapter . A good place to do

this is immediately after PhotoAlbumAdapter is created:

In this basic example, handler registration takes place in the main activity's OnCreate method, but a production

app might register the handler in OnResume and unregister it in OnPause – see Activity Lifecycle for more

information.

PhotoAlbumAdapter will now call OnItemClick when it receives an item-click event. The next step is to create a

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/recycler-view/extending-the-example.md

void OnClick (int position)
{
 if (ItemClick != null)
 ItemClick (this, position);
}

public PhotoViewHolder (View itemView, Action<int> listener)
 : base (itemView)
{
 Image = itemView.FindViewById<ImageView> (Resource.Id.imageView);
 Caption = itemView.FindViewById<TextView> (Resource.Id.textView);

 itemView.Click += (sender, e) => listener (base.LayoutPosition);
}

PhotoViewHolder vh = new PhotoViewHolder (itemView, OnClick);

handler in the adapter that raises this ItemClick event. The following method, OnClick , is added immediately

after the adapter's ItemCount method:

This OnClick method is the adapter's listener for item-click events from item views. Before this listener can be

registered with an item view (via the item view's view holder), the PhotoViewHolder constructor must be

modified to accept this method as an additional argument, and register OnClick with the item view Click

event. Here's the modified PhotoViewHolder constructor :

The itemView parameter contains a reference to the CardView that was touched by the user. Note that the view

holder base class knows the layout position of the item (CardView) that it represents (via the LayoutPosition

property), and this position is passed to the adapter's OnClick method when an item-click event takes place.

The adapter's OnCreateViewHolder method is modified to pass the adapter's OnClick method to the view-

holder's constructor :

Now when you build and run the sample photo-viewing app, tapping a photo in the display will cause a toast to

appear that reports which photograph was touched:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/randPickButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Random Pick" />
 <android.support.v7.widget.RecyclerView
 android:id="@+id/recyclerView"
 android:scrollbars="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />
</LinearLayout>

This example demonstrates just one approach for implementing event handlers with RecyclerView . Another

approach that could be used here is to place events on the view holder and have the adapter subscribe to these

events. If the sample photo app provided a photo editing capability, separate events would be required for the

ImageView and the TextView within each CardView : touches on the TextView would launch an EditView

dialog that lets the user edit the caption, and touches on the ImageView would launch a photo touchup tool that

lets the user crop or rotate the photo. Depending on the needs of your app, you must design the best approach

for handling and responding to touch events.

To demonstrate how RecyclerView can be updated when the data set changes, the sample photo-viewing app

can be modified to randomly pick a photo in the data source and swap it with the first photo. First, a RandomRandom

PickPick button is added to the example photo app's Main.axmlMain.axml layout:

Next, code is added at the end of the main activity's OnCreate method to locate the Random Pick button in the

layout and attach a handler to it:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/extending-the-example-images/01-photo-selected.png#lightbox

Button randomPickBtn = FindViewById<Button>(Resource.Id.randPickButton);

randomPickBtn.Click += delegate
{
 if (mPhotoAlbum != null)
 {
 // Randomly swap a photo with the first photo:
 int idx = mPhotoAlbum.RandomSwap();
 }
};

Button randomPickBtn = FindViewById<Button>(Resource.Id.randPickButton);

randomPickBtn.Click += delegate
{
 if (mPhotoAlbum != null)
 {
 int idx = mPhotoAlbum.RandomSwap();

 // First photo has changed:
 mAdapter.NotifyItemChanged(0);

 // Swapped photo has changed:
 mAdapter.NotifyItemChanged(idx);
 }
};

This handler calls the photo album's RandomSwap method when the Random PickRandom Pick button is tapped. The

RandomSwap method randomly swaps a photo with the first photo in the data source, then returns the index of

the randomly-swapped photo. When you compile and run the sample app with this code, tapping the RandomRandom

PickPick button does not result in a display change because the RecyclerView is not aware of the change to the data

source.

To keep RecyclerView updated after the data source changes, the Random PickRandom Pick click handler must be modified

to call the adapter's NotifyItemChanged method for each item in the collection that has changed (in this case, two

items have changed: the first photo and the swapped photo). This causes RecyclerView to update its display so

that it is consistent with the new state of the data source:

Now, when the Random PickRandom Pick button is tapped, RecyclerView updates the display to show that a photo further

down in the collection has been swapped with the first photo in the collection:

 Related Links

Of course, NotifyDataSetChanged could have been called instead of making the two calls to NotifyItemChanged ,

but doing so would force RecyclerView to refresh the entire collection even though only two items in the

collection had changed. Calling NotifyItemChanged is significantly more efficient than calling

NotifyDataSetChanged .

RecyclerViewer (sample)

RecyclerView

RecyclerView Parts and Functionality

A Basic RecyclerView Example

RecyclerView

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/recycler-view/extending-the-example-images/02-random-pick.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

Xamarin.Android ListView
 7/8/2021 • 6 minutes to read • Edit Online

 Overview

NOTENOTE

 ListView Tutorial

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:textSize="16sp">
</TextView>

ListView is an important UI component of Android applications; it is used everywhere from short lists of menu

options to long lists of contacts or internet favorites. It provides a simple way to present a scrolling list of rows

that can either be formatted with a built-in style or customized extensively.

List views and adapters are included in the most fundamental building blocks of Android Applications. The

ListView class provides a flexible way to present data, whether it is a short menu or a long scrolling list. It

provides usability features like fast scrolling, indexes and single or multiple selection to help you build mobile-

friendly user interfaces for your applications. A ListView instance requires an Adapter to feed it with data

contained in row views.

This guide explains how to implement ListView and the various Adapter classes in Xamarin.Android. It also

demonstrates how to customize the appearance of a ListView , and it discusses the importance of row re-use to

reduce memory consumption. There is also some discussion of how the Activity Lifecycle affects ListView and

Adapter use. If you are working on cross-platform applications with Xamarin.iOS, the ListView control is

structurally similar to the iOS UITableView (and the Android Adapter is similar to the UITableViewSource).

First, a short tutorial introduces the ListView with a basic code example. Next, links to more advanced topics

are provided to help you use ListView in real-world apps.

The RecyclerView widget is a more advanced and flexible version of ListView . Because RecyclerView is designed to

be the successor to ListView (and GridView), we recommend that you use RecyclerView rather than ListView for

new app development. For more information, see RecyclerView.

ListView is a ViewGroup that creates a list of scrollable items. The list items are automatically inserted to the list

using a IListAdapter .

In this tutorial, you'll create a scrollable list of country names that are read from a string array. When a list item

is selected, a toast message will display the position of the item in the list.

Start a new project named HelloListViewHelloListView .

Create an XML file named list_ item.xmllist_ item.xml and save it inside the Resources/Layout/Resources/Layout/ folder. Insert the following:

This file defines the layout for each item that will be placed in the ListView .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/list-view/index.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.views.viewgroup
https://docs.microsoft.com/en-us/dotnet/api/android.widget.ilistadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview

public class MainActivity : ListActivity
{

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 ListAdapter = new ArrayAdapter<string> (this, Resource.Layout.list_item, countries);

 ListView.TextFilterEnabled = true;

 ListView.ItemClick += delegate (object sender, AdapterView.ItemClickEventArgs args)
 {
 Toast.MakeText(Application, ((TextView)args.View).Text, ToastLength.Short).Show();
 };
}

using System;

Open MainActivity.cs and modify the class to extend ListActivity (instead of Activity):

Insert the following code for the OnCreate()) method:

Notice that this does not load a layout file for the Activity (which you usually do with SetContentView(int))).

Instead, setting the ListAdapter property automatically adds a ListView to fill the entire screen of the

ListActivity . This method takes an ArrayAdapter<T> , which manages the array of list items that will be placed

into the ListView . The ArrayAdapter<T> constructor takes the application Context , the layout description for

each list item (created in the previous step), and a T[] or Java.Util.IList<T> array of objects to insert in the

ListView (defined next).

The TextFilterEnabled property turns on text filtering for the ListView , so that when the user begins typing,

the list will be filtered.

The ItemClick event can be used to subscribe handlers for clicks. When an item in the ListView is clicked, the

handler is called and a Toast message is displayed, using the text from the clicked item.

You can use list item designs provided by the platform instead of defining your own layout file for the

ListAdapter . For example, try using Android.Resource.Layout.SimpleListItem1 instead of

Resource.Layout.list_item .

Add the following using statement:

Next, add the following string array as a member of MainActivity :

https://docs.microsoft.com/en-us/dotnet/api/android.app.listactivity
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.setcontentview
https://docs.microsoft.com/en-us/dotnet/api/android.app.listactivity.listadapter#android_app_listactivity_listadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.app.listactivity
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter-1
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter-1
https://docs.microsoft.com/en-us/dotnet/api/android.content.context
https://docs.microsoft.com/en-us/dotnet/api/java.util.ilist
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.abslistview.textfilterenabled#android_widget_abslistview_textfilterenabled
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.adapterview.itemclick
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://docs.microsoft.com/en-us/dotnet/api/android.app.listactivity.listadapter#android_app_listactivity_listadapter

static readonly string[] countries = new String[] {
 "Afghanistan","Albania","Algeria","American Samoa","Andorra",
 "Angola","Anguilla","Antarctica","Antigua and Barbuda","Argentina",
 "Armenia","Aruba","Australia","Austria","Azerbaijan",
 "Bahrain","Bangladesh","Barbados","Belarus","Belgium",
 "Belize","Benin","Bermuda","Bhutan","Bolivia",
 "Bosnia and Herzegovina","Botswana","Bouvet Island","Brazil","British Indian Ocean Territory",
 "British Virgin Islands","Brunei","Bulgaria","Burkina Faso","Burundi",
 "Cote d'Ivoire","Cambodia","Cameroon","Canada","Cape Verde",
 "Cayman Islands","Central African Republic","Chad","Chile","China",
 "Christmas Island","Cocos (Keeling) Islands","Colombia","Comoros","Congo",
 "Cook Islands","Costa Rica","Croatia","Cuba","Cyprus","Czech Republic",
 "Democratic Republic of the Congo","Denmark","Djibouti","Dominica","Dominican Republic",
 "East Timor","Ecuador","Egypt","El Salvador","Equatorial Guinea","Eritrea",
 "Estonia","Ethiopia","Faeroe Islands","Falkland Islands","Fiji","Finland",
 "Former Yugoslav Republic of Macedonia","France","French Guiana","French Polynesia",
 "French Southern Territories","Gabon","Georgia","Germany","Ghana","Gibraltar",
 "Greece","Greenland","Grenada","Guadeloupe","Guam","Guatemala","Guinea","Guinea-Bissau",
 "Guyana","Haiti","Heard Island and McDonald Islands","Honduras","Hong Kong","Hungary",
 "Iceland","India","Indonesia","Iran","Iraq","Ireland","Israel","Italy","Jamaica",
 "Japan","Jordan","Kazakhstan","Kenya","Kiribati","Kuwait","Kyrgyzstan","Laos",
 "Latvia","Lebanon","Lesotho","Liberia","Libya","Liechtenstein","Lithuania","Luxembourg",
 "Macau","Madagascar","Malawi","Malaysia","Maldives","Mali","Malta","Marshall Islands",
 "Martinique","Mauritania","Mauritius","Mayotte","Mexico","Micronesia","Moldova",
 "Monaco","Mongolia","Montserrat","Morocco","Mozambique","Myanmar","Namibia",
 "Nauru","Nepal","Netherlands","Netherlands Antilles","New Caledonia","New Zealand",
 "Nicaragua","Niger","Nigeria","Niue","Norfolk Island","North Korea","Northern Marianas",
 "Norway","Oman","Pakistan","Palau","Panama","Papua New Guinea","Paraguay","Peru",
 "Philippines","Pitcairn Islands","Poland","Portugal","Puerto Rico","Qatar",
 "Reunion","Romania","Russia","Rwanda","Sqo Tome and Principe","Saint Helena",
 "Saint Kitts and Nevis","Saint Lucia","Saint Pierre and Miquelon",
 "Saint Vincent and the Grenadines","Samoa","San Marino","Saudi Arabia","Senegal",
 "Seychelles","Sierra Leone","Singapore","Slovakia","Slovenia","Solomon Islands",
 "Somalia","South Africa","South Georgia and the South Sandwich Islands","South Korea",
 "Spain","Sri Lanka","Sudan","Suriname","Svalbard and Jan Mayen","Swaziland","Sweden",
 "Switzerland","Syria","Taiwan","Tajikistan","Tanzania","Thailand","The Bahamas",
 "The Gambia","Togo","Tokelau","Tonga","Trinidad and Tobago","Tunisia","Turkey",
 "Turkmenistan","Turks and Caicos Islands","Tuvalu","Virgin Islands","Uganda",
 "Ukraine","United Arab Emirates","United Kingdom",
 "United States","United States Minor Outlying Islands","Uruguay","Uzbekistan",
 "Vanuatu","Vatican City","Venezuela","Vietnam","Wallis and Futuna","Western Sahara",
 "Yemen","Yugoslavia","Zambia","Zimbabwe"
 };

This is the array of strings that will be placed into the ListView .

Run the application. You can scroll the list, or type to filter it, then click an item to see a message. You should see

something like this:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">HelloListView</string>
 <string-array name="countries_array">
 <item>Bahrain</item>
 <item>Bangladesh</item>
 <item>Barbados</item>
 <item>Belarus</item>
 <item>Belgium</item>
 <item>Belize</item>
 <item>Benin</item>
 </string-array>
</resources>

string[] countries = Resources.GetStringArray (Resource.Array.countries_array);
ListAdapter = new ArrayAdapter<string> (this, Resource.Layout.list_item, countries);

Note that using a hard-coded string array is not the best design practice. One is used in this tutorial for

simplicity, to demonstrate the ListView widget. The better practice is to reference a string array defined by an

external resource, such as with a string-array resource in your project Resources/Values/Str ings.xmlResources/Values/Str ings.xml file.

For example:

To use these resource strings for the ArrayAdapter , replace the original ListAdapter line with the following:

Run the application. You should see something like this:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/images/01-listview-example.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter-1
https://docs.microsoft.com/en-us/dotnet/api/android.app.listactivity.listadapter#android_app_listactivity_listadapter

 Going Further with ListView
The remaining topics (linked below) take a comprehensive look at working with the ListView class and the

different types of Adapter types you can use with it. The structure is as follows:

Visual AppearanceVisual Appearance – Parts of the ListView control and how they work.

ClassesClasses – Overview of the classes used to display a ListView .

Displaying Data in a L istViewDisplaying Data in a L istView – How to display a simple list of data; how to implement ListView's

usability features; how to use different built-in row layouts; and how Adapters save memory by re-using

row views.

Custom appearanceCustom appearance – Changing the style of the ListView with custom layouts, fonts and colors.

Using SQLiteUsing SQLite – How to display data from a SQLite database with a CursorAdapter .

Activity L ifecycleActivity L ifecycle – Design considerations when implementing ListView Activities, including where in

the lifecycle you should populate your data and when to release resources.

The discussion (broken into six parts) begins with an overview of the ListView class itself before introducing

progressively more complex examples of how to use it.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/images/02-smaller-example.png#lightbox

 Summary

 Related Links

ListView Parts and Functionality

Populating a ListView with Data

Customizing a ListView's Appearance

Using CursorAdapters

Using a ContentProvider

ListView and the Activity Lifecycle

This set of topics introduced ListView and provided some examples of how to use the built-in features of the

ListActivity . It discussed custom implementations of ListView that allowed for colorful layouts and using an

SQLite database, and it briefly touched on the relevance of the activity lifecycle on your ListView

implementation.

AccessoryViews (sample)

BasicTableAndroid (sample)

BasicTableAdapter (sample)

BuiltInViews (sample)

CustomRowView (sample)

FastScroll (sample)

SectionIndex (sample)

SimpleCursorTableAdapter (sample)

CursorTableAdapter (sample)

Activity Lifecycle Tutorial

Working with Tables and Cells (in Xamarin.iOS)

ListView Class Reference

ListActivity Class Reference

BaseAdapter Class Reference

ArrayAdapter Class Reference

CursorAdapter Class Reference

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/accessoryviews
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/basictableandroid
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/basictableadapter
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/builtinviews
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/customrowview
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/fastscroll
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/sectionindex
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/simplecursortableadapter
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/cursortableadapter
https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/tables/index
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.app.listactivity
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.cursoradapter

Xamarin.Android ListView Parts and Functionality
 7/8/2021 • 2 minutes to read • Edit Online

 Rows

 Adapter

 Fast Scrolling

A ListView consists of the following parts:

RowsRows – The visible representation of the data in the list.

AdapterAdapter – A non-visual class that binds the data source to the list view.

Fast ScrollingFast Scrolling – A handle that lets the user scroll the length of the list.

Section IndexSection Index – A user interface element that floats over the scrolling rows to indicate where in the list

the current rows are located.

These screenshots use a basic ListView control to show how Fast Scrolling and Section Index are rendered:

The elements that make up a ListView are described in more detail below:

Each row has its own View . The view can be either one of the built-in views defined in Android.Resources , or a

custom view. Each row can use the same view layout or they can all be different. There are examples in this

document of using built-in layouts and others explaining how to define custom layouts.

The ListView control requires an Adapter to supply the formatted View for each row. Android has built-in

Adapters and Views that can be used, or custom classes can be created.

When a ListView contains many rows of data fast-scrolling can be enabled to help the user navigate to any

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/list-view/parts-and-functionality.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/parts-and-functionality-images/listviewparts.png#lightbox

 Section Index

 Classes Overview

part of the list. The fast-scrolling 'scroll bar' can be optionally enabled (and customized in API level 11 and

higher).

While scrolling through long lists, the optional section index provides the user with feedback on what part of the

list they are currently viewing. It is only appropriate on long lists, typically in conjunction with fast scrolling.

The primary classes used to display ListViews are shown here:

The purpose of each class is described below:

L istViewListView – user interface element that displays a scrollable collection of rows. On phones it usually uses

up the entire screen (in which case, the ListActivity class can be used) or it could be part of a larger

layout on phones or tablet devices.

ViewView – a View in Android can be any user interface element, but in the context of a ListView it requires a

View to be supplied for each row.

BaseAdapterBaseAdapter – Base class for Adapter implementations to bind a ListView to a data source.

ArrayAdapterArrayAdapter – Built-in Adapter class that binds an array of strings to a ListView for display. The

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/parts-and-functionality-images/image2.png#lightbox

generic ArrayAdapter<T> does the same for other types.

CursorAdapterCursorAdapter – Use CursorAdapter or SimpleCursorAdapter to display data based on an SQLite query.

This document contains simple examples that use an ArrayAdapter as well as more complex examples that

require custom implementations of BaseAdapter or CursorAdapter .

Populating a Xamarin.Android ListView with data
 7/8/2021 • 6 minutes to read • Edit Online

 Using ListActivity and ArrayAdapter<String>

[Activity(Label = "BasicTable", MainLauncher = true, Icon = "@drawable/icon")]
public class HomeScreen : ListActivity {
 string[] items;
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 items = new string[] { "Vegetables","Fruits","Flower Buds","Legumes","Bulbs","Tubers" };
 ListAdapter = new ArrayAdapter<String>(this, Android.Resource.Layout.SimpleListItem1, items);
 }
}

 Handling row clicksHandling row clicks

To add rows to a ListView you need to add it to your layout and implement an IListAdapter with methods that

the ListView calls to populate itself. Android includes built-in ListActivity and ArrayAdapter classes that you

can use without defining any custom layout XML or code. The ListActivity class automatically creates a

ListView and exposes a ListAdapter property to supply the row views to display via an adapter.

The built-in adapters take a view resource ID as a parameter that gets used for each row. You can use built-in

resources such as those in Android.Resource.Layout so you don't need to write your own.

The example BasicTable/HomeScreen.csBasicTable/HomeScreen.cs demonstrates how to use these classes to display a ListView in only

a few lines of code:

Usually a ListView will also allow the user to touch a row to perform some action (such as playing a song, or

calling a contact, or showing another screen). To respond to user touches there needs to be one more method

implemented in the ListActivity – OnListItemClick – like this:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/list-view/populating.md

protected override void OnListItemClick(ListView l, View v, int position, long id)
{
 var t = items[position];
 Android.Widget.Toast.MakeText(this, t, Android.Widget.ToastLength.Short).Show();
}

Now the user can touch a row and a Toast alert will appear :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/populating-images/simplelistitem1.png#lightbox

 Implementing a ListAdapter
ArrayAdapter<string> is great because of its simplicity, but it's extremely limited. However, often times you have

a collection of business entities, rather than just strings that you want to bind. For example, if your data consists

of a collection of Employee classes, then you might want the list to just display the names of each employee. To

customize the behavior of a ListView to control what data is displayed you must implement a subclass of

BaseAdapter overriding the following four items:

CountCount – To tell the control how many rows are in the data.

GetViewGetView – To return a View for each row, populated with data. This method has a parameter for the

ListView to pass in an existing, unused row for re-use.

GetItemIdGetItemId – Return a row identifier (typically the row number, although it can be any long value that you

like).

this[int]this[int] indexer – To return the data associated with a particular row number.

The example code in BasicTableAdapter/HomeScreenAdapter.csBasicTableAdapter/HomeScreenAdapter.cs demonstrates how to subclass

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/populating-images/basictable2.png#lightbox

public class HomeScreenAdapter : BaseAdapter<string> {
 string[] items;
 Activity context;
 public HomeScreenAdapter(Activity context, string[] items) : base() {
 this.context = context;
 this.items = items;
 }
 public override long GetItemId(int position)
 {
 return position;
 }
 public override string this[int position] {
 get { return items[position]; }
 }
 public override int Count {
 get { return items.Length; }
 }
 public override View GetView(int position, View convertView, ViewGroup parent)
 {
 View view = convertView; // re-use an existing view, if one is available
 if (view == null) // otherwise create a new one
 view = context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleListItem1, null);
 view.FindViewById<TextView>(Android.Resource.Id.Text1).Text = items[position];
 return view;
 }
}

 Using a custom adapterUsing a custom adapter

ListAdapter = new HomeScreenAdapter(this, items);

 Row view re-UseRow view re-Use

BaseAdapter :

Using the custom adapter is similar to the built-in ArrayAdapter , passing in a context and the string[] of

values to display:

Because this example uses the same row layout (SimpleListItem1) the resulting application will look identical to

the previous example.

In this example there are only six items. Since the screen can fit eight, no row re-use required. When displaying

hundreds or thousands of rows, however, it would be a waste of memory to create hundreds or thousands of

View objects when only eight fit on the screen at a time. To avoid this situation, when a row disappears from the

screen its view is placed in a queue for re-use. As the user scrolls, the ListView calls GetView to request new

views to display – if available it passes an unused view in the convertView parameter. If this value is null then

your code should create a new view instance, otherwise you can re-set the properties of that object and re-use

it.

The GetView method should follow this pattern to re-use row views:

public override View GetView(int position, View convertView, ViewGroup parent)
{
 View view = convertView; // re-use an existing view, if one is supplied
 if (view == null) // otherwise create a new one
 view = context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleListItem1, null);
 // set view properties to reflect data for the given row
 view.FindViewById<TextView>(Android.Resource.Id.Text1).Text = items[position];
 // return the view, populated with data, for display
 return view;
}

 Enabling fast scrolling

Custom adapter implementations should always re-use the convertView object before creating new views to

ensure they do not run out of memory when displaying long lists.

Some adapter implementations (such as the CursorAdapter) don't have a GetView method, rather they require

two different methods NewView and BindView which enforce row re-use by separating the responsibilities of

GetView into two methods. There is a CursorAdapter example later in the document.

Fast Scrolling helps the user to scroll through long lists by providing an additional 'handle' that acts as a scroll

bar to directly access a part of the list. This screenshot shows the fast scroll handle:

ListView.FastScrollEnabled = true;

 Adding a section indexAdding a section index

Causing the fast scrolling handle to appear is as simple as setting the FastScrollEnabled property to true :

A section index provides additional feedback for users when they are fast-scrolling through a long list – it shows

which 'section' they have scrolled to. To cause the section index to appear the Adapter subclass must implement

the ISectionIndexer interface to supply the index text depending on the rows being displayed:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/populating-images/fastscroll.png#lightbox

To implement ISectionIndexer you need to add three methods to an adapter :

GetSectionsGetSections – Provides the complete list of section index titles that could be displayed. This method

requires an array of Java Objects so the code needs to create a Java.Lang.Object[] from a .NET

collection. In our example it returns a list of the initial characters in the list as Java.Lang.String .

GetPositionForSectionGetPositionForSection – Returns the first row position for a given section index.

GetSectionForPositionGetSectionForPosition – Returns the section index to be displayed for a given row.

The example SectionIndex/HomeScreenAdapter.cs file implements those methods, and some additional code in

the constructor. The constructor builds the section index by looping through every row and extracting the first

character of the title (the items must already be sorted for this to work).

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/populating-images/sectionindex.png#lightbox

alphaIndex = new Dictionary<string, int>();
for (int i = 0; i < items.Length; i++) { // loop through items
 var key = items[i][0].ToString();
 if (!alphaIndex.ContainsKey(key))
 alphaIndex.Add(key, i); // add each 'new' letter to the index
}
sections = new string[alphaIndex.Keys.Count];
alphaIndex.Keys.CopyTo(sections, 0); // convert letters list to string[]

// Interface requires a Java.Lang.Object[], so we create one here
sectionsObjects = new Java.Lang.Object[sections.Length];
for (int i = 0; i < sections.Length; i++) {
 sectionsObjects[i] = new Java.Lang.String(sections[i]);
}

public Java.Lang.Object[] GetSections()
{
 return sectionsObjects;
}
public int GetPositionForSection(int section)
{
 return alphaIndexer[sections[section]];
}
public int GetSectionForPosition(int position)
{ // this method isn't called in this example, but code is provided for completeness
 int prevSection = 0;
 for (int i = 0; i < sections.Length; i++)
 {
 if (GetPositionForSection(i) > position)
 {
 break;
 }
 prevSection = i;
 }
 return prevSection;
}

 Related links

With the data structures created, the ISectionIndexer methods are very simple:

Your section index titles don't need to map 1:1 to your actual sections. This is why the GetPositionForSection

method exists. GetPositionForSection gives you an opportunity to map whatever indices are in your index list to

whatever sections are in your list view. For example, you may have a "z" in your index, but you may not have a

table section for every letter, so instead of "z" mapping to 26, it may map to 25 or 24, or whatever section index

"z" should map to.

BasicTableAndroid (sample)

BasicTableAdapter (sample)

FastScroll (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/basictableandroid
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/basictableadapter
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/fastscroll

Customizing a ListView's Appearance with
Xamarin.Android

 7/8/2021 • 9 minutes to read • Edit Online

 Built-in Row Views

The appearance of a ListView is dictated by the layout of the rows being displayed. To change the appearance of

a ListView , use a different row layout.

There are twelve built-in Views that can be referenced using Android.Resource.LayoutAndroid.Resource.Layout:

TestL istItemTestL istItem – Single line of text with minimal formatting.

S impleListItem1SimpleListItem1 – Single line of text.

S impleListItem2SimpleListItem2 – Two lines of text.

S impleSelectableListItemSimpleSelectableListItem – Single line of text that supports single or multiple item selection (added in

API level 11).

S impleListItemActivated1SimpleListItemActivated1 – Similar to SimpleListItem1, but the background color indicates when a

row is selected (added in API level 11).

S impleListItemActivated2SimpleListItemActivated2 – Similar to SimpleListItem2, but the background color indicates when a

row is selected (added in API level 11).

S impleListItemCheckedSimpleListItemChecked – Displays check marks to indicate selection.

S impleListItemMultipleChoiceSimpleListItemMultipleChoice – Displays check boxes to indicate multiple-choice selection.

S impleListItemSingleChoiceSimpleListItemSingleChoice – Displays radio buttons to indicate mutually-exclusive selection.

TwoLineListItemTwoLineListItem – Two lines of text.

ActivityL istItemActivityL istItem – Single line of text with an image.

S impleExpandableListItemSimpleExpandableListItem – Groups rows by categories, and each group can be expanded or

collapsed.

Each built-in row view has a built in style associated with it. These screenshots show how each view appears:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/list-view/customizing-appearance.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/customizing-appearance-images/builtinviews.png#lightbox

view = context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleListItem1, null);

view.FindViewById<TextView>(Android.Resource.Id.Text1).Text = item.Heading;
view.FindViewById<TextView>(Android.Resource.Id.Text2).Text = item.SubHeading;
view.FindViewById<ImageView>(Android.Resource.Id.Icon).SetImageResource(item.ImageResourceId); // only use
with ActivityListItem

view = context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleExpandableListItem1, null);

view = context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleExpandableListItem2, null);

The BuiltInViews/HomeScreenAdapter.csBuiltInViews/HomeScreenAdapter.cs sample file (in the BuiltInViewsBuiltInViews solution) contains the code to

produce the non-expandable list item screens. The view is set in the GetView method like this:

The view's properties can then be set by referencing the standard control identifiers Text1 , Text2 and Icon

under Android.Resource.Id (do not set properties that the view does not contain or an exception will be

thrown):

The BuiltInExpandableViews/ExpandableScreenAdapter.csBuiltInExpandableViews/ExpandableScreenAdapter.cs sample file (in the BuiltInViewsBuiltInViews solution)

contains the code to produce the SimpleExpandableListItem screen. The group view is set in the GetGroupView

method like this:

The child view is set in the GetChildView method like this:

The properties for the group view and the child view can then be set by referencing the standard Text1 and

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/customizing-appearance-images/builtinviews-2.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/customizing-appearance-images/builtinviews-3.png#lightbox

 Accessories

ListAdapter = new ArrayAdapter<String>(this, Android.Resource.Layout.SimpleListItemChecked, items);

 Handling API LevelHandling API Level

Text2 control identifiers as shown above. The SimpleExpandableListItem screenshot (shown above) provides

an example of a one-line group view (SimpleExpandableListItem1) and a two-line child view

(SimpleExpandableListItem2). Alternately, the group view can be configured for two lines

(SimpleExpandableListItem2) and the child view can be configured for one line (SimpleExpandableListItem1), or

both group view and child view can have the same number of lines.

Rows can have accessories added to the right of the view to indicate selection state:

S impleListItemCheckedSimpleListItemChecked – Creates a single-selection list with a check as the indicator.

S impleListItemSingleChoiceSimpleListItemSingleChoice – Creates radio-button-type lists where only one choice is possible.

S impleListItemMultipleChoiceSimpleListItemMultipleChoice – Creates checkbox-type lists where multiple choices are possible.

The aforementioned accessories are illustrated in the following screens, in their respective order :

To display one of these accessories pass the required layout resource ID to the adapter then manually set the

selection state for the required rows. This line of code shows how to create and assign an Adapter using one of

these layouts:

The ListView itself supports different selection modes, regardless of the accessory being displayed. To avoid

confusion, use Single selection mode with SingleChoice accessories and the Checked or Multiple mode with

the MultipleChoice style. The selection mode is controlled by the ChoiceMode property of the ListView .

Earlier versions of Xamarin.Android implemented enumerations as integer properties. The latest version has

introduced proper .NET enumeration types which makes it much easier to discover the potential options.

Depending on which API level you are targeting, ChoiceMode is either an integer or an enumeration. The sample

file Accessor yViews/HomeScreen.csAccessor yViews/HomeScreen.cs has a block commented out if you wish to target the Gingerbread API:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/customizing-appearance-images/accessories.png#lightbox

// For targeting Gingerbread the ChoiceMode is an int, otherwise it is an
// enumeration.

lv.ChoiceMode = Android.Widget.ChoiceMode.Single; // 1
//lv.ChoiceMode = Android.Widget.ChoiceMode.Multiple; // 2
//lv.ChoiceMode = Android.Widget.ChoiceMode.None; // 0

// Use this block if targeting Gingerbread or lower
/*
lv.ChoiceMode = 1; // Single
//lv.ChoiceMode = 0; // none
//lv.ChoiceMode = 2; // Multiple
//lv.ChoiceMode = 3; // MultipleModal
*/

 Selecting Items ProgrammaticallySelecting Items Programmatically

// Set the initially checked row ("Fruits")
lv.SetItemChecked(1, true);

FindViewById<ListView>(Android.Resource.Id.List).CheckedItemPosition

var sparseArray = FindViewById<ListView>(Android.Resource.Id.List).CheckedItemPositions;
for (var i = 0; i < sparseArray.Size(); i++)
{
 Console.Write(sparseArray.KeyAt(i) + "=" + sparseArray.ValueAt(i) + ",");
}
Console.WriteLine();

 Creating Custom Row Layouts

Manually setting which items are 'selected' is done with the SetItemChecked method (it can be called multiple

times for multiple selection):

The code also needs to detect single selections differently from multiple selections. To determine which row has

been selected in Single mode use the CheckedItemPosition integer property:

To determine which rows have been selected in Multiple mode you need to loop through the

CheckedItemPositions SparseBooleanArray . A sparse array is like a dictionary that only contains entries where

the value has been changed, so you must traverse the entire array looking for true values to know what has

been selected in the list as illustrated in the following code snippet:

The four built-in row views are very simple. To display more complex layouts (such as a list of emails, or tweets,

or contact info) a custom view is required. Custom views are generally declared as AXML files in the

Resources/LayoutResources/Layout directory and then loaded using their resource Id by a custom adapter. The view can contain

any number of display classes (such as TextViews, ImageViews and other controls) with custom colors, fonts and

layout.

This example differs from the previous examples in a number of ways:

Inherits from Activity , not ListActivity . You can customize rows for any ListView , however other

controls can also be included in an Activity layout (such as a heading, buttons or other user interface

elements). This example adds a heading above the ListView to illustrate.

Requires an AXML layout file for the screen; in the previous examples the ListActivity does not require

a layout file. This AXML contains a ListView control declaration.

 Adding a ListView to an Activity LayoutAdding a ListView to an Activity Layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:id="@+id/Heading"
 android:text="Vegetable Groups"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:textSize="30dp"
 android:textColor="#FF267F00"
 android:textStyle="bold"
 android:padding="5dp"
 />
 <ListView android:id="@+id/List"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:cacheColorHint="#FFDAFF7F"
 />
</LinearLayout>

 Creating a Custom Row LayoutCreating a Custom Row Layout

Requires an AXML layout file to render each row. This AXML file contains the text and image controls with

custom font and color settings.

Uses an optional custom selector XML file to set the appearance of the row when it is selected.

The Adapter implementation returns a custom layout from the GetView override.

ItemClick must be declared differently (an event handler is attached to ListView.ItemClick rather than

an overriding OnListItemClick in ListActivity).

These changes are detailed below, starting with creating the activity's view and the custom row view and then

covering the modifications to the Adapter and Activity to render them.

Because HomeScreen no longer inherits from ListActivity it doesn't have a default view, so a layout AXML file

must be created for the HomeScreen's view. For this example, the view will have a heading (using a TextView)

and a ListView to display data. The layout is defined in the Resources/Layout/HomeScreen.axmlResources/Layout/HomeScreen.axml file which

is shown here:

The benefit of using an Activity with a custom layout (instead of a ListActivity) lies in being able to add

additional controls to the screen, such as the heading TextView in this example.

Another AXML layout file is required to contain the custom layout for each row that will appear in the list view.

In this example the row will have a green background, brown text and right-aligned image. The Android XML

markup to declare this layout is described in Resources/Layout/CustomView.axmlResources/Layout/CustomView.axml :

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#FFDAFF7F"
 android:padding="8dp">
 <LinearLayout android:id="@+id/Text"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="10dip">
 <TextView
 android:id="@+id/Text1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#FF7F3300"
 android:textSize="20dip"
 android:textStyle="italic"
 />
 <TextView
 android:id="@+id/Text2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14dip"
 android:textColor="#FF267F00"
 android:paddingLeft="100dip"
 />
 </LinearLayout>
 <ImageView
 android:id="@+id/Image"
 android:layout_width="48dp"
 android:layout_height="48dp"
 android:padding="5dp"
 android:src="@drawable/icon"
 android:layout_alignParentRight="true" />
</RelativeLayout >

 Referencing a Custom Row ViewReferencing a Custom Row View

While a custom row layout can contain many different controls, scrolling performance can be affected by

complex designs and using images (especially if they have to be loaded over the network). See Google's article

for more information on addressing scrolling performance issues.

The implementation of the custom adapter example is in HomeScreenAdapter.cs . The key method is GetView

where it loads the custom AXML using the resource ID Resource.Layout.CustomView , and then sets properties on

each of the controls in the view before returning it. The complete adapter class is shown:

public class HomeScreenAdapter : BaseAdapter<TableItem> {
 List<TableItem> items;
 Activity context;
 public HomeScreenAdapter(Activity context, List<TableItem> items)
 : base()
 {
 this.context = context;
 this.items = items;
 }
 public override long GetItemId(int position)
 {
 return position;
 }
 public override TableItem this[int position]
 {
 get { return items[position]; }
 }
 public override int Count
 {
 get { return items.Count; }
 }
 public override View GetView(int position, View convertView, ViewGroup parent)
 {
 var item = items[position];
 View view = convertView;
 if (view == null) // no view to re-use, create new
 view = context.LayoutInflater.Inflate(Resource.Layout.CustomView, null);
 view.FindViewById<TextView>(Resource.Id.Text1).Text = item.Heading;
 view.FindViewById<TextView>(Resource.Id.Text2).Text = item.SubHeading;
 view.FindViewById<ImageView>(Resource.Id.Image).SetImageResource(item.ImageResourceId);
 return view;
 }
}

 Referencing the Custom ListView in the ActivityReferencing the Custom ListView in the Activity

ListView listView;

SetContentView(Resource.Layout.HomeScreen); // loads the HomeScreen.axml as this activity's view
listView = FindViewById<ListView>(Resource.Id.List); // get reference to the ListView in the layout

// populate the listview with data
listView.Adapter = new HomeScreenAdapter(this, tableItems);
listView.ItemClick += OnListItemClick; // to be defined

void OnListItemClick(object sender, AdapterView.ItemClickEventArgs e)
{
 var listView = sender as ListView;
 var t = tableItems[e.Position];
 Android.Widget.Toast.MakeText(this, t.Heading, Android.Widget.ToastLength.Short).Show();
}

Because the HomeScreen class now inherits from Activity , a ListView field is declared in the class to hold a

reference to the control declared in the AXML:

The class must then load the Activity's custom layout AXML using the SetContentView method. It can then find

the ListView control in the layout then creates and assigns the adapter and assigns the click handler. The code

for the OnCreate method is shown here:

Finally the ItemClick handler must be defined; in this case it just displays a Toast message:

 Customizing the Row Selector ColorCustomizing the Row Selector Color

android:background="#FFDAFF7F"

The resulting screen looks like this:

When a row is touched it should be highlighted for user feedback. When a custom view specifies as background

color as CustomView.axmlCustomView.axml does, it also overrides the selection highlight. This line of code in

CustomView.axmlCustomView.axml sets the background to light green, but it also means there is no visual indicator when the

row is touched:

To re-enable the highlight behavior, and also to customize the color that is used, set the background attribute to

a custom selector instead. The selector will declare both the default background color as well as the highlight

color. The file Resources/Drawable/CustomSelector.xmlResources/Drawable/CustomSelector.xml contains the following declaration:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/customizing-appearance-images/customrowview.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_pressed="false"
 android:state_selected="false"
 android:drawable="@color/cellback" />
<item android:state_pressed="true" >
 <shape>
 <gradient
 android:startColor="#E77A26"
 android:endColor="#E77A26"
 android:angle="270" />
 </shape>
</item>
<item android:state_selected="true"
 android:state_pressed="false"
 android:drawable="@color/cellback" />
</selector>

android:background="@drawable/CustomSelector"

To reference the custom selector, change the background attribute in CustomView.axmlCustomView.axml to:

A selected row and the corresponding Toast message now looks like this:

 Preventing Flickering on Custom LayoutsPreventing Flickering on Custom Layouts

 Related Links

Android attempts to improve the performance of ListView scrolling by caching layout information. If you have

long scrolling lists of data you should also set the android:cacheColorHint property on the ListView

declaration in the Activity's AXML definition (to the same color value as your custom row layout's background).

Failure to include this hint could result in a 'flicker' as the user scrolls through a list with custom row

background colors.

BuiltInViews (sample)

AccessoryViews (sample)

CustomRowView (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/list-view/customizing-appearance-images/customselectcolor.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/builtinviews
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/accessoryviews
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/customrowview

Using CursorAdapters with Xamarin.Android
 11/2/2020 • 5 minutes to read • Edit Online

 Creating an SQLite Database

class VegetableDatabase : SQLiteOpenHelper {
 public static readonly string create_table_sql =
 "CREATE TABLE [vegetables] ([_id] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE, [name] TEXT NOT
NULL UNIQUE)";
 public static readonly string DatabaseName = "vegetables.db";
 public static readonly int DatabaseVersion = 1;
 public VegetableDatabase(Context context) : base(context, DatabaseName, null, DatabaseVersion) { }
 public override void OnCreate(SQLiteDatabase db)
 {
 db.ExecSQL(create_table_sql);
 // seed with data
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Vegetables')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Fruits')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Flower Buds')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Legumes')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Bulbs')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Tubers')");
 }
 public override void OnUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)
 { // not required until second version :)
 throw new NotImplementedException();
 }
}

Android provides adapter classes specifically to display data from an SQLite database query:

S impleCursorAdapterS impleCursorAdapter – Similar to an ArrayAdapter because it can be used without subclassing. Simply

provide the required parameters (such as a cursor and layout information) in the constructor and then assign to

a ListView .

CursorAdapterCursorAdapter – A base class that you can inherit from when you need more control over the binding of data

values to layout controls (for example, hiding/showing controls or changing their properties).

Cursor adapters provide a high-performance way to scroll through long lists of data that are stored in SQLite.

The consuming code must define an SQL query in a Cursor object and then describe how to create and

populate the views for each row.

To demonstrate cursor adapters requires a simple SQLite database implementation. The code in

SimpleCursorTableAdapter/VegetableDatabase.csS impleCursorTableAdapter/VegetableDatabase.cs contains the code and SQL to create a table and

populate it with some data. The complete VegetableDatabase class is shown here:

The VegetableDatabase class will be instantiated in the OnCreate method of the HomeScreen activity. The

SQLiteOpenHelper base class manages the setup of the database file and ensures that the SQL in its OnCreate

method is only run once. This class is used in the following two examples for SimpleCursorAdapter and

CursorAdapter .

The cursor query must have an integer column _id for the CursorAdapter to work. If the underlying table does

not have an integer column named _id then use a column alias for another unique integer in the RawQuery

that makes up the cursor. Refer to the Android docs for further information.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/list-view/cursor-adapters.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.cursoradapter

Creating the CursorCreating the Cursor

vdb = new VegetableDatabase(this);
cursor = vdb.ReadableDatabase.RawQuery("SELECT * FROM vegetables", null); // cursor query
StartManagingCursor(cursor);
// use either SimpleCursorAdapter or CursorAdapter subclass here!

StopManagingCursor(cursor);
cursor.Close();

 Using SimpleCursorAdapter

// which columns map to which layout controls
string[] fromColumns = new string[] {"name"};
int[] toControlIDs = new int[] {Android.Resource.Id.Text1};
// use a SimpleCursorAdapter
listView.Adapter = new SimpleCursorAdapter (this, Android.Resource.Layout.SimpleListItem1, cursor,
 fromColumns,
 toControlIDs);

 Subclassing CursorAdapter

The examples use a RawQuery to turn an SQL query into a Cursor object. The column list that is returned from

the cursor defines the data columns that are available for display in the cursor adapter. The code that creates the

database in the S impleCursorTableAdapter/HomeScreen.csSimpleCursorTableAdapter/HomeScreen.cs OnCreate method is shown here:

Any code that calls StartManagingCursor should also call StopManagingCursor . The examples use OnCreate to

start, and OnDestroy to close the cursor. The OnDestroy method contains this code:

Once an application has a SQLite database available and has created a cursor object as shown, it can utilize

either a SimpleCursorAdapter or a subclass of CusorAdapter to display rows in a ListView .

SimpleCursorAdapter is like the ArrayAdapter , but specialized for use with SQLite. It does not require

subclassing – just set some simple parameters when creating the object and then assign it to a ListView ’s

Adapter property.

The parameters for the SimpleCursorAdapter constructor are:

ContextContext – A reference to the containing Activity.

LayoutLayout – The resource ID of the row view to use.

ICursorICursor – A cursor containing the SQLite query for the data to display.

FromFrom string array – An array of strings corresponding to the names of columns in the cursor.

ToTo integer array – An array of layout IDs that correspond to the controls in the row layout. The value of the

column specified in the from array will be bound to the ControlID specified in this array at the same index.

The from and to arrays must have the same number of entries because they form a mapping from the data

source to the layout controls in the view.

The S impleCursorTableAdapter/HomeScreen.csSimpleCursorTableAdapter/HomeScreen.cs sample code wires up a SimpleCursorAdapter like this:

SimpleCursorAdapter is a fast and simple way to display SQLite data in a ListView . The main limitation is that it

can only bind column values to display controls, it does not allow you to change other aspects of the row layout

(for example, showing/hiding controls or changing properties).

 Implementing the CursorAdapterImplementing the CursorAdapter

public class HomeScreenCursorAdapter : CursorAdapter {
 Activity context;
 public HomeScreenCursorAdapter(Activity context, ICursor c)
 : base(context, c)
 {
 this.context = context;
 }
 public override void BindView(View view, Context context, ICursor cursor)
 {
 var textView = view.FindViewById<TextView>(Android.Resource.Id.Text1);
 textView.Text = cursor.GetString(1); // 'name' is column 1 in the cursor query
 }
 public override View NewView(Context context, ICursor cursor, ViewGroup parent)
 {
 return this.context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleListItem1, parent, false);
 }
}

 Assigning the CursorAdapterAssigning the CursorAdapter

// create the cursor
vdb = new VegetableDatabase(this);
cursor = vdb.ReadableDatabase.RawQuery("SELECT * FROM vegetables", null);
StartManagingCursor(cursor);

// create the CursorAdapter
listView.Adapter = (IListAdapter)new HomeScreenCursorAdapter(this, cursor, false);

A CursorAdapter subclass has the same performance benefits as the SimpleCursorAdapter for displaying data

from SQLite, but it also gives you complete control over the creation and layout of each row view. The

CursorAdapter implementation is very different from subclassing BaseAdapter because it does not override

GetView , GetItemId , Count or this[] indexer.

Given a working SQLite database, you only need to override two methods to create a CursorAdapter subclass:

BindViewBindView – Given a view, update it to display the data in the provided cursor.

NewViewNewView – Called when the ListView requires a new view to display. The CursorAdapter will take care

of recycling views (unlike the GetView method on regular Adapters).

The adapter subclasses in earlier examples have methods to return the number of rows and to retrieve the

current item – the CursorAdapter does not require these methods because that information can be gleaned

from the cursor itself. By splitting the creation and population of each view into these two methods, the

CursorAdapter enforces view re-use. This is in contrast to a regular adapter where it’s possible to ignore the

convertView parameter of the BaseAdapter.GetView method.

The code in CursorTableAdapter/HomeScreenCursorAdapter.csCursorTableAdapter/HomeScreenCursorAdapter.cs contains a CursorAdapter subclass. It

stores a context reference passed into the constructor so that it can access a LayoutInflater in the NewView

method. The complete class looks like this:

In the Activity that will display the ListView , create the cursor and CursorAdapter then assign it to the list

view.

The code that performs this action in the CursorTableAdapter/HomeScreen.csCursorTableAdapter/HomeScreen.cs OnCreate method is shown

here:

The OnDestroy method contains the StopManagingCursor method call described previously.

Related Links
SimpleCursorTableAdapter (sample)

CursorTableAdapter (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/simplecursortableadapter
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/cursortableadapter

Using a ContentProvider with Xamarin.Android
 10/28/2019 • 2 minutes to read • Edit Online

CursorAdapters can also be used to display data from a ContentProvider. ContentProviders allow you to access

data exposed by other applications (including Android system data like contacts, media and calendar

information).

The preferred way to access a ContentProvider is with a CursorLoader using the LoaderManager.

LoaderManager was introduced in Android 3.0 (API Level 11, Honeycomb) to move blocking tasks off the main

thread, and using a CursorLoader allows the data to be loaded in a thread before being bound to a ListView for

display.

Refer to Intro to ContentProviders for more information.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/list-view/content-provider.md

Xamarin.Android ListView and the Activity Lifecycle
 10/28/2019 • 2 minutes to read • Edit Online

 Configuration Changes

[Activity(ConfigurationChanges="keyboardHidden|orientation")]

Activities go through certain states as your application runs, such as starting up, running, being paused and

being stopped. For more information, and specific guidelines on handling state transitions, see the Activity

Lifecycle Tutorial. It is important to understand the activity lifecycle and place your ListView code in the correct

locations.

All of the examples in this document perform 'setup tasks' in the Activity's OnCreate method and (when

required) perform 'teardown' in OnDestroy . The examples generally use small data sets that do not change, so

re-loading the data more frequently is unnecessary.

However, if your data is frequently changing or uses a lot of memory it might be appropriate to use different

lifecycle methods to populate and refresh your ListView . For example, if the underlying data is constantly

changing (or may be affected by updates on other activities) then creating the adapter in OnStart or OnResume

will ensure the latest data is displayed each time the Activity is shown.

If the Adapter uses resources like memory, or a managed cursor, remember to release those resources in the

complementary method to where they were instantiated (eg. objects created in OnStart can be disposed of in

OnStop).

It's important to remember that configuration changes – especially screen rotation and keyboard visibility – can

cause the current activity to be destroyed and re-created (unless you specify otherwise using the

ConfigurationChanges attribute). This means that under normal conditions, rotating a device will cause a

ListView and Adapter to be re-created and (unless you have written code in OnPause and OnResume) the scroll

position and row selection states will be lost.

The following attribute would prevent an activity from being destroyed and recreated as a result of

configuration changes:

The Activity should then override OnConfigurationChanged to respond to those changes appropriately. For more

details on how to handle configuration changes see the documentation.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/list-view/activity-lifecycle.md

Xamarin.Android GridView
 7/8/2021 • 3 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<GridView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/gridview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:columnWidth="90dp"
 android:numColumns="auto_fit"
 android:verticalSpacing="10dp"
 android:horizontalSpacing="10dp"
 android:stretchMode="columnWidth"
 android:gravity="center"
/>

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 SetContentView (Resource.Layout.Main);

 var gridview = FindViewById<GridView> (Resource.Id.gridview);
 gridview.Adapter = new ImageAdapter (this);

 gridview.ItemClick += delegate (object sender, AdapterView.ItemClickEventArgs args) {
 Toast.MakeText (this, args.Position.ToString (), ToastLength.Short).Show ();
 };
}

GridView is a ViewGroup that displays items in a two-dimensional, scrollable grid. The grid items are

automatically inserted to the layout using a ListAdapter .

In this tutorial, you'll create a grid of image thumbnails. When an item is selected, a toast message will display

the position of the image.

Start a new project named HelloGridViewHelloGridView .

Find some photos you'd like to use, or download these sample images. Add the image files to the project's

Resources/DrawableResources/Drawable directory. In the Proper tiesProper ties window, set the Build Action for each to AndroidResourceAndroidResource.

Open the Resources/Layout/Main.axmlResources/Layout/Main.axml file and insert the following:

This GridView will fill the entire screen. The attributes are rather self explanatory. For more information about

valid attributes, see the GridView reference.

Open HelloGridView.cs and insert the following code for the OnCreate() method:

After the Main.axmlMain.axml layout is set for the content view, the GridView is captured from the layout with

FindViewById . The Adapter property is then used to set a custom adapter (ImageAdapter) as the source for all

items to be displayed in the grid. The ImageAdapter is created in the next step.

To do something when an item in the grid is clicked, an anonymous delegate is subscribed to the ItemClick

event. It shows a Toast that displays the index position (zero-based) of the selected item (in a real world

scenario, the position could be used to get the full sized image for some other task). Note that Java-style listener

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/grid-view.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gridview
https://docs.microsoft.com/en-us/dotnet/api/android.views.viewgroup
https://docs.microsoft.com/en-us/dotnet/api/android.app.listactivity.listadapter#android_app_listactivity_listadapter
https://developer.android.com/shareables/sample_images.zip
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gridview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gridview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gridview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.findviewbyid
https://docs.microsoft.com/en-us/dotnet/api/android.widget.adapterview.rawadapter#android_widget_adapterview_rawadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.adapterview.itemclick
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast

public class ImageAdapter : BaseAdapter
{
 Context context;

 public ImageAdapter (Context c)
 {
 context = c;
 }

 public override int Count {
 get { return thumbIds.Length; }
 }

 public override Java.Lang.Object GetItem (int position)
 {
 return null;
 }

 public override long GetItemId (int position)
 {
 return 0;
 }

 // create a new ImageView for each item referenced by the Adapter
 public override View GetView (int position, View convertView, ViewGroup parent)
 {
 ImageView imageView;

 if (convertView == null) { // if it's not recycled, initialize some attributes
 imageView = new ImageView (context);
 imageView.LayoutParameters = new GridView.LayoutParams (85, 85);
 imageView.SetScaleType (ImageView.ScaleType.CenterCrop);
 imageView.SetPadding (8, 8, 8, 8);
 } else {
 imageView = (ImageView)convertView;
 }

 imageView.SetImageResource (thumbIds[position]);
 return imageView;
 }

 // references to our images
 int[] thumbIds = {
 Resource.Drawable.sample_2, Resource.Drawable.sample_3,
 Resource.Drawable.sample_4, Resource.Drawable.sample_5,
 Resource.Drawable.sample_6, Resource.Drawable.sample_7,
 Resource.Drawable.sample_0, Resource.Drawable.sample_1,
 Resource.Drawable.sample_2, Resource.Drawable.sample_3,
 Resource.Drawable.sample_4, Resource.Drawable.sample_5,
 Resource.Drawable.sample_6, Resource.Drawable.sample_7,
 Resource.Drawable.sample_0, Resource.Drawable.sample_1,
 Resource.Drawable.sample_2, Resource.Drawable.sample_3,
 Resource.Drawable.sample_4, Resource.Drawable.sample_5,
 Resource.Drawable.sample_6, Resource.Drawable.sample_7
 };
}

classes can be used instead of .NET events.

Create a new class called ImageAdapter that subclasses BaseAdapter :

First, this implements some required methods inherited from BaseAdapter . The constructor and the Count

property are self-explanatory. Normally, GetItem(int) should return the actual object at the specified position in

the adapter, but it's ignored for this example. Likewise, GetItemId(int) should return the row id of the item, but

it's not needed here.

https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.count#android_widget_baseadapter_count
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.getitem
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.getitemid

 References

The first method necessary is GetView() . This method creates a new View for each image added to the

ImageAdapter . When this is called, a View is passed in, which is normally a recycled object (at least after this has

been called once), so there's a check to see if the object is null. If it is null, an ImageView is instantiated and

configured with desired properties for the image presentation:

LayoutParams sets the height and width for the View—this ensures that, no matter the size of the

drawable, each image is resized and cropped to fit in these dimensions, as appropriate.

SetScaleType() declares that images should be cropped toward the center (if necessary).

SetPadding(int, int, int, int) defines the padding for all sides. (Note that, if the images have different

aspect-ratios, then less padding will cause for more cropping of the image if it does not match the

dimensions given to the ImageView.)

If the View passed to GetView() is not null, then the local ImageView is initialized with the recycled View

object.

At the end of the GetView() method, the position integer passed into the method is used to select an image

from the thumbIds array, which is set as the image resource for the ImageView .

All that's left is to define the thumbIds array of drawable resources.

Run the application. Your grid layout should look something like this:

Try experimenting with the behaviors of the GridView and ImageView elements by adjusting their properties.

For example, instead of using LayoutParams try using SetAdjustViewBounds() .

GridView

ImageView

BaseAdapter

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.getview
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.layoutparameters#android_views_view_layoutparameters
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview.setscaletype
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.setpadding
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.getview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.views.view
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.getview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-view-images/helloviews4.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gridview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.layoutparameters#android_views_view_layoutparameters
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview.setadjustviewbounds
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gridview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter
https://creativecommons.org/licenses/by/2.5/

Xamarin.Android GridLayout
 7/8/2021 • 3 minutes to read • Edit Online

 Creating a Grid Layout

<?xml version="1.0" encoding="utf-8"?>
<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:rowCount="2"
 android:columnCount="2">
 <TextView
 android:text="Cell 0"
 android:textSize="14dip" />
 <TextView
 android:text="Cell 1"
 android:textSize="14dip" />
 <TextView
 android:text="Cell 2"
 android:textSize="14dip" />
 <TextView
 android:text="Cell 3"
 android:textSize="14dip" />
</GridLayout>

The GridLayout is a new ViewGroup subclass that supports laying out views in a 2D grid, similar to an HTML

table, as shown below:

GridLayout works with a flat-view hierarchy, where child views set their locations in the grid by specifying the

rows and columns they should be in. This way, the GridLayout is able to position views in the grid without

requiring that any intermediate views provide a table structure, such as seen in the table rows used in the

TableLayout. By maintaining a flat hierarchy, GridLayout is able to more swiftly layout its child views. Let’s take a

look at an example to illustrate what this concept actually means in code.

The following XML adds several TextView controls to a GridLayout.

The layout will adjust the row and column sizes so that the cells can fit their content, as illustrated by the

following diagram:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/grid-layout.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/21-gridlayoutcropped.png#lightbox

 Specifying Orientation

This results in the following user interface when run in an application:

Notice in the XML above, each TextView does not specify a row or column. When these are not specified, the

GridLayout assigns each child view in order, based upon the orientation. For example, let’s change the

GridLayout’s orientation from the default, which is horizontal, to vertical like this:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/gridlayout-cells.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/01-gridlayout.png#lightbox

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:rowCount="2"
 android:columnCount="2"
 android:orientation="vertical">
</GridLayout>

Now, the GridLayout will position the cells from top to bottom in each column, instead of left to right, as shown

below:

This results in the following user interface at runtime:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/gridlayoutorientation.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/02-gridlayout.png#lightbox

 Specifying Explicit PositionSpecifying Explicit Position

<?xml version="1.0" encoding="utf-8"?>
<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:rowCount="2"
 android:columnCount="2">
 <TextView
 android:text="Cell 0"
 android:textSize="14dip"
 android:layout_row="0"
 android:layout_column="0" />
 <TextView
 android:text="Cell 1"
 android:textSize="14dip"
 android:layout_row="0"
 android:layout_column="1" />
 <TextView
 android:text="Cell 2"
 android:textSize="14dip"
 android:layout_row="1"
 android:layout_column="0" />
 <TextView
 android:text="Cell 3"
 android:textSize="14dip"
 android:layout_row="1"
 android:layout_column="1" />
</GridLayout>

 Specifying spacingSpecifying spacing

<TextView
 android:text="Cell 0"
 android:textSize="14dip"
 android:layout_row="0"
 android:layout_column="0"
 android:layout_margin="10dp" />

If we want to explicitly control the positions of the child views in the GridLayout , we can set their layout_row

and layout_column attributes. For example, the following XML will result in the layout shown in the first

screenshot (shown above), regardless of the orientation.

We have a couple of options that will provide spacing between the child views of the GridLayout . We can use

the layout_margin attribute to set the margin on each child view directly, as shown below

Additionally, in Android 4, a new general-purpose spacing view called Space is now available. To use it, simply

add it as a child view. For example, the XML below adds an additional row to the GridLayout by setting its

rowcount to 3, and adds a Space view that provides spacing between the TextViews .

<?xml version="1.0" encoding="utf-8"?>
<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:rowCount="3"
 android:columnCount="2"
 android:orientation="vertical">
 <TextView
 android:text="Cell 0"
 android:textSize="14dip"
 android:layout_row="0"
 android:layout_column="0" />
 <TextView
 android:text="Cell 1"
 android:textSize="14dip"
 android:layout_row="0"
 android:layout_column="1" />
 <Space
 android:layout_row="1"
 android:layout_column="0"
 android:layout_width="50dp"
 android:layout_height="50dp" />
 <TextView
 android:text="Cell 2"
 android:textSize="14dip"
 android:layout_row="2"
 android:layout_column="0" />
 <TextView
 android:text="Cell 3"
 android:textSize="14dip"
 android:layout_row="2"
 android:layout_column="1" />
</GridLayout>

This XML creates spacing in the GridLayout as shown below:

 Spanning Columns and RowsSpanning Columns and Rows

The benefit of using the new Space view is that it allows for spacing and doesn’t require us to set attributes on

every child view.

The GridLayout also supports cells that span multiple columns and rows. For example, say we add another row

containing a button to the GridLayout as shown below:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/03-gridlayout.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:rowCount="4"
 android:columnCount="2"
 android:orientation="vertical">
 <TextView
 android:text="Cell 0"
 android:textSize="14dip"
 android:layout_row="0"
 android:layout_column="0" />
 <TextView
 android:text="Cell 1"
 android:textSize="14dip"
 android:layout_row="0"
 android:layout_column="1" />
 <Space
 android:layout_row="1"
 android:layout_column="0"
 android:layout_width="50dp"
 android:layout_height="50dp" />
 <TextView
 android:text="Cell 2"
 android:textSize="14dip"
 android:layout_row="2"
 android:layout_column="0" />
 <TextView
 android:text="Cell 3"
 android:textSize="14dip"
 android:layout_row="2"
 android:layout_column="1" />
 <Button
 android:id="@+id/myButton"
 android:text="@string/hello"
 android:layout_row="3"
 android:layout_column="0" />
</GridLayout>

This will result in the first column of the GridLayout being stretched to accommodate the size of the button, as

we see here:

<Button
 android:id="@+id/myButton"
 android:text="@string/hello"
 android:layout_row="3"
 android:layout_column="0"
 android:layout_columnSpan="2" />

To keep the first column from stretching, we can set the button to span two columns by setting its columnspan

like this:

Doing this results in a layout for the TextViews that is similar to the layout we had earlier, with the button added

to the bottom of the GridLayout as shown below:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/04-gridlayout.png#lightbox

 Related Links
GridLayoutDemo (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/layouts/grid-layout-images/05-gridlayout.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/gridlayoutdemo

Tabbed Layouts
 10/28/2019 • 2 minutes to read • Edit Online

 Overview

 Related Links

Tabs are a popular user interface pattern in mobile applications because of their simplicity and usability. They

provide a consistent, easy way to navigate between various screens in an application. Android has several API's

for tabbed interfaces:

ActionBarActionBar – This is part of a new set of API's that was introduced in Android 3.0 (API level 11) with goal

of providing a consistent navigation and view-switching interface. It has been back ported to Android 2.2

(API level 8) with the Android Support Library v7.

PagerTabStr ipPagerTabStr ip – Indicates the current, next, and previous pages of a ViewPager . ViewPager is available

only via Android Support Library v4. For more information about PagerTabStrip , see ViewPager.

ToolbarToolbar – Toolbar is a newer and more flexible action bar component that replaces ActionBar . Toolbar

is available in Android 5.0 Lollipop or later, and it is also available for older versions of Android via the

Android Support Library v7 NuGet package. Toolbar is currently the recommended action bar

component to use in Android apps. For more information, see Toolbar.

Material Design - Tabs- ActionBar

Android Support Library v7 AppCompat NuGet Package

v7 appcompat library

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/tab-layout/index.md
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/
https://material.io/guidelines/components/tabs.html
https://developer.android.com/guide/topics/ui/actionbar.html
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/
https://developer.android.com/tools/support-library/features.html#v7-appcompat

Tabbed Layouts with the ActionBar
 7/8/2021 • 5 minutes to read • Edit Online

 Overview

 Requirements

 Introducing Tabs in the ActionBar

This guide introduces and explains how to use the ActionBar APIs to create a tabbed user interface in a

Xamarin.Android application.

The action bar is an Android UI pattern that is used to provide a consistent user interface for key features such

as tabs, application identity, menus, and search. In Android 3.0 (API level 11), Google introduced the ActionBar

APIs to the Android platform. The ActionBar APIs introduce UI themes to provide a consistent look and feel and

classes that allow for tabbed user interfaces. This guide discusses how to add Action Bar tabs to a

Xamarin.Android application. It also discusses how to use the Android Support Library v7 to backport ActionBar

tabs to Xamarin.Android applications targeting Android 2.1 to Android 2.3.

Note that Toolbar is a newer and more generalized action bar component that you should use instead of

ActionBar (Toolbar was designed to replace ActionBar). For more information, see Toolbar.

Any Xamarin.Android application that targets API level 11 (Android 3.0) or higher has access to the ActionBar

APIs as a part of the native Android APIs.

Some of the ActionBar APIs have been back ported to API level 7 (Android 2.1) and are available via the V7

AppCompat Library, which is made available to Xamarin.Android apps via the Xamarin Android Support Library

- V7 package.

The action bar tries to display all of its tabs concurrently and make all the tabs equal in size based on the width

of the widest tab label. This is illustrated by the following screenshot:

When the ActionBar can't display all of the tabs, it will set up the tabs in a horizontally scrollable view. The user

may swipe left or right to see the remaining tabs. This screenshot from Google Play shows an example of this:

Each tab in the action bar should be associated with a fragment. When the user selects a tab, the application will

display the fragment that is associated with the tab. The ActionBar is not responsible for displaying the

appropriate fragment to the user. Instead, the ActionBar will notify an application about state changes in a tab

through a class that implements the ActionBar.ITabListener interface. This interface provides three callback

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/layouts/tab-layout/with-action-bar.md
https://developer.android.com/tools/support-library/features.html#v7-appcompat
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/

 Adding Tabs to the ActionBarAdding Tabs to the ActionBar

methods that Android will invoke when the state of the tab changes:

OnTabSelectedOnTabSelected - This method is called when the user selects the tab. It should display the fragment.

OnTabReselectedOnTabReselected - This method is called when the tab is already selected but is selected again by the

user. This callback is typically used to refresh/update the displayed fragment.

OnTabUnselectedOnTabUnselected - This method is called when the user selects another tab. This callback is used to

save the state in the displayed fragment before it disappears.

Xamarin.Android wraps the ActionBar.ITabListener with events on the ActionBar.Tab class. Applications may

assign event handlers to one or more of these events. There are three events (one for each method in

ActionBar.ITabListener) that an action bar tab will raise:

TabSelected

TabReselected

TabUnselected

The ActionBar is native to Android 3.0 (API level 11) and higher and is available to any Xamarin.Android

application that targets this API as a minimum.

The following steps illustrate how to add ActionBar tabs to an Android Activity:

ActionBar.NavigationMode = ActionBarNavigationMode.Tabs;
SetContentView(Resource.Layout.Main);

1. In the OnCreate method of an Activity – before initializing any UI widgets – an application must set the

NavigationMode on the ActionBar to ActionBar.NavigationModeTabs as shown in this code snippet:

2. Create a new tab using ActionBar.NewTab() .

3. Assign event handlers or provide a custom ActionBar.ITabListener implementation that will respond to

the events that are raised when the user interacts with the ActionBar tabs.

4. Add the tab that was created in the previous step to the ActionBar .

The following code is one example of using these steps to add tabs to an application that uses event handlers to

respond to state changes:

protected override void OnCreate(Bundle bundle)
{
 ActionBar.NavigationMode = ActionBarNavigationMode.Tabs;
 SetContentView(Resource.Layout.Main);

 ActionBar.Tab tab = ActionBar.NewTab();
 tab.SetText(Resources.GetString(Resource.String.tab1_text));
 tab.SetIcon(Resource.Drawable.tab1_icon);
 tab.TabSelected += (sender, args) => {
 // Do something when tab is selected
 };
 ActionBar.AddTab(tab);

 tab = ActionBar.NewTab();
 tab.SetText(Resources.GetString(Resource.String.tab2_text));
 tab.SetIcon(Resource.Drawable.tab2_icon);
 tab.TabSelected += (sender, args) => {
 // Do something when tab is selected
 };
 ActionBar.AddTab(tab);
}

 Event Handlers vs ActionBar.ITabListenerEvent Handlers vs ActionBar.ITabListener

 Backwards Compatibility for Older DevicesBackwards Compatibility for Older Devices

[Activity(Label = "@string/app_name", Theme = "@style/Theme.AppCompat", MainLauncher = true, Icon =
"@drawable/ic_launcher")]
public class MainActivity: ActionBarActivity

Applications should use event handlers and ActionBar.ITabListener for different scenarios. Event handlers do

offer a certain amount of syntactic convenience; they save you from having to create a class and implement

ActionBar.ITabListener . This convenience does come at a cost – Xamarin.Android performs this transformation

for you, creating one class and implementing ActionBar.ITabListener for you. This is fine when an application

has a limited number of tabs.

When dealing with many tabs, or sharing common functionality between ActionBar tabs, it can be more efficient

in terms of memory and performance to create a custom class that implements ActionBar.ITabListener , and

sharing a single instance of the class. This will reduce the number of GREF's that a Xamarin.Android application

is using.

The Android Support Library v7 AppCompat back ports ActionBar tabs to Android 2.1 (API level 7). Tabs are

accessible in a Xamarin.Android application once this component has been added to the project.

To use the ActionBar, an activity must subclass ActionBarActivity and use the AppCompat theme as shown in

the following code snippet:

An Activity may obtain a reference to its ActionBar from the ActionBarActivity.SupportingActionBar property.

The following code snippet illustrates an example of setting up the ActionBar in an Activity:

https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/

[Activity(Label = "@string/app_name", Theme = "@style/Theme.AppCompat", MainLauncher = true, Icon =
"@drawable/ic_launcher")]
public class MainActivity : ActionBarActivity, ActionBar.ITabListener
{
 static readonly string Tag = "ActionBarTabsSupport";

 public void OnTabReselected(ActionBar.Tab tab, FragmentTransaction ft)
 {
 // Optionally refresh/update the displayed tab.
 Log.Debug(Tag, "The tab {0} was re-selected.", tab.Text);
 }

 public void OnTabSelected(ActionBar.Tab tab, FragmentTransaction ft)
 {
 // Display the fragment the user should see
 Log.Debug(Tag, "The tab {0} has been selected.", tab.Text);
 }

 public void OnTabUnselected(ActionBar.Tab tab, FragmentTransaction ft)
 {
 // Save any state in the displayed fragment.
 Log.Debug(Tag, "The tab {0} as been unselected.", tab.Text);
 }

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SupportActionBar.NavigationMode = ActionBar.NavigationModeTabs;
 SetContentView(Resource.Layout.Main);
 }

 void AddTabToActionBar(int labelResourceId, int iconResourceId)
 {
 ActionBar.Tab tab = SupportActionBar.NewTab()
 .SetText(labelResourceId)
 .SetIcon(iconResourceId)
 .SetTabListener(this);
 SupportActionBar.AddTab(tab);
 }
}

 Summary

 Related Links

In this guide we discussed how to create a tabbed user interface in a Xamarin.Android using the ActionBar. We

covered how to add tabs to the ActionBar and how an Activity can interact with tab events via the

ActionBar.ITabListener interface. We also saw how the Android Support Library v7 AppCompat package

backports the ActionBar tabs to older versions of Android.

ActionBarTabs (sample)

Toolbar

Fragments

ActionBar

ActionBarActivity

Action Bar Pattern

Android v7 AppCompat

Xamarin.Android Support Library v7 AppCompat NuGet Package

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-actionbartabs
https://developer.android.com/guide/topics/ui/actionbar.html
https://developer.android.com/reference/android/support/v7/app/ActionBarActivity.html
https://developer.android.com/design/patterns/actionbar.html
https://developer.android.com/tools/support-library/features.html#v7-appcompat
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/

Xamarin.Android Controls (Widgets)
 7/8/2021 • 2 minutes to read • Edit Online

 Action Bar

 Auto Complete

 Buttons

Xamarin.Android exposes all of the native user interface controls (widgets) provided by Android. These controls

can be easily added to Xamarin.Android apps using the Android Designer or programatically via XML layout

files. Regardless of which method you choose, Xamarin.Android exposes all of the user interface object

properties and methods in C#. The following sections introduce the most common Android user interface

controls and explain how to incorporate them into Xamarin.Android apps.

ActionBar is a toolbar that displays the activity title, navigation interfaces, and other interactive items. Typically,

the action bar appears at the top of an activity's window.

AutoCompleteTextView is an editable text view element that shows completion suggestions automatically while

the user is typing. The list of suggestions is displayed in a drop down menu from which the user can choose an

item to replace the content of the edit box with.

Buttons are UI elements that the user taps to perform an action.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/index.md

 Calendar

 CardView

The Calendar class is used for converting a specific instance in time (a millisecond value that is offset from the

epoch) to values such as year, month, hour, day of the month, and the date of the next week. Calendar supports

a wealth of interaction options with calendar data, including the ability to read and write events, attendees, and

reminders. By using the calendar provider in your application, data you add through the API will appear in the

built-in calendar app that comes with Android.

CardView is a UI component that presents text and image content in views that resemble cards. CardView is

implemented as a FrameLayout widget with rounded corners and a shadow. Typically, a CardView is used to

present a single row item in a ListView or GridView view group.

 Edit Text

 Gallery

 Navigation Bar

 Pickers

EditText is a UI element that is used for entering and modifying text.

Gallery is a layout widget that is used to display items in a horizontally scrolling list; it positions the current

selection at the center of the view.

The Navigation Bar provides navigation controls on devices that do not include hardware buttons for HomeHome,

BackBack , and MenuMenu.

Pickers are UI elements that allow the user to pick a date or a time by using dialogs that are provided by

Android.

 Popup Menu
PopupMenu is used for displaying popup menus that are attached to a particular view.

 RatingBar

 Spinner

 Switch

A RatingBar is a UI element that displays a rating in stars.

Spinner is a UI element that provides a quick way to select one value from a set. It is similar to a drop-down list.

Switch is a UI element that allows a user to toggle between two states, such as ON or OFF. The Switch default

value is OFF.

 TextureView

 ToolBar

TextureView is a view that uses hardware-accelerated 2D rendering to enable a video or OpenGL content

stream to be displayed.

The Toolbar widget (introduced in Android 5.0 Lollipop) can be thought of as a generalization of the action bar

interface – it is intended to replace the action bar. The Toolbar can be used anywhere in an app layout, and it is

much more customizable than an action bar.

 ViewPager

 WebView

The ViewPager is a layout manager that allows the user to flip left and right through pages of data.

WebView is a UI element that allows you to create your own window for viewing web pages (or even develop a

complete browser).

ActionBar for Xamarin.Android
 7/8/2021 • 3 minutes to read • Edit Online

 Action Bar Tabs

this.ActionBar.NavigationMode = ActionBarNavigationMode.Tabs;

When using TabActivity , the code to create the tab icons has no effect when run against the Android 4.0

framework. Although functionally it works as it did in versions of Android prior to 2.3, the TabActivity class

itself has been deprecated in 4.0. A new way to create a tabbed interface has been introduced that uses the

Action Bar, which we'll discuss next.

The Action Bar includes support for adding tabbed interfaces in Android 4.0. The following screenshot shows an

example of such an interface.

To create tabs in the Action Bar, we first need to set its NavigationMode property to support tabs. In Android 4, an

ActionBar property is available on the Activity class, which we can use to set the NavigationMode like this:

Once this is done, we can create a tab by calling the NewTab method on the Action Bar. With this tab instance, we

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/action-bar.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/action-bar-images/25-actionbartabs.png#lightbox

var tab = this.ActionBar.NewTab ();
tab.SetText (tabText);
tab.SetIcon (Resource.Drawable.ic_tab_white);

class SampleTabFragment: Fragment
{
 public override View OnCreateView (LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 base.OnCreateView (inflater, container, savedInstanceState);

 var view = inflater.Inflate (
 Resource.Layout.Tab, container, false);

 var sampleTextView =
 view.FindViewById<TextView> (Resource.Id.sampleTextView);
 sampleTextView.Text = "sample fragment text";

 return view;
 }
}

tab.TabSelected += delegate(object sender, ActionBar.TabEventArgs e) {
 e.FragmentTransaction.Add (Resource.Id.fragmentContainer,
 new SampleTabFragment ());
};

this.ActionBar.AddTab (tab);

 ShareActionProvider

 Image Sharing ExampleImage Sharing Example

can call the SetText and SetIcon methods to set the tab's label text and icon; these calls are made in order in

the code shown below:

Before we can add the tab however, we need to handle the TabSelected event. In this handler, we can create the

content for the tab. Action Bar tabs are designed to work with Fragments, which are classes that represent a

portion of the user interface in an Activity. For this example, the Fragment's view contains a single TextView ,

which we inflate in our Fragment subclass like this:

The event argument passed in the TabSelected event is of type TabEventArgs , which includes a

FragmentTransaction property that we can use to add the fragment as shown below:

Finally, we can add the tab to the Action Bar by calling the AddTab method as shown in this code:

For the complete example, see the HelloTabsICS project in the sample code for this document.

The ShareActionProvider class enables a sharing action to take place from an Action Bar. It takes care of creating

an action view with a list of apps that can handle a sharing Intent and keeps a history of the previously used

applications for easy access to them later from the Action Bar. This allows applications to share data via a user

experience that's consistent throughout Android.

For example, below is a screenshot of an Action Bar with a menu item to share an image (taken from the

ShareActionProvider sample). When the user taps the menu item on the Action Bar, the ShareActionProvider

loads the application to handle an Intent that is associated with the ShareActionProvider . In this example, the

messaging application has been previously used, so it is presented on the Action Bar.

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/shareactionproviderdemo

When the user clicks on the item in the Action Bar, the messaging app that contains the shared image is

launched, as shown below:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/action-bar-images/09-shareactionprovider.png#lightbox

 Specifying the action Provider ClassSpecifying the action Provider Class

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/shareMenuItem"
 android:showAsAction="always"
 android:title="@string/sharePicture"
 android:actionProviderClass="android.widget.ShareActionProvider" />
</menu>

 Inflating the MenuInflating the Menu

To use the ShareActionProvider , set the android:actionProviderClass attribute on a menu item in the XML for

the Action Bar's menu as follows:

To inflate the menu, we override OnCreateOptionsMenu in the Activity subclass. Once we have a reference to the

menu, we can get the ShareActionProvider from the ActionProvider property of the menu item and then use

the SetShareIntent method to set the ShareActionProvider 's Intent, as shown below:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/action-bar-images/10-messagewithimage.png#lightbox

public override bool OnCreateOptionsMenu (IMenu menu)
{
 MenuInflater.Inflate (Resource.Menu.ActionBarMenu, menu);

 var shareMenuItem = menu.FindItem (Resource.Id.shareMenuItem);
 var shareActionProvider =
 (ShareActionProvider)shareMenuItem.ActionProvider;
 shareActionProvider.SetShareIntent (CreateIntent ());
}

 Creating the IntentCreating the Intent

Intent CreateIntent ()
{
 var sendPictureIntent = new Intent (Intent.ActionSend);
 sendPictureIntent.SetType ("image/*");
 var uri = Android.Net.Uri.FromFile (GetFileStreamPath ("monkey.png"));
 sendPictureIntent.PutExtra (Intent.ExtraStream, uri);
 return sendPictureIntent;
}

 Related Links

The ShareActionProvider will use the Intent, passed to the SetShareIntent method in the above code, to launch

the appropriate Activity. In this case we create an Intent to send an image by using the following code:

The image in the code example above is included as an asset with the application and copied to a publicly

accessible location when the Activity is created, so it will be accessible to other applications, such as the

messaging app. The sample code that accompanies this article contains the full source of this example,

illustrating its use.

Hello Tabs ICS (sample)

ShareActionProvider Demo (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/hellotabsics
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/shareactionproviderdemo

Auto Complete for Xamarin.Android
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Country" />
 <AutoCompleteTextView android:id="@+id/autocomplete_country"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="5dp"/>
</LinearLayout>

 Tutorial

AutoCompleteTextView is an editable text view element that shows completion suggestions automatically while

the user is typing. The list of suggestions is displayed in a drop down menu from which the user can choose an

item to replace the content of the edit box with.

To create a text entry widget that provides auto-complete suggestions, use the AutoCompleteTextView widget.

Suggestions are received from a collection of strings associated with the widget through an ArrayAdapter .

In this tutorial, you will create a AutoCompleteTextView widget that provides suggestions for a country name.

The TextView is a label that introduces the AutoCompleteTextView widget.

Start a new project named HelloAutoComplete.

Create an XML file named list_item.xml and save it inside the Resources/LayoutResources/Layout folder. Set the Build Action

of this file to AndroidResource . Edit the file to look like this:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/auto-complete.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:textSize="16sp"
 android:textColor="#000">
</TextView>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Country" />
 <AutoCompleteTextView android:id="@+id/autocomplete_country"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="5dp"/>
</LinearLayout>

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // Set our view from the "Main" layout resource
 SetContentView (Resource.Layout.Main);

 AutoCompleteTextView textView = FindViewById<AutoCompleteTextView> (Resource.Id.autocomplete_country);
 var adapter = new ArrayAdapter<String> (this, Resource.Layout.list_item, COUNTRIES);

 textView.Adapter = adapter;
}

This file defines a simple TextView that will be used for each item that appears in the list of suggestions.

Open Resources/Layout/Main.axmlResources/Layout/Main.axml and insert the following:

Open MainActivity.csMainActivity.cs and insert the following code for the OnCreate() method:

After the content view is set to the main.xml layout, the AutoCompleteTextView widget is captured from the

layout with FindViewById . A new ArrayAdapter is then initialized to bind the list_item.xml layout to each list

item in the COUNTRIES string array (defined in the next step). Finally, SetAdapter() is called to associate the

ArrayAdapter with the AutoCompleteTextView widget so that the string array will populate the list of suggestions.

Inside the MainActivity class, add the string array:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.findviewbyid
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview

static string[] COUNTRIES = new string[] {
 "Afghanistan", "Albania", "Algeria", "American Samoa", "Andorra",
 "Angola", "Anguilla", "Antarctica", "Antigua and Barbuda", "Argentina",
 "Armenia", "Aruba", "Australia", "Austria", "Azerbaijan",
 "Bahrain", "Bangladesh", "Barbados", "Belarus", "Belgium",
 "Belize", "Benin", "Bermuda", "Bhutan", "Bolivia",
 "Bosnia and Herzegovina", "Botswana", "Bouvet Island", "Brazil", "British Indian Ocean Territory",
 "British Virgin Islands", "Brunei", "Bulgaria", "Burkina Faso", "Burundi",
 "Cote d'Ivoire", "Cambodia", "Cameroon", "Canada", "Cape Verde",
 "Cayman Islands", "Central African Republic", "Chad", "Chile", "China",
 "Christmas Island", "Cocos (Keeling) Islands", "Colombia", "Comoros", "Congo",
 "Cook Islands", "Costa Rica", "Croatia", "Cuba", "Cyprus", "Czech Republic",
 "Democratic Republic of the Congo", "Denmark", "Djibouti", "Dominica", "Dominican Republic",
 "East Timor", "Ecuador", "Egypt", "El Salvador", "Equatorial Guinea", "Eritrea",
 "Estonia", "Ethiopia", "Faeroe Islands", "Falkland Islands", "Fiji", "Finland",
 "Former Yugoslav Republic of Macedonia", "France", "French Guiana", "French Polynesia",
 "French Southern Territories", "Gabon", "Georgia", "Germany", "Ghana", "Gibraltar",
 "Greece", "Greenland", "Grenada", "Guadeloupe", "Guam", "Guatemala", "Guinea", "Guinea-Bissau",
 "Guyana", "Haiti", "Heard Island and McDonald Islands", "Honduras", "Hong Kong", "Hungary",
 "Iceland", "India", "Indonesia", "Iran", "Iraq", "Ireland", "Israel", "Italy", "Jamaica",
 "Japan", "Jordan", "Kazakhstan", "Kenya", "Kiribati", "Kuwait", "Kyrgyzstan", "Laos",
 "Latvia", "Lebanon", "Lesotho", "Liberia", "Libya", "Liechtenstein", "Lithuania", "Luxembourg",
 "Macau", "Madagascar", "Malawi", "Malaysia", "Maldives", "Mali", "Malta", "Marshall Islands",
 "Martinique", "Mauritania", "Mauritius", "Mayotte", "Mexico", "Micronesia", "Moldova",
 "Monaco", "Mongolia", "Montserrat", "Morocco", "Mozambique", "Myanmar", "Namibia",
 "Nauru", "Nepal", "Netherlands", "Netherlands Antilles", "New Caledonia", "New Zealand",
 "Nicaragua", "Niger", "Nigeria", "Niue", "Norfolk Island", "North Korea", "Northern Marianas",
 "Norway", "Oman", "Pakistan", "Palau", "Panama", "Papua New Guinea", "Paraguay", "Peru",
 "Philippines", "Pitcairn Islands", "Poland", "Portugal", "Puerto Rico", "Qatar",
 "Reunion", "Romania", "Russia", "Rwanda", "Sqo Tome and Principe", "Saint Helena",
 "Saint Kitts and Nevis", "Saint Lucia", "Saint Pierre and Miquelon",
 "Saint Vincent and the Grenadines", "Samoa", "San Marino", "Saudi Arabia", "Senegal",
 "Seychelles", "Sierra Leone", "Singapore", "Slovakia", "Slovenia", "Solomon Islands",
 "Somalia", "South Africa", "South Georgia and the South Sandwich Islands", "South Korea",
 "Spain", "Sri Lanka", "Sudan", "Suriname", "Svalbard and Jan Mayen", "Swaziland", "Sweden",
 "Switzerland", "Syria", "Taiwan", "Tajikistan", "Tanzania", "Thailand", "The Bahamas",
 "The Gambia", "Togo", "Tokelau", "Tonga", "Trinidad and Tobago", "Tunisia", "Turkey",
 "Turkmenistan", "Turks and Caicos Islands", "Tuvalu", "Virgin Islands", "Uganda",
 "Ukraine", "United Arab Emirates", "United Kingdom",
 "United States", "United States Minor Outlying Islands", "Uruguay", "Uzbekistan",
 "Vanuatu", "Vatican City", "Venezuela", "Vietnam", "Wallis and Futuna", "Western Sahara",
 "Yemen", "Yugoslavia", "Zambia", "Zimbabwe"
};

This is the list of suggestions that will be provided in a drop-down list when the user types into the

AutoCompleteTextView widget.

Run the application. As you type, you should see something like this:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/auto-complete-images/helloautocomplete.png#lightbox

More Information

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="countries_array">
 <item>Bahrain</item>
 <item>Bangladesh</item>
 <item>Barbados</item>
 <item>Belarus</item>
 <item>Belgium</item>
 <item>Belize</item>
 <item>Benin</item>
 </string-array>
</resources>

string[] countries = Resources.GetStringArray (Resource.array.countries_array);
var adapter = new ArrayAdapter<String> (this, Resource.layout.list_item, countries);

 ReferencesReferences

Note that using a hard-coded string array is not a recommended design practice because your application code

should focus on behavior, not content. Application content such as strings should be externalized from the code

to make modifications to the content easier and facilitate localization of the content. The hard-coded strings are

used in this tutorial only to make it simple and focus on the AutoCompleteTextView widget. Instead, your

application should declare such string arrays in an XML file. This can be done with a <string-array> resource in

your project res/values/strings.xml file. For example:

To use these resource strings for the ArrayAdapter , replace the original ArrayAdapter constructor line with the

following:

AutoCompleteTextView Recipe – Xamarin.Android sample project for the AutoCompleteTextView

ArrayAdapter

AutoCompleteTextView

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License. This tutorial is based

on the Android Auto Complete tutorial*.

https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://github.com/xamarin/recipes/tree/master/Recipes/android/controls/autocomplete_text_view/add_an_autocomplete_text_input
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.autocompletetextview
https://creativecommons.org/licenses/by/2.5/
https://developer.android.com/resources/tutorials/views/hello-autocomplete.html

Buttons in Xamarin.Android
 10/28/2019 • 2 minutes to read • Edit Online

The Button class is used to represent various different styles of button in Android screens. This section

introduces the different options for working with buttons in Xamarin.Android:

RadioButton allows the user to select one option from a set.

ToggleButton allow the user to flip (toggle) a setting between two states.

CheckBox is a special type of button that can be either checked or unchecked to indicate one of two

possible states.

You can also create a custom button that uses an image instead of text.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/buttons/index.md

RadioButton
 10/29/2019 • 2 minutes to read • Edit Online

<RadioGroup
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <RadioButton android:id="@+id/radio_red"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Red" />
 <RadioButton android:id="@+id/radio_blue"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Blue" />
</RadioGroup>

private void RadioButtonClick (object sender, EventArgs e)
{
 RadioButton rb = (RadioButton)sender;
 Toast.MakeText (this, rb.Text, ToastLength.Short).Show ();
}

RadioButton radio_red = FindViewById<RadioButton>(Resource.Id.radio_red);
RadioButton radio_blue = FindViewById<RadioButton>(Resource.Id.radio_blue);

radio_red.Click += RadioButtonClick;
radio_blue.Click += RadioButtonClick;

In this section, you will create two mutually-exclusive radio buttons (enabling one disables the other), using the

RadioGroup and RadioButton widgets. When either radio button is pressed, a toast message will be displayed.

Open the Resources/layout/Main.axmlResources/layout/Main.axml file and add two RadioButton s, nested in a RadioGroup (inside the

LinearLayout):

It's important that the RadioButton s are grouped together by the RadioGroup element so that no more than one

can be selected at a time. This logic is automatically handled by the Android system. When one RadioButton

within a group is selected, all others are automatically deselected.

To do something when each RadioButton is selected, we need to write an event handler :

First, the sender that is passed in is cast into a RadioButton. Then a Toast message displays the selected radio

button's text.

Now, at the bottom of the OnCreate() method, add the following:

This captures each of the RadioButton s from the layout and adds the newly-created event handlerto each.

Run the application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/buttons/radio-button.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiogroup
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiogroup
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiogroup
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.radiobutton

TIPTIP
If you need to change the state yourself (such as when loading a saved CheckBoxPreference), use the Checked

property setter or Toggle() method.

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://docs.microsoft.com/en-us/dotnet/api/android.preferences.checkboxpreference
https://docs.microsoft.com/en-us/dotnet/api/android.widget.compoundbutton.checked#android_widget_compoundbutton_checked
https://docs.microsoft.com/en-us/dotnet/api/android.widget.compoundbutton.toggle#android_widget_compoundbutton_toggle
https://creativecommons.org/licenses/by/2.5/

ToggleButton
 7/8/2021 • 2 minutes to read • Edit Online

ToggleButton togglebutton = FindViewById<ToggleButton>(Resource.Id.togglebutton);

togglebutton.Click += (o, e) => {
 // Perform action on clicks
 if (togglebutton.Checked)
 Toast.MakeText(this, "Checked", ToastLength.Short).Show ();
 else
 Toast.MakeText(this, "Not checked", ToastLength.Short).Show ();
};

TIPTIP

 Related Links

In this section, you'll create a button used specifically for toggling between two states, using the ToggleButton

widget. This widget is an excellent alternative to radio buttons if you have two simple states that are mutually

exclusive ("on" and "off", for example). Android 4.0 (API level 14) introduced an alternative to the toggle button

known as a Switch .

An example of a ToggleButtonToggleButton can be seen in the left hand pair of images, while the right hand pair of images

presents an example of a SwitchSwitch:

Which control an application uses is a matter of style. Both widgets are functionally equivalent.

Open the Resources/layout/Main.axmlResources/layout/Main.axml file and add the ToggleButton element (inside the LinearLayout):

To do something when the state is changed, add the following code to the end of the OnCreate() method:

This captures the ToggleButton element from the layout, and handles the Click event, which defines the action

to perform when the button is clicked. In this example, the method checks the new state of the button, then

shows a Toast message that indicates the current state.

Notice that the ToggleButton handles its own state change between checked and unchecked, so you just ask

which it is.

Run the application.

If you need to change the state yourself (such as when loading a saved CheckBoxPreference), use the Checked

property setter or Toggle() method.

ToggleButton

Switch

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/buttons/toggle-button.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.togglebutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.switch
https://docs.microsoft.com/en-us/dotnet/api/android.widget.togglebutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.togglebutton
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://docs.microsoft.com/en-us/dotnet/api/android.widget.togglebutton
https://docs.microsoft.com/en-us/dotnet/api/android.preferences.checkboxpreference
https://docs.microsoft.com/en-us/dotnet/api/android.widget.compoundbutton.checked#android_widget_compoundbutton_checked
https://docs.microsoft.com/en-us/dotnet/api/android.widget.compoundbutton.toggle#android_widget_compoundbutton_toggle
https://developer.android.com/reference/android/widget/ToggleButton.html
https://developer.android.com/reference/android/widget/Switch.html

CheckBox
 10/29/2019 • 2 minutes to read • Edit Online

<CheckBox android:id="@+id/checkbox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="check it out" />

CheckBox checkbox = FindViewById<CheckBox>(Resource.Id.checkbox);

checkbox.Click += (o, e) => {
 if (checkbox.Checked)
 Toast.MakeText (this, "Selected", ToastLength.Short).Show ();
 else
 Toast.MakeText (this, "Not selected", ToastLength.Short).Show ();
};

TIPTIP

In this section, you will create a checkbox for selecting items, using the CheckBox widget. When the checkbox is

pressed, a toast message will indicate the current state of the checkbox.

Open the Resources/layout/Main.axmlResources/layout/Main.axml file and add the CheckBox element (inside the LinearLayout):

To do something when the state is changed, add the following code to the end of the OnCreate() method:

This captures the CheckBox element from the layout, then handles the Click event, which defines the action to be

made when the checkbox is clicked. When clicked, the Checked property is called to check the new state of the

check box. If it has been checked, then a Toast displays the message "Selected", otherwise it displays "Not

selected". The CheckBox handles its own state changes, so you only need to query the current state.

Run it.

If you need to change the state yourself (such as when loading a saved CheckBoxPreference , use the Checked

property setter or Toggle() method.

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/buttons/check-box.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.checkbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.checkbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.checkbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.compoundbutton.checked#android_widget_compoundbutton_checked
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://docs.microsoft.com/en-us/dotnet/api/android.widget.checkbox
https://docs.microsoft.com/en-us/dotnet/api/android.preferences.checkboxpreference
https://docs.microsoft.com/en-us/dotnet/api/android.widget.compoundbutton.checked#android_widget_compoundbutton_checked
https://docs.microsoft.com/en-us/dotnet/api/android.widget.compoundbutton.toggle#android_widget_compoundbutton_toggle
https://creativecommons.org/licenses/by/2.5/

Custom Button
 7/8/2021 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/android_pressed"
 android:state_pressed="true" />
 <item android:drawable="@drawable/android_focused"
 android:state_focused="true" />
 <item android:drawable="@drawable/android_normal" />
</selector>

NOTENOTE

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="10dp"
 android:background="@drawable/android_button" />

In this section, you will create a button with a custom image instead of text, using the Button widget and an

XML file that defines three different images to use for the different button states. When the button is pressed, a

short message will be displayed.

Right-click and download the three images below, then copy them to the Resources/drawableResources/drawable directory of

your project. These will be used for the different button states.

Create a new file in the Resources/drawableResources/drawable directory named android_button.xmlandroid_button.xml . Insert the following

XML:

This defines a single drawable resource, which will change its image based on the current state of the button.

The first <item> defines android_pressed.pngandroid_pressed.png as the image when the button is pressed (it's been activated);

the second <item> defines android_focused.pngandroid_focused.png as the image when the button is focused (when the button

is highlighted using the trackball or directional pad); and the third <item> defines android_normal.pngandroid_normal.png as the

image for the normal state (when neither pressed nor focused). This XML file now represents a single drawable

resource and when referenced by a Button for its background, the image displayed will change based on these

three states.

The order of the <item> elements is important. When this drawable is referenced, the <item> s are traversed in-order

to determine which one is appropriate for the current button state. Because the "normal" image is last, it is only applied

when the conditions android:state_pressed and android:state_focused have both evaluated false.

Open the Resources/layout/Main.axmlResources/layout/Main.axml file and add the Button element:

The android:background attribute specifies the drawable resource to use for the button background (which,

when saved at Resources/drawable/android.xmlResources/drawable/android.xml , is referenced as @drawable/android). This replaces the

normal background image used for buttons throughout the system. In order for the drawable to change its

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/buttons/custom-button.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/buttons/custom-button-images/android-normal.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/buttons/custom-button-images/android-focused.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/buttons/custom-button-images/android-pressed.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button

Button button = FindViewById<Button>(Resource.Id.button);

button.Click += (o, e) => {
 Toast.MakeText (this, "Beep Boop", ToastLength.Short).Show ();
};

image based on the button state, the image must be applied to the background.

To make the button do something when pressed, add the following code at the end of the OnCreate() method:

This captures the Button from the layout, then adds a Toast message to be displayed when the Button is

clicked.

Now run the application.

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
https://creativecommons.org/licenses/by/2.5/

Xamarin.Android Calendar
 7/8/2021 • 7 minutes to read • Edit Online

 Calendar API

 Adding Permissions

 Using the Calendar Contract

 Listing Calendars

var calendarsUri = CalendarContract.Calendars.ContentUri;

A new set of calendar APIs introduced in Android 4 supports applications that are designed to read or write data

to the calendar provider. These APIs support a wealth of interaction options with calendar data, including the

ability to read and write events, attendees, and reminders. By using the calendar provider in your application,

data you add through the API will appear in the built-in calendar app that comes with Android 4.

When working with the new calendar APIs in your application, the first thing you need to do is add the

appropriate permissions to the Android manifest. The permissions you need to add are

android.permisson.READ_CALENDAR and android.permission.WRITE_CALENDAR , depending on whether you are

reading and/or writing calendar data.

Once you set the permissions, you can interact with calendar data by using the CalendarContract class. This

class provides a data model that applications can use when they interact with the calendar provider. The

CalendarContract allows applications to resolve the Uris to calendar entities, such as calendars and events. It

also provides a way to interact with various fields in each entity, such as a calendar's name and ID, or an event's

start and end date.

Let's look at an example that uses the Calendar API. In this example, we'll examine how to enumerate calendars

and their events, as well as how to add a new event to a calendar.

First, let's examine how to enumerate the calendars that have been registered in the calendar app. To do this, we

can instantiate a CursorLoader . Introduced in Android 3.0 (API 11), CursorLoader is the preferred way to

consume a ContentProvider . At a minimum, we'll need to specify the content Uri for calendars and the columns

we want to return; this column specification is known as a projection.

Calling the CursorLoader.LoadInBackground method allows us to query a content provider for data, such as the

calendar provider. LoadInBackground performs the actual load operation and returns a Cursor with the results

of the query.

The CalendarContract assists us in specifying both the content Uri and the projection. To get the content Uri

for querying calendars, we can simply use the CalendarContract.Calendars.ContentUri property like this:

Using the CalendarContract to specify which calendar columns we want is equally simple. We just add fields in

the CalendarContract.Calendars.InterfaceConsts class to an array. For example, the following code includes the

calendar's ID, display name, and account name:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/calendar.md

string[] calendarsProjection = {
 CalendarContract.Calendars.InterfaceConsts.Id,
 CalendarContract.Calendars.InterfaceConsts.CalendarDisplayName,
 CalendarContract.Calendars.InterfaceConsts.AccountName
};

var loader = new CursorLoader(this, calendarsUri, calendarsProjection, null, null, null);
var cursor = (ICursor)loader.LoadInBackground();

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
 <ListView
 android:id="@android:id/android:list"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
 <TextView android:id="@+id/calDisplayName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="16dip" />
 <TextView android:id="@+id/calAccountName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="12dip" />
</LinearLayout>

The Id is important to include if you are using a SimpleCursorAdapter to bind the data to the UI, as we will see

shortly. With the content Uri and projection in place, we instantiate the CursorLoader and call the

CursorLoader.LoadInBackground method to return a cursor with the calendar data as shown below:

The UI for this example contains a ListView , with each item in the list representing a single calendar. The

following XML shows the markup that includes the ListView :

Also, we need to specify the UI for each list item, which we place in a separate XML file as follows:

From this point on, it's just normal Android code to bind the data from the cursor to the UI. We'll use a

SimpleCursorAdapter as follows:

string[] sourceColumns = {
 CalendarContract.Calendars.InterfaceConsts.CalendarDisplayName,
 CalendarContract.Calendars.InterfaceConsts.AccountName };

int[] targetResources = {
 Resource.Id.calDisplayName, Resource.Id.calAccountName };

SimpleCursorAdapter adapter = new SimpleCursorAdapter (this,
 Resource.Layout.CalListItem, cursor, sourceColumns, targetResources);

ListAdapter = adapter;

 Listing Calendar Events

In the above code, the adapter takes the columns specified in the sourceColumns array and writes them to the

user interface elements in the targetResources array for each calendar entry in the cursor. The Activity used

here is a subclass of ListActivity ; it includes the ListAdapter property to which we set the adapter.

Here's a screenshot showing the end result, with the calendar info displayed in the ListView :

Next let's look at how to enumerate the events for a given calendar. Building upon the example above, we'll

present a list of events when the user selects one of the calendars. Therefore, we'll need to handle the item

selection in the previous code:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/calendar-images/11-calendar.png#lightbox

ListView.ItemClick += (sender, e) => {
 int i = (e as ItemEventArgs).Position;

 cursor.MoveToPosition(i);
 int calId =
 cursor.GetInt (cursor.GetColumnIndex (calendarsProjection [0]));

 var showEvents = new Intent(this, typeof(EventListActivity));
 showEvents.PutExtra("calId", calId);
 StartActivity(showEvents);
};

_calId = Intent.GetIntExtra ("calId", -1);

var eventsUri = CalendarContract.Events.ContentUri;

string[] eventsProjection = {
 CalendarContract.Events.InterfaceConsts.Id,
 CalendarContract.Events.InterfaceConsts.Title,
 CalendarContract.Events.InterfaceConsts.Dtstart
};

var loader = new CursorLoader(this, eventsUri, eventsProjection,
 String.Format ("calendar_id={0}", _calId), null, "dtstart ASC");
var cursor = (ICursor)loader.LoadInBackground();

string[] sourceColumns = {
 CalendarContract.Events.InterfaceConsts.Title,
 CalendarContract.Events.InterfaceConsts.Dtstart };

int[] targetResources = {
 Resource.Id.eventTitle,
 Resource.Id.eventStartDate };

var adapter = new SimpleCursorAdapter (this, Resource.Layout.EventListItem,
 cursor, sourceColumns, targetResources);

adapter.ViewBinder = new ViewBinder ();
ListAdapter = adapter;

In this code, we're creating an Intent to open an Activity of type EventListActivity , passing the calendar's ID in

the Intent. We will need the ID to know which calendar to query for events. In the EventListActivity 's OnCreate

method, we can retrieve the ID from the Intent as shown below:

Now let's query events for this calendar ID. The process to query for events is similar to the way we queried for

a list of calendars earlier, only this time we'll work with the CalendarContract.Events class. The following code

creates a query to retrieve events:

In this code, we first get the content Uri for events from the CalendarContract.Events.ContentUri property.

Then we specify the event columns we want to retrieve in the eventsProjection array. Finally, we instantiate a

CursorLoader with this information and call the loader's LoadInBackground method to return a Cursor with the

event data.

To display the event data in the UI, we can use markup and code just like we did before to display the list of

calendars. Again, we use SimpleCursorAdapter to bind the data to a ListView as shown in the following code:

The main difference between this code and the code that we used earlier to show the calendar list is the use of a

ViewBinder , which is set on the line:

adapter.ViewBinder = new ViewBinder ();

class ViewBinder : Java.Lang.Object, SimpleCursorAdapter.IViewBinder
{
 public bool SetViewValue (View view, Android.Database.ICursor cursor,
 int columnIndex)
 {
 if (columnIndex == 2) {
 long ms = cursor.GetLong (columnIndex);

 DateTime date = new DateTime (1970, 1, 1, 0, 0, 0,
 DateTimeKind.Utc).AddMilliseconds (ms).ToLocalTime ();

 TextView textView = (TextView)view;
 textView.Text = date.ToLongDateString ();

 return true;
 }
 return false;
 }
}

The ViewBinder class allows us to further control how we bind values to views. In this case, we use it to convert

the event start time from milliseconds to a date string, as shown in the following implementation:

This displays a list of events as shown below:

 Adding a Calendar Event
We've seen how to read calendar data. Now let's see how to add an event to a calendar. For this to work, be sure

to include the android.permission.WRITE_CALENDAR permission we mentioned earlier. To add an event to a

calendar, we will:

1. Create a ContentValues instance.

2. Use keys from the CalendarContract.Events.InterfaceConsts class to populate the ContentValues instance.

3. Set the time zones for the event start and end times.

4. Use a ContentResolver to insert the event data into the calendar.

The code below illustrates these steps:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/calendar-images/12-events.png#lightbox

ContentValues eventValues = new ContentValues ();

eventValues.Put (CalendarContract.Events.InterfaceConsts.CalendarId,
 _calId);
eventValues.Put (CalendarContract.Events.InterfaceConsts.Title,
 "Test Event from M4A");
eventValues.Put (CalendarContract.Events.InterfaceConsts.Description,
 "This is an event created from Xamarin.Android");
eventValues.Put (CalendarContract.Events.InterfaceConsts.Dtstart,
 GetDateTimeMS (2011, 12, 15, 10, 0));
eventValues.Put (CalendarContract.Events.InterfaceConsts.Dtend,
 GetDateTimeMS (2011, 12, 15, 11, 0));

eventValues.Put(CalendarContract.Events.InterfaceConsts.EventTimezone,
 "UTC");
eventValues.Put(CalendarContract.Events.InterfaceConsts.EventEndTimezone,
 "UTC");

var uri = ContentResolver.Insert (CalendarContract.Events.ContentUri,
 eventValues);

long GetDateTimeMS (int yr, int month, int day, int hr, int min)
{
 Calendar c = Calendar.GetInstance (Java.Util.TimeZone.Default);

 c.Set (Java.Util.CalendarField.DayOfMonth, 15);
 c.Set (Java.Util.CalendarField.HourOfDay, hr);
 c.Set (Java.Util.CalendarField.Minute, min);
 c.Set (Java.Util.CalendarField.Month, Calendar.December);
 c.Set (Java.Util.CalendarField.Year, 2011);

 return c.TimeInMillis;
}

Note that if we do not set the time zone, an exception of type Java.Lang.IllegalArgumentException will be

thrown. Because event time values must be expressed in milliseconds since epoch, we create a GetDateTimeMS

method (in EventListActivity) to convert our date specifications into millisecond format:

If we add a button to the event list UI and run the above code in the button's click event handler, the event is

added to the calendar and updated in our list as shown below:

If we open the calendar app, then we will see that the event is written there as well:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/calendar-images/13.png#lightbox

 Related Links

As you can see, Android allows powerful and easy access to retrieve and persist calendar data, allowing

applications to seamlessly integrate calendar capabilities.

Calendar Demo (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/calendar-images/14.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/calendardemo

Xamarin.Android CardView
 7/8/2021 • 8 minutes to read • Edit Online

 Overview

The Cardview widget is a UI component that presents text and image content in views that resemble cards. This

guide explains how to use and customize CardView in Xamarin.Android applications while maintaining

backward compatibility with earlier versions of Android.

The Cardview widget, introduced in Android 5.0 (Lollipop), is a UI component that presents text and image

content in views that resemble cards. CardView is implemented as a FrameLayout widget with rounded corners

and a shadow. Typically, a CardView is used to present a single row item in a ListView or GridView view group.

For example, the following screen shot is an example of a travel reservation app that implements CardView -

based travel destination cards in a scrollable ListView :

This guide explains how to add the CardView package to your Xamarin.Android project, how to add CardView to

your layout, and how to customize the appearance of CardView in your app. In addition, this guide provides a

detailed list of CardView attributes that you can change, including attributes to help you use CardView on

versions of Android earlier than Android 5.0 Lollipop.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/card-view.md

 Requirements

 Introducing CardView

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_horizontal"
 android:padding="5dp">
 <android.support.v7.widget.CardView
 android:layout_width="fill_parent"
 android:layout_height="245dp"
 android:layout_gravity="center_horizontal">
 <TextView
 android:text="Basic CardView"
 android:layout_marginTop="0dp"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:layout_centerVertical="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true" />
 </android.support.v7.widget.CardView>
</LinearLayout>

The following is required to use new Android 5.0 and later features (including CardView) in Xamarin-based

apps:

Xamarin.AndroidXamarin.Android – Xamarin.Android 4.20 or later must be installed and configured with either Visual

Studio or Visual Studio for Mac.

Android SDKAndroid SDK – Android 5.0 (API 21) or later must be installed via the Android SDK Manager.

Java JDK 1.8Java JDK 1.8 – JDK 1.7 can be used if you are specifically targeting API level 23 and earlier. JDK 1.8 is

available from Oracle.

Your app must also include the Xamarin.Android.Support.v7.CardView package. To add the

Xamarin.Android.Support.v7.CardView package in Visual Studio for Mac:

1. Open your project, right-click PackagesPackages and select Add PackagesAdd Packages .

2. In the Add PackagesAdd Packages dialog, search for CardViewCardView .

3. Select Xamarin Suppor t L ibrar y v7 CardViewXamarin Suppor t L ibrar y v7 CardView , then click Add PackageAdd Package.

To add the Xamarin.Android.Support.v7.CardView package in Visual Studio:

1. Open your project, right-click the ReferencesReferences node (in the Solution ExplorerSolution Explorer pane) and select ManageManage

NuGet Packages...NuGet Packages... .

2. When the Manage NuGet PackagesManage NuGet Packages dialog is displayed, enter CardViewCardView in the search box.

3. When Xamarin Suppor t L ibrar y v7 CardViewXamarin Suppor t L ibrar y v7 CardView appears, click InstallInstall .

To learn how to configure an Android 5.0 app project, see Setting Up an Android 5.0 Project. For more

information about installing NuGet packages, see Walkthrough: Including a NuGet in your project.

The default CardView resembles a white card with minimally rounded corners and a slight shadow. The

following example Main.axmlMain.axml layout displays a single CardView widget that contains a TextView :

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://docs.microsoft.com/en-us/visualstudio/mac/nuget-walkthrough

 Customizing CardView

 xmlns:cardview="http://schemas.android.com/apk/res-auto"

If you use this XML to replace the existing contents of Main.axmlMain.axml , be sure to comment out any code in

MainActivity.csMainActivity.cs that refers to resources in the previous XML.

This layout example creates a default CardView with a single line of text as shown in the following screen shot:

In this example, the app style is set to the light Material Theme (Theme.Material.Light) so that the CardView

shadows and edges are easier to see. For more information about theming Android 5.0 apps, see Material

Theme. In the next section, we'll learn how to customize CardView for an application.

You can modify the basic CardView attributes to customize the appearance of the CardView in your app. For

example, the elevation of the CardView can be increased to cast a larger shadow (which makes the card seem to

float higher above the background). Also, the corner radius can be increased to make the corners of the card

more rounded.

In the next layout example, a customized CardView is used to create a simulation of a print photograph (a

"snapshot"). An ImageView is added to the CardView for displaying the image, and a TextView is positioned

below the ImageView for displaying the title of the image. In this example layout, the CardView has the following

customizations:

The cardElevation is increased to 4dp to cast a larger shadow.

The cardCornerRadius is increased to 5dp to make the corners appear more rounded.

Because CardView is provided by the Android v7 support library, its attributes are not available from the

android: namespace. Therefore, you must define your own XML namespace and use that namespace as the

CardView attribute prefix. In the layout example below, we will use this line to define a namespace called

cardview :

You can call this namespace card_view or even myapp if you choose (it's accessible only within the scope of this

file). Whatever you choose to call this namespace, you must use it to prefix the CardView attribute that you want

to modify. In this layout example, the cardview namespace is the prefix for cardElevation and

cardCornerRadius :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/card-view-images/02-basic-cardview.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:cardview="http://schemas.android.com/apk/res-auto"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_horizontal"
 android:padding="5dp">
 <android.support.v7.widget.CardView
 android:layout_width="fill_parent"
 android:layout_height="245dp"
 android:layout_gravity="center_horizontal"
 cardview:cardElevation="4dp"
 cardview:cardCornerRadius="5dp">
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="240dp"
 android:orientation="vertical"
 android:padding="8dp">
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="190dp"
 android:id="@+id/imageView"
 android:scaleType="centerCrop" />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:textColor="#333333"
 android:text="Photo Title"
 android:id="@+id/textView"
 android:layout_gravity="center_horizontal"
 android:layout_marginLeft="5dp" />
 </LinearLayout>
 </android.support.v7.widget.CardView>
</LinearLayout>

When this layout example is used to display an image in a photo viewing app, the CardView has the appearance

of a photo snapshot, as depicted in the following screenshot:

This screenshot is taken from the RecyclerViewer sample app, which uses a RecyclerView widget to present a

scrolling list of CardView images for viewing photos. For more information about RecyclerView , see the

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/card-view-images/03-photo-cardview.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer

 CardView Layout OptionsCardView Layout Options

 PaddingPadding

RecyclerView guide.

Notice that a CardView can display more than one child view in its content area. For example, in the above

photo viewing app example, the content area is comprised of a ListView that contains an ImageView and a

TextView . Although CardView instances are often arranged vertically, you can also arrange them horizontally

(see Creating a Custom View Style for an example screenshot).

CardView layouts can be customized by setting one or more attributes that affect its padding, elevation, corner

radius, and background color :

Each attribute can also be changed dynamically by calling a counterpart CardView method (for more

information on CardView methods, see the CardView class reference). Note that these attributes (except for

background color) accept a dimension value, which is a decimal number followed by the unit. For example,

11.5dp specifies 11.5 density-independent pixels.

CardView offers five padding attributes to position content within the card. You can set them in your layout XML

or you can call analogous methods in your code:

The padding attributes are explained as follows:

contentPadding – Inner padding between the child views of the CardView and all edges of the card.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/card-view-images/04-attributes.png#lightbox
https://developer.android.com/reference/android/support/v7/widget/CardView.html
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/card-view-images/05-padding.png#lightbox

 ElevationElevation

 Corner Radius and Background ColorCorner Radius and Background Color

contentPaddingBottom – Inner padding between the child views of the CardView and the bottom edge of

the card.

contentPaddingLeft – Inner padding between the child views of the CardView and the left edge of the

card.

contentPaddingRight – Inner padding between the child views of the CardView and the right edge of the

card.

contentPaddingTop – Inner padding between the child views of the CardView and the top edge of the

card.

Content padding attributes are relative to the boundary of the content area rather than to any given widget

located within the content area. For example, if contentPadding were sufficiently increased in the photo viewing

app, the CardView would crop both the image and the text shown on the card.

CardView offers two elevation attributes to control its elevation and, as a result, the size of its shadow:

The elevation attributes are explained as follows:

cardElevation – The elevation of the CardView (represents its Z axis).

cardMaxElevation – The maximum value of the CardView 's elevation.

Larger values of cardElevation increase the shadow size to make CardView seem to float higher above the

background. The cardElevation attribute also determines the drawing order of overlapping views; that is, the

CardView will be drawn under another overlapping view with a higher elevation setting and above any

overlapping views with a lower elevation setting. The cardMaxElevation setting is useful for when your app

changes elevation dynamically – it prevents the shadow from extending past the limit that you define with this

setting.

CardView offers attributes that you can use to control its corner radius and its background color. These two

properties allow you change the overall style of the CardView :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/card-view-images/06-elevation.png#lightbox

 Compatibility

 Summary

These attributes are explained as follows:

cardCornerRadius – The corner radius of all corners of the CardView .

cardBackgroundColor – The background color of the CardView .

In this diagram, cardCornerRadius is set to a more rounded 10dp and cardBackgroundColor is set to "#FFFFCC"

(light yellow).

You can use CardView on versions of Android earlier than Android 5.0 Lollipop. Because CardView is part of the

Android v7 support library, you can use CardView with Android 2.1 (API level 7) and higher. However, you must

install the Xamarin.Android.Support.v7.CardView package as described in Requirements, above.

CardView exhibits slightly different behavior on devices before Lollipop (API level 21):

CardView uses a programmatic shadow implementation that adds additional padding.

CardView does not clip child views that intersect with the CardView 's rounded corners.

To help in managing these compatibility differences, CardView provides several additional attributes that you

can configure in your layout:

cardPreventCornerOverlap – Set this attribute to true to add padding when your app is running on

earlier Android versions (API level 20 and earlier). This setting prevents CardView content from

intersecting with the CardView 's rounded corners.

cardUseCompatPadding – Set this attribute to true to add padding when your app is running in versions

of Android at or greater than API level 21. If you want to use CardView on pre-Lollipop devices and have

it look the same on Lollipop (or later), set this attribute to true . When this attribute is enabled, CardView

adds additional padding to draw shadows when it runs on pre-Lollipop devices. This helps to overcome

the differences in padding that are introduced when pre-Lollipop programmatic shadow

implementations are in effect.

For more information about maintaining compatibility with earlier versions of Android, see Maintaining

Compatibility.

This guide introduced the new CardView widget included in Android 5.0 (Lollipop). It demonstrated the default

CardView appearance and explained how to customize CardView by changing its elevation, corner roundness,

content padding, and background color. It listed the CardView layout attributes (with reference diagrams), and

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/card-view-images/07-radius-bgcolor.png#lightbox
https://developer.android.com/training/material/compatibility.html

 Related Links

explained how to use CardView on Android devices earlier than Android 5.0 Lollipop. For more information

about CardView , see the CardView class reference.

RecyclerView (sample)

Introduction to Lollipop

CardView class reference

https://developer.android.com/reference/android/support/v7/widget/CardView.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer
https://developer.android.com/reference/android/support/v7/widget/CardView.html

Xamarin.Android Edit Text
 7/8/2021 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <EditText
 android:id="@+id/edittext"
 android:layout_width="match_parent"
 android:imeOptions="actionGo"
 android:inputType="text"
 android:layout_height="wrap_content" />
</LinearLayout>

EditText edittext = FindViewById<EditText>(Resource.Id.edittext);
edittext.KeyPress += (object sender, View.KeyEventArgs e) => {
 e.Handled = false;
 if (e.Event.Action == KeyEventActions.Down && e.KeyCode == Keycode.Enter)
 {
 Toast.MakeText(this, edittext.Text, ToastLength.Short).Show();
 e.Handled = true;
 }
};

using Android.Views;

In this section, you will use the EditText widget to create a text field for user input. Once text has been entered

into the field, the EnterEnter key will display the text in a toast message.

Open Resources/layout/activity_main.axmlResources/layout/activity_main.axml and add the EditText element to a containing layout. The

following example activity_main.axmlactivity_main.axml has an EditText that has been added to a LinearLayout :

In this code example, the EditText attribute android:imeOptions is set to actionGo . This setting changes the

default Done action to the Go action so that tapping the EnterEnter key triggers the KeyPress input handler.

(Typically, actionGo is used so that the EnterEnter key takes the user to the target of a URL that is typed in.)

To handle user text input, add the following code to the end of the OnCreate method in MainActivity.csMainActivity.cs :

In addition, add the following using statement to the top of MainActivity.csMainActivity.cs if it is not already present:

This code example inflates the EditText element from the layout and adds a KeyPress handler that defines the

action to be made when a key is pressed while the widget has focus. In this case, the method is defined to listen

for the EnterEnter key (when tapped) and then pop up a Toast message with the text that has been entered. Note that

the Handled property should always be true if the event has been handled. This is necessary to prevent the

event from bubbling up (which would result in a carriage return in the text field).

Run the application and enter some text into the text field. When you press the EnterEnter key, the toast will be

displayed as shown on the right:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/edit-text.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.edittext
https://docs.microsoft.com/en-us/dotnet/api/android.widget.edittext
https://developer.android.com/reference/android/view/inputmethod/EditorInfo#IME_ACTION_DONE
https://developer.android.com/reference/android/view/inputmethod/EditorInfo#IME_ACTION_GO
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.edittext
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.keypress
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.keyeventargs.handled#android_views_view_keyeventargs_handled

 Related Links

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License . This tutorial is based

on the Android Form Stuff tutorial .

EditTextSample

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/edit-text-images/edit-text.png#lightbox
https://creativecommons.org/licenses/by/2.5/
https://developer.android.com/resources/tutorials/views/hello-formstuff.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-edittextsample

Xamarin.Android Gallery control
 7/8/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Walkthrough

Gallery is a layout widget used to display items in a horizontally scrolling list and positions the current

selection at the center of the view.

This widget was deprecated in Android 4.1 (API level 16).

In this tutorial, you'll create a gallery of photos and then display a toast message each time a gallery item is

selected.

After the Main.axml layout is set for the content view, the Gallery is captured from the layout with

FindViewById . The Adapter property is then used to set a custom adapter (ImageAdapter) as the source for all

items to be displayed in the dallery. The ImageAdapter is created in the next step.

To do something when an item in the gallery is clicked, an anonymous delegate is subscribed to the ItemClick

event. It shows a Toast that displays the index position (zero-based) of theselected item (in a real world

scenario, the position could be used to get the full sized image for some other task).

First, there are a few member variables, including an array of IDs that reference the images saved in the

drawable resources directory (Resources/drawableResources/drawable).

Next is the class constructor, where the Context for an ImageAdapter instance is defined and saved to a local

field. Next, this implements some required methods inherited from BaseAdapter . The constructor and the

Count property are self-explanatory. Normally, GetItem(int) should return the actual object at the specified

position in the adapter, but it's ignored for this example. Likewise, GetItemId(int) should return the row id of

the item, but it's not needed here.

The method does the work to apply an image to an ImageView that will be embedded in the Gallery In this

method, the member Context is used to create a new ImageView . The ImageView is prepared by applying an

image from the local array of drawable resources, setting the Gallery.LayoutParams height and width for the

image, setting the scale to fit the ImageView dimensions, and then finally setting the background to use the

styleable attribute acquired in the constructor.

See ImageView.ScaleType for other image scaling options.

Start a new project named HelloGallery.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/gallery.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gallery
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.findviewbyid
https://docs.microsoft.com/en-us/dotnet/api/android.widget.adapterview.rawadapter#android_widget_adapterview_rawadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.adapterview.itemclick
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast
https://docs.microsoft.com/en-us/dotnet/api/android.content.context
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.count#android_widget_baseadapter_count
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.getitem
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter.getitemid
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gallery
https://docs.microsoft.com/en-us/dotnet/api/android.content.context
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gallery.layoutparams
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview.scaletype

<?xml version="1.0" encoding="utf-8"?>
<Gallery xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/gallery"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
/>

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // Set our view from the "main" layout resource
 SetContentView (Resource.Layout.Main);

 Gallery gallery = (Gallery) FindViewById<Gallery>(Resource.Id.gallery);

 gallery.Adapter = new ImageAdapter (this);

 gallery.ItemClick += delegate (object sender, Android.Widget.AdapterView.ItemClickEventArgs args) {
 Toast.MakeText (this, args.Position.ToString (), ToastLength.Short).Show ();
 };
}

Find some photos you'd like to use, or download these sample images. Add the image files to the project's

Resources/DrawableResources/Drawable directory. In the Proper tiesProper ties window, set the Build Action for each to AndroidResourceAndroidResource.

Open Resources/Layout/Main.axmlResources/Layout/Main.axml and insert the following:

Open MainActivity.cs and insert the following code for the OnCreate() method:

Create a new class called ImageAdapter that subclasses BaseAdapter :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/gallery-images/hellogallery1.png#lightbox
https://developer.android.com/shareables/sample_images.zip
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter

public class ImageAdapter : BaseAdapter
{
 Context context;

 public ImageAdapter (Context c)
 {
 context = c;
 }

 public override int Count { get { return thumbIds.Length; } }

 public override Java.Lang.Object GetItem (int position)
 {
 return null;
 }

 public override long GetItemId (int position)
 {
 return 0;
 }

 // create a new ImageView for each item referenced by the Adapter
 public override View GetView (int position, View convertView, ViewGroup parent)
 {
 ImageView i = new ImageView (context);

 i.SetImageResource (thumbIds[position]);
 i.LayoutParameters = new Gallery.LayoutParams (150, 100);
 i.SetScaleType (ImageView.ScaleType.FitXy);

 return i;
 }

 // references to our images
 int[] thumbIds = {
 Resource.Drawable.sample_1,
 Resource.Drawable.sample_2,
 Resource.Drawable.sample_3,
 Resource.Drawable.sample_4,
 Resource.Drawable.sample_5,
 Resource.Drawable.sample_6,
 Resource.Drawable.sample_7
 };
}

Run the application. It should look like the screenshot below:

 References
BaseAdapter

Gallery

ImageView

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

https://docs.microsoft.com/en-us/dotnet/api/android.widget.baseadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.gallery
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://creativecommons.org/licenses/by/2.5/

Xamarin.Android Navigation Bar
 7/8/2021 • 2 minutes to read • Edit Online

Android 4 introduced a new system user interface feature called a Navigation Bar, which provides navigation

controls on devices that don't include hardware buttons for HomeHome, BackBack , and MenuMenu. The following screenshot

shows the Navigation Bar from a Nexus Prime device:

Several new flags are available that control the visibility of the Navigation Bar and its controls, as well as the

visibility of the System Bar that was introduced in Android 3. The flags are defined in the Android.View.View

class and are listed below:

SystemUiFlagVisible – Makes the Navigation Bar visible.

SystemUiFlagLowProfile – Dims out controls in the Navigation Bar.

SystemUiFlagHideNavigation – Hides the Navigation Bar.

These flags can be applied to any view in the view hierarchy by setting the SystemUiVisibility property. If

multiple views have this property set, the system combines them with an OR operation and applies them so

long as the window in which the flags are set retains focus. When you remove a view, any flags it has set will

also be removed.

The following example shows a simple application where clicking any of the buttons changes the

SystemUiVisibility :

The code to change the SystemUiVisibility sets the property on a TextView from each button's click event

handler as shown below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/navigation-bar.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/navigation-bar-images/19-navbar.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/navigation-bar-images/18-systemuivisibility.png#lightbox

var tv = FindViewById<TextView> (Resource.Id.systemUiFlagTextView);
var lowProfileButton = FindViewById<Button>(Resource.Id.lowProfileButton);
var hideNavButton = FindViewById<Button> (Resource.Id.hideNavigation);
var visibleButton = FindViewById<Button> (Resource.Id.visibleButton);

lowProfileButton.Click += delegate {
 tv.SystemUiVisibility =
 (StatusBarVisibility)View.SystemUiFlagLowProfile;
};

hideNavButton.Click += delegate {
 tv.SystemUiVisibility =
 (StatusBarVisibility)View.SystemUiFlagHideNavigation;
};

visibleButton.Click += delegate {
 tv.SystemUiVisibility = (StatusBarVisibility)View.SystemUiFlagVisible;
}

tv.SystemUiVisibilityChange +=
 delegate(object sender, View.SystemUiVisibilityChangeEventArgs e) {
 tv.Text = String.Format ("Visibility = {0}", e.Visibility);
 };

 Related Links

Also, a SystemUiVisibility change raises a SystemUiVisibilityChange event. Just like setting the

SystemUiVisibility property, a handler for the SystemUiVisibilityChange event can be registered for any view

in the hierarchy. For example, the code below uses the TextView instance to register for the event:

SystemUIVisibilityDemo (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/systemuivisibilitydemo

Picker controls for Xamarin.Android
 7/8/2021 • 2 minutes to read • Edit Online

Pickers are UI elements that allow the user to pick a date or a time by using dialogs that are provided by

Android:

Date Picker is used to select a date (year, month, and day).

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/pickers/index.md

Time Picker is used to select a time (hour, minute, and AM/PM).

Android Date Picker
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

 Requirements

There are occasions when a user must input data into an Android application. To assist with this, the Android

framework provides the DatePicker widget and the DatePickerDialog . The DatePicker allows users to select

the year, month, and day in a consistent interface across devices and applications. The DatePickerDialog is a

helper class that encapsulates the DatePicker in a dialog.

Modern Android applications should display the DatePickerDialog in a DialogFragment . This will allow an

application to display the DatePicker as a popup dialog or embedded in an Activity. In addition, the

DialogFragment will manage the lifecycle and display of the dialog, reducing the amount of code that must be

implemented.

This guide will demonstrate how to use the DatePickerDialog , wrapped in a DialogFragment . The sample

application will display the DatePickerDialog as a modal dialog when the user clicks a button on an Activity.

When the date is set by the user, a TextView will update with the date that was selected.

The sample application for this guide targets Android 4.1 (API level 16) or higher, but is applicable to Android 3.0

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/pickers/date-picker.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.datepicker
https://docs.microsoft.com/en-us/dotnet/api/android.app.datepickerdialog
https://docs.microsoft.com/en-us/dotnet/api/android.app.dialogfragment
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/date-picker-images/image-01.png#lightbox

 Using the DatePicker

(API level 11 or higher). It is possible to support older versions of Android with the addition of the Android

Support Library v4 to the project and some code changes.

This sample will extend DialogFragment . The subclass will host and display a DatePickerDialog :

 Extending DialogFragmentExtending DialogFragment

public class DatePickerFragment : DialogFragment,
 DatePickerDialog.IOnDateSetListener
{
 // TAG can be any string of your choice.
 public static readonly string TAG = "X:" + typeof (DatePickerFragment).Name.ToUpper();

 // Initialize this value to prevent NullReferenceExceptions.
 Action<DateTime> _dateSelectedHandler = delegate { };

 public static DatePickerFragment NewInstance(Action<DateTime> onDateSelected)
 {
 DatePickerFragment frag = new DatePickerFragment();
 frag._dateSelectedHandler = onDateSelected;
 return frag;
 }

 public override Dialog OnCreateDialog(Bundle savedInstanceState)
 {
 DateTime currently = DateTime.Now;
 DatePickerDialog dialog = new DatePickerDialog(Activity,
 this,
 currently.Year,
 currently.Month - 1,
 currently.Day);
 return dialog;
 }

 public void OnDateSet(DatePicker view, int year, int monthOfYear, int dayOfMonth)
 {
 // Note: monthOfYear is a value between 0 and 11, not 1 and 12!
 DateTime selectedDate = new DateTime(year, monthOfYear + 1, dayOfMonth);
 Log.Debug(TAG, selectedDate.ToLongDateString());
 _dateSelectedHandler(selectedDate);
 }
}

When the user selects a date and clicks the OKOK button, the DatePickerDialog will call the method

IOnDateSetListener.OnDateSet . This interface is implemented by the hosting DialogFragment . If the user clicks

the CancelCancel button, then fragment and dialog will dismiss themselves.

There are several ways the DialogFragment can return the selected date to the hosting activity:

1. Invoke a method or set a proper tyInvoke a method or set a proper ty – The Activity can provide a property or method specifically for

setting this value.

2. Raise an eventRaise an event – The DialogFragment can define an event that will be raised when OnDateSet is

invoked.

3. Use an Use an Action – The DialogFragment can invoke an Action<DateTime> to display the date in the Activity.

The Activity will provide the Action<DateTime when instantiating the DialogFragment . This sample will

use the third technique, and require that the Activity supply an Action<DateTime> to the DialogFragment .

The first step in displaying a DatePickerDialog is to subclass DialogFragment and have it implement the

IOnDateSetListener interface:

The NewInstance method is invoked to instantiate a new DatePickerFragment . This method takes an

Action<DateTime> that will be invoked when the user clicks on the OKOK button in the DatePickerDialog .

When the fragment is to be displayed, Android will call the method OnCreateDialog . This method will create a

new DatePickerDialog object and initialize it with the current date and the callback object (which is the current

https://docs.microsoft.com/en-us/dotnet/api/android.app.datepickerdialog.iondatesetlistener.ondateset

NOTENOTE

 Showing the DatePickerFragmentShowing the DatePickerFragment

[Activity(Label = "@string/app_name", MainLauncher = true, Icon = "@drawable/icon")]
public class MainActivity : Activity
{
 TextView _dateDisplay;
 Button _dateSelectButton;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);

 _dateDisplay = FindViewById<TextView>(Resource.Id.date_display);
 _dateSelectButton = FindViewById<Button>(Resource.Id.date_select_button);
 _dateSelectButton.Click += DateSelect_OnClick;
 }

 void DateSelect_OnClick(object sender, EventArgs eventArgs)
 {
 DatePickerFragment frag = DatePickerFragment.NewInstance(delegate(DateTime time)
 {
 _dateDisplay.Text =
time.ToLongDateString();
 });
 frag.Show(FragmentManager, DatePickerFragment.TAG);
 }
}

 Summary

 Related Links

instance of the DatePickerFragment).

Be aware that the value of the month when IOnDateSetListener.OnDateSet is invoked is in the range of 0 to 11, and

not 1 to 12. The day of the month will be in the range of 1 to 31 (depending on which month was selected).

Now that the DialogFragment has been implemented, this section will examine how to use the fragment in an

Activity. In the sample app that accompanies this guide, the Activity will instantiate the DialogFragment using the

NewInstance factory method and then display it invoke DialogFragment.Show . As a part of instantiating the

DialogFragment , the Activity passes an Action<DateTime> , which will display the date in a TextView that is

hosted by the Activity:

This sample discussed how to display a DatePicker widget as a popup modal dialog as a part of an Android

Activity. It provided a sample DialogFragment implementation and discussed the IOnDateSetListener interface.

This sample also demonstrated how the DialogFragment may interact with the host Activity to display the

selected date.

DialogFragment

DatePicker

DatePickerDialog

DatePickerDialog.IOnDateSetListener

Select A Date

https://docs.microsoft.com/en-us/dotnet/api/android.app.dialogfragment
https://docs.microsoft.com/en-us/dotnet/api/android.widget.datepicker
https://docs.microsoft.com/en-us/dotnet/api/android.app.datepickerdialog
https://docs.microsoft.com/en-us/dotnet/api/android.app.datepickerdialog.iondatesetlistener
https://github.com/xamarin/recipes/tree/master/Recipes/android/controls/datepicker/select_a_date

Android Time Picker
 7/8/2021 • 7 minutes to read • Edit Online

 Overview

To provide a way for the user to select a time, you can use TimePicker. Android apps typically use TimePicker

with TimePickerDialog for selecting a time value – this helps to ensure a consistent interface across devices and

applications. TimePicker allows users to select the time of day in either 24-hour or 12-hour AM/PM mode.

TimePickerDialog is a helper class that encapsulates the TimePicker in a dialog.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/pickers/time-picker.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.timepicker
https://docs.microsoft.com/en-us/dotnet/api/android.app.timepickerdialog
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/time-picker-images/01-example-screen.png#lightbox

 Requirements

 Using the TimePicker

Modern Android applications display the TimePickerDialog in a DialogFragment. This makes it possible for an

application to display the TimePicker as a popup dialog or embed it in an Activity. In addition, the

DialogFragment manages the lifecycle and display of the dialog, reducing the amount of code that must be

implemented.

This guide demonstrates how to use the TimePickerDialog , wrapped in a DialogFragment . The sample

application displays the TimePickerDialog as a modal dialog when the user clicks a button on an Activity. When

the time is set by the user, the dialog exits and a handler updates a TextView on the Activity screen with the time

that was selected.

The sample application for this guide targets Android 4.1 (API level 16) or higher, but is can be used with

Android 3.0 (API level 11 or higher). It is possible to support older versions of Android with the addition of the

Android Support Library v4 to the project and some code changes.

This example extends DialogFragment ; the subclass implementation of DialogFragment (called

TimePickerFragment below) hosts and displays a TimePickerDialog . When the sample app is first launched, it

displays a PICK TIMEPICK TIME button above a TextView that will be used to display the selected time:

When you click the PICK TIMEPICK TIME button, the example app launches the TimePickerDialog as seen in this

screenshot:

https://docs.microsoft.com/en-us/dotnet/api/android.app.dialogfragment
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/time-picker-images/02-initial-app-screen.png#lightbox

In the TimePickerDialog , selecting a time and clicking the OKOK button causes the TimePickerDialog to invoke the

method IOnTimeSetListener.OnTimeSet. This interface is implemented by the hosting DialogFragment (

TimePickerFragment , described below). Clicking the CancelCancel button causes the fragment and dialog to be

dismissed.

DialogFragment returns the selected time to the hosting Activity in one of three ways:

1. Invoking a method or setting a proper tyInvoking a method or setting a proper ty – The Activity can provide a property or method

specifically for setting this value.

2. Raising an eventRaising an event – The DialogFragment can define an event that will be raised when OnTimeSet is

invoked.

3. Using an Using an Action – The DialogFragment can invoke an Action<DateTime> to display the time in the

Activity. The Activity will provide the Action<DateTime when instantiating the DialogFragment .

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/time-picker-images/03-am-pm-time-dialog.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.timepickerdialog.iontimesetlistener.ontimeset

 Start an App Project

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center_horizontal"
 android:padding="16dp">
 <Button
 android:id="@+id/select_button"
 android:paddingLeft="24dp"
 android:paddingRight="24dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="PICK TIME"
 android:textSize="20dp" />
 <TextView
 android:id="@+id/time_display"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:paddingTop="22dp"
 android:text="Picked time will be displayed here"
 android:textSize="24dp" />
</LinearLayout>

This sample will use the third technique, which requires that the Activity supply an Action<DateTime> handler to

the DialogFragment .

Start a new Android project called TimePickerDemoTimePickerDemo (if you are not familiar with creating Xamarin.Android

projects, see Hello, Android to learn how to create a new project).

Edit Resources/layout/Main.axmlResources/layout/Main.axml and replace its contents with the following XML:

This is a basic LinearLayout with a TextView that displays the time and a Button that opens the TimePickerDialog

. Note that this layout uses hard-coded strings and dimensions to make the app simpler and easier to

understand – a production app normally uses resources for these values (as can be seen in the DatePicker code

example).

Edit MainActivity.csMainActivity.cs and replace its contents with the following code:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.button
https://github.com/xamarin/recipes/blob/master/Recipes/android/controls/datepicker/select_a_date/Resources/layout/Main.axml

using Android.App;
using Android.Widget;
using Android.OS;
using System;
using Android.Util;
using Android.Text.Format;

namespace TimePickerDemo
{
 [Activity(Label = "TimePickerDemo", MainLauncher = true, Icon = "@drawable/icon")]
 public class MainActivity : Activity
 {
 TextView timeDisplay;
 Button timeSelectButton;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
 timeDisplay = FindViewById<TextView>(Resource.Id.time_display);
 timeSelectButton = FindViewById<Button>(Resource.Id.select_button);
 }
 }
}

 Extending DialogFragment

When you build and run this example, you should see an initial screen similar to the following screen shot:

Clicking the PICK TIMEPICK TIME button does nothing because the DialogFragment has not yet been implemented to

display the TimePicker . The next step is to create this DialogFragment .

To extend DialogFragment for use with TimePicker , it is necessary to create a subclass that is derived from

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/time-picker-images/02-initial-app-screen.png#lightbox

public class TimePickerFragment : DialogFragment, TimePickerDialog.IOnTimeSetListener
{
 public static readonly string TAG = "MyTimePickerFragment";
 Action<DateTime> timeSelectedHandler = delegate { };

 public static TimePickerFragment NewInstance(Action<DateTime> onTimeSelected)
 {
 TimePickerFragment frag = new TimePickerFragment();
 frag.timeSelectedHandler = onTimeSelected;
 return frag;
 }

 public override Dialog OnCreateDialog (Bundle savedInstanceState)
 {
 DateTime currentTime = DateTime.Now;
 bool is24HourFormat = DateFormat.Is24HourFormat(Activity);
 TimePickerDialog dialog = new TimePickerDialog
 (Activity, this, currentTime.Hour, currentTime.Minute, is24HourFormat);
 return dialog;
 }

 public void OnTimeSet(TimePicker view, int hourOfDay, int minute)
 {
 DateTime currentTime = DateTime.Now;
 DateTime selectedTime = new DateTime(currentTime.Year, currentTime.Month, currentTime.Day,
hourOfDay, minute, 0);
 Log.Debug(TAG, selectedTime.ToLongTimeString());
 timeSelectedHandler (selectedTime);
 }
}

 DialogFragment ImplementationDialogFragment Implementation

DialogFragment and implements TimePickerDialog.IOnTimeSetListener . Add the following class to

MainActivity.csMainActivity.cs :

This TimePickerFragment class is broken down into smaller pieces and explained in the next section.

TimePickerFragment implements several methods: a factory method, a Dialog instantiation method, and the

OnTimeSet handler method required by TimePickerDialog.IOnTimeSetListener .

public class TimePickerFragment : DialogFragment, TimePickerDialog.IOnTimeSetListener

public static readonly string TAG = "MyTimePickerFragment";
Action<DateTime> timeSelectedHandler = delegate { };

TimePickerFragment is a subclass of DialogFragment . It also implements the

TimePickerDialog.IOnTimeSetListener interface (that is, it supplies the required OnTimeSet method):

TAG is initialized for logging purposes (MyTimePickerFragment can be changed to whatever string you

want to use). The timeSelectedHandler Action is initialized to an empty delegate to prevent null reference

exceptions:

The NewInstance factory method is called to instantiate a new TimePickerFragment . This method takes an

Action<DateTime> handler that is invoked when the user clicks the OKOK button in the TimePickerDialog :

 Displaying the TimePickerFragment

void TimeSelectOnClick (object sender, EventArgs eventArgs)
{
 TimePickerFragment frag = TimePickerFragment.NewInstance (
 delegate (DateTime time)
 {
 timeDisplay.Text = time.ToShortTimeString();
 });

 frag.Show(FragmentManager, TimePickerFragment.TAG);
}

public static TimePickerFragment NewInstance(Action<DateTime> onTimeSelected)
{
 TimePickerFragment frag = new TimePickerFragment();
 frag.timeSelectedHandler = onTimeSelected;
 return frag;
}

public override Dialog OnCreateDialog (Bundle savedInstanceState)
{
 DateTime currentTime = DateTime.Now;
 bool is24HourFormat = DateFormat.Is24HourFormat(Activity);
 TimePickerDialog dialog = new TimePickerDialog
 (Activity, this, currentTime.Hour, currentTime.Minute, is24HourFormat);
 return dialog;
}

public void OnTimeSet(TimePicker view, int hourOfDay, int minute)
{
 DateTime currentTime = DateTime.Now;
 DateTime selectedTime = new DateTime(currentTime.Year, currentTime.Month, currentTime.Day,
hourOfDay, minute, 0);

timeSelectedHandler (selectedTime);

When the fragment is to be displayed, Android calls the DialogFragment method OnCreateDialog. This

method creates a new TimePickerDialog object and initializes it with the Activity, the callback object

(which is the current instance of the TimePickerFragment), and the current time:

When the user changes the time setting in the TimePicker dialog, the OnTimeSet method is invoked.

OnTimeSet creates a DateTime object using the current date and merges in the time (hour and minute)

selected by the user :

This DateTime object is passed to the timeSelectedHandler that is registered with the TimePickerFragment

object at creation time. OnTimeSet invokes this handler to update the Activity's time display to the

selected time (this handler is implemented in the next section):

Now that the DialogFragment has been implemented, it is time to instantiate the DialogFragment using the

NewInstance factory method and display it by invoking DialogFragment.Show:

Add the following method to MainActivity :

After TimeSelectOnClick instantiates a TimePickerFragment , it creates and passes in a delegate for an

https://docs.microsoft.com/en-us/dotnet/api/android.app.dialogfragment.oncreatedialog
https://docs.microsoft.com/en-us/dotnet/api/android.app.dialogfragment.show

timeSelectButton.Click += TimeSelectOnClick;

 Try It!

anonymous method that updates the Activity's time display with the passed-in time value. Finally, it launches the

TimePicker dialog fragment (via DialogFragment.Show) to display the TimePicker to the user.

At the end of the OnCreate method, add the following line to attach the event handler to the PICK TIMEPICK TIME button

that launches the dialog:

When the PICK TIMEPICK TIME button is clicked, TimeSelectOnClick will be invoked to display the TimePicker dialog

fragment to the user.

Build and run the app. When you click the PICK TIMEPICK TIME button, the TimePickerDialog is displayed in the default

time format for the Activity (in this case, 12-hour AM/PM mode):

When you click OKOK in the TimePicker dialog, the handler updates the Activity's TextView with the chosen time

and then exits:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/time-picker-images/03-am-pm-time-dialog.png#lightbox

is24HourFormat = true;

Next, add the following line of code to OnCreateDialog immediately after is24HourFormat is declared and

initialized:

This change forces the flag passed to the TimePickerDialog constructor to be true so that 24-hour mode is

used instead of the time format of the hosting Activity. When you build and run the app again, click the PICKPICK

TIMETIME button, the TimePicker dialog is now displayed in 24 hour format:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/time-picker-images/04-after-time-dialog.png#lightbox

 Summary

 Related Links

Because the handler calls DateTime.ToShortTimeString to print the time to the Activity's TextView , the time is

still printed in the default 12-hour AM/PM format.

This article explained how to display a TimePicker widget as a popup modal dialog from an Android Activity. It

provided a sample DialogFragment implementation and discussed the IOnTimeSetListener interface. This

sample also demonstrated how the DialogFragment can interact with the host Activity to display the selected

time.

DialogFragment

TimePicker

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/pickers/time-picker-images/05-24hr-time-dialog.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.toshortdatestring
https://docs.microsoft.com/en-us/dotnet/api/android.app.dialogfragment
https://docs.microsoft.com/en-us/dotnet/api/android.widget.timepicker

TimePickerDialog

TimePickerDialog.IOnTimeSetListener

TimePickerDemo (sample)

https://docs.microsoft.com/en-us/dotnet/api/android.app.timepickerdialog
https://docs.microsoft.com/en-us/dotnet/api/android.app.timepickerdialog.iontimesetlistener
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-timepickerdemo

Xamarin.Android PopUp Menu
 7/8/2021 • 2 minutes to read • Edit Online

 Creating a Popup Menu

The PopupMenu (also called a shortcut menu) is a menu that is anchored to a particular view. In the following

example, a single Activity contains a button. When the user taps the button, a three-item popup menu is

displayed:

The first step is to create a menu resource file for the menu and place it in Resources/menuResources/menu. For example, the

following XML is the code for the three-item menu displayed in the previous screenshot,

Resources/menu/popup_menu.xmlResources/menu/popup_menu.xml :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/popup-menu.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.popupmenu
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/popup-menu-images/01-app-example.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/item1"
 android:title="item 1" />
 <item android:id="@+id/item1"
 android:title="item 2" />
 <item android:id="@+id/item1"
 android:title="item 3" />
</menu>

showPopupMenu.Click += (s, arg) => {
 PopupMenu menu = new PopupMenu (this, showPopupMenu);
};

showPopupMenu.Click += (s, arg) => {
 PopupMenu menu = new PopupMenu (this, showPopupMenu);
 menu.Inflate (Resource.Menu.popup_menu);
 menu.Show ();
};

 Handling Menu Events

showPopupMenu.Click += (s, arg) => {
 PopupMenu menu = new PopupMenu (this, showPopupMenu);
 menu.Inflate (Resource.Menu.popup_menu);

 menu.MenuItemClick += (s1, arg1) => {
 Console.WriteLine ("{0} selected", arg1.Item.TitleFormatted);
 };

 menu.DismissEvent += (s2, arg2) => {
 Console.WriteLine ("menu dismissed");
 };
 menu.Show ();
};

 Related Links

Next, create an instance of PopupMenu and anchor it to its view. When you create an instance of PopupMenu , you

pass its constructor a reference to the Context as well as the view to which the menu will be attached. As a

result, the popup menu is anchored to this view during its construction.

In the following example, the PopupMenu is created in the click event handler for the button (which is named

showPopupMenu). This button is also the view to which the PopupMenu is anchored, as shown in the following code

example:

Finally, the popup menu must be inflated with the menu resource that was created earlier. In the following

example, the call to the menu's Inflate method is added and its Show method is called to display it:

When the user selects a menu item, the MenuItemClick click event will be raised and the menu will be dismissed.

Tapping anywhere outside the menu will simply dismiss it. In either case, when the menu is dismissed, its

DismissEvent will be raised. The following code adds event handlers for both the MenuItemClick and

DismissEvent events:

PopupMenuDemo (sample)

https://docs.microsoft.com/en-us/dotnet/api/android.views.layoutinflater.inflate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.popupmenu.show#android_widget_popupmenu_show
https://docs.microsoft.com/en-us/dotnet/api/android.widget.popupmenu.menuitemclick
https://docs.microsoft.com/en-us/dotnet/api/android.widget.popupmenu.dismiss#android_widget_popupmenu_dismiss
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/popupmenudemo

Xamarin.Android RatingBar
 7/8/2021 • 2 minutes to read • Edit Online

 Creating a RatingBar

A RatingBar is a UI widget that displays a rating from one to five stars. The user may select a rating by taping on

a star In this section, you'll create a widget that allows the user to provide a rating, with the RatingBar widget.

<RatingBar android:id="@+id/ratingbar"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="5"
 android:stepSize="1.0"/>

RatingBar ratingbar = FindViewById<RatingBar>(Resource.Id.ratingbar);

ratingbar.RatingBarChange += (o, e) => {
 Toast.MakeText(this, "New Rating: " + ratingbar.Rating.ToString (), ToastLength.Short).Show
();
};

1. Open the Resource/layout/Main.axmlResource/layout/Main.axml file and add the RatingBar element (inside the LinearLayout):

The android:numStars attribute defines how many stars to display for the rating bar. The

android:stepSize attribute defines the granularity for each star (for example, a value of 0.5 would allow

half-star ratings).

2. To do something when a new rating has been set, add the following code to the end of the OnCreate()

method:

This captures the RatingBar widget from the layout with FindViewById and then sets an event method

then defines the action to perform when the user sets a rating. In this case, a simple Toast message

displays the new rating.

3. Run the application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/ratingbar.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.ratingbar
https://docs.microsoft.com/en-us/dotnet/api/android.widget.ratingbar
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.widget.ratingbar
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.findviewbyid
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast

Xamarin.Android Spinner
 7/8/2021 • 4 minutes to read • Edit Online

 Basic Spinner

Spinner is a widget that presents a drop-down list for selecting items. This guide explains how to create a

simple app that displays a list of choices in a Spinner, followed by modifications that display other values

associated with the selected choice.

In the first part of this tutorial, you'll create a simple spinner widget that displays a list of planets. When a planet

is selected, a toast message displays the selected item:

Start a new project named HelloSpinnerHelloSpinner .

Open Resources/Layout/Main.axmlResources/Layout/Main.axml and insert the following XML:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/spinner.md
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/spinner-images/01-example-screenshots.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:padding="10dip"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dip"
 android:text="@string/planet_prompt"
 />
 <Spinner
 android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:prompt="@string/planet_prompt"
 />
</LinearLayout>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">HelloSpinner</string>
 <string name="planet_prompt">Choose a planet</string>
 <string-array name="planets_array">
 <item>Mercury</item>
 <item>Venus</item>
 <item>Earth</item>
 <item>Mars</item>
 <item>Jupiter</item>
 <item>Saturn</item>
 <item>Uranus</item>
 <item>Neptune</item>
 </string-array>
</resources>

using System;

Notice that the TextView 's android:text attribute and the Spinner 's android:prompt attribute both reference

the same string resource. This text behaves as a title for the widget. When applied to the Spinner , the title text

will appear in the selection dialog that appears upon selecting the widget.

Edit Resources/Values/Str ings.xmlResources/Values/Str ings.xml and modify the file to look like this:

The second <string> element defines the title string referenced by the TextView and Spinner in the layout

above. The <string-array> element defines the list of strings that will be displayed as the list in the Spinner

widget.

Now open MainActivity.csMainActivity.cs and add the following using statement:

Next, insert the following code for the OnCreate()) method:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // Set our view from the "Main" layout resource
 SetContentView (Resource.Layout.Main);

 Spinner spinner = FindViewById<Spinner> (Resource.Id.spinner);

 spinner.ItemSelected += new EventHandler<AdapterView.ItemSelectedEventArgs> (spinner_ItemSelected);
 var adapter = ArrayAdapter.CreateFromResource (
 this, Resource.Array.planets_array, Android.Resource.Layout.SimpleSpinnerItem);

 adapter.SetDropDownViewResource (Android.Resource.Layout.SimpleSpinnerDropDownItem);
 spinner.Adapter = adapter;
}

private void spinner_ItemSelected (object sender, AdapterView.ItemSelectedEventArgs e)
{
 Spinner spinner = (Spinner)sender;
 string toast = string.Format ("The planet is {0}", spinner.GetItemAtPosition (e.Position));
 Toast.MakeText (this, toast, ToastLength.Long).Show ();
}

After the Main.axml layout is set as the content view, the Spinner widget is captured from the layout with

FindViewById<>(int) . The CreateFromResource() method then creates a new ArrayAdapter , which binds each

item in the string array to the initial appearance for the Spinner (which is how each item will appear in the

spinner when selected). The Resource.Array.planets_array ID references the string-array defined above and

the Android.Resource.Layout.SimpleSpinnerItem ID references a layout for the standard spinner appearance,

defined by the platform. SetDropDownViewResource is called to define the appearance for each item when the

widget is opened. Finally, the ArrayAdapter is set to associate all of its items with the Spinner by setting the

Adapter property.

Now provide a callback method that notifys the application when an item has been selected from the Spinner .

Here's what this method should look like:

When an item is selected, the sender is cast to a Spinner so that items can be accessed. Using the Position

property on the ItemEventArgs , you can find out the text of the selected object, and use it to display a Toast .

Run the application; it should look like this:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.findviewbyid
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter.createfromresource
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter.setdropdownviewresource
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://docs.microsoft.com/en-us/dotnet/api/android.widget.toast

 Spinner Using Key/Value Pairs

using System.Collections.Generic;

Often it is necessary to use Spinner to display key values that are associated with some kind of data used by

your app. Because Spinner does not work directly with key/value pairs, you must store the key/value pair

separately, populate the Spinner with key values, then use the position of the selected key in the Spinner to

look up the associated data value.

In the following steps, the HelloSpinnerHelloSpinner app is modified to display the mean temperature for the selected

planet:

Add the following using statement to MainActivity.csMainActivity.cs :

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/spinner-images/02-basic-example.png#lightbox

private List<KeyValuePair<string, string>> planets;

planets = new List<KeyValuePair<string, string>>
{
 new KeyValuePair<string, string>("Mercury", "167 degrees C"),
 new KeyValuePair<string, string>("Venus", "464 degrees C"),
 new KeyValuePair<string, string>("Earth", "15 degrees C"),
 new KeyValuePair<string, string>("Mars", "-65 degrees C"),
 new KeyValuePair<string, string>("Jupiter" , "-110 degrees C"),
 new KeyValuePair<string, string>("Saturn", "-140 degrees C"),
 new KeyValuePair<string, string>("Uranus", "-195 degrees C"),
 new KeyValuePair<string, string>("Neptune", "-200 degrees C")
};

List<string> planetNames = new List<string>();
foreach (var item in planets)
 planetNames.Add (item.Key);

var adapter = new ArrayAdapter<string>(this,
 Android.Resource.Layout.SimpleSpinnerItem, planetNames);

private void spinner_ItemSelected(object sender, AdapterView.ItemSelectedEventArgs e)
{
 Spinner spinner = (Spinner)sender;
 string toast = string.Format("The mean temperature for planet {0} is {1}",
 spinner.GetItemAtPosition(e.Position), planets[e.Position].Value);
 Toast.MakeText(this, toast, ToastLength.Long).Show();
}

Add the following instance variable to the MainActivity class. This list will hold key/value pairs for the planets

and their mean temperatures:

In the OnCreate method, add the following code before adapter is declared:

This code creates a simple store for planets and their associated mean temperatures. (In a real-world app, a

database is typically used to store keys and their associated data.)

Immediately after the above code, add the following lines to extract the keys and put them into a list (in order):

Pass this list to the ArrayAdapter constructor (instead of the planets_array resource):

Modify spinner_ItemSelected so that the selected position is used to look up the value (the temperature)

associated with the selected planet:

Run the application; the toast should look like this:

 Resources
Resource.Layout

ArrayAdapter

Spinner

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/spinner-images/03-keyvalue-example.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.resource.layout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner
https://creativecommons.org/licenses/by/2.5/

Xamarin.Android Switch
 7/8/2021 • 2 minutes to read • Edit Online

 Creating a Switch

<Switch android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

The Switch widget (shown below) allows a user to toggle between two states, such as ON or OFF. The Switch

default value is OFF. The widget is shown below in both its ON and OFF states:

To create a switch, simply declare a Switch element in XML as follows:

This creates a basic switch as shown below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/switch.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/switch-images/16-switch-onoff.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/switch-images/07-switch.png#lightbox

 Changing Default Values

<Switch android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:textOn="YES"
 android:textOff="NO" />

 Providing a Title

<Switch android:text="Is Xamarin.Android great?"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:textOn="YES"
 android:textOff="NO" />

Both the text that the control displays for the ON and OFF states and the default value are configurable. For

example, to make the Switch default to ON and read NO/YES instead of OFF/ON, we can set the checked ,

textOn , and textOff attributes in the following XML.

The Switch widget also supports including a text label by setting the text attribute as follows:

This markup produces the following screenshot at runtime:

Switch s = FindViewById<Switch> (Resource.Id.monitored_switch);

s.CheckedChange += delegate(object sender, CompoundButton.CheckedChangeEventArgs e) {
 var toast = Toast.MakeText (this, "Your answer is " +
 (e.IsChecked ? "correct" : "incorrect"), ToastLength.Short);
 toast.Show ();
};

 Related Links

When a Switch 's value changes, it raises a CheckedChange event. For example, in the following code we capture

this event and present a Toast widget with a message based upon the isChecked value of Switch , which is

passed to the event handler as part of the CompoundButton.CheckedChangeEventArg argument.

SwitchDemo (sample)

Tab Layout Tutorial

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/switch-images/08-switch.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/switchdemo

Xamarin.Android TextureView
 7/8/2021 • 2 minutes to read • Edit Online

The TextureView class is a view that uses hardware-accelerated 2D rendering to enable a video or OpenGL

content stream to be displayed. For example, the following screenshot shows the TextureView displaying a live

feed from the device's camera:

Unlike the SurfaceView class, which can also be used to display OpenGL or video content, the TextureView is not

rendered into a separate window. Therefore, TextureView is able to support view transformations like any other

view. For example, rotating a TextureView can be accomplished by simply setting its Rotation property, its

transparency by setting its Alpha property, and so on.

Therefore, with the TextureView we can now do things like display a live stream from the camera and transform

it, as shown in the following code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/texture-view.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/texture-view-images/22-textureviewcamera.png#lightbox

public class TextureViewActivity : Activity,
 TextureView.ISurfaceTextureListener
{
 Camera _camera;
 TextureView _textureView;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);
 _textureView = new TextureView (this);
 _textureView.SurfaceTextureListener = this;

 SetContentView (_textureView);
 }

 public void OnSurfaceTextureAvailable (
 Android.Graphics.SurfaceTexture surface,
 int width, int height)
 {
 _camera = Camera.Open ();
 var previewSize = _camera.GetParameters ().PreviewSize;
 _textureView.LayoutParameters =
 new FrameLayout.LayoutParams (previewSize.Width,
 previewSize.Height, (int)GravityFlags.Center);

 try {
 _camera.SetPreviewTexture (surface);
 _camera.StartPreview ();
 } catch (Java.IO.IOException ex) {
 Console.WriteLine (ex.Message);
 }

 // this is the sort of thing TextureView enables
 _textureView.Rotation = 45.0f;
 _textureView.Alpha = 0.5f;
 }
 …
}

The above code creates a TextureView instance in the Activity's OnCreate method and sets the Activity as the

TextureView 's SurfaceTextureListener . To be the SurfaceTextureListener , the Activity implements the

TextureView.ISurfaceTextureListener interface. The system will call the OnSurfaceTextAvailable method when

the SurfaceTexture is ready for use. In this method, we take the SurfaceTexture that is passed in and set it to

the camera's preview texture. Then we are free to perform normal view-based operations, such as setting the

Rotation and Alpha , as in the example above. The resulting application, running on a device, is shown below:

 Related Links

To use the TextureView , hardware acceleration must be enabled, which it will be by default as of API Level 14.

Also, since this example uses the camera, both the android.permission.CAMERA permission and the

android.hardware.camera feature must be set in the AndroidManifest.xmlAndroidManifest.xml .

TextureViewDemo (sample)/)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/texture-view-images/17-textureviewdemo.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/textureviewdemo

Toolbar
 7/8/2021 • 2 minutes to read • Edit Online

 Overview

The Toolbar is an action bar component that provides more flexibility than the default action bar : it can be placed

anywhere in the app, its size can be changed, and it can use a color scheme that is different from the app's

theme. Also, each app screen can have multiple Toolbars.

A key design element of any Android activity is an action bar. The action bar is the UI component that is used for

navigation, search, menus, and branding in an Android app. In Android versions before Android 5.0 Lollipop, the

action bar (also known as the app bar) was the recommended component for providing this functionality.

The Toolbar widget (introduced in Android 5.0 Lollipop) can be thought of as a generalization of the action bar

interface – it is intended to replace the action bar. The Toolbar can be used anywhere in an app layout, and it is

much more customizable than an action bar. The following screenshot illustrates the customized Toolbar

example created in this guide:

There are some important differences between the Toolbar and the action bar :

A Toolbar can be placed anywhere in the user interface.

Multiple toolbars can be displayed on the same screen.

If fragments are used, each fragment can have its own Toolbar .

A Toolbar can be configured to span only a partial width of the screen.

Because the Toolbar is not bound to the color scheme of the Activity's window decor, it can have a

visually distinct color scheme.

Unlike the action bar, the Toolbar does not include an icon on the left. Its menus on the right use less

space.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/tool-bar/index.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/images/01-toolbar.png#lightbox

 Requirements

 Related Links

The Toolbar height is adjustable.

Other views can be included inside the Toolbar .

A Toolbar can contain one or more of the following elements:

Navigation button

A branded logo image

Title and subtitle

Custom views

Action menu

Overflow menu

Google's Material Design guidelines recommends taking advantage of these elements to give apps a distinct

look (rather than relying solely on an application icon and title).

This guide covers the most commonly-used Toolbar scenarios:

Replacing an Activity's default action bar with a Toolbar .

Adding a second Toolbar to an Activity.

Using the Android Suppor t L ibrar y v7 AppCompatAndroid Suppor t L ibrar y v7 AppCompat library (referred to as AppCompat in the rest of

this guide) to deploy Toolbar on earlier versions of Android.

Toolbar is available on Android 5.0 Lollipop (API 21) and later. When targeting Android releases earlier than

Android 5.0, use the Android Support Library v7 AppCompat, which provides backwards-compatible Toolbar

support in a NuGet package. Toolbar Compatibility explains how to use this library.

Lollipop Toolbar (sample)

AppCompat Toolbar (sample)

https://material.google.com/
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-toolbar
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/supportv7-appcompat-toolbar

Replacing the Action Bar
 7/8/2021 • 7 minutes to read • Edit Online

 Overview

 Start an App Project

One of the most common uses for the Toolbar is to replace the default action bar with a custom Toolbar

(when a new Android project is created, it uses the default action bar). Because the Toolbar provides the ability

to add branded logos, titles, menu items, navigation buttons, and even custom views to the app bar section of an

Activity's UI, it offers a significant upgrade over the default action bar.

To replace an app's default action bar with a Toolbar :

1. Create a new custom theme and modify the app's properties so that it uses this new theme.

2. Disable the windowActionBar attribute in the custom theme and enable the windowNoTitle attribute.

3. Define a layout for the Toolbar .

4. Include the Toolbar layout in the Activity's Main.axmlMain.axml layout file.

5. Add code to the Activity's OnCreate method to locate the Toolbar and call SetActionBar to install the

ToolBar as the action bar.

The following sections explain this process in detail. A simple app is created and its action bar is replaced with a

customized Toolbar .

Create a new Android project called ToolbarFunToolbarFun (see Hello, Android for more information about creating a new

Android project). After this project is created, set the target and minimum Android API levels to Android 5.0Android 5.0

(API Level 21 - Lollipop)(API Level 21 - Lollipop) or later. For more information about setting Android version levels, see

Understanding Android API Levels. When the app is built and run, it displays the default action bar as seen in

this screenshot:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/tool-bar/replacing-the-action-bar.md
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/replacing-the-action-bar-images/01-before.png#lightbox

 Create a Custom Theme

<?xml version="1.0" encoding="utf-8" ?>
<resources>
 <style name="MyTheme" parent="@android:style/Theme.Material.Light.DarkActionBar">
 <item name="android:windowNoTitle">true</item>
 <item name="android:windowActionBar">false</item>
 <item name="android:colorPrimary">#5A8622</item>
 </style>
</resources>

<item name="android:windowNoTitle">true</item>

<item name="android:windowActionBar">false</item>

<item name="android:colorPrimary">#5A8622</item>

 Apply the Custom Theme

<application android:label="@string/app_name" android:theme="@style/MyTheme"></application>

 Define a Toolbar Layout

<?xml version="1.0" encoding="utf-8"?>
<Toolbar xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:minHeight="?android:attr/actionBarSize"
 android:background="?android:attr/colorPrimary"
 android:theme="@android:style/ThemeOverlay.Material.Dark.ActionBar"/>

Open the Resources/valuesResources/values directory and a create a new file called styles.xmlstyles.xml . Replace its contents with the

following XML:

This XML defines a new custom theme called MyThemeMyTheme that is based on the

Theme.Mater ial.L ight.DarkActionBarTheme.Mater ial.L ight.DarkActionBar theme in Lollipop. The windowNoTitle attribute is set to true to hide

the title bar :

To display the custom toolbar, the default ActionBar must be disabled:

An olive-green colorPrimary setting is used for the background color of the toolbar :

Edit Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml and add the following android:theme attribute to the <application>

element so that the app uses the MyTheme custom theme:

For more information about applying a custom theme to an app, see Using Custom Themes.

In the Resources/layoutResources/layout directory, create a new file called toolbar.xmltoolbar.xml . Replace its contents with the following

XML:

This XML defines the custom Toolbar that replaces the default action bar. The minimum height of the Toolbar

is set to the size of the action bar that it replaces:

android:minHeight="?android:attr/actionBarSize"

android:background="?android:attr/colorPrimary"

android:theme="@android:style/ThemeOverlay.Material.Dark.ActionBar"

 Include the Toolbar Layout

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <include
 android:id="@+id/toolbar"
 layout="@layout/toolbar" />
</RelativeLayout>

 Find and Activate the Toolbar

using Android.Views;

var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
SetActionBar(toolbar);
ActionBar.Title = "My Toolbar";

The background color of the Toolbar is set to the olive-green color defined earlier in styles.xmlstyles.xml :

Beginning with Lollipop, the android:theme attribute can be used to style an individual view. The

ThemeOverlay.Material themes introduced in Lollipop make it possible to overlay the default Theme.Material

themes, overwriting relevant attributes to make them either light or dark. In this example, the Toolbar uses a

dark theme so that its contents are light in color :

This setting is used so that menu items contrast with the darker background color.

Edit the layout file Resources/layout/Main.axmlResources/layout/Main.axml and replace its contents with the following XML:

This layout includes the Toolbar defined in toolbar.xmltoolbar.xml and uses a RelativeLayout to specify that the Toolbar

is to be placed at the very top of the UI (above the button).

Edit MainActivity.csMainActivity.cs and add the following using statement:

Also, add the following lines of code to the end of the OnCreate method:

This code finds the Toolbar and calls SetActionBar so that the Toolbar will take on default action bar

characteristics. The title of the Toolbar is changed to My ToolbarMy Toolbar . As seen in this code example, the ToolBar can

be directly referenced as an action bar. Compile and run this app – the customized Toolbar is displayed in place

of the default action bar :

 Add Menu Items

 Install Menu IconsInstall Menu Icons

 Define a Menu ResourceDefine a Menu Resource

Notice that the Toolbar is styled independently of the Theme.Material.Light.DarkActionBar theme that is

applied to the remainder of the app.

If an exception occurs while running the app, see the Troubleshooting section below.

In this section, menus are added to the Toolbar . The upper right area of the ToolBar is reserved for menu

items – each menu item (also called an action item) can perform an action within the current activity or it can

perform an action on behalf of the entire app.

To add menus to the Toolbar :

1. Add menu icons (if required) to the mipmap- folders of the app project. Google provides a set of free

menu icons on the Material icons page.

2. Define the contents of the menu items by adding a new menu resource file under Resources/menuResources/menu.

3. Implement the OnCreateOptionsMenu method of the Activity – this method inflates the menu items.

4. Implement the OnOptionsItemSelected method of the Activity – this method performs an action when a

menu item is tapped.

The following sections demonstrate this process in detail by adding EditEdit and SaveSave menu items to the

customized Toolbar .

Continuing with the ToolbarFun example app, add menu icons to the app project. Download toolbar icons,

unzip, and copy the contents of the extracted mipmap- folders to the project mipmap- folders under

ToolbarFun/ResourcesToolbarFun/Resources and include each added icon file in the project.

Create a new menumenu subdirectory under ResourcesResources . In the menumenu subdirectory, create a new menu resource file

called top_menus.xmltop_menus.xml and replace its contents with the following XML:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/replacing-the-action-bar-images/02-after.png#lightbox
https://design.google.com/icons/
https://github.com/xamarin/monodroid-samples/blob/master/Supportv7/AppCompat/Toolbar/Resources/toolbar-icons-plus.zip?raw=true

<?xml version="1.0" encoding="utf-8" ?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_edit"
 android:icon="@mipmap/ic_action_content_create"
 android:showAsAction="ifRoom"
 android:title="Edit" />
 <item
 android:id="@+id/menu_save"
 android:icon="@mipmap/ic_action_content_save"
 android:showAsAction="ifRoom"
 android:title="Save" />
 <item
 android:id="@+id/menu_preferences"
 android:showAsAction="never"
 android:title="Preferences" />
</menu>

 Implement OnCreateOptionsMenuImplement OnCreateOptionsMenu

public override bool OnCreateOptionsMenu(IMenu menu)
{
 MenuInflater.Inflate(Resource.Menu.top_menus, menu);
 return base.OnCreateOptionsMenu(menu);
}

 Implement OnOptionsItemSelectedImplement OnOptionsItemSelected

public override bool OnOptionsItemSelected(IMenuItem item)
{
 Toast.MakeText(this, "Action selected: " + item.TitleFormatted,
 ToastLength.Short).Show();
 return base.OnOptionsItemSelected(item);
}

This XML creates three menu items:

An EditEdit menu item that uses the ic_action_content_create.png icon (a pencil).

A SaveSave menu item that uses the ic_action_content_save.png icon (a diskette).

A PreferencesPreferences menu item that does not have an icon.

The showAsAction attributes of the EditEdit and SaveSave menu items are set to ifRoom – this setting causes these

menu items to appear in the Toolbar if there is sufficient room for them to be displayed. The PreferencesPreferences

menu item sets showAsAction to never – this causes the PreferencesPreferences menu to appear in the overflow menu

(three vertical dots).

Add the following method to MainActivity.csMainActivity.cs :

Android calls the OnCreateOptionsMenu method so that the app can specify the menu resource for an activity. In

this method, the top_menus.xmltop_menus.xml resource is inflated into the passed menu . This code causes the new EditEdit,

SaveSave, and PreferencesPreferences menu items to appear in the Toolbar .

Add the following method to MainActivity.csMainActivity.cs :

When a user taps a menu item, Android calls the OnOptionsItemSelected method and passes in the menu item

that was selected. In this example, the implementation just displays a toast to indicate which menu item was

tapped.

Build and run ToolbarFun to see the new menu items in the toolbar. The Toolbar now displays three menu

icons as seen in this screenshot:

When a user taps the EditEdit menu item, a toast is displayed to indicate that the OnOptionsItemSelected method

was called:

When a user taps the overflow menu, the PreferencesPreferences menu item is displayed. Typically, less-common actions

should be placed in the overflow menu – this example uses the overflow menu for PreferencesPreferences because it is

not used as often as EditEdit and SaveSave:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/replacing-the-action-bar-images/04-menu-items.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/replacing-the-action-bar-images/05-toast-displayed.png#lightbox

 Troubleshooting

 Activity Already Has an Action BarActivity Already Has an Action Bar

 Related Links

For more information about Android menus, see the Android Developer Menus topic.

The following tips can help to debug problems that may occur while replacing the action bar with a toolbar.

If the app is not properly configured to use a custom theme as explained in Apply the Custom Theme, the

following exception may occur while running the app:

In addition, an error message such as the following may be produced: Java.Lang.IllegalStateException: This

Activity already has an action bar supplied by the window decor.

To correct this error, verify that the android:theme attribute for the custom theme is added to <application> (in

Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml) as described earlier in Apply the Custom Theme. In addition, this error

may be caused if the Toolbar layout or custom theme is not configured properly.

Lollipop Toolbar (sample)

AppCompat Toolbar (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/replacing-the-action-bar-images/06-preferences.png#lightbox
https://developer.android.com/guide/topics/ui/menus.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-toolbar
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/supportv7-appcompat-toolbar

Adding a Second Toolbar
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

 Define the Second Toolbar

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <include
 android:id="@+id/toolbar"
 layout="@layout/toolbar" />
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/main_content"
 android:layout_below="@id/toolbar">
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="0dp"
 android:layout_weight="1" />
 <Toolbar
 android:id="@+id/edit_toolbar"
 android:minHeight="?android:attr/actionBarSize"
 android:background="?android:attr/colorAccent"
 android:theme="@android:style/ThemeOverlay.Material.Dark.ActionBar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </LinearLayout>
</RelativeLayout>

android:minHeight="?android:attr/actionBarSize"

android:background="?android:attr/colorAccent

The Toolbar can do more than replace the action bar – it can be used multiple times within an Activity, it can be

customized for placement anywhere on the screen, and it can be configured to span only a partial width of the

screen. The examples below illustrate how to create a second Toolbar and place it at the bottom of the screen.

This Toolbar implements CopyCopy , CutCut, and PastePaste menu items.

Edit the layout file Main.axmlMain.axml and replace its contents with with the following XML:

This XML adds a second Toolbar to the bottom of the screen with an empty ImageView filling the middle of the

screen. The height of this Toolbar is set to the height of an action bar :

The background color of this Toolbar is set to an accent color that will be defined next:

Notice that this Toolbar is based on a different theme (ThemeOverlay.Mater ial.Dark .ActionBarThemeOverlay.Mater ial.Dark .ActionBar) than that

used by the Toolbar created in Replacing the Action Bar – it isn't bound to the Activity's window decor or to the

theme used in the first Toolbar .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/tool-bar/adding-a-second-toolbar.md

<item name="android:colorAccent">#C7A935</item>

 Add Edit Menu Items

 Define the Edit Menu ResourceDefine the Edit Menu Resource

Edit Resources/values/styles.xmlResources/values/styles.xml and add the following accent color to the style definition:

This gives the bottom toolbar a dark amber color. Building and running the app displays a blank second toolbar

at the bottom of the screen:

This section explains how to add edit menu items to the bottom Toolbar .

To add menu items to a secondary Toolbar :

1. Add menu icons to the mipmap- folders of the app project (if required).

2. Define the contents of the menu items by adding an additional menu resource file to Resources/menuResources/menu.

3. In the Activity's OnCreate method, find the Toolbar (by calling FindViewById) and inflate the Toolbar 's

menus.

4. Implement a click handler in OnCreate for the new menu items.

The following sections demonstrate this process in detail: CutCut, CopyCopy , and PastePaste menu items are added to the

bottom Toolbar .

In the Resources/menuResources/menu subdirectory, create a new XML file called edit_menus.xmledit_menus.xml and replace the contents

with the following XML:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/adding-a-second-toolbar-images/01-second-toolbar.png#lightbox

<?xml version="1.0" encoding="utf-8" ?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_cut"
 android:icon="@mipmap/ic_menu_cut_holo_dark"
 android:showAsAction="ifRoom"
 android:title="Cut" />
 <item
 android:id="@+id/menu_copy"
 android:icon="@mipmap/ic_menu_copy_holo_dark"
 android:showAsAction="ifRoom"
 android:title="Copy" />
 <item
 android:id="@+id/menu_paste"
 android:icon="@mipmap/ic_menu_paste_holo_dark"
 android:showAsAction="ifRoom"
 android:title="Paste" />
</menu>

 Inflate the MenusInflate the Menus

var editToolbar = FindViewById<Toolbar>(Resource.Id.edit_toolbar);
editToolbar.Title = "Editing";
editToolbar.InflateMenu (Resource.Menu.edit_menus);
editToolbar.MenuItemClick += (sender, e) => {
 Toast.MakeText(this, "Bottom toolbar tapped: " + e.Item.TitleFormatted, ToastLength.Short).Show();
};

This XML creates the CutCut, CopyCopy , and PastePaste menu items (using icons that were added to the mipmap- folders in

Replacing the Action Bar).

At the end of the OnCreate method in MainActivity.csMainActivity.cs , add the following lines of code:

This code locates the edit_toolbar view defined in Main.axmlMain.axml , sets its title to EditingEditing, and inflates its menu

items (defined in edit_menus.xmledit_menus.xml). It defines a menu click handler that displays a toast to indicate which

editing icon was tapped.

Build and run the app. When the app runs, the text and icons added above will appear as shown here:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/adding-a-second-toolbar-images/02-bottom-toolbar.png#lightbox

 The Up Button

Tapping the CutCut menu icon causes the following toast to be displayed:

Tapping menu items on either toolbar displays the resulting toasts:

Most Android apps rely on the BackBack button for app navigation; pressing the BackBack button takes the user to the

previous screen. However, you may also want to provide an UpUp button that makes it easy for users to navigate

"up" to the app's main screen. When the user selects the UpUp button, the user moves up to a higher level in the

app hierarchy – that is, the app pops the user back multiple activities in the back stack rather than popping back

to the previously-visited Activity.

To enable the UpUp button in a second activity that uses a Toolbar as its action bar, call the

SetDisplayHomeAsUpEnabled and SetHomeButtonEnabled methods in the second activity's OnCreate method:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/adding-a-second-toolbar-images/03-bottom-tapped.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/adding-a-second-toolbar-images/04-menu-action.png#lightbox

SetActionBar (toolbar);
...
ActionBar.SetDisplayHomeAsUpEnabled (true);
ActionBar.SetHomeButtonEnabled (true);

SetSupportActionBar (toolbar);
...
SupportActionBar.SetDisplayHomeAsUpEnabled (true);
SupportActionBar.SetHomeButtonEnabled (true);

 Related Links

The Support v7 Toolbar code sample demonstrates the UpUp button in action. This sample (which uses the

AppCompat library described next) implements a second activity that uses the Toolbar UpUp button for

hierarchical navigation back to the previous activity. In this example, the DetailActivity home button enables

the UpUp button by making the following SupportActionBar method calls:

When the user navigates from MainActivity to DetailActivity , the DetailActivity displays an UpUp button (left

pointing arrow) as shown in the screenshot:

Tapping this UpUp button causes the app to return to MainActivity . In a more complex app with multiple levels of

hierarchy, tapping this button would return the user to the next highest level in the app rather than to the

previous screen.

Lollipop Toolbar (sample)

AppCompat Toolbar (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/supportv7-appcompat-toolbar
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/adding-a-second-toolbar-images/05-up-button.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-toolbar
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/supportv7-appcompat-toolbar

Toolbar Compatibility
 7/8/2021 • 5 minutes to read • Edit Online

 Overview

 Set the Minimum and Target Android Version

 Install the AppCompat NuGet Package

This section explains how to use Toolbar on versions of Android earlier than Android 5.0 Lollipop. If your app

does not support versions of Android earlier than Android 5.0, you can skip this section.

Because Toolbar is part of the Android v7 support library, it can be used on devices running Android 2.1 (API

level 7) and higher. However, the Android Support Library v7 AppCompat NuGet must be installed and the code

modified so that it uses the Toolbar implementation provided in this library. This section explains how to install

this NuGet and modify the ToolbarFunToolbarFun app from Adding a Second Toolbar so that it runs on versions of

Android earlier than Lollipop 5.0.

To modify an app to use the AppCompat version of Toolbar :

1. Set the Minimum and Target Android versions for the app.

2. Install the AppCompat NuGet Package.

3. Use an AppCompat theme instead of a built-in Android theme.

4. Modify MainActivity so that it subclasses AppCompatActivity rather than Activity .

Each of these steps is explained in detail in the following sections.

The app's Target Framework must be set to API Level 21 or greater or the app will not deploy properly. If an

error such as No resource identifier found for attr ibute 'tileModeX' in package 'android'No resource identifier found for attr ibute 'tileModeX' in package 'android' is seen while

deploying the app, this is because the Target Framework is not set to Android 5.0 (API Level 21 - Lollipop)Android 5.0 (API Level 21 - Lollipop)

or greater.

Set the Target Framework level to API Level 21 or greater and set the Android API level project settings to the

minimum Android Version that the app is to support. For more information about setting Android API levels, see

Understanding Android API Levels. In the ToolbarFun example, the Minimum Android Version is set to KitKat

(API Level 4.4).

Next, add the Android Support Library v7 AppCompat package to the project. In Visual Studio, right-click

ReferencesReferences and select Manage NuGet Packages...Manage NuGet Packages... . Click BrowseBrowse and search for Android Suppor t L ibrar yAndroid Suppor t L ibrar y

v7 AppCompatv7 AppCompat. Select Xamarin.Android.Suppor t.v7.AppCompatXamarin.Android.Suppor t.v7.AppCompat and click InstallInstall :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/tool-bar/toolbar-compatibility.md
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/

 Use an AppCompat Theme and Toolbar

 Update LayoutsUpdate Layouts

<android.support.v7.widget.Toolbar
 android:id="@+id/edit_toolbar"
 android:minHeight="?attr/actionBarSize"
 android:background="?attr/colorAccent"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.Toolbar xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:minHeight="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>

When this NuGet is installed, several other NuGet packages are also installed if not already present (such as

Xamarin.Android.Suppor t.Animated.Vector.DrawableXamarin.Android.Suppor t.Animated.Vector.Drawable, Xamarin.Android.Suppor t.v4Xamarin.Android.Suppor t.v4 , and

Xamarin.Android.Suppor t.Vector.DrawableXamarin.Android.Suppor t.Vector.Drawable). For more information about installing NuGet packages, see

Walkthrough: Including a NuGet in your project.

The AppCompat library comes with several Theme.AppCompat themes that can be used on any version of Android

supported by the AppCompat library. The ToolbarFun example app theme is derived from

Theme.Material.Light.DarkActionBar , which is not available on Android versions earlier than Lollipop. Therefore,

ToolbarFun must be adapted to use the AppCompat counterpart for this theme,

Theme.AppCompat.Light.DarkActionBar . Also, because Toolbar is not available on versions of Android earlier than

Lollipop, we must use the AppCompat version of Toolbar . Therefore, layouts must use

android.support.v7.widget.Toolbar instead of Toolbar .

Edit Resources/layout/Main.axmlResources/layout/Main.axml and replace the Toolbar element with the following XML:

Edit Resources/layout/toolbar.xmlResources/layout/toolbar.xml and replace its contents with the following XML:

Note that the ?attr values are no longer prefixed with android: (recall that the ? notation references a

resource in the current theme). If ?android:attr were still used here, Android would reference the attribute

value from the currently running platform rather than from the AppCompat library. Because this example uses

the actionBarSize defined by the AppCompat library, the android: prefix is dropped. Similarly, @android:style

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/toolbar-compatibility-images/01-appcompat-nuget.png#lightbox
https://docs.microsoft.com/en-us/visualstudio/mac/nuget-walkthrough

 Update the StyleUpdate the Style

<?xml version="1.0" encoding="utf-8" ?>
<resources>
 <style name="MyTheme" parent="MyTheme.Base"> </style>
 <style name="MyTheme.Base" parent="Theme.AppCompat.Light.DarkActionBar">
 <item name="windowNoTitle">true</item>
 <item name="windowActionBar">false</item>
 <item name="colorPrimary">#5A8622</item>
 <item name="colorAccent">#A88F2D</item>
 </style>
</resources>

 Update MenusUpdate Menus

<?xml version="1.0" encoding="utf-8" ?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:local="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/menu_edit"
 android:icon="@mipmap/ic_action_content_create"
 local:showAsAction="ifRoom"
 android:title="Edit" />
 <item
 android:id="@+id/menu_save"
 android:icon="@mipmap/ic_action_content_save"
 local:showAsAction="ifRoom"
 android:title="Save" />
 <item
 android:id="@+id/menu_preferences"
 local:showAsAction="never"
 android:title="Preferences" />
</menu>

xmlns:local="http://schemas.android.com/apk/res-auto">

local:showAsAction="ifRoom"

is changed to @style so that the android:theme attribute is set to a theme in the AppCompat library – the

ThemeOverlay.AppCompat.Dark.ActionBar theme is used here rather than ThemeOverlay.Material.Dark.ActionBar .

Edit Resources/values/styles.xmlResources/values/styles.xml and replace its contents with the following XML:

The item names and parent theme in this example are no longer prefixed with android: because we are using

the AppCompat library. Also, the parent theme is changed to the AppCompat version of Light.DarkActionBar .

To support earlier versions of Android, the AppCompat library uses custom attributes that mirror the attributes

of the android: namespace. However, some attributes (such as the showAsAction attribute used in the <menu>

tag) do not exist in the Android framework on older devices – showAsAction was introduced in Android API 11

but is not available in Android API 7. For this reason, a custom namespace must be used to prefix all of the

attributes defined by the support library. In the menu resource files, a namespace called local is defined for

prefixing the showAsAction attribute.

Edit Resources/menu/top_menus.xmlResources/menu/top_menus.xml and replace its contents with the following XML:

The local namespace is added with this line:

The showAsAction attribute is prefaced with this local: namespace rather than android:

<?xml version="1.0" encoding="utf-8" ?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:local="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/menu_cut"
 android:icon="@mipmap/ic_menu_cut_holo_dark"
 local:showAsAction="ifRoom"
 android:title="Cut" />
 <item
 android:id="@+id/menu_copy"
 android:icon="@mipmap/ic_menu_copy_holo_dark"
 local:showAsAction="ifRoom"
 android:title="Copy" />
 <item
 android:id="@+id/menu_paste"
 android:icon="@mipmap/ic_menu_paste_holo_dark"
 local:showAsAction="ifRoom"
 android:title="Paste" />
</menu>

 Subclass AppCompatActivity

using Android.Support.V7.App;
using Toolbar = Android.Support.V7.Widget.Toolbar;

public class MainActivity : AppCompatActivity

SetSupportActionBar (toolbar);
SupportActionBar.Title = "My AppCompat Toolbar";

Similarly, edit Resources/menu/edit_menus.xmlResources/menu/edit_menus.xml and replace its contents with the following XML:

How does this namespace switch provide support for the showAsAction attribute on Android versions prior to

API Level 11? The custom attribute showAsAction and all of its possible values are included in the app when the

AppCompat NuGet is installed.

The final step in the conversion is to modify MainActivity so that it is a subclass of AppCompatActivity . Edit

MainActivity.csMainActivity.cs and add the following using statements:

This declares Toolbar to be the AppCompat version of Toolbar . Next, change the class definition of

MainActivity :

To set the action bar to the AppCompat version of Toolbar , substitute the call to SetActionBar with

SetSupportActionBar . In this example, the title is also changed to indicate that the AppCompat version of

Toolbar is being used:

Finally, change the Minimum Android level to the pre-Lollipop value that is to be supported (for example, API

19).

Build the app and run it on a pre-Lollipop device or Android emulator. The following screenshot shows the

AppCompat version of ToolbarFunToolbarFun on a Nexus 4 running KitKat (API 19):

 Related Links

When the AppCompat library is used, themes do not have to be switched based on the Android version – the

AppCompat library makes it possible to provide a consistent user experience across all supported Android

versions.

Lollipop Toolbar (sample)

AppCompat Toolbar (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/tool-bar/toolbar-compatibility-images/02-running-on-kitkat.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-toolbar
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/supportv7-appcompat-toolbar

ViewPager
 7/8/2021 • 3 minutes to read • Edit Online

 Overview

ViewPager is a layout manager that lets you implement gestural navigation. Gestural navigation allows the user

to swipe left and right to step through pages of data. This guide explains how to implement gestural navigation

with ViewPager, with and without Fragments. It also describes how to add page indicators using PagerTitleStrip

and PagerTabStrip.

A common scenario in app development is the need to provide users with gestural navigation between sibling

views. In this approach, the user swipes left or right to access pages of content (for example, in a setup wizard or

a slide show). You can create these swipe views by using the ViewPager widget, available in Android Support

Library v4. The ViewPager is a layout widget made up of multiple child views where each child view constitutes

a page in the layout:

Typically, ViewPager is used in conjunction with Fragments; however, there are some situations where you might

want to use ViewPager without the added complexity of Fragment s.

ViewPager uses an adapter pattern to provide it with the views to display. The adapter used here is conceptually

similar to that used by RecyclerView – you supply an implementation of PagerAdapter to generate the pages

that the ViewPager displays to the user. The pages displayed by ViewPager can be View s or Fragment s. When

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/view-pager/index.md
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/images/01-intro.png#lightbox

 Requirements

 Architecture

 ViewPagerViewPager

View s are displayed, the adapter subclasses Android's PagerAdapter base class. If Fragment s are displayed, the

adapter subclasses Android's FragmentPagerAdapter . The Android support library also includes

FragmentPagerAdapter (a subclass of PagerAdapter) to help with the details of connecting Fragment s to data.

This guide demonstrates both approaches:

In Viewpager with Views, a TreePager app is developed to demonstrate how to use ViewPager to display

views of a tree catalog (an image gallery of deciduous and evergreen trees). PagerTabStrip and

PagerTitleStrip are used to display titles that help with page navigation.

In Viewpager with Fragments, a slightly more complex FlashCardPager app is developed to demonstrate

how to use ViewPager with Fragment s to build an app that presents math problems as flash cards and

responds to user input.

To use ViewPager in your app project, you must install the Android Support Library v4 package. For more

information about installing NuGet packages, see Walkthrough: Including a NuGet in your project.

Three components are used for implementing gestural navigation with ViewPager :

ViewPager

Adapter

Pager Indicator

Each of these components is summarized below.

ViewPager is a layout manager that displays a collection of View s one at a time. Its job is to detect the user's

swipe gesture and navigate to the next or previous view as appropriate. For example, the screenshot below

demonstrates a ViewPager making the transition from one image to the next in response to a user gesture:

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-treepager
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-flashcardpager
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
https://docs.microsoft.com/en-us/visualstudio/mac/nuget-walkthrough

 AdapterAdapter
ViewPager pulls its data from an adapter. The adapter's job is to create the View s displayed by the ViewPager ,

providing them as needed. The diagram below illustrates this concept – the adapter creates and populates View

s and provides them to the ViewPager . As the ViewPager detects the user's swipe gestures, it asks the adapter to

provide the appropriate View to display:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/images/02-transition.png#lightbox

 Pager IndicatorPager Indicator

In this particular example, each View is constructed from a tree image and a tree name before it is passed to the

ViewPager .

ViewPager may be used to display a large data set (for example, an image gallery may contain hundreds of

images). To help the user navigate large data sets, ViewPager is often accompanied by a pager indicator that

displays a string. The string might be the image title, a caption, or simply the current view's position within the

data set.

There are two views that can produce this navigation information for you: PagerTabStrip and PagerTitleStrip.

Each displays a string at the top of a ViewPager , and each pulls its data from the ViewPager 's adapter so that it

always stays in sync with the currently-displayed View . The difference between them is that PagerTabStrip

includes a visual indicator for the "current" string while PagerTitleStrip does not (as shown in these

screenshots):

This guide demonstrates how to immplement ViewPager , adapter, and indicator app components and integrate

them to support gestural navigation.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/images/03-adapter.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/images/04-comparison.png#lightbox

 Related Links
TreePager (sample)

FlashCardPager (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-treepager
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-flashcardpager

ViewPager with Views
 7/8/2021 • 10 minutes to read • Edit Online

 Overview

 Start an App Project

 Add an Example Data Source

ViewPager is a layout manager that lets you implement gestural navigation. Gestural navigation allows the user

to swipe left and right to step through pages of data. This guide explains how to implement a swipeable UI with

ViewPager and PagerTabStrip, using Views as the data pages (a subsequent guide covers how to use Fragments

for the pages).

This guide is a walkthrough that provides a step-by-step demonstration how to use ViewPager to implement an

image gallery of deciduous and evergreen trees. In this app, the user swipes left and right through a "tree

catalog" to view tree images. At the top of each page of the catalog, the name of the tree is listed in a

PagerTabStrip , and an image of the tree is displayed in an ImageView . An adapter is used to interface the

ViewPager to the underlying data model. This app implements an adapter derived from PagerAdapter .

Although ViewPager -based apps are often implemented with Fragment s, there are some relatively simple use

cases where the extra complexity of Fragment s is not necessary. For example, the basic image gallery app

illustrated in this walkthrough does not require the use of Fragment s. Because the content is static and the user

only swipes back and forth between different images, the implementation can be kept simpler by using

standard Android views and layouts.

Create a new Android project called TreePagerTreePager (see Hello, Android for more information about creating new

Android projects). Next, launch the NuGet Package Manager. (For more information about installing NuGet

packages, see Walkthrough: Including a NuGet in your project). Find and install Android Suppor t L ibrar y v4Android Suppor t L ibrar y v4 :

This will also install any additional packages reaquired by Android Suppor t L ibrar y v4Android Suppor t L ibrar y v4 .

In this example, the tree catalog data source (represented by the TreeCatalog class) supplies the ViewPager

with item content. TreeCatalog contains a ready-made collection of tree images and tree titles that the adapter

will use for creating View s. The TreeCatalog constructor requires no arguments:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/view-pager/viewpager-and-views.md
https://docs.microsoft.com/en-us/visualstudio/mac/nuget-walkthrough
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-views-images/01-install-support-lib.png#lightbox

TreeCatalog treeCatalog = new TreeCatalog();

int imageId = treeCatalog[2].imageId;

 Create a ViewPager Layout

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/viewpager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

</android.support.v4.view.ViewPager>

 Set up ViewPager

using Android.Support.V4.View;

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
 ViewPager viewPager = FindViewById<ViewPager>(Resource.Id.viewpager);
 TreeCatalog treeCatalog = new TreeCatalog();
}

The collection of images in TreeCatalog is organized such that each image can be accessed by an indexer. For

example, the following line of code retrieves the image resource ID for the third image in the collection:

Because the implementation details of TreeCatalog are not relevant to understanding ViewPager , the

TreeCatalog code is not listed here. The source code to TreeCatalog is available at TreeCatalog.cs. Download

this source file (or copy and paste the code into a new TreeCatalog.csTreeCatalog.cs file) and add it to your project. Also,

download and unzip the image files into your Resources/drawableResources/drawable folder and include them in the project.

Open Resources/layout/Main.axmlResources/layout/Main.axml and replace its contents with the following XML:

This XML defines a ViewPager that occupies the entire screen. Note that you must use the fully-qualified name

android.suppor t.v4.view.ViewPagerandroid.suppor t.v4.view.ViewPager because ViewPager is packaged in a support library. ViewPager is

available only from Android Support Library v4; it is not available in the Android SDK.

Edit MainActivity.csMainActivity.cs and add the following using statement:

Replace the OnCreate method with the following code:

This code does the following:

1. Sets the view from the Main.axmlMain.axml layout resource.

2. Retrieves a reference to the ViewPager from the layout.

3. Instantiates a new TreeCatalog as the data source.

When you build and run this code, you should see a display that resembles the following screenshot:

https://github.com/xamarin/monodroid-samples/blob/master/UserInterface/TreePager/TreePager/TreeCatalog.cs
https://github.com/xamarin/monodroid-samples/blob/master/UserInterface/TreePager/Resources/tree-images.zip?raw=true
https://www.nuget.org/packages/Xamarin.Android.Support.v4/

 Create the Adapter

At this point, the ViewPager is empty because it is lacking an adapter for accessing the content in TreeCatalogTreeCatalog.

In the next section, a PagerAdapterPagerAdapter is created to connect the ViewPager to the TreeCatalogTreeCatalog.

ViewPager uses an adapter controller object that sits between the ViewPager and the data source (see the

illustration in Adapter). In order to access this data, ViewPager requires that you provide a custom adapter

derived from PagerAdapter . This adapter populates each ViewPager page with content from the data source.

Because this data source is app-specific, the custom adapter is the code that understands how to access the data.

As the user swipes through pages of the ViewPager , the adapter extracts information from the data source and

loads it into the pages for the ViewPager to display.

When you implement a PagerAdapter , you must override the following:

InstantiateItemInstantiateItem – Creates the page (View) for a given position and adds it to the ViewPager 's collection

of views.

DestroyItemDestroyItem – Removes a page from a given position.

CountCount – Read-only property that returns the number of views (pages) available.

IsViewFromObjectIsViewFromObject – Determines whether a page is associated with a specific key object. (This object is

created by the InstantiateItem method.) In this example, the key object is the TreeCatalog data object.

Add a new file called TreePagerAdapter.csTreePagerAdapter.cs and replace its contents with the following code:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-views-images/02-initial-screen.png#lightbox

using System;
using Android.App;
using Android.Runtime;
using Android.Content;
using Android.Views;
using Android.Widget;
using Android.Support.V4.View;
using Java.Lang;

namespace TreePager
{
 class TreePagerAdapter : PagerAdapter
 {
 public override int Count
 {
 get { throw new NotImplementedException(); }
 }

 public override bool IsViewFromObject(View view, Java.Lang.Object obj)
 {
 throw new NotImplementedException();
 }

 public override Java.Lang.Object InstantiateItem (View container, int position)
 {
 throw new NotImplementedException();
 }

 public override void DestroyItem(View container, int position, Java.Lang.Object view)
 {
 throw new NotImplementedException();
 }
 }
}

 Implement the ConstructorImplement the Constructor

Context context;
TreeCatalog treeCatalog;

public TreePagerAdapter (Context context, TreeCatalog treeCatalog)
{
 this.context = context;
 this.treeCatalog = treeCatalog;
}

 Implement CountImplement Count

This code stubs out the essential PagerAdapter implementation. In the following sections, each of these methods

is replaced with working code.

When the app instantiates the TreePagerAdapter , it supplies a context (the MainActivity) and an instantiated

TreeCatalog . Add the following member variables and constructor to the top of the TreePagerAdapter class in

TreePagerAdapter.csTreePagerAdapter.cs :

The purpose of this constructor is to store the context and TreeCatalog instance that the TreePagerAdapter will

use.

The Count implementation is relatively simple: it returns the number of trees in the tree catalog. Replace Count

with the following code:

public override int Count
{
 get { return treeCatalog.NumTrees; }
}

 Implement InstantiateItemImplement InstantiateItem

public override Java.Lang.Object InstantiateItem (View container, int position)
{
 var imageView = new ImageView (context);
 imageView.SetImageResource (treeCatalog[position].imageId);
 var viewPager = container.JavaCast<ViewPager>();
 viewPager.AddView (imageView);
 return imageView;
}

 Implement DestroyItemImplement DestroyItem

public override void DestroyItem(View container, int position, Java.Lang.Object view)
{
 var viewPager = container.JavaCast<ViewPager>();
 viewPager.RemoveView(view as View);
}

The NumTrees property of TreeCatalog returns the number of trees (number of pages) in the data set.

The InstantiateItem method creates the page for a given position. It must also add the newly-created view to

the ViewPager 's view collection. To make this possible, the ViewPager passes itself as the container parameter.

Replace the InstantiateItem method with the following code:

This code does the following:

1. Instantiates a new ImageView to display the tree image at the specified position. The app's MainActivity

is the context that will be passed to the ImageView constructor.

2. Sets the ImageView resource to the TreeCatalog image resource ID at the specified position.

3. Casts the passed container View to a ViewPager reference. Note that you must use

JavaCast<ViewPager>() to properly perform this cast (this is needed so that Android performs a runtime-

checked type conversion).

4. Adds the instantiated ImageView to the ViewPager and returns the ImageView to the caller.

When the ViewPager displays the image at position , it displays this ImageView . Initially, InstantiateItem is

called twice to populate the first two pages with views. As the user scrolls, it is called again to maintain views

just behind and ahead of the currently displayed item.

The DestroyItem method removes a page from the given position. In apps where the view at any given position

can change, ViewPager must have some way of removing a stale view at that position before replacing it with a

new view. In the TreeCatalog example, the view at each position does not change, so a view removed by

DestroyItem will simply be re-added when InstantiateItem is called for that position. (For better efficiency, one

could implement a pool to recycle View s that will be re-displayed at the same position.)

Replace the DestroyItem method with the following code:

This code does the following:

1. Casts the passed container View into a ViewPager reference.

 Implement IsViewFromObjectImplement IsViewFromObject

public override bool IsViewFromObject(View view, Java.Lang.Object obj)
{
 return view == obj;
}

 Add the Adapter to the ViewPager

viewPager.Adapter = new TreePagerAdapter(this, treeCatalog);

2. Casts the passed Java object (view) into a C# View (view as View);

3. Removes the view from the ViewPager .

As the user slides left and right through pages of content, ViewPager calls IsViewFromObject to verify that the

child View at the given position is associated with the adapter's object for that same position (hence, the

adapter's object is called an object key). For relatively simple apps, the association is one of identity – the

adapter's object key at that instance is the view that was previously returned to the ViewPager via

InstantiateItem . However for other apps, the object key may be some other adapter-specific class instance that

is associated with (but not the same as) the child view that ViewPager displays at that position. Only the adapter

knows whether or not the passed view and object key are associated.

IsViewFromObject must be implemented for PagerAdapter to function properly. If IsViewFromObject returns

false for a given position, ViewPager will not display the view at that position. In the TreePager app, the object

key returned by InstantiateItem is the page View of a tree, so the code only has to check for identity (i.e, the

object key and the view are one and the same). Replace IsViewFromObject with the following code:

Now that the TreePagerAdapter is implemented, it's time to add it to the ViewPager . In MainActivity.csMainActivity.cs , add the

following line of code to the end of the OnCreate method:

This code instantiates the TreePagerAdapter , passing in the MainActivity as the context (this). The instantiated

TreeCatalog is passed into the constructor's second argument. The ViewPager 's Adapter property is set to the

instantiated TreePagerAdapter object; this plugs the TreePagerAdapter into the ViewPager .

The core implementation is now complete – build and run the app. You should see the first image of the tree

catalog appear on the screen as shown on the left in the next screenshot. Swipe left to see more tree views, then

swipe right to move back through the tree catalog:

 Add a Pager Indicator

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/viewpager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <android.support.v4.view.PagerTabStrip
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:paddingBottom="10dp"
 android:paddingTop="10dp"
 android:textColor="#fff" />

</android.support.v4.view.ViewPager>

This minimal ViewPager implementation displays the images of the tree catalog, but it provides no indication as

to where the user is within the catalog. The next step is to add a PagerTabStrip . The PagerTabStrip informs the

user as to which page is displayed and provides navigation context by displaying a hint of the previous and next

pages. PagerTabStrip is intended to be used as an indicator for the current page of a ViewPager ; it scrolls and

updates as the user swipes through each page.

Open Resources/layout/Main.axmlResources/layout/Main.axml and add a PagerTabStrip to the layout:

ViewPager and PagerTabStrip are designed to work together. When you declare a PagerTabStrip inside a

ViewPager layout, the ViewPager will automatically find the PagerTabStrip and connect it to the adapter. When

you build and run the app, you should see the empty PagerTabStrip displayed at the top of each screen:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-views-images/03-example-views.png#lightbox

 Display a TitleDisplay a Title

public override Java.Lang.ICharSequence GetPageTitleFormatted(int position)
{
 return new Java.Lang.String(treeCatalog[position].caption);
}

 PagerTitleStrip VariationPagerTitleStrip Variation

To add a title to each page tab, implement the GetPageTitleFormatted method in the PagerAdapter -derived class.

ViewPager calls GetPageTitleFormatted (if implemented) to obtain the title string that describes the page at the

specified position. Add the following method to the TreePagerAdapter class in TreePagerAdapter.csTreePagerAdapter.cs :

This code retrieves the tree caption string from the specified page (position) in the tree catalog, converts it into a

Java String , and returns it to the ViewPager . When you run the app with this new method, each page displays

the tree caption in the PagerTabStrip . You should see the tree name at the top of the screen without an

underline:

You can swipe back and forth to view each captioned tree image in the catalog.

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-views-images/04-empty-pagetabstrip-cap.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-views-images/05-final-pagetabstrip.png#lightbox

 Summary

 Related Links

PagerTitleStrip is very similar to PagerTabStrip except that PagerTabStrip adds an underline for the currently

selected tab. You can replace PagerTabStrip with PagerTitleStrip in the above layout and run the app again to

see how it looks with PagerTitleStrip :

Note that the underline is removed when you convert to PagerTitleStrip .

This walkthrough provided a step-by-step example of how to build a basic ViewPager -based app without using

Fragment s. It presented an example data source containing images and caption strings, a ViewPager layout to

display the images, and a PagerAdapter subclass that connects the ViewPager to the data source. To help the

user navigate through the data set, instructions were included that explain how to add a PagerTabStrip or

PagerTitleStrip to display the image caption at the top of each page.

TreePager (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-views-images/06-pagetitlestrip-example.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-treepager

ViewPager with Fragments
 7/8/2021 • 12 minutes to read • Edit Online

 Overview

 Start an App Project

 Add an Example Data Source

FlashCardDeck flashCards = new FlashCardDeck();

string problem = flashCardDeck[3].Problem;

string answer = flashCardDeck[3].Answer;

ViewPager is a layout manager that lets you implement gestural navigation. Gestural navigation allows the user

to swipe left and right to step through pages of data. This guide explains how to implement a swipeable UI with

ViewPager, using Fragments as the data pages.

ViewPager is often used in conjunction with fragments so that it is easier to manage the lifecycle of each page in

the ViewPager . In this walkthrough, ViewPager is used to create an app called FlashCardPagerFlashCardPager that presents a

series of math problems on flash cards. Each flash card is implemented as a fragment. The user swipes left and

right through the flash cards and taps on a math problem to reveal its answer. This app creates a Fragment

instance for each flash card and implements an adapter derived from FragmentPagerAdapter . In Viewpager and

Views, most of the work was done in MainActivity lifecycle methods. In FlashCardPagerFlashCardPager , most of the work

will be done by a Fragment in one of its lifecycle methods.

This guide does not cover the basics of fragments – if you are not yet familiar with fragments in

Xamarin.Android, see Fragments to help you get started with fragments.

Create a new Android project called FlashCardPagerFlashCardPager . Next, launch the NuGet Package Manager (for more

information about installing NuGet packages, see Walkthrough: Including a NuGet in your project). Find and

install the Xamarin.Android.Suppor t.v4Xamarin.Android.Suppor t.v4 package as explained in Viewpager and Views.

In FlashCardPagerFlashCardPager , the data source is a deck of flash cards represented by the FlashCardDeck class; this data

source supplies the ViewPager with item content. FlashCardDeck contains a ready-made collection of math

problems and answers. The FlashCardDeck constructor requires no arguments:

The collection of flash cards in FlashCardDeck is organized such that each flash card can be accessed by an

indexer. For example, the following line of code retrieves the fourth flash card problem in the deck:

This line of code retrieves the corresponding answer to the previous problem:

Because the implementation details of FlashCardDeck are not relevant to understanding ViewPager , the

FlashCardDeck code is not listed here. The source code to FlashCardDeck is available at FlashCardDeck.cs.

Download this source file (or copy and paste the code into a new FlashCardDeck .csFlashCardDeck .cs file) and add it to your

project.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/view-pager/viewpager-and-fragments.md
https://docs.microsoft.com/en-us/visualstudio/mac/nuget-walkthrough
https://github.com/xamarin/monodroid-samples/blob/master/UserInterface/FlashCardPager/FlashCardPager/FlashCardDeck.cs

 Create a ViewPager Layout

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/viewpager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 </android.support.v4.view.ViewPager>

 Set up ViewPager

using Android.Support.V4.View;
using Android.Support.V4.App;

public class MainActivity : FragmentActivity

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
 ViewPager viewPager = FindViewById<ViewPager>(Resource.Id.viewpager);
 FlashCardDeck flashCards = new FlashCardDeck();
}

Open Resources/layout/Main.axmlResources/layout/Main.axml and replace its contents with the following XML:

This XML defines a ViewPager that occupies the entire screen. Note that you must use the fully-qualified name

android.suppor t.v4.view.ViewPagerandroid.suppor t.v4.view.ViewPager because ViewPager is packaged in a support library. ViewPager is

available only from the Android Support Library v4; it is not available in the Android SDK.

Edit MainActivity.csMainActivity.cs and add the following using statements:

Change the MainActivity class declaration so that it is derived from FragmentActivity :

MainActivity is derived from FragmentActivity (rather than Activity) because FragmentActivity knows how

to manage the support of fragments. Replace the OnCreate method with the following code:

This code does the following:

1. Sets the view from the Main.axmlMain.axml layout resource.

2. Retrieves a reference to the ViewPager from the layout.

3. Instantiates a new FlashCardDeck as the data source.

When you build and run this code, you should see a display that resembles the following screenshot:

https://www.nuget.org/packages/Xamarin.Android.Support.v4/

 Create the Fragment

 Create the FlashCardFragment LayoutCreate the FlashCardFragment Layout

At this point, the ViewPager is empty because it is lacking the fragments that are used populate the ViewPager ,

and it is lacking an adapter for creating these fragments from the data in FlashCardDeckFlashCardDeck .

In the following sections, a FlashCardFragment is create to implement the functionality of each flash card, and a

FragmentPagerAdapter is created to connect the ViewPager to the fragments created from data in the

FlashCardDeck .

Each flash card will be managed by a UI fragment called FlashCardFragment . FlashCardFragment 's view will

display the information contained with a single flash card. Each instance of FlashCardFragment will be hosted by

the ViewPager . FlashCardFragment 's view will consist of a TextView that displays the flash card problem text.

This view will implement an event handler that uses a Toast to display the answer when the user taps the flash

card question.

Before FlashCardFragment can be implemented, its layout must be defined. This layout is a fragment container

layout for a single fragment. Add a new Android layout to Resources/layoutResources/layout called flashcard_layout.axmlflashcard_layout.axml .

Open Resources/layout/flashcard_layout.axmlResources/layout/flashcard_layout.axml and replace its contents with the following code:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-fragments-images/01-initial-screen.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/flash_card_question"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:textAppearance="@android:style/TextAppearance.Large"
 android:textSize="100sp"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="Question goes here" />
 </RelativeLayout>

 Create the Initial FlashCardFragment ClassCreate the Initial FlashCardFragment Class

using System;
using Android.OS;
using Android.Views;
using Android.Widget;
using Android.Support.V4.App;

namespace FlashCardPager
{
 public class FlashCardFragment : Android.Support.V4.App.Fragment
 {
 public FlashCardFragment() { }

 public static FlashCardFragment newInstance(String question, String answer)
 {
 FlashCardFragment fragment = new FlashCardFragment();
 return fragment;
 }
 public override View OnCreateView (
 LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
 {
 View view = inflater.Inflate (Resource.Layout.flashcard_layout, container, false);
 TextView questionBox = (TextView)view.FindViewById (Resource.Id.flash_card_question);
 return view;
 }
 }
}

This layout defines a single flash card fragment; each fragment is comprised of a TextView that displays a math

problem using a large (100sp) font. This text is centered vertically and horizontally on the flash card.

Add a new file called FlashCardFragment.csFlashCardFragment.cs and replace its contents with the following code:

This code stubs out the essential Fragment definition that will be used to display a flash card. Note that

FlashCardFragment is derived from the support library version of Fragment defined in

Android.Support.V4.App.Fragment . The constructor is empty so that the newInstance factory method is used to

create a new FlashCardFragment instead of a constructor.

The OnCreateView lifecycle method creates and configures the TextView . It inflates the layout for the fragment's

TextView and returns the inflated TextView to the caller. LayoutInflater and ViewGroup are passed to

OnCreateView so that it can inflate the layout. The savedInstanceState bundle contains data that OnCreateView

uses to recreate the TextView from a saved state.

The fragment's view is explicitly inflated by the call to inflater.Inflate . The container argument is the view's

 Add State Code to FlashCardFragmentAdd State Code to FlashCardFragment

private static string FLASH_CARD_QUESTION = "card_question";
private static string FLASH_CARD_ANSWER = "card_answer";

public static FlashCardFragment newInstance(String question, String answer)
{
 FlashCardFragment fragment = new FlashCardFragment();

 Bundle args = new Bundle();
 args.PutString(FLASH_CARD_QUESTION, question);
 args.PutString(FLASH_CARD_ANSWER, answer);
 fragment.Arguments = args;

 return fragment;
}

public override View OnCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
 string question = Arguments.GetString(FLASH_CARD_QUESTION, "");
 string answer = Arguments.GetString(FLASH_CARD_ANSWER, "");

 View view = inflater.Inflate(Resource.Layout.flashcard_layout, container, false);
 TextView questionBox = (TextView)view.FindViewById(Resource.Id.flash_card_question);
 questionBox.Text = question;

 return view;
}

 Create the Adapter

parent, and the false flag instructs the inflater to refrain from adding the inflated view to the view's parent (it

will be added when ViewPager call's the adapter's GetItem method later in this walkthrough).

Like an Activity, a fragment has a Bundle that it uses to save and retrieve its state. In FlashCardPagerFlashCardPager , this

Bundle is used to save the question and answer text for the associated flash card. In FlashCardFragment.csFlashCardFragment.cs ,

add the following Bundle keys to the top of the FlashCardFragment class definition:

Modify the newInstance factory method so that it creates a Bundle object and uses the above keys to store the

passed question and answer text in the fragment after it is instantiated:

Modify the fragment lifecycle method OnCreateView to retrieve this information from the passed-in Bundle and

load the question text into the TextBox :

The answer variable is not used here, but it will be used later when event handler code is added to this file.

ViewPager uses an adapter controller object that sits between the ViewPager and the data source (see the

illustration in the ViewPager Adapter article). To access this data, ViewPager requires that you provide a custom

adapter derived from PagerAdapter . Because this example uses fragments, it uses a FragmentPagerAdapter –

FragmentPagerAdapter is derived from PagerAdapter . FragmentPagerAdapter represents each page as a Fragment

that is persistently kept in the fragment manager for as long as the user can return to the page. As the user

swipes through pages of the ViewPager , the FragmentPagerAdapter extracts information from the data source

and uses it to create Fragment s for the ViewPager to display.

When you implement a FragmentPagerAdapter , you must override the following:

CountCount – Read-only property that returns the number of views (pages) available.

using System;
using Android.Views;
using Android.Widget;
using Android.Support.V4.App;

namespace FlashCardPager
{
 class FlashCardDeckAdapter : FragmentPagerAdapter
 {
 public FlashCardDeckAdapter (Android.Support.V4.App.FragmentManager fm, FlashCardDeck flashCards)
 : base(fm)
 {
 }

 public override int Count
 {
 get { throw new NotImplementedException(); }
 }

 public override Android.Support.V4.App.Fragment GetItem(int position)
 {
 throw new NotImplementedException();
 }
 }
}

 Implement the Adapter ConstructorImplement the Adapter Constructor

public FlashCardDeck flashCardDeck;

this.flashCardDeck = flashCards;

 Implement CountImplement Count

public override int Count
{
 get { return flashCardDeck.NumCards; }
}

GetItemGetItem – Returns the fragment to display for the specified page.

Add a new file called FlashCardDeckAdapter.csFlashCardDeckAdapter.cs and replace its contents with the following code:

This code stubs out the essential FragmentPagerAdapter implementation. In the following sections, each of these

methods is replaced with working code. The purpose of the constructor is to pass the fragment manager to the

FlashCardDeckAdapter 's base class constructor.

When the app instantiates the FlashCardDeckAdapter , it supplies a reference to the fragment manager and an

instantiated FlashCardDeck . Add the following member variable to the top of the FlashCardDeckAdapter class in

FlashCardDeckAdapter.csFlashCardDeckAdapter.cs :

Add the following line of code to the FlashCardDeckAdapter constructor :

This line of code stores the FlashCardDeck instance that the FlashCardDeckAdapter will use.

The Count implementation is relatively simple: it returns the number of flash cards in the flash card deck.

Replace Count with the following code:

The NumCards property of FlashCardDeck returns the number of flash cards (number of fragments) in the data

 Implement GetItemImplement GetItem

public override Android.Support.V4.App.Fragment GetItem(int position)
{
 return (Android.Support.V4.App.Fragment)
 FlashCardFragment.newInstance (
 flashCardDeck[position].Problem, flashCardDeck[position].Answer);
}

 Add the Adapter to the ViewPager

FlashCardDeckAdapter adapter =
 new FlashCardDeckAdapter(SupportFragmentManager, flashCards);
viewPager.Adapter = adapter;

set.

The GetItem method returns the fragment associated with the given position. When GetItem is called for a

position in the flash card deck, it returns a FlashCardFragment configured to display the flash card problem at

that position. Replace the GetItem method with the following code:

This code does the following:

1. Looks up the math problem string in the FlashCardDeck deck for the specified position.

2. Looks up the answer string in the FlashCardDeck deck for the specified position.

3. Calls the FlashCardFragment factory method newInstance , passing in the flash card problem and answer

strings.

4. Creates and returns a new flash card Fragment that contains the question and answer text for that

position.

When the ViewPager renders the Fragment at position , it displays the TextBox containing the math problem

string residing at position in the flash card deck.

Now that the FlashCardDeckAdapter is implemented, it's time to add it to the ViewPager . In MainActivity.csMainActivity.cs ,

add the following line of code to the end of the OnCreate method:

This code instantiates the FlashCardDeckAdapter , passing in the SupportFragmentManager in the first argument.

(The SupportFragmentManager property of FragmentActivity is used to get a reference to the FragmentManager –

for more information about the FragmentManager , see Managing Fragments.)

The core implementation is now complete – build and run the app. You should see the first image of the flash

card deck appear on the screen as shown on the left in the next screenshot. Swipe left to see more flash cards,

then swipe right to move back through the flash card deck:

 Add a Pager Indicator

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <android.support.v4.view.PagerTabStrip
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:paddingBottom="10dp"
 android:paddingTop="10dp"
 android:textColor="#fff" />

</android.support.v4.view.ViewPager>

This minimal ViewPager implementation displays each flash card in the deck, but it provides no indication as to

where the user is within the deck. The next step is to add a PagerTabStrip . The PagerTabStrip informs the user

as to which problem number is displayed and provides navigation context by displaying a hint of the previous

and next flash cards.

Open Resources/layout/Main.axmlResources/layout/Main.axml and add a PagerTabStrip to the layout:

When you build and run the app, you should see the empty PagerTabStrip displayed at the top of each flash

card:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-fragments-images/02-example-views.png#lightbox

 Display a TitleDisplay a Title

public override Java.Lang.ICharSequence GetPageTitleFormatted(int position)
{
 return new Java.Lang.String("Problem " + (position + 1));
}

To add a title to each page tab, implement the GetPageTitleFormatted method in the adapter. ViewPager calls

GetPageTitleFormatted (if implemented) to obtain the title string that describes the page at the specified

position. Add the following method to the FlashCardDeckAdapter class in FlashCardDeckAdapter.csFlashCardDeckAdapter.cs :

This code converts the position in the flash card deck to a problem number. The resulting string is converted

into a Java String that is returned to the ViewPager . When you run the app with this new method, each page

displays the problem number in the PagerTabStrip :

You can swipe back and forth to see the problem number in the flash card deck that is displayed at the top of

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-fragments-images/03-empty-pagetabstrip.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-fragments-images/04-pagetabstrip.png#lightbox

 Handle User Input

questionBox.Click += delegate
{
 Toast.MakeText(Activity.ApplicationContext,
 "Answer: " + answer, ToastLength.Short).Show();
};

 Summary

 Related Links

each flash card.

FlashCardPagerFlashCardPager presents a series of fragment-based flash cards in a ViewPager , but it does not yet have a way

to reveal the answer for each problem. In this section, an event handler is added to the FlashCardFragment to

display the answer when the user taps on the flash card problem text.

Open FlashCardFragment.csFlashCardFragment.cs and add the following code to the end of the OnCreateView method just before

the view is returned to the caller :

This Click event handler displays the answer in a Toast that appears when the user taps the TextBox . The

answer variable was initialized earlier when state information was read from the Bundle that was passed to

OnCreateView . Build and run the app, then tap the problem text on each flash card to see the answer:

The FlashCardPagerFlashCardPager presented in this walkthrough uses a MainActivity derived from FragmentActivity , but

you can also derive MainActivity from AppCompatActivity (which also provides support for managing

fragments). To view an AppCompatActivity example, see FlashCardPager in the Sample Gallery.

This walkthrough provided a step-by-step example of how to build a basic ViewPager -based app using

Fragment s. It presented an example data source containing flash card questions and answers, a ViewPager

layout to display the flash cards, and a FragmentPagerAdapter subclass that connects the ViewPager to the data

source. To help the user navigate through the flash cards, instructions were included that explain how to add a

PagerTabStrip to display the problem number at the top of each page. Finally, event handling code was added

to display the answer when the user taps on a flash card problem.

FlashCardPager (sample)

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/view-pager/viewpager-and-fragments-images/05-answer.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-flashcardpager
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-flashcardpager

Xamarin.Android Web View
 7/8/2021 • 2 minutes to read • Edit Online

<?xml version="1.0" encoding="utf-8"?>
<WebView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/webview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />

using Android.Webkit;

WebView web_view;

WebView allows you to create your own window for viewing web pages (or even develop a complete browser).

In this tutorial, you'll create a simple Activity that can view and navigate web pages.

Create a new project named HelloWebViewHelloWebView .

Open Resources/Layout/Main.axmlResources/Layout/Main.axml and insert the following:

Because this application will access the Internet, you must add the appropriate permissions to the Android

manifest file. Open your project's properties to specify which permissions your application requires to operate.

Enable the INTERNET permission as shown below:

Now open MainActivity.csMainActivity.cs and add a using directive for Webkit:

At the top of the MainActivity class, declare a WebView object:

When the WebViewWebView is asked to load a URL, it will by default delegate the request to the default browser. To

have the WebViewWebView load the URL (rather than the default browser), you must subclass

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/user-interface/controls/web-view.md
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview

public class HelloWebViewClient : WebViewClient
{
 public override bool ShouldOverrideUrlLoading (WebView view, string url)
 {
 view.LoadUrl(url);
 return false;
 }
}

public class HelloWebViewClient : WebViewClient
{
 // For API level 24 and later
 public override bool ShouldOverrideUrlLoading (WebView view, IWebResourceRequest request)
 {
 view.LoadUrl(request.Url.ToString());
 return false;
 }
}

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 // Set our view from the "main" layout resource
 SetContentView (Resource.Layout.Main);

 web_view = FindViewById<WebView> (Resource.Id.webview);
 web_view.Settings.JavaScriptEnabled = true;
 web_view.SetWebViewClient(new HelloWebViewClient());
 web_view.LoadUrl ("https://www.xamarin.com/university");
}

Android.Webkit.WebViewClient and override the ShouldOverriderUrlLoading method. An instance of this custom

WebViewClient is provided to the WebView . To do this, add the following nested HelloWebViewClient class inside

MainActivity :

When ShouldOverrideUrlLoading returns false , it signals to Android that the current WebView instance handled

the request and that no further action is necessary.

If you are targeting API level 24 or later, use the overload of ShouldOverrideUrlLoading that takes an

IWebResourceRequest for the second argument instead of a string :

Next, use the following code for the OnCreate()) method:

This initializes the member WebView with the one from the Activity layout and enables JavaScript for the

WebView with JavaScriptEnabled = true (see the Call C# from JavaScript recipe for information about how to

call C# functions from JavaScript). Finally, an initial web page is loaded with LoadUrl(String) .

Build and run the app. You should see a simple web page viewer app as the one seen in the following

screenshot:

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.websettings.javascriptenabled#android_webkit_websettings_javascriptenabled
https://github.com/xamarin/recipes/tree/master/Recipes/android/controls/webview/call_csharp_from_javascript
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview

using Android.Views;

public override bool OnKeyDown (Android.Views.Keycode keyCode, Android.Views.KeyEvent e)
{
 if (keyCode == Keycode.Back && web_view.CanGoBack ())
 {
 web_view.GoBack ();
 return true;
 }
 return base.OnKeyDown (keyCode, e);
}

To handle the BACKBACK button key press, add the following using statement:

Next, add the following method inside the HelloWebView Activity:

file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/web-view-images/02-simple-webview-app.png#lightbox

 Related Links

This OnKeyDown(int, KeyEvent) callback method will be called whenever a button is pressed while the Activity is

running. The condition inside uses the KeyEvent to check whether the key pressed is the BACKBACK button and

whether the WebView is actually capable of navigating back (if it has a history). If both are true, then the

GoBack() method is called, which will navigate back one step in the WebView history. Returning true indicates

that the event has been handled. If this condition is not met, then the event is sent back to the system.

Run the application again. You should now be able to follow links and navigate back through the page history:

Portions of this page are modifications based on work created and shared by the Android Open Source Project

and used according to terms described in the Creative Commons 2.5 Attribution License.

Call C# from JavaScript

Android.Webkit.WebView

KeyEvent

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onkeydown
https://docs.microsoft.com/en-us/dotnet/api/android.views.keyevent
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview.goback#android_webkit_webview_goback
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
file:///T:/c1uy/n1bv/xamarin/android/user-interface/controls/web-view-images/03-back-button.png#lightbox
https://creativecommons.org/licenses/by/2.5/
https://github.com/xamarin/recipes/tree/master/Recipes/android/controls/webview/call_csharp_from_javascript
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview

Xamarin.Android Platform Features
 11/2/2020 • 4 minutes to read • Edit Online

 Android Beam

 Working with Files

 Fingerprint Authentication

 Firebase Job Dispatcher

 Fragments

 App-Linking

 AndroidX

 Android 10

 Android 9 Pie

Documents in this section cover features specific to Android. Here you'll find topics such as using Fragments,

working with maps, and encapsulating data with Content Providers.

Android Beam is a new Near Field Communication (NFC) technology in Android 4 that allows applications to

share information over NFC when in close proximity.

This section discusses how to access files in Xamarin.Android.

This section discusses how to use fingerprint authentication, first introduced in Android 6.0, to a

Xamarin.Android application.

This guide discusses the Firebase Job Dispatcher and how to use it to simplify running background jobs in a

Xamarin.Android app.

Android 3.0 introduced Fragments, showing how to support more flexible designs for the many different screen

sizes found on phones and tablets. This article will cover how to use Fragments to develop Xamarin.Android

applications, and also how to support Fragments on pre-Android 3.0 (API Level 11) devices.

This guide will discuss how Android 6.0 supports app-linking, a technique that allows mobile apps to respond to

URLs on websites. It will discuss how to implement app-linking in an Android 6.0 application and how to

configure a website to grant permissions to the mobile app to handle app-links for the domain.

This article provides an outline of using AndroidX within your Xamarin.Android projects and provides links to

documentation that illustrates how to migrate your application from the Android Support Library to AndroidX.

This article provides an outline of the new features in Android 10, explains how to prepare Xamarin.Android for

Android 10 development, and provides links to sample applications that illustrate how to use Android Oreo

features in Xamarin.Android apps.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/index.md

 Android 8 Oreo

 Android 7 Nougat

 Android 6 Marshmallow

 Android 5 Lollipop

 Android 4.4 KitKat

 Android 4.1 Jelly Bean

 Android 4.0 Ice Cream Sandwich

 Working with the Android Manifest

 Introduction to Content Providers

This article provides an outline of the new features in Android Pie, explains how to prepare Xamarin.Android for

Android Pie development, and provides an example app that illustrates how to use the new Android Pie display

cutout and notification features in Xamarin.Android apps.

This article provides an outline of the new features in Android Oreo, explains how to prepare Xamarin.Android

for Android Oreo development, and provides links to sample applications that illustrate how to use Android

Oreo features in Xamarin.Android apps.

This article provides a high-level overview of the new features introduced in Android 7.0 Nougat.

This article provides a high-level overview of the new features introduced in Android 6.0 Marshmallow.

This guide provides an overview of new Android 5.0 Lollipop features such as Material Theme, CardView,

RecyclerView, and Heads Up Notifications, and it links to in-depth articles that help you use these new features

in your app.

Android 4.4 (KitKat) comes loaded with a cornucopia of features for users and developers both. This guide

highlights several of these features and provides code examples and implementation details to help you make

the most out of KitKat.

This document will provide a high-level overview of the new features for developers that were introduced in

Android 4.1. These features include: enhanced notifications, updates to Android Beam to share large files,

updates to multimedia, peer-to-peer network discovery, animations, new permissions.

This article describes several of the new features available to application developers with the Android 4 API - Ice

Cream Sandwich. It covers several new user interface technologies and then examines a variety of new

capabilities that Android 4 offers for sharing data between applications and between devices.

This article introduces the AndroidManifest.xml file, and how it maybe be used to control functionality and

describe the requirements of a Mono for Android application.

A ContentProvider encapsulates a data repository and provides an API to access it. The provider exists as part of

an Android application that also provides a UI for displaying/managing the data. The key benefit of using a

content provider is enabling other applications to easily access the encapsulated data using a provider client

object (called a ContentResolver). Together a content provider and content resolver offer a consistent inter-

application API for data access that is simple to build and consume. This document shows how to access and

 Maps and Location

 Android Speech

 Binding a Java Library

 Bind a Kotlin Library

 Java Integration

 Renderscript

build ContentProviders with Xamarin.Android.

This section discusses how to use maps and location with Xamarin.Android. It covers everything from leveraging

the built-in maps application to using the Google Maps Android API v2 directly. Additionally, it explains how to

use a single API to work with location services, which use cellular triangulation to allow an application to obtain

location fixes, Wi-Fi location, and GPS.

This section discusses how to use the Android Text to Speech and Speech to Text facilities. It also covers installing

language packs and interpretation of the text spoken to the device.

This guide explains how to incorporate Java libraries into Xamarin.Android apps by creating a Bindings Library.

This guide explains how to create C# bindings to Kotlin code, making it possible to consume native libraries in a

Xamarin.Android application.

This article provides an overview of the ways that developers can reuse existing Java components in

Xamarin.Android apps.

This guide discusses Renderscript.

https://developers.google.com/maps/documentation/android/

Android Beam
 7/8/2021 • 2 minutes to read • Edit Online

Android Beam is a Near Field Communication (NFC) technology introduced in Android 4.0 that allows

applications to share information over NFC when in close proximity.

Android Beam works by pushing messages over NFC when two devices are in range. Devices about 4cm from

each other can share data using Android Beam. An Activity on one device creates a message and specifies an

Activity (or Activities) that can handle pushing it. When the specified Activity is in the foreground and the devices

are in range, Android Beam will push the message to the second device. On the receiving device, an Intent is

invoked containing the message data.

Android supports two ways of setting messages with Android Beam:

SetNdefPushMessage - Before Android Beam is initiated, an application can call SetNdefPushMessage to

specify an NdefMessage to push over NFC, and the Activity that is pushing it. This mechanism is best

used when a message doesn’t change while an application is in use.

SetNdefPushMessageCallback - When Android Beam is initiated, an application can handle a callback to

create an NdefMessage. This mechanism allows for message creation to be delayed until devices are in

range. It supports scenarios where the message may vary based upon what’s happening in the

application.

In either case, to send data with Android Beam, an application sends an NdefMessage , packaging the data in

several NdefRecords . Let’s take a look at the key points that must be addressed before we can trigger Android

Beam. First, we’ll work with the callback style of creating an NdefMessage .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/android-beam.md
file:///T:/c1uy/n1bv/xamarin/android/platform/android-beam-images/androidbeam.png#lightbox

Creating a Message

mNfcAdapter = NfcAdapter.GetDefaultAdapter (this);
mNfcAdapter.SetNdefPushMessageCallback (this, this);

public NdefMessage CreateNdefMessage (NfcEvent evt)
{
 DateTime time = DateTime.Now;
 var text = ("Beam me up!\n\n" + "Beam Time: " +
 time.ToString ("HH:mm:ss"));
 NdefMessage msg = new NdefMessage (
 new NdefRecord[]{ CreateMimeRecord (
 "application/com.example.android.beam",
 Encoding.UTF8.GetBytes (text)) });
 } };
 return msg;
}

public NdefRecord CreateMimeRecord (String mimeType, byte [] payload)
{
 byte [] mimeBytes = Encoding.UTF8.GetBytes (mimeType);
 NdefRecord mimeRecord = new NdefRecord (
 NdefRecord.TnfMimeMedia, mimeBytes, new byte [0], payload);
 return mimeRecord;
}

 Receiving a Message

IParcelable [] rawMsgs = intent.GetParcelableArrayExtra (NfcAdapter.ExtraNdefMessages);
NdefMessage msg = (NdefMessage) rawMsgs [0];

We can register callbacks with an NfcAdapter in the Activity’s OnCreate method. For example, assuming an

NfcAdapter named mNfcAdapter is declared as a class variable in the Activity, we can write the following code to

create the callback that will construct the message:

The Activity, which implements NfcAdapter.ICreateNdefMessageCallback , is passed to the

SetNdefPushMessageCallback method above. When Android Beam is initiated, the system will call

CreateNdefMessage , from which the Activity can construct an NdefMessage as shown below:

On the receiving side, the system invokes an Intent with the ActionNdefDiscovered action, from which we can

extract the NdefMessage as follows:

For a complete code example that uses Android Beam, shown running in the screenshot below, see the Android

Beam demo in the Sample Gallery.

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/androidbeamdemo

 Related Links
Android Beam Demo (sample)

file:///T:/c1uy/n1bv/xamarin/android/platform/android-beam-images/24.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/androidbeamdemo

Working with the Android Manifest
 10/28/2019 • 6 minutes to read • Edit Online

 The Basics

namespace Demo
{
 public class MyActivity : Activity
 {
 }
}

namespace Demo
{
 [Activity]
 public class MyActivity : Activity
 {
 }
}

<activity android:name="md5a7a3c803e481ad8926683588c7e9031b.MainActivity" />

 Activity NameActivity Name

AndroidManifest.xmlAndroidManifest.xml is a powerful file in the Android platform that allows you to describe the functionality

and requirements of your application to Android. However, working with it is not easy. Xamarin.Android helps to

minimize this difficulty by allowing you to add custom attributes to your classes, which will then be used to

automatically generate the manifest for you. Our goal is that 99% of our users should never need to manually

modify AndroidManifest.xmlAndroidManifest.xml .

AndroidManifest.xmlAndroidManifest.xml is generated as part of the build process, and the XML found within

Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml is merged with XML that is generated from custom attributes. The resulting

merged AndroidManifest.xmlAndroidManifest.xml resides in the objobj subdirectory; for example, it resides at

obj/Debug/android/AndroidManifest.xmlobj/Debug/android/AndroidManifest.xml for Debug builds. The merging process is trivial: it uses custom

attributes within the code to generate XML elements, and inserts those elements into AndroidManifest.xmlAndroidManifest.xml .

At compile time, assemblies are scanned for non- abstract classes that derive from Activity and have the

[Activity] attribute declared on them. It then uses these classes and attributes to build the manifest. For

example, consider the following code:

This results in nothing being generated in AndroidManifest.xmlAndroidManifest.xml . If you want an <activity/> element to be

generated, you need to use the [Activity] custom attribute:

This example causes the following xml fragment to be added to AndroidManifest.xmlAndroidManifest.xml :

The [Activity] attribute has no effect on abstract types; abstract types are ignored.

Beginning with Xamarin.Android 5.1, the type name of an activity is based on the MD5SUM of the assembly-

qualified name of the type being exported. This allows the same fully-qualified name to be provided from two

different assemblies and not get a packaging error. (Before Xamarin.Android 5.1, the default type name of the

activity was created from the lowercased namespace and the class name.)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/android-manifest.md
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity

[Activity (Name="awesome.demo.activity")]
public class MyActivity : Activity
{
}

<activity android:name="awesome.demo.activity" />

NOTENOTE

 Activity Title BarActivity Title Bar

[Activity (Label="Awesome Demo App")]
public class MyActivity : Activity
{
}

<activity android:label="Awesome Demo App"
 android:name="md5a7a3c803e481ad8926683588c7e9031b.MainActivity" />

 Launchable from Application ChooserLaunchable from Application Chooser

[Activity (Label="Awesome Demo App", MainLauncher=true)]
public class MyActivity : Activity
{
}

<activity android:label="Awesome Demo App"
 android:name="md5a7a3c803e481ad8926683588c7e9031b.MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

If you wish to override this default and explicitly specify the name of your activity, use the Name property:

This example produces the following xml fragment:

You should use the Name property only for backward-compatibility reasons, as such renaming can slow down type

lookup at runtime. If you have legacy code that expects the default type name of the activity to be based on the

lowercased namespace and the class name, see Android Callable Wrapper Naming for tips on maintaining compatibility.

By default, Android gives your application a title bar when it is run. The value used for this is

/manifest/application/activity/@android:label . In most cases, this value will differ from your class name. To

specify your app's label on the title bar, use the Label property. For example:

This example produces the following xml fragment:

By default, your activity will not show up in Android's application launcher screen. This is because there will

likely be many activities in your application, and you don't want an icon for every one. To specify which one

should be launchable from the application launcher, use the MainLauncher property. For example:

This example produces the following xml fragment:

https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute.name#android_app_activityattribute_name
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_5/xamarin.android_5.1/index.md#Android_Callable_Wrapper_Naming
https://developer.android.com/guide/topics/manifest/activity-element.html#label
https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute.label#android_app_activityattribute_label
https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute.mainlauncher#android_app_activityattribute_mainlauncher

Activity IconActivity Icon

[Activity (Label="Awesome Demo App", MainLauncher=true, Icon="@drawable/myicon")]
public class MyActivity : Activity
{
}

<activity android:icon="@drawable/myicon" android:label="Awesome Demo App"
 android:name="md5a7a3c803e481ad8926683588c7e9031b.MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

 PermissionsPermissions

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

 Advanced Features
 Intent Actions and FeaturesIntent Actions and Features

By default, your activity will be given the default launcher icon provided by the system. To use a custom icon,

first add your .png.png to Resources/drawableResources/drawable, set its Build Action to AndroidResourceAndroidResource, then use the Icon

property to specify the icon to use. For example:

This example produces the following xml fragment:

When you add permissions to the Android Manifest (as described in Add Permissions to Android Manifest),

these permissions are recorded in Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml . For example, if you set the INTERNET

permission, the following element is added to Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml :

Debug builds automatically set some permissions to make debug easier (such as INTERNET and

READ_EXTERNAL_STORAGE) – these settings are set only in the generated

obj/Debug/android/AndroidManifest.xmlobj/Debug/android/AndroidManifest.xml and are not shown as enabled in the Required permissionsRequired permissions

settings.

For example, if you examine the generated manifest file at obj/Debug/android/AndroidManifest.xmlobj/Debug/android/AndroidManifest.xml , you

may see the following added permission elements:

In the Release build version of the manifest (at obj/Debug/android/AndroidManifest.xmlobj/Debug/android/AndroidManifest.xml), these

permissions are not automatically configured. If you find that switching to a Release build causes your app to

lose a permission that was available in the Debug build, verify that you have explicitly set this permission in the

Required permissionsRequired permissions settings for your app (see Build > Android ApplicationBuild > Android Application in Visual Studio for Mac; see

Proper ties > Android ManifestProper ties > Android Manifest in Visual Studio).

The Android manifest provides a way for you to describe the capabilities of your activity. This is done via Intents

and the [IntentFilter] custom attribute. You can specify which actions are appropriate for your activity with

the IntentFilter constructor, and which categories are appropriate with the Categories property. At least one

activity must be provided (which is why activities are provided in the constructor). [IntentFilter] can be

provided multiple times, and each use results in a separate <intent-filter/> element within the <activity/> .

https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute.icon#android_app_activityattribute_icon
https://github.com/xamarin/recipes/tree/master/Recipes/android/general/projects/add_permissions_to_android_manifest
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute#ctor*
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute.categories#android_app_intentfilterattribute_categories

[Activity (Label="Awesome Demo App", MainLauncher=true, Icon="@drawable/myicon")]
[IntentFilter (new[]{Intent.ActionView},
 Categories=new[]{Intent.CategorySampleCode, "my.custom.category"})]
public class MyActivity : Activity
{
}

<activity android:icon="@drawable/myicon" android:label="Awesome Demo App"
 android:name="md5a7a3c803e481ad8926683588c7e9031b.MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.SAMPLE_CODE" />
 <category android:name="my.custom.category" />
 </intent-filter>
</activity>

 Application ElementApplication Element

[assembly: Application (Debuggable=true,
 Label="My App",
 Theme="@android:style/Theme.Light")]

<application android:label="My App"
 android:debuggable="true"
 android:theme="@android:style/Theme.Light"
 ... />

For example:

This example produces the following xml fragment:

The Android manifest also provides a way for you to declare properties for your entire application. This is done

via the <application> element and its counterpart, the Application custom attribute. Note that these are

application-wide (assembly-wide) settings rather than per-Activity settings. Typically, you declare <application>

properties for your entire application and then override these settings (as needed) on a per-Activity basis.

For example, the following Application attribute is added to AssemblyInfo.csAssemblyInfo.cs to indicate that the application

can be debugged, that its user-readable name is My AppMy App, and that it uses the Theme.Light style as the default

theme for all activities:

This declaration causes the following XML fragment to be generated in

obj/Debug/android/AndroidManifest.xmlobj/Debug/android/AndroidManifest.xml :

In this example, all activities in the app will default to the Theme.Light style. If you set an Activity's theme to

Theme.Dialog , only that Activity will use the Theme.Dialog style while all other activities in your app will default

to the Theme.Light style as set in the <application> element.

The Application element is not the only way to configure <application> attributes. Alternately, you can insert

attributes directly into the <application> element of Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml . These settings are

merged into the final <application> element that resides in obj/Debug/android/AndroidManifest.xmlobj/Debug/android/AndroidManifest.xml .

Note that the contents of Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml always override data provided by custom

attributes.

https://docs.microsoft.com/en-us/dotnet/api/android.app.applicationattribute

 List of Custom Attributes

There are many application-wide attributes that you can configure in the <application> element; for more

information about these settings, see the Public Properties section of ApplicationAttribute.

Android.App.ActivityAttribute : Generates a /manifest/application/activity XML fragment

Android.App.ApplicationAttribute : Generates a /manifest/application XML fragment

Android.App.InstrumentationAttribute : Generates a /manifest/instrumentation XML fragment

Android.App.IntentFilterAttribute : Generates a //intent-filter XML fragment

Android.App.MetaDataAttribute : Generates a //meta-data XML fragment

Android.App.PermissionAttribute : Generates a //permission XML fragment

Android.App.PermissionGroupAttribute : Generates a //permission-group XML fragment

Android.App.PermissionTreeAttribute : Generates a //permission-tree XML fragment

Android.App.ServiceAttribute : Generates a /manifest/application/service XML fragment

Android.App.UsesLibraryAttribute : Generates a /manifest/application/uses-library XML fragment

Android.App.UsesPermissionAttribute : Generates a /manifest/uses-permission XML fragment

Android.Content.BroadcastReceiverAttribute : Generates a /manifest/application/receiver XML fragment

Android.Content.ContentProviderAttribute : Generates a /manifest/application/provider XML fragment

Android.Content.GrantUriPermissionAttribute : Generates a /manifest/application/provider/grant-uri-

permission XML fragment

https://docs.microsoft.com/en-us/dotnet/api/android.app.applicationattribute
https://docs.microsoft.com/en-us/dotnet/api/android.app.applicationattribute
https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute
https://developer.android.com/guide/topics/manifest/activity-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.applicationattribute
https://developer.android.com/guide/topics/manifest/application-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.instrumentationattribute
https://developer.android.com/guide/topics/manifest/instrumentation-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.metadataattribute
https://developer.android.com/guide/topics/manifest/meta-data-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.permissionattribute
https://developer.android.com/guide/topics/manifest/permission-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.permissiongroupattribute
https://developer.android.com/guide/topics/manifest/permission-group-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.permissiontreeattribute
https://developer.android.com/guide/topics/manifest/permission-tree-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.serviceattribute
https://developer.android.com/guide/topics/manifest/service-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.useslibraryattribute
https://developer.android.com/guide/topics/manifest/uses-library-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.usespermissionattribute
https://developer.android.com/guide/topics/manifest/uses-permission-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.content.broadcastreceiverattribute
https://developer.android.com/guide/topics/manifest/receiver-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.content.contentproviderattribute
https://developer.android.com/guide/topics/manifest/provider-element.html
https://docs.microsoft.com/en-us/dotnet/api/android.content.granturipermissionattribute
https://developer.android.com/guide/topics/manifest/grant-uri-permission-element.html

File Storage and Access with Xamarin.Android
 11/2/2020 • 7 minutes to read • Edit Online

 Internal vs external storage

A common requirement for Android apps is to manipulate files – saving pictures, downloading documents, or

exporting data to share with other programs. Android (which is based on Linux) supports this by providing

space for file storage. Android groups the filesystem into two different types of storage:

Internal StorageInternal Storage – this is a portion of the file system that can be accessed only by the application or the

operating system.

External StorageExternal Storage – this is a partition for the storage of files that is accessible by all apps, the user, and

possibly other devices. On some devices, external storage may be removable (such as an SD card).

These groupings are conceptual only, and don't necessarily refer to a single partition or directory on the device.

An Android device will always provide partition for internal storage and external storage. It is possible that

certain devices may have multiple partitions that are considered to be external storage. Regardless of the

partition the APIs for reading, writing, or creating files is the same. There are two sets of APIs that a

Xamarin.Android application may use for file access:

1. The .NET APIs (provided by Mono and wrapped by Xamarin.Android)The .NET APIs (provided by Mono and wrapped by Xamarin.Android) – These includes the file

system helpers provided by Xamarin.Essentials. The .NET APIs provide the best cross-platform compatibility

and as such the focus of this guide will be on these APIs.

2. The native Java file access APIs (provided by Java and wrapped by Xamarin.Android)The native Java file access APIs (provided by Java and wrapped by Xamarin.Android) – Java

provides its own APIs for reading and writing files. These are a completely acceptable alternative to the .NET

APIs, but are specific to Android and are not suitable for apps that are intended to be cross-platform.

Reading and writing to files is almost identical in Xamarin.Android as it is to any other .NET application. The

Xamarin.Android app determines the path to the file that will be manipulated, then uses standard .NET idioms

for file access. Because the actual paths to internal and external storage may vary from device to device or from

Android version to Android version, it is not recommended to hard code the path to the files. Instead, use the

Xamarin.Android APIs to determine the path to files. That way, the .NET APIs for reading and writing files

exposes the native Android APIs that will help with determining the path to files on internal and external storage.

Before discussing the APIs involved with file access, it is important to understand some of the details

surrounding internal and external storage. This will be discussed in the next section.

Conceptually, internal storage and external storage are very similar – they are both places at which a

Xamarin.Android app may save files. This similarity may be confusing for developers who are not familiar with

Android as it is not clear when an app should use internal storage vs external storage.

Internal storage refers to the non-volatile memory that Android allocates to the operating system, APKs, and for

individual apps. This space is not accessible except by the operating system or apps. Android will allocate a

directory in the internal storage partition for each app. When the app is uninstalled, all the files that are kept on

internal storage in that directory will also be deleted. Internal storage is best suited for files that are only

accessible to the app and that will not be shared with other apps or will have very little value once the app is

uninstalled. On Android 6.0 or higher, files on internal storage may be automatically backed up by Google using

the Auto Backup feature in Android 6.0. Internal storage has the following disadvantages:

Files cannot be shared.

Files will be deleted when the app is uninstalled.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/files/index.md
https://developer.android.com/guide/topics/data/autobackup

NOTENOTE

 Working with internal storage

/data/user/0/com.companyname/files

IMPORTANTIMPORTANT

SY ST EM . EN VIRO N M EN T. SP EC IA L F O L DERSY ST EM . EN VIRO N M EN T. SP EC IA L F O L DER PAT HPAT H

ApplicationData INTERNAL_STORAGEINTERNAL_STORAGE/.config/.config

The space available on internal storage maybe limited.

External storage refers to file storage that is not internal storage and not exclusively accessible to an app. The

primary purpose of external storage is to provide a place to put files that are meant to be shared between apps

or that are too large to fit on the internal storage. The advantage of external storage is that it typically has much

more space for files than internal storage. However, external storage is not always guaranteed to be present on a

device and may require special permission from the user to access it.

For devices that support multiple users, Android will provide each user their own directory on both internal and external

storage. This directory is inaccessible to other users on the device. This separation is invisible to apps as long as they do

not hardcode paths to files on internal or external storage.

As a rule of thumb, Xamarin.Android apps should prefer saving their files on internal storage when it is

reasonable, and rely on external storage when files need to be shared with other apps, are very large, or should

be retained even if the app is uninstalled. For example, a configuration file is best suited for a internal storage as

it has no importance except to the app that creates it. In contrast, photos are a good candidate for external

storage. They can be very large and in many cases the user may want to share them or access them even if the

app is uninstalled.

This guide will focus on internal storage. Please see the guide External storage for details on using external

storage in a Xamarin.Android application.

The internal storage directory for an application is determined by the operating system, and is exposed to

Android apps by the Android.Content.Context.FilesDir property. This will return a Java.IO.File object

representing the directory that Android has dedicated exclusively for the app. For example, an app with the

package name com.companynamecom.companyname the internal storage directory might be:

This document will refer to the internal storage directory as INTERNAL_STORAGE.

The exact path to the internal storage directory can vary from device to device and between versions of Android. Because

of this, apps must not hard code the path to the internal files storage directory, and instead use the Xamarin.Android

APIs, such as System.Environment.GetFolderPath() .

To maximize code sharing, Xamarin.Android apps (or Xamarin.Forms apps targeting Xamarin.Android) should

use the System.Environment.GetFolderPath() method. In Xamarin.Android, this method will return a string for a

directory that is the same location as Android.Content.Context.FilesDir . This method takes an enum,

System.Environment.SpecialFolder , which is used to identify a set of enumerated constants that represent the

paths of special folders used by the operating system. Not all of the System.Environment.SpecialFolder values

will map to a valid directory on Xamarin.Android. The following table describes what path can be expected for a

given value of System.Environment.SpecialFolder :

https://docs.microsoft.com/en-us/dotnet/api/system.environment.getfolderpath

Desktop INTERNAL_STORAGEINTERNAL_STORAGE/Desktop/Desktop

LocalApplicationData INTERNAL_STORAGEINTERNAL_STORAGE/.local/share/.local/share

MyDocuments INTERNAL_STORAGEINTERNAL_STORAGE

MyMusic INTERNAL_STORAGEINTERNAL_STORAGE/Music/Music

MyPictures INTERNAL_STORAGEINTERNAL_STORAGE/Pictures/Pictures

MyVideos INTERNAL_STORAGEINTERNAL_STORAGE/Videos/Videos

Personal INTERNAL_STORAGEINTERNAL_STORAGE

Fonts INTERNAL_STORAGEINTERNAL_STORAGE/.fonts/.fonts

Templates INTERNAL_STORAGEINTERNAL_STORAGE/Templates/Templates

CommonApplicationData /usr/share/usr/share

CommonApplicationData /usr/share/usr/share

SY ST EM . EN VIRO N M EN T. SP EC IA L F O L DERSY ST EM . EN VIRO N M EN T. SP EC IA L F O L DER PAT HPAT H

 Reading or Writing to files on internal storageReading or Writing to files on internal storage

public async Task SaveCountAsync(int count)
{
 var backingFile =
Path.Combine(System.Environment.GetFolderPath(System.Environment.SpecialFolder.Personal), "count.txt");
 using (var writer = File.CreateText(backingFile))
 {
 await writer.WriteLineAsync(count.ToString());
 }
}

Any of the C# APIs for writing to a file are sufficient; all that is necessary is to get the path to the file that is in the

directory allocated to the application. It is strongly recommended that the async versions of the .NET APIs are

used to minimize any issues that may be associate with file access blocking the main thread.

This code snippet is one example of writing an integer to a UTF-8 text file to the internal storage directory of an

application:

The next code snippet provides one way to read an integer value that was stored in a text file:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-write-to-a-text-file

public async Task<int> ReadCountAsync()
{
 var backingFile =
Path.Combine(System.Environment.GetFolderPath(System.Environment.SpecialFolder.Personal), "count.txt");

 if (backingFile == null || !File.Exists(backingFile))
 {
 return 0;
 }

 var count = 0;
 using (var reader = new StreamReader(backingFile, true))
 {
 string line;
 while ((line = await reader.ReadLineAsync()) != null)
 {
 if (int.TryParse(line, out var newcount))
 {
 count = newcount;
 }
 }
 }

 return count;
}

 Using Xamarin.Essentials – File System Helpers

// Get the path to a file on internal storage
var backingFile = Path.Combine(Xamarin.Essentials.FileSystem.AppDataDirectory, "count.txt");

// Get the path to a file in the cache directory
var cacheFile = Path.Combine(Xamarin.Essentials.FileSystem.CacheDirectory, "count.txt");

 Hiding files from the MediaStore

 Related Links

Xamarin.Essentials is a set of APIs for writing cross-platform compatible code. The File System Helpers is a class

that contains a series of helpers to simplify locating the application's cache and data directories. This code

snippet provides an example of how to find the internal storage directory and the cache directory for an app:

The MediaStore is an Android component that collects meta data about media files (videos, music, images) on

an Android device. Its purpose is simplify the sharing of these files across all Android apps on the device.

Private files will not show up as shareable media. For example, if an app saves a picture to its private external

storage, then that file will not be picked up by the media scanner (MediaStore).

Public files will be picked up by MediaStore . Directories that have a zero byte file name .NOMEDIA.NOMEDIA will not be

scanned by MediaStore .

External Storage

Save files on device storage

Xamarin.Essentials File System Helpers

Backup user data with Auto Backup

Adoptable Storage

https://developer.android.com/training/data-storage/files
https://developer.android.com/guide/topics/data/autobackup
https://source.android.com/devices/storage/adoptable

External storage
 7/8/2021 • 9 minutes to read • Edit Online

 Public and private files on external storage

 Private external filesPrivate external files

External storage refers to file storage that is not on internal storage and not exclusively accessible to the app that

is responsible for the file. The primary purpose of external storage is to provide a place to put files that are

meant to be shared between apps or that are too large to fit on the internal storage.

Historically speaking, external storage referred to a disk partition on removable media such as an SD card (was

also known as portable storage). This distinction is no longer as relevant as Android devices have evolved and

many Android devices no longer support removable storage. Instead some devices will allocate some of their

internal non-volatile memory which Android to perform the same function removable media. This is known as

emulated storage and is still considered to be external storage. Alternately, some Android devices may have

multiple external storage partitions. For example, an Android tablet (in addition to its internal storage) might

have emulated storage and one or more slots for an SD card. All of these partitions are treated by Android as

external storage.

On devices that have multiple users, each user will have a dedicated directory on the primary external storage

partition for their external storage. Apps running as one user will not have access to files from another user on

the device. The files for all users are still world-readable and world-writeable; however, Android will sandbox

each user profile fromthe others.

Reading and writing to files is almost identical in Xamarin.Android as it is to any other .NET application. The

Xamarin.Android app determines the path to the file that will be manipulated, then uses standard .NET idioms

for file access. Because the actual paths to internal and external storage may vary from device to device or from

Android version to Android version, it is not recommended to hard code the path to the files. Instead,

Xamarin.Android exposes the native Android APIs that will help with determining the path to files on internal

and external storage.

This guide will discuss the concepts and APIs in Android that are specific to external storage.

There are two different types of files that an app may keep on external storage:

Pr ivatePrivate files – Private files are files that are specific to your application (but are still world-readable and

world-writable). Android expects that private files are stored in a specific directory on external storage.

Even though the files are called "private", they are still visible and accessible by other apps on the device,

they are not afforded any special protection by Android.

PublicPublic files – These are files that are not considered to be specific to the application and are meant to be

freely shared.

The differences between these files is primarily conceptual. Private files are private in the sense that they are

considered to be a part of the application, while public files are any other files that exist on external storage.

Android provides two different APIs for resolving the paths to private and public files, but otherwise the same

.NET APIs are used to read and write to these files. These are the same APIs that are discussed in the section on

reading and writing.

Private external files are considered to be specific to an application (similar to internal files) but are being kept

on external storage for any number of reasons (such as being too large for internal storage). Similar to internal

files, these files will be deleted when the app is uninstalled by the user.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/files/external-storage.md

/storage/emulated/0/Android/data/com.companyname.app/files/

A N DRO ID. O S. EN VIRO N M EN TA N DRO ID. O S. EN VIRO N M EN T DIREC TO RYDIREC TO RY

DirectoryAlarms PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Alarms/Alarms

DirectoryDcim PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/DCIM/DCIM

DirectoryDownloads PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Download/Download

DirectoryDocuments PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Documents/Documents

DirectoryMovies PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Movies/Movies

DirectoryMusic PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Music/Music

DirectoryNotifications PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Notifications/Notifications

DirectoryPodcasts PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Podcasts/Podcasts

DirectoryRingtones PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Ringtones/Ringtones

DirectoryPictures PRIVATE_EXTERNAL_STORAGEPRIVATE_EXTERNAL_STORAGE/Pictures/Pictures

IMPORTANTIMPORTANT

 Public external filesPublic external files

The primary location for private external files is found by calling the method

Android.Content.Context.GetExternalFilesDir(string type) . This method will return a Java.IO.File object that

represents the private external storage directory for the app. Passing null to this method will return the path to

the user's storage directory for the application. As an example, for an application with the package name

com.companyname.app , the "root" directory of the private external files would be:

This document will refer to the storage directory for private files on external storage as

PRIVATE_EXTERNAL_STORAGE.

The parameter for GetExternalFilesDir() is a string that specifies an application directory. This is a directory

intended to provide a standard location for a logical organization of files. The string values are available through

constants on the Android.OS.Environment class:

For devices that have multiple external storage partitions, each partition will have a directory that is intended for

private files. The method Android.Content.Context.GetExternalFilesDirs(string type) will return an array of

Java.IO.Files . Each object will represent a private application-specific directory on all shared/external storage

devices where the application can place the files it owns.

The exact path to the private external storage directory can vary from device to device and between versions of Android.

Because of this, apps must not hard code the path to this directory, and instead use the Xamarin.Android APIs, such as

Android.Content.Context.GetExternalFilesDir() .

Public files are files that exist on external storage that are not stored in the directory that Android allocates for

private files. Public files will not be deleted when the app is uninstalled. Android apps must be granted

permission before they can read or write any public files. It is possible for public files to exist anywhere on

/storage/emulated/0/

/storage/emulated/0/Documents

IMPORTANTIMPORTANT

 Working with external storage

 Verifying that external storage is availableVerifying that external storage is available

external storage, but by convention Android expects public files to exist in the directory identified by the

property Android.OS.Environment.ExternalStorageDirectory . This property will return a Java.IO.File object that

represents the primary external storage directory. As an example,

Android.OS.Environment.ExternalStorageDirectory may refer to the following directory:

This document will refer to the storage directory for public files on external storage as

PUBLIC_EXTERNAL_STORAGE.

Android also supports the concept of application directories on PUBLIC_EXTERNAL_STORAGE. These directories

are exactly the same as the application directories for PRIVATE_EXTERNAL_STORAGE and are described in the table in

the previous section. The method

Android.OS.Environment.GetExternalStoragePublicDirectory(string directoryType) will return a Java.IO.File

object that correspond to a public application directory. The directoryType parameter is a mandatory

parameter and cannot be null .

For example, calling

Environment.GetExternalStoragePublicDirectory(Environment.DirectoryDocuments).AbsolutePath will return a string

which will resemble:

The exact path to the public external storage directory can vary from device to device and between versions of Android.

Because of this, apps must not hard code the path to this directory, and instead use the Xamarin.Android APIs, such as

Android.OS.Environment.ExternalStorageDirectory .

Once a Xamarin.Android app has obtained the full path to a file, it should utilize any of the standard .NET APIs

for creating, reading, writing, or deleting files. This maximizes the amount of cross platform compatible code for

an app. However, before attempting to access a file a Xamarin.Android app must ensure that is it possible to

access that file.

1. Ver ify external storageVerify external storage – Depending on the nature of the external storage, it is possible that it might not

be mounted and usable by the app. All apps should check the state of the external storage before attempting

to use it.

2. Perform a runtime permission checkPerform a runtime permission check – An Android app must request permission from the user in order

to access external storage. This means that a run time permission request should be performed prior to any

file access. The guide Permissions In Xamarin.Android contains more details on Android permissions.

Each of these two tasks will be discussed below.

The first step before writing to external storage is to check that it is readable or writeable. The

Android.OS.Environment.ExternalStorageState property holds a string that identifies the state of the external

storage. This property will return a string that represents the state. This table is a list of the

ExternalStorageState values that might be returned by Environment.ExternalStorageState :

EXT ERN A L STO RA GESTAT EEXT ERN A L STO RA GESTAT E DESC RIP T IO NDESC RIP T IO N

MediaBadRemoval The media was abruptly removed without being properly
unmounted.

MediaChecking The media is present but undergoing a disk check.

MediaEjecting Media is in the process of being unmounted and ejected.

MediaMounted Media is mounted and can be read or written to.

MediaMountedReadOnly Media is mounted but can only be read from.

MediaNofs Media is present but does not contain a filesystem suitable
for Android.

MediaRemoved There is no media present.

MediaShared Media is present, but is not mounted. It is being shared via
USB with another device.

MediaUnknown The state of the media is unrecognized by Android.

MediaUnmountable The media is present but cannot be mounted by Android.

MediaUnmounted The media is present but is not mounted.

bool isReadonly = Environment.MediaMountedReadOnly.Equals(Environment.ExternalStorageState);
bool isWriteable = Environment.MediaMounted.Equals(Environment.ExternalStorageState);

 External storage permissions

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

NOTENOTE

Most Android apps will only need to check if external storage is mounted. The following code snippet shows

how to verify that external storage is mounted for read-only access or read-write access:

Android considers accessing external storage to be a dangerous permission, which typically requires the user to

grant their permission to access the resource. The user may revoke this permission at any time. This means that

a run time permission request should be performed prior to any file access. Apps are automatically granted

permissions to read and write their own private files. It is possible for apps to read and write the private files

that belong to other apps after being granted permission by the user.

All Android apps must declare one of the two permissions for external storage in the AndroidManifest.xmlAndroidManifest.xml . To

identify the permissions, one of the following two uses-permission elements must be add to

AndroidManifest.xmlAndroidManifest.xml :

If the user grants WRITE_EXTERNAL_STORAGE , then READ_EXTERNAL_STORAGE is also implicitly granted. It is not necessary

to request both permissions in AndroidManifest.xmlAndroidManifest.xml.

Visual Studio

Visual Studio for Mac

The permissions may also be added using the Android ManifestAndroid Manifest tab of the solution proper tiessolution proper ties :

Generally speaking, all dangerous permissions must be approved by the user. The permissions for external

storage are an anomaly in that there are exceptions to this rule, depending on the version of Android that the

 Granting and revoking permissions with ADBGranting and revoking permissions with ADB

$ adb shell pm grant com.companyname.app android.permission.WRITE_EXTERNAL_STORAGE

$ adb shell pm revoke com.companyname.app android.permission.WRITE_EXTERNAL_STORAGE

 Deleting files

System.IO.File.Delete("/storage/emulated/0/Android/data/com.companyname.app/files/count.txt");

 Related Links

app is running:

For more information on performing runtime permission requests, please consult the guide Permissions In

Xamarin.Android. The monodroid-samplemonodroid-sample LocalFiles also demonstrates one way of performing runtime

permission checks.

In the course of developing an Android app, it may be necessary to grant and revoke permissions to test the

various work flows involved with runtime permission checks. It is possible to do this at the command prompt

using ADB. The following command line snippets demonstrate how to grant or revoke permissions using ADB

for an Android app whose package name is com.companyname.appcom.companyname.app:

Any of the standard C# APIs can be used to delete a file from external storage, such as System.IO.File.Delete . It

is also possible to use the Java APIs at the expense of code portability. For example:

Xamarin.Android Local Files sample on monodroid-samplesmonodroid-samples

Permissions In Xamarin.Android

https://github.com/xamarin/monodroid-samples/tree/master/LocalFiles
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.delete
https://github.com/xamarin/monodroid-samples/tree/master/LocalFiles

Fingerprint Authentication
 11/2/2020 • 2 minutes to read • Edit Online

 Fingerprint Authentication Overview

// context is any Android.Content.Context instance, typically the Activity
FingerprintManagerCompat fingerprintManager = FingerprintManagerCompat.From(context);
fingerprintManager.Authenticate(FingerprintManager.CryptoObject crypto,
 int flags,
 CancellationSignal cancel,
 FingerprintManagerCompat.AuthenticationCallback callback,
 Handler handler
);

 Requirements

This guide discusses how to add fingerprint authentication, introduced in Android 6.0, to a Xamarin.Android

application.

The arrival of fingerprint scanners on Android devices provides applications with an alternative to the traditional

username/password method of user authentication. The use of fingerprints to authenticate a user makes it

possible for an application to incorporate security that is less intrusive than a username and password.

The FingerprintManager APIs target devices with a fingerprint scanner and are running API level 23 (Android

6.0) or higher. The APIs are found in the Android.Hardware.Fingerprints namespace. The Android Support

Library v4 provides versions of the fingerprint APIs meant for older versions of Android. The compatibility APIs

are found in the Android.Support.v4.Hardware.Fingerprint namespace, are distributed through the

Xamarin.Android.Support.v4 NuGet package.

The FingerprintManager (and its Support Library counterpart, FingerprintManagerCompat) is the primary class

for using the fingerprint scanning hardware. This class is an Android SDK wrapper around the system level

service that manages interactions with the hardware itself. It is responsible for starting the fingerprint scanner

and for responding to feedback from the scanner. This class has a fairly straightforward interface with only three

members:

Authenticate – This method will initialize the hardware scanner and start the service in the background,

waiting for the user to scan their fingerprint.

EnrolledFingerprints – This property will return true if the user has registered one or more fingerprints

with the device.

HardwareDetected – This property is used to determine if the device supports fingerprint scanning.

The FingerprintManager.Authenticate method is used by an Android application to start the fingerprint scanner.

The following snippet is an example of how to invoke it using the Support Library compatibility APIs:

This guide will discuss how to use the FingerprintManager APIs to enhance an Android application with

fingerprint authentication. It will cover how to instantiate and create a CryptoObject to help secure the results

from the fingerprint scanner. We'll examine how an application should subclass

FingerprintManager.AuthenticationCallback and respond to feedback from the fingerprint scanner. Finally, we'll

see how to enroll a fingerprint on an Android device or emulator and how to use adbadb to simulate a fingerprint

scan.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fingerprint-authentication/index.md
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://developer.android.com/reference/android/support/v4/hardware/fingerprint/FingerprintManagerCompat.html

 Related Links

Fingerprint Authentication requires Android 6.0 (API level 23) or higher and a device with a fingerprint scanner.

A fingerprint must already be enrolled with the device for each user that is to be authenticated. This involves

setting up a screen lock that uses a password, PIN, swipe pattern, or facial recognition. It is possible to simulate

some of the fingerprint authentication functionality in an Android Emulator. For more information on these two

topics, please see the Enrolling a Fingerprint section.

Fingerprint Guide Sample App

Fingerprint Dialog Sample

Requesting Permissions at Runtime

android.hardware.fingerprint

android.support.v4.hardware.fingerprint

Android.Content.Context

Fingerprint and payments API (video)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/fingerprintguide
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-fingerprintdialog
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/reference/android/hardware/fingerprint/package-summary.html
https://developer.android.com/reference/android/support/v4/hardware/fingerprint/package-summary.html
https://docs.microsoft.com/en-us/dotnet/api/android.content.context
https://youtu.be/VOn7VrTRlA4

Getting Started with Fingerprint Authentication
 7/8/2021 • 3 minutes to read • Edit Online

 Requesting Permissions in the Application Manifest

 Getting an Instance of the FingerprintManager

To get started, let's first cover how to configure a Xamarin.Android project so that the application is able to use

fingerprint authentication:

1. Update AndroidManifest.xmlAndroidManifest.xml to declare the permissions that the Fingerprint APIs require.

2. Obtain a reference to the FingerprintManager .

3. Check that the device is capable of fingerprint scanning.

Visual Studio

Visual Studio for Mac

An Android application must request the USE_FINGERPRINT permission in the manifest. The following screenshot

shows how to add this permission to the application in Visual Studio:

Next, the application must get an instance of the FingerprintManager or the FingerprintManagerCompat class. To

be compatible with older versions of Android, an Android application should use the compatibility API's found in

the Android Support v4 NuGet package. The following snippet demonstrates how to get the appropriate object

from the operating system:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fingerprint-authentication/get-started.md
file:///T:/c1uy/n1bv/xamarin/android/platform/fingerprint-authentication/get-started-images/fingerprint-01-vs.png#lightbox

// Using the Android Support Library v4
FingerprintManagerCompat fingerprintManager = FingerprintManagerCompat.From(context);

// Using API level 23:
FingerprintManager fingerprintManager = context.GetSystemService(Context.FingerprintService) as
FingerprintManager;

 Checking for Eligibility

FingerprintManagerCompat fingerprintManager = FingerprintManagerCompat.From(context);
if (!fingerprintManager.IsHardwareDetected)
{
 // Code omitted
}

KeyguardManager keyguardManager = (KeyguardManager) GetSystemService(KeyguardService);
if (!keyguardManager.IsKeyguardSecure)
{
}

FingerprintManagerCompat fingerprintManager = FingerprintManagerCompat.From(context);
if (!fingerprintManager.HasEnrolledFingerprints)
{
 // Can't use fingerprint authentication - notify the user that they need to
 // enroll at least one fingerprint with the device.
}

In the previous snippet, the context is any Android Android.Content.Context . Typically this is the Activity which

is performing the authentication.

An application must perform several checks to ensure that it is possible to use fingerprint authentication. In

total, there are five conditions that the application uses to check for eligibility:

API level 23API level 23 – The Fingerprint APIs require API level 23 or higher. The FingerprintManagerCompat class will wrap

the API level check for you. For this reason it is recommend to use the Android Suppor t L ibrar y v4Android Suppor t L ibrar y v4 and

FingerprintManagerCompat ; this will account for the one of these checks.

HardwareHardware – When the application starts up for the first time, it should check for the presence of a fingerprint

scanner :

Device Is SecuredDevice Is Secured – The user must have the device secured with a screen lock. If the user has not secured the

device with a screen lock and security is important to the application, then the user should be notified that a

screen lock must be configured. The following code snippet shows how to check this pre-requiste:

Enrolled FingerprintsEnrolled Fingerprints – The user must have at least one fingerprint registered with the operating system. This

permission check should occur prior to each authentication attempt:

PermissionsPermissions – The application must request permission from the user before using the application. For

Android 5.0 and lower, the user grants the permission as a condition of installing the app. Android 6.0

introduced a new permission model that checks permissions at run-time. This code snippet is an example of

how to check for permissions on Android 6.0:

// The context is typically a reference to the current activity.
Android.Content.PM.Permission permissionResult = ContextCompat.CheckSelfPermission(context,
Manifest.Permission.UseFingerprint);
if (permissionResult == Android.Content.PM.Permission.Granted)
{
 // Permission granted - go ahead and start the fingerprint scanner.
}
else
{
 // No permission. Go and ask for permissions and don't start the scanner. See
 // https://developer.android.com/training/permissions/requesting.html
}

 Related Links

Checking all of these conditions each time the application offers authentication options will ensure the user gets

the best user experience. Changes or upgrades to their device or operating system might affect the availability

of fingerprint authentication. If you choose to cache the results of any of these checks, make sure to cater for

upgrade scenarios.

For more information on how to request permissions in Android 6.0, consult the Android guide Requesting

Permissions at Run-Time.

Context

KeyguardManager

ContextCompat

FingerprintManager

FingerprintManagerCompat

Requesting Permissions at Run-Time

https://developer.android.com/training/permissions/requesting.html
https://docs.microsoft.com/en-us/dotnet/api/android.content.context
https://docs.microsoft.com/en-us/dotnet/api/android.app.keyguardmanager
https://developer.android.com/reference/android/support/v4/content/ContextCompat
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://developer.android.com/reference/android/support/v4/hardware/fingerprint/FingerprintManagerCompat.html
https://developer.android.com/training/permissions/requesting.html

Scanning For Fingerprints
 10/28/2019 • 3 minutes to read • Edit Online

protected void FingerPrintAuthenticationExample()
{
 const int flags = 0; /* always zero (0) */

 // CryptoObjectHelper is described in the previous section.
 CryptoObjectHelper cryptoHelper = new CryptoObjectHelper();

 // cancellationSignal can be used to manually stop the fingerprint scanner.
 cancellationSignal = new Android.Support.V4.OS.CancellationSignal();

 FingerprintManagerCompat fingerprintManager = FingerprintManagerCompat.From(this);

 // AuthenticationCallback is a base class that will be covered later on in this guide.
 FingerprintManagerCompat.AuthenticationCallback authenticationCallback = new MyAuthCallbackSample(this);

 // Start the fingerprint scanner.
 fingerprintManager.Authenticate(cryptoHelper.BuildCryptoObject(), flags, cancellationSignal,
authenticationCallback, null);
}

Now that we have seen how to prepare a Xamarin.Android application to use fingerprint authentication, let's

return to the FingerprintManager.Authenticate method, and discuss its place in the Android 6.0 fingerprint

authentication. A quick overview of the workflow for fingerprint authentication is described in this list:

1. Invoke FingerprintManager.Authenticate , passing a CryptoObject and a

FingerprintManager.AuthenticationCallback instance. The CryptoObject is used to ensure that the fingerprint

authentication result was not tampered with.

2. Subclass the FingerprintManager.AuthenticationCallback class. An instance of this class will be provided to

FingerprintManager when fingerprint authentication starts. When the fingerprint scanner is finished, it will

invoke one of the callback methods on this class.

3. Write code to update the UI to let the user know that the device has started the fingerprint scanner and is

waiting for user interaction.

4. When the fingerprint scanner is done, Android will return results to the application by invoking a method on

the FingerprintManager.AuthenticationCallback instance that was provided in the previous step.

5. The application will inform the user of the fingerprint authentication results and react to the results as

appropriate.

The following code snippet is an example of a method in an Activity that will start scanning for fingerprints:

Let's discuss each of these parameters in the Authenticate method in a bit more detail:

The first parameter is a crypto object that the fingerprint scanner will use to help authenticate the results of a

fingerprint scan. This object may be null , in which case the application has to blindly trust that nothing has

tampered with the fingerprint results. It is recommended that a CryptoObject be instantiated and provided

to the FingerprintManager rather than null. Creating a CryptObject will explain in detail how to instantiate a

CryptoObject based on a Cipher .

The second parameter is always zero. The Android documentation identifies this as set of flags and is most

likely reserved for future use.

The third parameter, cancellationSignal is an object used to turn off the fingerprint scanner and cancel the

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fingerprint-authentication/scanning.md
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.AuthenticationCallback.html

 Cancelling a Fingerprint Scan

 Related Links

current request. This is an Android CancellationSignal, and not a type from the .NET framework.

The fourth parameter is mandatory and is a class that subclasses the AuthenticationCallback abstract class.

Methods on this class will be invoked to signal to clients when the FingerprintManager has finished and what

the results are. As there is a lot to understand about implementing the AuthenticationCallback , it will be

covered in it's own section.

The fifth parameter is an optional Handler instance. If a Handler object is provided, the FingerprintManager

will use the Looper from that object when processing the messages from the fingerprint hardware. Typically,

one does not need to provide a Handler , the FingerprintManager will use the Looper from the application.

It might be necessary for the user (or the application) to cancel the fingerprint scan after it has been initiated. In

this situation, invoke the IsCancelled method on the CancellationSignal that was provided to

FingerprintManager.Authenticate when it was invoked to start the fingerprint scan.

Now that we have seen the Authenticate method, let's examine some of the more important parameters in

more detail. First, we'll look at Responding to Authentication Callbacks, which will discuss how to subclass the

FingerprintManager.AuthenticationCallback, enabling an Android application to react to the results provided by

the fingerprint scanner.

CancellationSignal

FingerprintManager.AuthenticationCallback

FingerprintManager.CryptoObject

FingerprintManagerCompat.CryptoObject

FingerprintManager

FingerprintManagerCompat

https://developer.android.com/reference/android/os/CancellationSignal.html
https://developer.android.com/reference/android/os/CancellationSignal.html#isCanceled()
https://developer.android.com/reference/android/os/CancellationSignal.html
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.AuthenticationCallback.html
https://developer.android.com/reference/android/os/CancellationSignal.html
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.AuthenticationCallback.html
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.CryptoObject.html
https://developer.android.com/reference/android/support/v4/hardware/fingerprint/FingerprintManagerCompat.CryptoObject.html
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://developer.android.com/reference/android/support/v4/hardware/fingerprint/FingerprintManagerCompat.html

Creating a CryptoObject
 12/13/2019 • 4 minutes to read • Edit Online

public class CryptoObjectHelper
{
 // This can be key name you want. Should be unique for the app.
 static readonly string KEY_NAME = "com.xamarin.android.sample.fingerprint_authentication_key";

 // We always use this keystore on Android.
 static readonly string KEYSTORE_NAME = "AndroidKeyStore";

 // Should be no need to change these values.
 static readonly string KEY_ALGORITHM = KeyProperties.KeyAlgorithmAes;
 static readonly string BLOCK_MODE = KeyProperties.BlockModeCbc;
 static readonly string ENCRYPTION_PADDING = KeyProperties.EncryptionPaddingPkcs7;
 static readonly string TRANSFORMATION = KEY_ALGORITHM + "/" +
 BLOCK_MODE + "/" +
 ENCRYPTION_PADDING;
 readonly KeyStore _keystore;

 public CryptoObjectHelper()
 {
 _keystore = KeyStore.GetInstance(KEYSTORE_NAME);
 _keystore.Load(null);
 }

 public FingerprintManagerCompat.CryptoObject BuildCryptoObject()
 {
 Cipher cipher = CreateCipher();
 return new FingerprintManagerCompat.CryptoObject(cipher);
 }

 Cipher CreateCipher(bool retry = true)
 {
 IKey key = GetKey();
 Cipher cipher = Cipher.GetInstance(TRANSFORMATION);
 try
 {
 cipher.Init(CipherMode.EncryptMode, key);
 } catch(KeyPermanentlyInvalidatedException e)
 {
 _keystore.DeleteEntry(KEY_NAME);
 if(retry)
 {
 CreateCipher(false);
 } else
 {

The integrity of the fingerprint authentication results is important to an application – it is how the application

knows the identity of the user. It is theoretically possible for third-party malware to intercept and tamper with

the results returned by the fingerprint scanner. This section will discuss one technique for preserving the validity

of the fingerprint results.

The FingerprintManager.CryptoObject is a wrapper around the Java cryptography APIs and is used by the

FingerprintManager to protect the integrity of the authentication request. Typically, a Javax.Crypto.Cipher object

is the mechanism for encrypting the results of the fingerprint scanner. The Cipher object itself will use a key

that is created by the application using the Android keystore APIs.

To understand how these classes all work together, let's first look at the following code which demonstrates how

to create a CryptoObject , and then explain in more detail:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fingerprint-authentication/creating-a-cryptoobject.md

 {
 throw new Exception("Could not create the cipher for fingerprint authentication.", e);
 }
 }
 return cipher;
 }

 IKey GetKey()
 {
 IKey secretKey;
 if(!_keystore.IsKeyEntry(KEY_NAME))
 {
 CreateKey();
 }

 secretKey = _keystore.GetKey(KEY_NAME, null);
 return secretKey;
 }

 void CreateKey()
 {
 KeyGenerator keyGen = KeyGenerator.GetInstance(KeyProperties.KeyAlgorithmAes, KEYSTORE_NAME);
 KeyGenParameterSpec keyGenSpec =
 new KeyGenParameterSpec.Builder(KEY_NAME, KeyStorePurpose.Encrypt | KeyStorePurpose.Decrypt)
 .SetBlockModes(BLOCK_MODE)
 .SetEncryptionPaddings(ENCRYPTION_PADDING)
 .SetUserAuthenticationRequired(true)
 .Build();
 keyGen.Init(keyGenSpec);
 keyGen.GenerateKey();
 }
}

 Creating a Secret Key

The sample code will create a new Cipher for each CryptoObject , using a key that was created by the

application. The key is identified by the KEY_NAME variable that was set in the beginning of the

CryptoObjectHelper class. The method GetKey will try and retrieve the key using the Android Keystore APIs. If

the key does not exist, then the method CreateKey will create a new key for the application.

The cipher is instantiated with a call to Cipher.GetInstance , taking a transformation (a string value that tells the

cipher how to encrypt and decrypt data). The call to Cipher.Init will complete the initialization of the cipher by

providing a key from the application.

It is important to realize that there are some situations where Android may invalidate the key:

A new fingerprint has been enrolled with the device.

There are no fingerprints enrolled with the device.

The user has disabled the screen lock.

The user has changed the screen lock (the type of the screenlock or the PIN/pattern used).

When this happens, Cipher.Init will throw a KeyPermanentlyInvalidatedException . The above sample code will

trap that exception, delete the key, and then create a new one.

The next section will discuss how to create the key and store it on the device.

The CryptoObjectHelper class uses the Android KeyGenerator to create a key and store it on the device. The

KeyGenerator class can create the key, but needs some meta-data about the type of key to create. This

information is provided by an instance of the KeyGenParameterSpec class.

A KeyGenerator is instantiated using the GetInstance factory method. The sample code uses the Advanced

Encryption Standard (AES) as the encryption algorithm. AES will break the data up into blocks of a fixed size and

https://developer.android.com/reference/android/security/keystore/KeyPermanentlyInvalidatedException.html
https://docs.microsoft.com/en-us/dotnet/api/javax.crypto.keygenerator
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

 Using the CryptoObjectHelper

protected void FingerPrintAuthenticationExample()
{
 const int flags = 0; /* always zero (0) */

 CryptoObjectHelper cryptoHelper = new CryptoObjectHelper();
 cancellationSignal = new Android.Support.V4.OS.CancellationSignal();

 // Using the Support Library classes for maximum reach
 FingerprintManagerCompat fingerPrintManager = FingerprintManagerCompat.From(this);

 // AuthCallbacks is a C# class defined elsewhere in code.
 FingerprintManagerCompat.AuthenticationCallback authenticationCallback = new MyAuthCallbackSample(this);

 // Here is where the CryptoObjectHelper builds the CryptoObject.
 fingerprintManager.Authenticate(cryptohelper.BuildCryptoObject(), flags, cancellationSignal,
authenticationCallback, null);
}

 Related Links

encrypt each of those blocks.

Next, a KeyGenParameterSpec is created using the KeyGenParameterSpec.Builder . The

KeyGenParameterSpec.Builder wraps the following information about the key that is to be created:

The name of the key.

The key must be valid for both encrypting and decrypting.

In the sample code the BLOCK_MODE is set to Cipher Block Chaining (KeyProperties.BlockModeCbc), meaning

that each block is XORed with the previous block (creating dependencies between each block).

The CryptoObjectHelper uses Public Key Cryptography Standard #7 (PKCS7) to generate the bytes that will

pad out the blocks to ensure that they are all of the same size.

SetUserAuthenticationRequired(true) means that user authentication is required before the key can be used.

Once the KeyGenParameterSpec is created, it is used to initialize the KeyGenerator , which will generate a key and

securely store it on the device.

Now that the sample code has encapsulated much of the logic for creating a CryptoWrapper into the

CryptoObjectHelper class, let's revisit the code from the start of this guide and use the CryptoObjectHelper to

create the Cipher and start a fingerprint scanner :

Now that we have seen how to create a CryptoObject , lets move on to see how the

FingerprintManager.AuthenticationCallbacks are used to transfer the results of fingerprint scanner service to an

Android application.

Cipher

FingerprintManager.CryptoObject

FingerprintManagerCompat.CryptoObject

KeyGenerator

KeyGenParameterSpec

KeyGenParameterSpec.Builder

KeyPermanentlyInvalidatedException

KeyProperties

AES

https://tools.ietf.org/html/rfc2315
https://docs.microsoft.com/en-us/dotnet/api/javax.crypto.cipher
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.CryptoObject.html
https://developer.android.com/reference/android/support/v4/hardware/fingerprint/FingerprintManagerCompat.CryptoObject.html
https://docs.microsoft.com/en-us/dotnet/api/javax.crypto.keygenerator
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.html
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder.html
https://developer.android.com/reference/android/security/keystore/KeyPermanentlyInvalidatedException.html
https://developer.android.com/reference/android/security/keystore/KeyProperties.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

RFC 2315 - PCKS #7

https://tools.ietf.org/html/rfc2315

Responding to Authentication Callbacks
 10/28/2019 • 5 minutes to read • Edit Online

NOTENOTE

 A Sample Authentication Callback Handler

The fingerprint scanner runs in the background on its own thread, and when it is finished it will report the

results of the scan by invoking one method of FingerprintManager.AuthenticationCallback on the UI thread. An

Android application must provide its own handler which extends this abstract class, implementing all the

following methods:

OnAuthenticationError(int errorCode, ICharSequence errString) – Called when there is an unrecoverable

error. There is nothing more an application or user can do to correct the situation except possibly try again.

OnAuthenticationFailed() – This method is invoked when a fingerprint has been detected but not recognized

by the device.

OnAuthenticationHelp(int helpMsgId, ICharSequence helpString) – Called when there is a recoverable error,

such as the finger being swiped to fast over the scanner.

OnAuthenticationSucceeded(FingerprintManagerCompati.AuthenticationResult result) – This is called when a

fingerprint has been recognized.

If a CryptoObject was used when calling Authenticate , it is recommended to call Cipher.DoFinal in

OnAuthenticationSuccessful . DoFinal will throw an exception if the cipher was tampered with or improperly

initialized, indicating that the result of the fingerprint scanner may have been tampered with outside of the

application.

It is recommended to keep the callback class relatively light weight and free of application specific logic. The callbacks

should act as a "traffic cop" between the Android application and the results from the fingerprint scanner.

The following class is an example of a minimal FingerprintManager.AuthenticationCallback implementation:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fingerprint-authentication/fingerprint-authentication-callbacks.md

class MyAuthCallbackSample : FingerprintManagerCompat.AuthenticationCallback
{
 // Can be any byte array, keep unique to application.
 static readonly byte[] SECRET_BYTES = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 // The TAG can be any string, this one is for demonstration.
 static readonly string TAG = "X:" + typeof (SimpleAuthCallbacks).Name;

 public MyAuthCallbackSample()
 {
 }

 public override void OnAuthenticationSucceeded(FingerprintManagerCompat.AuthenticationResult result)
 {
 if (result.CryptoObject.Cipher != null)
 {
 try
 {
 // Calling DoFinal on the Cipher ensures that the encryption worked.
 byte[] doFinalResult = result.CryptoObject.Cipher.DoFinal(SECRET_BYTES);

 // No errors occurred, trust the results.
 }
 catch (BadPaddingException bpe)
 {
 // Can't really trust the results.
 Log.Error(TAG, "Failed to encrypt the data with the generated key." + bpe);
 }
 catch (IllegalBlockSizeException ibse)
 {
 // Can't really trust the results.
 Log.Error(TAG, "Failed to encrypt the data with the generated key." + ibse);
 }
 }
 else
 {
 // No cipher used, assume that everything went well and trust the results.
 }
 }

 public override void OnAuthenticationError(int errMsgId, ICharSequence errString)
 {
 // Report the error to the user. Note that if the user canceled the scan,
 // this method will be called and the errMsgId will be FingerprintState.ErrorCanceled.
 }

 public override void OnAuthenticationFailed()
 {
 // Tell the user that the fingerprint was not recognized.
 }

 public override void OnAuthenticationHelp(int helpMsgId, ICharSequence helpString)
 {
 // Notify the user that the scan failed and display the provided hint.
 }
}

OnAuthenticationSucceeded checks to see if a Cipher was provided to FingerprintManager when

Authentication was invoked. If so, the DoFinal method is called on the cipher. This closes the Cipher , restoring

it to its original state. If there was a problem with the cipher, then DoFinal will throw an exception and the

authentication attempt should be considered to have failed.

The OnAuthenticationError and OnAuthenticationHelp callbacks each receive an integer indicating what the

problem was. The following section explains each of the possible help or error codes. The two callbacks serve

similar purposes – to inform the application that fingerprint authentication has failed. How they differ is in

 Help Codes and Error Message Ids

 Related Links

severity. OnAuthenticationHelp is a user recoverable error, such as swiping the fingerprint too fast;

OnAuthenticationError is more a severe error, such as a damaged fingerprint scanner.

Note that OnAuthenticationError will be invoked when the fingerprint scan is cancelled via the

CancellationSignal.Cancel() message. The errMsgId parameter will have the value of 5 (

FingerprintState.ErrorCanceled). Depending on the requirements, an implementation of the

AuthenticationCallbacks may treat this situation differently than the other errors.

OnAuthenticationFailed is invoked when the fingerprint was successfully scanned but did not match any

fingerprint enrolled with the device.

A list and description of the error codes and help codes may be found in the Android SDK documentation for the

FingerprintManager class. Xamarin.Android represents these values with the

Android.Hardware.Fingerprints.FingerprintState enum:

AcquiredGood – (value 0) The image acquired was good.

AcquiredImagerDirty – (value 3) The fingerprint image was too noisy due to suspected or detected dirt on

the sensor. For example, it's reasonable to return this after multiple AcquiredInsufficient or actual

detection of dirt on the sensor (stuck pixels, swaths, etc.). The user is expected to take action to clean the

sensor when this is returned.

AcquiredInsufficient – (value 2) The fingerprint image was too noisy to process due to a detected

condition (i.e. dry skin) or a possibly dirty sensor (See AcquiredImagerDirty .

AcquiredPartial – (value 1) Only a partial fingerprint image was detected. During enrollment, the user

should be informed on what needs to happen to resolve this problem, e.g., “press firmly on sensor.”

AcquiredTooFast – (value 5) The fingerprint image was incomplete due to quick motion. While mostly

appropriate for linear array sensors, this could also happen if the finger was moved during acquisition.

The user should be asked to move the finger slower (linear) or leave the finger on the sensor longer.

AcquiredToSlow – (value 4) The fingerprint image was unreadable due to lack of motion. This is most

appropriate for linear array sensors that require a swipe motion.

ErrorCanceled – (value 5) The operation was canceled because the fingerprint sensor is unavailable. For

example, this may happen when the user is switched, the device is locked, or another pending operation

prevents or disables it.

ErrorHwUnavailable – (value 1) The hardware is unavailable. Try again later.

ErrorLockout – (value 7) The operation was canceled because the API is locked out due to too many

attempts.

ErrorNoSpace – (value 4) Error state returned for operations like enrollment; the operation cannot be

completed because there's not enough storage remaining to complete the operation.

ErrorTimeout – (value 3) Error state returned when the current request has been running too long. This is

intended to prevent programs from waiting for the fingerprint sensor indefinitely. The timeout is platform

and sensor-specific, but is generally about 30 seconds.

ErrorUnableToProcess – (value 2) Error state returned when the sensor was unable to process the current

image.

https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html#FINGERPRINT_ACQUIRED_GOOD

Cipher

AuthenticationCallback

AuthenticationCallback

https://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.AuthenticationCallback.html
https://developer.android.com/reference/android/support/v4/hardware/fingerprint/FingerprintManagerCompat.AuthenticationCallback.html

Fingerprint Authentication Guidance
 7/8/2021 • 2 minutes to read • Edit Online

 Fingerprint Authentication Guidance

 Summary

 Related Links

Now that we have seen the concepts and APIs surrounding Android 6.0 fingerprint authentication, let's discuss

some general advice for the use of the Fingerprint APIs.

1. Use the Android Suppor t L ibrar y v4 Compatibility APIsUse the Android Suppor t L ibrar y v4 Compatibility APIs – This will simplify the application code by

removing the API check from the code and allow an application to target the most devices possible.

2. Provide Alternatives to Fingerprint AuthenticationProvide Alternatives to Fingerprint Authentication – Fingerprint authentication is a great, quick

way for an application to authenticate a user, however, it cannot be assumed that it will always work or be

available. It is possible that the fingerprint scanner may fail, the lens maybe be dirty, the user may not

have configured the device to use fingerprint authentication, or the fingerprints have since gone missing.

It is also possible that the user may not wish to use fingerprint authentication with your application. For

these reasons, an Android application should provide an alternate authentication process such as

username and password.

3. Use Google's fingerprint iconUse Google's fingerprint icon – All applications should use the same fingerprint icon provided by

Google. The use of a standard icon makes it easy for Android users to recognize where in apps fingerprint

authentication is used:

4. Notify the UserNotify the User – An application should display some kind of notification to the user that the fingerprint

scanner is active and awaiting a touch or swipe.

Fingerprint authentication is a great way to allow a Xamarin.Android application to quickly verify users, making

it easier for users to interact with sensitive features such as in-app purchases. This guide discussed the concepts

and code that is required to incorporate the Android 6.0 fingerprint API's in your Xamarin.Android application.

First we discussed the fingerprint API's themselves, FingerprintManager (and FingerprintManagerCompat). We

examined how the FingerprintManager.AuthenticationCallbacks abstract class must be extended by an

application and used as an intermediary between the fingerprint hardware and the application itself. Then we

examined how to verify the integrity of the fingerprint scanner results using a Java Cipher object. Finally, we

touched a bit on testing by describing how to enroll a fingerprint on a device and using adbadb to simulate a

fingerprint swipe on an emulator.

If you haven't already done so, you should look at the sample application that accompanies this guide. The

Fingerprint Dialog Sample has been ported from Java to Xamarin.Android and provides another example on

how to add fingerprint authentication to an Android application.

Fingerprint Guide Sample App

Fingerprint Dialog Sample

Fingerprint Icon

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fingerprint-authentication/summary.md
https://github.com/xamarin/monodroid-samples/tree/master/FingerprintGuide
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-fingerprintdialog
https://github.com/xamarin/monodroid-samples/tree/master/FingerprintGuide
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-fingerprintdialog
https://raw.githubusercontent.com/xamarin/monodroid-samples/master/FingerprintGuide/FingerprintSampleApp/Resources/drawable-hdpi/ic_fp_40px.png

Enrolling a Fingerprint
 7/8/2021 • 2 minutes to read • Edit Online

 Enrolling a Fingerprint Overview

 Requirements

 Configuring a Screen Lock and Enrolling a Fingerprint

It is only possible for an Android application to leverage fingerprint authentication if the device has already been

configured with fingerprint authentication. This guide will discuss how to enroll a fingerprint on an Android

device or Emulator. Emulators do not have the actual hardware to perform a fingerprint scan, but it is possible to

simulate a fingerprint scan with the help of the Android Debug Bridge (described below). This guide will discuss

how to enable screen lock on an Android device and enroll a fingerprint for authentication.

To enroll a fingerprint, you must have an Android device or an emulator running API level 23 (Android 6.0).

The use of the Android Debug Bridge (ADB) requires familiarity with the command prompt, and the adbadb

executable must be in the PATH of your Bash, PowerShell, or Command Prompt environment.

To setup a screen lock, perform the following steps:

1. Go to Settings > SecuritySettings > Security , and select Screen lockScreen lock :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fingerprint-authentication/enrolling-fingerprint.md

2. The next screen that appears will allow you select and configure one of the screen lock security methods:

Select and complete one of the available screen lock methods.

3. Once the screenlock is configured, return to the Settings > SecuritySettings > Security page and select FingerprintFingerprint:

4. From there, follow the sequence to add a fingerprint to the device:

5. In the final screen you are prompted to place your finger on the fingerprint scanner :

file:///T:/c1uy/n1bv/xamarin/android/platform/fingerprint-authentication/enrolling-fingerprint-images/testing-04.png#lightbox

If you are using an Android device, complete the process by touching a finger to the scanner.

 Simulating a Fingerprint Scan on the EmulatorSimulating a Fingerprint Scan on the Emulator

$ adb -e emu finger touch 1

On an Android emulator, it is possible to simulate a fingerprint scan by using the Android Debug Bridge. On OS

X start a Terminal session while on Windows start a command prompt or a Powershell session and run adb :

The value of 11 is the finger_id for the finger that was "scanned". It is a unique integer that you assign for each

virtual fingerprint. In the future when the app is running you can run this same ADB command each time the

emulator prompts you for a fingerprint, you can run the adb command and pass it the finger_id to simulate the

fingerprint scan.

After the fingerprint scan is complete, Android will notify you that the fingerprint has been added:

 Summary
This guide covered how to setup a screen lock and enroll a fingerprint on an Android device or in an Android

emulator.

Android Job Scheduler
 1/31/2020 • 10 minutes to read • Edit Online

 Overview

This guide discusses how to schedule background work using the Android Job Scheduler API, which is available

on Android devices running Android 5.0 (API level 21) and higher.

One of the best ways to keep an Android application responsive to the user is to ensure that complex or long

running work is performed in the background. However, it is important that background work will not

negatively impact the user's experience with the device.

For example, a background job might poll a website every three or four minutes to query for changes to a

particular dataset. This seems benign, however it would have a disastrous impact on battery life. The application

will repeatedly wake up the device, elevate the CPU to a higher power state, power up the radios, make the

network requests, and then processing the results. It gets worse because the device will not immediately power

down and return to the low-power idle state. Poorly scheduled background work may inadvertently keep the

device in a state with unnecessary and excessive power requirements. This seemingly innocent activity (polling a

website) will render the device unusable in a relatively short period of time.

Android provides the following APIs to help with performing work in the background but by themselves they

are not sufficient for intelligent job scheduling.

Intent Ser vicesIntent Ser vices – Intent Services are great for performing the work, however they provide no way to

schedule work.

AlarmManagerAlarmManager – These APIs only allow work to be scheduled but provide no way to actually perform the

work. Also, the AlarmManager only allows time based constraints, which means raise an alarm at a certain

time or after a certain period of time has elapsed.

Broadcast ReceiversBroadcast Receivers – An Android app can setup broadcast receivers to perform work in response to

system-wide events or Intents. However, broadcast receivers don't provide any control over when the job

should be run. Also changes in the Android operating system will restrict when broadcast receivers will work,

or the kinds of work that they can respond to.

There are two key features to efficiently performing background work (sometimes referred to as a background

job or a job):

1. Intelligently scheduling the workIntelligently scheduling the work – It is important that when an application is doing work in the

background that it does so as a good citizen. Ideally, the application should not demand that a job be run.

Instead, the application should specify conditions that must be met for when the job can run, and then

schedule that job with the operating system that will perform the work when the conditions are met. This

allows Android to run the job to ensure maximum efficiency on the device. For example, network requests

may be batched to run all at the same time to make maximum use of overhead involved with networking.

2. Encapsulating the workEncapsulating the work – The code to perform the background work should be encapsulated in a discrete

component that can be run independently of the user interface and will be relatively easy to reschedule if the

work fails to complete for some reason.

The Android Job Scheduler is a framework built in to the Android operating system that provides a fluent API to

simplify scheduling background work. The Android Job Scheduler consists of the following types:

The Android.App.Job.JobScheduler is a system service that is used to schedule, execute, and if necessary

cancel, jobs on behalf of an Android application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/android-job-scheduler.md
https://developer.android.com/reference/android/app/AlarmManager.html

 Requirements

 Using the Android Job Scheduler

 Implement a JobServiceImplement a JobService

An Android.App.Job.JobService is an abstract class that must be extended with the logic that will run the job

on the main thread of the application. This means that the JobService is responsible for how the work is to

be performed asynchronously.

An Android.App.Job.JobInfo object holds the criteria to guide Android when the job should run.

To schedule work with the Android Job Scheduler, a Xamarin.Android application must encapsulate the code in a

class that extends the JobService class. JobService has three lifecycle methods that can be called during the

lifetime of the job:

bool OnStar tJob(JobParameters parameters)bool OnStar tJob(JobParameters parameters) – This method is called by the JobScheduler to

perform work, and runs on the main thread of the application. It is the responsibility of the JobService to

asynchronously perform the work and return true if there is work remaining, or false if the work is

done.

When the JobScheduler calls this method, it will request and retain a wakelock from Android for the

duration of the job. When the job is finished, it is the responsibility of the JobService to tell the

JobScheduler of this fact by call the JobFinished method (described next).

JobFinished(JobParameters parameters, bool needsReschedule)JobFinished(JobParameters parameters, bool needsReschedule) – This method must be called by

the JobService to tell the JobScheduler that the work is done. If JobFinished is not called, the

JobScheduler will not remove the wakelock, causing unnecessary battery drain.

bool OnStopJob(JobParameters parameters)bool OnStopJob(JobParameters parameters) – This is called when the job is prematurely stopped by

Android. It should return true if the job should be rescheduled based on the retry criteria (discussed

below in more detail).

It is possible to specify constraints or triggers that will control when a job can or should run. For example, it is

possible to constrain a job so that it will only run when the device is charging or to start a job when a picture is

taken.

This guide will discuss in detail how to implement a JobService class and schedule it with the JobScheduler .

The Android Job Scheduler requires Android API level 21 (Android 5.0) or higher.

There are three steps for using the Android JobScheduler API:

1. Implement a JobService type to encapsulate the work.

2. Use a JobInfo.Builder object to create the JobInfo object that will hold the criteria for the JobScheduler to

run the job.

3. Schedule the job using JobScheduler.Schedule .

All work performed by the Android Job Scheduler library must be done in a type that extends the

Android.App.Job.JobService abstract class. Creating a JobService is very similar to creating a Service with the

Android framework:

1. Extend the JobService class.

2. Decorate the subclass with the ServiceAttribute and set the Name parameter to a string that is made up of

the package name and the name of the class (see the following example).

3. Set the Permission property on the ServiceAttribute to the string android.permission.BIND_JOB_SERVICE .

4. Override the OnStartJob method, adding the code to perform the work. Android will invoke this method on

[Service(Name = "com.xamarin.samples.downloadscheduler.DownloadJob",
 Permission = "android.permission.BIND_JOB_SERVICE")]
public class DownloadJob : JobService
{
 public override bool OnStartJob(JobParameters jobParams)
 {
 Task.Run(() =>
 {
 // Work is happening asynchronously

 // Have to tell the JobScheduler the work is done.
 JobFinished(jobParams, false);
 });

 // Return true because of the asynchronous work
 return true;
 }

 public override bool OnStopJob(JobParameters jobParams)
 {
 // we don't want to reschedule the job if it is stopped or cancelled.
 return false;
 }
}

 Creating a JobInfo to schedule a jobCreating a JobInfo to schedule a job

the main thread of the application to run the job. Work that will take longer that a few milliseconds should be

performed on a thread to avoid blocking the application.

5. When the work is done, the JobService must call the JobFinished method. This method is how JobService

tells the JobScheduler that work is done. Failure to call JobFinished will result in the JobService putting

unnecessary demands on the device, shortening the battery life.

6. It is a good idea to also override the OnStopJob method. This method is called by Android when the job is

being shut down before it is finished and provides the JobService with an opportunity to properly dispose

of any resources. This method should return true if it is necessary to reschedule the job, or false if it is not

desirable to re-run the job.

The following code is an example of the simplest JobService for an application, using the TPL to

asynchronously perform some work:

Xamarin.Android applications do not instantiate a JobService directly, instead they will pass a JobInfo object

to the JobScheduler . The JobScheduler will instantiate the requested JobService object, scheduling and

running the JobService according to the metadata in the JobInfo . A JobInfo object must contain the

following information:

JobIdJobId – this is an int value that is used to identify a job to the JobScheduler . Reusing this value will update

any existing jobs. The value must be unique for the application.

JobSer viceJobSer vice – this parameter is a ComponentName that explicitly identifies the type that the JobScheduler

should use to run a job.

This extension method demonstrates how to create a JobInfo.Builder with an Android Context , such as an

Activity:

public static class JobSchedulerHelpers
{
 public static JobInfo.Builder CreateJobBuilderUsingJobId<T>(this Context context, int jobId) where
T:JobService
 {
 var javaClass = Java.Lang.Class.FromType(typeof(T));
 var componentName = new ComponentName(context, javaClass);
 return new JobInfo.Builder(jobId, componentName);
 }
}

// Sample usage - creates a JobBuilder for a DownloadJob and sets the Job ID to 1.
var jobBuilder = this.CreateJobBuilderUsingJobId<DownloadJob>(1);

var jobInfo = jobBuilder.Build(); // creates a JobInfo object.

M ET H O DM ET H O D DESC RIP T IO NDESC RIP T IO N

SetMinimumLatency Specifies that a delay (in milliseconds) that should be
observed before a job is run.

SetOverridingDeadline Declares the that the job must run before this time (in
milliseconds) has elapsed.

SetRequiredNetworkType Specifies the network requirements for a job.

SetRequiresBatteryNotLow The job may only run when the device is not displaying a
"low battery" warning to the user.

SetRequiresCharging The job may only run when the battery is charging.

SetDeviceIdle The job will run when the device is busy.

SetPeriodic Specifies that the job should be regularly run.

SetPersisted The job should perisist across device reboots.

A powerful feature of the Android Job Scheduler is the ability to control when a job runs or under what

conditions a job may run. The following table describes some of the methods on JobInfo.Builder that allow an

app to influence when a job can run:

The SetBackoffCriteria provides some guidance on how long the JobScheduler should wait before trying to

run a job again. There are two parts to the backoff criteria: a delay in milliseconds (default value of 30

seconds)and type of back off that should be used (sometimes referred to as the backoff policy or the retry

policy). The two policies are encapsulated in the Android.App.Job.BackoffPolicy enum:

BackoffPolicy.Exponential – An exponential backoff policy will increase the initial backoff value

exponentially after each failure. The first time a job fails, the library will wait the initial interval that is

specified before rescheduling the job – example 30 seconds. The second time the job fails, the library will

wait at least 60 seconds before trying to run the job. After the third failed attempt, the library will wait 120

seconds, and so on. This is the default value.

BackoffPolicy.Linear – This strategy is a linear backoff that the job should be rescheduled to run at set

intervals (until it succeeds). Linear backoff is best suited for work that must be completed as soon as possible

or for problems that will quickly resolve themselves.

For more details on create a JobInfo object, please read Google's documentation for the JobInfo.Builder class.

https://developer.android.com/reference/android/app/job/JobInfo.Builder.html

 Passing parameters to a job via the JobInfoPassing parameters to a job via the JobInfo

var jobParameters = new PersistableBundle();
jobParameters.PutInt("LoopCount", 11);

var jobBuilder = this.CreateJobBuilderUsingJobId<DownloadJob>(1)
 .SetExtras(jobParameters)
 .Build();

public override bool OnStartJob(JobParameters jobParameters)
{
 var loopCount = jobParams.Extras.GetInt("LoopCount", 10);

 // rest of code omitted
}

 Scheduling a jobScheduling a job

var jobScheduler = (JobScheduler)GetSystemService(JobSchedulerService);
var scheduleResult = jobScheduler.Schedule(jobInfo);

if (JobScheduler.ResultSuccess == scheduleResult)
{
 var snackBar = Snackbar.Make(FindViewById(Android.Resource.Id.Content),
Resource.String.jobscheduled_success, Snackbar.LengthShort);
 snackBar.Show();
}
else
{
 var snackBar = Snackbar.Make(FindViewById(Android.Resource.Id.Content),
Resource.String.jobscheduled_failure, Snackbar.LengthShort);
 snackBar.Show();
}

 Cancelling a jobCancelling a job

Parameters are passed to a job by creating a PersistableBundle that is passed along with the

Job.Builder.SetExtras method:

The PersistableBundle is accessed from the Android.App.Job.JobParameters.Extras property in the OnStartJob

method of a JobService :

To schedule a job, a Xamarin.Android application will get a reference to the JobScheduler system service and

call the JobScheduler.Schedule method with the JobInfo object that was created in the previous step.

JobScheduler.Schedule will immediately return with one of two integer values:

JobScheduler.ResultSuccessJobScheduler.ResultSuccess – The job has been successfully scheduled.

JobScheduler.ResultFailureJobScheduler.ResultFailure – The job could not be scheduled. This is typically caused by conflicting

JobInfo parameters.

This code is an example of scheduling a job and notifying the user of the results of the scheduling attempt:

It is possible to cancel all the jobs that have been scheduled, or just a single job using the

JobsScheduler.CancelAll() method or the JobScheduler.Cancel(jobId) method:

// Cancel all jobs
jobScheduler.CancelAll();

// to cancel a job with jobID = 1
jobScheduler.Cancel(1)

 Summary

 Related Links

This guide discussed how to use the Android Job Scheduler to intelligently perform work in the background. It

discussed how to encapsulate the work to be performed as a JobService and how to use the JobScheduler to

schedule that work, specifying the criteria with a JobTrigger and how failures should be handled with a

RetryStrategy .

Intelligent Job-Scheduling

JobScheduler API reference

Scheduling jobs like a pro with JobScheduler

Android Battery and Memory Optimizations - Google I/O 2016 (video)

Android JobScheduler - René Ruppert

https://developer.android.com/topic/performance/scheduling.html
https://developer.android.com/reference/android/app/job/JobScheduler.html
https://medium.com/google-developers/scheduling-jobs-like-a-pro-with-jobscheduler-286ef8510129
https://www.youtube.com/watch?v=VC2Hlb22mZM&feature=youtu.be
https://www.youtube.com/watch?v=aSjBBPYjelE

Firebase Job Dispatcher
 11/2/2020 • 13 minutes to read • Edit Online

 Overview

This guide discusses how to schedule background work using the Firebase Job Dispatcher library from Google.

One of the best ways to keep an Android application responsive to the user is to ensure that complex or long

running work is performed in the background. However, it is important that background work will not

negatively impact the user's experience with the device.

For example, a background job might poll a website every three or four minutes to query for changes to a

particular dataset. This seems benign, however it would have a disastrous impact on battery life. The application

will repeatedly wake up the device, elevate the CPU to a higher power state, power up the radios, make the

network requests, and then processing the results. It gets worse because the device will not immediately power

down and return to the low-power idle state. Poorly scheduled background work may inadvertently keep the

device in a state with unnecessary and excessive power requirements. This seemingly innocent activity (polling a

website) will render the device unusable in a relatively short period of time.

Android provides the following APIs to help with performing work in the background but by themselves they

are not sufficient for intelligent job scheduling.

Intent Ser vicesIntent Ser vices – Intent Services are great for performing the work, however they provide no way to

schedule work.

AlarmManagerAlarmManager – These APIs only allow work to be scheduled but provide no way to actually perform the

work. Also, the AlarmManager only allows time based constraints, which means raise an alarm at a certain

time or after a certain period of time has elapsed.

JobSchedulerJobScheduler – The JobSchedule is a great API that works with the operating system to schedule jobs.

However, it is only available for those Android apps that target API level 21 or higher.

Broadcast ReceiversBroadcast Receivers – An Android app can setup broadcast receivers to perform work in response to

system-wide events or Intents. However, broadcast receivers don't provide any control over when the job

should be run. Also changes in the Android operating system will restrict when broadcast receivers will work,

or the kinds of work that they can respond to.

There are two key features to efficiently performing background work (sometimes referred to as a background

job or a job):

1. Intelligently scheduling the workIntelligently scheduling the work – It is important that when an application is doing work in the

background that it does so as a good citizen. Ideally, the application should not demand that a job be run.

Instead, the application should specify conditions that must be met for when the job can run, and then

schedule that work to run when the conditions are met. This allows Android to intelligently perform work.

For example, network requests may be batched to run all at the same time to make maximum use of

overhead involved with networking.

2. Encapsulating the workEncapsulating the work – The code to perform the background work should be encapsulated in a discrete

component that can be run independently of the user interface and will be relatively easy to reschedule if the

work fails to complete for some reason.

The Firebase Job Dispatcher is a library from Google that provides a fluent API to simplify scheduling

background work. It is intended to be the replacement for Google Cloud Manager. The Firebase Job Dispatcher

consists of the following APIs:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/firebase-job-dispatcher.md
https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/android/app/job/JobScheduler.html

 Requirements

 Using the Firebase Job Dispatcher Library in Xamarin.Android

 Creating a JobServiceCreating a JobService

A Firebase.JobDispatcher.JobService is an abstract class that must be extended with the logic that will run in

the background job.

A Firebase.JobDispatcher.JobTrigger declares when the job should be started. This is typically expressed as a

window of time, for example, wait at least 30 seconds before starting the job, but run the job within 5

minutes.

A Firebase.JobDispatcher.RetryStrategy contains information about what should be done when a job fails to

execute properly. The retry strategy specifies how long to wait before trying to run the job again.

A Firebase.JobDispatcher.Constraint is an optional value that describes a condition that must be met before

the job can run, such as the device is on an unmetered network or charging.

The Firebase.JobDispatcher.Job is an API that unifies the previous APIs in to a unit-of-work that can be

scheduled by the JobDispatcher . The Job.Builder class is used to instantiate a Job .

A Firebase.JobDispatcher.JobDispatcher uses the previous three APIs to schedule the work with the

operating system and to provide a way to cancel jobs, if necessary.

To schedule work with the Firebase Job Dispatcher, a Xamarin.Android application must encapsulate the code in

a type that extends the JobService class. JobService has three lifecycle methods that can be called during the

lifetime of the job:

bool OnStartJob(IJobParameters parameters) – This method is where the work will occur and should always

be implemented. It runs on the main thread. This method will return true if there is work remaining, or

false if the work is done.

bool OnStopJob(IJobParameters parameters) – This is called when the job is stopped for some reason. It

should return true if the job should be rescheduled for later.

JobFinished(IJobParameters parameters, bool needsReschedule) – This method is called when the JobService

has finished any asynchronous work.

To schedule a job, the application will instantiate a JobDispatcher object. Then, a Job.Builder is used to create a

Job object, which is provided to the JobDispatcher which will try and schedule the job to run.

This guide will discuss how to add the Firebase Job Dispatcher to a Xamarin.Android application and use it to

schedule background work.

The Firebase Job Dispatcher requires Android API level 9 or higher. The Firebase Job Dispatcher library relies on

some components provided by Google Play Services; the device must have Google Play Services installed.

To get started with the Firebase Job Dispatcher, first add the Xamarin.Firebase.JobDispatcher NuGet package to

the Xamarin.Android project. Search the NuGet Package Manager for the Xamarin.Firebase.JobDispatcherXamarin.Firebase.JobDispatcher

package (which is still in pre-release).

After adding the Firebase Job Dispatcher library, create a JobService class and then schedule it to run with an

instance of the FirebaseJobDispatcher .

All work performed by the Firebase Job Dispatcher library must be done in a type that extends the

Firebase.JobDispatcher.JobService abstract class. Creating a JobService is very similar to creating a Service

with the Android framework:

1. Extend the JobService class

2. Decorate the subclass with the ServiceAttribute . Although not strictly required, it is recommended to

https://www.nuget.org/packages/Xamarin.Firebase.JobDispatcher

[Service(Name = "com.xamarin.fjdtestapp.DemoJob")]
[IntentFilter(new[] {FirebaseJobServiceIntent.Action})]
public class DemoJob : JobService
{
 static readonly string TAG = "X:DemoService";

 public override bool OnStartJob(IJobParameters jobParameters)
 {
 Task.Run(() =>
 {
 // Work is happening asynchronously (code omitted)

 });

 // Return true because of the asynchronous work
 return true;
 }

 public override bool OnStopJob(IJobParameters jobParameters)
 {
 Log.Debug(TAG, "DemoJob::OnStartJob");
 // nothing to do.
 return false;
 }
}

 Creating a FirebaseJobDispatcherCreating a FirebaseJobDispatcher

// This is the "Java" way to create a FirebaseJobDispatcher object
IDriver driver = new GooglePlayDriver(context);
FirebaseJobDispatcher dispatcher = new FirebaseJobDispatcher(driver);

FirebaseJobDispatcher dispatcher = context.CreateJobDispatcher();

 Creating a Firebase.JobDispatcher.Job with the Job.BuilderCreating a Firebase.JobDispatcher.Job with the Job.Builder

explicitly set the Name parameter to help with debugging the JobService .

3. Add an IntentFilter to declare the JobService in the AndroidManifest.xmlAndroidManifest.xml . This will also help the

Firebase Job Dispatcher library locate and invoke the JobService .

The following code is an example of the simplest JobService for an application, using the TPL to

asynchronously perform some work:

Before any work can be scheduled, it is necessary to create a Firebase.JobDispatcher.FirebaseJobDispatcher

object. The FirebaseJobDispatcher is responsible for scheduling a JobService . The following code snippet is one

way to create an instance of the FirebaseJobDispatcher :

In the previous code snippet, the GooglePlayDriver is class that helps the FirebaseJobDispatcher interact with

some of the scheduling APIs in Google Play Services on the device. The parameter context is any Android

Context , such as an Activity. Currently the GooglePlayDriver is the only IDriver implementation in the

Firebase Job Dispatcher library.

The Xamarin.Android binding for the Firebase Job Dispatcher provides an extension method to create a

FirebaseJobDispatcher from the Context :

Once the FirebaseJobDispatcher has been instantiated, it is possible to create a Job and run the code in the

JobService class. The Job is created by a Job.Builder object and will be discussed in the next section.

The Firebase.JobDispatcher.Job class is responsible for encapsulating the meta-data necessary to run a

Job myJob = dispatcher.NewJobBuilder()
 .SetService<DemoJob>("demo-job-tag")
 .Build();

 Scheduling a jobScheduling a job

// This will throw an exception if there was a problem scheduling the job
dispatcher.MustSchedule(myJob);

// This method will not throw an exception; an integer result value is returned
int scheduleResult = dispatcher.Schedule(myJob);

 Configuring a jobConfiguring a job

JobService . A Job contains information such as any constraint that must be met before the job can run, if the

Job is recurring, or any triggers that will cause the job to be run. As a bare minimum, a Job must have a tag (a

unique string that identifies the job to the FirebaseJobDispatcher) and the type of the JobService that should

be run. The Firebase Job Dispatcher will instantiate the JobService when it is time to run the job. A Job is

created by using an instance of the Firebase.JobDispatcher.Job.JobBuilder class.

The following code snippet is the simplest example of how to create a Job using the Xamarin.Android binding:

The Job.Builder will perform some basic validation checks on the input values for the job. An exception will be

thrown if it not possible for the Job.Builder to create a Job . The Job.Builder will create a Job with the

following defaults:

A Job 's lifetime (how long it will be scheduled to run) is only until the device reboots – once the device

reboots the Job is lost.

A Job is not recurring – it will only run once.

A Job will be scheduled to run as soon as possible.

The default retry strategy for a Job is to use an exponential backoff (discussed on more detail below in the

section Setting a RetryStrategy)

After creating the Job , it needs to be scheduled with the FirebaseJobDispatcher before it is run. There are two

methods for scheduling a Job :

The value returned by FirebaseJobDispatcher.Schedule will be one of the following integer values:

FirebaseJobDispatcher.ScheduleResultSuccess – The Job was successfully scheduled.

FirebaseJobDispatcher.ScheduleResultUnknownError – Some unknown problem occurred which prevented the

Job from being scheduled.

FirebaseJobDispatcher.ScheduleResultNoDriverAvailable – An invalid IDriver was used or the IDriver was

somehow unavailable.

FirebaseJobDispatcher.ScheduleResultUnsupportedTrigger – The Trigger was not supported.

FirebaseJobDispatcher.ScheduleResultBadService – The service is not configured correctly or is unavailable.

It is possible to customize a job. Examples of how a job may be customized include the following:

Passing Parameters to a Job – A Job may require additional values to perform its work, for example

downloading a file.

Set Constraints – It may be necessary to only run a job when certain conditions are met. For example, only

run a Job when the device is charging.

Specify when a Job should run – The Firebase Job Dispatcher allows applications to specify a time when the

job should run.

Declare a retry strategy for failed jobs – A retry strategy provides guidance to the FirebaseJobDispatcher on

 Passing parameters to a jobPassing parameters to a job

Bundle jobParameters = new Bundle();
jobParameters.PutInt(FibonacciCalculatorJob.FibonacciPositionKey, 25);

Job myJob = dispatcher.NewJobBuilder()
 .SetService<DemoJob>("demo-job-tag")
 .SetExtras(jobParameters)
 .Build();

public override bool OnStartJob(IJobParameters jobParameters)
{
 int position = jobParameters.Extras.GetInt(FibonacciPositionKey, DEFAULT_VALUE);

 // rest of code omitted
}

 Setting constraintsSetting constraints

Job myJob = dispatcher.NewJobBuilder()
 .SetService<DemoJob>("demo-job-tag")
 .SetConstraint(Constraint.DeviceCharging)
 .Build();

what to do with Jobs that fail to complete.

Each of these topics will be discussed more in the following sections.

Parameters are passed to a job by creating a Bundle that is passed along with the Job.Builder.SetExtras

method:

The Bundle is accessed from the IJobParameters.Extras property on the OnStartJob method:

Constraints can help reduces costs or battery drain on the device. The Firebase.JobDispatcher.Constraint class

defines these constraints as integer values:

Constraint.OnUnmeteredNetwork – Only run the job when the device is connected to an unmetered network.

This is useful to prevent the user from incurring data charges.

Constraint.OnAnyNetwork – Run the job on whatever network the device is connected to. If specified along

with Constraint.OnUnmeteredNetwork , this value will take priority.

Constraint.DeviceCharging – Run the job only when the device is charging.

Constraints are set with the Job.Builder.SetConstraint method:

The JobTrigger provides guidance to the operating system about when the job should start. A JobTrigger has

an executing window that defines a scheduled time for when the Job should run. The execution window has a

start window value and an end window value. The start window is the number of seconds that the device should

wait before running the job and the end window value is the maximum number of seconds to wait before

running the Job .

A JobTrigger can be created with the Firebase.Jobdispatcher.Trigger.ExecutionWindow method. For example

Trigger.ExecutionWindow(15,60) means that the job should run between 15 and 60 seconds from when it is

scheduled. The Job.Builder.SetTrigger method is used to

JobTrigger myTrigger = Trigger.ExecutionWindow(15,60);
Job myJob = dispatcher.NewJobBuilder()
 .SetService<DemoJob>("demo-job-tag")
 .SetTrigger(myTrigger)
 .Build();

 Setting a RetryStrategySetting a RetryStrategy

RetryStrategy retry = dispatcher.NewRetryStrategy(RetryStrategy.RetryPolicyLinear, initialBackoffSeconds,
maximumBackoffSet);

// Create a Job and set the RetryStrategy via the Job.Builder
Job myJob = dispatcher.NewJobBuilder()
 .SetService<DemoJob>("demo-job-tag")
 .SetRetryStrategy(retry)
 .Build();

 Cancelling a jobCancelling a job

The default JobTrigger for a job is represented by the value Trigger.Now , which specifies that a job be run as

soon as possible after being scheduled..

The Firebase.JobDispatcher.RetryStrategy is used to specify how much of a delay a device should use before

trying to re-run a failed job. A RetryStrategy has a policy, which defines what time-base algorithm will be used

to re-schedule the failed job, and an execution window that specifies a window in which the job should be

scheduled. This rescheduling window is defined by two values. The first value is the number of seconds to wait

before rescheduling the job (the initial backoff value), and the second number is the maximum number of

seconds before the job must run (the maximum backoff value).

The two types of retry policies are identified by these int values:

RetryStrategy.RetryPolicyExponential – An exponential backoff policy will increase the initial backoff value

exponentially after each failure. The first time a job fails, the library will wait the _initial interval that is

specified before rescheduling the job – example 30 seconds. The second time the job fails, the library will

wait at least 60 seconds before trying to run the job. After the third failed attempt, the library will wait 120

seconds, and so on. The default RetryStrategy for the Firebase Job Dispatcher library is represented by the

RetryStrategy.DefaultExponential object. It has an initial backoff of 30 seconds and a maximum backoff of

3600 seconds.

RetryStrategy.RetryPolicyLinear – This strategy is a linear backoff that the job should be rescheduled to run

at set intervals (until it succeeds). Linear backoff is best suited for work that must be completed as soon as

possible or for problems that will quickly resolve themselves. The Firebase Job Dispatcher library defines a

RetryStrategy.DefaultLinear which has a rescheduling window of at least 30 seconds and up to 3600

seconds.

It is possible to define a custom RetryStrategy with the FirebaseJobDispatcher.NewRetryStrategy method. It

takes three parameters:

1. int policy – The policy is one of the previous RetryStrategy values, RetryStrategy.RetryPolicyLinear , or

RetryStrategy.RetryPolicyExponential .

2. int initialBackoffSeconds – The initial backoff is a delay, in seconds, that is required before trying to run the

job again. The default value for this is 30 seconds.

3. int maximumBackoffSeconds – The maximum backoff value declares the maximum number of seconds to

delay before trying to run the job again. The default value is 3600 seconds.

It is possible to cancel all the jobs that have been scheduled, or just a single job using the

FirebaseJobDispatcher.CancelAll() method or the FirebaseJobDispatcher.Cancel(string) method:

int cancelResult = dispatcher.CancelAll();

// to cancel a single job:

int cancelResult = dispatcher.Cancel("unique-tag-for-job");

 Summary

 Related Links

Either method will return an integer value:

FirebaseJobDispatcher.CancelResultSuccess – The job was successfully cancelled.

FirebaseJobDispatcher.CancelResultUnknownError – An error prevented the job from being cancelled.

FirebaseJobDispatcher.CancelResult.NoDriverAvailable – The FirebaseJobDispatcher is unable to cancel the

job as there is no valid IDriver available.

This guide discussed how to use the Firebase Job Dispatcher to intelligently perform work in the background. It

discussed how to encapsulate the work to be performed as a JobService and how to use the

FirebaseJobDispatcher to schedule that work, specifying the criteria with a JobTrigger and how failures should

be handled with a RetryStrategy .

Xamarin.Firebase.JobDispatcher on NuGet

firebase-job-dispatcher on GitHub

Xamarin.Firebase.JobDispatcher Binding

Intelligent Job-Scheduling

Android Battery and Memory Optimizations - Google I/O 2016 (video)

https://www.nuget.org/packages/Xamarin.Firebase.JobDispatcher
https://github.com/firebase/firebase-jobdispatcher-android
https://github.com/xamarin/XamarinComponents/tree/master/Android/FirebaseJobDispatcher
https://developer.android.com/topic/performance/scheduling.html
https://www.youtube.com/watch?v=VC2Hlb22mZM&feature=youtu.be

Fragments
 7/8/2021 • 3 minutes to read • Edit Online

 Fragments Overview

Android 3.0 introduced Fragments, showing how to support more flexible designs for the many different screen

sizes found on phones and tablets. This article will cover how to use Fragments to develop Xamarin.Android

applications, and also how to support Fragments on pre-Android 3.0 (API Level 11) devices.

The larger screen sizes found on most tablets added an extra layer of complexity to Android development—a

layout designed for the small screen does not necessarily work as well for larger screens, and vice-versa. To

reduce the number of complications that this introduced, Android 3.0 added two new features, Fragments and

Support Packages.

Fragments can be thought of as user interface modules. They let the developer divide up the user interface into

isolated, reusable parts that can be run in separate Activities. At run time, the Activities themselves will decide

which Fragments to use.

Support Packages were originally called Compatibility Libraries and allowed Fragments to be used on devices

that run versions of Android prior to Android 3.0 (API Level 11).

For example, the image below illustrates how a single application uses Fragments across varying device form

factors.

Fragment A contains a list, while Fragment B contains details for an item selected in that list. When the

application is run on a tablet, it can display both Fragments on the same Activity. When the same application is

run on a handset (with its smaller screen size), the Fragments are hosted in two separate Activities. Fragment A

and Fragment B are the same on both form factors, but the Activities that host them are different.

To help an Activity coordinate and manage all these Fragments, Android introduced a new class called the

FragmentManager. Each Activity has its own instance of a FragmentManager for adding, deleting, and finding

hosted Fragments. The following diagram illustrates the relationship between Fragments and Activities:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/index.md
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/images/00.png#lightbox

 Requirements

In some regards, Fragments can be thought of as composite controls or as mini-Activities. They bundle up

pieces of UI into reusable modules that can then be used independently by developers in Activities. A Fragment

does have a view hierarchy—just like an Activity—but, unlike an Activity, it can be shared across screens. Views

differ from Fragments in that Fragments have their own lifecycle; views do not.

While the Activity is a host to one or more Fragments, it is not directly aware of the Fragments themselves.

Likewise, Fragments are not directly aware of other Fragments in the hosting Activity. However, Fragments and

Activities are aware of the FragmentManager in their Activity. By using the FragmentManager , it is possible for an

Activity or a Fragment to obtain a reference to a specific instance of a Fragment, and then call methods on that

instance. In this way, the Activity or Fragments can communicate and interact with other Fragments.

This guide contains comprehensive coverage about how to use Fragments, including:

Creating FragmentsCreating Fragments – How to create a basic Fragment and key methods that must be implemented.

Fragment Management and TransactionsFragment Management and Transactions – How to manipulate Fragments at run time.

Android Suppor t PackageAndroid Suppor t Package – How to use the libraries that allow Fragments to be used on older versions of

Android.

Fragments are available in the Android SDK starting with API level 11 (Android 3.0), as shown in the following

screenshot:

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/images/01.png#lightbox

 Related Links

Fragments are available in Xamarin.Android 4.0 and higher. A Xamarin.Android application must target at least

API level 11 (Android 3.0) or higher in order to use Fragments. The Target Framework may be set in the project

Properties as shown below:

It is possible to use Fragments in older versions of Android by using the Android Support Package and

Xamarin.Android 4.2 or higher. How to do this is covered in more detail in the documents of this section.

Honeycomb Gallery (sample)

Fragments

Support Package

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/images/02.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/images/03.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/honeycombgallery
https://developer.android.com/guide/topics/fundamentals/fragments.html
https://developer.android.com/sdk/compatibility-library.html

Implementing fragments - walkthrough
 7/8/2021 • 2 minutes to read • Edit Online

 Overview

Fragments are self-contained, modular components that can help address the complexity of Android apps that

target devices with a variety of screen sizes. This article walks through how to create and use fragments when

developing Xamarin.Android applications.

In this section, you'll walk through how to create and use fragments in a Xamarin.Android application. This

application will display the titles of several plays by William Shakespeare in a list. When the user taps on the title

of a play, then the app will display a quote from that play in a separate activity:

When the phone is rotated to landscape mode, the appearance of the app will change: both the list of plays and

quotes will appear in the same activity. When a play is selected, the quote will be display in the same activity:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/implementing-with-fragments/index.md
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/images/intro-screenshot-phone.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/images/intro-screenshot-phone-land.png#lightbox

 Related Links

Finally, if the app is running on a tablet:

This sample application can easily adapt to the different form factors and orientations with minimal code

changes by using fragments and Alternate Layouts.

The data for the application will exist in two string arrays that are hardcoded in the app as C# string arrays. Each

of the arrays will serve as the data source for one fragment. One array will hold the name of some plays by

Shakespeare, and the other array will hold a quote from that play. When the app starts up, it will display the play

names in a ListFragment . When the user clicks on a play in the ListFragment , the app will start up another

activity which will display the quote.

The user interface for the app will consist of two layouts, one for portrait and one for landscape mode. At run

time, Android will determine what layout to load based on the orientation of the device and will provide that

layout to the Activity to render. All of the logic for responding to user clicks and displaying the data will be

contained in fragments. The Activities in the app exist only as containers that will host the fragments.

This walkthrough will be broken down into two guides. The first part will focus on the core parts of the

application. A single set of layouts (optimized for portrait mode) will be created, along with two fragments and

two Activities:

1. MainActivity This is the startup Activity for the app.

2. TitlesFragment This fragment will display a list of titles of plays that were written by William Shakespeare.

It will be hosted by MainActivity .

3. PlayQuoteActivity TitlesFragment will start the PlayQuoteActivity in response to the user selecting a play

in TitlesFragment .

4. PlayQuoteFragment This fragment will display a quote from a play by William Shakespeare. It will be hosted

by PlayQuoteActivity .

The second part of this walkthrough will discuss adding an alternate layout (optimized for landscape mode)

which will display both fragments on the screen. Also, some minor code changes will be made to the code so

that the app will adapt its behavior to the number of fragments that are concurrently displayed on the screen.

FragmentsWalkthrough (sample)

Designer Overview

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/images/intro-screenshot-tablet.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/fragmentswalkthrough

Implementing Fragments

Support Package

https://developer.android.com/guide/topics/fundamentals/fragments.html
https://developer.android.com/sdk/compatibility-library.html

Fragments walkthrough – phone
 7/8/2021 • 13 minutes to read • Edit Online

 1. Create the Android project

This is the first part of a walkthrough that will create a Xamarin.Android app that targets an Android device in

portrait orientation. This walkthrough will discuss how to create fragments in Xamarin.Android and how to add

them to a sample.

The following classes will be created for this app:

1. PlayQuoteFragment This fragment will display a quote from a play by William Shakespeare. It will be hosted

by PlayQuoteActivity .

2. Shakespeare This class will hold two hardcoded arrays as properties.

3. TitlesFragment This fragment will display a list of titles of plays that were written by William Shakespeare.

It will be hosted by MainActivity .

4. PlayQuoteActivity TitlesFragment will start the PlayQuoteActivity in response to the user selecting a play

in TitlesFragment .

Create a new Xamarin.Android project called FragmentSampleFragmentSample.

Visual Studio

Visual Studio for Mac

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/implementing-with-fragments/walkthrough.md
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/images/intro-screenshot-phone.png#lightbox

 2. Add the data

class Shakespeare
{
 public static string[] Titles = {
 "Henry IV (1)",
 "Henry V",
 "Henry VIII",
 "Richard II",
 "Richard III",
 "Merchant of Venice",
 "Othello",
 "King Lear"
 };

 public static string[] Dialogue = {
 "So shaken as we are, so wan with care, Find we a time for frighted
peace to pant, And breathe short-winded accents of new broils To be commenced in strands afar remote. No
more the thirsty entrance of this soil Shall daub her lips with her own children's blood; Nor more shall
trenching war channel her fields, Nor bruise her flowerets with the armed hoofs Of hostile paces: those
opposed eyes, Which, like the meteors of a troubled heaven, All of one nature, of one substance bred, Did
lately meet in the intestine shock And furious close of civil butchery Shall now, in mutual well-beseeming
ranks, March all one way and be no more opposed Against acquaintance, kindred and allies: The edge of war,
like an ill-sheathed knife, No more shall cut his master. Therefore, friends, As far as to the sepulchre of
Christ, Whose soldier now, under whose blessed cross We are impressed and engaged to fight, Forthwith a
power of English shall we levy; Whose arms were moulded in their mothers' womb To chase these pagans in
those holy fields Over whose acres walk'd those blessed feet Which fourteen hundred years ago were nail'd
For our advantage on the bitter cross. But this our purpose now is twelve month old, And bootless 'tis to
tell you we will go: Therefore we meet not now. Then let me hear Of you, my gentle cousin Westmoreland, What
yesternight our council did decree In forwarding this dear expedience.",
 "Hear him but reason in divinity, And all-admiring with an inward

The data for this application will be stored in two hardcoded string arrays that are properties of a class name

Shakespeare :

Shakespeare.Titles This array will hold a list of plays from William Shakespeare. This is the data source for

the TitlesFragment .

Shakespeare.Dialogue This array will hold a list of quotes from one of the plays contained in

Shakespeare.Titles . This is the data source for the PlayQuoteFragment .

Add a new C# class to the FragmentSampleFragmentSample project and name it Shakespeare.csShakespeare.cs . Inside this file, create a new

C# class called Shakespeare with the following contents

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/walkthrough-images/01-newproject.w157.png#lightbox

 "Hear him but reason in divinity, And all-admiring with an inward
wish You would desire the king were made a prelate: Hear him debate of commonwealth affairs, You would say
it hath been all in all his study: List his discourse of war, and you shall hear A fearful battle render'd
you in music: Turn him to any cause of policy, The Gordian knot of it he will unloose, Familiar as his
garter: that, when he speaks, The air, a charter'd libertine, is still, And the mute wonder lurketh in men's
ears, To steal his sweet and honey'd sentences; So that the art and practic part of life Must be the
mistress to this theoric: Which is a wonder how his grace should glean it, Since his addiction was to
courses vain, His companies unletter'd, rude and shallow, His hours fill'd up with riots, banquets, sports,
And never noted in him any study, Any retirement, any sequestration From open haunts and popularity.",
 "I come no more to make you laugh: things now, That bear a weighty
and a serious brow, Sad, high, and working, full of state and woe, Such noble scenes as draw the eye to
flow, We now present. Those that can pity, here May, if they think it well, let fall a tear; The subject
will deserve it. Such as give Their money out of hope they may believe, May here find truth too. Those that
come to see Only a show or two, and so agree The play may pass, if they be still and willing, I'll undertake
may see away their shilling Richly in two short hours. Only they That come to hear a merry bawdy play, A
noise of targets, or to see a fellow In a long motley coat guarded with yellow, Will be deceived; for,
gentle hearers, know, To rank our chosen truth with such a show As fool and fight is, beside forfeiting Our
own brains, and the opinion that we bring, To make that only true we now intend, Will leave us never an
understanding friend. Therefore, for goodness' sake, and as you are known The first and happiest hearers of
the town, Be sad, as we would make ye: think ye see The very persons of our noble story As they were living;
think you see them great, And follow'd with the general throng and sweat Of thousand friends; then in a
moment, see How soon this mightiness meets misery: And, if you can be merry then, I'll say A man may weep
upon his wedding-day.",
 "First, heaven be the record to my speech! In the devotion of a
subject's love, Tendering the precious safety of my prince, And free from other misbegotten hate, Come I
appellant to this princely presence. Now, Thomas Mowbray, do I turn to thee, And mark my greeting well; for
what I speak My body shall make good upon this earth, Or my divine soul answer it in heaven. Thou art a
traitor and a miscreant, Too good to be so and too bad to live, Since the more fair and crystal is the sky,
The uglier seem the clouds that in it fly. Once more, the more to aggravate the note, With a foul traitor's
name stuff I thy throat; And wish, so please my sovereign, ere I move, What my tongue speaks my right drawn
sword may prove.",
 "Now is the winter of our discontent Made glorious summer by this
sun of York; And all the clouds that lour'd upon our house In the deep bosom of the ocean buried. Now are
our brows bound with victorious wreaths; Our bruised arms hung up for monuments; Our stern alarums changed
to merry meetings, Our dreadful marches to delightful measures. Grim-visaged war hath smooth'd his wrinkled
front; And now, instead of mounting barded steeds To fright the souls of fearful adversaries, He capers
nimbly in a lady's chamber To the lascivious pleasing of a lute. But I, that am not shaped for sportive
tricks, Nor made to court an amorous looking-glass; I, that am rudely stamp'd, and want love's majesty To
strut before a wanton ambling nymph; I, that am curtail'd of this fair proportion, Cheated of feature by
dissembling nature, Deformed, unfinish'd, sent before my time Into this breathing world, scarce half made
up, And that so lamely and unfashionable That dogs bark at me as I halt by them; Why, I, in this weak piping
time of peace, Have no delight to pass away the time, Unless to spy my shadow in the sun And descant on mine
own deformity: And therefore, since I cannot prove a lover, To entertain these fair well-spoken days, I am
determined to prove a villain And hate the idle pleasures of these days. Plots have I laid, inductions
dangerous, By drunken prophecies, libels and dreams, To set my brother Clarence and the king In deadly hate
the one against the other: And if King Edward be as true and just As I am subtle, false and treacherous,
This day should Clarence closely be mew'd up, About a prophecy, which says that 'G' Of Edward's heirs the
murderer shall be. Dive, thoughts, down to my soul: here Clarence comes.",
 "To bait fish withal: if it will feed nothing else, it will feed my
revenge. He hath disgraced me, and hindered me half a million; laughed at my losses, mocked at my gains,
scorned my nation, thwarted my bargains, cooled my friends, heated mine enemies; and what's his reason? I am
a Jew. Hath not a Jew eyes? hath not a Jew hands, organs, dimensions, senses, affections, passions? fed with
the same food, hurt with the same weapons, subject to the same diseases, healed by the same means, warmed
and cooled by the same winter and summer, as a Christian is? If you prick us, do we not bleed? if you tickle
us, do we not laugh? if you poison us, do we not die? and if you wrong us, shall we not revenge? If we are
like you in the rest, we will resemble you in that. If a Jew wrong a Christian, what is his humility?
Revenge. If a Christian wrong a Jew, what should his sufferance be by Christian example? Why, revenge. The
villany you teach me, I will execute, and it shall go hard but I will better the instruction.",
 "Virtue! a fig! 'tis in ourselves that we are thus or thus. Our
bodies are our gardens, to the which our wills are gardeners: so that if we will plant nettles, or sow
lettuce, set hyssop and weed up thyme, supply it with one gender of herbs, or distract it with many, either
to have it sterile with idleness, or manured with industry, why, the power and corrigible authority of this
lies in our wills. If the balance of our lives had not one scale of reason to poise another of sensuality,
the blood and baseness of our natures would conduct us to most preposterous conclusions: but we have reason
to cool our raging motions, our carnal stings, our unbitted lusts, whereof I take this that you call love to
be a sect or scion.",
 "Blow, winds, and crack your cheeks! rage! blow! You cataracts and
hurricanoes, spout Till you have drench'd our steeples, drown'd the cocks! You sulphurous and thought-
executing fires, Vaunt-couriers to oak-cleaving thunderbolts, Singe my white head! And thou, all-shaking
thunder, Smite flat the thick rotundity o' the world! Crack nature's moulds, an germens spill at once, That

thunder, Smite flat the thick rotundity o' the world! Crack nature's moulds, an germens spill at once, That
make ingrateful man!"
 };
}

 3. Create the PlayQuoteFragment

The PlayQuoteFragment is an Android fragment that will display a quote for a Shakespeare play that was selected

by the user earlier on in the application, This fragment will not use an Android layout file; instead, it will

dynamically create its user interface. Add a new Fragment class named PlayQuoteFragment to the project:

Visual Studio

Visual Studio for Mac

Then, change the code for the fragment to resemble this snippet:

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/walkthrough-images/02-addclass.w157.png#lightbox

public class PlayQuoteFragment : Fragment
{
 public int PlayId => Arguments.GetInt("current_play_id", 0);

 public static PlayQuoteFragment NewInstance(int playId)
 {
 var bundle = new Bundle();
 bundle.PutInt("current_play_id", playId);
 return new PlayQuoteFragment {Arguments = bundle};
 }

 public override View OnCreateView(LayoutInflater inflater, ViewGroup container, Bundle
savedInstanceState)
 {
 if (container == null)
 {
 return null;
 }

 var textView = new TextView(Activity);
 var padding = Convert.ToInt32(TypedValue.ApplyDimension(ComplexUnitType.Dip, 4,
Activity.Resources.DisplayMetrics));
 textView.SetPadding(padding, padding, padding, padding);
 textView.TextSize = 24;
 textView.Text = Shakespeare.Dialogue[PlayId];

 var scroller = new ScrollView(Activity);
 scroller.AddView(textView);

 return scroller;
 }
}

NOTENOTE

 4. Create the PlayQuoteActivity

It is a common pattern in Android apps to provide a factory method that will instantiate a fragment. This

ensures that the fragment will be created with the necessary parameters for proper functioning. In this

walkthrough, the app is expected to use the PlayQuoteFragment.NewInstance method to create a new fragment

each time a quote is selected. The NewInstance method will take a single parameter – the index of the quote to

display.

The OnCreateView method will be invoked by Android when it is time to render the fragment on the screen. It

will return an Android View object that is the fragment. This fragment does not use a layout file to create a view.

Instead, it will programmatically create the view by instantiating a TextViewTextView to hold the quote, and will display

that widget in a ScrollViewScrollView .

Fragment sub-classes must have a public default constructor that has no parameters.

Fragments must be hosted inside an Activity, so this app requires an Activity that will host the

PlayQuoteFragment . The Activity will dynamically add the fragment to its layout at run-time. Add a new Activity

to the application and name it PlayQuoteActivity :

Visual Studio

Visual Studio for Mac

using AndroidX.Fragment.App;

[Activity(Label = "PlayQuoteActivity")]
public class PlayQuoteActivity : FragmentActivity
{
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 var playId = Intent.Extras.GetInt("current_play_id", 0);

 var detailsFrag = PlayQuoteFragment.NewInstance(playId);
 SupportFragmentManager.BeginTransaction()
 .Add(Android.Resource.Id.Content, detailsFrag)
 .Commit();
 }
}

 5. Create TitlesFragment

Edit the code in PlayQuoteActivity :

When PlayQuoteActivity is created, it will instantiate a new PlayQuoteFragment and load that fragment in its

root view in the context of a FragmentTransaction . Notice that this activity does not load an Android layout file

for its user interface. Instead, a new PlayQuoteFragment is added to the root view of the application. The resource

identifier Android.Resource.Id.Content is used to refer to the root view of an Activity without knowing its

specific identifier.

The TitlesFragment will subclass a specialized fragment known as a ListFragment which encapsulates the logic

for displaying a ListView in a fragment. A ListFragment exposes a ListAdapter property (used by the

ListView to display its contents) and an event handler named OnListItemClick which allows the fragment to

respond to clicks on a row that is displayed by the ListView .

To get started, add a new fragment to the project and name it TitlesFragmentTitlesFragment:

Visual Studio

Visual Studio for Mac

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/walkthrough-images/03-addactivity.w157.png#lightbox

using AndroidX.Fragment.App;

public class TitlesFragment : ListFragment
{
 int selectedPlayId;

 public TitlesFragment()
 {
 // Being explicit about the requirement for a default constructor.
 }

 public override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 ListAdapter = new ArrayAdapter<String>(Activity, Android.Resource.Layout.SimpleListItemActivated1,
Shakespeare.Titles);

 if (savedInstanceState != null)
 {
 selectedPlayId = savedInstanceState.GetInt("current_play_id", 0);
 }
 }

 public override void OnSaveInstanceState(Bundle outState)
 {
 base.OnSaveInstanceState(outState);
 outState.PutInt("current_play_id", selectedPlayId);
 }

 public override void OnListItemClick(ListView l, View v, int position, long id)
 {
 ShowPlayQuote(position);
 }

 void ShowPlayQuote(int playId)
 {
 var intent = new Intent(Activity, typeof(PlayQuoteActivity));
 intent.PutExtra("current_play_id", playId);
 StartActivity(intent);
 }
}

Edit the code inside the fragment:

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/walkthrough-images/04-addfragment.w157.png#lightbox

 Display TitlesFragment in MainActivity

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <fragment
 android:name="FragmentSample.TitlesFragment"
 android:id="@+id/titles"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

NOTENOTE

using AndroidX.Fragment.App;

[Activity(Label = "@string/app_name", Theme = "@style/AppTheme", MainLauncher = true)]
public class MainActivity : FragmentActivity
{
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 SetContentView(Resource.Layout.activity_main);
 }
}

 Run the app

When the Activity is created Android will invoke the OnCreate method of the fragment; this is where the list

adapter for the ListView is created. The ShowQuoteFromPlay method will start an instance of the

PlayQuoteActivity to display the quote for the selected play.

The final step is to display TitlesFragment within MainActivity . The Activity does not dynamically load the

fragment. Instead the fragment will be statically loaded by declaring it in the layout file of the activity using a

fragment element. The fragment to load is identified by setting the android:name attribute to the fragment class

(including the namespace of the type). For example, to use the TitlesFragment , then android:name would be set

to FragmentSample.TitlesFragment .

Edit the layout file activity_main.axmlactivity_main.axml , replacing the existing XML with the following:

The class attribute is a valid substitute for android:name . There is no formal guidance on which form is preferred,

there are many examples of code bases that will use class interchangeably with android:name .

There are no code changes required for MainActivity. The code in that class should be very similar to this

snippet:

Now that the code is complete, run the app on a device to see it in action.

Part 2 of this walkthrough will optimtize this application for devices running in landscape mode.

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/walkthrough-images/05-app-screenshots.png#lightbox

Fragments walkthrough – landscape
 7/8/2021 • 5 minutes to read • Edit Online

 Updating the app to handle landscape orientation

The Fragments Walkthrough – Part 1 demonstrated how to create and use fragments in an Android app that

targets the smaller screens on a phone. The next step in this walkthrough is to modify the application to take

advantage of the extra horizontal space on tablet – there will be one activity that will always be the list of plays

(the TitlesFragment) and PlayQuoteFragment will be dynamically added to the Activity in response to a selection

made by the user :

Phones that are running in landscape mode will also benefit from this enhancement:

The following modifications will build upon the work that was done in the Fragments Walkthrough - Phone

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/implementing-with-fragments/walkthrough-landscape.md
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/walkthrough-landscape-images/01-tablet-screenshot.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/images/intro-screenshot-phone-land.png#lightbox

 1. Create an alternate layout

1. Create an alternate layout to display both the TitlesFragment and PlayQuoteFragment .

2. Update TitlesFragment to detect if the device is displaying both fragments simultaneously and change

behavior accordingly.

3. Update PlayQuoteActivity to close when the device is in landscape mode.

When Main Activity is created on an Android device, Android will decide which layout to load based on the

orientation of the device. By default, Android will provide the Resources/layout/activity_main.axmlResources/layout/activity_main.axml layout

file. For devices that load in landscape mode Android will provide the Resources/layout-Resources/layout-

land/activity_main.axmlland/activity_main.axml layout file. The guide on Android Resources contains more details on how Android

decides what resource files to load for an application.

Create an alternate layout that targets LandscapeLandscape orientation by following the steps described in the Alternate

Layouts guide. This should add a new layout resource file to the project,

Resources/layout/activity_main.axmlResources/layout/activity_main.axml :

Visual Studio

Visual Studio for Mac

After creating the alternate layout, edit the source of the file Resources/layout-land/activity_main.axmlResources/layout-land/activity_main.axml so

that it matches this XML:

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/walkthrough-landscape-images/02-alternate-layout.w157.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/two_fragments_layout"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment android:name="FragmentSample.TitlesFragment"
 android:id="@+id/titles"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />

 <FrameLayout android:id="@+id/playquote_container"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent"
 />
</LinearLayout>

 2. Changes to TitlesFragment

bool showingTwoFragments;

var quoteContainer = Activity.FindViewById(Resource.Id.playquote_container);
showingTwoFragments = quoteContainer != null &&
 quoteContainer.Visibility == ViewStates.Visible;
if (showingTwoFragments)
{
 ListView.ChoiceMode = ChoiceMode.Single;
 ShowPlayQuote(selectedPlayId);
}

The root view of the activity is given the resource ID two_fragments_layout and has two sub-views, a fragment

and a FrameLayout . While the fragment is statically loaded, the FrameLayout acts as a "placeholder" that will be

replaced at run-time by the PlayQuoteFragment . Each time a new play is selected in the TitlesFragment , the

playquote_container will be updated with a new instance of the PlayQuoteFragment .

Each of the sub-views will occupy the full height of their parent. The width of each subview is controlled by the

android:layout_weight and android:layout_width attributes. In this example, each subview will occupy 50% of

width provide by the parent. See Google's document on the LinearLayout for details about Layout Weight.

Once the alternate layout has been created, it is necessary to update TitlesFragment . When the app is

displaying the two fragments on one activity, then TitlesFragment should load the PlayQuoteFragment in the

parent Activity. Otherwise, TitlesFragment should launch the PlayQuoteActivity which host the

PlayQuoteFragment . A boolean flag will help TitlesFragment determine which behavior it should use. This flag

will be initialized in the OnActivityCreated method.

First, add an instance variable at the top of the TitlesFragment class:

Then, add the following code snippet to OnActivityCreated to initialize the variable:

If the device is running in landscape mode, then the FrameLayout with the resource ID playquote_container will

be visible on the screen, so showingTwoFragments will be initialized to true . If the device is running in portrait

mode, then playquote_container will not be on the screen, so showingTwoFragments will be false .

https://developer.android.com/guide/topics/ui/layout/linear.html

void ShowPlayQuote(int playId)
{
 selectedPlayId = playId;
 if (showingTwoFragments)
 {
 ListView.SetItemChecked(selectedPlayId, true);

 var playQuoteFragment = FragmentManager.FindFragmentById(Resource.Id.playquote_container) as
PlayQuoteFragment;

 if (playQuoteFragment == null || playQuoteFragment.PlayId != playId)
 {
 var container = Activity.FindViewById(Resource.Id.playquote_container);
 var quoteFrag = PlayQuoteFragment.NewInstance(selectedPlayId);

 FragmentTransaction ft = FragmentManager.BeginTransaction();
 ft.Replace(Resource.Id.playquote_container, quoteFrag);
 ft.Commit();
 }
 }
 else
 {
 var intent = new Intent(Activity, typeof(PlayQuoteActivity));
 intent.PutExtra("current_play_id", playId);
 StartActivity(intent);
 }
}

 Complete code for TitlesFragmentComplete code for TitlesFragment

public class TitlesFragment : ListFragment
{
 int selectedPlayId;
 bool showingTwoFragments;

 public override void OnActivityCreated(Bundle savedInstanceState)
 {
 base.OnActivityCreated(savedInstanceState);
 ListAdapter = new ArrayAdapter<string>(Activity, Android.Resource.Layout.SimpleListItemActivated1,
Shakespeare.Titles);

 if (savedInstanceState != null)
 {
 selectedPlayId = savedInstanceState.GetInt("current_play_id", 0);
 }

 var quoteContainer = Activity.FindViewById(Resource.Id.playquote_container);
 showingTwoFragments = quoteContainer != null &&
 quoteContainer.Visibility == ViewStates.Visible;
 if (showingTwoFragments)
 {
 ListView.ChoiceMode = ChoiceMode.Single;
 ShowPlayQuote(selectedPlayId);
 }
 }

The ShowPlayQuote method will need to change how it displays a quote – either in a fragment or launch a new

activity. Update the ShowPlayQuote method to load a fragment when showing two fragments, otherwise it

should launch an Activity:

If the user has selected a play that is different from the one that is currently being displayed in

PlayQuoteFragment , then a new PlayQuoteFragment is created and will replace the contents of the

playquote_container within the context of a FragmentTransaction .

After completing all the previous changes to TitlesFragment , the complete class should match this code:

 public override void OnSaveInstanceState(Bundle outState)
 {
 base.OnSaveInstanceState(outState);
 outState.PutInt("current_play_id", selectedPlayId);
 }

 public override void OnListItemClick(ListView l, View v, int position, long id)
 {
 ShowPlayQuote(position);
 }

 void ShowPlayQuote(int playId)
 {
 selectedPlayId = playId;
 if (showingTwoFragments)
 {
 ListView.SetItemChecked(selectedPlayId, true);

 var playQuoteFragment = FragmentManager.FindFragmentById(Resource.Id.playquote_container) as
PlayQuoteFragment;

 if (playQuoteFragment == null || playQuoteFragment.PlayId != playId)
 {
 var container = Activity.FindViewById(Resource.Id.playquote_container);
 var quoteFrag = PlayQuoteFragment.NewInstance(selectedPlayId);

 FragmentTransaction ft = FragmentManager.BeginTransaction();
 ft.Replace(Resource.Id.playquote_container, quoteFrag);
 ft.AddToBackStack(null);
 ft.SetTransition(FragmentTransit.FragmentFade);
 ft.Commit();
 }
 }
 else
 {
 var intent = new Intent(Activity, typeof(PlayQuoteActivity));
 intent.PutExtra("current_play_id", playId);
 StartActivity(intent);
 }
 }
}

 3. Changes to PlayQuoteActivity
There is one final detail to take care of: PlayQuoteActivity is not necessary when the device is in landscape

mode. If the device is in landscape mode the PlayQuoteActivity should not be visible. Update the OnCreate

method of PlayQuoteActivity so that it will close itself. This code is the final version of

PlayQuoteActivity.OnCreate :

protected override void OnCreate(Bundle savedInstanceState)
{
 base.OnCreate(savedInstanceState);

 if (Resources.Configuration.Orientation == Android.Content.Res.Orientation.Landscape)
 {
 Finish();
 }

 var playId = Intent.Extras.GetInt("current_play_id", 0);
 var playQuoteFrag = PlayQuoteFragment.NewInstance(playId);
 FragmentManager.BeginTransaction()
 .Add(Android.Resource.Id.Content, playQuoteFrag)
 .Commit();
}

 4. Run the application

This modification adds a check for the device orientation. If it is in landscape mode, then PlayQuoteActivity will

close itself.

Once these changes are complete, run the app, rotate the device to landscape mode (if necessary), and then

select a play. The quote should be displayed on the same screen as the list of plays:

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/images/intro-screenshot-phone-land.png#lightbox

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/implementing-with-fragments/images/intro-screenshot-tablet.png#lightbox

Creating A Fragment
 7/8/2021 • 9 minutes to read • Edit Online

public override View OnCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
 return inflater.Inflate(Resource.Layout.Example_Fragment, container, false);
}

NOTENOTE

 Adding a Fragment to an Activity

 Using a Fragment DeclarativelyUsing a Fragment Declaratively

<?xml version="1.0" encoding="utf-8"?>
<fragment class="com.xamarin.sample.fragments.TitlesFragment"
 android:id="@+id/titles_fragment"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />

To create a Fragment, a class must inherit from Android.App.Fragment and then override the OnCreateView

method. OnCreateView will be called by the hosting Activity when it is time to put the Fragment on the screen,

and will return a View . A typical OnCreateView will create this View by inflating a layout file and then attaching

it to a parent container. The container's characteristics are important as Android will apply the layout parameters

of the parent to the UI of the Fragment. The following example illustrates this:

The code above will inflate the view Resource.Layout.Example_Fragment , and add it as a child view to the

ViewGroup container.

Fragment sub-classes must have a public default no argument constructor.

There are two ways that a Fragment may be hosted inside an Activity:

DeclarativelyDeclaratively – Fragments can be used declaratively within .axml layout files by using the <Fragment>

tag.

ProgrammaticallyProgrammatically – Fragments can also be instantiated dynamically by using the FragmentManager

class's API.

Programmatic usage via the FragmentManager class will be discussed later in this guide.

Adding a Fragment inside the layout requires using the <fragment> tag and then identifying the Fragment by

providing either the class attribute or the android:name attribute. The following snippet shows how to use the

class attribute to declare a fragment :

This next snippet shows how to declare a fragment by using the android:name attribute to identify the

Fragment class :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/creating-a-fragment.md

<?xml version="1.0" encoding="utf-8"?>
<fragment android:name="com.xamarin.sample.fragments.TitlesFragment"
 android:id="@+id/titles_fragment"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="+@id/fragment_container"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment class="com.example.android.apis.app.TitlesFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

 Package Name CasePackage Name Case

<fragment class="com.example.DetailsFragment" android:id="@+id/fragment_content"
android:layout_width="match_parent" android:layout_height="match_parent" />

<fragment class="Com.Example.DetailsFragment" android:id="@+id/fragment_content"
android:layout_width="match_parent" android:layout_height="match_parent" />

 Fragment Lifecycle

When the Activity is being created, Android will instantiate each Fragment specified in the layout file and insert

the view that is created from OnCreateView in place of the Fragment element. Fragments that are declaratively

added to an Activity are static and will remain on the Activity until it is destroyed; it is not possible to

dynamically replace or remove such a Fragment during the lifetime of the Activity to which it is attached.

Each Fragment must be assigned a unique identifier :

android:idandroid:id – As with other UI elements in a layout file, this is a unique ID.

android:tagandroid:tag – This attribute is a unique string.

If neither of the previous two methods is used, then the Fragment will assume the ID of the container view. In

the following example where neither android:id nor android:tag is provided, Android will assign the ID

fragment_container to the Fragment:

Android does not allow for uppercase characters in package names; it will throw an exception when trying to

inflate the view if a package name contains an uppercase character. However, Xamarin.Android is more forgiving,

and will tolerate uppercase characters in the namespace.

For example, both of the following snippets will work with Xamarin.Android. However, the second snippet will

cause an android.view.InflateException to be thrown by a pure Java-based Android application.

OR

Fragments have their own lifecycle that is somewhat independent of, but still affected by, the lifecycle of the

hosting Activity. For example, when an Activity pauses, all of its associated Fragments are paused. The following

diagram outlines the lifecycle of the Fragment.

 Fragment Creation Lifecycle MethodsFragment Creation Lifecycle Methods
The list below shows the flow of the various callbacks in the lifecycle of a Fragment as it is being created:

OnInflate() – Called when the Fragment is being created as part of a view layout. This may be called

immediately after the Fragment is created declaratively from an XML layout file. The Fragment is not

associated with its Activity yet, but the ActivityActivity , BundleBundle, and Attr ibuteSetAttr ibuteSet from the view hierarchy are

passed in as parameters. This method is best used for parsing the Attr ibuteSetAttr ibuteSet and for saving the

attributes that might be used later by the Fragment.

OnAttach() – Called after the Fragment is associated with the Activity. This is the first method to be run

when the Fragment is ready to be used. In general, Fragments should not implement a constructor or

override the default constructor. Any components that are required for the Fragment should be initialized

in this method.

OnCreate() – Called by the Activity to create the Fragment. When this method is called, the view

hierarchy of the hosting Activity may not be completely instantiated, so the Fragment should not rely on

any parts of the Activity's view hierarchy until later on in the Fragment's lifecycle. For example, do not use

this method to perform any tweaks or adjustments to the UI of the application. This is the earliest time at

which the Fragment may begin gathering the data that it needs. The Fragment is running in the UI thread

at this point, so avoid any lengthy processing, or perform that processing on a background thread. This

method may be skipped if SetRetainInstance(true)SetRetainInstance(true) is called. This alternative will be described in more

detail below.

OnCreateView() – Creates the view for the Fragment. This method is called once the Activity's

OnCreate()OnCreate() method is complete. At this point, it is safe to interact with the view hierarchy of the Activity.

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/creating-a-fragment-images/fragment-lifecycle.png#lightbox

 Fragment Destruction Lifecycle MethodsFragment Destruction Lifecycle Methods

 Using SetRetainInstanceUsing SetRetainInstance

 Fragment State Management

public override void OnSaveInstanceState(Bundle outState)
{
 base.OnSaveInstanceState(outState);
 outState.PutInt("current_choice", _currentCheckPosition);
}

This method should return the view that will be used by the Fragment.

OnActivityCreated() – Called after Activity.OnCreateActivity.OnCreate has been completed by the hosting Activity. Final

tweaks to the user interface should be performed at this time.

OnStart() – Called after the containing Activity has been resumed. This makes the Fragment visible to

the user. In many cases, the Fragment will contain code that would otherwise be in the OnStar t()OnStar t() method

of an Activity.

OnResume() – This is the last method called before the user can interact with the Fragment. An example of

the kind of code that should be performed in this method would be enabling features of a device that the

user may interact with, such as the camera that the location services. Services such as these can cause

excessive battery drain, though, and an application should minimize their use to preserve battery life.

The next list explains the lifecycle methods that are called as a Fragment is being destroyed:

OnPause() – The user is no longer able to interact with the Fragment. This situation exists because some

other Fragment operation is modifying this Fragment, or the hosting Activity is paused. It is possible that

the Activity hosting this Fragment might still be visible, that is, the Activity in focus is partially transparent

or does not occupy the full screen. When this method becomes active, it's the first indication that the user

is leaving the Fragment. The Fragment should save any changes.

OnStop() – The Fragment is no longer visible. The host Activity may be stopped, or a Fragment operation

is modifying it in the Activity. This callback serves the same purpose as Activity.OnStopActivity.OnStop.

OnDestroyView() – This method is called to clean up resources associated with the view. This is called

when the view associated with the Fragment has been destroyed.

OnDestroy() – This method is called when the Fragment is no longer in use. It is still associated with the

Activity, but the Fragment is no longer functional. This method should release any resources that are in

use by the Fragment, such as a SurfaceViewSurfaceView that might be used for a camera. This method may be

skipped if SetRetainInstance(true)SetRetainInstance(true) is called. This alternative will be described in more detail below.

OnDetach() – This method is called just before the Fragment is no longer associated with the Activity. The

view hierarchy of the Fragment no longer exists, and all resources that are used by the Fragment should

be released at this point.

It is possible for a Fragment to specify that it should not be completely destroyed if the Activity is being re-

created. The Fragment class provides the method SetRetainInstance for this purpose. If true is passed to this

method, then when the Activity is restarted, the same instance of the Fragment will be used. If this happens, then

all callback methods will be invoked except the OnCreate and OnDestroy lifecycle callbacks. This process is

illustrated in the lifecycle diagram shown above (by the green dotted lines).

Fragments may save and restore their state during the Fragment lifecycle by using an instance of a Bundle . The

Bundle allows a Fragment to save data as key/value pairs and is useful for simple data that doesn't require much

memory. A Fragment can save its state with a call to OnSaveInstanceState :

https://docs.microsoft.com/en-us/dotnet/api/android.views.surfaceview

public override void OnActivityCreated(Bundle savedInstanceState)
{
 base.OnActivityCreated(savedInstanceState);
 if (savedInstanceState != null)
 {
 _currentCheckPosition = savedInstanceState.GetInt("current_choice", 0);
 }
}

<EditText android:id="@+id/myText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 Bundle LimitationsBundle Limitations

 Contributing to the Menu

public override void OnCreateOptionsMenu(IMenu menu, MenuInflater menuInflater)
{
 menuInflater.Inflate(Resource.Menu.menu_fragment_vehicle_list, menu);
 base.OnCreateOptionsMenu(menu, menuInflater);
}

When a new instance of a Fragment is created, the state saved in the Bundle will become available to the new

instance via the OnCreate , OnCreateView , and OnActivityCreated methods of the new instance. The following

sample demonstrates how to retrieve the value current_choice from the Bundle :

Overriding OnSaveInstanceState is an appropriate mechanism for saving transient data in a Fragment across

orientation changes, such as the current_choice value in the above example. However, the default

implementation of OnSaveInstanceState takes care of saving transient data in the UI for every view that has an

ID assigned. For example, look at an application that has an EditText element defined in XML as follows:

Since the EditText control has an id assigned, the Fragment automatically saves the data in the widget when

OnSaveInstanceState is called.

Although using OnSaveInstanceState makes it easy to save transient data, use of this method has some

limitations:

If the Fragment is not added to the back stack, then its state will not be restored when the user presses

the BackBack button.

When the Bundle is used to save data, that data is serialized. This can lead to processing delays.

Fragments may contribute items to the menu of their hosting Activity. An Activity handles menu items first. If the

Activity does not have a handler, then the event will be passed on to the Fragment, which will then handle it.

To add items to the Activity's menu, a Fragment must do two things. First, the Fragment must implement the

method OnCreateOptionsMenu and place its items into the menu, as shown in the following code:

The menu in the previous code snippet is inflated from the following XML, located in the file

menu_fragment_vehicle_list.xml :

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add_vehicle"
 android:icon="@drawable/ic_menu_add_data"
 android:title="@string/add_vehicle" />
</menu>

public override void OnCreate(Bundle savedState)
{
 base.OnCreate(savedState);
 SetHasOptionsMenu(true);
}

Next, the Fragment must call SetHasOptionsMenu(true) . The call to this method announces to Android that the

Fragment has menu items to contribute to the option menu. Unless the call to this method is made, the menu

items for the Fragment will not be added to the Activity's option menu. This is typically done in the lifecycle

method OnCreate() , as shown in the next code snippet:

The following screen shows how this menu would look:

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/creating-a-fragment-images/fragment-menu-example.png#lightbox

Managing Fragments
 10/28/2019 • 2 minutes to read • Edit Online

FragmentTransaction fragmentTx = this.FragmentManager.BeginTransaction();

// Create a new fragment and a transaction.
FragmentTransaction fragmentTx = this.FragmentManager.BeginTransaction();
DetailsFragment aDifferentDetailsFrag = new DetailsFragment();

// The fragment will have the ID of Resource.Id.fragment_container.
fragmentTx.Add(Resource.Id.fragment_container, aDifferentDetailsFrag);

// Commit the transaction.
fragmentTx.Commit();

To help with managing Fragments, Android provides the FragmentManager class. Each Activity has an instance of

Android.App.FragmentManager that will find or dynamically change its Fragments. Each set of these changes is

known as a transaction, and is performed by using one of the APIs contained in the class

Android.App.FragmentTransation , which is managed by the FragmentManager . An Activity may start a transaction

like this:

These changes to the Fragments are performed in the FragmentTransaction instance by using methods such as

Add() , Remove(), and Replace(). The changes are then applied by using Commit() . The changes in a

transaction are not performed immediately. Instead, they are scheduled to run on the Activity's UI thread as soon

as possible.

The following example shows how to add a Fragment to an existing container :

If a transaction is committed after Activity.OnSaveInstanceState() is called, an exception will be thrown. This

happens because when the Activity saves its state, Android also saves the state of any hosted Fragments. If any

Fragment transactions are committed after this point, the state of these transactions will be lost when the

Activity is restored.

It's possible to save the Fragment transactions to the Activity's back stack by making a call to

FragmentTransaction.AddToBackStack() . This allows the user to navigate backwards through Fragment changes

when the BackBack button is pressed. Without a call to this method, Fragments that are removed will be destroyed

and will be unavailable if the user navigates back through the Activity.

The following example shows how to use the AddToBackStack method of a FragmentTransaction to replace one

Fragment, while preserving the state of the first Fragment on the back stack:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/managing-fragments.md
https://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html

// Create a new fragment and a transaction.
FragmentTransaction fragmentTx = this.FragmentManager.BeginTransaction();
DetailsFragment aDifferentDetailsFrag = new DetailsFragment();

// Replace the fragment that is in the View fragment_container (if applicable).
fragmentTx.Replace(Resource.Id.fragment_container, aDifferentDetailsFrag);

// Add the transaction to the back stack.
fragmentTx.AddToBackStack(null);

// Commit the transaction.
fragmentTx.Commit();

 Communicating with Fragments

var emailList = FragmentManager.FindFragmentById<EmailListFragment>(Resource.Id.email_list_fragment);
emailList.SomeCustomMethod(parameter1, parameter2);

 Communicating with the ActivityCommunicating with the Activity

var myActivity = (MyActivity) this.Activity;
myActivity.SomeCustomMethod();

The FragmentManager knows about all of the Fragments that are attached to an Activity and provides two

methods to help find these Fragments:

FindFragmentByIdFindFragmentById – This method will find a Fragment by using the ID that was specified in the layout

file or the container ID when the Fragment was added as part of a transaction.

FindFragmentByTagFindFragmentByTag – This method is used to find a Fragment that has a tag that was provided in the

layout file or that was added in a transaction.

Both Fragments and Activities reference the FragmentManager , so the same techniques are used to communicate

back and forth between them. An application may find a reference Fragment by using one of these two

methods, cast that reference to the appropriate type, and then directly call methods on the Fragment. The

following snippet provides an example:

It is also possible for the Activity to use the FragmentManager to find Fragments:

It is possible for a Fragment to use the Fragment.Activity property to reference its host. By casting the Activity

to a more specific type, it is possible for an Activity to call methods and properties on its host, as shown in the

following example:

Specialized Fragment Classes
 7/8/2021 • 6 minutes to read • Edit Online

 The ListFragment

 Binding Data With The ListAdapterBinding Data With The ListAdapter

public override void OnActivityCreated(Bundle savedInstanceState)
{
 base.OnActivityCreated(savedInstanceState);
 string[] values = new[] { "Android", "iPhone", "WindowsMobile",
 "Blackberry", "WebOS", "Ubuntu", "Windows7", "Max OS X",
 "Linux", "OS/2" };
 this.ListAdapter = new ArrayAdapter<string>(Activity, Android.Resource.Layout.SimpleExpandableListItem1,
values);
}

The Fragments API provides other subclasses that encapsulate some of the more common functionality found in

applications. These subclasses are:

L istFragmentListFragment – This Fragment is used to display a list of items bound to a datasource such as an array

or a cursor.

DialogFragmentDialogFragment – This Fragment is used as a wrapper around a dialog. The Fragment will display the

dialog on top of its Activity.

PreferenceFragmentPreferenceFragment – This Fragment is used to show Preference objects as lists.

The ListFragment is very similar in concept and functionality to the ListActivity ; it is a wrapper that hosts a

ListView in a Fragment. The image below shows a ListFragment running on a tablet and a phone:

The ListFragment class already provides a default layout, so it is not necessary to override OnCreateView to

display the contents of the ListFragment . The ListView is bound to data by using a ListAdapter

implementation. The following example shows how this could be done by using a simple array of strings:

When setting the ListAdapter , it is important to use the ListFragment.ListAdapter property, and not the

ListView.ListAdapter property. Using ListView.ListAdapter will cause important initialization code to be

skipped.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/specialized-fragment-classes.md
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/specialized-fragment-classes-images/intro-screenshot.png#lightbox

Responding to User SelectionResponding to User Selection

public override void OnListItemClick(ListView l, View v, int index, long id)
{
 // We can display everything in place with fragments.
 // Have the list highlight this item and show the data.
 ListView.SetItemChecked(index, true);

 // Check what fragment is shown, replace if needed.
 var details = FragmentManager.FindFragmentById<DetailsFragment>(Resource.Id.details);
 if (details == null || details.ShownIndex != index)
 {
 // Make new fragment to show this selection.
 details = DetailsFragment.NewInstance(index);

 // Execute a transaction, replacing any existing
 // fragment with this one inside the frame.
 var ft = FragmentManager.BeginTransaction();
 ft.Replace(Resource.Id.details, details);
 ft.SetTransition(FragmentTransit.FragmentFade);
 ft.Commit();
 }
}

 DialogFragment

To respond to user selections, an application must override the OnListItemClick method. The following example

shows one such possibility:

In the code above, when the user selects an item in the ListFragment , a new Fragment is displayed in the

hosting Activity, showing more details about the item that was selected.

The DialogFragment is a Fragment that is used to display a dialog object inside of a Fragment that will float on

top of the Activity's window. It is meant to replace the managed dialog APIs (starting in Android 3.0). The

following screenshot shows an example of a DialogFragment :

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/specialized-fragment-classes-images/dialog-fragment-example.png#lightbox

 A Simple DialogFragmentA Simple DialogFragment

A DialogFragment ensures that the state between the Fragment and the dialog remain consistent. All

interactions and control of the dialog object should happen through the DialogFragment API, and not be made

with direct calls on the dialog object. The DialogFragment API provides each instance with a Show() method that

is used to display a Fragment. There are two ways to get rid of a Fragment:

Call DialogFragment.Dismiss() on the DialogFragment instance.

Display another DialogFragment .

To create a DialogFragment , a class inherits from Android.App.DialogFragment, and then overrides one of the

following two methods:

OnCreateViewOnCreateView – This creates and returns a view.

OnCreateDialogOnCreateDialog – This creates a custom dialog. It is typically used to show an AlertDialog. When

overriding this method, it is not necessary to override OnCreateView .

The following screenshot shows a simple DialogFragment that has a TextView and two Button s:

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/specialized-fragment-classes-images/dialog-fragment-example-2.png#lightbox

public class MyDialogFragment : DialogFragment
{
 private int _clickCount;
 public override void OnCreate(Bundle savedInstanceState)
 {
 _clickCount = 0;
 }

 public override View OnCreateView(LayoutInflater inflater, ViewGroup container, Bundle
savedInstanceState)
 {
 base.OnCreate(savedInstanceState)

 var view = inflater.Inflate(Resource.Layout.dialog_fragment_layout, container, false);
 var textView = view.FindViewById<TextView>(Resource.Id.dialog_text_view);

 view.FindViewById<Button>(Resource.Id.dialog_button).Click += delegate
 {
 textView.Text = "You clicked the button " + _clickCount++ + " times.";
 };

 // Set up a handler to dismiss this DialogFragment when this button is clicked.
 view.FindViewById<Button>(Resource.Id.dismiss_dialog_button).Click += (sender, args) => Dismiss();
 return view;
 }
 }
}

 Displaying a FragmentDisplaying a Fragment

public void ShowDialog()
{
 var transaction = FragmentManager.BeginTransaction();
 var dialogFragment = new MyDialogFragment();
 dialogFragment.Show(transaction, "dialog_fragment");
}

 Dismissing a FragmentDismissing a Fragment

 Alert DialogAlert Dialog

The TextView will display the number of times that the user has clicked one button in the DialogFragment , while

clicking the other button will close the Fragment. The code for DialogFragment is:

Like all Fragments, a DialogFragment is displayed in the context of a FragmentTransaction .

The Show() method on a DialogFragment takes a FragmentTransaction and a string as an input. The dialog

will be added to the Activity, and the FragmentTransaction committed.

The following code demonstrates one possible way an Activity may use the Show() method to show a

DialogFragment :

Calling Dismiss() on an instance of a DialogFragment causes a Fragment to be removed from the Activity and

commits that transaction. The standard Fragment lifecycle methods that are involved with the destruction of a

Fragment will be called.

Instead of overriding OnCreateView , a DialogFragment may instead override OnCreateDialog . This allows an

application to create an AlertDialog that is managed by a Fragment. The following code is an example that uses

the AlertDialog.Builder to create a Dialog :

https://docs.microsoft.com/en-us/dotnet/api/android.app.alertdialog

public class AlertDialogFragment : DialogFragment
{
 public override Dialog OnCreateDialog(Bundle savedInstanceState)
 {
 EventHandler<DialogClickEventArgs> okhandler;
 var builder = new AlertDialog.Builder(Activity)
 .SetMessage("This is my dialog.")
 .SetPositiveButton("Ok", (sender, args) =>
 {
 // Do something when this button is clicked.
 })
 .SetTitle("Custom Dialog");
 return builder.Create();
 }
}

 PreferenceFragment
To help manage preferences, the Fragments API provides the PreferenceFragment subclass. The

PreferenceFragment is similar to the PreferenceActivity – it will show a hierarchy of preferences to the user in a

Fragment. As the user interacts with the preferences, they will be automatically saved to SharedPreferences. In

Android 3.0 or higher applications, use the PreferenceFragment to deal with preferences in applications. The

following picture shows an example of a PreferenceFragment :

https://docs.microsoft.com/en-us/dotnet/api/android.preferences.preferenceactivity
https://developer.android.com/reference/android/content/SharedPreferences.html

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/specialized-fragment-classes-images/preferences-dialog.png#lightbox

Create A Preference Fragment from a ResourceCreate A Preference Fragment from a Resource

<?xml version="1.0" encoding="utf-8"?>

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

 <PreferenceCategory android:title="Inline Preferences">
 <CheckBoxPreference android:key="checkbox_preference"
 android:title="Checkbox Preference Title"
 android:summary="Checkbox Preference Summary" />

 </PreferenceCategory>

 <PreferenceCategory android:title="Dialog Based Preferences">

 <EditTextPreference android:key="edittext_preference"
 android:title="EditText Preference Title"
 android:summary="EditText Preference Summary"
 android:dialogTitle="Edit Text Preferrence Dialog Title" />

 </PreferenceCategory>

 <PreferenceCategory android:title="Launch Preferences">

 <!-- This PreferenceScreen tag serves as a screen break (similar to page break
 in word processing). Like for other preference types, we assign a key
 here so it is able to save and restore its instance state. -->
 <PreferenceScreen android:key="screen_preference"
 android:title="Title Screen Preferences"
 android:summary="Summary Screen Preferences">

 <!-- You can place more preferences here that will be shown on the next screen. -->

 <CheckBoxPreference android:key="next_screen_checkbox_preference"
 android:title="Next Screen Toggle Preference Title"
 android:summary="Next Screen Toggle Preference Summary" />

 </PreferenceScreen>

 <PreferenceScreen android:title="Intent Preference Title"
 android:summary="Intent Preference Summary">

 <intent android:action="android.intent.action.VIEW"
 android:data="http://www.android.com" />

 </PreferenceScreen>

 </PreferenceCategory>

</PreferenceScreen>

The preference Fragment may be inflated from an XML resource file by using the

PreferenceFragment.AddPreferencesFromResource method. A logical place to call this method in the lifecycle of

the Fragment would be in the OnCreate method.

The PreferenceFragment pictured above was created by loading a resource from XML. The resource file is:

The code for the preference Fragment is as follows:

https://docs.microsoft.com/en-us/dotnet/api/android.preferences.preferencefragment.addpreferencesfromresource

public class PrefFragment : PreferenceFragment
{
 public override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 AddPreferencesFromResource(Resource.Xml.preferences);
 }
}

 Querying Activities to Create a Preference FragmentQuerying Activities to Create a Preference Fragment

public class MyPreferenceFragment : PreferenceFragment
{
 public override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 var intent = new Intent(this.Activity, typeof (MyActivityWithPreferences));
 AddPreferencesFromIntent(intent);
 }
}

[Activity(Label = "My Activity with Preferences")]
[MetaData(PreferenceManager.MetadataKeyPreferences, Resource = "@xml/preference_from_intent")]
public class MyActivityWithPreferences : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 // This is deliberately blank
 }
}

Another technique for creating a PreferenceFragment involves querying Activities. Each Activity can use the

METADATA_KEY_PREFERENCE attribute that will point to an XML resource file. In Xamarin.Android, this is done

by adorning an Activity with the MetaDataAttribute , and then specifying the resource file to use. The

PreferenceFragment class provides the method AddPreferenceFromIntent that can be used to query an Activity

to find this XML resource and inflate a preference hierarchy for it.

An example of this process is provided in the following code snippet, which uses AddPreferencesFromIntent to

create a PreferenceFragment :

Android will look at the class MyActivityWithPreference . The class must be adorned with the MetaDataAttribute,

as shown in the following code snippet:

The MetaDataAttribute declares an XML resource file that the PreferenceFragment will use to inflate the

preference hierarchy. If the MetatDataAttribute is not provided, then an exception will be thrown at run time.

When this code runs, the PreferenceFragment appears as in the following screenshot:

https://docs.microsoft.com/en-us/dotnet/api/android.preferences.preferencemanager.metadatakeypreferences
https://docs.microsoft.com/en-us/dotnet/api/android.preferences.preferencefragment.addpreferencesfromintent

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/specialized-fragment-classes-images/preference-fragment-getpreferencesfromintent.png#lightbox

Providing Backwards Compatibility with the Android
Support Package

 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Adding the Support Package

The usefulness of Fragments would be limited without backwards compatibility with pre-Android 3.0 (API Level

11) devices. To provide this capability, Google introduced the Support Library (originally called the Android

Compatibility Library when it was released) which backports some of the APIs from newer versions of Android

to older versions of Android. It is the Android Support Package that enables devices running Android 1.6 (API

level 4) to Android 2.3.3. (API level 10).

Only the ListFragment and the DialogFragment are available via the Android Support Package. None of the other

Fragment subclasses, such as the PreferenceFragment, are supported in the Android Support Package. They will not

work in pre-Android 3.0 applications.

The Android Support Package is not automatically added to a Xamarin.Android application. Xamarin provides

the Android Support Library v4 NuGet package to simplify adding the support libraries to a Xamarin.Android

application.To include the support packages into your Xamarin.Android application include the Android Support

Library v4 component into your Xamarin.Android project, as illustrated in the following screenshot:

After these steps have been performed, it becomes possible to use Fragments in earlier versions of Android. The

Fragment APIs will work the same now in these earlier versions, with the following exceptions:

Change the minimum Android VersionChange the minimum Android Version – The application no longer needs to target Android 3.0 or

higher, as shown below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/fragments/providing-backwards-compatibility.md
https://developer.android.com/sdk/compatibility-library.html
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/providing-backwards-compatibility-images/02.png#lightbox

FragmentTransaction fragmentTx = this.SupportingFragmentManager.BeginTransaction();
DetailsFragment detailsFrag = new DetailsFragment();
fragmentTx.Add(Resource.Id.fragment_container, detailsFrag);
fragmentTx.Commit();

 Related Links

Extend FragmentActivityExtend FragmentActivity – The Activities that are hosting Fragments must now inherit from

Android.Support.V4.App.FragmentActivity , and not from Android.App.Activity .

Update NamespacesUpdate Namespaces – Classes that inherit from Android.App.Fragment must now inherit from

Android.Support.V4.App.Fragment . Remove the using statement " using Android.App; " at the top of the

source code file and replace it with " using Android.Support.V4.App ".

Use Suppor tFragmentManagerUse Suppor tFragmentManager – Android.Support.V4.App.FragmentActivity exposes a

SupportingFragmentManager property that must be used to get a reference to the FragmentManager . For

example:

With these changes in place, it will be possible to run a Fragment-based application on Android 1.6 or 2.x as well

as on Honeycomb and Ice Cream Sandwich.

Android Support Library v4 NuGet

file:///T:/c1uy/n1bv/xamarin/android/platform/fragments/providing-backwards-compatibility-images/03.png#lightbox
https://www.nuget.org/packages/Xamarin.Android.Support.v4/

App-Linking in Android
 7/8/2021 • 7 minutes to read • Edit Online

 App Linking Overview

This guide will discuss how Android 6.0 supports app-linking, a technique that allows mobile apps to respond to

URLs on websites. It will discuss what app-linking is, how to implement app-linking in an Android 6.0

application, and how to configure a website to grant permissions to the mobile app for a domain.

Mobile applications no longer live in a silo – in many cases they are an important components of their

businesses, along with their website. It's desirable for businesses to seamlessly connect their web presence and

mobile applications, with links on a website launching mobile applications and displaying relevant content in the

mobile app. App-linking (also referred to as deep-linking) is one technique that allows a mobile device to

respond to a URI and launch a mobile application that corresponds to that URI.

Android handles app-linking through the intent system – when the user clicks on a link in a mobile browser, the

mobile browser will dispatch an intent that Android will delegate to a registered application. For example,

clicking on a link on a cooking website would open a mobile app that is associated with that website and display

a specific recipe to the user. If there is more than one application registered to handle that intent, then Android

will raise what is known as a disambiguation dialog that will ask a user what application to select the application

that should handle the intent, for example:

Android 6.0 improves on this by using automatic link handling. It is possible for Android to automatically

register an application as the default handler for a URI – the app will automatically launch and navigate directly

to the relevant Activity. How Android 6.0 decides to handle a URI click depends on the following criteria:

1. An existing app is already associated with the URIAn existing app is already associated with the URI – The user may have already associated an existing

app with a URI. In that case, Android will continue to use that application.

2. No existing app is associated with the URI, but a suppor ting app is installedNo existing app is associated with the URI, but a suppor ting app is installed – In this scenario, the

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/app-linking.md

 Requirements

 Configuring App-Linking in Android 6.0

 Configuring the Intent FilterConfiguring the Intent Filter

user has not specified an existing app, so Android will use the installed supporting application to handle the

request.

3. No existing app is associated with the URI, but many suppor ting apps are installedNo existing app is associated with the URI, but many suppor ting apps are installed – Because

there are multiple applications that support the URI, the disambiguation dialog will be displayed and the user

must select which app will handle the URI.

If the user has no apps installed that support the URI, and one is subsequently installed, then Android will set

that application as the default handler for the URI after verifying the association with the website that is

associated with the URI.

This guide will discuss how to configure an Android 6.0 application and how to create and publish the Digital

Asset Links file to support app-linking in Android 6.0.

This guide requires Xamarin.Android 6.1 and an application that targets Android 6.0 (API level 23) or higher.

App-linking is possible in earlier versions of Android by using the Rivets NuGet package from the Xamarin

Component store. The Rivets package is not compatible with app-linking in Android 6.0; it does not support

Android 6.0 app linking.

Setting up app-links in Android 6.0 involves two major steps:

1. Adding one or more intent-filters for the website URI'sAdding one or more intent-filters for the website URI's – the intent filters guide Android in how to

handle a URL click in a mobile browser.

2. Publishing a Publishing a Digital Asset L inks JSONDigital Asset L inks JSON file on the website file on the website – this is a file that is uploaded to a website

and is used by Android to verify the relationship between the mobile app and the domain of the website.

Without this, Android cannot install the app as the default handle for URI's; the user must do so manually.

It is necessary to configure an intent filter that maps a URI (or possible a set of URIs) from a website to an

Activity in an Android application. In Xamarin.Android, this relationship is established by adorning an Activity

with the IntentFilterAttribute. The intent filter must declare the following information:

Intent.ActionView – This will register the intent filter to respond to requests to view information

Categories – The intent filter should register both Intent.Categor yBrowsableIntent.Categor yBrowsable and

Intent.Categor yDefaultIntent.Categor yDefault to be able to properly handle the web URI.

DataScheme – The intent filter must declare http and/or https . These are the only two valid schemes.

DataHost – This is the domain which the URIs will originate from.

DataPathPrefix – This is an optional path to resources on the website.

AutoVerify – The autoVerify attribute tells Android to verify the relationship between the application and

the website. This will be discussed more below.

The following example shows how to use the IntentFilterAttribute to handle links from

https://www.recipe-app.com/recipes and from http://www.recipe-app.com/recipes :

https://www.nuget.org/packages/Rivets/
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute
https://docs.microsoft.com/en-us/dotnet/api/android.content.intent.categorybrowsable
https://docs.microsoft.com/en-us/dotnet/api/android.content.intent.categorydefault
https://docs.microsoft.com/en-us/dotnet/api/android.app.intentfilterattribute

[IntentFilter(new [] { Intent.ActionView },
 Categories = new[] { Intent.CategoryBrowsable, Intent.CategoryDefault },
 DataScheme = "http",
 DataHost = "recipe-app.com",
 DataPathPrefix = "/recipe",
 AutoVerify=true)]
public class RecipeActivity : Activity
{
 // Code for the activity omitted
}

 Creating the Digital Assets Link FileCreating the Digital Assets Link File

NOTENOTE

[
 {
 "relation":[
 "delegate_permission/common.handle_all_urls"
],
 "target":{
 "namespace":"android_app",
 "package_name":"com.example",
 "sha256_cert_fingerprints":[

"14:6D:E9:83:C5:73:06:50:D8:EE:B9:95:2F:34:FC:64:16:A0:83:42:E6:1D:BE:A8:8A:04:96:B2:3F:CF:44:E5"
]
 }
 }
]

Android will verify every host that is identified by the intent filters against the Digital Assets File on the website

before registering the application as the default handler for a URI. All the intent filters must pass verification

before Android can establish the app as the default handler.

Android 6.0 app-linking requires that Android verify the association between the application and the website

before setting the application as the default handler for the URI. This verification will occur when the application

is first installed. The Digital Assets Links file is a JSON file that is hosted by the relevant webdomain(s).

The android:autoVerify attribute must be set by the intent filter – otherwise Android will not perform the verification.

The file is placed by the webmaster of the domain at the location https://domain/.well-https://domain/.well-

known/assetlinks.jsonknown/assetlinks.json.

The Digital Asset File contains the meta-data necessary for Android to verify the association. An assetlinks.jsonassetlinks.json

file has the following key-value pairs:

namespace – the namespace of the Android application.

package_name – the package name of the Android application (declared in the application manifest).

sha256_cert_fingerprints – the SHA256 fingerprints of the signed application. Please see the guide Finding

your Keystore's MD5 or SHA1 Signature for more information on how to obtain the SHA1 fingerprint of an

application.

The following snippet is an example of assetlinks.jsonassetlinks.json with a single application listed:

It is possible to register more than one SHA256 fingerprint to support different versions or builds of your

application. This next assetlinks.jsonassetlinks.json file is an example of registering multiple applications:

[
 {
 "relation":[
 "delegate_permission/common.handle_all_urls"
],
 "target":{
 "namespace":"android_app",
 "package_name":"example.com.puppies.app",
 "sha256_cert_fingerprints":[

"14:6D:E9:83:C5:73:06:50:D8:EE:B9:95:2F:34:FC:64:16:A0:83:42:E6:1D:BE:A8:8A:04:96:B2:3F:CF:44:E5"
]
 }
 },
 {
 "relation":[
 "delegate_permission/common.handle_all_urls"
],
 "target":{
 "namespace":"android_app",
 "package_name":"example.com.monkeys.app",
 "sha256_cert_fingerprints":[

"14:6D:E9:83:C5:73:06:50:D8:EE:B9:95:2F:34:FC:64:16:A0:83:42:E6:1D:BE:A8:8A:04:96:B2:3F:CF:44:E5"
]
 }
 }
]

 Testing App-LinksTesting App-Links

https://digitalassetlinks.googleapis.com/v1/statements:list?source.web.site=
 https://<WEB SITE ADDRESS>:&relation=delegate_permission/common.handle_all_urls

The Google Digital Asset Links website has an online tool that may assist with creating and testing the Digital

Assets file.

After implementing app-links, the various pieces should be tested to ensure that they work as expected.

It is possible to confirm that the Digital Assets file is properly formatted and hosted by using Google's Digital

Asset Links API, as shown in this example:

There are two tests that can be performed to ensure that the intent filters have been properly configured and

that the app is set as the default handler for a URI:

$ adb shell am start -a android.intent.action.VIEW \
 -c android.intent.category.BROWSABLE \
 -d "http://<domain1>/recipe/scalloped-potato"

$ adb shell dumpsys package domain-preferred-apps

1. The Digital Asset File is properly hosted as described above. The first test will dispatch an intent which

Android should redirect to the mobile application. The Android application should launch and display the

Activity registered for the URL. At a command prompt type:

2. Display the existing link handling policies for the applications installed on a given device. The following

command will dump a listing of link policies for each user on the device with the following information.

At the command prompt, type the following command:

https://developers.google.com/digital-asset-links/tools/generator

 Summary

 Related Links

$ adb shell dumpsys package domain-preferred-apps

App linkages for user 0:
Package: com.android.vending
Domains: play.google.com market.android.com
Status: always : 200000002

Package – The package name of the application.

Domain – The domains (separated by spaces) whose web links will be handled by the application

Status – This is the current link-handling status for the app. A value of alwaysalways means that the

application has android:autoVerify=true declared and has passed system verification. It is followed by

a hexadecimal number representing the Android system's record of the preference.

For example:

This guide discussed how app-linking works in Android 6.0. It then covered how to configure an Android 6.0

application to support and respond to app links. It also discussed how to test app-linking in an Android

application.

Finding your Keystore's MD5 or SHA1 Signature

AppLinks

Google Digital Assets Links

Statement List Generator and Tester

https://developers.facebook.com/docs/applinks
https://developers.google.com/digital-asset-links/
https://developers.google.com/digital-asset-links/tools/generator

AndroidX with Xamarin
 7/8/2021 • 3 minutes to read • Edit Online

 Requirements

 Get started

How to get started developing apps with AndroidX using Xamarin.Android.

AndroidX is a major improvement to the original Android Support Library, which is no longer maintained.

AndroidXAndroidX packages fully replace the Android Support Library by providing feature parity and new libraries you

can use in your Android applications.

AndroidX includes the following features:

All packages inside AndroidX now have a consistent namespace starting with androidx . This means all

Android Support Library packages map to a corresponding androidx.* package.

androidx packages are separately maintained and updated. This means that you can update AndroidX

libraries independently of each other.

As of v28 of the Android Support Library, there will be no more releases. All development will be included in

androidx instead.

The following list is required to use AndroidX features in Xamarin-based apps:

Visual StudioVisual Studio - On Windows update to Visual Studio 2019 version 16.4 or later. On macOS, update to Visual

Studio 2019 for Mac version 8.4 or later.

Xamarin.AndroidXamarin.Android - Xamarin.Android 10.0 or later must be installed with Visual Studio (Xamarin.Android is

automatically installed as part of the Mobile Development With .NETMobile Development With .NET workload on Windows and installed

as part of the Visual Studio for Mac InstallerVisual Studio for Mac Installer)

Java Developer KitJava Developer Kit - Xamarin.Android 10.0 development requires JDK 8. Microsoft's distribution of the

OpenJDK is automatically installed as part of Visual Studio.

Android SDKAndroid SDK - Android SDK API 28 or higher must be installed via the Android SDK Manager.

You can get started with AndroidX by including any AndroidX NuGet package inside of your Android project.

Learn more about installing and using a package in Visual Studio or Visual Studio for Mac

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/androidx.md
https://www.nuget.org/packages?q=Tags%253A%2522AndroidX%2522+Authors%253A%2522Microsoft%2522
https://docs.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio
https://docs.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio-mac

Behavior changes

 Package Name ChangePackage Name Change

O L DO L D N EWN EW

android.support.** androidx.@

android.design.** com.google.android.material.@

android.support.test.** androidx.test.@

android.arch.** androidx.@

android.arch.persistence.room.** androidx.room.@

android.arch.persistence.** androidx.sqlite.@

 Migration Tooling

Because AndroidX is a redesign of the Android Support Library, it includes migration steps that will affect

Android applications built with the Android Support Library.

The package names have been changed between the old and new packages. Below you can see an example of

these changes:

For more details on package naming, see the following documentation.

There are three migration steps that you'll want to be aware of for your application.

1. If your application includes Android Suppor t L ibrar y namespaces and you'd like to migrate them toAndroid Suppor t L ibrar y namespaces and you'd like to migrate them to

AndroidX namespacesAndroidX namespaces , you can use our Migrate to AndroidXMigrate to AndroidX IDE tooling to take care of most

namespace scenarios.

Enable the AndroidX MigratorAndroidX Migrator via Tools > Options > Xamarin > Android SettingsTools > Options > Xamarin > Android Settings inside Visual Studio

2019 (you can skip this step on Visual Studio for Mac).

https://developer.android.com/jetpack/androidx/migrate#artifact_mappings

NOTENOTE

 Troubleshooting

 Summary

 Related links

Right-click your project and Migrate to AndroidXMigrate to AndroidX.

You will need to make some manual namespace changes for scenarios the tool doesn't cover. While we will map the

correct package for you, it is encouraged that you to take a look at the official artifact mappings and class mappings to

help your project migration.

2. If your application includes any dependencies that have not been migrated to the AndroidXany dependencies that have not been migrated to the AndroidX

namespacenamespace, you'll have to use the Android Support Library to AndroidX Migration package.

3. If your application does not include any dependencies that require AndroidX namespacedoes not include any dependencies that require AndroidX namespace

migrationmigration, you can use the AndroidX libraries on NuGet today.

Certain architecture packages within AndroidX will conflict with the Support Library versions. To fix this, you

should use the AndroidX version of these packages and remove the Support Library version. For example, if

you are referencing Xamarin.Android.Arch.Work.Runtime in your project, it will conflict with the types of the

newly added AndroidX.Work package.

This article introduced AndroidX and explained how to install and configure the latest tools and packages for

Xamarin.Android development with AndroidX. It provided an overview of what AndroidX is. It included links to

API documentation and Android Developer topics to help you get started in creating apps using AndroidX. It

also highlighted the most important AndroidX behavior changes and troubleshooting topics that could impact

existing apps.

https://developer.android.com/jetpack/androidx/migrate/artifact-mappings
https://developer.android.com/jetpack/androidx/migrate/class-mappings
https://www.nuget.org/packages/Xamarin.AndroidX.Migration
https://www.nuget.org/packages?q=Tags%253A%2522AndroidX%2522+Authors%253A%2522Microsoft%2522

Introduction to AndroidX | The Xamarin Show

AndroidX

Xamarin AndroidX GitHub Repository

Xamarin AndroidX Migration GitHub Repository

https://www.youtube.com/watch?v=M_l3RjTev5A
https://developer.android.com/jetpack/androidx
https://github.com/xamarin/AndroidX
https://github.com/xamarin/XamarinAndroidXMigration

Android 10 with Xamarin
 7/8/2021 • 6 minutes to read • Edit Online

 Requirements

 Get started

How to get started developing apps for Android 10 using Xamarin.Android.

Android 10 is now available from Google. A number of new features and APIs are being made available in this

release, and many of them are necessary to take advantage of new hardware capabilities in the latest Android

devices.

This article is structured to help you get started in developing Xamarin.Android apps for Android 10. It explains

how to install the necessary updates, configure the SDK, and prepare an emulator or device for testing. It also

provides an outline of the new features in Android 10 and provides example source code that illustrates how to

use some of the key Android 10 features.

Xamarin.Android 10.0 provides support for Android 10. For more information about Xamarin.Android support

for Android 10, see the Xamarin.Android 10.0 release notes.

The following list is required to use Android 10 features in Xamarin-based apps:

Visual StudioVisual Studio - Visual Studio 2019 is recommended. On Windows update to Visual Studio 2019 version

16.3 or later. On macOS, update to Visual Studio 2019 for Mac version 8.3 or later.

Xamarin.AndroidXamarin.Android - Xamarin.Android 10.0 or later must be installed with Visual Studio (Xamarin.Android is

automatically installed as part of the Mobile Development With .NETMobile Development With .NET workload on Windows and installed

as part of the Visual Studio for Mac InstallerVisual Studio for Mac Installer)

Java Developer KitJava Developer Kit - Xamarin.Android 10.0 development requires JDK 8. Microsoft's distribution of the

OpenJDK is automatically installed as part of Visual Studio.

Android SDKAndroid SDK - Android SDK API 29 must be installed via the Android SDK Manager.

To get started developing Android 10 apps with Xamarin.Android, you must download and install the latest tools

and SDK packages before you can create your first Android 10 project:

1. Visual Studio 2019 is recommendedVisual Studio 2019 is recommended. Update to Visual Studio 2019 version 16.3 or later. If you are using

Visual Studio for Mac 2019, update to Visual Studio 2019 for Mac version 8.3 or later.

2. Install Android 10 (API 29)Android 10 (API 29) packages and tools via the SDK Manager.

3. Create a new Xamarin.Android project that targets Android 10.0.

Android 10 (API 29) SDK Platform

Android 10 (API 29) System Image

Android SDK Build-Tools 29.0.0+

Android SDK Platform-Tools 29.0.0+

Android Emulator 29.0.0+

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/android-10.md
https://docs.microsoft.com/en-us/xamarin/android/release-notes/10/10.0

 Update Visual StudioUpdate Visual Studio

 Install the Android SDKInstall the Android SDK

 Create a Xamarin.Android projectCreate a Xamarin.Android project

 Configure a device or emulatorConfigure a device or emulator

4. Configure an emulator or device for testing Android 10 apps.

Each of these steps is explained below:

Visual Studio 2019 is recommended for building Android 10 apps using Xamarin.

If you are using Visual Studio 2019, update to Visual Studio 2019 version 16.3 or later (for instructions, see

Update Visual Studio 2019 to the most recent release). On macOS, update to Visual Studio 2019 for Mac 8.3 or

later (for instructions, see Update Visual Studio 2019 for Mac to the most recent release).

To create a project with Xamarin.Android 10.0, you must first use the Android SDK Manager to install the SDK

platform for Android 10 (API level 29)Android 10 (API level 29) .

1. Start the SDK Manager. In Visual Studio, click Tools > Android > Android SDK Manager.Tools > Android > Android SDK Manager. In Visual

Studio for Mac, click Tools > SDK Manager.Tools > SDK Manager.

2. In the lower right-hand corner, click the gear icon and select Repositor y > Google (Unsuppor ted):Repositor y > Google (Unsuppor ted):

3. Install the Android 10 SDK PlatformAndroid 10 SDK Platform packages, which are listed as Android SDK Platform 29Android SDK Platform 29 in the

PlatformsPlatforms tab (for more information about using the SDK Manager, see Android SDK setup):

Create a new Xamarin.Android project. If you are new to Android development with Xamarin, see Hello, Android

to learn about creating Xamarin.Android projects.

When you create an Android project, you must configure the version settings to target Android 10.0 or later. For

example, to target your project for Android 10, you must configure the target Android API level of your project

to Android 10.0 (API 29)Android 10.0 (API 29) . This includes both your Target Framework VersionTarget Framework Version and Target Android SDKTarget Android SDK

VersionVersion to API 29 or later. For more information about configuring Android API levels, see Understanding

Android API Levels.

If you are using a physical device such as a Pixel, you can download the Android 10 update by going to the

System > System update > Check for update in your phone's settings. If you'd prefer to flash your device, please

see the instructions on flashing a Factory Image or OTA Image to your device.

https://docs.microsoft.com/en-us/visualstudio/install/update-visual-studio
https://docs.microsoft.com/en-us/visualstudio/mac/update
https://developers.google.com/android/images
https://developers.google.com/android/ota

 New features

 Enhance your app with Android 10 features and APIs

If you are using an emulator, create a virtual device for API level 29 and select an x86-based image. For

information about using the Android Device Manager to create and manage virtual devices, see Managing

Virtual Devices with the Android Device Manager. For information about using the Android Emulator for testing

and debugging, see Debugging on the Android Emulator.

Android 10 introduces a variety of new features. Some of these new features are intended to leverage new

hardware capabilities offered by the latest Android devices, while others are designed to further enhance the

Android user experience:

Next, when you're ready, dive into Android 10 and learn about the new features and APIs that you can use. Here

are some of the top features to get started with.

These features are recommend for every app:

Dark Theme:Dark Theme: Ensure a consistent experience for users who enable system-wide dark theme by adding

a Dark Theme or enabling Force Dark.

Suppor t Suppor t gestural navigationgestural navigation in your app by going edge-to-edge and making sure your custom gestures

are complementary to the system navigation gestures.

https://developer.android.com/preview/api-overview.html
https://developer.android.com/preview/features/darktheme
https://developer.android.com/preview/features/darktheme#force_dark
https://developer.android.com/preview/features/gesturalnav

Optimize for foldables:Optimize for foldables: Deliver seamless, edge-to-edge experiences on today’s innovative devices

by optimizing for foldables.

These features are recommended if relevant for your app:

More interactive notifications:More interactive notifications: If your notifications include messages, enable suggested replies and

actions in notifications to engage users and let them take action instantly.

Better biometr ics:Better biometr ics: If you use biometric auth, move to BiometricPrompt, the preferred way to support

fingerprint auth on modern devices.

Enr iched recording:Enriched recording: To support captioning or gameplay recording, enable audio playback capture. It’s a

great way to reach more users and make your app more accessible.

Better codecs:Better codecs: For media apps, try AV1 for video streaming and HDR10+ for high dynamic range video. For

https://developer.android.com/guide/topics/ui/foldables
https://developer.android.com/preview/features#smart-suggestions
https://developer.android.com/reference/androidx/biometric/BiometricPrompt
https://developer.android.com/preview/features/playback-capture
https://en.wikipedia.org/wiki/AV1
https://en.wikipedia.org/wiki/High-dynamic-range_video#HDR10+

 Behavior changes

 Summary

 Related links

speech and music streaming, you can use Opus encoding, and for musicians, a native MIDI API is available.

Better networking APIs:Better networking APIs: If your app manages IoT devices over Wi-Fi, try the new network connection

APIs for functions like configuring, downloading, or printing.

These are just a few of the many new features and APIs in Android 10. To see them all, visit the Android 10 site

for developers.

When the Target Android Version is set to API level 29, there are several platform changes that cann affect your

app's behavior even if you are not implementing the new features described above. The following list is a brief

summary of these changes:

To ensure app stability and compatibility, the Android platform now restricts non-SDK interfaces your app

can use in Android 10.

Shared memory has changed.

Android runtime & AOT correctness.

Permissions for fullscreen intents must request USE_FULL_SCREEN_INTENT .

Support for foldables.

This article introduced Android 10 and explained how to install and configure the latest tools and packages for

Xamarin.Android development with Android 10. It provided an overview of the key features available in Android

10. It included links to API documentation and Android Developer topics to help you get started in creating apps

for Android 10. It also highlighted the most important Android 10 behavior changes that could impact existing

apps.

Android 10

http://opus-codec.org/
https://developer.android.com/preview/features/midi
https://developer.android.com/preview/features#peer2peer
https://developer.android.com/about/versions/10/highlights
https://developer.android.com/about/versions/10/behavior-changes-10#non-sdk-restrictions
https://developer.android.com/about/versions/10/behavior-changes-10#shared-memory
https://developer.android.com/about/versions/10/behavior-changes-10#system-only-oat
https://developer.android.com/about/versions/10/behavior-changes-10#full-screen-intents
https://developer.android.com/about/versions/10/behavior-changes-10#foldables
https://developer.android.com/about/versions/10

Android Pie features
 7/8/2021 • 10 minutes to read • Edit Online

 Requirements

How to get started developing apps for Android 9 Pie using Xamarin.Android.

Android 9 Pie is now available from Google. A number of new features and APIs are being made available in this

release, and many of them are necessary to take advantage of new hardware capabilities in the latest Android

devices.

This article is structured to help you get started in developing Xamarin.Android apps for Android Pie. It explains

how to install the necessary updates, configure the SDK, and prepare an emulator or device for testing. It also

provides an outline of the new features in Android Pie and provides example source code that illustrates how to

use some of the key Android Pie features.

Xamarin.Android 9.0 provides support for Android Pie. For more information about Xamarin.Android support

for Android Pie, see the Android P Developer Preview 3 release notes.

The following list is required to use Android Pie features in Xamarin-based apps:

Visual StudioVisual Studio – Visual Studio 2019 is recommended. If you are using Visual Studio 2017, on Windows

update to Visual Studio 2017 version 15.8 or later. On macOS, update to Visual Studio 2017 for Mac

version 7.6 or later.

Xamarin.AndroidXamarin.Android – Xamarin.Android 9.0.0.17 or later must be installed with Visual Studio

(Xamarin.Android is automatically installed as part of the Mobile development with .NETMobile development with .NET workload).

Java Developer KitJava Developer Kit – Xamarin Android 9.0 development requires JDK 8 (or you can try the preview of

Microsoft's distribution of the OpenJDK). JDK8 is automatically installed as part of the MobileMobile

development with .NETdevelopment with .NET workload.

Android SDKAndroid SDK – Android SDK API 28 or later must be installed via the Android SDK Manager.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/pie.md
https://developer.android.com/about/versions/pie/
https://docs.microsoft.com/en-us/xamarin/android/release-notes/9/9.0/#android-p-dp1
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 Getting started

 Update Visual StudioUpdate Visual Studio

 Install the Android SDKInstall the Android SDK

To get started developing Android Pie apps with Xamarin.Android, you must download and install the latest

tools and SDK packages before you can create your first Android Pie project:

1. Visual Studio 2019 is recommended. If you are using Visual Studio 2017, update to Visual Studio 2017

version 15.8 or later. If you are using Visual Studio for Mac, update to Visual Studio 2017 for Mac version

7.6 or later.

2. Install Android Pie (API 28)Android Pie (API 28) packages and tools via the SDK Manager.

3. Create a new Xamarin.Android project that targets Android 9.0Android 9.0 .

4. Configure an emulator or device for testing Android Pie apps.

Each of these steps is explained in the following sections:

Visual Studio 2019 is recommended for building Android Pie apps using Xamarin.

If you are using Visual Studio 2017, update to Visual Studio 2017 version 15.8 or later (for instructions, see

Update Visual Studio 2017 to the most recent release). On macOS, update to Visual Studio 2017 for Mac 7.6 or

later (for instructions, see Setup and Install Visual Studio for Mac).

To create a project with Xamarin.Android 9.0, you must first use the Android SDK Manager to install the SDK

platform for Android Pie (API level 28)Android Pie (API level 28) or later.

1. Start the SDK Manager. In Visual Studio, click Tools > Android > Android SDK ManagerTools > Android > Android SDK Manager . In Visual

Studio for Mac, click Tools > SDK ManagerTools > SDK Manager .

2. In the lower right-hand corner, click the gear icon and select Repositor y > Google (Unsuppor ted)Repositor y > Google (Unsuppor ted) :

3. Install the Android PieAndroid Pie SDK packages, which are listed as Android SDK Platform 28Android SDK Platform 28 in the PlatformsPlatforms

tab (for more information about using the SDK Manager, see Android SDK Setup):

https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes
https://docs.microsoft.com/en-us/visualstudio/install/update-visual-studio
https://docs.microsoft.com/en-us/visualstudio/mac/installation
file:///T:/c1uy/n1bv/xamarin/android/platform/pie-images/vs/set-repo.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/pie-images/vs/sdk-manager.png#lightbox

 Start a Xamarin.Android projectStart a Xamarin.Android project

 Configure a device or emulatorConfigure a device or emulator

 New features

 Display cutout supportDisplay cutout support

4. If you are using an emulator, create a virtual device that supports API Level 28API Level 28 . For more information

about creating virtual devices, see Managing Virtual Devices with the Android Device Manager.

Create a new Xamarin.Android project. If you are new to Android development with Xamarin, see Hello, Android

to learn about creating Xamarin.Android projects.

When you create an Android project, you must configure the version settings to target Android 9.0 or later. For

example, to target your project for Android Pie, you must configure the target Android API level of your project

to Android 9.0Android 9.0 (API 28). It is recommended that you also set your Target Framework level to API 28 or later. For

more about configuring Android API levels, see Understanding Android API Levels.

If you are using a physical device such as a Nexus or a Pixel, you can update your device to Android Pie by

following the instructions in Factory Images for Nexus and Pixel Devices.

If you are using an emulator, create a virtual device for API level 28 and select an x86-based image. For

information about using the Android Device Manager to create and manage virtual devices, see Managing

Virtual Devices with the Android Device Manager. For information about using the Android emulator for testing

and debugging, see Debugging on the Android Emulator.

Android Pie introduces a variety of new features. Some of these new features are intended to leverage new

hardware capabilities offered by the latest Android devices, while others are designed to further enhance the

Android user experience:

Display Cutout Suppor tDisplay Cutout Suppor t – Provides APIs to find the location and shape of the cutout at the top of the

screen on newer Android devices.

Notification EnhancementsNotification Enhancements – Notification messages can now display images, and a new Person class

is used to simplify conversation participants.

Indoor PositioningIndoor Positioning – Platform support for the WiFi Round-Trip-Time protocol, which makes it possible

for apps to use WiFi devices for navigation in indoor settings.

Multi-Camera Suppor tMulti-Camera Suppor t – Offers the capability to access streams simultaneously from multiple physical

cameras (such as dual-front and dual-back cameras).

The following sections highlight these features and provide brief code examples to help you get started using

them in your app.

Many newer Android devices with edge-to-edge screens have a Display Cutout (or "notch") at the top of the

display for camera and speaker. The following screenshot provides an emulator example of a cutout:

https://developers.google.com/android/images

Window.Attributes.LayoutInDisplayCutoutMode =
 Android.Views.LayoutInDisplayCutoutMode.Never;

To manage how your app window displays its content on devices with a display cutout, Android Pie has added a

new LayoutInDisplayCutoutMode window layout attribute. This attribute can be set to one of the following

values:

LayoutInDisplayCutoutModeNever – The window is never allowed to overlap with the cutout area.

LayoutInDisplayCutoutModeShortEdges – The window is allowed to extend into the cutout area but only

on the short edges of the screen.

LayoutInDisplayCutoutModeDefault – The window is allowed to extend into the cutout area if the cutout

is contained within a system bar.

For example, to prevent the app window from overlapping with the cutout area, set the layout cutout mode to

never:

The following examples provide examples of these cutout modes. The first screenshot on the left is of the app in

non-fullscreen mode. In the center screenshot, the app goes full-screen with LayoutInDisplayCutoutMode set to

LayoutInDisplayCutoutModeShortEdges . Notice that the app's white background extends into the display cutout

area:

file:///T:/c1uy/n1bv/xamarin/android/platform/pie-images/02-example-cutout.png#lightbox
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#layoutInDisplayCutoutMode
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#LAYOUT_IN_DISPLAY_CUTOUT_MODE_NEVER
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#LAYOUT_IN_DISPLAY_CUTOUT_MODE_SHORT_EDGES
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#LAYOUT_IN_DISPLAY_CUTOUT_MODE_DEFAULT
file:///T:/c1uy/n1bv/xamarin/android/platform/pie-images/03-cutout-modes.png#lightbox

 Notifications enhancementsNotifications enhancements

In the final screenshot (above on the right), LayoutInDisplayCutoutMode is set to

LayoutInDisplayCutoutModeShortNever before it goes to full-screen. Notice that the app's white background is not

allowed to extend into the display cutout area.

If you need more detailed information about the cutout area on the device, you can use the new DisplayCutout

class. DisplayCutout represents the area of the display that cannot be used to display content. You can use this

information to retrieve the location and shape of the cutout so that your app does not attempt to display content

in this non-functional area.

For more information about the new cutout features in Android P, see Display cutout support.

Android Pie introduces the following enhancements to improve the messaging experience:

Notification channels (introduced in Android Oreo) now supports blocking of channel groups.

The notification system has three new Do-Not-Disturb categories (prioritizing alarms, system sounds, and

media sources). In addition, there are seven new Do-Not-Disturb modes that can be used to suppress

visual interruptions (such as badges, notification lights, status bar appearances, and launching of full-

screen activities).

A new Person class has been added to represent the sender of a message. Use of this class helps to

optimize the rendering of each notification by identifying people involved in a conversation (including

their avatars and URIs).

Notifications can now display images.

The following example illustrates how to use the new APIs to generate a notification that contains an image. In

the following screenshots, a text notification is posted and is followed by a notification with an embedded

image. When the notifications are expanded (as seen on the right), the text of the first notification is displayed

and the image embedded in the second notification is enlarged:

https://developer.android.com/reference/android/view/DisplayCutout.html
https://developer.android.com/about/versions/pie/android-9.0#cutout
https://developer.android.com/reference/android/app/Person.html
file:///T:/c1uy/n1bv/xamarin/android/platform/pie-images/04-example-notifications.png#lightbox

 Indoor positioningIndoor positioning

The following example illustrates how to include an image in an Android Pie notification, and it demonstrates

usage of the new Person class:

Icon senderIcon = Icon.CreateWithResource(this, Resource.Drawable.sender_icon);
Person fromPerson = new Person.Builder()
 .SetIcon(senderIcon)
 .SetName("Mark Sender")
 .Build();

Uri imageUri = Uri.Parse("android.resource://com.xamarin.pminidemo/drawable/example_image");
Notification.MessagingStyle.Message message = new Notification.MessagingStyle
 .Message("Here's a picture of where I'm currently standing", 0, fromPerson)
 .SetData("image/", imageUri);

Notification.MessagingStyle style = new Notification.MessagingStyle(fromPerson)
 .AddMessage(message);

builder = new Notification.Builder(this, MY_CHANNEL)
 .SetContentTitle("Tour of the Colosseum")
 .SetContentText("I'm standing right here!")
 .SetSmallIcon(Resource.Mipmap.ic_notification)
 .SetStyle(style)
 .SetChannelId(MY_CHANNEL);

const int notificationId = 1000;
notificationManager.Notify(notificationId, builder.Build());

1. Create a Person object that represents the sender. For example, the sender's name and icon are included

in fromPerson :

2. Create a Notification.MessagingStyle.Message that contains the image to send, passing the image to the

new Notification.MessagingStyle.Message.SetData method. For example:

3. Add the message to a Notification.MessagingStyle object. For example:

4. Plug this style into the notification builder. For example:

5. Publish the notification. For example:

For more information about creating notifications, see Local Notifications.

Android Pie provides support for IEEE 802.11mc (also known as WiFi Round-Trip-Time or WiFi RTT), which

makes it possible for apps to detect the distance to one or more Wi-Fi access points. Using this information, it is

possible for your app to take advantage of indoor positioning with an accuracy of one to two meters. On

Android devices that provide hardware support for IEEE 801.11mc, your app can offer navigation features such

as location-based control of smart appliances or turn-by-turn instructions through a store:

https://developer.android.com/reference/android/app/Notification.MessagingStyle.Message.html#setData%2528java.lang.String,%20android.net.Uri

 Multi-Camera supportMulti-Camera support

 Other featuresOther features

The new WifiRttManager class and several helper classes provides the means for measuring distance to Wi-Fi

devices. For more information about the indoor positioning APIs introduced in Android P, see

Android.Net.Wifi.Rtt.

Many newer Android devices have dual-front and/or dual-back cameras that are useful for such features as

stereo vision, enhanced visual effects, and improved zoom capability. Android P introduces a new Multi-Camera

API that makes it possible for your app to use a logical camera (or logical multi-camera) that is backed by two or

more physical cameras. To determine if the device supports a logical multi camera, you can look at the

capabilities of each camera on the device to see if it supports RequestAvailableCapabilitiesLogicalMultiCamera.

Android Pie also includes a new SessionConfiguration class that can be used to help reduce delays during initial

capture and eliminate the need to start and start the camera stream.

For more information about Multi-Camera support in Android P, see Multi-camera support and camera updates.

In addition, Android Pie supports several other new features:

The new AnimatedImageDrawable class, which can be used for drawing and displaying animated images.

A new ImageDecoder class that replaces BitmapFactory . ImageDecoder can be used to decode an

AnimatedImageDrawable .

Support for HDR (High Dynamic Range) video and HEIF (High Efficiency Image File Format) images.

The JobScheduler has been enhanced to more intelligently handle network-related jobs. The new

GetNetwork method of the JobParameters class returns the best network for performing any network

requests for a given job.

file:///T:/c1uy/n1bv/xamarin/android/platform/pie-images/05-wifi-rtt.png#lightbox
https://developer.android.com/reference/android/net/wifi/rtt/WifiRttManager
https://developer.android.com/reference/android/net/wifi/rtt/package-summary
https://developer.android.com/about/versions/pie/android-9.0#camera
https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA
https://developer.android.com/reference/android/hardware/camera2/params/SessionConfiguration.html
https://developer.android.com/about/versions/pie/android-9.0#camera
https://developer.android.com/reference/android/graphics/drawable/AnimatedImageDrawable.html
https://developer.android.com/reference/android/graphics/ImageDecoder.html
https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/app/job/JobParameters#getNetwork%2528%2529
https://developer.android.com/reference/android/app/job/JobParameters

 Behavior changes

 Sample code

 Summary

 Related links

For more information about the latest Android Pie features, see Android 9 features and APIs.

When the Target Android Version is set to API level 28, there are several platform changes that can affect your

app's behavior even if you are not implementing the new features described above. The following list is a brief

summary of these changes:

Apps must now request foreground permission before using foreground services.

If your app has more than one process, it cannot share a single WebView data directory across processes.

Directly accessing another app's data directory by path is no longer allowed.

For more information about behavior changes for apps targeting Android P, see Behavior Changes.

AndroidPMiniDemo is a Xamarin.Android sample app for Android Pie that demonstrates how to set display

cutout modes, how to use the new Person class, and how to send a notification that includes an image.

This article introduced Android Pie and explained how to install and configure the latest tools and packages for

Xamarin.Android development with Android Pie. It provided an overview of the key features available in

Android Pie, with example source code for several of these features. It included links to API documentation and

Android Developer topics to help you get started in creating apps for Android Pie. It also highlighted the most

important Android Pie behavior changes that could impact existing apps.

Android 9 Pie

https://developer.android.com/about/versions/pie/android-9.0
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
https://developer.android.com/about/versions/pie/android-9.0-changes-all#p-apps
https://github.com/xamarin/monodroid-samples/tree/master/android-p/AndroidPMiniDemo
https://developer.android.com/about/versions/pie/

Oreo Features
 7/8/2021 • 14 minutes to read • Edit Online

 Requirements

How to get started using Xamarin.Android to develop apps for the latest version of Android.

Android 8.0 Oreo is the latest version of Android available from Google. Android Oreo offers many new features

of interest to Xamarin.Android developers. These features include notification channels, notification badges,

custom fonts in XML, downloadable fonts, autofill, and picture in picture (PIP). Android Oreo includes new APIs

for these new capabilities, and these APIs are available to Xamarin.Android apps when you use Xamarin.Android

8.0 and later.

This article is structured to help you get started in developing Xamarin.Android apps for Android 8.0 Oreo. It

explains how to install the necessary updates, configure the SDK, and create an emulator (or device) for testing.

It also provides an outline of the new features in Android 8.0 Oreo, with links to sample apps that illustrate how

to use Android Oreo features in Xamarin.Android apps.

The following is required to use Android Oreo features in Xamarin-based apps:

Visual StudioVisual Studio – If you are using Windows, version 15.5 or later of Visual Studio is required. If you are

using a Mac, Visual Studio for Mac version 7.2.0 is required.

Xamarin.AndroidXamarin.Android – Xamarin.Android 8.0 or later must be installed and configured with Visual Studio.

Android SDKAndroid SDK – Android SDK 8.0 (API 26) or later must be installed via the Android SDK Manager.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/oreo.md
https://developer.android.com/index.html
file:///T:/c1uy/n1bv/xamarin/android/platform/oreo-images/01-android-o-logo.png#lightbox

 Getting Started

 Update Visual Studio and Xamarin.AndroidUpdate Visual Studio and Xamarin.Android

 Install the Android SDKInstall the Android SDK

To get started using Android Oreo with Xamarin.Android, you must download and install the latest tools and

SDK packages before you can create an Android Oreo project:

1. Update to the latest version of Visual Studio.

2. Install the Android 8.0 .0 (API 26)Android 8.0 .0 (API 26) or later packages and tools via the SDK Manager.

3. Create a new Xamarin.Android project that targets Android Oreo (API 26).

4. Configure an emulator or device for testing Android Oreo apps.

Each of these steps is explained in the following sections:

To add Android Oreo support to Visual Studio, do the following:

Visual Studio

Visual Studio for Mac

For Visual Studio 2019, use the SDK Manager to install API level 26.0 or later.

If you are using Visual Studio 2017:

1. Update to Visual Studio 2017 version 15.7 or later (see Update Visual Studio 2017).

2. Use the SDK Manager to install API level 26.0 or later.

For more information about Xamarin support for Android Oreo, see the Xamarin.Android 8.0 release notes.

To create a project with Xamarin.Android 8.0, you must first use the Xamarin Android SDK Manager to install the

SDK platform for Android 8.0 - OreoAndroid 8.0 - Oreo or later. You must also install Android SDK Tools 26.0 or later.

Visual Studio

Visual Studio for Mac

1. Start the SDK Manager (in Visual Studio, click Tools > Android > Android SDK ManagerTools > Android > Android SDK Manager).

2. Install the Android 8.0 - OreoAndroid 8.0 - Oreo packages. If you are using the Android SDK emulator, be sure to include

the x86x86 system images that you will need:

https://docs.microsoft.com/en-us/visualstudio/install/update-visual-studio
https://docs.microsoft.com/en-us/xamarin/android/release-notes/8/8.0/

 Start a Xamarin.Android ProjectStart a Xamarin.Android Project

 Configure an Emulator or DeviceConfigure an Emulator or Device

3. Install Android SDK Tools 26.0.2Android SDK Tools 26.0.2 or later, Android SDK Platform-Tools 26.0.0Android SDK Platform-Tools 26.0.0 or later, and AndroidAndroid

SDK Build-Tools 26.0.0SDK Build-Tools 26.0.0 (or later):

Create a new Xamarin.Android project. If you are new to Android development with Xamarin, see Hello, Android

to learn about creating Xamarin.Android projects.

When you create an Android project, you must configure the version settings to target Android 8.0 or later. For

example, to target your project for Android 8.0, you must configure the target Android API level of your project

to Android 8.0 (API 26)Android 8.0 (API 26) . It is recommended that you also set your target framework level to API 26 or later.

For more about configuring Android API level levels, see Understanding Android API Levels.

If you attempt to launch the default Google GUI-based AVD Manager after installing Android SDK Tools 26.0 or

later, you may get the following error dialog, which instructs you to use the command line AVD manager tool

avdmanageravdmanager instead:

Visual Studio

Visual Studio for Mac

file:///T:/c1uy/n1bv/xamarin/android/platform/oreo-images/win/01-android-o-packages.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/oreo-images/win/02-sdk-tools.png#lightbox

 Creating Virtual Devices Using avdmanagerCreating Virtual Devices Using avdmanager

This message is displayed because Google no longer provides a standalone GUI AVD manager that supports API

26.0 and later. For Android 8.0 Oreo, you must use either the Xamarin Android Emulator Manager or the

command-line avdmanager tool to create virtual devices for Android Oreo.

To use the Android Device Manager to create and manage virtual devices, see Managing Virtual Devices with the

Android Device Manager. To create virtual devices without the Android Device Manager, follow the steps in the

next section.

To use avdmanageravdmanager to create a new virtual device, follow these steps:

Visual Studio

Visual Studio for Mac

setx JAVA_HOME "C:\Program Files\Java\jdk1.8.0_131"

setx PATH "%PATH%;C:\Program Files (x86)\Android\android-sdk\tools\bin"

avdmanager create avd -n AVD-Oreo-8.0 -k "system-images;android-26;google_apis;x86"

1. Open a Command Prompt window and set JAVA_HOME to the location of the Java SDK on your computer.

For a typical Xamarin installation, you can use the following command:

2. Add the location of the Android SDK bin folder to your PATH . For a typical Xamarin installation, you can

use the following command:

3. Close the Command Prompt window and open a new Command Prompt window. Create a new virtual

device by using the avdmanager command. For example, to create an AVD named AVD-Oreo-8.0AVD-Oreo-8.0 using

the x86 system image for API level 26, use the following command:

4. When you are prompted with Do you wish to create a custom hardware profile [no]Do you wish to create a custom hardware profile [no] you can enter

nono and accept the default hardware profile. If you say yesyes , avdmanageravdmanager will prompt you with a list of

questions for customizing the hardware profile.

After you avdmanageravdmanager to create your virtual device, it will be included in the device pull-down menu:

https://developer.android.com/studio/command-line/avdmanager.html

 New Features

 Notification ChannelsNotification Channels

 Notification BadgesNotification Badges

For more information about configuring an Android emulator for testing and debugging, see Debugging on the

Android Emulator.

If you are using a physical device such as a Nexus or a Pixel, you can either update your device through

automatic over the air (OTA) updates or download a system image and flash your device directly. For more

information about manually updating your device to Android Oreo, see Factory Images for Nexus and Pixel

Devices.

Android Oreo introduces a variety of new features and capabilities, such as notification channels, notification

badges, custom fonts in XML, downloadable fonts, autofill, and picture-in-picture. The following sections

highlight these features and provide links to help you get started using them in your app.

Notification Channels are app-defined categories for notifications. You can create a notification channel for each

type of notification that you need to send, and you can create notification channels to reflect choices made by

users of your app. The new notification channels feature makes it possible for you to give users fine-grained

control over different kinds of notifications. For example, if you are implementing a messaging app, you can

create separate notification channels for each conversation group that is created by a user.

Notification Channels explains how to create a notification channel and use it for posting local notifications. For

a real-world code example, see the NotificationChannels sample; this sample app manages two channels and

sets additional notification options.

Notification badges are small dots that appear over app icons as shown in this screenshot:

These dots indicate that there are new notifications for one or more notification channels in the app associated

with that app icon – these are notifications that the user has not yet dismissed or acted upon. Users can long-

press on an icon to glance at the notifications associated with a notification badge, dismissing or acting on

file:///T:/c1uy/n1bv/xamarin/android/platform/oreo-images/win/04-android-o-avd.png#lightbox
https://developers.google.com/android/images
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-notificationchannels
file:///T:/c1uy/n1bv/xamarin/android/platform/oreo-images/02-badges.png#lightbox

 Custom Fonts in XMLCustom Fonts in XML

 Downloadable FontsDownloadable Fonts

notifications from the long-press menu that appeaars.

For more information about notification badges, see the Android Developer Notification Badges topic.

Android Oreo introduces Fonts in XML, which makes it possible for you to incorporate custom fonts as

resources. OpenType (.otf.otf) and TrueType (.ttf.ttf) font formats are supported. To add fonts as resources, do the

following:

<TextView
 android:text="Example Text in Pacifico Regular"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:fontFamily="@font/pacifico" />

1. Create a Resources/fontResources/font folder.

2. Copy your font files (example, .ttf.ttf and .otf.otf files) to Resources/fontResources/font.

3. If necessary, rename each font file so that it adheres to the Android file naming conventions (i.e., use only

lowercase a-z, 0-9, and underscores in file names). For example, the font file Pacifico-Regular.ttf could

be renamed to something like pacifico.ttf .

4. Apply the custom font by using the new android:fontFamily attribute in your layout XML. For example,

the following TextView declaration uses the added pacifico.ttfpacifico.ttf font resource:

You can also create a font family XML file that describes multiple fonts as well as style and weight details. For

more information, see the Android Developer Fonts in XML topic.

Beginning with Android Oreo, apps can request fonts from a provider rather than bundling them into the APK.

Fonts are downloaded from the network only as needed. This feature reduces APK size, conserving phone

memory and cellular data usage. You can also use this feature on Android API versions 14 and higher by

installing the Android Support Library 26 package.

When your app needs a font, you create a FontsRequest object (specifying the font to download) and then pass

it to a FontsContract method to download the font. The following steps describe the font download process in

more detail:

1. Instantiate a FontRequest object.

2. Subclass and instantiate FontsContract.FontRequestCallback.

3. Implement the FontRequestCallback.OnTypeFaceRetrieved method, which is used to handle completion of

the font request.

4. Implement the FontRequestCallback.OnTypeFaceRequestFailed method, which is used to inform your app

of any errors that take place during the font request process.

5. Call the FontsContract.RequestFonts method to retrieve the font from the font provider.

When you call the RequestFonts method, it first checks to see if the font is locally cached (from a previous call to

RequestFont). If it is not cached, it calls the font provider, retrieves the font asynchronously, and then passes the

results back to your app by invoking your OnTypeFaceRetrieved method.

The Downloadable Fonts sample demonstrates how to use the Downloadable Fonts feature introduced in

Android Oreo.

https://developer.android.com/guide/topics/ui/notifiers/notifications.html#Badges
https://developer.android.com/guide/topics/ui/look-and-feel/fonts-in-xml.html
https://developer.android.com/reference/android/provider/FontRequest.html
https://developer.android.com/reference/android/provider/FontsContract.FontRequestCallback.html
https://developer.android.com/reference/android/provider/FontsContract.FontRequestCallback.html#onTypefaceRetrieved%2528android.graphics.Typeface%2529
https://developer.android.com/reference/android/provider/FontsContract.FontRequestCallback.html#onTypefaceRequestFailed%2528int%2529
https://developer.android.com/reference/android/provider/FontsContract.html#requestFonts(android.content.Context,%20android.provider.FontRequest,%20android.os.Handler,%20android.os.CancellationSignal,%20android.provider.FontsContract.FontRequestCallback)
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-downloadablefonts

 AutofillAutofill

 Picture in Picture (PIP)Picture in Picture (PIP)

android:supportsPictureInPicture

 Other FeaturesOther Features

 Behavior Changes

 Background Execution LimitsBackground Execution Limits

For more information about downloading fonts, see the Android Developer Downloadable Fonts topic.

The new Autofill framework in Android Oreo makes it easier for users to handle repetitive tasks such as login,

account creation, and credit card transactions. Users spend less time re-typing information (which can lead to

input errors). Before your app can work with the Autofill Framework, an autofill service must be enabled in the

system settings (users can enable or disable autofill).

The AutofillFramework sample demonstrates the use of the Autofill Framework. It includes implementations of

client Activities with views that should be autofilled, and a Service that can provide autofill data to client

Activities.

For more information about the new Autofill feature and how to optimize your app for autofill, see the Android

Developer Autofill Framework topic.

Android Oreo makes it possible for an Activity to launch in picture-in-picture (PIP) mode, overlaying the screen

of another Activity. This feature is intended for video playback.

To specify that your app's Activity can use PIP mode, set the following flag to true in the Android manifest:

To specify how your activity should behave when it is in PIP mode, you use the new PictureInPictureParams

object. PictureInPictureParams represents a set of parameters that you use to initialize and update an Activity in

PIP mode (for example, the Activity's preferred aspect ratio). The following new PIP methods were added to

Activity in Android Oreo:

EnterPictureInPictureMode – puts the Activity in PIP mode. The Activity is placed in the corner of the

screen, and the rest of the screen is filled with the previous Activity that was on the screen.

SetPictureInPictureParams – Updates the Activity's PIP configuration settings (for example, a change in

aspect ratio).

The PictureInPicture sample demonstrates basic usage of the Picture-in-Picture (PiP) mode for handheld devices

introduced in Oreo. The sample plays a video which continues uninterrupted while switching back and forth

between display modes or other activities.

Android Oreo contains many other new features such as the Emoji support library, Location API, background

limits, wide-gamut color for apps, new audio codecs, WebView enhancements, improved keyboard navigation

support, and a new AAudio (pro audio) API for high-performance low-latency audio, For more information

about these features, see the Android Developer Android Oreo Features and APIs topic.

Android Oreo includes a variety of system and API behavior changes that can have an impact on the

functionality of existing apps. These changes are described as follows.

To improve the user experience, Android Oreo imposes limitations on what apps can do while running in the

background. For example, if the user is watching a video or playing a game, an app running in the background

could impair the performance of a video-intensive app running in the foreground. As a result, Android Oreo

places the following restrictions on apps that are not directly interacting with the user :

1. Background Ser vice L imitationsBackground Ser vice L imitations – When an app is running in the background, it has a window of

https://developer.android.com/guide/topics/ui/look-and-feel/downloadable-fonts.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-autofillframework
https://developer.android.com/guide/topics/text/autofill.html
https://developer.android.com/reference/android/app/PictureInPictureParams.html
https://developer.android.com/reference/android/app/Activity.html#enterPictureInPictureMode%2528android.app.PictureInPictureParams%2529
https://developer.android.com/reference/android/app/Activity.html#setPictureInPictureParams%2528android.app.PictureInPictureParams%2529
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-pictureinpicture
https://developer.android.com/about/versions/oreo/android-8.0.html

 Breaking ChangesBreaking Changes

 Sample Code

 Video

 Summary

several minutes in which it is still allowed to create and use services. At the end of that window, Android

stops the app's background service and treats it as being idle.

2. Broadcast L imitationsBroadcast L imitations – Android 7.0 (API 25) placed limitations on broadcasts that an app registers to

receive. Android Oreo makes these limitations more stringent. For example, Android Oreo apps can no

longer register broadcast receivers for implicit broadcasts in their manifests.

For more information about the new background execution limits, see the Android Developer Background

Execution Limits topic.

Apps that target Android Oreo or higher must modify their apps to support the following changes, where

applicable:

Android Oreo deprecates the ability to set the priority of individual notifications. Instead, you set a

recommended importance level when creating a notification channel. The importance level you assign to

a notification channel applies to all notification messages that you post to it.

For apps targeting Android Oreo, PendingIntent.GetService() does not work due to new limits placed on

services started in the background. If you are targeting Android Oreo, you should use

PendingIntent.GetBroadcast instead.

Several Xamarin.Android samples are available to show you how to take advantage of Android Oreo features:

NotificationsChannels demonstrates how to use the new Notification Channels system introduced in

Android Oreo. This sample manages two notifications channels: one with default importance and the

other with high importance.

PictureInPicture demonstrates basic usage of the Picture-in-Picture (PiP) mode for handheld devices

introduced in Oreo. The sample plays a video which continues uninterrupted while switching back and

forth between display modes or other activities.

AutofillFramework demonstrates the use of the Autofill Framework. It includes implementations of client

Activities with views that should be autofilled, and a Service that can provide autofill data to client

Activities.

Downloadable Fonts provides an example of how to use the Downloadable Fonts feature described

earlier.

EmojiCompat demonstrates usage of EmojiCompat support library. You can use this library to prevent

your app from showing missing emoji characters as "tofu" characters.

Location Updates Pending Intent illustrates usage of the Location API to get updates about a device's

location using a PendingIntent .

Location Updates Foreground Service demonstrates how to use the Location API to get updates about a

device's location using a bound and started foreground service.

Android 8.0 Oreo development with C#Android 8.0 Oreo development with C#

https://developer.android.com/about/versions/oreo/background.html
https://docs.microsoft.com/en-us/dotnet/api/android.app.pendingintent.getbroadcast
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-notificationchannels
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-pictureinpicture
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-autofillframework
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-downloadablefonts
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-emojicompat
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-androidplaylocation-locupdpendintent
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-o-androidplaylocation-locupdfgservice
https://www.youtube-nocookie.com/embed/OuvEcaMO-Ho

 Related Links

This article introduced Android Oreo and explained how to install and configure the latest tools and packages

for Xamarin.Android development on Android Oreo. It provided an overview of the key features available in

Android Oreo, with links to example source code for several new features. It included links to API documentation

and Android Developer topics to help you get started in creating apps for Android Oreo. It also highlighted the

most important Android Oreo behavior changes that could impact existing apps.

Android 8.0 Oreo

https://developer.android.com/index.html

Nougat Features
 7/8/2021 • 10 minutes to read • Edit Online

 Overview

How to get started using Xamarin.Android to develop apps for Android Nougat.

This article provides an outline of the features introduced in Android Nougat, explains how to prepare

Xamarin.Android for Android Nougat development, and provides links to sample applications that illustrate how

to use Android Nougat features in Xamarin.Android apps.

Android Nougat is Google's followup to Android 6.0 Marshmallow. Xamarin.Android provides support for

Android 7.x BindingsAndroid 7.x Bindings in Xamarin Android 7.0 and later. Android Nougat adds many new APIs for the Nougat

features described below; these APIs are available to Xamarin.Android apps when you use Xamarin.Android 7.0.

For more information about Android 7.x APIs, see Android 7.1 for Developers. For a list of known

Xamarin.Android 7.0 issues, please see the release notes.

Android Nougat provides many new features of interest to Xamarin.Android developers. These features include:

Multi-window suppor tMulti-window suppor t – This enhancement makes it possible for users to open two apps on the screen

at once.

Notification EnhancementsNotification Enhancements – The redesigned notifications system in Android Nougat includes a Direct

Reply feature that allow users to quickly respond to text messages directly from the notification UI. Also, if

your app creates notifications for received messages, the new bundled notifications feature can bundle

notifications together as a single group when more than one message is received.

Data SaverData Saver – This feature is a new system service that helps reduce cellular data use by apps; it gives

users control over how apps use cellular data.

In addition, Android Nougat brings many other enhancements of interest to app developers such as a new

network security configuration feature, Doze on the Go, key attestation, new Quick Settings APIs, multi-locale

support, ICU4J APIs, WebView enhancements, access to Java 8 language features, scoped directory access, a

custom pointer API, platform VR support, virtual files, and background processing optimizations.

This article explains how to get started building apps with Android Nougat to try out the new features and plan

migration or feature work to target the new Android Nougat platform.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/nougat.md
https://developer.android.com/about/versions/nougat/android-7.0.html
file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/android-n-hero.png#lightbox
https://developer.android.com/preview/api-overview.html
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_7/xamarin.android_7.0/index.md

 Requirements

IMPORTANTIMPORTANT

 Getting Started

 Install Xamarin UpdatesInstall Xamarin Updates

 Install the Android SDKInstall the Android SDK

The following is required to use the new Android Nougat features in Xamarin-based apps:

Visual Studio or Visual Studio for MacVisual Studio or Visual Studio for Mac – If you are using Visual Studio, version 4.2.0.628 or later of

Visual Studio Tools for Xamarin is required. If you are using Visual Studio for Mac, version 6.1.0 or later of

Visual Studio for Mac is required.

Xamarin.AndroidXamarin.Android – Xamarin.Android 7.0 or later must be installed and configured with either Visual

Studio or Visual Studio for Mac.

Android SDKAndroid SDK - Android SDK 7.0 (API 24) or later must be installed via the Android SDK Manager.

Java Developer KitJava Developer Kit – Xamarin Android 7.0 development requires JDK 8 or later if you are developing

for API level 24 or greater (JDK 8 also supports API levels earlier than 24). The 64-bit version of JDK 8 is

required if you are using custom controls or the Forms Previewer.

Xamarin.Android does not support JDK 9.

Note that apps must be rebuilt with Xamarin C6SR4 or later to work reliably with Android Nougat. Because

Android Nougat can link only to NDK-provided native libraries, existing apps using libraries such as

Mono.Data.Sqlite.dllMono.Data.Sqlite.dll may crash when running on Android Nougat if they are not properly rebuilt.

To get started using Android Nougat with Xamarin.Android, you must download and install the latest tools and

SDK packages before you can create an Android Nougat project:

1. Install the latest Xamarin.Android updates from the Xamarin.

2. Install the Android 7.0 (API 24)Android 7.0 (API 24) packages and tools or later.

3. Create a new Xamarin.Android project that targets Android Nougat.

4. Configure an emulator or device for Android Nougat.

Each of these steps is explained in the following sections:

To add Xamarin support for Android Nougat, change the updates channel in Visual Studio or Visual Studio for

Mac to the Stable channel and apply the latest updates. If you also need features that are currently available only

in the Alpha or Beta channel, you can switch to the Alpha or Beta channel (the Alpha and Beta channels also

provide support for Android 7.x). For information about how to change the updates (releases) channel, see

Changing the Updates Channel.

To create a project with Xamarin Android 7.0, you must first use the Android SDK Manager to install SDKSDK

Platform Android N (API 24)Platform Android N (API 24) or later. You must also install the latest Android SDK ToolsAndroid SDK Tools :

1. Start the Android SDK Manager (in Visual Studio for Mac, use Tools > Open Android SDK Manager…Tools > Open Android SDK Manager… ;

in Visual Studio, use Tools > Android > Android SDK ManagerTools > Android > Android SDK Manager).

2. Install Android 7.0 (API 24)Android 7.0 (API 24) or later :

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/change_updates_channel

 Start a Xamarin.Android ProjectStart a Xamarin.Android Project

3. Install the latest Android SDK tools:

You must install Android SDK Tools revision 25.2.2 or later, Android SDK Platform tools 24.0.3 or later, and

Android SDK Build tools 24.0.2 or later.

4. Verify that the Java Development Kit LocationJava Development Kit Location is configured for JDK 1.8:

To view this setting in Visual Studio, click Tools > Options > Xamarin > Android SettingsTools > Options > Xamarin > Android Settings . In Visual

Studio for Mac, click Preferences > Projects > SDK Locations > AndroidPreferences > Projects > SDK Locations > Android.

Create a new Xamarin.Android project. If you are new to Android development with Xamarin, see Hello, Android

to learn about creating Xamarin.Android projects.

When you create an Android project, you must configure the version settings to target Android 7.0 or later. For

example, to target your project for Android 7.0, you must configure the target Android API level of your project

to Android 7.0 (API 24 - Nougat)Android 7.0 (API 24 - Nougat) . It is recommended that you set your target framework level to API 24 or

later. For more about configuring Android API level levels, see Understanding Android API Levels.

file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/preview-packages.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/preview-tools.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/use-jdk-1.8.png#lightbox

NOTENOTE

 Configure an Emulator or DeviceConfigure an Emulator or Device

 New Features

 Multi-Window ModeMulti-Window Mode

Currently you must set the Minimum Android versionMinimum Android version to Android 7.0 (API 24 - Nougat)Android 7.0 (API 24 - Nougat) to deploy your app to

Android Nougat devices or emulators.

If you are using an emulator, start the Android AVD Manager and create a new device using the following

settings:

Device: Nexus 5X, Nexus 6, Nexus 6P, Nexus Player, Nexus 9, or Pixel C.

Target: Android 7.0 - API Level 24

ABI: x86 or x86_64

For example, this virtual device is configured to emulate a Nexus 6:

If you are using a physical device such as a Nexus 5X, 6, or 9, you can either update your device through

automatic over the air (OTA) updates or download a system image and flash your device directly. For more

information about manually updating your device to Android Nougat, see OTA Images for Nexus Devices.

Note that Nexus 5 devices are not supported by Android Nougat.

Android Nougat introduces a variety of new features and capabilities, such as Multi-window Support,

Notifications enhancements, and Data Saver. The following sections highlight these features and provide links to

help you get started using them in your app.

Multi-window mode makes it possible for users to open two apps at once with full multitasking support. These

apps can run side-by-side (landscape) or one-above-the-other (portrait) in split-screen mode. Users can drag a

divider between the apps to resize them, and they can cut and paste content the between apps. When two apps

are presented in multi-window mode, the selected activity continues to run while the unselected activity is

paused but still visible. Multi-window mode does not modify the Android activity lifecycle.

file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/android-n-avd.png#lightbox
https://developers.google.com/android/nexus/ota

if (!IsInMultiWindowMode) {
 multiDisabledMessage.Visibility = ViewStates.Visible;
} else {
 multiDisabledMessage.Visibility = ViewStates.Gone;
}

 Enhanced NotificationsEnhanced Notifications

 Direct ReplyDirect Reply

You can configure how the activities of your Xamarin.Android app support multi-window mode. For example,

you can configure attributes that set the minimum size and the default height and width of your app in multi-

window mode. You can use the new Activity.IsInMultiWindowMode property to determine if your activity is in

multi-window mode. For example:

The MultiWindowPlayground sample app includes C# code that demonstrates how to take advantage of

multiple window user interfaces with your app.

For more information about multi-window mode, see the Multi-Window Support.

Android Nougat introduces a redesigned notification system. It features a new Direct Reply feature that makes it

possible for users to quickly reply to notifications for incoming text messages directly in the notification UI.

Starting with Android 7.0, notification messages can be bundled together as a single group when more than one

message is received. Also, developers can customize notification views, leverage system decorations in

notifications, and take advantage of new notification templates when generating notifications.

When a user receives a notification for incoming message, Android Nougat makes it possible to reply to the

message within the notification (rather than open up the messaging app to send a reply). This inline reply

feature makes it possible for users to quickly respond to an SMS or text message directly within the notification

interface:

file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/multi-window-mode.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-n-multiwindowplayground
https://developer.android.com/guide/topics/ui/multi-window.html

// Build a RemoteInput for receiving text input:
var remoteInput = new Android.Support.V4.App.RemoteInput.Builder (EXTRA_REMOTE_REPLY)
 .SetLabel (GetString (Resource.String.reply))
 .Build ();

// Build a Pending Intent for the reply action to trigger:
PendingIntent replyIntent = PendingIntent.GetBroadcast (ApplicationContext,
 conversation.ConversationId,
 GetMessageReplyIntent (conversation.ConversationId),
 PendingIntentFlags.UpdateCurrent);

// Build an Android 7.0 compatible Remote Input enabled action:
NotificationCompat.Action actionReplyByRemoteInput = new NotificationCompat.Action.Builder (
 Resource.Drawable.notification_icon,
 GetString (Resource.String.reply),
 replyIntent).AddRemoteInput (remoteInput).Build ();

// Create the notification:
NotificationCompat.Builder builder = new NotificationCompat.Builder (ApplicationContext)
 .SetSmallIcon (Resource.Drawable.notification_icon)
 ...
 .AddAction (actionReplyByRemoteInput);

To support this feature in your app, you must add inline reply actions to your app via a RemoteInput object so

that users can reply via text directly from the notification UI. For example, the following code builds a

RemoteInput for receiving text input, builds a pending intent for the reply action, and creates a remote input

enabled action:

This action is added to the notification:

file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/notifications-inline-reply.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.remoteinput

 Bundled NotificationsBundled Notifications

 Custom ViewsCustom Views

 Data SaverData Saver

 App ShortcutsApp Shortcuts

The Messaging Service sample app includes C# code that demonstrates how to extend notifications with a

RemoteInput object. For more information about adding inline reply actions to your app for Android 7.0 or later,

see the Android Replying to Notifications topic.

Android Nougat can group notification messages together (for example, by message topic) and display the

group rather than each separate message. This bundled notifications feature makes it possible for users to

dismiss or archive a group of notifications in one action. The user can slide down to expand the bundle of

notifications to view each notification in detail:

To support bundled notifications, your app can use the Builder.SetGroup method to bundle similar notifications.

For more information about bundled notification groups in Android N, see the Android Bundling Notifications

topic.

Android Nougat makes it possible for you to create custom notification views with system notification headers,

actions, and expandable layouts. For more information about custom notification views in Android Nougat, see

the Android Notification Enhancements topic.

Beginning with Android Nougat, users can enable a new Data Saver setting that blocks background data usage.

This setting also signals your app to use less data in the foreground wherever possible. The

ConnectivityManager has been extended in Android Nougat so that your app can check whether the user has

enabled Data Saver so that your app can make an effort to limit its data usage when Data Saver is enabled.

For more information about the new Data Saver feature in Android Nougat, see the Android Optimizing

Network Data Usage topic.

Android 7.1 introduced an App Shortcuts feature that makes it possible for users to quickly start common or

recommended tasks with your app. To activate the menu of shortcuts, the user long-presses the app icon for a

second or more – the menu appears with a quick vibration. Releasing the press causes the menu to remain:

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-n-messagingservice
https://developer.android.com/guide/topics/ui/notifiers/notifications.html#direct
file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/bundled-notifications.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.notification.builder.setgroup
https://developer.android.com/guide/topics/ui/notifiers/notifications.html#bundle
https://developer.android.com/about/versions/nougat/android-7.0.html#notification_enhancements
https://docs.microsoft.com/en-us/dotnet/api/android.net.connectivitymanager
https://developer.android.com/training/basics/network-ops/data-saver.html

 Sample CodeSample Code

 Summary

 Related Links

This feature is available only API level 25 or higher. For more information about the new App Shortcuts feature

in Android 7.1, see the Android App Shortcuts topic.

Several Xamarin.Android samples are available to show you how to take advantage of Android Nougat features:

MultiWindowPlayground demonstrates the use of the multi-window API available in Android Nougat.

You can switch the sample app into multi-windows mode to see how it affects the app's lifecycle and

behavior.

Messaging Service is a simple service that sends notifications using the NotificationCompatManager . It

also extends the notification with a RemoteInput object to allow Android Nougat devices to reply via text

directly from the notification without having to open an app.

Active Notifications demonstrates how to use the NotificationManager API to tell you how many

notifications your application is currently displaying.

Scoped Directory Access Demonstrates how to use the scoped directory access API to easily access

specific directories. This serves as an alternative to having to define READ_EXTERNAL_STORAGE or

WRITE_EXTERNAL_STORAGE permissions in your manifest.

Direct Boot Illustrates how to store data in a device-encrypted storage which is always available while the

device is booted both before and after any user credentials(PIN/Pattern/Password) are entered.

This article introduced Android Nougat and explained how to install and configure the latest tools and packages

for Xamarin.Android development on Android Nougat. It also provided an overview of the key features available

in Android Nougat, with links to example source code to help you get started in creating apps for Android

Nougat.

Android 7.1 For Developers

Xamarin Android 7.0 Release Notes

file:///T:/c1uy/n1bv/xamarin/android/platform/nougat-images/app-shortcuts.png#lightbox
https://developer.android.com/guide/topics/ui/shortcuts.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-n-multiwindowplayground
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-n-messagingservice
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-n-activenotifications
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-n-scopeddirectoryaccess
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-n-directboot
https://developer.android.com/about/versions/nougat/android-7.1.html
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_7/xamarin.android_7.0/index.md

Marshmallow Features
 7/8/2021 • 11 minutes to read • Edit Online

 Overview

This article helps you get started using in using Xamarin.Android to develop apps for Android 6.0 Marshmallow.

This article provides an outline of the new features in Android 6.0 Marshmallow, explains how to prepare

Xamarin.Android for Android Marshmallow development, and provides links to sample applications that

illustrate how to make use of new Android Marshmallow features in Xamarin.Android apps.

Android 6.0 Marshmallow, is the next major Android release after Android Lollipop. Xamarin.Android supports

Android Marshmallow and includes:

API 23/Android 6.0 BindingsAPI 23/Android 6.0 Bindings – Android 6.0 adds many new APIs for the new features described below;

these APIs are available to Xamarin.Android apps when you target API Level 23. For more information about

Android 6.0 APIs, see Android 6.0 APIs.

Although the Marshmallow release is mainly focused on "polish and quality", it also provides many new features

of interest to Xamarin.Android developers. These features include:

Runtime PermissionsRuntime Permissions – This enhancement makes it possible for users to approve security permissions

on a case-by-case basis at run time.

Authentication ImprovementsAuthentication Improvements – Starting with Android Marshmallow, apps can now use fingerprint

sensors to authenticate users, and a new confirm credential feature minimizes the need for entering

passwords.

App L inkingApp L inking – This feature helps to eliminate the necessity of having the App ChooserApp Chooser pop up by

automatically associating apps with web domains.

Direct ShareDirect Share – You can define direct share targets that make sharing quick and intuitive for users; this

feature allows uers to share content with other apps.

Voice InteractionsVoice Interactions – This new API allows you to build conversational voice features into your app.

4K Display Mode4K Display Mode – In Android Marshmallow, your app can request a 4K display resolution on hardware

that supports it.

New Audio FeaturesNew Audio Features – Starting with Marshmallow, Android now supports the MIDI protocol. It also

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/marshmallow.md
https://developer.android.com/about/versions/marshmallow/index.html
https://developer.android.com/preview/api-overview.html
file:///T:/c1uy/n1bv/xamarin/android/platform/marshmallow-images/android-m-hero.png#lightbox

 Requirements

 Getting Started

 Install Xamarin UpdatesInstall Xamarin Updates

provides new classes to create digital audio capture and playback objects, and it offers new API hooks for

associating audio and input devices.

New Video FeaturesNew Video Features – Marshmallow provides a new class that helps apps render audio and video

streams in sync; this class also provides support for dynamic playback rate.

Android for WorkAndroid for Work – Marshmallow includes enhanced controls for corporate-owned, single-user

devices. It supports silent install and uninstall of apps by the device owner, auto-acceptance of system

updates, improved certificate management, data usage tracking, permissions management, and work

status notifications.

Mater ial Design Suppor t L ibrar yMater ial Design Suppor t L ibrar y – The new Design Support Library provides design components

and patterns that makes it easier for you to build Material Design look and feel into your app.

In addition, many core Android library updates were released with Android M, and these updates provide new

features for both Android M and earlier versions of Android.

In addition, many core Android library updates were released with Android Marshmallow, and these updates

provide new features for both Android Marshmallow and earlier versions of Android. This article explains how

to get started building apps with Android Marshmallow, and it provides an overview of the new feature

highlights in Android 6.0.

The following is required to use the new Android Marshmallow features in Xamarin-based apps:

Xamarin.AndroidXamarin.Android – Xamarin.Android 5.1.7.12 or later must be installed and configured with either

Visual Studio or Xamarin Studio.

Visual Studio for MacVisual Studio for Mac or Visual StudioVisual Studio – If you are using Visual Studio for Mac, version 5.9.7.22 or

later is required. If you are using Visual Studio, version 3.11.1537 or later of the Xamarin tools for Visual

Studio is required.

Android SDKAndroid SDK – Android SDK 6.0 (API 23) or later must be installed via the Android SDK Manager.

Java Developer KitJava Developer Kit – Xamarin.Android requires JDK 1.8 or later if you are developing for API level 24 or

greater (JDK 1.8 also supports API levels earlier than 24, including Marshmallow). The 64-bit version of

JDK 1.8 is required if you are using custom controls or the Forms Previewer.

You can continue to use JDK 1.7 if you are developing specifically for API level 23 or earlier.

To get started using Android Marshmallow with Xamarin.Android, you must download and install the latest tools

and SDK packages before you can create an Android Marshmallow project:

1. Install the latest Xamarin updates from the StableStable channel.

2. Install the Android 6.0 Marshmallow SDK packages and tools.

3. Create a new Xamarin.Android project that targets Android 6.0 Marshmallow (API Level 23).

4. Configure an emulator or device for Android Marshmallow.

Each of these steps is explained in the following sections:

To update Xamarin so that it includes support for Android 6.0 Marshmallow, change the update channel to

StableStable and install all updates. For more information about installing updates from the updates channel, see

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

 Install the Android 6.0 SDKInstall the Android 6.0 SDK

 Start a Xamarin.Android ProjectStart a Xamarin.Android Project

 Configure an Emulator or DeviceConfigure an Emulator or Device

Change the Updates Channel.

To create a Xamarin.Android project for Android Marshmallow, you must first use the Android SDK Manager to

install the Android 6.0 SDK:

Start the Android SDK Manager (in Visual Studio for Mac, use Tools > SDK ManagerTools > SDK Manager ; in Visual Studio,

use Tools > Android > Android SDK ManagerTools > Android > Android SDK Manager) and install the latest Android SDK Tools:

Also, install the latest Android 6.0Android 6.0 SDK packages:

You must install Android SDK Tools revision 24.3.4 or later. For more information about using the Android SDK

Manager to install the Android 6.0 SDK, see SDK Manager.

Create a new Xamarin.Android project. If you are new to Android development with Xamarin, see Hello, Android

to learn about creating Android projects.

When you create an Android project, you must configure the version settings to target Android 6.0

MarshMallow. To target your project for Marshmallow, you must configure your project for API level 23API level 23

(Xamarin.Android v6.0 Suppor t)(Xamarin.Android v6.0 Suppor t) . For more about configuring Android API level levels, see Understanding

Android API Levels.

If you are using an emulator, start the Android AVD Manager and create a new device using the following

settings:

Device: Nexus 5, 6, or 9.

Target: Android 6.0 - API Level 23

ABI: x86

For example, this virtual device is configured to emulate a Nexus 5:

https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/change_updates_channel
file:///T:/c1uy/n1bv/xamarin/android/platform/marshmallow-images/mnc-preview-tools.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/marshmallow-images/mnc-preview-packages.png#lightbox
https://developer.android.com/tools/help/sdk-manager.html
file:///T:/c1uy/n1bv/xamarin/android/platform/marshmallow-images/android-m-avd.png#lightbox

 New Features

 Runtime PermissionsRuntime Permissions

 Authentication EnhancementsAuthentication Enhancements

 Fingerprint AuthenticationFingerprint Authentication

If you are using a physical device such as a Nexus 5, 6, or 9, you can install a preview image of Android

Marshmallow. For more information about updating your device to Android Marshmallow, see Hardware

System Images.

Many of the changes introduced in Android Marshmallow are focused on improving the Android user

experience, increasing performance, and fixing bugs. However, Marshmallow also introduced some extensive

changes to the fundamentals of the Android platform. The following sections highlight these enhancements and

provide links to help you get started in using the new Android Marshmallow features in your app.

The Android Permissions system has been significantly optimized and simplified since Android Lollipop. In

Android Marshmallow, users grant permissions on a case-by-case basis at runtime rather than at install time. To

support this feature on Android Marshmallow and later, you design your app to prompt the user for

permissions at runtime (in the context of where the permissions are needed). This change makes it easier for

users to start using your app immediately because it streamlines the process of installing and upgrading your

app.

See Requesting Runtime Permissions in Android Marshmallow for more details (including code examples) about

implementing Runtime Permissions in Xamarin.Android apps. Xamarin also provides a sample app that

illustrates how runtime permissions work in Android Marshmallow (and later): RuntimePermissions.

This sample app demonstrates the following:

How to check and request permissions at run time.

How to declare permissions for Android M devices.

To use this sample app:

1. Tap the CameraCamera or ContactsContacts buttons to display a permissions request dialog.

2. Grant permission to view Camera or Contacts fragments.

For more information about the new runtime permissions features in Android Marshmallow, see Working with

System Permissions.

Android Marshmallow includes two authentication enhancements that help eliminate the need for passwords:

Fingerprint AuthenticationFingerprint Authentication – Uses a fingerprint scan to authenticate users.

Confirm CredentialConfirm Credential – Authenticates users based on how long the device has been unlocked.

The links and sample apps described next can help you become familiar with these new features.

On devices that support fingerprint scanning hardware, you can use the new FingerPrintManager class to

authenticate a user. For more information about the fingerprint authentication feature in Android Marshmallow,

see Fingerprint Authentication.

Xamarin provides a sample app that illustrates how to use registered fingerprints to authenticate a user in your

app: FingerprintDialog.

To use this sample app:

1. Touch the PurchasePurchase button to open a fingerprint authentication dialog.

2. Scan in your registered fingerprint to authenticate.

https://developer.android.com/preview/download.html#images
https://blog.xamarin.com/requesting-runtime-permissions-in-android-marshmallow/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-runtimepermissions
https://developer.android.com/preview/features/runtime-permissions.html
https://developer.android.com/preview/api-overview.html#fingerprint-authentication
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-fingerprintdialog

 Voice InteractionsVoice Interactions

 Confirm CredentialConfirm Credential

 Chrome Custom TabsChrome Custom Tabs

 Material Design Support LibraryMaterial Design Support Library

Note that this sample app requires a device with a fingerprint reader. This app does not store your fingerprint

(or your password).

The new Voice Interactions feature introduced in Android Marshmallow allows users of your app to use their

voice to confirm actions and select from a list of options. For more information about Voice Interactions, see

Overview of the Voice Interaction API.

See Add a Conversation to your Android App with Voice Interactions for more details (including code examples)

about implementing Voice Interactions in Xamarin.Android apps. A sample app is available that illustrates how

to use the Voice Interaction API in a Xamarin.Android app: Voice Interactions.

Using the new confirm credential feature of Android Marshmallow, you can free users from having to remember

and enter app-specific passwords by authenticating them based on how long their device has been unlocked. To

do this, you use the new SetUserAuthenticationValidityDurationSeconds method of the KeyGenerator . Use the

KeyGuardManager 's CreateConfirmDeviceCredentialIntent method to re-authenticate the user from within your

app. For more information about this new feature in Android Marshmallow, see Confirm Credential.

Xamarin provides a sample app that illustrates how to use device credentials (such as PIN, pattern, or password)

in your app: ConfirmCredential

To use this sample app:

1. Setup a secure lock screen on your device (Secure > Security > ScreenlockSecure > Security > Screenlock).

2. Tap the PurchasePurchase button and confirm the secure lock screen credentials.

App developers face a choice when a user taps a URL: the app can either launch a browser or use an in-app

browser based on a WebView . Both options present challenges – launching the browser is a heavy context switch

that isn't customizable, while WebView s do not share state with the browser. Also, use of WebView s can add extra

maintenance overhead.

Chrome Custom Tabs makes it possible for you to easily and elegantly display websites with the power of

Chrome without having your users leave your app. This feature gives your app more control over the user's web

experience; it make transitions between native and web content more seamless without having to resort to a

WebView . Your app can also affect how Chrome looks and feels by customizing the following:

Toolbar color

Enter and exit animations

Custom actions in the Chrome toolbar and overflow menu

Chrome pre-start and content pre-fetch (for faster loading)

To take advantage of this feature in your Xamarin.Android app, download and install the Android Support

Custom Tabs Library. For more information about this feature, see Chrome Custom Tabs.

Android Lollipop introduced Material Design as a new design language to refresh the Android experience (see

Material Theme for information about using material design in Xamarin.Android apps). With Android

Marshmallow, Google introduced the Android Design Support Library to make it easier for app developers to

adopt material design look and feel. This library includes the following components:

CoordinatorLayoutCoordinatorLayout – The new CoordinatorLayout widget is similar to but more powerful than a

FrameLayout . You can use CoordinatorLayout as a container for child views or as a top-level layout, and it

provides a layout_anchor attribute that can be used to anchor views relative to other views.

https://developers.google.com/voice-actions/interaction/
https://blog.xamarin.com/add-a-conversation-to-your-android-app-with-voice-interactions/
https://github.com/jamesmontemagno/MarshmallowSamples/tree/master/VoiceInteractions
https://developer.android.com/preview/api-overview.html#confirm-credential
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-confirmcredential
https://www.nuget.org/packages/Xamarin.Android.Support.CustomTabs/
https://developer.chrome.com/multidevice/android/customtabs
https://www.google.com/design/spec/material-design/introduction.html

 Additional Library UpdatesAdditional Library Updates

 Summary

 Related Links

Collapsing ToolbarsCollapsing Toolbars – The new CollapsingToolbarLayout is a collapsing app bar that is a wrapper for

Toolbar . (Note that the app bar is what was formerly referred to as the action bar.)

Floating Action ButtonFloating Action Button – A round button that denotes the primary action on your app's interface.

Floating Labels for Editing TextFloating Labels for Editing Text – Uses a new TextInputLayout widget (which wraps EditText) to

show a floating label when a hint is hidden when a user inputs text.

Navigation ViewNavigation View – The new NavigationView widget helps you use the navigation drawer in a way that

is easier for users to navigate.

SnackbarSnackbar – The new SnackBar widget is a lightweight feedback mechanism (similar to a toast) that

displays a brief message at the bottom of the screen, appearing above all other elements on the screen.

Mater ial TabsMater ial Tabs – The new TabLayout widget provides a horizontal layout for displaying tabs as way to

implement top-level navigation in your app.

To take advantage of the Design Support Library in your Xamarin.Android app, download and install the

Xamarin Xamarin Support Library Design NuGet package.

See Beautiful Material Design with the Android Support Design Library for more details (including code

examples) about using the Material Design Support Library in Xamarin.Android apps. Xamarin provides a

sample app that demos the new Android Design library on Xamarin.Android – Cheesesquare. This sample

demonstrates the following features of the Design library:

Collapsing toolbar

Floating action button

View anchoring

NavigationView

Snackbar

For more information about the Design library, see Android Design Support Library in the Android Developer's

blog.

In addition to Android Marshmallow, Google has announced related updates to several core Android libraries.

Xamarin provides Xamarin.Android support for these updates through several preview-release NuGet packages:

Google Play Services – The latest version of Google Play Services includes the new App Invites feature,

which makes it possible for users to share their app with friends. For more information about this feature,

see Expand Your App's Reach with Google's App Invites.

Android Support Libraries – These NuGets offer features that are only available for library APIs while

providing backward-compatible versions of the Android framework APIs.

Android Wearable Library – this NuGet includes Google Play Services bindings. The latest version of the

wearable library brings new features (including easier navigation for custom apps) to the Android Wear

platform.

This article introduced Android Marshmallow and explained how to install and configure the latest tools and

packages for Xamarin.Android development on Marshmallow. It also provided an overview of the most exciting

new Android Marshmallow features for Xamarin.Android development.

https://developer.android.com/tools/support-library/features.html#design
https://www.nuget.org/packages/Xamarin.Android.Support.Design/
https://blog.xamarin.com/add-beautiful-material-design-with-the-android-support-design-library/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-cheesesquare
https://android-developers.googleblog.com/2015/05/android-design-support-library.html
https://www.nuget.org/packages?q=Xamarin+Google+Play+Services
https://blog.xamarin.com/expand-your-apps-reach-with-googles-app-invites/
https://www.nuget.org/packages?q=xamarin+support+library
https://www.nuget.org/packages/Xamarin.Android.Wear

Android 6.0 Marshmallow

Get the Android SDK

Feature Overview

Release Notes

RuntimePermissions (sample)

ConfirmCredential (sample)

FingerprintDialog (sample)

https://developer.android.com/about/versions/marshmallow/index.html
https://developer.android.com/sdk/index.html#Other
https://developer.android.com/preview/api-overview.html
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_5/xamarin.android_5.1.99/index.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-runtimepermissions
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-confirmcredential
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android-m-fingerprintdialog

Lollipop Features
 7/8/2021 • 21 minutes to read • Edit Online

 Lollipop Overview

 Requirements

This article provides a high level overview of the new features introduced in Android 5.0 (Lollipop). These

features include a new user interface style called Material Theme, as well as new supporting features such as

animations, view shadows, and drawable tinting. Android 5.0 also includes enhanced notifications, two new UI

widgets, a new job scheduler, and a handful of new APIs to improve storage, networking, connectivity, and

multimedia capabilities.

Android 5.0 (Lollipop) introduces a new design language, Material Design, and with it a supporting cast of new

features to make apps easier and more intuitive to use. With Material Design, Android 5.0 not only gives

Android phones a facelift; it also provides a new set of design rules for Android-based tablets, desktop

computers, watches, and smart TVs. These design rules emphasize simplicity and minimalism while making use

of familiar tactile attributes (such as realistic surface and edge cues) to help users quickly and intuitively

understand the interface.

Material Theme is the embodiment of these UI design principles in Android. This article begins by covering

Material Theme's supporting features:

AnimationsAnimations – Touch feedback animations, activity transition animations, view state transition

animations, and a reveal effect.

View shadows and elevationView shadows and elevation – Views now have an elevation property; views with higher elevation

values cast larger shadows on the background.

Color featuresColor features – Drawable tinting makes it possible for you to reuse image assets by changing their

color, and prominent color extraction helps you dynamically theme your app based on colors in an image.

Many Material Theme features are already built into the Android 5.0 UI experience, while others must be

explicitly added to apps. For example, some standard views (such as buttons) already include touch feedback

animations, while apps must enable most view shadows.

In addition to the UI improvements brought about through Material Theme, Android 5.0 also includes several

other new features that are covered in this article:

Enhanced notificationsEnhanced notifications – Notifications in Android 5.0 have been significantly updated with a new look,

support for lockscreen notifications, and a new Heads-up notification presentation format.

New UI widgetsNew UI widgets – The new RecyclerView widget makes it easier for apps to convey large data sets and

complex information, and the new CardView widget provides a simplified card-like presentation format

for displaying text and images.

New APIsNew APIs – Android 5.0 adds new APIs for multiple network support, improved Bluetooth connectivity,

easier storage management, and more flexible control of multimedia players and camera devices. A new

job scheduling feature is available to run tasks asynchronously at scheduled times. This feature helps to

improve battery life by, for example, scheduling tasks to take place when the device is plugged in and

charging.

The following is required to use the new Android 5.0 features in Xamarin-based apps:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/lollipop.md

 Setting Up an Android 5.0 Project

Xamarin.AndroidXamarin.Android – Xamarin.Android 4.20 or later must be installed and configured with either Visual

Studio or Visual Studio for Mac.

Android SDKAndroid SDK – Android 5.0 (API 21) or later must be installed via the Android SDK Manager.

Java Developer KitJava Developer Kit – Xamarin.Android requires JDK 1.8 or later if you are developing for API level 24 or

greater (JDK 1.8 also supports API levels earlier than 24, including Lollipop). The 64-bit version of JDK 1.8

is required if you are using custom controls or the Forms Previewer.

You can continue to use JDK 1.7 if you are developing specifically for API level 23 or earlier.

To create an Android 5.0 project, you must install the latest tools and SDK packages. Use the following steps to

set up a Xamarin.Android project that targets Android 5.0:

1. Install Xamarin.Android tools and activate your Xamarin license. See Setup and Installation for more

information about installing Xamarin.Android.

2. If you are using Visual Studio for Mac, install the latest Android 5.0 updates.

3. Start the Android SDK Manager (in Visual Studio for Mac, use Tools > Open Android SDK Manager…Tools > Open Android SDK Manager…)

and install Android SDK Tools 23.0.5 or later :

Also, install the latest Android 5.0 SDK packages (API 21 or later):

For more information about using the Android SDK Manager, see SDK Manager.

4. Create a new Xamarin.Android project. If you are new to Android development with Xamarin, see Hello,

Android to learn about creating Android projects. When you create an Android project, be sure to

configure the version settings for Android 5.0. In Visual Studio for Mac, navigate to Project Options >Project Options >

Build > GeneralBuild > General and set Target frameworkTarget framework to Android 5.0 (Lollipop)Android 5.0 (Lollipop) or later :

Under Project Options > Build > Android ApplicationProject Options > Build > Android Application, set minimum and target Android version to

Automatic - use target framework versionAutomatic - use target framework version:

5. Configure an emulator or an Android device to test your app. If you are using an emulator, see Android

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/android-l-tools.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/android-l-sdk-pkgs.png#lightbox
https://developer.android.com/tools/help/sdk-manager.html

 Important Changes

 Android RuntimeAndroid Runtime

 Notification ChangesNotification Changes

Emulator Setup to learn how to configure an Android emulator for use with Xamarin Studio or Visual

Studio. If you are using an Android device, see Setting Up the Preview SDK to learn how to update your

device for Android 5.0. To configure your Android device for running and debugging Xamarin.Android

applications, see Set Up Device for Development.

Note: If you are updating an existing Android project that was targeting the Android L Preview, you must update

the Target FrameworkTarget Framework and Android versionAndroid version to the values described above.

Previously published Android apps could be affected by changes in Android 5.0. In particular, Android 5.0 uses a

new runtime and a significantly changed notification format.

Android 5.0 uses the new Android Runtime (ART) as the default runtime instead of Dalvik. ART implements

several major new features:

Ahead-of-time (AOT) compilationAhead-of-time (AOT) compilation – AOT can improve app performance by compiling app code before

the app is first launched. When an app is installed, ART generates a compiled app executable for the

target device.

Improved garbage collection (GC)Improved garbage collection (GC) – GC improvements in ART can also improve app performance.

Garbage collection now uses one GC pause instead of two, and concurrent GC operations complete in a

more timely fashion.

Improved app debuggingImproved app debugging – ART provides more diagnostic detail to help in analyzing exceptions and

crash reports.

Existing apps should work without change under ART – except for apps that exploit techniques unique to the

previous Dalvik runtime, which may not work under ART. For more information about these changes, see

Verifying App Behavior on the Android Runtime (ART).

Notifications have changed significantly in Android 5.0:

Sounds and vibration are handled differentlySounds and vibration are handled differently – Notification sounds and vibrations are now handled

by Notification.Builder instead of Ringtone , MediaPlayer , and Vibrator .

New color schemeNew color scheme – In accordance with Material Theme, notifications are rendered with dark text over

white or very light backgrounds. Also, alpha channels in notification icons may be modified by Android to

coordinate with system color schemes.

Lockscreen notificationsLockscreen notifications – Notifications can now appear on the device lockscreen.

Heads-upHeads-up – High-priority notifications now appear in a small floating window (Heads-up notification)

when the device is unlocked and the screen is turned on.

In most cases, porting existing app notification functionality to Android 5.0 requires the following steps:

1. Convert your code to use Notification.Builder (or NotificationsCompat.Builder) for creating

notifications.

2. Verify that your existing notification assets are viewable in the new Material Theme color scheme.

3. Decide what visibility your notifications should have when they are presented on the lockscreen. If a

notification is not public, what content should show up on the lockscreen?

4. Set the category of your notifications so they are handled correctly in the new Android 5.0 Do not disturb

https://developer.android.com/preview/setup-sdk.html
https://developer.android.com/guide/practices/verifying-apps-art.html

 Material Theme

mode.

If your notifications present transport controls, display media playback status, use RemoteControlClient , or call

ActivityManager.GetRecentTasks , see Important Behavior Changes for more information about updating your

notifications for Android 5.0.

For information about creating notifications in Android, see Local Notifications.

The new Android 5.0 Material Theme brings sweeping changes to the look and feel of the Android UI. Visual

elements now use tactile surfaces that take on the bold graphics, typography, and bright colors of print-based

design. Examples of Material Theme are depicted in the following screenshots:

Android 5.0 greets you with the home screen shown on the left. The center screenshot is the first screen of the

app list, and the screenshot on the right is the SettingsSettings screen. Google's Material Design specification explains

the underlying design rules behind the new Material Theme concept.

Material Theme includes three built-in flavors that you can use in your app: the Theme.Material dark theme (the

default), the Theme.Material.Light theme, and the Theme.Material.Light.DarkActionBar theme:

https://developer.android.com/preview/api-overview.html#Behaviors
file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/android-5-gallery-labeled.png#lightbox
https://material.io/guidelines/material-design/introduction.html

 Animations

 Touch Feedback AnimationsTouch Feedback Animations

 Activity Transition AnimationsActivity Transition Animations

For more about using Material Theme features in Xamarin.Android apps, see Material Theme.

Android 5.0 provides touch feedback animations, activity transition animations, and view state transition

animations to make app interfaces more intuitive to use. Also, Android 5.0 apps can use reveal effect animations

to hide or reveal views. You can use curved motion settings to configure how quickly or slowly animations are

rendered.

Touch feedback animations provide users with visual feedback when a view has been touched. For example,

buttons now display a ripple effect when they are touched – this is the default touch feedback animation in

Android 5.0. Ripple animation is implemented by the new RippleDrawable class. The ripple effect can be

configured to end at the bounds of the view or extend beyond the bounds of the view. For example, the

following sequence of screenshots illustrates the ripple effect in a button during touch animation:

Initial touch contact with the button occurs in the first image on the left, while the remaining sequence (from left

to right) illustrates how the ripple effect spreads out to the edge of the button. When the ripple animation ends,

the view returns to its original appearance. The default ripple animation takes place in a fraction of a second, but

the length of the animation can be customized for longer or shorter lengths of time.

For more on touch feedback animations in Android 5.0, see Customize Touch Feedback.

Activity transition animations give users a sense of visual continuity when one activity transitions to another.

Apps can specify three types of transition animations:

Enter transitionEnter transition – For when an activity enters the scene.

Exit transitionExit transition – For when an activity exits the scene.

Shared element transitionShared element transition – For when a view that is common to two activities changes as the first

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/three-material-themes.png#lightbox
https://developer.android.com/training/material/animations.html#Touch

 Enter Transition Animation TypesEnter Transition Animation Types

 Exit Transition Animation TypesExit Transition Animation Types

 Shared Element Transition Animation TypesShared Element Transition Animation Types

 View State Transition AnimationsView State Transition Animations

 Reveal EffectReveal Effect

activity transitions to the next.

For example, the following sequence of screenshots illustrates a shared element transition:

A shared element (a photo of a caterpillar) is one of several views in the first activity; it enlarges to become the

only view in the second activity as the first activity transitions to the second.

For enter transitions, Android 5.0 provides three types of animations:

Explode animationExplode animation – Enlarges a view from the center of the scene.

S lide animationSlide animation – Moves a view in from one of the edges of a scene.

Fade animationFade animation – Fades a view into the scene.

For exit transitions, Android 5.0 provides three types of animations:

Explode animationExplode animation – Shrinks a view to the center of the scene.

S lide animationSlide animation – Moves a view out to one of the edges of a scene.

Fade animationFade animation – Fades a view out of the scene.

Shared element transitions support multiple types of animations, such as:

Changing the layout or clip bounds of a view.

Changing the scale and rotation of a view.

Changing the size and scale type for a view.

For more about activity transition animations in Android 5.0, see Customize Activity Transitions.

Android 5.0 makes it possible for animations to run when the state of a view changes. You can animate view

state transitions by using one of the following techniques:

Create drawables that animate state changes associated with a particular view. The new

AnimatedStateListDrawable class lets you create drawables that display animations between view state

changes.

Define animation functionality that runs when the state of a view changes. The new StateListAnimator

class lets you define an animator that runs when the state of a view changes.

For more about view state transition animations in Android 5.0, see Animate View State Changes.

The reveal effect is a clipping circle that changes radius to reveal or hide a view. You can control this effect by

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/activity-transition.png#lightbox
https://developer.android.com/training/material/animations.html#Transitions
https://developer.android.com/training/material/animations.html#ViewState

 Curved MotionCurved Motion

 View Shadows & Elevation

setting the initial and final radius of the clipping circle. The following sequence of screenshots illustrates a reveal

effect animation from the center of the screen:

The next sequence illustrates a reveal effect animation that takes place from the bottom left corner of the screen:

Reveal animations can be reversed; that is, the clipping circle can shrink to hide the view rather than enlarge to

reveal the view.

For more information on the Android 5.0 reveal effect in, see Use the Reveal Effect.

In addition to these animation features, Android 5.0 also provides new APIs that enable you to specify the time

and motion curves of animations. Android 5.0 uses these curves to interpolate temporal and spatial movement

during animations. Three curves are defined in Android 5.0:

Fast_out_linear_inFast_out_linear_in – Accelerates quickly and continues to accelerate until the end of the animation.

Fast_out_slow_inFast_out_slow_in – Accelerates quickly and slowly decelerates towards the end of the animation.

L inear_out_slow_inLinear_out_slow_in – Begins with a peak velocity and slowly decelerates to the end of the animation.

You can use the new PathInterpolator class to specify how motion interpolation takes place. PathInterpolator

is an interpolator that traverses animation paths according to specified control points and motion curves. For

more information about how to specify curved motion settings in Android 5.0, see Use Curved Motion.

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/reveal-center.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/reveal-left.png#lightbox
https://developer.android.com/training/material/animations.html#Reveal
https://developer.android.com/training/material/animations.html#CurvedMotion

 Color Features

 Drawable TintingDrawable Tinting

In Android 5.0, you can specify the elevation of a view by setting a new Z property. A greater Z value causes

the view to cast a larger shadow on the background, making the view appear to float higher above the

background. You can set the initial elevation of a view by configuring its elevation attribute in the layout.

The following example illustrates the shadows cast by an empty TextView control when its elevation attribute is

set to 2dp, 4dp, and 6dp, respectively:

View shadow settings can be static (as shown above) or they can be used in animations to make a view appear

to temporarily rise above the view's background. You can use the ViewPropertyAnimator class to animate the

elevation of a view. The elevation of a view is the sum of its layout elevation setting plus a translationZ

property that you can set through a ViewPropertyAnimator method call.

For more about view shadows in Android 5.0, see Defining Shadows and Clipping Views.

Android 5.0 provides two new features for managing color in apps:

Drawable tinting lets you alter the colors of image assets by changing a layout attribute.

Prominent color extraction makes it possible for you to dynamically customize your app's color theme to

coordinate with the color palette of a displayed image.

Android 5.0 layouts recognize a new tint attribute that you can use to set the color of drawables without

having to create multiple versions of these assets to display different colors. To use this feature, you define a

bitmap as an alpha mask and use the tint attribute to define the color of the asset. This makes it possible for

you to create assets once and color them in your layout to match your theme.

In the following example, a single image asset – a white logo with a transparent background – is used to create

tint variations:

This logo is displayed above a blue circular background as shown in the following examples. The image on the

left is how the logo appears without a tint setting. In the center image, the logo's tint attribute is set to a

dark gray. In the image on the right, tint is set to a light gray:

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/view-shadows.png#lightbox
https://developer.android.com/training/material/shadows-clipping.html

 Prominent Color ExtractionProminent Color Extraction

 New UI Widgets

For more about drawable tinting in Android 5.0, see Drawable Tinting.

The new Android 5.0 Palette class lets you extract colors from an image so that you can dynamically apply

them to a custom color palette. The Palette class extracts six colors from an image and labels these colors

according to their relative levels of color saturation and brightness:

Vibrant

Vibrant dark

Vibrant light

Muted

Muted dark

Muted light

For example, in the following screenshots, a photo viewing app extracts the prominent colors from the image on

display and uses these colors to adapt the color scheme of the app to match the image:

In the above screenshots, the action bar is set to the extracted "vibrant light" color and the background is set to

the extracted "vibrant dark" color. In each example above, a row of small color squares is included to illustrate

the palette colors that were extracted from the image.

For more about color extraction in Android 5.0, see Extracting Prominent Colors from an Image.

Android 5.0 introduces two new UI widgets:

RecyclerView – A view group that displays a list of scrollable items.

CardView – A basic layout with rounded corners.

Both widgets include baked-in support for Material Theme features; for example, RecyclerView uses animations

for adding and removing views, and CardView uses view shadows to make each card appear to float above the

https://developer.android.com/training/material/drawables.html#DrawableTint
file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/prominent-color-extraction.png#lightbox
https://developer.android.com/training/material/drawables.html#ColorExtract

 RecyclerViewRecyclerView

background. Examples of these new widgets are shown in the following screenshots:

The screenshot on the left is an example of RecyclerView as used in an email app, and the screenshot on the

right is an example of CardView as used in a travel reservation app.

RecyclerView is similar to ListView, but it is better suited for large sets of views or lists with elements that

change dynamically. Like ListView, you specify an adapter to access the underlying data set. However, unlike

ListView, you use a layout manager to position items within RecyclerView . The layout manager also takes care

of view recycling; it manages the reuse of item views that are no longer visible to the user.

When you use a RecyclerView widget, you must specify a LayoutManager and an adapter. As shown in this

figure, LayoutManager is the intermediary between the adapter and the RecyclerView :

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/recyclerview-cardview.png#lightbox

The following screenshots illustrate a RecyclerView that contains 100 items (each item consists of an ImageView

and a TextView):

RecyclerView handles this large data set with ease – scrolling from the beginning of the list to end of the list in

this sample app takes only a few seconds. RecyclerView also supports animations; in fact, animations for adding

and removing items are enabled by default. When an item is added to a RecyclerView , it fades in as shown in

this sequence of screenshots:

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/recyclerview-scroll.png#lightbox

 CardViewCardView

 Enhanced Notifications

For more about RecyclerView , see RecyclerView.

CardView is a simple view that simulates a floating card with rounded corners. Because CardView has built-in

view shadows, it provides an easy way for you to add visual depth to your app. The following screenshots show

three text-oriented examples of CardView :

Each of the cards in the above example contains a TextView ; the background color is set via the

cardBackgroundColor attribute.

For more about CardView , see CardView.

The notification system in Android 5.0 has been significantly updated with a new visual format and new

features. Notifications have a new look in Android 5.0. For example, notifications in Android 5.0 now use dark

text over a light background:

When a large icon is displayed in a notification (as shown in the above example), Android 5.0 presents the small

icon as a badge over the large icon.

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/recyclerview-animation.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/recyclerview-cardview.png#lightbox

In Android 5.0, notifications can also appear on the device lockscreen. For example, here is an example

screenshot of a lockscreen with a single notification:

Users can double-tap a notification on the lockscreen to unlock the device and jump to the app that originated

that notification, or swipe to dismiss the notification. Notifications have a new visibility setting that determines

how much content can be displayed on the lockscreen. Users can choose whether to allow sensitive content to

be shown in lockscreen notifications.

Android 5.0 introduces a new high-priority notification presentation format called Heads-up. Heads-up

notifications slide down from the top of the screen for a few seconds and then retreat back to the notification

shade at the top of the screen. Heads-up notifications make it possible for the system UI to put important

information in front of the user without disrupting the currently running activity. The following example

illustrates a simple Heads-up notification that displays on top of an app:

Heads-up notifications are typically used for the following events:

file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/lockscreen-notification.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/lollipop-images/heads-up-notification.png#lightbox

 New APIs

 CameraCamera

 Audio PlaybackAudio Playback

 Media Playback ControlMedia Playback Control

A new next message

An incoming phone call

Low battery indication

An alarm

Android 5.0 displays a notification in Heads-up format only when it has a high or max priority setting.

In Android 5.0, you can provide notification metadata to help Android sort and display notifications more

intelligently. Android 5.0 organizes notifications according to priority, visibility, and category. Notification

categories are used to filter which notifications can be presented when the device is in Do not disturb mode.

For detailed information about creating and launching notifications with the latest Android 5.0 features, see

Local Notifications.

In addition to the new look-and-feel features described above, Android 5.0 adds new APIs that extend the

capabilities of existing multimedia, storage, and wireless/connectivity functionality. Also, Android 5.0 includes

new APIs that provide support for a new job scheduler feature.

Android 5.0 provides several new APIs for enhanced camera capabilities. The new Android.Hardware.Camera2

namespace includes functionality for accessing individual camera devices connected to an Android device. Also,

Android.Hardware.Camera2 models each camera device as a pipeline: it accepts a capture request, captures the

image, and then outputs the result. This approach makes it possible for apps to queue multiple capture requests

to a camera device.

The following APIs make these new features possible:

CameraManager.GetCameraIdList – Helps you to programmatically access camera devices; you use

CameraManager.OpenCamera to connect to a specific camera device.

CameraCaptureSession – Captures or streams images from the camera device. You implement a

CameraCaptureSession.CaptureListener interface to handle new image capture events.

CaptureRequest – Defines capture parameters.

CaptureResult – Provides the results of an image capture operation.

For more about the new camera APIs in Android 5.0, see Media.

Android 5.0 updates the AudioTrack class for better audio playback:

ENCODING_PCM_FLOAT – Configures AudioTrack to accept audio data in floating-point format for better

dynamic range, greater headroom, and higher quality (thanks to increased precision). Also, floating-point

format helps to avoid audio clipping.

ByteBuffer – You can now supply audio data to AudioTrack as a byte array.

WRITE_NON_BLOCKING – This option simplifies buffering and multithreading for some apps.

For more about AudioTrack improvements in Android 5.0, see Media.

Android 5.0 introduces the new Android.Media.MediaController class, which replaces RemoteControlClient .

https://developer.android.com/about/versions/android-5.0.html#Media
https://developer.android.com/about/versions/android-5.0.html#Media

 StorageStorage

 Wireless & ConnectivityWireless & Connectivity

 Job SchedulingJob Scheduling

 Summary

Android.Media.MediaController provides simplified transport control APIs and offers thread-safe control of

playback outside of the UI context. The following new APIs handle transport control:

Android.Media.Session.MediaSession – A media control session that handles multiple controllers. You call

MediaSession.GetSessionToken to request a token that your app uses to interact with the session.

MediaController.TransportControls – Handles transport commands such as PlayPlay , StopStop, and SkipSkip.

Also, you can use the new Android.App.Notification.MediaStyle class to associate a media session with rich

notification content (such as extracting and showing album art).

For more about the new media playback control features in Android 5.0, see Media.

Android 5.0 updates the Storage Access Framework to make it easier for applications to work with directories

and documents:

To select a directory subtree, you can build and send an Android.Intent.Action.OPEN_DOCUMENT_TREE intent.

This intent causes the system to display all provider instances that support subtree selection; the user

then browses and selects a directory.

To create and manage new documents or directories anywhere under a subtree, you use the new

CreateDocument , RenameDocument , and DeleteDocument methods of DocumentsContract .

To get paths to media directories on all shared storage devices, you call the new

Android.Content.Context.GetExternalMediaDirs method.

For more about new storage APIs in Android 5.0, see Storage.

Android 5.0 adds the following API enhancements for wireless and connectivity:

New multi-network APIs that make it possible for apps to find and select networks with specific

capabilities before making a connection.

Bluetooth broadcasting functionality that enables an Android 5.0 device to act as a low-energy Bluetooth

peripheral.

NFC enhancements that make it easier to use near-field communications functionality for sharing data

with other devices.

For more about the new wireless and connectivity APIs in Android 5.0, see Wireless and Connectivity.

Android 5.0 introduces a new JobScheduler API that can help users minimize battery drain by scheduling

certain tasks to run only when the device is plugged in and charging. This job scheduler feature can also be used

for scheduling a task to run when conditions are more suitable to that task, such as downloading a large file

when the device is connected over a Wi-Fi network instead of a metered network.

For more about the new job scheduling APIs in Android 5.0, see Scheduling Jobs.

This article provided an overview of important new features in Android 5.0 for Xamarin.Android app developers:

Material Theme

Animations

https://developer.android.com/about/versions/android-5.0.html#Media
https://developer.android.com/preview/api-overview.html#Storage
https://developer.android.com/preview/api-overview.html#Wireless
https://developer.android.com/preview/api-overview.html#JobScheduler

 Related Links

View shadows and elevation

Color features, such as drawable tinting and prominent color extraction

The new RecyclerView and CardView widgets

Notification enhancements

New APIs for camera, audio playback, media control, storage, wireless/connectivity, and job scheduling

If you are new to Xamarin Android development, read Setup and Installation to help you get started with

Xamarin.Android. Hello, Android is an excellent introduction for learning how to create Android projects.

Android L Developer Preview

Get the Android SDK

Material Design

https://developer.android.com/preview/index.html
https://developer.android.com/sdk/index.html#Other
https://developer.android.com/preview/material/index.html

KitKat Features
 7/8/2021 • 21 minutes to read • Edit Online

 Overview

 Requirements

Android 4.4 (KitKat) comes loaded with a cornucopia of features for users and developers. This guide highlights

several of these features and provides code examples and implementation details to help you make the most

out of KitKat.

Android 4.4 (API Level 19), also known as "KitKat", was released in late 2013. KitKat offers a variety of new

features and improvements, including:

User Experience – Easy animations with transition framework, translucent status and navigation bars, and

full-screen immersive mode help create a better experience for the user.

User Content – User file management simplified with storage access framework; printing pictures, web

sites, and other content is easier with improved printing APIs.

Hardware – Turn any app into an NFC card with NFC Host-Based Card Emulation; run low-power sensors

with the SensorManager .

Developer Tools – Screencast applications in action with the Android Debug Bridge client, available as

part of the Android SDK.

This guide provides guidance for migrating an existing Xamarin.Android application to KitKat, as well as a high-

level overview of KitKat for Xamarin.Android developers.

To develop Xamarin.Android applications using KitKat, you need Xamarin.Android 4.11.0 or higher and Android

4.4 (API Level 19) installed via the Android SDK Manager, as illustrated by the following screenshot:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/kitkat.md

 Migrating Your App to KitKat

 Check System VersionCheck System Version

if (Build.VERSION.SdkInt >= BuildVersionCodes.Kitkat) {
 //KitKat only code here
}

 Alarm BatchingAlarm Batching

AlarmManager alarmManager = (AlarmManager)GetSystemService(AlarmService);
alarmManager.SetWindow (AlarmType.Rtc, AlarmManager.IntervalHalfHour, AlarmManager.IntervalHour,
pendingIntent);

This section provides some first-response items to help transition existing applications to Android 4.4.

If an application needs to be compatible with older versions of Android, be sure to wrap any KitKat-specific code

in a system version check, as illustrated by the code sample below:

Android uses alarm services to wake an app in the background at a specified time. KitKat takes this a step

further by batching alarms to preserve power. This means that, in lieu of waking each app at an exact time,

KitKat prefers to group several applications that are registered to wake during the same time interval, and wake

them at the same time. To tell Android to wake an app during a specified time interval, call SetWindow on the

AlarmManager , passing in the minimum and maximum time, in milliseconds, that can elapse before the app is

woken, and the operation to perform at wakeup. The following code provides an example of an application that

needs to be woken between a half hour and an hour from the time the window is set:

To continue waking an app at an exact time, use SetExact , passing in the exact time that the app should be

woken, and the operation to perform:

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/api19.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.app.alarmmanager

alarmManager.SetExact (AlarmType.Rtc, AlarmManager.IntervalDay, pendingIntent);

 External StorageExternal Storage

NOTENOTE

 SMS ConsolidationSMS Consolidation

 WebView AppsWebView Apps

 User Experience

 Transition FrameworkTransition Framework

 Simple Property AnimationSimple Property Animation

KitKat no longer lets you set an exact repeating alarm. Applications that use SetRepeating and require exact

alarms to work will now need to trigger each alarm manually.

External storage is now divided into two types - storage unique to your application, and data shared by multiple

applications. Reading and writing to your app's specific location on external storage requires no special

permissions. Interacting with data on shared storage now requires the READ_EXTERNAL_STORAGE or

WRITE_EXTERNAL_STORAGE permission. The two types can be classified as such:

If you're getting a file or directory path by calling a method on Context - for example,

GetExternalFilesDir or GetExternalCacheDirs

your app requires no extra permissions.

If you're getting a file or directory path by accessing a property or calling a method on Environment ,

such as GetExternalStorageDirectory or GetExternalStoragePublicDirectory , your app requires the

READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE permission.

WRITE_EXTERNAL_STORAGE implies the READ_EXTERNAL_STORAGE permission, so you should only ever need to set one

permission.

KitKat simplifies messaging for the user by aggregating all SMS content in one default application selected by

the user. The developer is responsible for making the app selectable as the default messaging application, and

behaving appropriately in code and in life if the application is not selected. For more information on

transitioning your SMS app to KitKat, refer to the Getting Your SMS Apps Ready for KitKat guide from Google.

WebView got a makeover in KitKat. The biggest change is added security for loading content into a WebView .

While most applications targeting older API versions should work as expected, testing applications that use the

WebView class is highly recommended. For more information about affected WebView APIs refer to the Android

Migrating to WebView in Android 4.4 documentation.

KitKat comes with several new APIs to enhance user experience, including the new transition framework for

handling property animations and a translucent UI option for theming. These changes are covered below.

The transition framework makes animations easier to implement. KitKat lets you perform a simple property

animation with just one line of code, or customize transitions using Scenes.

The new Android Transitions library simplifies the code behind property animations. The framework allows you

to perform simple animations with minimal code. For example, the following code sample uses

TransitionManager.BeginDelayedTransition to animate showing and hiding a TextView :

https://docs.microsoft.com/en-us/dotnet/api/android.app.alarmmanager.setrepeating
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.getexternalfilesdir
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.getexternalcachedirs#android_content_context_getexternalcachedirs
https://docs.microsoft.com/en-us/dotnet/api/android.os.environment.externalstoragedirectory#android_os_environment_externalstoragedirectory
https://docs.microsoft.com/en-us/dotnet/api/android.os.environment.getexternalstoragepublicdirectory
https://android-developers.blogspot.com/2013/10/getting-your-sms-apps-ready-for-kitkat.html
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview
https://developer.android.com/guide/webapps/migrating.html
https://docs.microsoft.com/en-us/dotnet/api/android.transitions.transitionmanager.begindelayedtransition

using Android.Transitions;

public class MainActivity : Activity
{
 LinearLayout linear;
 Button button;
 TextView text;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);
 SetContentView (Resource.Layout.Main);

 linear = FindViewById<LinearLayout> (Resource.Id.linearLayout);
 button = FindViewById<Button> (Resource.Id.button);
 text = FindViewById<TextView> (Resource.Id.textView);

 button.Click += (o, e) => {

 TransitionManager.BeginDelayedTransition (linear);

 if(text.Visibility != ViewStates.Visible)
 {
 text.Visibility = ViewStates.Visible;
 }
 else
 {
 text.Visibility = ViewStates.Invisible;
 }
 };
 }
}

The example above uses the transition framework to create an automatic, default transition between the

changing property values. Because the animation is handled by a single line of code, you can easily make this

compatible with older versions of Android by wrapping the BeginDelayedTransition call in a system version

check. See the Migrating Your App To KitKat section for more.

The screenshot below shows the app before the animation:

The screenshot below shows the app after the animation:

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/trans-before.png#lightbox

 Android ScenesAndroid Scenes

You can get more control over the transition with Scenes, which are covered in the next section.

Scenes were introduced as part of the transition framework to give the developer more control over animations.

Scenes create a dynamic area in the UI: you specify a container and several versions, or "scenes", for the XML

content inside the container, and Android does the rest of the work to animate the transitions between the

scenes. Android Scenes let you build complex animations with minimal work on the development side.

The static UI element housing the dynamic content is a called a container or scene base. The example below uses

the Android Designer to create a RelativeLayout called container :

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/trans-after.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.transitions.scene

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
 <TextView
 android:id="@+id/textA"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Kit"
 android:textSize="35sp" />
 <TextView
 android:id="@+id/textB"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/textA"
 android:text="Kat"
 android:textSize="35sp" />
</merge>

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
 <TextView
 android:id="@+id/textB"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Kat"
 android:textSize="35sp" />
 <TextView
 android:id="@+id/textA"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/textB"
 android:text="Kit"
 android:textSize="35sp" />
</merge>

The sample layout also defines a button called sceneButton below the container . This button will trigger the

transition.

The dynamic content inside the container requires two new Android layouts. These layouts specify only the code

inside the container. The example code below defines a layout called Scene1 that contains two text fields reading

"Kit" and "Kat" respectively, and a second layout called Scene2 that contains the same text fields reversed. The

XML is as follows:

Scene1.axmlScene1.axml :

Scene2.axmlScene2.axml :

The example above uses merge to make the view code shorter and simplify the view hierarchy. You can read

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/container.png#lightbox

RelativeLayout container = FindViewById<RelativeLayout> (Resource.Id.container);

Scene scene1 = Scene.GetSceneForLayout(container, Resource.Layout.Scene1, this);
Scene scene2 = Scene.GetSceneForLayout(container, Resource.Layout.Scene2, this);

scene1.Enter();

sceneButton.Click += (o, e) => {
 Scene temp = scene2;
 scene2 = scene1;
 scene1 = temp;

 TransitionManager.Go (scene1);
};

more about merge layouts here.

A Scene is created by calling Scene.GetSceneForLayout , passing in the container object, the Resource ID of the

Scene's layout file, and the current Context , as illustrated by the code example below:

Clicking on the button flips between the two Scenes, which Android animates with the default transition values:

The screenshot below illustrates the scene before the animation:

https://android-developers.blogspot.com/2009/03/android-layout-tricks-3-optimize-by.html
https://docs.microsoft.com/en-us/dotnet/api/android.transitions.scene.getsceneforlayout

The screenshot below illustrates the scene after the animation:

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/trans-after.png#lightbox

NOTENOTE

 C u st o m T r a n s i t i o n s i n Sc e n e sC u st o m T r a n s i t i o n s i n Sc e n e s

There is a known bug in the Android Transitions library that causes Scenes created using GetSceneForLayout to break

when a user navigates through an Activity the second time. A java workaround is described here.

A custom transition can be defined in an xml resource file in the transition directory under Resources , as

illustrated by the screenshot below:

The following code sample defines a transition that animates for 5 seconds and uses the overshoot interpolator:

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/scene.png#lightbox
https://code.google.com/p/android/issues/detail?id=62450
http://www.doubleencore.com/2013/11/new-transitions-framework/
file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/resources.png#lightbox
https://developer.android.com/reference/android/views/animation/OvershootInterpolator.html

<changeBounds
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:duration="5000"
 android:interpolator="@android:anim/overshoot_interpolator" />

Transition transition = TransitionInflater.From(this).InflateTransition(Resource.Transition.transition);

TransitionManager.Go (scene1, transition);

 Translucent UITranslucent UI

<?xml version="1.0" encoding="UTF-8" ?>
<resources>
 <style name="KitKatTheme" parent="android:Theme.Holo.Light">
 <item name="android:windowBackground">@color/xamgray</item>
 <item name="android:windowTranslucentStatus">true</item>
 <item name="android:windowTranslucentNavigation">true</item>
 <item name="android:fitsSystemWindows">true</item>
 <item name="android:actionBarStyle">@style/ActionBar.Solid.KitKat</item>
 </style>

 <style name="ActionBar.Solid.KitKat" parent="@android:style/Widget.Holo.Light.ActionBar.Solid">
 <item name="android:background">@color/xampurple</item>
 </style>
</resources>

The transition is created in the Activity using the TransitionInflater, as illustrated by the code below:

The new transition is then added to the Go call that begins the animation:

KitKat gives you more control over theming your app with optional translucent status and navigation bars. You

can change the translucency of system UI elements in the same XML file you use to define your Android theme.

KitKat introduces the following properties:

windowTranslucentStatus - When set to true, makes the top status bar translucent.

windowTranslucentNavigation - When set to true, makes the bottom navigation bar translucent.

fitsSystemWindows - Setting the top or bottom bar to transcluent shifts content under the transparent UI

elements by default. Setting this property to true is a simple way to prevent content from overlapping

with the translucent system UI elements.

The following code defines a theme with translucent status and navigation bars:

The screenshot below shows the theme above with translucent status and navigation bars:

https://docs.microsoft.com/en-us/dotnet/api/android.transitions.transitioninflater

 User Content
 Storage-Access FrameworkStorage-Access Framework

The Storage Access Framework (SAF) is a new way for users to interact with stored content such as images,

videos, and documents. Instead of presenting users with a dialog to choose an application to handle content,

KitKat opens a new UI that allows users to access their data in one aggregate location. Once content has been

chosen, the user will return to the application that requested the content, and the app experience will continue as

normal.

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/theme.png#lightbox

 DocumentsProviderDocumentsProvider

 Request Content From a ProviderRequest Content From a Provider

Intent intent = new Intent (Intent.ActionOpenDocument);
intent.AddCategory (Intent.CategoryOpenable);
intent.SetType ("image/*");
StartActivityForResult (intent, save_request_code);

This change requires two actions on the developer side: first, apps that require content from providers need to

be updated to a new way of requesting content. Second, applications that write data to a ContentProvider need

to be modified to use the new framework. Both scenarios depend on the new DocumentsProvider API.

In KitKat, interactions with ContentProviders are abstracted with the DocumentsProvider class. This means that

SAF doesn't care where the data is physically, as long as it is accessible through the DocumentsProvider API. Local

providers, cloud services, and external storage devices all use the same interface, and are treated the same way,

providing the user and the developer with one place to interact with the user's content.

This section covers how to load and save content with the Storage Access Framework.

We can tell KitKat that we want to pick content using the SAF UI with the ActionOpenDocument Intent, which

signifies that we want to connect to all content providers available to the device. You can add some filtering to

this Intent by specifying CategoryOpenable , which means only content that can be opened (i.e. accessible, usable

content) will be returned. KitKat also allows filtering of content with the MimeType . For example, the code below

filters for image results by specifying the image MimeType :

Calling StartActivityForResult launches the SAF UI, which the user can then browse to choose an image:

https://docs.microsoft.com/en-us/dotnet/api/android.provider.documentsprovider

protected override void OnActivityResult(int requestCode, Result resultCode, Intent data)
{
 base.OnActivityResult(requestCode, resultCode, data);

 if (resultCode == Result.Ok && data != null && requestCode == save_request_code) {
 imageView = FindViewById<ImageView> (Resource.Id.imageView);
 imageView.SetImageURI (data.Data);
 }
}

 Write Content To a ProviderWrite Content To a Provider

Intent intentCreate = new Intent (Intent.ActionCreateDocument);
intentCreate.AddCategory (Intent.CategoryOpenable);
intentCreate.SetType ("text/plain");
intentCreate.PutExtra (Intent.ExtraTitle, "NewDoc");
StartActivityForResult (intentCreate, write_request_code);

After the user has chosen an image, OnActivityResult returns the Android.Net.Uri of the chosen file. The code

sample below displays the user's image selection:

In addition to loading content from the SAF UI, KitKat also lets you save content to any ContentProvider that

implements the DocumentProvider API. Saving content uses an Intent with ActionCreateDocument :

The above code sample loads the SAF UI, letting the user change the file name and select a directory to house

the new file:

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/saf-ui.png#lightbox

When the user presses SaveSave, OnActivityResult gets passed the Android.Net.Uri of the newly created file,

which can be accessed with data.Data . The uri can be used to stream data into the new file:

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/saf-save.png#lightbox

protected override void OnActivityResult(int requestCode, Result resultCode, Intent data)
{
 base.OnActivityResult(requestCode, resultCode, data);

 if (resultCode == Result.Ok && data != null && requestCode == write_request_code) {
 using (Stream stream = ContentResolver.OpenOutputStream(data.Data)) {
 Encoding u8 = Encoding.UTF8;
 string content = "Hello, world!";
 stream.Write (u8.GetBytes(content), 0, content.Length);
 }
 }
}

 PrintingPrinting

Note that ContentResolver.OpenOutputStream(Android.Net.Uri) returns a System.IO.Stream , so the entire

streaming process can be written in .NET.

For more information on loading, creating, and editing content with the Storage Access Framework, refer to the

Android documentation for the Storage Access Framework.

Printing content is simplified in KitKat with the introduction of the Print Services and PrintManager . KitKat is also

the first API version to fully leverage the Google's Cloud Print service APIs using the Google Cloud Print

application. Most devices that ship with KitKat automatically download Google Cloud Print app and the HP Print

Service Pluginwhen they first connect to WiFi. A user can check his or her device's Print settings by navigating to

Settings > System > Pr intingSettings > System > Pr inting:

https://docs.microsoft.com/en-us/dotnet/api/android.content.contentresolver.openoutputstream
https://developer.android.com/guide/topics/providers/document-provider.html
https://docs.microsoft.com/en-us/dotnet/api/android.printservices
https://developers.google.com/cloud-print/
https://play.google.com/store/apps/details?id=com.google.android.apps.cloudprint
https://play.google.com/store/apps/details?id=com.hp.android.printservice

NOTENOTE

 Printing HTML ContentPrinting HTML Content

 P r i n t M e n u I t e mP r i n t M e n u I t e m

Although the printing APIs are set up to work with Google Cloud Print by default, Android still lets developers prepare

print content using the new APIs, and send it to other applications to handle printing.

KitKat automatically creates a PrintDocumentAdapter for a web view with WebView.CreatePrintDocumentAdapter .

Printing web content is a coordinated effort between a WebViewClient that waits for the HTML content to load

and lets the Activity know to make the print option available in the options menu, and the Activity, which waits

for the user to select the Print option and calls Print on the PrintManager . This section covers the basic setup

required to print on-screen HTML content.

Note that loading and printing web content requires the Internet permission:

The print option will typically appear in the Activity's options menu. The options menu lets users perform actions

on an Activity. It is in the top right corner of the screen, and looks like this:

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/printing.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.print.printdocumentadapter
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webviewclient
file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/internet.png#lightbox
https://developer.android.com/guide/topics/ui/menus.html#options-menu

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/menu_print"
 android:title="Print"
 android:showAsAction="never" />
</menu>

bool dataLoaded;

public override bool OnCreateOptionsMenu (IMenu menu)
{
 base.OnCreateOptionsMenu (menu);
 if (dataLoaded) {
 MenuInflater.Inflate (Resource.Menu.print, menu);
 }
 return true;
}

public override bool OnOptionsItemSelected (IMenuItem item)
{
 if (item.ItemId == Resource.Id.menu_print) {
 PrintPage ();
 return true;
 }
 return base.OnOptionsItemSelected (item);
}

 W e b Vi e w C l i e n tW e b Vi e w C l i e n t

Additional menu items can be defined in the menudirectory under Resources. The code below defines a sample

menu item called Print:

Interaction with the options menu in the Activity happens through the OnCreateOptionsMenu and

OnOptionsItemSelected methods. OnCreateOptionsMenu is the place to add new menu items, like the Print option,

from the menu resources directory. OnOptionsItemSelected listens for the user selecting the Print option from

the menu, and begins printing:

The code above also defines a variable called dataLoaded to keep track of the status of the HTML content. The

WebViewClient will set this variable to true when all content has loaded, so the Activity knows to add the Print

menu item to the options menu.

The job of the WebViewClient is to ensure data in the WebView is fully loaded before the print option appears in

the menu, which it does with the OnPageFinished method. OnPageFinished listens for web content to finish

loading, and tells the Activity to recreate its options menu with InvalidateOptionsMenu :

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/menu.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.print.printmanager

class MyWebViewClient : WebViewClient
{
 PrintHtmlActivity caller;

 public MyWebViewClient (PrintHtmlActivity caller)
 {
 this.caller = caller;
 }

 public override void OnPageFinished (WebView view, string url)
 {
 caller.dataLoaded = true;
 caller.InvalidateOptionsMenu ();
 }
}

 P r i n t M a n a g e rP r i n t M a n a g e r

void PrintPage ()
{
 PrintManager printManager = (PrintManager)GetSystemService (Context.PrintService);
 PrintDocumentAdapter printDocumentAdapter = myWebView.CreatePrintDocumentAdapter ();
 printManager.Print ("MyWebPage", printDocumentAdapter, null);
}

OnPageFinished also sets the dataLoaded value to true , so OnCreateOptionsMenu can recreate the menu with

the Print option in place.

The following code example prints the contents of a WebView :

Print takes as arguments: a name for the print job ("MyWebPage" in this example), a PrintDocumentAdapter

that generates the print document from the content, and PrintAttributes (null in the example above). You can

specify PrintAttributes to help lay out content on the printed page, although the default attributes should

handle most scenarios.

Calling Print loads the print UI, which lists options for the print job. The UI gives users the option of printing or

saving the HTML content to a PDF, as illustrated by the screenshots below:

https://docs.microsoft.com/en-us/dotnet/api/android.print.printdocumentadapter
https://docs.microsoft.com/en-us/dotnet/api/android.print.printattributes

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/print1.png#lightbox

 Hardware

 Host-Based Card Emulation in NFCHost-Based Card Emulation in NFC

bool hceSupport = PackageManager.HasSystemFeature(PackageManager.FeatureNfcHostCardEmulation);

<uses-feature android:name="android.hardware.nfc.hce" />

KitKat adds several APIs to accommodate new device features. The most notable of these are Host-Based Card

Emulation and the new SensorManager .

Host-Based Card Emulation (HCE) allows applications to behave like NFC cards or NFC card readers without

relying on the carrier's proprietary Secure Element. Before setting up HCE, ensure HCE is available on the device

with PackageManager.HasSystemFeature :

HCE requires that both the HCE feature and the Nfc permission be registered with the application's

AndroidManifest.xml :

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/print2.png#lightbox

[Service(Exported=true, Permission="android.permissions.BIND_NFC_SERVICE"),
 IntentFilter(new[] {"android.nfc.cardemulation.HOST_APDU_SERVICE"}),
 MetaData("android.nfc.cardemulation.host.apdu_service",
 Resource="@xml/hceservice")]

class HceService : HostApduService
{
 public override byte[] ProcessCommandApdu(byte[] apdu, Bundle extras)
 {
 ...
 }

 public override void OnDeactivated (DeactivationReason reason)
 {
 ...
 }
}

<host-apdu-service xmlns:android="http://schemas.android.com/apk/res/android"
 android:description="@string/hce_service_description"
 android:requireDeviceUnlock="false"
 android:apduServiceBanner="@drawable/service_banner">
 <aid-group android:description="@string/aid_group_description"
 android:category="payment">
 <aid-filter android:name="1111111111111111"/>
 <aid-filter android:name="0123456789012345"/>
 </aid-group>
</host-apdu-service>

To work, HCE has to be able to run in the background, and it has to start when the user makes an NFC

transaction, even if the application using HCE is not running. We can accomplish this by writing the HCE code as

a Service . An HCE Service implements the HostApduService interface, which implements the following

methods:

ProcessCommandApdu - An Application Protocol Data Unit (APDU) is what gets sent between the NFC

Reader and the HCE Service. This method consumes an ADPU from the reader, and returns a data unit in

response.

OnDeactivated - The HostAdpuService is deactivated when the HCE Service is no longer communicating

with the NFC Reader.

An HCE Service also needs to be registered with the application's manifest, and decorated with the proper

permissions, intent filter, and metadata. The following code is an example of a HostApduService registered with

the Android Manifest using the Service attribute (for more information on attributes, refer to the Xamarin

Working with Android Manifest guide):

The above Service provides a way for the NFC reader to interact with the application, but the NFC reader still

has no way of knowing if this Service is emulating the NFC card it needs to scan. To help the NFC reader identify

the Service, we can assign the Service a unique Application ID (AID). We specify an AID, along with other

metadata about the HCE Service, in an xml resource file registered with the MetaData attribute (see code

example above). This resource file specifies one or more AID filters - unique identifier strings in hexadecimal

format that correspond to the AIDs of one or more NFC reader devices:

In addition to AID filters, the xml resource file also provides a user-facing description of the HCE Service,

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/nfc.png#lightbox

 SensorsSensors

specifies an AID group (payment application versus "other") and, in the case of a payment application, a 260x96

dp banner to display to the user.

The setup outlined above provides the basic building blocks for an application emulating an NFC card. NFC itself

requires several more steps and further testing to configure. For more information on Host-based Card

Emulation, refer to the Android documentation portal. For more information on using NFC with Xamarin, check

out the Xamarin NFC samples.

KitKat provides access to the device's sensors through a SensorManager . The SensorManager allows the OS to

schedule the delivery of sensor information to an application in batches, preserving battery life.

KitKat also ships with two new sensor types for tracking the user's steps. These are based on accelerometer and

include:

StepDetector - App is notified/woken when the user takes a step, and the detector provides a time value

for when the step occurred.

StepCounter - Keeps track of the number of steps the user has taken since the sensor was registered until

the next device reboot.

The screenshot below depicts the step counter in action:

https://developer.android.com/guide/topics/connectivity/nfc/hce.html
https://github.com/xamarin/monodroid-samples/tree/master/NfcSample
https://docs.microsoft.com/en-us/dotnet/api/android.hardware.sensormanager

public class MainActivity : Activity, ISensorEventListener
{
 float count = 0;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);
 SetContentView (Resource.Layout.Main);

 SensorManager senMgr = (SensorManager) GetSystemService (SensorService);
 Sensor counter = senMgr.GetDefaultSensor (SensorType.StepCounter);
 if (counter != null) {
 senMgr.RegisterListener(this, counter, SensorDelay.Normal);
 }
 }

 public void OnAccuracyChanged (Sensor sensor, SensorStatus accuracy)
 {
 Log.Info ("SensorManager", "Sensor accuracy changed");
 }

 public void OnSensorChanged (SensorEvent e)
 {
 count = e.Values [0];
 }
}

You can create a SensorManager by calling GetSystemService(SensorService) and casting the result as a

SensorManager . To use the step counter, call GetDefaultSensor on the SensorManager . You can register the sensor

and listen to changes in step count with the help of the ISensorEventListener interface, as illustrated by the

code sample below:

OnSensorChanged is called if the step count updates while the application is in the foreground. If the application

enters the background, or the device is asleep, OnSensorChanged will not be called; however, the steps will

continue to be counted until UnregisterListener is called.

Keep in mind that the step count value is cumulative across all applications that register the sensor. This means

file:///T:/c1uy/n1bv/xamarin/android/platform/kitkat-images/stepcounter.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/android.hardware.isensoreventlistener

protected override void OnPause()
{
 base.OnPause ();
 senMgr.UnregisterListener(this);
}

NOTENOTE

 Developer Tools
 Screen RecordingScreen Recording

adb shell screenrecord /sdcard/screencast.mp4

adb shell screenrecord --bit-rate 8000000 --time-limit 60 /sdcard/screencast.mp4

 Other KitKat Additions

that even if you uninstall and reinstall your application, and initialize the count variable at 0 at application

startup, the value reported by the sensor will remain the total number of steps taken while the sensor was

registered, whether by your application or another. You can prevent your application from adding to the step

counter by calling UnregisterListener on the SensorManager , as illustrated by the code below:

Rebooting the device resets the step count to 0. Your app will require extra code to ensure it is reporting an

accurate count for the application, regardless of other applications using the sensor or the state of the device.

While the API for the step detection and counting ships with KitKat, not all phones are outfitted with the sensor. You can

check if the sensor is available by running

PackageManager.HasSystemFeature(PackageManager.FeatureSensorStepCounter); , or check to ensure the returned

value of GetDefaultSensor isn't null .

KitKat includes new screen recording capabilities so that developers can record applications in action. Screen

recording is available through the Android Debug Bridge (ADB) client, which can be downloaded as part of the

Android SDK.

To record your screen, connect your device; then, locate your Android SDK installation, navigate to the

platform-toolsplatform-tools directory and run the adbadb client:

The above command will record a default 3-minute video at the default resolution of 4Mbps. To edit the length,

add the --time-limit flag. To change the resolution, add the --bit-rate flag. The following command will record a

minute-long video at 8Mbps:

You can find your video on your device - it will appear in your Gallery when the recording is complete.

In addition to the changes described above, KitKat allows you to:

Use the Full Screen - KitKat introduces a new Immersive mode for browsing content, playing games, and

running other applications that could benefit from a full-screen experience.

Customize Notifications - Get additional details about system notifications with the

NotificationListenerService . This lets you present the information in a different way inside your app.

Mirror Drawable Resources - Drawable resources have a new autoMirrored attribute that tells the system

https://developer.android.com/tools/help/adb.html
https://developer.android.com/reference/android/view/View.html#setSystemUiVisibility(int)
https://docs.microsoft.com/en-us/dotnet/api/android.service.notification.notificationlistenerservice
https://developer.android.com/reference/android/R.attr.html#autoMirrored

 Summary

 Related Links

create a mirrored version for images that require flipping for left-to-right layouts.

Pause Animations - Pause and resume animations created with the Animator class.

Read Dynamically Changing Text - Denote parts of UI that update dynamically with new text as "live

regions" with the new accessibilityLiveRegion attribute so the new text will be read automatically in

accessibility mode.

Enhance Audio Experience - Make tracks louder with the LoudnessEnhancer , find the Peak and RMS of an

audio stream with the Visualizer class, and get information from an audio timestamp to help with

audio-video synchronization.

Sync ContentResolver at Custom Interval - KitKat adds some variability to the time that a sync request is

performed. Sync a ContentResolver at custom time or interval by calling ContentResolver.RequestSync

and passing in a SyncRequest .

Distinguish Between Controllers - In KitKat, controllers are assigned unique integer identifiers that can be

accessed through the device's ControllerNumber property. This makes it easier to tell apart players in a

game.

Remote Control - With a few changes on both the hardware and software side, KitKat allows you to turn a

device outfitted with an IR transmitter into a remote control using the ConsumerIrService , and interact

with peripheral devices with the new RemoteController APIs.

For more information on the above API changes, please refer to the Google Android 4.4 APIs overview.

This article introduced some of the new APIs available in Android 4.4 (API Level 19), and covered best practices

when transitioning an application to KitKat. It outlined changes to the APIs affecting user experience, including

the transition framework and new options for theming. Next, it introduced the Storage-Access Framework and

DocumentsProvider class, as well as the new printing APIs. It explored NFC host-based card emulation and how

to work with low-power sensors, including two new sensors for tracking the user's steps. Finally, it

demonstrated capturing real-time demos of applications with screen recording, and provided a detailed list of

KitKat API changes and additions.

KitKat Sample

Android 4.4 APIs

Android KitKat

https://docs.microsoft.com/en-us/dotnet/api/android.animation.animator
https://developer.android.com/reference/android/R.attr.html#accessibilityLiveRegion
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiofx.loudnessenhancer
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiofx.visualizer.measurementmodepeakrms
https://docs.microsoft.com/en-us/dotnet/api/android.media.audiotimestamp
https://docs.microsoft.com/en-us/dotnet/api/android.media.remotecontroller
https://developer.android.com/about/versions/android-4.4.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/kitkat
https://developer.android.com/about/versions/android-4.4.html
https://developer.android.com/about/versions/kitkat.html

Jelly Bean Features
 7/8/2021 • 11 minutes to read • Edit Online

 Overview

 Requirements

This document will provide a high level overview of the new features for developers that were introduced in

Android 4.1. These features include: enhanced notifications, updates to Android Beam to share large files,

updates to multimedia, peer-to-peer network discovery, animations, new permissions.

Android 4.1 (API Level 16), also known as "Jelly Bean", was release on July 9th, 2012. This article will provide a

high level introduction to some of the new features in Android 4.1 for developers using Xamarin.Android. Some

of these new features introduced are enhancements to animations for launching an activity, new sounds for a

camera, and improved support for application stack navigation. It is now possible to cut and paste with intents.

The stability of Android applications is improved with the ability to isolate the dependency on unstable content

providers. Services may also be isolated so that they are accessible only by the activity that started them.

Support has been added for network service discovery using Bonjour, UPnP, or multicast DNS based services. It

is now possible for richer notifications that have formatted text, action buttons and large images.

Finally several new permissions have been added in Android 4.1.

To develop Xamarin.Android applications using Jelly Bean requires Xamarin.Android 4.2.6 or higher and Android

4.1 (API Level 16) be installed via the Android SDK Manager as shown in the following screen shot:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/jelly-bean.md

 What's New
 AnimationsAnimations

class MyTimeListener : Java.Lang.Object, TimeAnimator.ITimeListener
{
 public void OnTimeUpdate(TimeAnimator animation, long totalTime, long deltaTime)
 {
 Log.Debug("Activity1", "totalTime={0}, deltaTime={1}", totalTime, deltaTime);
 }
}

Activities may be launched using either zoom animations or custom animations by using the ActivityOptions

class. The following new methods are provided to support these animations:

MakeScaleUpAnimation – This will create an animation that scales up an activity window from a start position

and size on the screen.

MakeThumbnailScaleUpAnimation – This will create an animation that scales up from a thumbnail image from

specified position on the screen.

MakeCustomAnimation – This creates an animation from resources in the application. There is one animation

for when the activity opens and another for when the activity stops.

The new TimeAnimator class provides an interface TimeAnimator.ITimeListener that can notify an application

every time a frame changes in an animation. For example, consider the following implementation of

TimeAnimator.ITimeListener :

file:///T:/c1uy/n1bv/xamarin/android/platform/jelly-bean-images/image1.png#lightbox

var animator = new TimeAnimator();
animator.SetTimeListener(new MyTimeListener());
animator.Start();

 Application Stack NavigationApplication Stack Navigation

 CameraCamera

And now to use the class, an instance of TimeAnimator is created, and the listener is set:

As the TimeAnimator instance is running, it will invoke ITimeAnimator.ITimeListener , which will then log the how

long the animator has been running and how long it as been since the last time the method has been invoked.

Android 4.1 improves on the application stack navigation that was introduced in Android 3.0. By specifying the

ParentName property of the ActivityAttribute , Android can open the proper parent Activity when the user

presses the Up button on the action bar - Android will instantiate the Activity specified by the ParentName

property. This allows applications to preserve hierarchy of activities that make a given task.

For most applications setting the ParentName on the activity is sufficient information for Android to provide the

correct behavior for navigating the application stack; Android will synthesize the necessary back stack by

creating a series of Intents for each parent activity. However, because this is an artificial application stack, each

synthetic activity will not have the saved state that a natural activity would have. To provide saved state to a

synthetic parent activity, an Activity may override the OnPrepareNavigationUpTaskStack method. This method

receives a TaskStackBuilder instance that will have a collection of Intent objects that Android will use to create

the back stack. The activity may modify these Intents so that, as the synthetic activity is created, it will receive the

proper state information.

For more complex scenarios, there are new methods on the Activity class that may be used to handle the

behavior of Up navigation and construct the back stack:

OnNavigateUp – By overriding this method it is possible to perform a custom action when the UpUp button is

pressed.

NavigateUpTo – Calling this method will cause the application to navigate from the current activity to the

activity specified by a given intent.

ParentActivityIntent – This is used to obtain an Intent that will launch the parent activity of the current

activity.

ShouldUpRecreateTask – This method is used to query if the synthetic back stack must be created to navigate

up to a parent activity. Returns true if the synthetic stack must be created.

FinishAffinity – Calling this method will finish the current activity and all activities below it in the current

task that have the same task affinity.

OnCreateNavigateUpTaskStack – This method is overridden when it is necessary to have complete control over

how the synthetic stack is created.

There is a new interface, Camera.IAutoFocusMoveCallback , which can be used to detect when the auto focus has

started or stopped moving. An example of this new interface can be seen in the following snippet:

https://developer.android.com/design/patterns/navigation.html#up-vs-back

public class AutoFocusCallbackActivity : Activity, Camera.IAutoFocusCallback
{
 public void OnAutoFocus(bool success, Camera camera)
 {
 // camera is an instance of the camera service object.

 if (success)
 {
 // Auto focus was successful - do something here.
 }
 else
 {
 // Auto focus didn't happen for some reason - react to that here.
 }
 }
}

var mediaActionPlayer = new MediaActionSound();

// Preload the sound for a shutter click.
mediaActionPlayer.Load(MediaActionSoundType.ShutterClick);
var button = FindViewById<Button>(Resource.Id.MyButton);

// Play the sound on a button click.
button.Click += (sender, args) => mediaActionPlayer.Play(MediaActionSoundType.ShutterClick);

// This releases the preloaded resources. Don’t make any calls on
// mediaActionPlayer after this.
mediaActionPlayer.Release();

 ConnectivityConnectivity
 Android BeamAndroid Beam

 Network Services DiscoveryNetwork Services Discovery

The new class MediaActionSound provides a set of API's for producing sounds for the various media actions.

There are several actions that can occur with a camera, these are defined by the enum

Android.Media.MediaActionSoundType :

MediaActionSoundType.FocusComplete – This sound that is played when focusing has completed.

MediaActionSoundType.ShutterClick – This sound will be played when a still image picture is taken.

MediaActionSoundType.StartVideoRecording – This sound is used indicate the start of video recording.

MediaActionSoundType.StopVideoRecording – This sound will be played to indicate the end of video recording.

An example of how to use the MediaActionSound class can be seen in the following snippet:

Android Beam is an NFC based technology that allows two Android devices to communicate with each other.

Android 4.1 provides better support for the transfer of large files. When using the new method

NfcAdapter.SetBeamPushUris() Android will switch between alternate transport mechanisms (such as Bluetooth)

to achieve a fast transfer speed.

Android 4.1 contains new API’s for multicast DNS-based service discovery. This allows an application to detect

and connect over Wi-Fi to other devices such as printers, cameras, and media devices. These new API’s are in the

Android.Net.Nsd package.

To create a service that may be consumed by other services, the NsdServiceInfo class is used to create an object

that will define the properties of a service. This object is then provided to NsdManager.RegisterService() along

with an implementation of NsdManager.ResolveListener . Implementations of NsdManager.ResolveListener are

used to notify of a successful registration and to unregister the service.

 Network UsageNetwork Usage

 WiFi Direct Service DiscoveryWiFi Direct Service Discovery

 Content ProvidersContent Providers

 Copy and Paste With IntentsCopy and Paste With Intents

 Isolated ServicesIsolated Services

 MediaMedia

To discover services on the network, and implementation of Nsd.DiscoveryListener passed to

NsdManager.discoverServices() .

A new method, ConnectivityManager.IsActiveNetworkMetered allows a device to check if it is connected to a

metered network. This method can be used to help manage data usage by accurately informing users that there

might be expensive charges for data operations.

The WifiP2pManager class was introduced in Android 4.0 to support zeroconf. Zeroconf (zero configuration

networking) is a set of techniques that allows devices (computers, printers, phones) to connect to networks

automatically, with the intervention of human network operators or special configuration servers.

In Jelly Bean, WifiP2pManager can discover nearby devices using either Bonjour or Upnp. Bonjour is Apple’s

implementation of zeroconf. Upnp is set of networking protocols that also supports zeroconf. The following

methods added to the WiFiP2pManager to support Wi-Fi service discovery:

AddLocalService() – This method is used announce an application as a service over Wi-Fi for discovery by

peers.

AddServiceRequest() – This method is to send a service discovery request to the framework. It is used to

initialize the Wi-Fi service discovery.

SetDnsSdResponseListeners() – This method is used to register callbacks to be invoked on receiving a

response to discovery requests from Bonjour.

SetUpnpServiceResponseListener() – This method is used to register callbacks to be invoked on receiving a

response to discovery requests Upnp.

The ContentResolver class has received a new method, AcquireUnstableContentProvider . This method allows an

application to acquire an “unstable” content provider. Normally, when an application acquires a content provider,

and that content provider crashes, so will the application. With this method call, an application will not crash if

the content provider crashes. Instead, Android.OS.DeadObjectionException will be thrown from calls on the

content provider to inform an application that the content provider has gone away. An “unstable” content

provider is useful when interacting with content providers from other applications – it is less likely that buggy

code from another application will affect another application.

The Intent class can now have a ClipData object associated with it via the Intent.ClipData property. This

method allows for extra data from the clipboard to be transmitted with the intent. An instance of ClipData can

contain one or more ClipData.Item . ClipData.Item ’s are items of the following types:

TextText – This is any string of text, either HTML or any string whose format is supported by the built-in Android

style spans.

IntentIntent – Any Intent object.

UriUri – This can be any URI, such as an HTTP bookmark or the URI to a content provider.

An isolated service is a service that runs under its own special process and has no permissions of its own. The

only communication with the service is when starting up the service and binding to it via the Service API. It is

possible to declare a service as isolated by setting the property IsolatedProcess="true" in the ServiceAttribute

that adorns a service class.

The new Android.Media.MediaCodec class provides an API to low-level media codecs. Applications can query the

system to find out what low level codecs are available on the device.

 NotificationsNotifications

The new Android.Media.Audiofx.AudioEffect subclasses have been added to support additional audio pre-

processing on captured audio:

Android.Media.Audiofx.AcousticEchoCanceler – This class is used for pre-processing audio to remove the

signal from a remote party from a captured audio signal. For example, removing the echo from a voice

communication application.

Android.Media.Audiofx.AutomaticGainControl – This class is used to normalize the captured signal by boosting

or lowering an input signal so that the output signal is constant.

Android.Media.Audiofx.NoiseSuppressor – This class will remove background noise from the captured signal.

Not all devices will support these effects. The method AudioEffect.IsAvailable should be called by an

application to see if the audio effect in question is supported on the device running the application.

The MediaPlayer class now supports gapless playback with the SetNextMediaPlayer() method. This new

method specifies the next MediaPlayer to start when the current media player finishes its playback.

The following new classes provide standard mechanisms and UI for selecting where media will be played:

MediaRouter – This class allows applications to control the routing of media channels from a device to

external speakers or other devices.

MediaRouterActionProvider and MediaRouteButton – These classes help provide a consistent UI for selecting

and playing media.

Android 4.1 allows applications more flexibility and control with displaying notifications. Applications can now

show bigger and better notifications to users. A new method, NotificationBuilder.SetStyle() allows for one of

new three new style to be set on notifications:

Notification.BigPictureStyle – This is a helper class that will generate notifications that will have an image

in them. The following image shows an example of a notification with a big image:

Notification.BigTextStyle – This is a helper class that will generate notifications that will have multiple lines

of text, such as e-mail. An example of this new notification style can be seen in the following screenshot:

file:///T:/c1uy/n1bv/xamarin/android/platform/jelly-bean-images/image2.png#lightbox

Notification.InboxStyle – This is a helper class that will generate notifications that contain a list of strings,

such as snippets from an e-mail message, as shown in this screenshot:

It is possible to add up to two action buttons at the bottom of a notification message when the notification is

using the normal or larger style. An example of this can be seen in the following screenshot, where the action

buttons are visible at the bottom of the notification:

The Notification class has received new constants that allow a developer to specify one of five priority levels

for a notification. These can be set on a notification using the Priority property.

file:///T:/c1uy/n1bv/xamarin/android/platform/jelly-bean-images/image3.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/jelly-bean-images/image4.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/jelly-bean-images/image5.png#lightbox

PermissionsPermissions

 Summary

 Related Links

The following new permissions have been added:

READ_EXTERNAL_STORAGE - The application requires read only access to external storage. Currently all

applications have read access by default, but future releases of Android will require applications explicitly

request read access.

READ_USER_DICTIONARY - Allows a read-access to the user's word dictionary.

READ_CALL_LOG - Allows an application to obtain information about incoming and outgoing calls by reading

the call log.

WRITE_CALL_LOG - Allows an application to write to the call log on the phone.

WRITE_USER_DICTIONARY - Allows an application to write to the user's word dictionary.

An important change to note READ_EXTERNAL_STORAGE – currently this permission is automatically granted by

Android. Future versions of Android will require an application to request this permission before granted the

permission.

This article introduced some of the new API’s that are available in Android 4.1 (API Level 16). It highlighted some

of changes for animations and animating the launch of an activity, and introduced the new API’s for network

discovery of other devices using protocols such as Bonjour or UPnP. Other changes to the API were highlighted

as well, such as the ability to cut and paste data via intents, the ability to use isolated services or “unstable”

content providers.

This article then went on to introduce the updates to notifications, and discussed some of the new permissions

that have been introduced with Android 4.1

Time Animation Example (sample)

Android 4.1 APIs

Tasks and Back Stacks

Navigation with Back and Up

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/platformfeatures-timeanimatorexample
https://developer.android.com/about/versions/android-4.1.html
https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/design/patterns/navigation.html

Ice Cream Sandwich Features
 11/2/2020 • 2 minutes to read • Edit Online

 Overview

 User Interface Features

 Sharing Features

This article describes several of the new features available to application developers with the Android 4 API - Ice

Cream Sandwich. It covers several new user interface technologies and then examines a variety of new

capabilities that Android 4 offers for sharing data between applications and between devices.

Android OS version 4.0 (API Level 14) represents a major reworking of the Android Operating System and

includes a number of important changes and upgrades, including:

Updated User InterfaceUpdated User Interface – Several new UI features give developers more power and flexibility when they

create application user interfaces. These new features include: GridLayout , PopupMenu , Switch widget, and

TextureView .

Better Hardware AccelerationBetter Hardware Acceleration – 2D rendering now takes place on the GPU for all Android controls.

Additionally, hardware acceleration is on, by default, in all applications developed for Android 4.0.

New Data APIsNew Data APIs – There’s new access to data that was not previously officially accessible, such as calendar

data and the user profile of the device owner.

App Data SharingApp Data Sharing – Sharing data between applications and devices is now easier than ever via

technologies such as the ShareActionProvider , which makes it easy to create a sharing action from an Action

Bar, and Android Beam for Near Field Communications (NFC) , which makes it a snap to share data across

devices in close proximity to each other.

In this article, we’re going to explore these features and other changes that have been made to the Android 4.0

API, and we’ll explain how to use each feature with Xamarin.Android.

A variety of new user interface technologies are available with Android 4, including:

GridLayoutGridLayout – Supports 2D grid layout of controls.

Switch widgetSwitch widget – Allows toggling between ON or OFF.

TextureViewTextureView – Enables video and OpenGL content within a view.

Navigation BarNavigation Bar – Contains virtual buttons for back, home, and multi-tasking.

Additionally, other UI elements have been enhanced, such as the

<a href"/guides/android/user_interface/popup_menus">PopupMenu , which is now easier to work with, and tabs,

which have a more polished appearance.

Android 4 includes several new technologies that let us share data across devices and across applications. It also

provides access to various types of data that were not previously available, such as calendar information and the

device owner’s user profile. In this section we’ll examine a variety of features offered by Android 4 that address

these areas including:

Android BeamAndroid Beam – Allows data sharing via NFC.

ShareActionProviderShareActionProvider – Creates a provider that allows developers to specify sharing actions from the

Action Bar.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/ice-cream-sandwich.md

 x86 Emulators

 Summary

 Related Links

User ProfileUser Profile – Provides access to profile data of the device owner.

Calendar APICalendar API – Provides access to calendar data from the calendar provider.

ICS does not yet support development with an x86 emulator. x86 emulators are only supported with Android

2.3.3, API level 10. See Configuring the x86 Emulator for more information.

This article covered a variety of the new technologies that are now available with Android 4. We reviewed new

user interface features such as the GridLayout, PopupMenu, and Switch widget. We also looked at some of the

new support for controlling the system UI, as well as how to work with the TextureView. Then we discussed a

variety of new sharing technologies. We covered how Android Beam let’s you share information across devices

that use NFC, discussed the new Calendar API, and also showed how to use the built in ShareActionProvider.

Finally, we examined how to use the ContactsContract provider to access user profile data.

TextureViewDemo (sample)

CalendarDemo (sample)

Tab Layout Tutorial

Ice Cream Sandwich

Android 4.0 Platform

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/textureviewdemo
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/calendardemo
https://developer.android.com/about/versions/android-4.0-highlights.html
https://developer.android.com/about/versions/android-4.0.html

Intro to ContentProviders
 11/2/2020 • 2 minutes to read • Edit Online

 Content Providers Overview

 Related Links

The Android operating system uses content providers to facilitate access to shared data such as media files,

contacts and calendar information. This article introduces the ContentProvider class, and provides two examples

of how to use it.

A ContentProvider encapsulates a data repository and provides an API to access it. The provider exists as part of

an Android application that usually also provides a UI for displaying/managing the data. The key benefit of using

a content provider is enabling other applications to easily access the encapsulated data using a provider client

object (called a ContentResolver). Together, a content provider and content resolver offer a consistent inter-

application API for data access that is simple to build and consume. Any application can choose to use

ContentProviders to manage data internally and also to expose it to other applications.

A ContentProvider is also required for your application to provide custom search suggestions, or if you want to

provide the ability to copy complex data from your application to paste into other applications. This document

shows how to access and build ContentProviders with Xamarin.Android.

The structure of this section is as follows:

How it worksHow it works – An overview of what the ContentProvider is designed for and how it works.

Consuming a Content ProviderConsuming a Content Provider – An example accessing the Contacts list.

Using ContentProvider to share dataUsing ContentProvider to share data – Writing and consuming a ContentProvider in the same

application.

ContentProviders and the cursors that operate on their data are often used to populate ListViews. Refer to the

ListViews and Adapters guide for more information on how to use those classes.

ContentProviders exposed by Android (or other applications) are an easy way to include data from other

sources in your application. They allow you to access and present data such as the Contacts list, photos or

calendar events from within your application, and let the user interact with that data.

Custom ContentProviders are a convenient way to package your data for use inside your own app, or for use by

other applications (including special uses like custom search and copy/paste).

The topics in this section provide some simple examples of consuming and writing ContentProvider code.

ContactsAdapter Demo (sample)

SimpleContentProvider (sample)

Content Providers Developers Guide

ContentProvider Class Reference

ContentResolver Class Reference

ListView Class Reference

CursorAdapter Class Reference

UriMatcher Class Reference

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/content-providers/index.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/platformfeatures-contactsadapterdemo
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/platformfeatures-simplecontentprovider
https://developer.android.com/guide/topics/providers/content-providers.html
https://docs.microsoft.com/en-us/dotnet/api/android.content.contentprovider
https://docs.microsoft.com/en-us/dotnet/api/android.content.contentresolver
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.cursoradapter
https://docs.microsoft.com/en-us/dotnet/api/android.content.urimatcher

Android.Provider

ContactsContract Class Reference

https://docs.microsoft.com/en-us/dotnet/api/android.provider
https://docs.microsoft.com/en-us/dotnet/api/android.provider.contactscontract

How Content Providers Work
 7/8/2021 • 2 minutes to read • Edit Online

 Consuming a ContentProvider

 Built-In ProvidersBuilt-In Providers

 Classes Overview

There are two classes involved in a ContentProvider interaction:

ContentProviderContentProvider – Implements an API that exposes a set of data in a standard way. The main methods

are Query, Insert, Update and Delete.

ContentResolverContentResolver – A static proxy that communicates with a ContentProvider to access its data, either

from within the same application or from another application.

A content provider is normally backed by an SQLite database, but the API means that consuming code does not

need to know anything about the underlying SQL. Queries are done via a Uri using constants to reference

column names (to reduce dependencies on the underlying data structure), and an ICursor is returned for the

consuming code to iterate over.

ContentProviders expose their functionality through a Uri that is registered in the AndroidManifest.xmlAndroidManifest.xml of the

application that publishes the data. There is a convention where the Uri and the data columns that are exposed

should be available as constants to make it easy to bind to the data. Android's built-in ContentProviders all

provide convenience classes with constants that reference the data structure in the Android.Providers

namespace.

Android offers access to a wide range of system and user data using ContentProviders :

Browser – bookmarks and browser history (requires permission READ_HISTORY_BOOKMARKS and/or

WRITE_HISTORY_BOOKMARKS).

CallLog – recent calls made or received with the device.

Contacts – detailed information from the user's contact list, including people, phones, photos & groups.

MediaStore – contents of the user's device: audio (albums, artists, genres, playlists), images (including

thumbnails) & video.

Settings – system-wide device settings and preferences.

UserDictionary – contents of the user-defined dictionary used for predictive text input.

Voicemail – history of voicemail messages.

The primary classes used when working with a ContentProvider are shown here:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/content-providers/how-it-works.md
https://docs.microsoft.com/en-us/dotnet/api/android.provider

In this diagram, the ContentProvider implements queries and registers URI's that other applications use to

locate data. The ContentResolver acts as a 'proxy' to the ContentProvider (Query, Insert, Update, and Delete

methods). The SQLiteOpenHelper contains data used by the ContentProvider , but it is not directly exposed to

consuming apps. The CursorAdapter passes the cursor returned by the ContentResolver to display in a

ListView . The UriMatcher is a helper class that parses URIs when processing queries.

The purpose of each class is described below:

ContentProviderContentProvider – Implement this abstract class's methods to expose data. The API is made available to

other classes and applications via the Uri attribute that is added to the class definition.

SQLiteOpenHelperSQLiteOpenHelper – Helps implement the SQLite datastore that is exposed by the ContentProvider .

Ur iMatcherUriMatcher – Use UriMatcher in your ContentProvider implementation to help manage Uris that are

used to query the content.

ContentResolverContentResolver – Consuming code uses a ContentResolver to access a ContentProvider instance. The

two classes together take care of the inter-process communication issues, allowing data to be easily

shared between applications. Consuming code never creates a ContentProvider class explicity; instead,

the data is accessed by creating a cursor based on a Uri exposed by the ContentProvider application.

CursorAdapterCursorAdapter – Use CursorAdapter or SimpleCursorAdapter to display data accessed via a

ContentProvider .

The ContentProvider API allows consumers to perform a variety of operations on the data, such as:

Query data to return lists or individual records.

Modify individual records.

Add new records.

Delete records.

This document contains an example that uses a system-provided ContentProvider , as well as a simple read-only

example that implements a custom ContentProvider .

file:///T:/c1uy/n1bv/xamarin/android/platform/content-providers/how-it-works-images/classdiagram1.png#lightbox

Using the Contacts ContentProvider
 7/8/2021 • 5 minutes to read • Edit Online

 Creating Inputs for a Query

var uri = ContactsContract.Contacts.ContentUri;
string[] projection = {
 ContactsContract.Contacts.InterfaceConsts.Id,
 ContactsContract.Contacts.InterfaceConsts.DisplayName,
 ContactsContract.Contacts.InterfaceConsts.PhotoId,
};

Code that uses access data exposed by a ContentProvider doesn't require a reference to the ContentProvider

class at all. Instead, a Uri is used to create a cursor over the data exposed by the ContentProvider . Android uses

the Uri to search the system for the application that exposes a ContentProvider with that identifier. The Uri is a

string, typically in a reverse-DNS format such as com.android.contacts/data .

Rather than making developers remember this string, the Android Contacts provider exposes its metadata in the

android.provider.ContactsContract class. This class is used to determine the Uri of the ContentProvider as well

as the names of the tables and columns that can be queried.

Some data types also require special permission to access. The built-in contacts list requires the

android.permission.READ_CONTACTS permission in the AndroidManifest.xmlAndroidManifest.xml file.

There are three ways to create a cursor from the Uri:

1. ManagedQuer y()ManagedQuer y() – The preferred approach in Android 2.3 (API Level 10) and earlier, a ManagedQuery

returns a cursor and also automatically manages refreshing the data and closing the cursor. This method

is deprecated in Android 3.0 (API Level 11).

2. ContentResolver.Quer y()ContentResolver.Quer y() – Returns an unmanaged cursor, which means it must be refreshed and

closed explicitly in code.

3. CursorLoader().LoadInBackground()CursorLoader().LoadInBackground() – Introduced in Android 3.0 (API Level 11), CursorLoader is now

the preferred way to consume a ContentProvider . CursorLoader queries a ContentResolver on a

background thread so the UI isn't blocked. This class can be accessed in older versions of Android using

the v4 compatibility library.

Each of these methods has the same basic set of inputs:

UriUri – The fully qualified name of the ContentProvider .

ProjectionProjection – Specification of which columns to select for the cursor.

SelectionSelection – Similar to a SQL WHERE clause.

SelectionArgsSelectionArgs – Parameters to be substituted in the Selection.

Sor tOrderSor tOrder – Columns to sort by.

The ContactsProvider sample code performs a very simple query against Android's built-in Contacts provider.

You do not need to know the actual Uri or column names - all the information required to query the Contacts

ContentProvider is available as constants exposed by the ContactsContract class.

Regardless of which method is used to retrieve the cursor, these same objects are used as parameters as shown

in the ContactsProvider/ContactsAdapter.cs file:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/content-providers/contacts-contentprovider.md

 Creating a Cursor from a Content Provider Uri

 Using a Managed QueryUsing a Managed Query

var cursor = activity.ManagedQuery(uri, projection, null, null, null);

 Using ContentResolverUsing ContentResolver

var cursor = activity.ContentResolver(uri, projection, null, null, null);

cursor.Close();

 Using CursorLoaderUsing CursorLoader

var loader = new CursorLoader (activity, uri, projection, null, null, null);
var cursor = (ICursor)loader.LoadInBackground();

 Displaying the Cursor Data with a Custom Adapter

For this example, the selection , selectionArgs and sortOrder will be ignored by setting them to null .

Once the parameter objects have been created, they can be used in one of the following three ways:

Applications targeting Android 2.3 (API Level 10) or earlier should use this method:

This cursor will be managed by Android so you do not need to close it.

Accessing ContentResolver directly to get a cursor against a ContentProvider can be done like this:

This cursor is unmanaged, so it must be closed when no longer required. Ensure that the code closes a cursor

that is open, otherwise an error will occur.

Alternatively, you can call StartManagingCursor() and StopManagingCursor() to 'manage' the cursor. Managed

cursors are automatically deactivated and re-queried when Activities are stopped and restarted.

Applications built for Android 3.0 (API Level 11) or newer should use this method:

The CursorLoader ensures that all cursor operations are done on a background thread, and can intelligently re-

use an existing cursor across activity instances when an activity is restarted (e.g. due to a configuration change)

rather that reload the data again.

Earlier Android versions can also use the CursorLoader class by using the v4 support libraries.

To display the contact image we'll use a custom adapter, so that we can manually resolve the PhotoId reference

to an image file path.

To display data with a custom adapter, the example uses a CursorLoader to retrieve all the Contact data into a

local collection in the FillContactsFillContacts method from ContactsProvider/ContactsAdapter.csContactsProvider/ContactsAdapter.cs :

https://developer.android.com/tools/support-library/index.html

void FillContacts ()
{
 var uri = ContactsContract.Contacts.ContentUri;
 string[] projection = {
 ContactsContract.Contacts.InterfaceConsts.Id,
 ContactsContract.Contacts.InterfaceConsts.DisplayName,
 ContactsContract.Contacts.InterfaceConsts.PhotoId
 };
 // CursorLoader introduced in Honeycomb (3.0, API11)
 var loader = new CursorLoader(activity, uri, projection, null, null, null);
 var cursor = (ICursor)loader.LoadInBackground();
 contactList = new List<Contact> ();
 if (cursor.MoveToFirst ()) {
 do {
 contactList.Add (new Contact{
 Id = cursor.GetLong (cursor.GetColumnIndex (projection [0])),
 DisplayName = cursor.GetString (cursor.GetColumnIndex (projection [1])),
 PhotoId = cursor.GetString (cursor.GetColumnIndex (projection [2]))
 });
 } while (cursor.MoveToNext());
 }
}

Activity activity;
public ContactsAdapter (Activity activity)
{
 this.activity = activity;
 FillContacts ();
}
public override int Count {
 get { return contactList.Count; }
}
public override Java.Lang.Object GetItem (int position)
{
 return null; // could wrap a Contact in a Java.Lang.Object to return it here if needed
}
public override long GetItemId (int position)
{
 return contactList [position].Id;
}
public override View GetView (int position, View convertView, ViewGroup parent)
{
 var view = convertView ?? activity.LayoutInflater.Inflate (Resource.Layout.ContactListItem, parent,
false);
 var contactName = view.FindViewById<TextView> (Resource.Id.ContactName);
 var contactImage = view.FindViewById<ImageView> (Resource.Id.ContactImage);
 contactName.Text = contactList [position].DisplayName;
 if (contactList [position].PhotoId == null) {
 contactImage = view.FindViewById<ImageView> (Resource.Id.ContactImage);
 contactImage.SetImageResource (Resource.Drawable.ContactImage);
 } else {
 var contactUri = ContentUris.WithAppendedId (ContactsContract.Contacts.ContentUri, contactList
[position].Id);
 var contactPhotoUri = Android.Net.Uri.WithAppendedPath (contactUri,
Contacts.Photos.ContentDirectory);
 contactImage.SetImageURI (contactPhotoUri);
 }
 return view;
}

Then implement the BaseAdapter's methods using the contactList collection. The adapter is implemented just

as it would be with any other collection – there is no special handling here because the data is sourced from a

ContentProvider :

 Displaying the Cursor Data with a SimpleCursorAdapter

var uri = ContactsContract.Contacts.ContentUri;
string[] projection = {
 ContactsContract.Contacts.InterfaceConsts.Id,
 ContactsContract.Contacts.InterfaceConsts.DisplayName
};
var loader = new CursorLoader (this, uri, projection, null, null, null);
var cursor = (ICursor)loader.LoadInBackground();
var fromColumns = new string[] {ContactsContract.Contacts.InterfaceConsts.DisplayName};
var toControlIds = new int[] {Android.Resource.Id.Text1};
adapter = new SimpleCursorAdapter (this, Android.Resource.Layout.SimpleListItem1, cursor, fromColumns,
toControlsIds);
listView.Adapter = adapter;

 Related Links

The image is displayed (if it exists) using the Uri to the image file on the device. The application looks like this:

Using a similar code pattern, your application can access a wide variety of system data including the user's

photos, videos and music. Some data types require special permissions to be requested in the project's

AndroidManifest.xmlAndroidManifest.xml .

The cursor could also be displayed with a SimpleCursorAdapter (although only the name will be displayed, not

the photo). This code demonstrates how to use a ContentProvider with SimpleCursorAdapter (this code does not

appear in the sample):

Refer to the ListViews and Adapters for further information on implementing SimpleCursorAdapter .

ContactsAdapter Demo (sample)

file:///T:/c1uy/n1bv/xamarin/android/platform/content-providers/contacts-contentprovider-images/contactsprovider.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/platformfeatures-contactsadapterdemo

Creating a Custom ContentProvider
 7/8/2021 • 9 minutes to read • Edit Online

 About ContentProviders

 URI (Authority)URI (Authority)

 Mime TypeMime Type

 Data Model MetadataData Model Metadata

 Implementation

The previous section demonstrated how to consume data from a built-in ContentProvider implementation. This

section will explain how to build a custom ContentProvider and then consume its data.

A content provider class must inherit from ContentProvider . It should consist of an internal data store that is

used to respond to queries and it should expose Uris and MIME Types as constants to help consuming code

make valid requests for data.

ContentProviders are accessed in Android using a Uri. An application that exposes a ContentProvider sets the

Uris that it will respond to in its AndroidManifest.xmlAndroidManifest.xml file. When the application is installed, these Uris are

registered so that other applications can access them.

In Mono for Android, the content provider class should have a [ContentProvider] attribute to specify the Uri (or

Uris) that should be added to AndroidManifest.xmlAndroidManifest.xml .

The typical format for MIME Types consists of two parts. Android ContentProviders commonly use these two

strings for the first part of the MIME Type:

1. vnd.android.cursor.item – to represent a single row, use the ContentResolver.CursorItemBaseType

constant in code.

2. vnd.android.cursor.dir – for multiple rows, use the ContentResolver.CursorDirBaseType constant in code.

The second part of the MIME Type is specific to your application, and should use a reverse-DNS standard with a

vnd. prefix. The sample code uses vnd.com.xamarin.sample.Vegetables .

Consuming applications need to construct Uri queries to access different types of data. The base Uri can be

expanded to refer to a particular table of data and may also include parameters to filter the results. The columns

and clauses used with the resulting cursor to display data must also be declared.

To ensure that only valid Uri queries are constructed, it is customary to provide the valid strings as constant

values. This makes it easier to access the ContentProvider because it makes the values discoverable via code-

completion, and prevents typos in the strings.

In the previous example the android.provider.ContactsContract class exposed the metadata for the Contacts

data. For our custom ContentProvider we will just expose the constants on the class itself.

There are three steps to creating and consuming a custom ContentProvider :

1. Create a database classCreate a database class – Implement SQLiteOpenHelper .

2. Create a Create a ContentProvider class class – Implement ContentProvider with an instance of the database,

metadata exposed as constant values and methods to access the data.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/content-providers/custom-contentprovider.md

 Create a Database

class VegetableDatabase : SQLiteOpenHelper {
 const string create_table_sql =
 "CREATE TABLE [vegetables] ([_id] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE, [name] TEXT NOT
NULL UNIQUE)";
 const string DatabaseName = "vegetables.db";
 const int DatabaseVersion = 1;

 public VegetableDatabase(Context context) : base(context, DatabaseName, null, DatabaseVersion) { }
 public override void OnCreate(SQLiteDatabase db)
 {
 db.ExecSQL(create_table_sql);
 // seed with data
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Vegetables')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Fruits')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Flower Buds')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Legumes')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Bulbs')");
 db.ExecSQL("INSERT INTO vegetables (name) VALUES ('Tubers')");
 }
 public override void OnUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)
 {
 throw new NotImplementedException();
 }
}

 Create the ContentProvider

 Initialize the DatabaseInitialize the Database

3. Access the Access the ContentProvider v ia its Uri v ia its Uri – Populate a CursorAdapter using the ContentProvider ,

accessed via its Uri.

As previously discussed, ContentProviders can be consumed from applications other than where they are

defined. In this example the data is consumed in the same application, but keep in mind that other applications

can also access it as long as they know the Uri and information about the schema (which is usually exposed as

constant values).

Most ContentProvider implementations will be based on a SQLite database. The example database code in

SimpleContentProvider/VegetableDatabase.csS impleContentProvider/VegetableDatabase.cs creates a very simple two-column database, as shown:

The database implementation itself does not need any special considerations to be exposed with a

ContentProvider , however if you intend to bind the ContentProvider's data to a ListView control then a

unique integer column named _id must be part of the result set. See the ListViews and Adapters document for

more details on using the ListView control.

The rest of this section gives step-by-step instructions on how the

SimpleContentProvider/VegetableProvider.csS impleContentProvider/VegetableProvider.cs example class was built.

The first step is to subclass ContentProvider and add the database that it will use.

public class VegetableProvider : ContentProvider
{
 VegetableDatabase vegeDB;
 public override bool OnCreate()
 {
 vegeDB = new VegetableDatabase(Context);
 return true;
 }
}

 Add Metadata for Consumers

[ContentProvider(new string[] { CursorTableAdapter.VegetableProvider.AUTHORITY })]
public class VegetableProvider : ContentProvider
{
 public const string AUTHORITY = "com.xamarin.sample.VegetableProvider";
 static string BASE_PATH = "vegetables";
 public static readonly Android.Net.Uri CONTENT_URI = Android.Net.Uri.Parse("content://" + AUTHORITY + "/"
+ BASE_PATH);
 // MIME types used for getting a list, or a single vegetable
 public const string VEGETABLES_MIME_TYPE = ContentResolver.CursorDirBaseType +
"/vnd.com.xamarin.sample.Vegetables";
 public const string VEGETABLE_MIME_TYPE = ContentResolver.CursorItemBaseType +
"/vnd.com.xamarin.sample.Vegetables";
 // Column names
 public static class InterfaceConsts {
 public const string Id = "_id";
 public const string Name = "name";
 }
 VegetableDatabase vegeDB;
 public override bool OnCreate()
 {
 vegeDB = new VegetableDatabase(Context);
 return true;
 }
}

 Implement the URI Parsing Helper

The rest of the code will form the actual content provider implementation that allows the data to be discovered

and queried.

There are four different types of metadata that we are going to expose on the ContentProvider class. Only the

authority is required, the rest are done by convention.

AuthorityAuthority – The ContentProvider attribute must be added to the class so that it is registered with the

Android when the application is installed.

UriUri – The CONTENT_URI is exposed as a constant so that it is easy to use in code. It should match the

Authority, but include the scheme and base path.

MIME TypesMIME Types – Lists of results and single results are treated as different content types, so we define two

MIME Types to represent them.

InterfaceConstsInterfaceConsts – Provide a constant value for each data column name, so that consuming code can

easily discover and refer to them without risking typographical errors.

This code shows how each of these items is implemented, adding to the database definition from the previous

step:

const int GET_ALL = 0; // return code when list of Vegetables requested
const int GET_ONE = 1; // return code when a single Vegetable is requested by ID
static UriMatcher uriMatcher = BuildUriMatcher();
static UriMatcher BuildUriMatcher()
{
 var matcher = new UriMatcher(UriMatcher.NoMatch);
 // Uris to match, and the code to return when matched
 matcher.AddURI(AUTHORITY, BASE_PATH, GET_ALL); // all vegetables
 matcher.AddURI(AUTHORITY, BASE_PATH + "/#", GET_ONE); // specific vegetable by numeric ID
 return matcher;
}

 Implement the QueryMethod

public override Android.Database.ICursor Query(Android.Net.Uri uri, string[] projection, string selection,
string[] selectionArgs, string sortOrder)
{
 switch (uriMatcher.Match(uri)) {
 case GET_ALL:
 return GetFromDatabase();
 case GET_ONE:
 var id = uri.LastPathSegment;
 return GetFromDatabase(id); // the ID is the last part of the Uri
 default:
 throw new Java.Lang.IllegalArgumentException("Unknown Uri: " + uri);
 }
}
Android.Database.ICursor GetFromDatabase()
{
 return vegeDB.ReadableDatabase.RawQuery("SELECT _id, name FROM vegetables", null);
}
Android.Database.ICursor GetFromDatabase(string id)
{
 return vegeDB.ReadableDatabase.RawQuery("SELECT _id, name FROM vegetables WHERE _id = " + id, null);
}

Because consuming code uses Uris to make requests of a ContentProvider , we need to be able to parse those

requests to determine what data to return. The UriMatcher class can help to parse Uris, once it has been

initialized with the Uri patterns that the ContentProvider supports.

The UriMatcher in the example will be initialized with two Uris:

1. "com.xamarin.sample.VegetableProvider/vegetables" – request to return the full list of vegetables.

2. "com.xamarin.sample.VegetableProvider/vegetables/#" – where the # is a placeholder for a numeric

parameter (the _id of the row in the database). An asterisk placeholder ("*") can also be used to match a

text parameter.

In the code we use the constants to refer to metadata values like the AUTHORITY and BASE_PATH. The return

codes will be used in methods that do Uri parsing, to determine what data to return.

This code is all private to the ContentProvider class. Refer to Google's UriMatcher documentation for further

information.

The simplest ContentProvider method to implement is the Query method. The implementation below uses the

UriMatcher to parse the uri parameter and call the correct database method. If the uri contains an ID

parameter then the integer is parsed out (using LastPathSegment) and used in the database query.

The GetType method must also be overridden. This method may be called to determine the content type that

will be returned for a given Uri. This might tell the consuming application how to handle that data.

https://docs.microsoft.com/en-us/dotnet/api/android.content.urimatcher

public override String GetType(Android.Net.Uri uri)
{
 switch (uriMatcher.Match(uri)) {
 case GET_ALL:
 return VEGETABLES_MIME_TYPE; // list
 case GET_ONE:
 return VEGETABLE_MIME_TYPE; // single item
 default:
 throw new Java.Lang.IllegalArgumentExceptoin ("Unknown Uri: " + uri);
 }
}

 Implement the Other Overrides

public override int Delete(Android.Net.Uri uri, string selection, string[] selectionArgs)
{
 throw new Java.Lang.UnsupportedOperationException();
}
public override Android.Net.Uri Insert(Android.Net.Uri uri, ContentValues values)
{
 throw new Java.Lang.UnsupportedOperationException();
}
public override int Update(Android.Net.Uri uri, ContentValues values, string selection, string[]
selectionArgs)
{
 throw new Java.Lang.UnsupportedOperationException();
}

 Access the ContentProvider

 Bind a ListView to a ContentProvider

Our simple example does not allow for editing or deletion of data, but the Insert, Update and Delete methods

must be implemented so add them without an implementation:

That completes the basic ContentProvider implementation. Once the application has been installed, the data it

exposes will be available both inside the application but also to any other application that knows the Uri to

reference it.

Once the VegetableProvider has been implemented, accessing it is done the same way as the Contacts provider

at the start of this document: obtain a cursor using the specified Uri and then use an adapter to access the data.

To populate a ListView with data we use the Uri that corresponds to the unfiltered list of vegetables. In the code

we use the constant value VegetableProvider.CONTENT_URI , which we know resolves to

com.xamarin.sample.vegetableprovider/vegetables . Our VegetableProvider.Query implementation will return a

cursor that can then be bound to the ListView .

The code in SimpleContentProvider/HomeScreen.cs shows how simple it is to display data from a

ContentProvider :

listView = FindViewById<ListView>(Resource.Id.List);
string[] projection = new string[] { VegetableProvider.InterfaceConsts.Id,
VegetableProvider.InterfaceConsts.Name} ;
string[] fromColumns = new string[] { VegetableProvider.InterfaceConsts.Name };
int[] toControlIds = new int[] { Android.Resource.Id.Text1 };

// CursorLoader introduced in Honeycomb (3.0, API_11)
var loader = new CursorLoader(this,
 VegetableProvider.CONTENT_URI, projection, null, null, null);
cursor = (ICursor)loader.LoadInBackground();

// Create a SimpleCursorAdapter
adapter = new SimpleCursorAdapter(this, Android.Resource.Layout.SimpleListItem1, cursor, fromColumns,
toControlIds);
listView.Adapter = adapter;

 Retrieve a Single Item from a ContentProvider

Uri.WithAppendedPath(VegetableProvider.CONTENT_URI, id.ToString());

The resulting application looks like this:

A consuming application might also want to access single rows of data, which can be done by constructing a

different Uri that refers to a specific row (for example).

Use ContentResolver directly to access a single item, by building up a Uri with the required Id .

The complete method looks like this:

file:///T:/c1uy/n1bv/xamarin/android/platform/content-providers/custom-contentprovider-images/api11-contentprovider2.png#lightbox

protected void OnListItemClick(object sender, AdapterView.ItemClickEventArgs e)
{
 var id = e.Id;
 string[] projection = new string[] { "name" };
 var uri = Uri.WithAppendedPath(VegetableProvider.CONTENT_URI, id.ToString());
 ICursor vegeCursor = ContentResolver.Query(uri, projection, null, new string[] { id.ToString() }, null);
 string text = "";
 if (vegeCursor.MoveToFirst()) {
 text = vegeCursor.GetInt(0) + " " + vegeCursor.GetString(1);
 Android.Widget.Toast.MakeText(this, text, Android.Widget.ToastLength.Short).Show();
 }
 vegeCursor.Close();
}

 Related Links
SimpleContentProvider (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/platformfeatures-simplecontentprovider

Maps and Location on Android
 10/28/2019 • 2 minutes to read • Edit Online

 Location Services

 Maps

This guide introduces location-awareness in Android applications, and illustrates how to get the user's location

using the Android Location Service API, as well as the Fused Location Provider available with the Google

Location Services API.

This article discusses how to use maps and location with Xamarin.Android. It covers everything from leveraging

the built-in maps application to using the Google Maps Android API V2 directly. Additionally, it explains how to

use a single API to work with location services, which allows an application to obtain location fixes via cell tower

location, Wi-Fi or GPS.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/maps-and-location/index.md

Location services on Android
 7/8/2021 • 13 minutes to read • Edit Online

 Location fundamentals

 Location providersLocation providers

 Location permissionsLocation permissions

This guide introduces location-awareness in Android applications and illustrates how to get the user's location

using the Android Location Service API, as well as the fused location provider available with the Google Location

Services API.

Android provides access to various location technologies such as cell tower location, Wi-Fi, and GPS. The details

of each location technology are abstracted through location providers, allowing applications to obtain locations

in the same way regardless of the provider used. This guide introduces the fused location provider, a part of the

Google Play Services, which intelligently determines the best way to obtain the location of the devices based on

what providers are available and how the device is being used. Android Location Service API and shows how to

communicate with the system location Service using a LocationManager . The second part of the guide explores

the Android Location Services API using the LocationManager .

As a general rule of thumb, applications should prefer to use the fused location provider, falling back the older

Android Location Service API only when necessary.

In Android, no matter what API you choose for working with location data, several concepts remain the same.

This section introduces Location Providers and location-related permissions.

Several technologies are used internally to pinpoint the user's location. The hardware used depends on the type

of location provider selected for the job of collecting data. Android uses three location providers:

GPS ProviderGPS Provider – GPS gives the most accurate location, uses the most power, and works best outdoors.

This provider uses a combination of GPS and assisted GPS (aGPS), which returns GPS data collected by

cellular towers.

Network ProviderNetwork Provider – Provides a combination of WiFi and Cellular data, including aGPS data collected by

cell towers. It uses less power than the GPS Provider, but returns location data of varying accuracy.

Passive ProviderPassive Provider – A "piggyback" option using providers requested by other applications or Services to

generate location data in an application. This is a less reliable but power-saving option ideal for

applications that don't require constant location updates to work.

Location providers are not always available. For example, we might want to use GPS for our application, but GPS

might be turned off in Settings, or the device might not have GPS at all. If a specific provider is not available,

choosing that provider might return null .

A location-aware application needs access a device's hardware sensors to receive GPS, Wi-Fi, and cellular data.

Access is controlled through appropriate permissions in the application's Android Manifest. There are two

permissions available – depending on your application's requirements and your choice of API, you will want to

allow one:

ACCESS_FINE_LOCATION – Allows an application access to GPS. Required for the GPS Provider and Passive

Provider options (Passive Provider needs permission to access GPS data collected by another application

or Service). Optional permission for the Network Provider.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/maps-and-location/location.md
https://en.wikipedia.org/wiki/Assisted_GPS

NOTENOTE

 if (ContextCompat.CheckSelfPermission(this, Manifest.Permission.AccessFineLocation) == Permission.Granted)
{
 StartRequestingLocationUpdates();
 isRequestingLocationUpdates = true;
}
else
{
 // The app does not have permission ACCESS_FINE_LOCATION
}

ACCESS_COARSE_LOCATION – Allows an application access to Cellular and Wi-Fi location. Required for

Network Provider if ACCESS_FINE_LOCATION is not set.

For apps that target API version 21 (Android 5.0 Lollipop) or higher, you can enable ACCESS_FINE_LOCATION and

still run on devices that do not have GPS hardware. If your app requires GPS hardware, you should explicitly add

an android.hardware.location.gps uses-feature element to the Android Manifest. For more information, see

the Android uses-feature element reference.

To set the permissions, expand the Proper tiesProper ties folder in the Solution PadSolution Pad and double-click

AndroidManifest.xmlAndroidManifest.xml . The permissions will be listed under Required PermissionsRequired Permissions :

Setting either of these permissions tells Android that your application needs permission from the user in order

to access to the location providers. Devices that run API level 22 (Android 5.1) or lower will ask the user to grant

these permissions each time the app is installed. On devices running API level 23 (Android 6.0) or higher, the

app should perform a run-time permission check before making a request of the location provider.

Note: Setting ACCESS_FINE_LOCATION implies access to both coarse and fine location data. You should never have to set

both permissions, only the minimal permission your app requires to work.

This snippet is an example of how to check that an app has permission for the ACCESS_FINE_LOCATION permission:

Apps must be tolerant of the scenario where the user will not grant permission (or has revoked the permission)

https://developer.android.com/guide/topics/manifest/uses-feature-element.html
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/location-images/location-01-xs.png#lightbox

 Using the fused location provider

using Android.Gms.Common;
using Android.Gms.Location;

 Checking if Google Play Services is installedChecking if Google Play Services is installed

bool IsGooglePlayServicesInstalled()
{
 var queryResult = GoogleApiAvailability.Instance.IsGooglePlayServicesAvailable(this);
 if (queryResult == ConnectionResult.Success)
 {
 Log.Info("MainActivity", "Google Play Services is installed on this device.");
 return true;
 }

 if (GoogleApiAvailability.Instance.IsUserResolvableError(queryResult))
 {
 // Check if there is a way the user can resolve the issue
 var errorString = GoogleApiAvailability.Instance.GetErrorString(queryResult);
 Log.Error("MainActivity", "There is a problem with Google Play Services on this device: {0} - {1}",
 queryResult, errorString);

 // Alternately, display the error to the user.
 }

 return false;
}

and have a way to gracefully deal with that situation. Please see the Permissions guide for more details on

implementing run-time permission checks in Xamarin.Android.

The fused location provider is the preferred way for Android applications to receive location updates from the

device because it will efficiently select the location provider during run time to provide the best location

information in a battery-efficient fashion. For example, a user walking around outdoors gets the best location

reading with GPS. If the user then walks indoors, where GPS works poorly (if at all), the fused location provider

may automatically switch to WiFi, which works better indoors.

The fused location provider API provides a variety of other tools to empower location-aware applications,

including geofencing and activity monitoring. In this section, we are going to focus on the basics of setting up

the LocationClient , establishing providers, and getting the user's location.

The fused location provider is part of Google Play Services. The Google Play Services package must be installed

and configured properly in the application for the fused location provider API to work, and the device must have

the Google Play Services APK installed.

Before a Xamarin.Android application can use the fused location provider, it must add the

Xamarin.GooglePlaySer vices.LocationXamarin.GooglePlaySer vices.Location package to the project. In addition, the following using statements

should be added to any source files that reference the classes described below:

A Xamarin.Android will crash if it tries to use the fused location provider when Google Play Services is not

installed (or out of date) then a runtime exception would occur. If Google Play Services is not installed, then the

application should fall back to the Android Location Service discussed above. If Google Play Services is out of

date, then the app could display a message to the user asking them to update the installed version of Google

Play Services.

This snippet is an example of how an Android Activity can programmatically check if Google Play Services is

installed:

https://developer.android.com/google/play-services/index.html

 FusedLocationProviderClientFusedLocationProviderClient

public class MainActivity: AppCompatActivity
{
 FusedLocationProviderClient fusedLocationProviderClient;

 protected override void OnCreate(Bundle bundle)
 {
 fusedLocationProviderClient = LocationServices.GetFusedLocationProviderClient(this);
 }
}

 Getting the last known locationGetting the last known location

async Task GetLastLocationFromDevice()
{
 // This method assumes that the necessary run-time permission checks have succeeded.
 getLastLocationButton.SetText(Resource.String.getting_last_location);
 Android.Locations.Location location = await fusedLocationProviderClient.GetLastLocationAsync();

 if (location == null)
 {
 // Seldom happens, but should code that handles this scenario
 }
 else
 {
 // Do something with the location
 Log.Debug("Sample", "The latitude is " + location.Latitude);
 }
}

 Subscribing to location updatesSubscribing to location updates

await fusedLocationProviderClient.RequestLocationUpdatesAsync(locationRequest, locationCallback);

To interact with the fused location provider, a Xamarin.Android application must have an instance of the

FusedLocationProviderClient . This class exposes the necessary methods to subscribe to location updates and to

retrieve the last known location of the device.

The OnCreate method of an Activity is a suitable place to get a reference to the FusedLocationProviderClient , as

demonstrated in the following code snippet:

The FusedLocationProviderClient.GetLastLocationAsync() method provides a simple, non-blocking way for a

Xamarin.Android application to quickly obtain the last known location of the device with minimal coding

overhead.

This snippet shows how to use the GetLastLocationAsync method to retrieve the location of the device:

A Xamarin.Android application can also subscribe to location updates from the fused location provider using the

FusedLocationProviderClient.RequestLocationUpdatesAsync method, as shown in this code snippet:

This method takes two parameters:

Android.Gms.Location.LocationRequest – A LocationRequest object is how a Xamarin.Android application

passes the parameters on how the fused location provider should work. The LocationRequest holds

information such as how frequent requests should be made or how important an accurate location

update should be. For example, an important location request will cause the device to use the GPS, and

consequently more power, when determining the location. This code snippet shows how to create a

LocationRequest for a location with high accuracy, checking approximately every five minutes for a

location update (but not sooner than two minutes between requests). The fused location provider will use

public class FusedLocationProviderCallback : LocationCallback
{
 readonly MainActivity activity;

 public FusedLocationProviderCallback(MainActivity activity)
 {
 this.activity = activity;
 }

 public override void OnLocationAvailability(LocationAvailability locationAvailability)
 {
 Log.Debug("FusedLocationProviderSample", "IsLocationAvailable:
{0}",locationAvailability.IsLocationAvailable);
 }

 public override void OnLocationResult(LocationResult result)
 {
 if (result.Locations.Any())
 {
 var location = result.Locations.First();
 Log.Debug("Sample", "The latitude is :" + location.Latitude);
 }
 else
 {
 // No locations to work with.
 }
 }
}

 Using the Android Location Service API

LocationRequest locationRequest = new LocationRequest()
 .SetPriority(LocationRequest.PriorityHighAccuracy)
 .SetInterval(60 * 1000 * 5)
 .SetFastestInterval(60 * 1000 * 2);

a LocationRequest as guidance for which location provider to use when trying to determine the device

location:

Android.Gms.Location.LocationCallback – In order to receive location updates, a Xamarin.Android

application must subclass the LocationProvider abstract class. This class exposed two methods which

maybe invoked by the fused location provider to update the app with location information. This will be

discussed in more detail below.

To notify a Xamarin.Android application of a location update, the fused location provider will invoke the

LocationCallBack.OnLocationResult(LocationResult result) . The Android.Gms.Location.LocationResult parameter

will contain the update location information.

When the fused location provider detects a change in the availability of location data, it will call the

LocationProvider.OnLocationAvailability(LocationAvailability locationAvailability) method. If the

LocationAvailability.IsLocationAvailable property returns true , then it can be assumed that the device

location results reported by OnLocationResult are as accurate and as up to date as required by the

LocationRequest . If IsLocationAvailable is false, then no location results will be return by OnLocationResult .

This code snippet is a sample implementation of the LocationCallback object:

The Android Location Service is an older API for using location information on Android. Location data is

collected by hardware sensors and collected by a system service, which is accessed in the application with a

LocationManager class and an ILocationListener .

 Location ManagerLocation Manager

LocationManager locationManager = (LocationManager) GetSystemService(Context.LocationService);

 Request location updates from the LocationManagerRequest location updates from the LocationManager

// For this example, this method is part of a class that implements ILocationListener, described below
locationManager.RequestLocationUpdates(LocationManager.GpsProvider, 2000, 1, this);

 Responding to updates from the LocationManagerResponding to updates from the LocationManager

The Location Service is best suited for applications that must run on devices that do not have Google Play

Services installed.

The Location Service is a special type of Service managed by the System. A System Service interacts with the

device hardware and is always running. To tap into location updates in our application, we will subscribe to

location updates from the system Location Service using a LocationManager and a RequestLocationUpdates call.

To obtain the user's location using Android Location Service involves several steps:

1. Get a reference to the LocationManager service.

2. Implement the ILocationListener interface and handle events when the location changes.

3. Use the LocationManager to request location updates for a specified provider. The ILocationListener from

the previous step will be used to receive callbacks from the LocationManager .

4. Stop location updates when the application it is no longer appropriate to receive updates.

We can access the system location service with an instance of the LocationManager class. LocationManager is a

special class that lets us interact with the system location Service and call methods on it. An application can get a

reference to the LocationManager by calling GetSystemService and passing in a Service type, as shown below:

OnCreate is a good place to get a reference to the LocationManager . It's a good idea to keep the

LocationManager as a class variable, so that we can call it at various points in the Activity lifecycle.

Once the application has a reference to the LocationManager , it needs to tell the LocationManager what type of

location information that are required, and how often that information is to be updated. Do this by calling

RequestLocationUpdates on the LocationManager object, and passing in some criteria for updates and a callback

that will receive the location updates. This callback is a type that must implement the ILocationListener

interface (described in more detail later in this guide).

The RequestLocationUpdates method tells the system location Service that your application would like to start

receiving location updates. This method allows you to specify the provider, as well as time and distance

thresholds to control update frequency. For example, the method below requests location updates from the GPS

location provider every 2000 milliseconds, and only when the location changes more than 1 metre:

An application should request location updates only as often as required for the application to perform well. This

preserves battery life and creates a better experience for the user.

Once an application has requested updates from the LocationManager , it can receive information from the

Service by implementing the ILocationListener interface. This interface provides four methods for listening to

the location Service and the location provider, OnLocationChanged . The System will call OnLocationChanged when

the user's location changes enough to qualify as a location change according to the Criteria set when requesting

location updates.

The following code shows the methods in the ILocationListener interface:

https://developer.android.com/guide/components/services.html
https://docs.microsoft.com/en-us/dotnet/api/android.locations.ilocationlistener

public class MainActivity : AppCompatActivity, ILocationListener
{
 TextView latitude;
 TextView longitude;

 public void OnLocationChanged (Location location)
 {
 // called when the location has been updated.
 }

 public OnProviderDisabled(string locationProvider)
 {
 // called when the user disables the provider
 }

 public OnProviderEnabled(string locationProvider)
 {
 // called when the user enables the provider
 }

 public OnStatusChanged(string locationProvider, Availability status, Bundle extras)
 {
 // called when the status of the provider changes (there are a variety of reasons for this)
 }
}

 Unsubscribing to LocationManager updatesUnsubscribing to LocationManager updates

protected override void OnPause ()
{
 base.OnPause ();
 locationManager.RemoveUpdates (this);
}

 Determining the best location provider for the LocationManagerDetermining the best location provider for the LocationManager

In order to conserve system resources, an application should unsubscribe to location updates as soon as

possible. The RemoveUpdates method tells the LocationManager to stop sending updates to our application. As an

example, an Activity may call RemoveUpdates in the OnPause method so that we are able to conserve power if an

application doesn't need location updates while its Activity is not on the screen:

If your application needs to get location updates while in the background, you'll want to create a custom Service

that subscribes to the system Location Service. Refer to the Backgrounding with Android Services guide for

more information.

The application above sets GPS as the location provider. However, GPS may not be available in all cases, such as

if the device is indoors or does not have a GPS receiver. If this is the case, the result is a null return for the

Provider.

To get your app to work when GPS is not available, you use the GetBestProvider method to ask for the best

available (device-supported and user-enabled) location provider at application launch. Instead of passing in a

specific provider, you can tell GetBestProvider the requirements for the provider - such as accuracy and power -

with a Criteria object. GetBestProvider returns the best provider for the given Criteria.

The following code shows how to get the best available provider and use it when requesting location updates:

https://docs.microsoft.com/en-us/dotnet/api/android.locations.criteria

Criteria locationCriteria = new Criteria();
locationCriteria.Accuracy = Accuracy.Coarse;
locationCriteria.PowerRequirement = Power.Medium;

locationProvider = locationManager.GetBestProvider(locationCriteria, true);

if(locationProvider != null)
{
 locationManager.RequestLocationUpdates (locationProvider, 2000, 1, this);
}
else
{
 Log.Info(tag, "No location providers available");
}

NOTENOTE
If the user has disabled all location providers, GetBestProvider will return null . To see how this code works on a real

device, be sure to enable GPS, Wi-Fi, and cellular networks under Google Settings > Location > ModeGoogle Settings > Location > Mode as shown in

this screenshot:

The screenshot below demonstrates the location application running using GetBestProvider :

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/location-images/location-02.png#lightbox

 Summary

 Related links

Keep in mind that GetBestProvider does not change the provider dynamically. Rather, it determines the best available

provider once during the Activity lifecycle. If the provider status changes after it has been set, the application will require

additional code in the ILocationListener methods – OnProviderEnabled , OnProviderDisabled , and

OnStatusChanged – to handle every possibility related to the provider switch.

This guide covered obtaining the user's location using both the Android Location Service and the fused location

provider from Google Location Services API.

Location (sample)

FusedLocationProvider (sample)

Google Play Services

Criteria Class

LocationManager Class

LocationListener Class

LocationClient API

LocationListener API

LocationRequest API

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/location-images/location-03.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/location
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/fusedlocationprovider
https://developer.android.com/google/play-services/index.html
https://docs.microsoft.com/en-us/dotnet/api/android.locations.criteria
https://docs.microsoft.com/en-us/dotnet/api/android.locations.locationmanager
https://docs.microsoft.com/en-us/dotnet/api/android.locations.ilocationlistener
https://developer.android.com/reference/com/google/android/gms/location/LocationClient.html
https://developer.android.com/reference/com/google/android/gms/location/LocationListener.html
https://developer.android.com/reference/com/google/android/gms/location/LocationRequest.html

How to use Google Maps and Location with
Xamarin.Android

 11/2/2020 • 2 minutes to read • Edit Online

 Maps Overview

 Related Links

This article discusses how to use maps and location with Xamarin.Android. It covers everything from leveraging

the built-in maps application to using the Google Maps Android API V2 directly.

Mapping technologies are a ubiquitous complement to mobile devices. Desktop computers and laptops don't

tend to have location awareness built-in. On the other hand, mobile devices use such applications to locate

devices and to display changing location information. Android has powerful, built-in technology that displays

location data on maps using location hardware that may be available on the device. This article covers a

spectrum of what the maps applications under Xamarin.Android have to offer, including:

Using the built-in maps application to quickly add mapping functionality.

Working with the Maps API to control a map's display.

Using a variety of techniques to add graphical overlays.

The topics in this section cover a wide range of mapping features. First, they explain how to leverage Android's

built-in maps application and how to display a panoramic street view of a location. Then they discuss how to use

the Maps API to incorporate mapping features directly within an application, covering both how to control the

position and display of a map, as well as how to add graphical overlays.

MapsAndLocationDemo_v3 (sample)

Activity Lifecycle

Obtaining a Google Maps API Key

Intents List: Invoking Google Applications on Android Devices

Location and Maps

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/maps-and-location/maps/index.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/mapsandlocationdemo-v3
https://developer.android.com/guide/appendix/g-app-intents.html
https://developer.android.com/guide/topics/location/index.html

Launching the Maps Application
 7/8/2021 • 2 minutes to read • Edit Online

The simplest way to work with maps in Xamarin.Android is to leverage the built-in maps application shown

below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/maps-and-location/maps/maps-application.md

 Creating the Intent

var geoUri = Android.Net.Uri.Parse ("geo:42.374260,-71.120824");
var mapIntent = new Intent (Intent.ActionView, geoUri);
StartActivity (mapIntent);

 Geo URI Scheme

When you use the maps application, the map will not be part of your application. Instead, your application will

launch the maps application and load the map externally. The next section examines how to use

Xamarin.Android to launch maps like the one above.

Working with the maps application is as easy as creating an Intent with an appropriate URI, setting the action to

ActionView, and calling the StartActivity method. For example, the following code launches the maps application

centered at a given latitude and longitude:

This code is all that is needed to launch the map shown in the previous screenshot. In addition to specifying

latitude and longitude, the URI scheme for maps supports several other options.

The code above used the geo scheme to create a URI. This URI scheme supports several formats, as listed below:

geo:latitude,longitude – Opens the maps application centered at a lat/lon.

geo:latitude,longitude?z=zoom – Opens the maps application centered at a lat/lon and zoomed to the

specified level. The zoom level can range from 1 to 23: 1 displays the entire Earth and 23 is the closest

zoom level.

geo:0,0?q=my+street+address – Opens the maps application to the location of a street address.

geo:0,0?q=business+near+city – Opens the maps application and displays the annotated search results.

The versions of the URI that take a query (namely the street address or search terms) use Google's geocoder

service to retrieve the location that is then displayed on the map. For example, the URI

geo:0,0?q=coop+Cambridge results in the map shown below:

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-application-images/01-mapsapplication.png#lightbox

 Street View

For more information about geo URI schemes, see Show a location on a map.

In addition to the geo scheme, Android also supports loading street views from an Intent. An example of the

street view application launched from Xamarin.Android is shown below:

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-application-images/02-mapsearch.png#lightbox
https://developer.android.com/guide/components/intents-common.html#Maps

var streetViewUri = Android.Net.Uri.Parse (
 "google.streetview:cbll=42.374260,-71.120824&cbp=1,90,,0,1.0&mz=20");
var streetViewIntent = new Intent (Intent.ActionView, streetViewUri);
StartActivity (streetViewIntent);

google.streetview:cbll=lat,lng&cbp=1,yaw,,pitch,zoom&mz=mapZoom

To launch a street view, simply use the google.streetview URI scheme, as demonstrated in the following code:

The google.streetview URI scheme used above takes the following form:

As you can see, there are several parameters supported, as listed below:

lat – The latitude of the location to be shown in the street view.

lng – The longitude of the location to be shown in the street view.

pitch – Angle of street view panorama, measured from the center in degrees where 90 degrees is

straight down and -90 degrees is straight up.

yaw – Center-of-view of street view panorama, measured clockwise in degrees from North.

zoom – Zoom multiplier for street view panorama, where 1.0 = normal zoom, 2.0 = zoomed 2x, 3.0 =

zoomed 4x, etc.

mz – The map zoom level that will be used when going to the maps application from the street view.

Working with the built-in maps application or the street view is an easy way to quickly add mapping support.

However, Android's Maps API offers finer control over the mapping experience.

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-application-images/03-streetview.png#lightbox

Using the Google Maps API in your application
 7/8/2021 • 18 minutes to read • Edit Online

 Google Maps API prerequisites

 Obtain a Google Maps API KeyObtain a Google Maps API Key

 Install the Google Play Services SDKInstall the Google Play Services SDK

Using the Maps application is great, but sometimes you want to include maps directly in your application. In

addition to the built-in maps application, Google also offers a native mapping API for Android. The Maps API is

suitable for cases where you want to maintain more control over the mapping experience. Things that are

possible with the Maps API include:

Programmatically changing the viewpoint of the map.

Adding and customizing markers.

Annotating a map with overlays.

Unlike the now-deprecated Google Maps Android API v1, Google Maps Android API v2 is part of Google Play

Services. A Xamarin.Android app must meet some mandatory prerequisites before it is possible to use the

Google Maps Android API.

Several steps need to be taken before you can use the Maps API, including:

Obtain a Maps API key

Install the Google Play Services SDK

Install the Xamarin.GooglePlayServices.Maps package from NuGet

Specify the required permissions

Optionally, Create an emulator with the Google APIs

The first step is to get a Google Maps API key (note that you cannot reuse an API key from the legacy Google

Maps v1 API). For information about how to obtain and use the API key with Xamarin.Android, see Obtaining A

Google Maps API Key.

Google Play Services is a technology from Google that allows Android applications to take advantage of various

Google features such as Google+, In-App Billing, and Maps. These features are accessible on Android devices as

background services, which are contained in the Google Play Services APK.

Android applications interact with Google Play Services through the Google Play Services client library. This

library contains the interfaces and classes for the individual services such as Maps. The following diagram

shows the relationship between an Android application and Google Play Services:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/maps-and-location/maps/maps-api.md
https://developers.google.com/maps/documentation/android-sdk/intro
https://developers.google.com/android/guides/overview
https://play.google.com/store/apps/details?id=com.google.android.gms&hl=en

NOTENOTE

 Install the Xamarin.GooglePlayServices.Maps package from NuGetInstall the Xamarin.GooglePlayServices.Maps package from NuGet

The Android Maps API is provided as a part of Google Play Services. Before a Xamarin.Android application can

use the Maps API, the Google Play Services SDK must be installed using the Android SDK Manager. The

following screenshot shows where in the Android SDK Manager the Google Play services client can be found:

The Google Play services APK is a licensed product that may not be present on all devices. If it is not installed, then

Google Maps will not work on the device.

The Xamarin.GooglePlayServices.Maps package contains the Xamarin.Android bindings for the Google Play

Services Maps API. To add the Google Play Services Map package, right-click the ReferencesReferences folder of your

project in the Solution Explorer and click Manage NuGet Packages...Manage NuGet Packages... :

https://www.nuget.org/packages/Xamarin.GooglePlayServices.Maps

 Specify the required permissionsSpecify the required permissions

This opens the NuGet Package ManagerNuGet Package Manager . Click BrowseBrowse and enter Xamarin Google Play Ser vices MapsXamarin Google Play Ser vices Maps in

the search field. Select Xamarin.GooglePlaySer vices.MapsXamarin.GooglePlaySer vices.Maps and click InstallInstall . (If this package had been

installed previously, click UpdateUpdate.):

Notice that the following dependency packages are also installed:

Xamarin.GooglePlaySer vices.BaseXamarin.GooglePlaySer vices.Base

Xamarin.GooglePlaySer vices.BasementXamarin.GooglePlaySer vices.Basement

Xamarin.GooglePlaySer vices.TasksXamarin.GooglePlaySer vices.Tasks

Apps must identify the hardware and permission requirements in order to use the Google Maps API. Some

permissions are automatically granted by the Google Play Services SDK, and it is not necessary for a developer

to explicitly add them to AndroidManfest.XMLAndroidManfest.XML :

Access to the Network StateAccess to the Network State – The Maps API must be able to check if it can download the map tiles.

Internet AccessInternet Access – Internet access is necessary to download the map tiles and communicate with the

Google Play Servers for API access.

The following permissions and features must be specified in the AndroidManifest.XMLAndroidManifest.XML for the Google Maps

Android API:

OpenGL ES v2OpenGL ES v2 – The application must declare the requirement for OpenGL ES v2.

Google Maps API KeyGoogle Maps API Key – The API key is used to confirm that the application is registered and authorized

to use Google Play Services. See Obtaining a Google Maps API Key for details about this key.

Request the legacy Apache HTTP clientRequest the legacy Apache HTTP client – Apps that target Android 9.0 (API level 28) or above must

specify that the legacy Apache HTTP client is an optional library to use.

Access to the Google Web-based Ser vicesAccess to the Google Web-based Ser vices – The application needs permissions to access Google's

web services that back the Android Maps API.

Permissions for Google Play Ser vices NotificationsPermissions for Google Play Ser vices Notifications – The application must be granted permission

to receive remote notifications from Google Play Services.

Access to Location ProvidersAccess to Location Providers – These are optional permissions. They will allow the GoogleMap class to

display the location of the device on the map.

In addition, Android 9 has removed the Apache HTTP client library from the bootclasspath, and so it isn't

available to applications that target API 28 or higher. The following line must be added to the application node

of your AndroidManifest.xmlAndroidManifest.xml file to continue using the Apache HTTP client in applications that target API 28

or higher :

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-api-images/image03.png#lightbox

<application ...>
 ...
 <uses-library android:name="org.apache.http.legacy" android:required="false" />
</application>

NOTENOTE

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" android:versionName="4.5"
package="com.xamarin.docs.android.mapsandlocationdemo2" android:versionCode="6">
 <uses-sdk android:minSdkVersion="23" android:targetSdkVersion="28" />

 <!-- Google Maps for Android v2 requires OpenGL ES v2 -->
 <uses-feature android:glEsVersion="0x00020000" android:required="true" />

 <!-- Necessary for apps that target Android 9.0 or higher -->
 <uses-library android:name="org.apache.http.legacy" android:required="false" />

 <!-- Permission to receive remote notifications from Google Play Services -->
 <!-- Notice here that we have the package name of our application as a prefix on the permissions. -->
 <uses-permission android:name="<PACKAGE NAME>.permission.MAPS_RECEIVE" />
 <permission android:name="<PACKAGE NAME>.permission.MAPS_RECEIVE" android:protectionLevel="signature" />

 <!-- These are optional, but recommended. They will allow Maps to use the My Location provider. -->
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application android:label="@string/app_name">
 <!-- Put your Google Maps V2 API Key here. -->
 <meta-data android:name="com.google.android.maps.v2.API_KEY" android:value="YOUR_API_KEY" />
 <meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />
 <!-- Necessary for apps that target Android 9.0 or higher -->
 <uses-library android:name="org.apache.http.legacy" android:required="false" />
 </application>
</manifest>

 Create an Emulator with Google APIsCreate an Emulator with Google APIs

 The GoogleMap Class

Very old versions of the Google Play SDK required an app to request the WRITE_EXTERNAL_STORAGE permission. This

requirement is no longer necessary with the recent Xamarin bindings for Google Play Services.

The following snippet is an example of the settings that must be added to AndroidManifest.XMLAndroidManifest.XML :

In addition to requesting the permissions AndroidManifest.XMLAndroidManifest.XML , an app must also perform runtime

permission checks for the ACCESS_COARSE_LOCATION and the ACCESS_FINE_LOCATION permissions. See the

Xamarin.Android Permissions guide for more information about performing run-time permission checks.

In the event that a physical Android device with Google Play services is not installed, it is possible to create an

emulator image for development. For more information see the Device Manager.

Once the prerequisites are satisfied, it is time to start developing the application and use the Android Maps API.

The GoogleMap class is the main API that a Xamarin.Android application will use to display and interact with a

Google Maps for Android. This class has the following responsibilities:

Interacting with Google Play services to authorize the application with the Google web service.

Downloading, caching, and displaying the map tiles.

https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap

 Adding a MapFragment to an ActivityAdding a MapFragment to an Activity

Displaying UI controls such as pan and zoom to the user.

Drawing markers and geometric shapes on maps.

The GoogleMap is added to an Activity in one of two ways:

MapFragmentMapFragment - The MapFragment is a specialized Fragment that acts as host for the GoogleMap object.

The MapFragment requires Android API level 12 or higher. Older versions of Android can use the

SupportMapFragment. This guide will focus on using the MapFragment class.

MapViewMapView - The MapView is a specialized View subclass, which can act as a host for a GoogleMap object.

Users of this class must forward all of the Activity lifecycle methods to the MapView class.

Each of these containers exposes a Map property that returns an instance of GoogleMap . Preference should be

given to the MapFragment class as it is a simpler API that reduces the amount boilerplate code that a developer

must manually implement.

The following screenshot is an example of a simple MapFragment :

https://developers.google.com/android/reference/com/google/android/gms/maps/MapFragment
https://developers.google.com/android/reference/com/google/android/gms/maps/SupportMapFragment
https://developers.google.com/android/reference/com/google/android/gms/maps/MapView
https://developers.google.com/android/reference/com/google/android/gms/maps/MapFragment

Similar to other Fragment classes, there are two ways to add a MapFragment to an Activity:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/map"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 class="com.google.android.gms.maps.MapFragment" />

 var mapFrag = MapFragment.NewInstance();
 activity.FragmentManager.BeginTransaction()
 .Add(Resource.Id.map_container, mapFrag, "map_fragment")
 .Commit();

DeclarativelyDeclaratively - The MapFragment can be added via the XML layout file for the Activity. The following XML

snippet shows an example of how to use the fragment element:

ProgrammaticallyProgrammatically - The MapFragment can be programmatically instantiated using the

MapFragment.NewInstance method and then added to an Activity. This snippet shows the simplest way to

instantiate a MapFragment object and add to an Activity:

It is possible to configure the MapFragment object by passing a GoogleMapOptions object to NewInstance .

This is discussed in the section GoogleMap properties that appears later on in this guide.

The MapFragment.GetMapAsync method is used to initialize the GoogleMap that is hosted by the fragment and

obtain a reference to the map object that is hosted by the MapFragment . This method takes an object that

implements the IOnMapReadyCallback interface.

This interface has a single method, IMapReadyCallback.OnMapReady(MapFragment map) that will be invoked when it

is possible for the app to interact with the GoogleMap object. The following code snippet shows how an Android

Activity can initialize a MapFragment and implement the IOnMapReadyCallback interface:

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-api-images/image05.png#lightbox
https://developers.google.com/android/reference/com/google/android/gms/maps/MapFragment.html#newInstance()
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMapOptions

public class MapWithMarkersActivity : AppCompatActivity, IOnMapReadyCallback
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.MapLayout);

 var mapFragment = (MapFragment) FragmentManager.FindFragmentById(Resource.Id.map);
 mapFragment.GetMapAsync(this);

 // remainder of code omitted
 }

 public void OnMapReady(GoogleMap map)
 {
 // Do something with the map, i.e. add markers, move to a specific location, etc.
 }
}

 Map typesMap types
There are five different types of maps available from the Google Maps API:

NormalNormal - This is the default map type. It shows roads and important natural features along with some

artificial points of interest (such as buildings and bridges).

SatelliteSatellite - This map shows satellite photography.

HybridHybrid - This map shows satellite photography and road maps.

TerrainTerrain - This primarily shows topographical features with some roads.

NoneNone - This map does not load any tiles, it is rendered as an empty grid.

The image below shows three of the different types of maps, from left-to-right (normal, hybrid, terrain):

The GoogleMap.MapType property is used to set or change which type of map is displayed. The following code

snippet shows how to display a satellite map.

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-api-images/map-types.png#lightbox

public void OnMapReady(GoogleMap map)
{
 map.MapType = GoogleMap.MapTypeHybrid;
}

 GoogleMap propertiesGoogleMap properties

GoogleMapOptions mapOptions = new GoogleMapOptions()
 .InvokeMapType(GoogleMap.MapTypeSatellite)
 .InvokeZoomControlsEnabled(false)
 .InvokeCompassEnabled(true);

FragmentTransaction fragTx = FragmentManager.BeginTransaction();
mapFragment = MapFragment.NewInstance(mapOptions);
fragTx.Add(Resource.Id.map, mapFragment, "map");
fragTx.Commit();

public void OnMapReady(GoogleMap map)
{
 map.UiSettings.ZoomControlsEnabled = true;
 map.UiSettings.CompassEnabled = true;
}

 Interacting with the GoogleMap

 Changing the ViewpointChanging the Viewpoint

GoogleMap defines several properties that can control the functionality and the appearance of the map. One way

to configure the initial state of a GoogleMap is to pass a GoogleMapOptions object when creating a MapFragment .

The following code snippet is one example of using a GoogleMapOptions object when creating a MapFragment :

The other way to configure a GoogleMap is by manipulating properties on the UiSettings of the map object. The

next code sample shows how to configure a GoogleMap to display the zoom controls and a compass:

The Android Maps API provides APIs that allow an Activity to change the viewpoint, add markers, place custom

overlays, or draw geometric shapes. This section will discuss how to accomplish some of these tasks in

Xamarin.Android.

Maps are modelled as a flat plane on the screen, based on the Mercator projection. The map view is that of a

camera looking straight down on this plane. The position of the camera can be controlled by changing the

location, zoom, tilt, and bearing. The CameraUpdate class is used to move the camera location. CameraUpdate

objects are not directly instantiated, instead the Maps API provides the CameraUpdateFactory class.

Once a CameraUpdate object has been created, it is passed as a parameter to either the GoogleMap.MoveCamera

or GoogleMap.AnimateCamera methods. The MoveCamera method updates the map instantly while the

AnimateCamera method provides a smooth, animated transition.

This code snippet is a simple example of how to use the CameraUpdateFactory to create a CameraUpdate that will

increment the zoom level of the map by one zoom level:

https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMapOptions
https://developers.google.com/android/reference/com/google/android/gms/maps/UiSettings
https://developers.google.com/android/reference/com/google/android/gms/maps/CameraUpdate
https://developers.google.com/android/reference/com/google/android/gms/maps/CameraUpdateFactory
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap#moveCamera(com.google.android.gms.maps.CameraUpdate)
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap#animateCamera(com.google.android.gms.maps.CameraUpdate)

MapFragment mapFrag = (MapFragment) FragmentManager.FindFragmentById(Resource.Id.my_mapfragment_container);
mapFrag.GetMapAsync(this);
...

public void OnMapReady(GoogleMap map)
{
 map.MoveCamera(CameraUpdateFactory.ZoomIn());
}

public void OnMapReady(GoogleMap map)
{
 LatLng location = new LatLng(50.897778, 3.013333);

 CameraPosition.Builder builder = CameraPosition.InvokeBuilder();
 builder.Target(location);
 builder.Zoom(18);
 builder.Bearing(155);
 builder.Tilt(65);

 CameraPosition cameraPosition = builder.Build();

 CameraUpdate cameraUpdate = CameraUpdateFactory.NewCameraPosition(cameraPosition);

 map.MoveCamera(cameraUpdate);
}

The Maps API provides a CameraPosition which will aggregate all of the possible values for the camera position.

An instance of this class can be provided to the CameraUpdateFactory.NewCameraPosition method which will

return a CameraUpdate object. The Maps API also includes the CameraPosition.Builder class that provides a fluent

API for creating CameraPosition objects. The following code snippet shows an example of creating a

CameraUpdate from a CameraPosition and using that to change the camera position on a GoogleMap :

In the previous code snippet, a specific location on the map is represented by the LatLng class. The zoom level is

set to 18, which is an arbitrary measure of zoom used by Google Maps. The bearing is the compass

measurement clockwise from North. The Tilt property controls the viewing angle and specifies an angle of 25

degrees from the vertical. The following screenshot shows the GoogleMap after executing the preceding code:

https://developer.android.com/reference/com/google/android/gms/maps/model/CameraPosition.html
https://developers.google.com/maps/documentation/android/reference/com/google/android/gms/maps/CameraUpdateFactory#newCameraPosition%2528com.google.android.gms.maps.model.CameraPosition%2529
https://developer.android.com/reference/com/google/android/gms/maps/model/CameraPosition.Builder.html
https://developers.google.com/android/reference/com/google/android/gms/maps/model/LatLng

 Drawing on the MapDrawing on the Map

 MarkersMarkers

 A d d i n g a M a r k e rA d d i n g a M a r k e r

The Android Maps API provides API's for drawing the following items on a map:

MarkersMarkers - These are special icons that are used to identify a single location on a map.

OverlaysOverlays - This is an image that can be used to identify a collection of locations or area on the map.

L ines, Polygons, and CirclesL ines, Polygons, and Circles - These are APIs that allow Activities to add shapes to a map.

The Maps API provides a Marker class which encapsulates all of the data about a single location on a map. By

default the Marker class uses a standard icon provided by Google Maps. It is possible to customize the

appearance of a marker and to respond to user clicks.

To add a marker to a map, it is necessary create a new MarkerOptions object and then call the AddMarker

method on a GoogleMap instance. This method will return a Marker object.

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-api-images/image06.png#lightbox
https://developers.google.com/android/reference/com/google/android/gms/maps/model/Marker
https://developers.google.com/android/reference/com/google/android/gms/maps/model/MarkerOptions
https://developer.android.com/reference/com/google/android/gms/maps/GoogleMap.html#addMarker%2528com.google.android.gms.maps.model.MarkerOptions%2529
https://developers.google.com/android/reference/com/google/android/gms/maps/model/Marker

public void OnMapReady(GoogleMap map)
{
 MarkerOptions markerOpt1 = new MarkerOptions();
 markerOpt1.SetPosition(new LatLng(50.379444, 2.773611));
 markerOpt1.SetTitle("Vimy Ridge");

 map.AddMarker(markerOpt1);
}

The title of the marker will be displayed in an info window when the user taps on the marker. The following

screenshot shows what this marker looks like:

 C u st o m i z i n g A M a r k e rC u st o m i z i n g A M a r k e r

public void OnMapReady(GoogleMap map)
{
 MarkerOptions markerOpt1 = new MarkerOptions();
 markerOpt1.SetPosition(new LatLng(50.379444, 2.773611));
 markerOpt1.SetTitle("Vimy Ridge");

 var bmDescriptor = BitmapDescriptorFactory.DefaultMarker (BitmapDescriptorFactory.HueCyan);
 markerOpt1.InvokeIcon(bmDescriptor);

 map.AddMarker(markerOpt1);
}

 Info windowsInfo windows

It is possible to customize the icon used by the marker by calling the MarkerOptions.InvokeIcon method when

adding the marker to the map. This method takes a BitmapDescriptor object containing the data necessary to

render the icon. The BitmapDescriptorFactory class provides some helper methods to simplify the creation of a

BitmapDescriptor . The following list introduces some of these methods:

DefaultMarker(float colour) – Use the default Google Maps marker, but change the colour.

FromAsset(string assetName) – Use a custom icon from the specified file in the Assets folder.

FromBitmap(Bitmap image) – Use the specified bitmap as the icon.

FromFile(string fileName) – Create the custom icon from the file at the specified path.

FromResource(int resourceId) – Create a custom icon from the specified resource.

The following code snippet shows an example of creating a cyan coloured default marker :

Info windows are special windows that popup to display information to the user when they tap a specific marker.

By default the info window will display the contents of the marker's title. If the title has not been assigned, then

no info window will appear. Only one info window may be shown at a time.

It is possible to customize the info window by implementing the GoogleMap.IInfoWindowAdapter interface.

There are two important methods on this interface:

public View GetInfoWindow(Marker marker) – This method is called to get a custom info window for a

marker. If it returns null , then the default window rendering will be used. If this method returns a View,

then that View will be placed inside the info window frame.

public View GetInfoContents(Marker marker) – This method will only be called if GetInfoWindow returns

null . This method can return a null value if the default rendering of the info window contents is to be

used. Otherwise, this method should return a View with the contents of the info window.

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-api-images/image07.png#lightbox
https://developers.google.com/android/reference/com/google/android/gms/maps/model/BitmapDescriptor
https://developers.google.com/android/reference/com/google/android/gms/maps/model/BitmapDescriptorFactory
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.InfoWindowAdapter

 GroundOverlaysGroundOverlays

 A d d i n g a G r o u n d O v e r l a yA d d i n g a G r o u n d O v e r l a y

BitmapDescriptor image = BitmapDescriptorFactory.FromResource(Resource.Drawable.polarbear);
GroundOverlayOptions groundOverlayOptions = new GroundOverlayOptions()
 .Position(position, 150, 200)
 .InvokeImage(image);
GroundOverlay myOverlay = googleMap.AddGroundOverlay(groundOverlayOptions);

An info window is not a live view - instead Android will convert the View to a static bitmap and display that on

the image. This means that an info window cannot respond to any touch events or gestures, nor will it

automatically update itself. To update an info window, it is necessary to call the GoogleMap.ShowInfoWindow

method.

The following image shows some examples of some customized info windows. The image on the left has its

contents customized, while the image on the right has its window and contents customized with rounded

corners:

Unlike markers, which identify a specific location on a map, a GroundOverlay is an image that is used to identify

a collection of locations or an area on the map.

Adding a ground overlay to a map is similar to adding a marker to a map. First, a GroundOverlayOptions object

is created. This object is then passed as a parameter to the GoogleMap.AddGroundOverlay method, which will

return a GroundOverlay object. This code snippet is an example of adding a ground overlay to a map:

The following screenshot shows this overlay on a map:

https://developers.google.com/android/reference/com/google/android/gms/maps/model/Marker.html#showInfoWindow()
https://developers.google.com/android/reference/com/google/android/gms/maps/model/GroundOverlay
https://developers.google.com/android/reference/com/google/android/gms/maps/model/GroundOverlayOptions
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html#addGroundOverlay(com.google.android.gms.maps.model.GroundOverlayOptions)

 Lines, Circles, and PolygonsLines, Circles, and Polygons

There are three simple types of geometric figures that can be added to a map:

PolylinePolyline - This is a series of connected line segments. It can mark a path on a map or create a geometric

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/maps-api-images/image09.png#lightbox

 P o l y l i n e sP o l y l i n e s

PolylineOption rectOptions = new PolylineOption();
rectOptions.Add(new LatLng(37.35, -122.0));
rectOptions.Add(new LatLng(37.45, -122.0));
rectOptions.Add(new LatLng(37.45, -122.2));
rectOptions.Add(new LatLng(37.35, -122.2));
rectOptions.Add(new LatLng(37.35, -122.0)); // close the polyline - this makes a rectangle.

googleMap.AddPolyline(rectOptions);

 C i r c l e sC i r c l e s

CircleOptions circleOptions = new CircleOptions ();
circleOptions.InvokeCenter (new LatLng(37.4, -122.1));
circleOptions.InvokeRadius (1000);

googleMap.AddCircle (circleOptions);

 P o l y g o n sP o l y g o n s

PolygonOptions rectOptions = new PolygonOptions();
rectOptions.Add(new LatLng(37.35, -122.0));
rectOptions.Add(new LatLng(37.45, -122.0));
rectOptions.Add(new LatLng(37.45, -122.2));
rectOptions.Add(new LatLng(37.35, -122.2));
// notice we don't need to close off the polygon

googleMap.AddPolygon(rectOptions);

 Responding to user events

shape.

CircleCircle - This will draw a circle on the map.

PolygonPolygon - This is a closed shape for marking areas on a map.

A Polyline is a list of consecutive LatLng objects which specify the vertices of each line segment. A polyline is

created by first creating a PolylineOptions object and adding the points to it. The PolylineOption object is then

passed to a GoogleMap object by calling the AddPolyline method.

Circles are created by first instantiating a CircleOption object which will specify the center and the radius of the

circle in metres. The circle is drawn on the map by calling GoogleMap.AddCircle. The following code snippet

shows how to draw a circle:

Polygon s are similar to Polyline s, however they are not open ended. Polygon s are a closed loop and have

their interior filled in. Polygon s are created in the exact same manner as a Polyline , except the

GoogleMap.AddPolygon method invoked.

Unlike a Polyline , a Polygon is self-closing. The polygon will be closed off by the AddPolygon method by

drawing a line which connects the first and last points. The following code snippet will create a solid rectangle

over the same area as the previous code snippet in the Polyline example.

There are three types of interactions a user may have with a map:

Marker ClickMarker Click - The user clicks on a marker.

Marker DragMarker Drag - The user has long-clicked on a mparger

Info Window ClickInfo Window Click - The user has clicked on an info window.

https://developers.google.com/android/reference/com/google/android/gms/maps/model/Polyline
https://developers.google.com/android/reference/com/google/android/gms/maps/model/CircleOptions
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html#addCircle(com.google.android.gms.maps.model.CircleOptions)
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap.html#addPolygon(com.google.android.gms.maps.model.PolygonOptions)

 Marker click eventsMarker click events

void MapOnMarkerClick(object sender, GoogleMap.MarkerClickEventArgs markerClickEventArgs)
{
 markerClickEventArgs.Handled = true;

 var marker = markerClickEventArgs.Marker;
 if (marker.Id.Equals(gotMauiMarkerId))
 {
 LatLng InMaui = new LatLng(20.72110, -156.44776);

 // Move the camera to look at Maui.
 PositionPolarBearGroundOverlay(InMaui);
 googleMap.AnimateCamera(CameraUpdateFactory.NewLatLngZoom(InMaui, 13));
 gotMauiMarkerId = null;
 polarBearMarker.Remove();
 polarBearMarker = null;
 }
 else
 {
 Toast.MakeText(this, $"You clicked on Marker ID {marker.Id}", ToastLength.Short).Show();
 }
}

 Marker Drag eventsMarker Drag events

Each of these events will be discussed in more detail below.

The MarkerClicked event is raised when the user taps on a marker. This event accepts a

GoogleMap.MarkerClickEventArgs object as a parameter. This class contains two properties:

GoogleMap.MarkerClickEventArgs.Handled – This property should be set to true to indicate that the event

handler has consumed the event. If this is set to false then the default behaviour will occur in addition

to the custom behaviour of the event handler.

Marker – This property is a reference to the marker that raised the MarkerClick event.

This code snippet shows an example of a MarkerClick that will change the camera position to a new location on

the map:

This event is raised when the user wishes to drag the marker. By default, markers are not draggable. A marker

can be set as draggable by setting the Marker.Draggable property to true or by invoking the

MarkerOptions.Draggable method with true as a parameter.

To drag the marker, the user must first long-click on the marker and then their finger must remain on the map.

When the user's finger is dragged around on the screen, the marker will move. When the user's finger lifts off

the screen, the marker will remain in place.

The following list describes the various events that will be raised for a draggable marker :

GoogleMap.MarkerDragStart(object sender, GoogleMap.MarkerDragStartEventArgs e) – This event is raised

when the user first drags the marker.

GoogleMap.MarkerDrag(object sender, GoogleMap.MarkerDragEventArgs e) – This event is raised as the

marker is being dragged.

GoogleMap.MarkerDragEnd(object sender, GoogleMap.MarkerDragEndEventArgs e) – This event is raised when

the user is finished dragging the marker.

Each of the EventArgs contains a single property called P0 that is a reference to the Marker object being

dragged.

 Info Window Click eventsInfo Window Click events

public void OnMapReady(GoogleMap map)
{
 map.InfoWindowClick += MapOnInfoWindowClick;
}

private void MapOnInfoWindowClick (object sender, GoogleMap.InfoWindowClickEventArgs e)
{
 Marker myMarker = e.Marker;
 // Do something with marker.
}

 Related Links

Only one info window can be displayed at a time. When the user clicks on an info window in a map, the map

object will raise an InfoWindowClick event. The following code snippet shows how to wire up a handler to the

event:

Recall that an info window is a static View which is rendered as an image on the map. Any widgets such as

buttons, check boxes, or text views that are placed inside the info window will be inert and cannot respond to

any of their integral user events.

SimpleMapDemo

Google Play Services

Google Maps Android API v2

Google Play Services APK

Obtaining a Google Maps API key

uses-library

uses-feature

https://github.com/xamarin/monodroid-samples/tree/master/MapsAndLocationDemo_v3/SimpleMapDemo
https://developers.google.com/android/guides/overview
https://developers.google.com/maps/documentation/android-sdk/intro
https://play.google.com/store/apps/details?id=com.google.android.gms&hl=en
https://developer.android.com/guide/topics/manifest/uses-library-element
https://developer.android.com/guide/topics/manifest/uses-feature-element

Obtaining a Google Maps API Key
 7/8/2021 • 5 minutes to read • Edit Online

 Obtaining your Signing Key Fingerprint

keytool -list -v -keystore [STORE FILENAME] -alias [KEY NAME] -storepass [STORE PASSWORD] -keypass [KEY
PASSWORD]

 Debug.keystore ExampleDebug.keystore Example

keytool.exe -list -v -keystore "C:\Users\[USERNAME]\AppData\Local\Xamarin\Mono for Android\debug.keystore" -
alias androiddebugkey -storepass android -keypass android

 Production KeysProduction Keys

To use the Google Maps functionality in Android, you need to register for a Maps API key with Google. Until you

do this, you will just see a blank grid instead of a map in your applications. You must obtain a Google Maps

Android API v2 key - keys from the older Google Maps Android API key v1 will not work.

Obtaining a Maps API v2 key involves the following steps:

1. Retrieve the SHA-1 fingerprint of the keystore that is used to sign the application.

2. Create a project in the Google APIs console.

3. Obtaining the API key.

To request a Maps API key from Google, you need to know the SHA-1 fingerprint of the keystore that is used to

sign the application. Typically, this means you will have to determine the SHA-1 fingerprint for the debug

keystore, and then the SHA-1 fingerprint for the keystore that is used to sign your application for release.

Visual Studio

Visual Studio for Mac

By default the keystore that is used to sign debug versions of a Xamarin.Android application can be found at the

following location:

C:\Users\[USERNAME]\AppData\Local\Xamarin\Mono for Android\debug.keystoreC:\Users\[USERNAME]\AppData\Local\Xamarin\Mono for Android\debug.keystore

Information about a keystore is obtained by running the keytool command from the JDK. This tool is typically

found in the Java bin directory:

C:\Program Files\Android\jdk\microsoft_dist_openjdk_[VERSION]\bin\keytool.exeC:\Program Files\Android\jdk\microsoft_dist_openjdk_[VERSION]\bin\keytool.exe

Run keytool using the following command (using the file paths shown above):

For the default debug key (which is automatically created for you for debugging), use this command:

Visual Studio

Visual Studio for Mac

When deploying an app to Google Play, it must be signed with a private key. The keytool will need to be run

with the private key details, and the resulting SHA-1 fingerprint used to create a production Google Maps API

key. Remember to update the AndroidManifest.xmlAndroidManifest.xml file with the correct Google Maps API key before

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key.md

 Keytool OutputKeytool Output

Alias name: androiddebugkey
Creation date: Jan 01, 2016
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4aa9b300
Valid from: Mon Jan 01 08:04:04 UTC 2013 until: Mon Jan 01 18:04:04 PST 2033
Certificate fingerprints:
 MD5: AE:9F:95:D0:A6:86:89:BC:A8:70:BA:34:FF:6A:AC:F9
 SHA1: BB:0D:AC:74:D3:21:E1:43:07:71:9B:62:90:AF:A1:66:6E:44:5D:75
 Signature algorithm name: SHA1withRSA
 Version: 3

 Creating an API project

deployment.

You should see something like the following output in your console window:

You will use the SHA-1 fingerprint (listed after SHA1SHA1) later in this guide.

After you have retrieved the SHA-1 fingerprint of the signing keystore, it is necessary to create a new project in

the Google APIs console (or add the Google Maps Android API v2 service to an existing project).

1. In a browser, navigate to the Google Developers Console API & Services Dashboard and click Select aSelect a

projectproject. Click on a project name or create a new one by clicking NEW PROJECTNEW PROJECT:

2. If you created a new project, enter the project name in the New ProjectNew Project dialog that is displayed. This

dialog will manufacture a unique project ID that is based on your project name. Next, click the CreateCreate

button as shown in this example:

https://console.developers.google.com/apis/dashboard/
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/01-google-developer-console-vs.png#lightbox

3. After a minute or so, the project is created and you are taken to the DashboardDashboard page of the project. From

there, click ENABLE APIS AND SERVICESENABLE APIS AND SERVICES :

4. From the API L ibrar yAPI L ibrar y page, click Maps SDK for AndroidMaps SDK for Android. On the next page, click ENABLEENABLE to turn on

the service for this project:

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/02-new-project-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/03-api-selection-vs.png#lightbox

 Obtaining the API Key

At this point the API project has been created and Google Maps Android API v2 has been added to it. However,

you cannot use this API in your project until you create credentials for it. The next section explains how to create

an API key and authorize a Xamarin.Android application to use this key.

After the Google Developer ConsoleGoogle Developer Console API project has been created, it is necessary to create an Android API

key. Xamarin.Android applications must have an API key before they are granted access to Android Map API v2.

1. In the Maps SDK for AndroidMaps SDK for Android page that is displayed (after clicking ENABLEENABLE in the previous step), go to

the CredentialsCredentials tab and click the Create credentialsCreate credentials button:

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/04-enable-api-vs.png#lightbox

2. Click API keyAPI key :

3. After this button is clicked, the API key is generated. Next it is necessary to restrict this key so that only

your app can call APIs with this key. Click RESTRICT KEYRESTRICT KEY :

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/05-api-is-enabled-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/06-add-credentials-to-your-project-vs.png#lightbox

4. Change the NameName field from API Key 1API Key 1 to a name that will help you remember what the key is used for

(XamarinMapsDemoKeyXamarinMapsDemoKey is used in this example). Next, click the Android appsAndroid apps radio button:

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/07-generate-api-key-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/08-key-restriction-vs.png#lightbox

5. To add the SHA-1 fingerprint, click + Add package name and fingerprint+ Add package name and fingerprint:

6. Enter your app's package name and enter the SHA-1 certificate fingerprint (obtained via keytool as

explained earlier in this guide). In the following example, the package name for XamarinMapsDemo is

entered, followed by the SHA-1 certificate fingerprint obtained from debug.keystoredebug.keystore:

7. Note that, in order for your APK to access Google Maps, you must include SHA-1 fingerprints and

package names for every keystore (debug and release) that you use to sign your APK. For example, if you

use one computer for debug and another computer for generating the release APK, you should include

the SHA-1 certificate fingerprint from the debug keystore of the first computer and the SHA-1 certificate

fingerprint from the release keystore of the second computer. Click + Add package name and+ Add package name and

fingerprintfingerprint to add another fingerprint and package name as shown in this example:

8. Click the SaveSave button to save your changes. Next, you are returned to the list of your API keys. If you

have other API keys that you have created earlier, they will also be listed here. In this example, only one

API key (created in the previous steps) is listed:

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/09-add-package-fingerprint-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/10-enter-package-and-sha1-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/11-second-fingerprint-vs.png#lightbox

 Connect the project to a billable account
Beginning June,11 2018, the API key will not work if the project is not connected to a billable account (even if

the service is still free for mobile apps).

1. Click the hamburger menu button and select the BillingBilling page:

2. Link the project to a billing account by clicking L ink a billing accountLink a billing account followed by CREATE BILLINGCREATE BILLING

ACCOUNTACCOUNT on the displayed popup (if you don't have an account, you will be guided to create a new

one):

file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/12-list-of-apis-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/13-goto-billing-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key-images/14-link-billing-account-vs.png#lightbox

 Adding the Key to Your Project

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionName="4.10" package="com.xamarin.docs.android.mapsandlocationdemo"
 android:versionCode="10">
...
 <application android:label="@string/app_name">
 <!-- Put your Google Maps V2 API Key here. -->
 <meta-data android:name="com.google.android.maps.v2.API_KEY" android:value="YOUR_API_KEY" />
 <meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />
 </application>
</manifest>

 Related Links

Finally, add this API key to the AndroidManifest.XMLAndroidManifest.XML file of your Xamarin.Android app. In the following

example, YOUR_API_KEY is to be replaced with the API key generated in the previous steps:

Google APIs Console

The Google Maps API Key

keytool

https://code.google.com/apis/console/
https://developers.google.com/maps/documentation/android/start#the_google_maps_api_key
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html.

Android Speech
 7/8/2021 • 8 minutes to read • Edit Online

 Speech Overview

 Requirements

 The difference between understanding and interpretingThe difference between understanding and interpreting

This article covers the basics of using the very powerful Android.Speech namespace. Since its inception, Android

has been able to recognize speech and output it as text. It is a relatively simple process. For text to speech,

however, the process is more involved, as not only does the speech engine have to be taken into account, but

also the languages available and installed from the Text To Speech (TTS) system.

Having a system, which "understands" human speech and enunciates what is being typed—Speech to Text, and

Text to Speech—is an ever growing area within mobile development as the demand for natural communication

with our devices rises. There are many instances where having a feature that converts text into speech, or vice

versa, is a very useful tool to incorporate into your android application.

For example, with the clamp down on mobile phone use while driving, users want a hands free way of operating

their devices. The plethora of different Android form factors—such as Android Wear—and the ever-widening

inclusion of those able to use Android devices (such as tablets and note pads), has created a larger focus on

great TTS applications.

Google supplies the developer with a rich set of APIs in the Android.Speech namespace to cover most instances

of making a device "speech aware" (such as software designed for the blind). The namespace includes the facility

to allow text to be translated into speech through Android.Speech.Tts , control over the engine used to perform

the translation, as well as a number of RecognizerIntent s which allow speech to be converted to text.

While the facilities are there for speech to be understood, there are limitations based on the hardware used. It is

unlikely that the device will successfully interpret everything spoken to it in every language available.

There are no special requirements for this guide, other than your device having a microphone and speaker.

The core of an Android device interpreting speech is the use of an Intent with a corresponding

OnActivityResult . It is important, though, to recognize that the speech is not understood—but interpreted to

text. The difference is important.

A simple definition of understanding is that you are able to determine by tone and context the real meaning of

what is being said. To interpret just means to take the words and output them in another form.

Consider the following simple example that is used in everyday conversation:

Hello, how are you?

Without inflection (emphasis placed on specific words or parts of words), it is a simple question. However, if a

slow pace is applied to the line, the person listening will detect that the asker is not too happy and perhaps

needs cheering up or that the asker is unwell. If the emphasis is placed on "are", the person asking is usually

more interested in the response.

Without fairly powerful audio processing to make use of the inflection, and a degree of artificial intelligence (AI)

to understand the context, the software cannot even begin to understand what was said—the best a simple

phone can do is convert the speech to text.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/speech.md

 Setting up

string rec = Android.Content.PM.PackageManager.FeatureMicrophone;
if (rec != "android.hardware.microphone")
{
 var alert = new AlertDialog.Builder(recButton.Context);
 alert.SetTitle("You don't seem to have a microphone to record with");
 alert.SetPositiveButton("OK", (sender, e) =>
 {
 return;
 });
 alert.Show();
}

 Creating the intentCreating the intent

var voiceIntent = new Intent(RecognizerIntent.ActionRecognizeSpeech);
voiceIntent.PutExtra(RecognizerIntent.ExtraLanguageModel, RecognizerIntent.LanguageModelFreeForm);
voiceIntent.PutExtra(RecognizerIntent.ExtraPrompt,
Application.Context.GetString(Resource.String.messageSpeakNow));
voiceIntent.PutExtra(RecognizerIntent.ExtraSpeechInputCompleteSilenceLengthMillis, 1500);
voiceIntent.PutExtra(RecognizerIntent.ExtraSpeechInputPossiblyCompleteSilenceLengthMillis, 1500);
voiceIntent.PutExtra(RecognizerIntent.ExtraSpeechInputMinimumLengthMillis, 15000);
voiceIntent.PutExtra(RecognizerIntent.ExtraMaxResults, 1);
voiceIntent.PutExtra(RecognizerIntent.ExtraLanguage, Java.Util.Locale.Default);
StartActivityForResult(voiceIntent, VOICE);

 Conversion of the speechConversion of the speech

Before using the speech system, it is always wise to check to ensure the device has a microphone. There would

be little point trying to run your app on a Kindle or Google note pad without a microphone installed.

The code sample below demonstrates querying if a microphone is available and if not, to create an alert. If no

microphone is available at this point you would either quit the activity or disable the ability to record the speech.

The intent for the speech system uses a particular type of intent called the RecognizerIntent . This intent controls

a large number of parameters, including how long to wait with silence until the recording is considered over, any

additional languages to recognize and output, and any text to include on the Intent ’s modal dialog as means of

instruction. In this snippet, VOICE is a readonly int used for recognition in OnActivityResult .

The text interpreted from the speech will be delivered within the Intent , which is returned when the activity has

been completed and is accessed via GetStringArrayListExtra(RecognizerIntent.ExtraResults) . This will return an

IList<string> , of which the index can be used and displayed, depending on the number of languages

requested in the caller intent (and specified in the RecognizerIntent.ExtraMaxResults). As with any list though, it

is worth checking to ensure that there is data to be displayed.

When listening for the return value of a StartActivityForResult , the OnActivityResult method has to be

supplied.

In the example below, textBox is a TextBox used for outputting what has been dictated. It could equally be

used to pass the text to some form of interpreter and from there, the application can compare the text and

branch to another part of the application.

protected override void OnActivityResult(int requestCode, Result resultVal, Intent data)
{
 if (requestCode == VOICE)
 {
 if (resultVal == Result.Ok)
 {
 var matches = data.GetStringArrayListExtra(RecognizerIntent.ExtraResults);
 if (matches.Count != 0)
 {
 string textInput = textBox.Text + matches[0];
 textBox.Text = textInput;
 switch (matches[0].Substring(0, 5).ToLower())
 {
 case "north":
 MovePlayer(0);
 break;
 case "south":
 MovePlayer(1);
 break;
 }
 }
 else
 {
 textBox.Text = "No speech was recognised";
 }
 }
 base.OnActivityResult(requestCode, resultVal, data);
 }
}

 Text to Speech

 Step 1 - Instantiating TextToSpeechStep 1 - Instantiating TextToSpeech

 Step 2 - Finding the languages availableStep 2 - Finding the languages available

Text to speech is not quite the reverse of speech to text and relies on two key components; a text-to-speech

engine being installed on the device and a language being installed.

Largely, Android devices come with the default Google TTS service installed and at least one language. This is

established when the device is first set up and will be based on where the device is at the time (for example, a

phone set up in Germany will install the German language, whereas one in America will have American English).

TextToSpeech can take up to 3 parameters, the first two are required with the third being optional (AppContext ,

IOnInitListener , engine). The listener is used to bind to the service and test for failure with the engine being

any number of available Android text to speech engines. At a minimum, the device will have Google’s own

engine.

The Java.Util.Locale class contains a helpful method called GetAvailableLocales() . This list of languages

supported by the speech engine can then be tested against the installed languages.

It is a trivial matter to generate the list of "understood" languages. There will always be a default language (the

language the user set when they first set their device up), so in this example the List<string> has "Default" as

the first parameter, the remainder of the list will be filled depending on the result of the

textToSpeech.IsLanguageAvailable(locale) .

var langAvailable = new List<string>{ "Default" };
var localesAvailable = Java.Util.Locale.GetAvailableLocales().ToList();
foreach (var locale in localesAvailable)
{
 var res = textToSpeech.IsLanguageAvailable(locale);
 switch (res)
 {
 case LanguageAvailableResult.Available:
 langAvailable.Add(locale.DisplayLanguage);
 break;
 case LanguageAvailableResult.CountryAvailable:
 langAvailable.Add(locale.DisplayLanguage);
 break;
 case LanguageAvailableResult.CountryVarAvailable:
 langAvailable.Add(locale.DisplayLanguage);
 break;
 }
}
langAvailable = langAvailable.OrderBy(t => t).Distinct().ToList();

 Step 3 - Setting the speed and pitchStep 3 - Setting the speed and pitch

 Step 4 - Testing and loading new languagesStep 4 - Testing and loading new languages

var checkTTSIntent = new Intent();
checkTTSIntent.SetAction(TextToSpeech.Engine.ActionCheckTtsData);
StartActivityForResult(checkTTSIntent, NeedLang);
//
protected override void OnActivityResult(int req, Result res, Intent data)
{
 if (req == NeedLang)
 {
 var installTTS = new Intent();
 installTTS.SetAction(TextToSpeech.Engine.ActionInstallTtsData);
 StartActivity(installTTS);
 }
}

This code calls TextToSpeech.IsLanguageAvailable to test if the language package for a given locale is already

present on the device. This method returns a LanguageAvailableResult, which indicates whether the language

for the passed locale is available. If LanguageAvailableResult indicates that the language is NotSupported , then

there is no voice package available (even for download) for that language. If LanguageAvailableResult is set to

MissingData , then it is possible to download a new language package as explained below in Step 4.

Android allows the user to alter the sound of the speech by altering the SpeechRate and Pitch (the rate of

speed and the tone of the speech). This goes from 0 to 1, with "normal" speech being 1 for both.

Downloading a new language is performed by using an Intent . The result of this intent causes the

OnActivityResult method to be invoked. Unlike the speech-to-text example (which used the RecognizerIntent as

a PutExtra parameter to the Intent), the testing and loading Intent s are Action -based:

TextToSpeech.Engine.ActionCheckTtsData – Starts an activity from the platform TextToSpeech engine to

verify proper installation and availability of language resources on the device.

TextToSpeech.Engine.ActionInstallTtsData – Starts an activity that prompts the user to download the

necessary languages.

The following code example illustrates how to use these actions to test for language resources and download a

new language:

TextToSpeech.Engine.ActionCheckTtsData tests for the availability of language resources. OnActivityResult is

https://docs.microsoft.com/en-us/dotnet/api/android.speech.tts.texttospeech.islanguageavailable
https://docs.microsoft.com/en-us/dotnet/api/android.speech.tts.languageavailableresult
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onactivityresult
https://docs.microsoft.com/en-us/dotnet/api/android.speech.recognizerintent
https://docs.microsoft.com/en-us/dotnet/api/android.speech.tts.texttospeech.engine.actioncheckttsdata
https://docs.microsoft.com/en-us/dotnet/api/android.speech.tts.texttospeech.engine.actioninstallttsdata

 Step 5 - The IOnInitListenerStep 5 - The IOnInitListener

invoked when this test completes. If language resources need to be downloaded, OnActivityResult fires off the

TextToSpeech.Engine.ActionInstallTtsData action to start an activity that allows the user to download the

necessary languages. Note that this OnActivityResult implementation does not check the Result code

because, in this simplified example, the determination has already been made that the language package needs

to be downloaded.

The TextToSpeech.Engine.ActionInstallTtsData action causes the Google TTS voice dataGoogle TTS voice data activity to be

presented to the user for choosing languages to download:

As an example, the user might pick French and click the download icon to download French voice data:

Installation of this data happens automatically after the download completes.

For an activity to be able to convert the text to speech, the interface method OnInit has to be implemented (this

is the second parameter specified for the instantiation of the TextToSpeech class). This initializes the listener and

tests the result.

The listener should test for both OperationResult.Success and OperationResult.Failure at a minimum. The

following example shows just that:

void TextToSpeech.IOnInitListener.OnInit(OperationResult status)
{
 // if we get an error, default to the default language
 if (status == OperationResult.Error)
 textToSpeech.SetLanguage(Java.Util.Locale.Default);
 // if the listener is ok, set the lang
 if (status == OperationResult.Success)
 textToSpeech.SetLanguage(lang);
}

 Summary

 Related Links

In this guide we have looked at the basics of converting text to speech and speech to text and possible methods

of how to include them within your own apps. While they do not cover every particular case, you should now

have a basic understanding of how speech is interpreted, how to install new languages, and how to increase the

inclusivity of your apps.

Xamarin.Forms DependencyService

Text to Speech (sample)

Speech to Text (sample)

Android.Speech namespace

Android.Speech.Tts namespace

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/dependencyservice//
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/platformfeatures-texttospeech
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/platformfeatures-speechtotext
https://docs.microsoft.com/en-us/dotnet/api/android.speech
https://docs.microsoft.com/en-us/dotnet/api/android.speech.tts

Java integration with Xamarin.Android
 10/29/2019 • 2 minutes to read • Edit Online

 Overview

 Summary

 Related Links

The Java ecosystem includes a diverse and immense collection of components. Many of these components can

be used to reduce the time it takes to develop an Android application. This document will introduce and provide

a high-level overview of some of the ways that developers can use these existing Java components to improve

their Xamarin.Android application development experience.

Given the extent of the Java ecosystem, it is very likely that any given functionality required for a

Xamarin.Android application has already been coded in Java. Because of this, it is appealing to try and reuse

these existing libraries when creating a Xamarin.Android application.

There are three possible ways to reuse Java libraries in a Xamarin.Android application:

Create a Java Bindings L ibrar yCreate a Java Bindings L ibrar y – With this technique, a Xamarin.Android project is used to create C#

wrappers around the Java types. A Xamarin.Android application can then reference the C# wrappers

created by this project, and then use the .jar file.

Java Native InterfaceJava Native Interface – The Java Native Interface (JNI) is a framework that allows non-Java code (such

as C++ or C#) to call or be called by Java code running inside a JVM.

Por t the CodePor t the Code – This method involves taking the Java source code, and then converting it to C#. This

can be done manually, or by using an automated tool such as Sharpen.

At the core of the first two techniques is the Java Native Interface (JNI). JNI is a framework that allows

applications not written in Java to interact with Java code running in a Java Virtual Machine. Xamarin.Android

uses JNI to create bindings for C# code.

The first technique is a more automated, declarative approach to binding Java libraries. It involves using either

Visual Studio for Mac or a Visual Studio project type that is provided by Xamarin.Android – the Java Bindings

Library. To successfully create these bindings, a Java Bindings Library may still require some manual

modifications, but not as many as would a pure JNI approach. See Binding a Java Library for more information

about Java Binding libraries.

The second technique, using JNI, works at a much lower level, but can provide for finer control and access to

Java methods that would not normally be accessible through a Java Binding Library.

The third technique is radically different from the previous two: porting the code from Java to C#. Porting code

from one language to another can be a very laborious process, but it is possible to reduce that effort with the

help of a tool called Sharpen. Sharpen is an open source tool that is a Java-to-C# converter.

This document provided a high-level overview of some of the different ways that libraries from Java can be

reused in a Xamarin.Android application. It introduced the concepts of bindings and managed callable wrappers,

and discussed options for porting Java code to C#.

Architecture

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/java-integration/index.md

Binding a Java Library

Working with JNI

Sharpen

Java Native Interface

https://github.com/slluis/sharpen
https://docs.oracle.com/javase/7/docs/technotes%257E/jni/index.html

Android Callable Wrappers for Xamarin.Android
 4/20/2020 • 3 minutes to read • Edit Online

 Android Callable Wrapper Naming

adb shell am start -n My.Package.Name/my.ActivityType

java.lang.ClassNotFoundException: Didn't find class "com.company.app.MainActivity"
on path: DexPathList[[zip file "/data/app/com.company.App-1.apk"] ...

namespace My {
 [Activity]
 public partial class ActivityType : Activity {
 /* ... */
 }
}

Android Callable Wrappers (ACWs) are required whenever the Android runtime invokes managed code. These

wrappers are required because there is no way to register classes with ART (the Android runtime) at runtime.

(Specifically, the JNI DefineClass() function is not supported by the Android runtime.} Android Callable Wrappers

thus make up for the lack of runtime type registration support.

Every time Android code needs to execute a virtual or interface method that is overridden or implemented in

managed code, Xamarin.Android must provide a Java proxy so that this method is dispatched to the appropriate

managed type. These Java proxy types are Java code that has the "same" base class and Java interface list as the

managed type, implementing the same constructors and declaring any overridden base class and interface

methods.

Android callable wrappers are generated by the monodroid.exemonodroid.exe program during the build process: they are

generated for all types that (directly or indirectly) inherit Java.Lang.Object.

Package names for Android Callable Wrappers are based on the MD5SUM of the assembly-qualified name of

the type being exported. This naming technique makes it possible for the same fully-qualified type name to be

made available by different assemblies without introducing a packaging error.

Because of this MD5SUM naming scheme, you cannot directly access your types by name. For example, the

following adb command will not work because the type name my.ActivityType is not generated by default:

Also, you may see errors like the following if you attempt to reference a type by name:

If you do require access to types by name, you can declare a name for that type in an attribute declaration. For

example, here is code that declares an activity with the fully-qualified name My.ActivityType :

The ActivityAttribute.Name property can be set to explicitly declare the name of this activity:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/java-integration/android-callable-wrappers.md
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html#wp15986
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object

namespace My {
 [Activity(Name="my.ActivityType")]
 public partial class ActivityType : Activity {
 /* ... */
 }
}

 Implementing Interfaces

class MyComponentCallbacks : Java.Lang.Object, Android.Content.IComponentCallbacks {

 public void OnConfigurationChanged (Android.Content.Res.Configuration newConfig)
 {
 // implementation goes here...
 }

 public void OnLowMemory ()
 {
 // implementation goes here...
 }
}

 Implementation Details

After this property setting is added, my.ActivityType can be accessed by name from external code and from

adb scripts. The Name attribute can be set for many different types including Activity , Application , Service ,

BroadcastReceiver , and ContentProvider :

ActivityAttribute.Name

ApplicationAttribute.Name

ServiceAttribute.Name

BroadcastReceiverAttribute.Name

ContentProviderAttribute.Name

MD5SUM-based ACW naming was introduced in Xamarin.Android 5.0. For more information about attribute

naming, see RegisterAttribute.

There are times when you may need to implement an Android interface, such as

Android.Content.IComponentCallbacks. Since all Android classes and interface extend the

Android.Runtime.IJavaObject interface, the question arises: how do we implement IJavaObject ?

The question was answered above: the reason all Android types need to implement IJavaObject is so that

Xamarin.Android has an Android callable wrapper to provide to Android, i.e. a Java proxy for the given type.

Since monodroid.exemonodroid.exe only looks for Java.Lang.Object subclasses, and Java.Lang.Object implements

IJavaObject , the answer is obvious: subclass Java.Lang.Object :

The remainder of this page provides implementation details subject to change without notice (and is presented

here only because developers will be curious about what's going on).

For example, given the following C# source:

https://docs.microsoft.com/en-us/dotnet/api/android.app.activityattribute.name#android_app_activityattribute_name
https://docs.microsoft.com/en-us/dotnet/api/android.app.applicationattribute.name#android_app_applicationattribute_name
https://docs.microsoft.com/en-us/dotnet/api/android.app.serviceattribute.name#android_app_serviceattribute_name
https://docs.microsoft.com/en-us/dotnet/api/android.content.broadcastreceiverattribute.name#android_content_broadcastreceiverattribute_name
https://docs.microsoft.com/en-us/dotnet/api/android.content.contentproviderattribute.name#android_content_contentproviderattribute_name
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute
https://docs.microsoft.com/en-us/dotnet/api/android.content.icomponentcallbacks
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.ijavaobject

using System;
using Android.App;
using Android.OS;

namespace Mono.Samples.HelloWorld
{
 public class HelloAndroid : Activity
 {
 protected override void OnCreate (Bundle savedInstanceState)
 {
 base.OnCreate (savedInstanceState);
 SetContentView (R.layout.main);
 }
 }
}

package mono.samples.helloWorld;

public class HelloAndroid
 extends android.app.Activity
{
 static final String __md_methods;
 static {
 __md_methods = "n_onCreate:(Landroid/os/Bundle;)V:GetOnCreate_Landroid_os_Bundle_Handler\n" + "";
 mono.android.Runtime.register (
 "Mono.Samples.HelloWorld.HelloAndroid, HelloWorld, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null", HelloAndroid.class, __md_methods);
 }

 public HelloAndroid ()
 {
 super ();
 if (getClass () == HelloAndroid.class)
 mono.android.TypeManager.Activate (
 "Mono.Samples.HelloWorld.HelloAndroid, HelloWorld, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null", "", this, new java.lang.Object[] { });
 }

 @Override
 public void onCreate (android.os.Bundle p0)
 {
 n_onCreate (p0);
 }

 private native void n_onCreate (android.os.Bundle p0);
}

The mandroid.exemandroid.exe program will generate the following Android Callable Wrapper :

Notice that the base class is preserved, and native method declarations are provided for each method that is

overridden within managed code.

Working with JNI and Xamarin.Android
 11/2/2020 • 46 minutes to read • Edit Online

 Overview

 Requirements

 Managed Callable Wrappers

Xamarin.Android permits writing Android apps with C# instead of Java. Several assemblies are provided with

Xamarin.Android which provide bindings for Java libraries, including Mono.Android.dll and

Mono.Android.GoogleMaps.dll. However, bindings are not provided for every possible Java library, and the

bindings that are provided may not bind every Java type and member. To use unbound Java types and

members, the Java Native Interface (JNI) may be used. This article illustrates how to use JNI to interact with Java

types and members from Xamarin.Android applications.

It is not always necessary or possible to create a Managed Callable Wrapper (MCW) to invoke Java code. In

many cases, "inline" JNI is perfectly acceptable and useful for one-off use of unbound Java members. It is often

simpler to use JNI to invoke a single method on a Java class than to generate an entire .jar binding.

Xamarin.Android provides the Mono.Android.dll assembly, which provides a binding for Android's android.jar

library. Types and members not present within Mono.Android.dll and types not present within android.jar

may be used by manually binding them. To bind Java types and members, you use the Java Native InterfaceJava Native Interface

(JNIJNI) to lookup types, read and write fields, and invoke methods.

The JNI API in Xamarin.Android is conceptually very similar to the System.Reflection API in .NET: it makes it

possible for you to look up types and members by name, read and write field values, invoke methods, and more.

You can use JNI and the Android.Runtime.RegisterAttribute custom attribute to declare virtual methods that can

be bound to support overriding. You can bind interfaces so that they can be implemented in C#.

This document explains:

How JNI refers to types.

How to lookup, read, and write fields.

How to lookup and invoke methods.

How to expose virtual methods to allow overriding from managed code.

How to expose interfaces.

JNI, as exposed through the Android.Runtime.JNIEnv namespace, is available in every version of

Xamarin.Android. To bind Java types and interfaces, you must use Xamarin.Android 4.0 or later.

A Managed Callable WrapperManaged Callable Wrapper (MCWMCW) is a binding for a Java class or interface which wraps up the all the JNI

machinery so that client C# code doesn't need to worry about the underlying complexity of JNI. Most of

Mono.Android.dll consists of managed callable wrappers.

Managed callable wrappers serve two purposes:

1. Encapsulate JNI use so that client code doesn't need to know about the underlying complexity.

2. Make it possible to sub-class Java types and implement Java interfaces.

The first purpose is purely for convenience and encapsulation of complexity so that consumers have a simple,

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/java-integration/working-with-jni.md
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv

 Android Callable Wrappers

 Implementing InterfacesImplementing Interfaces

class MyComponentCallbacks : Java.Lang.Object, Android.Content.IComponentCallbacks {
 public void OnConfigurationChanged (Android.Content.Res.Configuration newConfig) {
 // implementation goes here...
 }
 public void OnLowMemory () {
 // implementation goes here...
 }
}

 Implementation DetailsImplementation Details

managed set of classes to use. This requires use of the various JNIEnv members as described later in this article.

Keep in mind that managed callable wrappers aren't strictly necessary – "inline" JNI use is perfectly acceptable

and is useful for one-off use of unbound Java members. Sub-classing and interface implementation requires the

use of managed callable wrappers.

Android callable wrappers (ACW) are required whenever the Android runtime (ART) needs to invoke managed

code; these wrappers are required because there is no way to register classes with ART at runtime. (Specifically,

the DefineClass JNI function is not supported by the Android runtime. Android callable wrappers thus make up

for the lack of runtime type registration support.)

Whenever Android code needs to execute a virtual or interface method that is overridden or implemented in

managed code, Xamarin.Android must provide a Java proxy so that this method gets dispatched to the

appropriate managed type. These Java proxy types are Java code that have the "same" base class and Java

interface list as the managed type, implementing the same constructors and declaring any overridden base class

and interface methods.

Android callable wrappers are generated by the monodroid.exemonodroid.exe program during the build process, and are

generated for all types that (directly or indirectly) inherit Java.Lang.Object.

There are times when you may need to implement an Android interface, (such as

Android.Content.IComponentCallbacks).

All Android classes and interfaces extend the Android.Runtime.IJavaObject interface; therefore, all Android types

must implement IJavaObject . Xamarin.Android takes advantage of this fact – it uses IJavaObject to provide

Android with a Java proxy (an Android callable wrapper) for the given managed type. Because monodroid.exemonodroid.exe

only looks for Java.Lang.Object subclasses (which must implement IJavaObject), subclassing

Java.Lang.Object provides us with a way to implement interfaces in managed code. For example:

The remainder of this article provides implementation details subject to change without notice (and is presented

here only because developers may be curious about what's going on under the hood).

For example, given the following C# source:

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv
https://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/functions.html#wp15986
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/android.content.icomponentcallbacks
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.ijavaobject

using System;
using Android.App;
using Android.OS;

namespace Mono.Samples.HelloWorld
{
 public class HelloAndroid : Activity
 {
 protected override void OnCreate (Bundle savedInstanceState)
 {
 base.OnCreate (savedInstanceState);
 SetContentView (R.layout.main);
 }
 }
}

package mono.samples.helloWorld;

public class HelloAndroid extends android.app.Activity {
 static final String __md_methods;
 static {
 __md_methods =
 "n_onCreate:(Landroid/os/Bundle;)V:GetOnCreate_Landroid_os_Bundle_Handler\n" +
 "";
 mono.android.Runtime.register (
 "Mono.Samples.HelloWorld.HelloAndroid, HelloWorld, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null",
 HelloAndroid.class,
 __md_methods);
 }

 public HelloAndroid ()
 {
 super ();
 if (getClass () == HelloAndroid.class)
 mono.android.TypeManager.Activate (
 "Mono.Samples.HelloWorld.HelloAndroid, HelloWorld, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null",
 "", this, new java.lang.Object[] { });
 }

 @Override
 public void onCreate (android.os.Bundle p0)
 {
 n_onCreate (p0);
 }

 private native void n_onCreate (android.os.Bundle p0);
}

 ExportAttribute and ExportFieldAttributeExportAttribute and ExportFieldAttribute

The mandroid.exemandroid.exe program will generate the following Android Callable Wrapper :

Notice that the base class is preserved, and native method declarations are provided for each method that is

overridden within managed code.

Typically, Xamarin.Android automatically generates the Java code that comprises the ACW; this generation is

based on the class and method names when a class derives from a Java class and overrides existing Java

methods. However, in some scenarios, the code generation is not adequate, as outlined below:

Android supports action names in layout XML attributes, for example the android:onClick XML attribute.

When it is specified, the inflated View instance tries to look up the Java method.

https://docs.microsoft.com/en-us/dotnet/api/android.views.view.ionclicklistener.onclick

 Troubleshooting ExportAttribute and ExportFieldAttributeTroubleshooting ExportAttribute and ExportFieldAttribute

 ExportParameterAttributeExportParameterAttribute

 Annotation AttributeAnnotation Attribute

The java.io.Serializable interface requires readObject and writeObject methods. Since they are not

members of this interface, our corresponding managed implementation does not expose these methods

to Java code.

The android.os.Parcelable interface expects that an implementation class must have a static field CREATOR

of type Parcelable.Creator . The generated Java code requires some explicit field. With our standard

scenario, there is no way to output field in Java code from managed code.

Because code generation does not provide a solution to generate arbitrary Java methods with arbitrary names,

starting with Xamarin.Android 4.2, the ExportAttribute and ExportFieldAttribute were introduced to offer a

solution to the above scenarios. Both attributes reside in the Java.Interop namespace:

ExportAttribute – specifies a method name and its expected exception types (to give explicit "throws" in

Java). When it is used on a method, the method will "export" a Java method that generates a dispatch

code to the corresponding JNI invocation to the managed method. This can be used with

android:onClick and java.io.Serializable .

ExportFieldAttribute – specifies a field name. It resides on a method that works as a field initializer. This

can be used with android.os.Parcelable .

Packaging fails due to missing Mono.Android.Expor t.dllMono.Android.Expor t.dll – if you used ExportAttribute or

ExportFieldAttribute on some methods in your code or dependent libraries, you have to add

Mono.Android.Expor t.dllMono.Android.Expor t.dll . This assembly is isolated to support callback code from Java. It is separate

from Mono.Android.dllMono.Android.dll as it adds additional size to the application.

In Release build, MissingMethodException occurs for Export methods – In Release build,

MissingMethodException occurs for Export methods. (This issue is fixed in the latest version of

Xamarin.Android.)

ExportAttribute and ExportFieldAttribute provide functionality that Java run-time code can use. This run-time

code accesses managed code through the generated JNI methods driven by those attributes. As a result, there is

no existing Java method that the managed method binds; hence, the Java method is generated from a managed

method signature.

However, this case is not fully determinant. Most notably, this is true in some advanced mappings between

managed types and Java types such as:

InputStream

OutputStream

XmlPullParser

XmlResourceParser

When types such as these are needed for exported methods, the ExportParameterAttribute must be used to

explicitly give the corresponding parameter or return value a type.

In Xamarin.Android 4.2, we converted IAnnotation implementation types into attributes (System.Attribute), and

added support for annotation generation in Java wrappers.

This means the following directional changes:

The binding generator generates Java.Lang.DeprecatedAttribute from java.Lang.Deprecated (while it

should be [Obsolete] in managed code).

https://developer.android.com/reference/java/io/Serializable.html
https://docs.microsoft.com/en-us/dotnet/api/android.os.parcelable
https://docs.microsoft.com/en-us/dotnet/api/java.interop.exportattribute
https://docs.microsoft.com/en-us/dotnet/api/java.interop.exportfieldattribute

 Class Binding

 Declaring Type HandleDeclaring Type Handle

static IntPtr class_ref = JNIEnv.FindClass(CLASS);

 Binding FieldsBinding Fields

This does not mean that existing Java.Lang.Deprecated class will vanish. These Java-based objects could

be still used as usual Java objects (if such usage exists). There will be Deprecated and

DeprecatedAttribute classes.

The Java.Lang.DeprecatedAttribute class is marked as [Annotation] . When there is a custom attribute

that is inherited from this [Annotation] attribute, msbuild task will generate a Java annotation for that

custom attribute (@Deprecated) in the Android Callable Wrapper (ACW).

Annotations could be generated onto classes, methods and exported fields (which is a method in

managed code).

If the containing class (the annotated class itself, or the class that contains the annotated members) is not

registered, the entire Java class source is not generated at all, including annotations. For methods, you can

specify the ExportAttribute to get the method explicitly generated and annotated. Also, it is not a feature to

"generate" a Java annotation class definition. In other words, if you define a custom managed attribute for a

certain annotation, you'll have to add another .jar library that contains the corresponding Java annotation class.

Adding a Java source file that defines the annotation type is not sufficient. The Java compiler does not work in

the same way as aptapt.

Additionally the following limitations apply:

This conversion process does not consider @Target annotation on the annotation type so far.

Attributes onto a property does not work. Use attributes for property getter or setter instead.

Binding a class means writing a managed callable wrapper to simplify invocation of the underlying Java type.

Binding virtual and abstract methods to permit overriding from C# requires Xamarin.Android 4.0. However, any

version of Xamarin.Android can bind non-virtual methods, static methods, or virtual methods without

supporting overrides.

A binding typically contains the following items:

A JNI handle to the Java type being bound.

JNI field IDs and properties for each bound field.

JNI method IDs and methods for each bound method.

If sub-classing is required, the type needs to have a RegisterAttribute custom attribute on the type

declaration with RegisterAttribute.DoNotGenerateAcw set to true .

The field and method lookup methods require an object reference referring to their declaring type. By

convention, this is held in a class_ref field:

See the JNI Type References section for details about the CLASS token.

Java fields are exposed as C# properties, for example the Java field java.lang.System.in is bound as the C#

property Java.Lang.JavaSystem.In. Furthermore, since JNI distinguishes between static fields and instance fields,

different methods be used when implementing the properties.

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute.donotgenerateacw#android_runtime_registerattribute_donotgenerateacw
https://developer.android.com/reference/java/lang/System.html#in
https://docs.microsoft.com/en-us/dotnet/api/java.lang.javasystem.in#java_lang_javasystem_in

static IntPtr in_jfieldID;
public static System.IO.Stream In
{
 get {
 if (in_jfieldId == IntPtr.Zero)
 in_jfieldId = JNIEnv.GetStaticFieldID (class_ref, "in", "Ljava/io/InputStream;");
 IntPtr __ret = JNIEnv.GetStaticObjectField (class_ref, in_jfieldId);
 return InputStreamInvoker.FromJniHandle (__ret, JniHandleOwnership.TransferLocalRef);
 }
}

 Method BindingMethod Binding

Field binding involves three sets of methods:

1. The get field id method. The get field id method is responsible for returning a field handle that the get

field value and set field value methods will use. Obtaining the field id requires knowing the declaring

type, the name of the field, and the JNI type signature of the field.

2. The get field value methods. These methods require the field handle and are responsible for reading the

field's value from Java. The method to use depends upon the field's type.

3. The set field value methods. These methods require the field handle and are responsible for writing the

field's value within Java. The method to use depends upon the field's type.

Static fields use the JNIEnv.GetStaticFieldID, JNIEnv.GetStatic*Field , and JNIEnv.SetStaticField methods.

Instance fields use the JNIEnv.GetFieldID, JNIEnv.Get*Field , and JNIEnv.SetField methods.

For example, the static property JavaSystem.In can be implemented as:

Note: We're using InputStreamInvoker.FromJniHandle to convert the JNI reference into a System.IO.Stream

instance, and we're using JniHandleOwnership.TransferLocalRef because JNIEnv.GetStaticObjectField returns a

local reference.

Many of the Android.Runtime types have FromJniHandle methods which will convert a JNI reference into the

desired type.

Java methods are exposed as C# methods and as C# properties. For example, the Java method

java.lang.Runtime.runFinalizersOnExit method is bound as the Java.Lang.Runtime.RunFinalizersOnExit method,

and the java.lang.Object.getClass method is bound as the Java.Lang.Object.Class property.

Method invocation is a two-step process:

1. The get method id for the method to invoke. The get method id method is responsible for returning a

method handle that the method invocation methods will use. Obtaining the method id requires knowing

the declaring type, the name of the method, and the JNI type signature of the method.

2. Invoke the method.

Just as with fields, the methods to use to get the method id and invoke the method differ between static

methods and instance methods.

Static methods use JNIEnv.GetStaticMethodID() to lookup the method id, and use the JNIEnv.CallStatic*Method

family of methods for invocation.

Instance methods use JNIEnv.GetMethodID to lookup the method id, and use the JNIEnv.Call*Method and

JNIEnv.CallNonvirtual*Method families of methods for invocation.

Method binding is potentially more than just method invocation. Method binding also includes allowing a

method to be overridden (for abstract and non-final methods) or implemented (for interface methods). The

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticmethodid
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getfieldid
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.inputstreaminvoker.fromjnihandle
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticobjectfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime
https://developer.android.com/reference/java/lang/Runtime.html#runFinalizersOnExit(boolean)
https://docs.microsoft.com/en-us/dotnet/api/java.lang.runtime.runfinalizersonexit
https://developer.android.com/reference/java/lang/Object.html#getClass
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.class#java_lang_object_class
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticmethodid
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getmethodid

 Static MethodsStatic Methods

static IntPtr id_getRuntime;

[Register ("getRuntime", "()Ljava/lang/Runtime;", "")]
public static Java.Lang.Runtime GetRuntime ()
{
 if (id_getRuntime == IntPtr.Zero)
 id_getRuntime = JNIEnv.GetStaticMethodID (class_ref,
 "getRuntime", "()Ljava/lang/Runtime;");

 return Java.Lang.Object.GetObject<Java.Lang.Runtime> (
 JNIEnv.CallStaticObjectMethod (class_ref, id_getRuntime),
 JniHandleOwnership.TransferLocalRef);
}

 Non-virtual Instance Method BindingNon-virtual Instance Method Binding

static IntPtr id_getClass;
public Java.Lang.Class Class {
 get {
 if (id_getClass == IntPtr.Zero)
 id_getClass = JNIEnv.GetMethodID (class_ref, "getClass", "()Ljava/lang/Class;");
 return Java.Lang.Object.GetObject<Java.Lang.Class> (
 JNIEnv.CallObjectMethod (Handle, id_getClass),
 JniHandleOwnership.TransferLocalRef);
 }
}

 Binding ConstructorsBinding Constructors

Supporting Inheritance, Interfaces section covers the complexities of supporting virtual methods and interface

methods.

Binding a static method involves using JNIEnv.GetStaticMethodID to obtain a method handle, then using the

appropriate JNIEnv.CallStatic*Method method, depending on the method's return type. The following is an

example of a binding for the Runtime.getRuntime method:

Note that we store the method handle in a static field, id_getRuntime . This is a performance optimization, so

that the method handle doesn't need to be looked up on every invocation. It is not necessary to cache the

method handle in this way. Once the method handle is obtained, JNIEnv.CallStaticObjectMethod is used to

invoke the method. JNIEnv.CallStaticObjectMethod returns an IntPtr which contains the handle of the

returned Java instance. Java.Lang.Object.GetObject<T>(IntPtr, JniHandleOwnership) is used to convert the Java

handle into a strongly typed object instance.

Binding a final instance method, or an instance method which doesn't require overriding, involves using

JNIEnv.GetMethodID to obtain a method handle, then using the appropriate JNIEnv.Call*Method method,

depending on the method's return type. The following is an example of a binding for the Object.Class property:

Note that we store the method handle in a static field, id_getClass . This is a performance optimization, so that

the method handle doesn't need to be looked up on every invocation. It is not necessary to cache the method

handle in this way. Once the method handle is obtained, JNIEnv.CallStaticObjectMethod is used to invoke the

method. JNIEnv.CallStaticObjectMethod returns an IntPtr which contains the handle of the returned Java

instance. Java.Lang.Object.GetObject<T>(IntPtr, JniHandleOwnership) is used to convert the Java handle into a

strongly typed object instance.

Constructors are Java methods with the name "<init>" . Just as with Java instance methods,

JNIEnv.GetMethodID is used to lookup the constructor handle. Unlike Java methods, the JNIEnv.NewObject

methods are used to invoke the constructor method handle. The return value of JNIEnv.NewObject is a JNI local

https://developer.android.com/reference/java/lang/Runtime.html#getRuntime()
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.getobject
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.getobject
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.newobject

int value = 42;
IntPtr class_ref = JNIEnv.FindClass ("java/lang/Integer");
IntPtr id_ctor_I = JNIEnv.GetMethodID (class_ref, "<init>", "(I)V");
IntPtr lrefInstance = JNIEnv.NewObject (class_ref, id_ctor_I, new JValue (value));
// Dispose of lrefInstance, class_ref…

reference:

Normally a class binding will subclass Java.Lang.Object. When subclassing Java.Lang.Object , an additional

semantic comes into play: a Java.Lang.Object instance maintains a global reference to a Java instance through

the Java.Lang.Object.Handle property.

1. The Java.Lang.Object default constructor will allocate a Java instance.

2. If the type has a RegisterAttribute , and RegisterAttribute.DoNotGenerateAcw is true , then an instance

of the RegisterAttribute.Name type is created through its default constructor.

3. Otherwise, the Android Callable Wrapper (ACW) corresponding to this.GetType is instantiated through

its default constructor. Android Callable Wrappers are generated during package creation for every

Java.Lang.Object subclass for which RegisterAttribute.DoNotGenerateAcw is not set to true .

For types which are not class bindings, this is the expected semantic: instantiating a

Mono.Samples.HelloWorld.HelloAndroid C# instance should construct a Java

mono.samples.helloworld.HelloAndroid instance which is a generated Android Callable Wrapper.

For class bindings, this may be the correct behavior if the Java type contains a default constructor and/or no

other constructor needs to be invoked. Otherwise, a constructor must be provided which performs the following

actions:

1. Invoking the Java.Lang.Object(IntPtr, JniHandleOwnership) instead of the default Java.Lang.Object

constructor. This is needed to avoid creating a new Java instance.

2. Check the value of Java.Lang.Object.Handle before creating any Java instances. The Object.Handle

property will have a value other than IntPtr.Zero if an Android Callable Wrapper was constructed in

Java code, and the class binding is being constructed to contain the created Android Callable Wrapper

instance. For example, when Android creates a mono.samples.helloworld.HelloAndroid instance, the

Android Callable Wrapper will be created first , and the Java HelloAndroid constructor will create an

instance of the corresponding Mono.Samples.HelloWorld.HelloAndroid type, with the Object.Handle

property being set to the Java instance prior to constructor execution.

3. If the current runtime type is not the same as the declaring type, then an instance of the corresponding

Android Callable Wrapper must be created, and use Object.SetHandle to store the handle returned by

JNIEnv.CreateInstance.

4. If the current runtime type is the same as the declaring type, then invoke the Java constructor and use

Object.SetHandle to store the handle returned by JNIEnv.NewInstance .

For example, consider the java.lang.Integer(int) constructor. This is bound as:

https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object#ctor*
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.handle#java_lang_object_handle
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.sethandle
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.createinstance
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.sethandle
https://developer.android.com/reference/java/lang/Integer.html#Integer(int)

// Cache the constructor's method handle for later use
static IntPtr id_ctor_I;

// Need [Register] for subclassing
// RegisterAttribute.Name is always ".ctor"
// RegisterAttribute.Signature is tye JNI type signature of constructor
// RegisterAttribute.Connector is ignored; use ""
[Register (".ctor", "(I)V", "")]
public Integer (int value)
 // 1. Prevent Object default constructor execution
 : base (IntPtr.Zero, JniHandleOwnership.DoNotTransfer)
{
 // 2. Don't allocate Java instance if already allocated
 if (Handle != IntPtr.Zero)
 return;

 // 3. Derived type? Create Android Callable Wrapper
 if (GetType () != typeof (Integer)) {
 SetHandle (
 Android.Runtime.JNIEnv.CreateInstance (GetType (), "(I)V", new JValue (value)),
 JniHandleOwnership.TransferLocalRef);
 return;
 }

 // 4. Declaring type: lookup & cache method id...
 if (id_ctor_I == IntPtr.Zero)
 id_ctor_I = JNIEnv.GetMethodID (class_ref, "<init>", "(I)V");
 // ...then create the Java instance and store
 SetHandle (
 JNIEnv.NewObject (class_ref, id_ctor_I, new JValue (value)),
 JniHandleOwnership.TransferLocalRef);
}

 Supporting Inheritance, InterfacesSupporting Inheritance, Interfaces

The JNIEnv.CreateInstance methods are helpers to perform a JNIEnv.FindClass , JNIEnv.GetMethodID ,

JNIEnv.NewObject , and JNIEnv.DeleteGlobalReference on the value returned from JNIEnv.FindClass . See the

next section for details.

Subclassing a Java type or implementing a Java interface requires the generation of Android Callable Wrappers

(ACWs) that are generated for every Java.Lang.Object subclass during the packaging process. ACW generation

is controlled through the Android.Runtime.RegisterAttribute custom attribute.

For C# types, the [Register] custom attribute constructor requires one argument: the JNI simplified type

reference for the corresponding Java type. This allows providing different names between Java and C#.

Prior to Xamarin.Android 4.0, the [Register] custom attribute was unavailable to "alias" existing Java types.

This is because the ACW generation process would generate ACWs for every Java.Lang.Object subclass

encountered.

Xamarin.Android 4.0 introduced the RegisterAttribute.DoNotGenerateAcw property. This property instructs the

ACW generation process to skip the annotated type, allowing the declaration of new Managed Callable

Wrappers that will not result in ACWs being generated at package creation time. This allows binding existing

Java types. For instance, consider the following simple Java class, Adder , which contains one method, add , that

adds to integers and returns the result:

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.createinstance
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute.donotgenerateacw#android_runtime_registerattribute_donotgenerateacw

package mono.android.test;
public class Adder {
 public int add (int a, int b) {
 return a + b;
 }
}

[Register ("mono/android/test/Adder", DoNotGenerateAcw=true)]
public partial class Adder : Java.Lang.Object {
 static IntPtr class_ref = JNIEnv.FindClass ("mono/android/test/Adder");

 public Adder ()
 {
 }

 public Adder (IntPtr handle, JniHandleOwnership transfer)
 : base (handle, transfer)
 {
 }
}
partial class ManagedAdder : Adder {
}

 Binding Virtual MethodsBinding Virtual Methods

 Method BindingMethod Binding

 T h r e sh o l d T y p eT h r e sh o l d T y p e

partial class Adder {
 protected override System.Type ThresholdType {
 get {
 return typeof (Adder);
 }
 }
}

The Adder type could be bound as:

Here, the Adder C# type aliases the Adder Java type. The [Register] attribute is used to specify the JNI name

of the mono.android.test.Adder Java type, and the DoNotGenerateAcw property is used to inhibit ACW

generation. This will result in the generation of an ACW for the ManagedAdder type, which properly subclasses

the mono.android.test.Adder type. If the RegisterAttribute.DoNotGenerateAcw property hadn't been used, then

the Xamarin.Android build process would have generated a new mono.android.test.Adder Java type. This would

result in compilation errors, as the mono.android.test.Adder type would be present twice, in two separate files.

ManagedAdder subclasses the Java Adder type, but it isn't particularly interesting: the C# Adder type doesn't

define any virtual methods, so ManagedAdder can't override anything.

Binding virtual methods to permit overriding by subclasses requires several things that need to be done

which fall into the following two categories:

1. Method BindingMethod Binding

2. Method RegistrationMethod Registration

A method binding requires the addition of two support members to the C# Adder definition: ThresholdType ,

and ThresholdClass .

The ThresholdType property returns the current type of the binding:

 T h r e sh o l d C l a ssT h r e sh o l d C l a ss

partial class Adder {
 protected override IntPtr ThresholdClass {
 get {
 return class_ref;
 }
 }
}

 Binding ImplementationBinding Implementation

[Register ("add", "(II)I", "GetAddHandler")]
 public virtual int Add (int a, int b)
 {
 if (id_add == IntPtr.Zero)
 id_add = JNIEnv.GetMethodID (class_ref, "add", "(II)I");
 if (GetType () == ThresholdType)
 return JNIEnv.CallIntMethod (Handle, id_add, new JValue (a), new JValue (b));
 return JNIEnv.CallNonvirtualIntMethod (Handle, ThresholdClass, id_add, new JValue (a), new JValue
(b));
 }
}

 Method RegistrationMethod Registration

partial class ManagedAdder : Adder {
 public override int Add (int a, int b) {
 return (a*2) + (b*2);
 }
}

ThresholdType is used in the Method Binding to determine when it should perform virtual vs. non-virtual

method dispatch. It should always return a System.Type instance which corresponds to the declaring C# type.

The ThresholdClass property returns the JNI class reference for the bound type:

ThresholdClass is used in the Method Binding when invoking non-virtual methods.

The method binding implementation is responsible for runtime invocation of the Java method. It also contains a

[Register] custom attribute declaration that is part of the method registration, and will be discussed in the

Method Registration section:

The id_add field contains the method ID for the Java method to invoke. The id_add value is obtained from

JNIEnv.GetMethodID , which requires the declaring class (class_ref), the Java method name ("add"), and the

JNI signature of the method ("(II)I").

Once the method ID is obtained, GetType is compared to ThresholdType to determine if virtual or non-virtual

dispatch is required. Virtual dispatch is required when GetType matches ThresholdType , as Handle may refer to

a Java-allocated subclass which overrides the method.

When GetType doesn't match ThresholdType , Adder has been subclassed (e.g. by ManagedAdder), and the

Adder.Add implementation will only be invoked if the subclass invoked base.Add . This is the non-virtual

dispatch case, which is where ThresholdClass comes in. ThresholdClass specifies which Java class will provide

the implementation of the method to invoke.

Assume we have an updated ManagedAdder definition which overrides the Adder.Add method:

Recall that Adder.Add had a [Register] custom attribute:

[Register ("add", "(II)I", "GetAddHandler")]

public class ManagedAdder extends mono.android.test.Adder {
 static final String __md_methods;
 static {
 __md_methods = "n_add:(II)I:GetAddHandler\n" +
 "";
 mono.android.Runtime.register (...);
 }
 @Override
 public int add (int p0, int p1) {
 return n_add (p0, p1);
 }
 private native int n_add (int p0, int p1);
 // ...
}

int FunctionName(JNIEnv *env, jobject this, int a, int b)

The [Register] custom attribute constructor accepts three values:

1. The name of the Java method, "add" in this case.

2. The JNI Type Signature of the method, "(II)I" in this case.

3. The connector method , GetAddHandler in this case. Connector methods will be discussed later.

The first two parameters allow the ACW generation process to generate a method declaration to override the

method. The resulting ACW would contain some of the following code:

Note that an @Override method is declared, which delegates to an n_ -prefixed method of the same name. This

ensure that when Java code invokes ManagedAdder.add , ManagedAdder.n_add will be invoked, which will allow the

overriding C# ManagedAdder.Add method to be executed.

Thus, the most important question: how is ManagedAdder.n_add hooked up to ManagedAdder.Add ?

Java native methods are registered with the Java (the Android runtime) runtime through the JNI

RegisterNatives function. RegisterNatives takes an array of structures containing the Java method name, the

JNI Type Signature, and a function pointer to invoke that follows JNI calling convention. The function pointer

must be a function that takes two pointer arguments followed by the method parameters. The Java

ManagedAdder.n_add method must be implemented through a function that has the following C prototype:

Xamarin.Android does not expose a RegisterNatives method. Instead, the ACW and the MCW together provide

the information necessary to invoke RegisterNatives : the ACW contains the method name and the JNI type

signature, the only thing missing is a function pointer to hook up.

This is where the connector method comes in. The third [Register] custom attribute parameter is the name of

a method defined in the registered type or a base class of the registered type that accepts no parameters and

returns a System.Delegate . The returned System.Delegate in turn refers to a method that has the correct JNI

function signature. Finally, the delegate that the connector method returns must be rooted so that the GC

doesn't collect it, as the delegate is being provided to Java.

https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html#wp17734
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/design.html#wp715

#pragma warning disable 0169
static Delegate cb_add;
// This method must match the third parameter of the [Register]
// custom attribute, must be static, must return System.Delegate,
// and must accept no parameters.
static Delegate GetAddHandler ()
{
 if (cb_add == null)
 cb_add = JNINativeWrapper.CreateDelegate ((Func<IntPtr, IntPtr, int, int, int>) n_Add);
 return cb_add;
}
// This method is registered with JNI.
static int n_Add (IntPtr jnienv, IntPtr lrefThis, int a, int b)
{
 Adder __this = Java.Lang.Object.GetObject<Adder>(lrefThis, JniHandleOwnership.DoNotTransfer);
 return __this.Add (a, b);
}
#pragma warning restore 0169

 Complete Adder BindingComplete Adder Binding

The GetAddHandler method creates a Func<IntPtr, IntPtr, int, int, int> delegate which refers to the n_Add

method, then invokes JNINativeWrapper.CreateDelegate. JNINativeWrapper.CreateDelegate wraps the provided

method in a try/catch block, so that any unhandled exceptions are handled and will result in raising the

AndroidEvent.UnhandledExceptionRaiser event. The resulting delegate is stored in the static cb_add variable so

that the GC will not free the delegate.

Finally, the n_Add method is responsible for marshaling the JNI parameters to the corresponding managed

types, then delegating the method call.

Note: Always use JniHandleOwnership.DoNotTransfer when obtaining an MCW over a Java instance. Treating

them as a local reference (and thus calling JNIEnv.DeleteLocalRef) will break managed -> Java -> managed

stack transitions.

The complete managed binding for the mono.android.tests.Adder type is:

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jninativewrapper.createdelegate
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.androidenvironment.unhandledexceptionraiser

[Register ("mono/android/test/Adder", DoNotGenerateAcw=true)]
public class Adder : Java.Lang.Object {

 static IntPtr class_ref = JNIEnv.FindClass ("mono/android/test/Adder");

 public Adder ()
 {
 }

 public Adder (IntPtr handle, JniHandleOwnership transfer)
 : base (handle, transfer)
 {
 }

 protected override Type ThresholdType {
 get {return typeof (Adder);}
 }

 protected override IntPtr ThresholdClass {
 get {return class_ref;}
 }

#region Add
 static IntPtr id_add;

 [Register ("add", "(II)I", "GetAddHandler")]
 public virtual int Add (int a, int b)
 {
 if (id_add == IntPtr.Zero)
 id_add = JNIEnv.GetMethodID (class_ref, "add", "(II)I");
 if (GetType () == ThresholdType)
 return JNIEnv.CallIntMethod (Handle, id_add, new JValue (a), new JValue (b));
 return JNIEnv.CallNonvirtualIntMethod (Handle, ThresholdClass, id_add, new JValue (a), new JValue
(b));
 }

#pragma warning disable 0169
 static Delegate cb_add;
 static Delegate GetAddHandler ()
 {
 if (cb_add == null)
 cb_add = JNINativeWrapper.CreateDelegate ((Func<IntPtr, IntPtr, int, int, int>) n_Add);
 return cb_add;
 }

 static int n_Add (IntPtr jnienv, IntPtr lrefThis, int a, int b)
 {
 Adder __this = Java.Lang.Object.GetObject<Adder>(lrefThis, JniHandleOwnership.DoNotTransfer);
 return __this.Add (a, b);
 }
#pragma warning restore 0169
#endregion
}

 RestrictionsRestrictions
When writing a type that matches the following criteria:

1. Subclasses Java.Lang.Object

2. Has a [Register] custom attribute

3. RegisterAttribute.DoNotGenerateAcw is true

Then for GC interaction the type must not have any fields which may refer to a Java.Lang.Object or

Java.Lang.Object subclass at runtime. For example, fields of type System.Object and any interface type are not

 Binding Abstract Methods

partial class Adder {
 [Register ("add", "(II)I", "GetAddHandler")]
 public abstract int Add (int a, int b);

 // The Method Registration machinery is identical to the
 // virtual method case...
}

partial class AdderInvoker : Adder {
 public AdderInvoker (IntPtr handle, JniHandleOwnership transfer)
 : base (handle, transfer)
 {
 }

 static IntPtr id_add;
 public override int Add (int a, int b)
 {
 if (id_add == IntPtr.Zero)
 id_add = JNIEnv.GetMethodID (class_ref, "add", "(II)I");
 return JNIEnv.CallIntMethod (Handle, id_add, new JValue (a), new JValue (b));
 }
}

 Binding Interfaces

public interface Progress {
 void onAdd(int[] values, int currentIndex, int currentSum);
}

 Interface DefinitionInterface Definition

permitted. Types which cannot refer to Java.Lang.Object instances are permitted, such as System.String and

List<int> . This restriction is to prevent premature object collection by the GC.

If the type must contain an instance field that can refer to a Java.Lang.Object instance, then the field type must

be System.WeakReference or GCHandle .

Binding abstract methods is largely identical to binding virtual methods. There are only two differences:

1. The abstract method is abstract. It still retains the [Register] attribute and the associated Method

Registration, the Method Binding is just moved to the Invoker type.

2. A non- abstract Invoker type is created which subclasses the abstract type. The Invoker type must

override all abstract methods declared in the base class, and the overridden implementation is the

Method Binding implementation, though the non-virtual dispatch case can be ignored.

For example, assume that the above mono.android.test.Adder.add method were abstract . The C# binding

would change so that Adder.Add were abstract, and a new AdderInvoker type would be defined which

implemented Adder.Add :

The Invoker type is only necessary when obtaining JNI references to Java-created instances.

Binding interfaces is conceptually similar to binding classes containing virtual methods, but many of the

specifics differ in subtle (and not so subtle) ways. Consider the following Java interface declaration:

Interface bindings have two parts: the C# interface definition, and an Invoker definition for the interface.

The C# interface definition must fulfill the following requirements:

https://github.com/xamarin/monodroid-samples/blob/master/SanityTests/Adder.java#L14

[Register ("mono/android/test/Adder$Progress", DoNotGenerateAcw=true)]
public interface IAdderProgress : IJavaObject {
 [Register ("onAdd", "([III)V",
 "GetOnAddHandler:Mono.Samples.SanityTests.IAdderProgressInvoker, SanityTests, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null")]
 void OnAdd (JavaArray<int> values, int currentIndex, int currentSum);
}

 Invoker DefinitionInvoker Definition

The interface definition must have a [Register] custom attribute.

The interface definition must extend the IJavaObject interface . Failure to do so will prevent ACWs from

inheriting from the Java interface.

Each interface method must contain a [Register] attribute specifying the corresponding Java method

name, the JNI signature, and the connector method.

The connector method must also specify the type that the connector method can be located on.

When binding abstract and virtual methods, the connector method would be searched within the

inheritance hierarchy of the type being registered. Interfaces can have no methods containing bodies, so this

doesn't work, thus the requirement that a type be specified indicating where the connector method is located.

The type is specified within the connector method string, after a colon ':' , and must be the assembly qualified

type name of the type containing the invoker.

Interface method declarations are a translation of the corresponding Java method using compatible types. For

Java builtin types, the compatible types are the corresponding C# types, e.g. Java int is C# int . For reference

types, the compatible type is a type that can provide a JNI handle of the appropriate Java type.

The interface members will not be directly invoked by Java – invocation will be mediated through the Invoker

type – so some amount of flexibility is permitted.

The Java Progress interface can be declared in C# as:

Notice in the above that we map the Java int[] parameter to a JavaArray<int>. This isn't necessary: we could

have bound it to a C# int[] , or an IList<int> , or something else entirely. Whatever type is chosen, the

Invoker needs to be able to translate it into a Java int[] type for invocation.

The Invoker type definition must inherit Java.Lang.Object , implement the appropriate interface, and provide

all connection methods referenced in the interface definition. There is one more suggestion that differs from a

class binding: the class_ref field and method IDs should be instance members, not static members.

The reason for preferring instance members has to do with JNIEnv.GetMethodID behavior in the Android

runtime. (This may be Java behavior as well; it hasn't been tested.) JNIEnv.GetMethodID returns null when

looking up a method that comes from an implemented interface and not the declared interface. Consider the

java.util.SortedMap<K, V> Java interface, which implements the java.util.Map<K, V> interface. Map provides a

clear method, thus a seemingly reasonable Invoker definition for SortedMap would be:

https://github.com/xamarin/monodroid-samples/blob/master/SanityTests/ManagedAdder.cs#L83
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.javaarray-1
https://developer.android.com/reference/java/util/SortedMap.html
https://developer.android.com/reference/java/util/Map.html
https://developer.android.com/reference/java/util/Map.html#clear()

// Fails at runtime. DO NOT FOLLOW
partial class ISortedMapInvoker : Java.Lang.Object, ISortedMap {
 static IntPtr class_ref = JNIEnv.FindClass ("java/util/SortedMap");
 static IntPtr id_clear;
 public void Clear()
 {
 if (id_clear == IntPtr.Zero)
 id_clear = JNIEnv.GetMethodID(class_ref, "clear", "()V");
 JNIEnv.CallVoidMethod(Handle, id_clear);
 }
 // ...
}

 ConstructorConstructor

partial class IAdderProgressInvoker {
 IntPtr class_ref;
 public IAdderProgressInvoker (IntPtr handle, JniHandleOwnership transfer)
 : base (handle, transfer)
 {
 IntPtr lref = JNIEnv.GetObjectClass (Handle);
 class_ref = JNIEnv.NewGlobalRef (lref);
 JNIEnv.DeleteLocalRef (lref);
 }
}

 Dispose MethodDispose Method

partial class IAdderProgressInvoker {
 protected override void Dispose (bool disposing)
 {
 if (this.class_ref != IntPtr.Zero)
 JNIEnv.DeleteGlobalRef (this.class_ref);
 this.class_ref = IntPtr.Zero;
 base.Dispose (disposing);
 }
}

 ThresholdType and ThresholdClassThresholdType and ThresholdClass

The above will fail because JNIEnv.GetMethodID will return null when looking up the Map.clear method

through the SortedMap class instance.

There are two solutions to this: track which interface every method comes from, and have a class_ref for each

interface, or keep everything as instance members and perform the method lookup on the most-derived class

type, not the interface type. The latter is done in Mono.Android.dllMono.Android.dll .

The Invoker definition has six sections: the constructor, the Dispose method, the ThresholdType and

ThresholdClass members, the GetObject method, interface method implementation, and the connector method

implementation.

The constructor needs to lookup the runtime class of the instance being invoked and store the runtime class in

the instance class_ref field:

Note: The Handle property must be used within the constructor body, and not the handle parameter, as on

Android v4.0 the handle parameter may be invalid after the base constructor finishes executing.

The Dispose method needs to free the global reference allocated in the constructor :

The ThresholdType and ThresholdClass members are identical to what is found in a class binding:

partial class IAdderProgressInvoker {
 protected override Type ThresholdType {
 get {
 return typeof (IAdderProgressInvoker);
 }
 }
 protected override IntPtr ThresholdClass {
 get {
 return class_ref;
 }
 }
}

 GetObject MethodGetObject Method

partial class IAdderProgressInvoker {
 public static IAdderProgress GetObject (IntPtr handle, JniHandleOwnership transfer)
 {
 return new IAdderProgressInvoker (handle, transfer);
 }
}

 Interface MethodsInterface Methods

partial class IAdderProgressInvoker {
 IntPtr id_onAdd;
 public void OnAdd (JavaArray<int> values, int currentIndex, int currentSum)
 {
 if (id_onAdd == IntPtr.Zero)
 id_onAdd = JNIEnv.GetMethodID (class_ref, "onAdd", "([III)V");
 JNIEnv.CallVoidMethod (Handle, id_onAdd, new JValue (JNIEnv.ToJniHandle (values)), new JValue
(currentIndex), new JValue (currentSum));
 }
}

 Connector MethodsConnector Methods

A static GetObject method is required to support Extensions.JavaCast<T>():

Every method of the interface needs to have an implementation, which invokes the corresponding Java method

through JNI:

The connector methods and supporting infrastructure are responsible for marshaling the JNI parameters to

appropriate C# types. The Java int[] parameter will be passed as a JNI jintArray , which is an IntPtr within

C#. The IntPtr must be marshaled to a JavaArray<int> in order to support invoking the C# interface:

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.extensions.javacast

partial class IAdderProgressInvoker {
 static Delegate cb_onAdd;
 static Delegate GetOnAddHandler ()
 {
 if (cb_onAdd == null)
 cb_onAdd = JNINativeWrapper.CreateDelegate ((Action<IntPtr, IntPtr, IntPtr, int, int>) n_OnAdd);
 return cb_onAdd;
 }

 static void n_OnAdd (IntPtr jnienv, IntPtr lrefThis, IntPtr values, int currentIndex, int currentSum)
 {
 IAdderProgress __this = Java.Lang.Object.GetObject<IAdderProgress>(lrefThis,
JniHandleOwnership.DoNotTransfer);
 using (var _values = new JavaArray<int>(values, JniHandleOwnership.DoNotTransfer)) {
 __this.OnAdd (_values, currentIndex, currentSum);
 }
 }
}

int[] _values = (int[]) JNIEnv.GetArray(values, JniHandleOwnership.DoNotTransfer, typeof (int));

 Complete Invoker DefinitionComplete Invoker Definition

If int[] would be preferred over JavaList<int> , then JNIEnv.GetArray() could be used instead:

Note, however, that JNIEnv.GetArray copies the entire array between VMs, so for large arrays this could result in

lots of added GC pressure.

The complete IAdderProgressInvoker definition:

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getarray
https://github.com/xamarin/monodroid-samples/blob/master/SanityTests/ManagedAdder.cs#L88

class IAdderProgressInvoker : Java.Lang.Object, IAdderProgress {

 IntPtr class_ref;

 public IAdderProgressInvoker (IntPtr handle, JniHandleOwnership transfer)
 : base (handle, transfer)
 {
 IntPtr lref = JNIEnv.GetObjectClass (Handle);
 class_ref = JNIEnv.NewGlobalRef (lref);
 JNIEnv.DeleteLocalRef (lref);
 }

 protected override void Dispose (bool disposing)
 {
 if (this.class_ref != IntPtr.Zero)
 JNIEnv.DeleteGlobalRef (this.class_ref);
 this.class_ref = IntPtr.Zero;
 base.Dispose (disposing);
 }

 protected override Type ThresholdType {
 get {return typeof (IAdderProgressInvoker);}
 }

 protected override IntPtr ThresholdClass {
 get {return class_ref;}
 }

 public static IAdderProgress GetObject (IntPtr handle, JniHandleOwnership transfer)
 {
 return new IAdderProgressInvoker (handle, transfer);
 }

#region OnAdd
 IntPtr id_onAdd;
 public void OnAdd (JavaArray<int> values, int currentIndex, int currentSum)
 {
 if (id_onAdd == IntPtr.Zero)
 id_onAdd = JNIEnv.GetMethodID (class_ref, "onAdd",
 "([III)V");
 JNIEnv.CallVoidMethod (Handle, id_onAdd,
 new JValue (JNIEnv.ToJniHandle (values)),
 new JValue (currentIndex),
new JValue (currentSum));
 }

#pragma warning disable 0169
 static Delegate cb_onAdd;
 static Delegate GetOnAddHandler ()
 {
 if (cb_onAdd == null)
 cb_onAdd = JNINativeWrapper.CreateDelegate ((Action<IntPtr, IntPtr, IntPtr, int, int>) n_OnAdd);
 return cb_onAdd;
 }

 static void n_OnAdd (IntPtr jnienv, IntPtr lrefThis, IntPtr values, int currentIndex, int currentSum)
 {
 IAdderProgress __this = Java.Lang.Object.GetObject<IAdderProgress>(lrefThis,
JniHandleOwnership.DoNotTransfer);
 using (var _values = new JavaArray<int>(values, JniHandleOwnership.DoNotTransfer)) {
 __this.OnAdd (_values, currentIndex, currentSum);
 }
 }
#pragma warning restore 0169
#endregion
}

 JNI Object References

 Dealing With JNI Local ReferencesDealing With JNI Local References

 Explicitly Deleting Local ReferencesExplicitly Deleting Local References

IntPtr lref = JNIEnv.CallObjectMethod(instance, methodID);
try {
 // Do something with `lref`
}
finally {
 JNIEnv.DeleteLocalRef (lref);
}

 Wrapping with Java.Lang.ObjectWrapping with Java.Lang.Object

Many JNIEnv methods return JNI object references, which are similar to GCHandle s. JNI provides three different

types of object references: local references, global references, and weak global references. All three are

represented as System.IntPtr , but (as per the JNI Function Types section) not all IntPtr s returned from

JNIEnv methods are references. For example, JNIEnv.GetMethodID returns an IntPtr , but it doesn't return an

object reference, it returns a jmethodID . Consult the JNI function documentation for details.

Local references are created by most reference-creating methods. Android only allows a limited number of local

references to exist at any given time, usually 512. Local references can be deleted via JNIEnv.DeleteLocalRef.

Unlike JNI, not all reference JNIEnv methods which return object references return local references;

JNIEnv.FindClass returns a global reference. It is strongly recommended that you delete local references as

quickly as you can, possibly by constructing a Java.Lang.Object around the object and specifying

JniHandleOwnership.TransferLocalRef to the Java.Lang.Object(IntPtr handle, JniHandleOwnership transfer)

constructor.

Global references are created by JNIEnv.NewGlobalRef and JNIEnv.FindClass. They can be destroyed with

JNIEnv.DeleteGlobalRef. Emulators have a limit of 2,000 outstanding global references, while hardware devices

have a limit of around 52,000 global references.

Weak global references are only available on Android v2.2 (Froyo) and later. Weak global references can be

deleted with JNIEnv.DeleteWeakGlobalRef.

The JNIEnv.GetObjectField, JNIEnv.GetStaticObjectField, JNIEnv.CallObjectMethod,

JNIEnv.CallNonvirtualObjectMethod and JNIEnv.CallStaticObjectMethod methods return an IntPtr which

contains a JNI local reference to a Java object, or IntPtr.Zero if Java returned null . Due to the limited number

of local references that can be outstanding at once (512 entries), it is desirable to ensure that the references are

deleted in a timely fashion. There are three ways that local references can be dealt with: explicitly deleting them,

creating a Java.Lang.Object instance to hold them, and using Java.Lang.Object.GetObject<T>() to create a

managed callable wrapper around them.

JNIEnv.DeleteLocalRef is used to delete local references. Once the local reference has been deleted, it cannot be

used anymore, so care must be taken to ensure that JNIEnv.DeleteLocalRef is the last thing done with the local

reference.

Java.Lang.Object provides a Java.Lang.Object(IntPtr handle, JniHandleOwnership transfer) constructor which

can be used to wrap an exiting JNI reference. The JniHandleOwnership parameter determines how the IntPtr

parameter should be treated:

JniHandleOwnership.DoNotTransfer – The created Java.Lang.Object instance will create a new global

reference from the handle parameter, and handle is unchanged. The caller is responsible to freeing

handle , if necessary.

JniHandleOwnership.TransferLocalRef – The created Java.Lang.Object instance will create a new global

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getmethodid
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.deletelocalref
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.findclass
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object#ctor*
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.newglobalref
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.findclass
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.deleteglobalref
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.deleteweakglobalref
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getobjectfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticobjectfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.deletelocalref
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object#ctor*
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnihandleownership
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnihandleownership#android_runtime_jnihandleownership_donottransfer
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnihandleownership#android_runtime_jnihandleownership_transferlocalref

IntPtr lref = JNIEnv.CallObjectMethod(instance, methodID);
var value = new Java.Lang.Object (lref, JniHandleOwnership.TransferLocalRef);

IntPtr lref = JNIEnv.CallObjectMethod(instance, methodID);
using (var value = new Java.Lang.Object (lref, JniHandleOwnership.TransferLocalRef)) {
 // use value ...
}

 Using Java.Lang.Object.GetObject<T>()Using Java.Lang.Object.GetObject<T>()

IntPtr lrefString = JNIEnv.CallObjectMethod(instance, methodID);
Java.Lang.String value = Java.Lang.Object.GetObject<Java.Lang.String>(lrefString,
JniHandleOwnership.TransferLocalRef);

 Looking up Java Types

reference from the handle parameter, and handle is deleted with JNIEnv.DeleteLocalRef . The caller must

not free handle , and must not use handle after the constructor finishes executing.

JniHandleOwnership.TransferGlobalRef – The created Java.Lang.Object instance will take over ownership

of the handle parameter. The caller must not free handle .

Since the JNI method invocation methods return local refs, JniHandleOwnership.TransferLocalRef would

normally be used:

The created global reference will not be freed until the Java.Lang.Object instance is garbage collected. If you are

able to, disposing of the instance will free up the global reference, speeding up garbage collections:

Java.Lang.Object provides a Java.Lang.Object.GetObject<T>(IntPtr handle, JniHandleOwnership transfer)

method that can be used to create a managed callable wrapper of the specified type.

The type T must fulfill the following requirements:

1. T must be a reference type.

2. T must implement the IJavaObject interface.

3. If T is not an abstract class or interface, then T must provide a constructor with the parameter types

(IntPtr, JniHandleOwnership) .

4. If T is an abstract class or an interface, there must be an invoker available for T . An invoker is a non-

abstract type that inherits T or implements T , and has the same name as T with an Invoker suffix. For

example, if T is the interface Java.Lang.IRunnable , then the type Java.Lang.IRunnableInvoker must exist

and must contain the required (IntPtr, JniHandleOwnership) constructor.

Since the JNI method invocation methods return local refs, JniHandleOwnership.TransferLocalRef would

normally be used:

To lookup a field or method in JNI, the declaring type for the field or method must be looked up first. The

Android.Runtime.JNIEnv.FindClass(string)) method is used to lookup Java types. The string parameter is the

simplified type reference or the full type reference for the Java type. See the JNI Type References section for

details about simplified and full type references.

Note: Unlike every other JNIEnv method which returns object instances, FindClass returns a global reference,

not a local reference.

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.deletelocalref
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnihandleownership#android_runtime_jnihandleownership_transferlocalref
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.getobject
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.findclass

 Instance Fields

 Reading Instance Field ValuesReading Instance Field Values

* JNIEnv.Get*Field(IntPtr instance, IntPtr fieldID);

 Writing Instance Field ValuesWriting Instance Field Values

JNIEnv.SetField(IntPtr instance, IntPtr fieldID, Type value);

Fields are manipulated through field IDs. Field IDs are obtained via JNIEnv.GetFieldID, which requires the class

that the field is defined in, the name of the field, and the JNI Type Signature of the field.

Field IDs do not need to be freed, and are valid as long as the corresponding Java type is loaded. (Android does

not currently support class unloading.)

There are two sets of methods for manipulating instance fields: one for reading instance fields and one for

writing instance fields. All sets of methods require a field ID to read or write the field value.

The set of methods for reading instance field values follows the naming pattern:

where * is the type of the field:

JNIEnv.GetObjectField – Read the value of any instance field that isn't a builtin type, such as

java.lang.Object , arrays, and interface types. The value returned is a JNI local reference.

JNIEnv.GetBooleanField – Read the value of bool instance fields.

JNIEnv.GetByteField – Read the value of sbyte instance fields.

JNIEnv.GetCharField – Read the value of char instance fields.

JNIEnv.GetShortField – Read the value of short instance fields.

JNIEnv.GetIntField – Read the value of int instance fields.

JNIEnv.GetLongField – Read the value of long instance fields.

JNIEnv.GetFloatField – Read the value of float instance fields.

JNIEnv.GetDoubleField – Read the value of double instance fields.

The set of methods for writing instance field values follows the naming pattern:

where Type is the type of the field:

JNIEnv.SetField) – Write the value of any field that isn't a builtin type, such as java.lang.Object , arrays,

and interface types. The IntPtr value may be a JNI local reference, JNI global reference, JNI weak global

reference, or IntPtr.Zero (for null).

JNIEnv.SetField) – Write the value of bool instance fields.

JNIEnv.SetField) – Write the value of sbyte instance fields.

JNIEnv.SetField) – Write the value of char instance fields.

JNIEnv.SetField) – Write the value of short instance fields.

JNIEnv.SetField) – Write the value of int instance fields.

JNIEnv.SetField) – Write the value of long instance fields.

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getfieldid
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getobjectfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getbooleanfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getbytefield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getcharfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getshortfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getintfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getlongfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getfloatfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getdoublefield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield

 Static Fields

 Reading Static Field ValuesReading Static Field Values

* JNIEnv.GetStatic*Field(IntPtr class, IntPtr fieldID);

 Writing Static Field ValuesWriting Static Field Values

JNIEnv.SetStaticField(IntPtr class, IntPtr fieldID, Type value);

JNIEnv.SetField) – Write the value of float instance fields.

JNIEnv.SetField) – Write the value of double instance fields.

Static Fields are manipulated through field IDs. Field IDs are obtained via JNIEnv.GetStaticFieldID, which requires

the class that the field is defined in, the name of the field, and the JNI Type Signature of the field.

Field IDs do not need to be freed, and are valid as long as the corresponding Java type is loaded. (Android does

not currently support class unloading.)

There are two sets of methods for manipulating static fields: one for reading instance fields and one for writing

instance fields. All sets of methods require a field ID to read or write the field value.

The set of methods for reading static field values follows the naming pattern:

where * is the type of the field:

JNIEnv.GetStaticObjectField – Read the value of any static field that isn't a builtin type, such as

java.lang.Object , arrays, and interface types. The value returned is a JNI local reference.

JNIEnv.GetStaticBooleanField – Read the value of bool static fields.

JNIEnv.GetStaticByteField – Read the value of sbyte static fields.

JNIEnv.GetStaticCharField – Read the value of char static fields.

JNIEnv.GetStaticShortField – Read the value of short static fields.

JNIEnv.GetStaticLongField – Read the value of long static fields.

JNIEnv.GetStaticFloatField – Read the value of float static fields.

JNIEnv.GetStaticDoubleField – Read the value of double static fields.

The set of methods for writing static field values follows the naming pattern:

where Type is the type of the field:

JNIEnv.SetStaticField) – Write the value of any static field that isn't a builtin type, such as

java.lang.Object , arrays, and interface types. The IntPtr value may be a JNI local reference, JNI global

reference, JNI weak global reference, or IntPtr.Zero (for null).

JNIEnv.SetStaticField) – Write the value of bool static fields.

JNIEnv.SetStaticField) – Write the value of sbyte static fields.

JNIEnv.SetStaticField) – Write the value of char static fields.

JNIEnv.SetStaticField) – Write the value of short static fields.

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticfieldid
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticobjectfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticbooleanfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticbytefield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticcharfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticshortfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticlongfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticfloatfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticdoublefield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield

 Instance Methods

 Virtual Method InvocationVirtual Method Invocation

* JNIEnv.Call*Method(IntPtr instance, IntPtr methodID, params JValue[] args);

 Non-virtual Method InvocationNon-virtual Method Invocation

* JNIEnv.CallNonvirtual*Method(IntPtr instance, IntPtr class, IntPtr methodID, params JValue[] args);

JNIEnv.SetStaticField) – Write the value of int static fields.

JNIEnv.SetStaticField) – Write the value of long static fields.

JNIEnv.SetStaticField) – Write the value of float static fields.

JNIEnv.SetStaticField) – Write the value of double static fields.

Instance Methods are invoked through method IDs. Method IDs are obtained via JNIEnv.GetMethodID, which

requires the type that the method is defined in, the name of the method, and the JNI Type Signature of the

method.

Method IDs do not need to be freed, and are valid as long as the corresponding Java type is loaded. (Android

does not currently support class unloading.)

There are two sets of methods for invoking methods: one for invoking methods virtually, and one for invoking

methods non-virtually. Both sets of methods require a method ID to invoke the method, and non-virtual

invocation also requires that you specify which class implementation should be invoked.

Interface methods can only be looked up within the declaring type; methods that come from extended/inherited

interfaces cannot be looked up. See the later Binding Interfaces / Invoker Implementation section for more

details.

Any method declared in the class or any base class or implemented interface can be looked up.

The set of methods for invoking methods virtually follows the naming pattern:

where * is the return type of the method.

JNIEnv.CallObjectMethod – Invoke a method which returns a non-builtin type, such as java.lang.Object ,

arrays, and interfaces. The value returned is a JNI local reference.

JNIEnv.CallBooleanMethod – Invoke a method which returns a bool value.

JNIEnv.CallByteMethod – Invoke a method which returns a sbyte value.

JNIEnv.CallCharMethod – Invoke a method which returns a char value.

JNIEnv.CallShortMethod – Invoke a method which returns a short value.

JNIEnv.CallLongMethod – Invoke a method which returns a long value.

JNIEnv.CallFloatMethod – Invoke a method which returns a float value.

JNIEnv.CallDoubleMethod – Invoke a method which returns a double value.

The set of methods for invoking methods non-virtually follows the naming pattern:

where * is the return type of the method. Non-virtual method invocation is usually used to invoke the base

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.setstaticfield
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getmethodid
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callbooleanmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callbytemethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callcharmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callshortmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.calllongmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callfloatmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.calldoublemethod

 Static Methods

 Static Method InvocationStatic Method Invocation

* JNIEnv.CallStatic*Method(IntPtr class, IntPtr methodID, params JValue[] args);

 JNI Type Signatures

method of a virtual method.

JNIEnv.CallNonvirtualObjectMethod – Non-virtually invoke a method which returns a non-builtin type,

such as java.lang.Object , arrays, and interfaces. The value returned is a JNI local reference.

JNIEnv.CallNonvirtualBooleanMethod – Non-virtually invoke a method which returns a bool value.

JNIEnv.CallNonvirtualByteMethod – Non-virtually invoke a method which returns a sbyte value.

JNIEnv.CallNonvirtualCharMethod – Non-virtually invoke a method which returns a char value.

JNIEnv.CallNonvirtualShortMethod – Non-virtually invoke a method which returns a short value.

JNIEnv.CallNonvirtualLongMethod – Non-virtually invoke a method which returns a long value.

JNIEnv.CallNonvirtualFloatMethod – Non-virtually invoke a method which returns a float value.

JNIEnv.CallNonvirtualDoubleMethod – Non-virtually invoke a method which returns a double value.

Static Methods are invoked through method IDs. Method IDs are obtained via JNIEnv.GetStaticMethodID, which

requires the type that the method is defined in, the name of the method, and the JNI Type Signature of the

method.

Method IDs do not need to be freed, and are valid as long as the corresponding Java type is loaded. (Android

does not currently support class unloading.)

The set of methods for invoking methods virtually follows the naming pattern:

where * is the return type of the method.

JNIEnv.CallStaticObjectMethod – Invoke a static method which returns a non-builtin type, such as

java.lang.Object , arrays, and interfaces. The value returned is a JNI local reference.

JNIEnv.CallStaticBooleanMethod – Invoke a static method which returns a bool value.

JNIEnv.CallStaticByteMethod – Invoke a static method which returns a sbyte value.

JNIEnv.CallStaticCharMethod – Invoke a static method which returns a char value.

JNIEnv.CallStaticShortMethod – Invoke a static method which returns a short value.

JNIEnv.CallStaticLongMethod – Invoke a static method which returns a long value.

JNIEnv.CallStaticFloatMethod – Invoke a static method which returns a float value.

JNIEnv.CallStaticDoubleMethod – Invoke a static method which returns a double value.

JNI Type Signatures are JNI Type References (though not simplified type references), except for methods. With

methods, the JNI Type Signature is an open parenthesis '(' , followed by the type references for all of the

parameter types concatenated together (with no separating commas or anything else), followed by a closing

parenthesis ')' , followed by the JNI type reference of the method return type.

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualbooleanmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualbytemethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualcharmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualshortmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtuallongmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualfloatmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callnonvirtualdoublemethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.getstaticmethodid
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticobjectmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticbooleanmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticbytemethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticcharmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticshortmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.calllongmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticfloatmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callstaticdoublemethod
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/types.html#wp16432

long f(int n, String s, int[] array);

(ILjava/lang/String;[I)J

 JNI Type References

 Built-in Type ReferencesBuilt-in Type References

 Simplified Type ReferencesSimplified Type References

 Type ReferencesType References

For example, given the Java method:

The JNI type signature would be:

In general, it is strongly recommended to use the javap command to determine JNI signatures. For example,

the JNI Type Signature of the java.lang.Thread.State.valueOf(String) method is "

(Ljava/lang/String;)Ljava/lang/Thread$State;", while the JNI Type Signature of the java.lang.Thread.State.values

method is "()[Ljava/lang/Thread$State;". Watch out for the trailing semicolons; those are part of the JNI type

signature.

JNI type references are different from Java type references. You cannot use fully qualified Java type names such

as java.lang.String with JNI, you must instead use the JNI variations "java/lang/String" or

"Ljava/lang/String;" , depending on context; see below for details. There are four types of JNI type references:

built-inbuilt-in

simplifiedsimplified

typetype

arrayarray

Built-in type references are a single character, used to reference built-in value types. The mapping is as follows:

"B" for sbyte .

"S" for short .

"I" for int .

"J" for long .

"F" for float .

"D" for double .

"C" for char .

"Z" for bool .

"V" for void method return types.

Simplified type references can only be used in JNIEnv.FindClass(string)). There are two ways to derive a

simplified type reference:

1. From a fully-qualified Java name, replace every '.' within the package name and before the type name

with '/' , and every '.' within a type name with '$' .

2. Read the output of 'unzip -l android.jar | grep JavaName' .

Either of the two will result in the Java type java.lang.Thread.State being mapped to the simplified type reference

java/lang/Thread$State .

https://developer.android.com/reference/java/lang/Thread.State.html#valueOf(java.lang.String)
https://developer.android.com/reference/java/lang/Thread.State.html#values
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.findclass
https://developer.android.com/reference/java/lang/Thread.State.html

$ javap -classpath android.jar -s java.lang.Thread.State
Compiled from "Thread.java"

public final class java.lang.Thread$State extends java.lang.Enum{
public static final java.lang.Thread$State NEW;
 Signature: Ljava/lang/Thread$State;
public static final java.lang.Thread$State RUNNABLE;
 Signature: Ljava/lang/Thread$State;
public static final java.lang.Thread$State BLOCKED;
 Signature: Ljava/lang/Thread$State;
public static final java.lang.Thread$State WAITING;
 Signature: Ljava/lang/Thread$State;
public static final java.lang.Thread$State TIMED_WAITING;
 Signature: Ljava/lang/Thread$State;
public static final java.lang.Thread$State TERMINATED;
 Signature: Ljava/lang/Thread$State;
public static java.lang.Thread$State[] values();
 Signature: ()[Ljava/lang/Thread$State;
public static java.lang.Thread$State valueOf(java.lang.String);
 Signature: (Ljava/lang/String;)Ljava/lang/Thread$State;
static {};
 Signature: ()V
}

 Array Type ReferencesArray Type References

 Java Generics and Type Erasure

 Java Native Interface Support

A type reference is a built-in type reference or a simplified type reference with an 'L' prefix and a ';' suffix.

For the Java type java.lang.String, the simplified type reference is "java/lang/String" , while the type reference is

"Ljava/lang/String;" .

Type references are used with Array type references and with JNI Signatures.

An additional way to obtain a type reference is by reading the output of

'javap -s -classpath android.jar fully.qualified.Java.Name' . Depending on the type involved, you can use a

constructor declaration or method return type to determine the JNI name. For example:

Thread.State is a Java enum type, so we can use the Signature of the valueOf method to determine that the

type reference is Ljava/lang/Thread$State;.

Array type references are '[' prefixed to a JNI type reference. Simplified type references cannot be used when

specifying arrays.

For example, int[] is "[I" , int[][] is "[[I" , and java.lang.Object[] is "[Ljava/lang/Object;" .

Most of the time, as seen through JNI, Java generics do not exist. There are some "wrinkles," but those wrinkles

are in how Java interacts with generics, not with how JNI looks up and invokes generic members.

There is no difference between a generic type or member and a non-generic type or member when interacting

through JNI. For example, the generic type java.lang.Class<T> is also the "raw" generic type java.lang.Class ,

both of which have the same simplified type reference, "java/lang/Class" .

Android.Runtime.JNIEnv is managed wrapper for the Jave Native Interface (JNI). JNI Functions are declared

within the Java Native Interface Specification, though the methods have been changed to remove the explicit

JNIEnv* parameter and IntPtr is used instead of jobject , jclass , jmethodID , etc. For example, consider the

https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/java/lang/Class.html
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv
https://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html

jobject NewObjectA(JNIEnv *env, jclass clazz, jmethodID methodID, jvalue *args);

public static IntPtr NewObject(IntPtr clazz, IntPtr jmethod, params JValue[] parms);

jobject CreateMapActivity(JNIEnv *env)
{
 jclass Map_Class = (*env)->FindClass(env, "mono/samples/googlemaps/MyMapActivity");
 jmethodID Map_defCtor = (*env)->GetMethodID (env, Map_Class, "<init>", "()V");
 jobject instance = (*env)->NewObject (env, Map_Class, Map_defCtor);

 return instance;
}

IntPtr CreateMapActivity()
{
 IntPtr Map_Class = JNIEnv.FindClass ("mono/samples/googlemaps/MyMapActivity");
 IntPtr Map_defCtor = JNIEnv.GetMethodID (Map_Class, "<init>", "()V");
 IntPtr instance = JNIEnv.NewObject (Map_Class, Map_defCtor);

 return instance;
}

IntPtr lrefActivity = CreateMapActivity();

// imagine that Activity were instead an interface or abstract type...
Activity mapActivity = new Java.Lang.Object(lrefActivity, JniHandleOwnership.TransferLocalRef)
 .JavaCast<Activity>();

IntPtr lrefActivity = CreateMapActivity();

// imagine that Activity were instead an interface or abstract type...
Activity mapActivity = Java.Lang.Object.GetObject<Activity>(lrefActivity,
JniHandleOwnership.TransferLocalRef);

 Summary

JNI NewObject function:

This is exposed as the JNIEnv.NewObject method:

Translating between the two calls is reasonably straightforward. In C you would have:

The C# equivalent would be:

Once you have a Java Object instance held in an IntPtr, you'll probably want to do something with it. You can use

JNIEnv methods such as JNIEnv.CallVoidMethod() to do so, but if there is already an analogue C# wrapper then

you'll want to construct a wrapper over the JNI reference. You can do so through the Extensions.JavaCast<T>

extension method:

You can also use the Java.Lang.Object.GetObject<T> method:

Furthermore, all of the JNI functions have been modified by removing the JNIEnv* parameter present in every

JNI function.

Dealing directly with JNI is a terrible experience that should be avoided at all costs. Unfortunately, it's not always

https://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html#wp4517
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.newobject
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv.callvoidmethod
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.extensions.javacast
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.getobject

 Related links

avoidable; hopefully this guide will provide some assistance when you hit the unbound Java cases with Mono

for Android.

Java Native Interface Specification

Java Native Interface Functions

https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html
https://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html

Porting Java to C# for Xamarin.Android
 10/29/2019 • 2 minutes to read • Edit Online

 Related links

This approach may be of interest to organizations that:

Are switching technology stacks from Java to C#.Are switching technology stacks from Java to C#.

Must maintain a C# and a Java version of the same product.Must maintain a C# and a Java version of the same product.

Wish to have a .NET version of a popular Java librar y.Wish to have a .NET version of a popular Java librar y.

There are two ways to port Java code to C#. The first way is to port the code manually. This involves skilled

developers who understand both .NET and Java and are familiar with the proper idioms for each language. This

approach makes the most sense for small amounts of code, or for organizations that wish to completely move

away from Java to C#.

The second porting methodology is to try and automate the process by using a code converter, such as Sharpen.

Sharpen is an open source converter from Versant that was originally used to port the code for db4o from Java

to C#. db4o is an object-oriented database that Versant developed in Java, and then ported to .NET. Using a code

converter may make sense for projects that must exist in both languages and that require some parity between

the two.

An example of when an automated code conversion tool makes sense can be seen in the ngit project. Ngit is a

port of the Java project jgit. Jgit itself is a Java implementation of the Git source code management system. To

generate C# code from Java, the ngit programmers use a custom automated system to extract the Java code

from jgit, apply some patches to accommodate the conversion process, and then run Sharpen, which generates

the C# code. This allows the ngit project to benefit from the continuous, ongoing work that is done on jgit.

There is often a non-trivial amount of work involved with bootstrapping an automated code conversion tool,

and this may prove to be a barrier to use. In many cases, it may be simpler and easier to port Java to C# by

hand.

Sharpen Conversion Tool

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/java-integration/porting-java-to-csharp.md
https://github.com/mono/sharpen
https://github.com/mono/sharpen
https://github.com/mono/ngit
https://eclipse.org/
https://git-scm.com/
https://github.com/mono/sharpen

Binding a Java Library
 7/8/2021 • 7 minutes to read • Edit Online

 Overview

package com.xamarin.mycode;

public class MyClass
{
 public String myMethod (int i) { ... }
}

The Android community has many Java libraries that you may want to use in your app; this guide explains how

to incorporate Java libraries into your Xamarin.Android application by creating a Bindings Library.

The third-party library ecosystem for Android is massive. Because of this, it frequently makes sense to use an

existing Android library than to create a new one. Xamarin.Android offers two ways to use these libraries:

Create a Bindings Library that automatically wraps the library with C# wrappers so you can invoke Java

code via C# calls.

Use the Java Native Interface (JNI) to invoke calls in Java library code directly. JNI is a programming

framework that enables Java code to call and be called by native applications or libraries.

This guide explains the first option: how to create a Bindings Library that wraps one or more existing Java

libraries into an assembly that you can link to in your application. For more information about using JNI, see

Working with JNI.

Xamarin.Android implements bindings by using Managed Callable Wrappers (MCW). MCW is a JNI bridge that

is used when managed code needs to invoke Java code. Managed callable wrappers also provide support for

subclassing Java types and for overriding virtual methods on Java types. Likewise, whenever Android runtime

(ART) code wishes to invoke managed code, it does so via another JNI bridge known as Android Callable

Wrappers (ACW). This architecture is illustrated in the following diagram:

A Bindings Library is an assembly containing Managed Callable Wrappers for Java types. For example, here is a

Java type, MyClass , that we want to wrap in a Bindings Library:

After we generate a Bindings Library for the .jar.jar that contains MyClass , we can instantiate it and call methods

on it from C#:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/index.md
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/images/architecture.png#lightbox

var instance = new MyClass ();

string result = instance.MyMethod (42);

com.company.package

using Com.Company.Package;

 Build Actions

To create this Bindings Library, you use the Xamarin.Android Java Bindings Library template. The resulting

binding project creates a .NET assembly with the MCW classes, .jar.jar file(s), and resources for Android Library

projects embedded in it. You can also create Bindings Libraries for Android Archive (.AAR) files and Eclipse

Android Library projects. By referencing the resulting Bindings Library DLL assembly, you can reuse an existing

Java library in your Xamarin.Android project.

When you reference types in your Binding Library, you must use the namespace of your binding library.

Typically, you add a using directive at the top of your C# source files that is the .NET namespace version of the

Java package name. For example, if the Java package name for your bound .jar.jar is the following:

Then you would put the following using statement at the top of your C# source files to access types in the

bound .jar.jar file:

When binding an existing Android library, it is necessary to keep the following points in mind:

Are there any external dependencies for the librar y?Are there any external dependencies for the librar y? – Any Java dependencies required by the

Android library must be included in the Xamarin.Android project as a ReferenceJarReferenceJar or as an

EmbeddedReferenceJarEmbeddedReferenceJar . Any native assemblies must be added to the binding project as an

EmbeddedNativeLibrar yEmbeddedNativeLibrar y .

What version of the Android API does the Android librar y target?What version of the Android API does the Android librar y target? – It is not possible to

"downgrade" the Android API level; ensure that the Xamarin.Android binding project is targeting the

same API level (or higher) as the Android library.

What version of the JDK was used to compile the librar y?What version of the JDK was used to compile the librar y? – Binding errors may occur if the

Android library was built with a different version of JDK than in use by Xamarin.Android. If possible,

recompile the Android library using the same version of the JDK that is used by your installation of

Xamarin.Android.

When you create a Bindings Library, you set build actions on the .jar.jar or .AAR files that you incorporate into your

Bindings Library project – each build action determines how the .jar.jar or .AAR file will be embedded into (or

referenced by) your Bindings Library. The following list summarizes these build actions:

EmbeddedJar – Embeds the .jar.jar into the resulting Bindings Library DLL as an embedded resource. This is

the simplest and most commonly-used build action. Use this option when you want the .jar.jar automatically

compiled into byte code and packaged into the Bindings Library.

InputJar – Does not embed the .jar.jar into the resulting Bindings Library .DLL. Your Bindings Library .DLL

will have a dependency on this .jar.jar at runtime. Use this option when you do not want to include the .jar.jar

in your Bindings Library (for example, for licensing reasons). If you use this option, you must ensure that

the input .jar.jar is available on the device that runs your app.

LibraryProjectZip – Embeds an .AAR file into the resulting Bindings Library .DLL. This is similar to

EmbeddedJar, except that you can access resources (as well as code) in the bound .AAR file. Use this

 Including a Native Library in a Binding

Java.Lang.JavaSystem.LoadLibrary("pocketsphinx_jni");

 Adapting Java APIs to C�

option when you want to embed an .AAR into your Bindings Library.

ReferenceJar – Specifies a reference .jar.jar : a reference .jar.jar is a .jar.jar that one of your bound .jar.jar or .AAR

files depends on. This reference .jar.jar is used only to satisfy compile-time dependencies. When you use this

build action, C# bindings are not created for the reference .jar.jar and it is not embedded in the resulting

Bindings Library .DLL. Use this option when you will make a Bindings Library for the reference .jar.jar but

have not done so yet. This build action is useful for packaging multiple .jar.jar s (and/or .AARs) into multiple

interdependent Bindings Libraries.

EmbeddedReferenceJar – Embeds a reference .jar.jar into the resulting Bindings Library .DLL. Use this build

action when you want to create C# bindings for both the input .jar.jar (or .AAR) and all of its reference .jar.jar (s)

in your Bindings Library.

EmbeddedNativeLibrary – Embeds a native .so.so into the binding. This build action is used for .so.so files that

are required by the .jar.jar file being bound. It may be necessary to manually load the .so.so library before

executing code from the Java library. This is described below.

These build actions are explained in more detail in the following guides.

Additionally, the following build actions are used to help importing Java API documentation and convert them

into C# XML documentation:

JavaDocJar is used to point to Javadoc archive Jar for a Java library that conforms to a Maven package style

(usually FOOBAR-javadoc**.jar**).

JavaDocIndex is used to point to index.html file within the API reference documentation HTML.

JavaSourceJar is used to complement JavaDocJar , to first generate JavaDoc from sources and then treat the

results as JavaDocIndex , for a Java library that conforms to a Maven package style (usually

FOOBAR-sources**.jar**).

The API documentation should be the default doclet from Java8, Java7 or Java6 SDK (they are all different

format), or the DroidDoc style.

It may be necessary to include a .so.so library in a Xamarin.Android binding project as a part of binding a Java

library. When the wrapped Java code executes, Xamarin.Android will fail to make the JNI call and the error

message java.lang.UnsatisfiedLinkError : Native method not found: will appear in the logcat out for the

application.

The fix for this is to manually load the .so.so library with a call to Java.Lang.JavaSystem.LoadLibrary . For example

assuming that a Xamarin.Android project has shared library libpocketsphinx_jni.solibpocketsphinx_jni.so included in the binding

project with a build action of EmbeddedNativeLibrar yEmbeddedNativeLibrar y , the following snippet (executed before using the

shared library) will load the .so.so library:

The Xamarin.Android Binding Generator will change some Java idioms and patterns to correspond to .NET

patterns. The following list describes how Java is mapped to C#/.NET:

Setter/Getter methods in Java are Properties in .NET.

Fields in Java are Properties in .NET.

Listeners/Listener Interfaces in Java are Events in .NET. The parameters of methods in the callback

 Binding Scenarios

 Related Links

interfaces will be represented by an EventArgs subclass.

A Static Nested class in Java is a Nested class in .NET.

An Inner class in Java is a Nested class with an instance constructor in C#.

The following binding scenario guides can help you bind a Java library (or libraries) for incorporation into your

app:

Binding a .JAR is a walkthrough for creating Bindings Libraries for .jar.jar files.

Binding an .AAR is a walkthrough for creating Bindings Libraries for .AAR files. Read this walkthrough to

learn how to bind Android Studio libraries.

Binding an Eclipse Library Project is a walkthrough for creating binding libraries from Android Library

Projects. Read this walkthrough to learn how to bind Eclipse Android Library Projects.

Customizing Bindings explains how to make manual modifications to the binding to resolve build errors

and shape the resulting API so that it is more "C#-like".

Troubleshooting Bindings lists common binding error scenarios, explains possible causes, and offers

suggestions for resolving these errors.

Working with JNI

GAPI Metadata

Using Native Libraries

https://www.mono-project.com/docs/gui/gtksharp/gapi/#metadata

Binding a .JAR
 7/8/2021 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Overview

 Walkthrough

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

This walkthrough provides step-by-step instructions for creating a Xamarin.Android Java Bindings Library from

an Android .JAR file.

The Android community offers many Java libraries that you may want to use in your app. These Java libraries

are often packaged in .JAR (Java Archive) format, but you can package a .JAR it in a Java Bindings Library so that

its functionality is available to Xamarin.Android apps. The purpose of the Java Bindings library is to make the

APIs in the .JAR file available to C# code through automatically-generated code wrappers.

Xamarin tooling can generate a Bindings Library from one or more input .JAR files. The Bindings Library (.DLL

assembly) contains the following:

The contents of the original .JAR file(s).

Managed Callable Wrappers (MCW), which are C# types that wrap corresponding Java types within the

.JAR file(s).

The generated MCW code uses JNI (Java Native Interface) to forward your API calls to the underlying .JAR file.

You can create bindings libraries for any .JAR file that was originally targeted to be used with Android (note that

Xamarin tooling does not currently support the binding of non-Android Java libraries). You can also elect to

build the Bindings Library without including the contents of the .JAR file so that the DLL has a dependency on

the .JAR at runtime.

In this guide, we'll step through the basics of creating a Bindings Library for a single .JAR file. We'll illustrate with

an example where everything goes right – that is, where no customization or debugging of bindings is required.

Creating Bindings Using Metadata offers an example of a more advanced scenario where the binding process is

not entirely automatic and some amount of manual intervention is required. For an overview of Java library

binding in general (with a basic code example), see Binding a Java Library.

In the following walkthrough, we'll create a Bindings Library for Picasso, a popular Android .JAR that provides

image loading and caching functionality. We will use the following steps to bind picasso-2.x.x.jarpicasso-2.x.x.jar to create a

new .NET assembly that we can use in a Xamarin.Android project:

1. Create a new Java Bindings Library project.

2. Add the .JAR file to the project.

3. Set the appropriate build action for the .JAR file.

4. Choose a target framework that the .JAR supports.

5. Build the Bindings Library.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/binding-a-jar.md
https://www.surveymonkey.com/r/KKBHNLT
https://square.github.io/picasso/

package com.squareup.picasso

public class Picasso
{
 ...
 public static Picasso with (Context context) { ... };
 ...
 public RequestCreator load (String path) { ... };
 ...
}

using Com.Squareup.Picasso;
...
Picasso.With (this)
 .Load ("https://mydomain.myimage.jpg")
 .Into (imageView);

 Creating the Bindings LibraryCreating the Bindings Library

Once we've created the Bindings Library, we'll develop a small Android app that demonstrates our ability to call

APIs in the Bindings Library. In this example, we want to access methods of picasso-2.x.x.jarpicasso-2.x.x.jar :

After we generate a Bindings Library for picasso-2.x.x.jarpicasso-2.x.x.jar , we can call these methods from C#. For example:

Before commencing with the steps below, please download picasso-2.x.x.jar.

First, create a new Bindings Library project. In Visual Studio for Mac or Visual Studio, create a new Solution and

select the Android Bindings Library template. (The screenshots in this walkthrough use Visual Studio, but Visual

Studio for Mac is very similar.) Name the Solution JarBindingJarBinding:

The template includes a JarsJars folder where you add your .JAR(s) to the Bindings Library project. Right-click the

JarsJars folder and select Add > Existing ItemAdd > Existing Item:

http://repo1.maven.org/maven2/com/squareup/picasso/picasso/2.5.2/picasso-2.5.2.jar
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/01-new-bindings-library.w157.png#lightbox

Navigate to the picasso-2.x.x.jarpicasso-2.x.x.jar file downloaded earlier, select it and click AddAdd:

Verify that the picasso-2.x.x.jarpicasso-2.x.x.jar file was successfully added to the project:

When you create a Java Bindings library project, you must specify whether the .JAR is to be embedded in the

Bindings Library or packaged separately. To do that, you specify one of the following build actions:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/02-add-existing-item.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/03-select-jar-file.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/04-jar-added.png#lightbox

EmbeddedJarEmbeddedJar – the .JAR will be embedded in the Bindings Library.

InputJarInputJar – the .JAR will be kept separate from the Bindings Library.

Typically, you use the EmbeddedJarEmbeddedJar build action so that the .JAR is automatically packaged into the bindings

library. This is the simplest option – Java bytecode in the .JAR is converted into Dex bytecode and is embedded

(along with the Managed Callable Wrappers) into your APK. If you want to keep the .JAR separate from the

bindings library, you can use the InputJarInputJar option; however, you must ensure that the .JAR file is available on the

device that runs your app.

Set the build action to EmbeddedJarEmbeddedJar :

Next, open the project Properties to configure the Target Framework. If the .JAR uses any Android APIs, set the

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/05-embeddedjar.png#lightbox

 Using the Bindings LibraryUsing the Bindings Library

Target Framework to the API level that the .JAR expects. Typically, the developer of the .JAR file will indicate

which API level (or levels) that the .JAR is compatible with. (For more information about the Target Framework

setting and Android API levels in general, see Understanding Android API Levels.)

Set the target API level for your Bindings Library (in this example, we are using API level 19):

Finally, build the Bindings Library. Although some warning messages may be displayed, the Bindings Library

project should build successfully and produce an output .DLL at the following location:

JarBinding/bin/Debug/JarBinding.dllJarBinding/bin/Debug/JarBinding.dll

To consume this .DLL in your Xamarin.Android app, do the following:

1. Add a reference to the Bindings Library.

2. Make calls into the .JAR through the Managed Callable Wrappers.

In the following steps, we'll create a minimal app that uses the Bindings Library to download and display an

image in an ImageView ; the "heavy lifting" is done by the code that resides in the .JAR file.

First, create a new Xamarin.Android app that consumes the Bindings Library. Right-click the Solution and select

Add New ProjectAdd New Project; name the new project BindingTestBindingTest. We're creating this app in the same Solution as the

Bindings Library in order to simplify this walkthrough; however, the app that consumes the Bindings Library

could, instead, reside in a different Solution:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/06-set-target-framework.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/07-add-new-project.w157.png#lightbox

Right-click the ReferencesReferences node of the BindingTestBindingTest project and select Add Reference...Add Reference...:

Check the JarBindingJarBinding project created earlier and click OKOK:

Open the ReferencesReferences node of the BindingTestBindingTest project and verify that the JarBindingJarBinding reference is present:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/08-add-reference.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/09-choose-jar-binding.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:minWidth="25px"
 android:minHeight="25px">
 <ImageView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/imageView" />
</LinearLayout>

using Com.Squareup.Picasso;

Modify the BindingTestBindingTest layout (Main.axmlMain.axml) so that it has a single ImageView :

Add the following using statement to MainActivity.csMainActivity.cs – this makes it possible to easily access the methods of

the Java-based Picasso class that resides in the Bindings Library:

Modify the OnCreate method so that it uses the Picasso class to load an image from a URL and display it in the

ImageView :

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/10-references-shows-jarbinding.png#lightbox

public class MainActivity : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
 ImageView imageView = FindViewById<ImageView>(Resource.Id.imageView);

 // Use the Picasso jar library to load and display this image:
 Picasso.With (this)
 .Load ("https://i.imgur.com/DvpvklR.jpg")
 .Into (imageView);
 }
}

 Summary

 Related Links

Compile and run the BindingTestBindingTest project. The app will startup, and after a short delay (depending on network

conditions), it should download and display an image similar to the following screenshot:

Congratulations! You've successfully bound a Java library .JAR and used it in your Xamarin.Android app.

In this walkthrough, we created a Bindings Library for a third-party .JAR file, added the Bindings Library to a

minimal test app, and then ran the app to verify that our C# code can call Java code residing in the .JAR file.

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-jar-images/11-result.png#lightbox

Building a Java Bindings Library (video)

Binding a Java Library

https://university.xamarin.com/classes#10090

Binding an .AAR
 7/8/2021 • 8 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Overview

IMPORTANTIMPORTANT

 Walkthrough

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

This walkthrough provides step-by-step instructions for creating a Xamarin.Android Java Bindings Library from

an Android .AAR file.

The Android Archive (.AAR) file is the file format for Android libraries. An .AAR file is a .ZIP archive that contains

the following:

Compiled Java code

Resource IDs

Resources

Meta-data (for example, Activity declarations, permissions)

In this guide, we'll step through the basics of creating a Bindings Library for a single .AAR file. For an overview

of Java library binding in general (with a basic code example), see Binding a Java Library.

A binding project can only include one .AAR file. If the .AAR depends on other .AAR, then those dependencies should be

contained in their own binding project and then referenced. See Bug 44573.

We'll create a Bindings Library for an example Android archive file that was created in Android Studio,

textanalyzer.aar. This .AAR contains a TextCounter class with static methods that count the number of vowels

and consonants in a string. In addition, textanalyzer.aartextanalyzer.aar contains an image resource to help display the

counting results.

We'll use the following steps to create a Bindings Library from the .AAR file:

1. Create a new Java Bindings Library project.

2. Add a single .AAR file to the project. A binding project may only contain a single .AAR.

3. Set the appropriate build action for the .AAR file.

4. Choose a target framework that the .AAR supports.

5. Build the Bindings Library.

Once we've created the Bindings Library, we'll develop a small Android app that prompts the user for a text

string, calls .AAR methods to analyze the text, retrieves the image from the .AAR, and displays the results along

with the image.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/binding-an-aar.md
https://www.surveymonkey.com/r/KKBHNLT
https://bugzilla.xamarin.com/show_bug.cgi?id=44573
https://github.com/xamarin/monodroid-samples/blob/master/JavaIntegration/AarBinding/Resources/textanalyzer.aar?raw=true

package com.xamarin.textcounter;

public class TextCounter
{
 ...
 public static int numVowels (String text) { ... };
 ...
 public static int numConsonants (String text) { ... };
 ...
}

 Creating the Bindings LibraryCreating the Bindings Library

The sample app will access the TextCounter class of textanalyzer.aartextanalyzer.aar :

In addition, this sample app will retrieve and display an image resource that is packaged in textanalyzer.aartextanalyzer.aar :

This image resource resides at res/drawable/monkey.pngres/drawable/monkey.png in textanalyzer.aartextanalyzer.aar .

Before commencing with the steps below, please download the example textanalyzer.aar Android archive file:

1. Create a new Bindings Library project starting with the Android Bindings Library template. You can use

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/00-monkey.png#lightbox
https://github.com/xamarin/monodroid-samples/blob/master/JavaIntegration/AarBinding/Resources/textanalyzer.aar?raw=true

either Visual Studio for Mac or Visual Studio (the screenshots below show Visual Studio, but Visual Studio

for Mac is very similar). Name the solution AarBindingAarBinding:

2. The template includes a JarsJars folder where you add your .AAR(s) to the Bindings Library project. Right-

click the JarsJars folder and select Add > Existing ItemAdd > Existing Item:

3. Navigate to the textanalyzer.aartextanalyzer.aar file downloaded earlier, select it, and click AddAdd:

4. Verify that the textanalyzer.aartextanalyzer.aar file was successfully added to the project:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/01-new-bindings-library-vs.w160.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/02-add-existing-item-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/03-select-aar-file-vs.png#lightbox

5. Set the Build Action for textanalyzer.aartextanalyzer.aar to LibraryProjectZip . In Visual Studio for Mac, right-click

textanalyzer.aartextanalyzer.aar to set the Build Action. In Visual Studio, the Build Action can be set in the Proper tiesProper ties

pane):

6. Open the project Properties to configure the Target Framework. If the .AAR uses any Android APIs, set the

Target Framework to the API level that the .AAR expects. (For more information about the Target

Framework setting and Android API levels in general, see Understanding Android API Levels.)

Set the target API level for your Bindings Library. In this example, we are free to use the latest platform

API level (API level 23) because our textanalyzertextanalyzer does not have a dependency on Android APIs:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/04-aar-added-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/05-embedded-aar-vs.png#lightbox

 Using the Bindings LibraryUsing the Bindings Library

7. Build the Bindings Library. The Bindings Library project should build successfully and produce an output

.DLL at the following location: AarBinding/bin/Debug/AarBinding.dllAarBinding/bin/Debug/AarBinding.dll

To consume this .DLL in your Xamarin.Android app, you must first add a reference to the Bindings Library. Use

the following steps:

1. We're creating this app in the same Solution as the Bindings Library to simplify this walkthrough. (The

app that consumes the Bindings Library could also reside in a different Solution.) Create a new

Xamarin.Android app: right-click the Solution and select Add New ProjectAdd New Project. Name the new project

BindingTestBindingTest:

2. Right-click the ReferencesReferences node of the BindingTestBindingTest project and select Add Reference...Add Reference...:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/06-set-target-framework-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/07-add-new-project-vs.w157.png#lightbox

3. Select the AarBindingAarBinding project created earlier and click OKOK:

4. Open the ReferencesReferences node of the BindingTestBindingTest project to verify that the AarBindingAarBinding reference is

present:

If you would like to view the contents of the Binding Library project, you can double-click the reference to open

it in the Object BrowserObject Browser . You can see the mapped contents of the Com.Xamarin.Textcounter namespace

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/08-add-reference-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/09-choose-aar-binding-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/10-references-shows-aarbinding-vs.png#lightbox

 Accessing .AAR TypesAccessing .AAR Types

using Com.Xamarin.Textcounter;
...
int numVowels = TextCounter.NumVowels (myText);
int numConsonants = TextCounter.NumConsonants (myText);

var employee = new Com.MyCompany.MyProject.Employee();
var name = employee.BuildFullName ();

(mapped from the Java com.xamarin.textanalyzezr package) and you can view the members of the TextCounter

class:

The above screenshot highlights the two TextAnalyzer methods that the example app will call: NumConsonants

(which wraps the underlying Java numConsonants method), and NumVowels (which wraps the underlying Java

numVowels method).

After you add a reference to your app that points to the Binding Library, you can access Java types in the .AAR as

you would access C# types (thanks to the C# wrappers). C# app code can call TextAnalyzer methods as

illustrated in this example:

In the above example, we're calling static methods in the TextCounter class. However, you can also instantiate

classes and call instance methods. For example, if your .AAR wraps a class called Employee that has the instance

method buildFullName , you can instantiate MyClass and use it as seen here:

The following steps add code to the app so that it prompts the user for text, uses TextCounter to analyze the

text, and then displays the results.

Replace the BindingTestBindingTest layout (Main.axmlMain.axml) with the following XML. This layout has an EditText for text input

and two buttons for initiating vowel and consonant counts:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/11-object-browser-vs.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation ="vertical"
 android:layout_width ="fill_parent"
 android:layout_height ="fill_parent" >
 <TextView
 android:text ="Text to analyze:"
 android:textSize ="24dp"
 android:layout_marginTop ="30dp"
 android:layout_gravity ="center"
 android:layout_width ="wrap_content"
 android:layout_height ="wrap_content" />
 <EditText
 android:id ="@+id/input"
 android:text ="I can use my .AAR file from C#!"
 android:layout_marginTop ="10dp"
 android:layout_gravity ="center"
 android:layout_width ="300dp"
 android:layout_height ="wrap_content"/>
 <Button
 android:id ="@+id/vowels"
 android:layout_marginTop ="30dp"
 android:layout_width ="240dp"
 android:layout_height ="wrap_content"
 android:layout_gravity ="center"
 android:text ="Count Vowels" />
 <Button
 android:id ="@+id/consonants"
 android:layout_width ="240dp"
 android:layout_height ="wrap_content"
 android:layout_gravity ="center"
 android:text ="Count Consonants" />
</LinearLayout>

Replace the contents of MainActivity.csMainActivity.cs with the following code. As seen in this example, the button event

handlers call wrapped TextCounter methods that reside in the .AAR and use toasts to display the results. Notice

the using statement for the namespace of the bound library (in this case, Com.Xamarin.Textcounter):

using System;
using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using Android.Views.InputMethods;
using Com.Xamarin.Textcounter;

namespace BindingTest
{
 [Activity(Label = "BindingTest", MainLauncher = true, Icon = "@drawable/icon")]
 public class MainActivity : Activity
 {
 InputMethodManager imm;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 SetContentView(Resource.Layout.Main);

 imm = (InputMethodManager)GetSystemService(Context.InputMethodService);

 var vowelsBtn = FindViewById<Button>(Resource.Id.vowels);
 var consonBtn = FindViewById<Button>(Resource.Id.consonants);
 var edittext = FindViewById<EditText>(Resource.Id.input);
 edittext.InputType = Android.Text.InputTypes.TextVariationPassword;

 edittext.KeyPress += (sender, e) =>
 {
 imm.HideSoftInputFromWindow(edittext.WindowToken, HideSoftInputFlags.NotAlways);
 e.Handled = true;
 };

 vowelsBtn.Click += (sender, e) =>
 {
 int count = TextCounter.NumVowels(edittext.Text);
 string msg = count + " vowels found.";
 Toast.MakeText (this, msg, ToastLength.Short).Show ();
 };

 consonBtn.Click += (sender, e) =>
 {
 int count = TextCounter.NumConsonants(edittext.Text);
 string msg = count + " consonants found.";
 Toast.MakeText (this, msg, ToastLength.Short).Show ();
 };

 }
 }
}

Compile and run the BindingTestBindingTest project. The app will start and present the screenshot on the left (the

EditText is initialized with some text, but you can tap it to change it). When you tap COUNT VOWELSCOUNT VOWELS , a toast

displays the number of vowels as shown on the right:

 Accessing .AAR ResourcesAccessing .AAR Resources

<ImageView android:src="@drawable/image" ... />

var a = new ArrayAdapter<string>(this, Resource.Layout.row_layout, ...);

Try tapping the COUNT CONSONANTSCOUNT CONSONANTS button. Also, you can modify the line of text and tap these buttons

again to test for different vowel and consonant counts.

The Xamarin tooling merges the RR data from the .AAR into your app's ResourceResource class. As a result, you can

access .AAR resources from your layout (and from code-behind) in the same way as you would access resources

that are in the ResourcesResources path of your project.

To access an image resource, you use the Resource.DrawableResource.Drawable name for the image packed inside the .AAR. For

example, you can reference image.pngimage.png in the .AAR file by using @drawable/image :

You can also access resource layouts that reside in the .AAR. To do this, you use the Resource.LayoutResource.Layout name for

the layout packaged inside the .AAR. For example:

The textanalyzer.aartextanalyzer.aar example contains an image file that resides at res/drawable/monkey.pngres/drawable/monkey.png. Let's access

this image resource and use it in our example app:

Edit the BindingTestBindingTest layout (Main.axmlMain.axml) and add an ImageView to the end of the LinearLayout container. This

ImageView displays the image found at @drawable/monkey@drawable/monkey ; this image will be loaded from the resource

section of textanalyzer.aartextanalyzer.aar :

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/12-count-vowels.png#lightbox

 ...
 <ImageView
 android:src ="@drawable/monkey"
 android:layout_marginTop ="40dp"
 android:layout_width ="200dp"
 android:layout_height ="200dp"
 android:layout_gravity ="center" />

</LinearLayout>

 Summary

 Related Links

Compile and run the BindingTestBindingTest project. The app will start and present the screenshot on the left – when you

tap COUNT CONSONANTSCOUNT CONSONANTS , the results are displayed as shown on the right:

Congratulations! You've successfully bound a Java library .AAR!

In this walkthrough, we created a Bindings Library for an .AAR file, added the Bindings Library to a minimal test

app, and ran the app to verify that our C# code can call Java code residing in the .AAR file. In addition, we

extended the app to access and display an image resource that resides in the .AAR file.

Building a Java Bindings Library (video)

Binding a .JAR

Binding a Java Library

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-an-aar-images/13-count-consonants.png#lightbox
https://university.xamarin.com/classes#10090

AarBinding (sample)

Bug 44573 - One project cannot bind multiple .aar files

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/javaintegration-aarbinding
https://bugzilla.xamarin.com/show_bug.cgi?id=44573

Binding an Eclipse Library Project
 7/8/2021 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Overview

 Walkthrough

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

This walkthrough explains how to use Xamarin.Android project templates to bind an Eclipse Android library

project.

Although .AAR files are increasingly becoming the norm for Android library distribution, in some cases it is

necessary to create a binding for an Android library project. Android library projects are special Android

projects that contain shareable code and resources that can be referenced by Android application projects.

Typically, you bind to an Android library project when the library is created in the Eclipse IDE. This walkthrough

provides examples of how to create an Android library project .ZIP from the directory structure of an Eclipse

project.

Android library projects are different from regular Android projects in that they are not compiled into an APK

and are not, on their own, deployable to a device. Instead, an Android library project is meant to be referenced

by an Android application project. When an Android application project is built, the Android library project is

compiled first. The Android application project will then be absorbed into the compiled Android library project

and include the code and resources into the APK for distribution. Because of this difference, creating a binding

for an Android library project is slightly different than creating a binding for a Java .JAR or .AAR file.

To use an Android library project in a Xamarin.Android Java Binding project it is first necessary to build the

Android library project in Eclipse. The following screenshot shows an example of one Android library project

after compilation:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/binding-a-library-project.md
https://www.surveymonkey.com/r/KKBHNLT

Notice that the source code from the Android library project has been compiled to a temporary .JAR file named

android-mapviewballoons.jarandroid-mapviewballoons.jar , and that the resources have been copied to the bin/res/crunchbin/res/crunch folder.

Once the Android library project has been compiled in Eclipse, it can then be bound using a Xamarin.Android

Java Binding project. First a .ZIP file must be created which contains the binbin and resres folders of the Android

library project. It is important that you remove the intervening crunchcrunch subdirectory so that the resources reside

in bin/resbin/res . The following screenshot shows the contents of one such .ZIP file:

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-library-project-images/build-lib-in-eclipse.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-library-project-images/contents-of-zip-file.png#lightbox

This .ZIP file is then added to Xamarin.Android Java Binding project, as shown in the following screenshot:

Notice that the Build Action of the .ZIP file has been automatically set to L ibrar yProjectZipLibrar yProjectZip.

If there are any .JAR files that are required by the Android library project, they should be added to the JarsJars

folder of the Java Binding Library project and the Build ActionBuild Action set to ReferenceJarReferenceJar . An example of this can be

seen in the screenshot below:

Once these steps are complete, the Xamarin.Android Java Binding project can be used as described earlier on in

this document.

file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-library-project-images/zip-in-binding-project.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/platform/binding-java-library/binding-a-library-project-images/set-to-referencejar.png#lightbox

NOTENOTE

 Summary

Compiling the Android library projects in other IDEs is not supported at this time. Other IDEs may not create the same

directory structure or files in the binbin folder as Eclipse.

In this article, we walked through the process of binding an Android library project. We built the Android library

project in Eclipse, then we created a zip file from the binbin and resres folders of the Android library project. Next, we

used this zip to create a Xamarin.Android Java Binding project.

Customizing Bindings
 10/28/2019 • 2 minutes to read • Edit Online

 Overview

 Guides

You can customize an Xamarin.Android binding by editing the metadata that controls the binding process. These

manual modifications are often necessary for resolving build errors and for shaping the resulting API so that it

is more consistent with C#/.NET. These guides explain the structure of this metadata, how to modify the

metadata, and how to use JavaDoc to recover the names of method parameters.

Xamarin.Android automates much of the binding process; however, in some cases manual modification is

required to address the following issues:

Resolving build errors caused by missing types, obfuscated types, duplicate names, class visibility issues,

and other situations that cannot be resolved by the Xamarin.Android tooling.

Changing the mapping that Xamarin.Android uses to bind the Android API to different types in C# (for

example, many developers prefer to map Java int constants to C# enum constants).

Removing unused types that do not need to be bound.

Adding types that have no counterpart in the underlying Java API.

You can make some or all of these changes by modifying the metadata that controls the binding process.

The following guides describe the metadata that controls the binding process and explain how to modify this

metadata to address these issues:

Java Bindings Metadata provides an overview of the metadata that goes into a Java binding. It describes

the various manual steps that are sometimes required to complete a Java binding library, and it explains

how to shape an API exposed by a binding to more closely follow .NET design guidelines.

Naming Parameters with Javadoc explains how to recover parameter names in a Java Binding Project by

using Javadoc produced from the bound Java project.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/customizing-bindings/index.md

Java Bindings Metadata
 7/8/2021 • 10 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Overview

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

C# code in Xamarin.Android calls Java libraries through bindings, which are a mechanism that abstracts the low-

level details that are specified in Java Native Interface (JNI). Xamarin.Android provides a tool that generates

these bindings. This tooling lets the developer control how a binding is created by using metadata, which allows

procedures such as modifying namespaces and renaming members. This document discusses how metadata

works, summarizes the attributes that metadata supports, and explains how to resolve binding problems by

modifying this metadata.

A Xamarin.Android Java Binding L ibrar yJava Binding L ibrar y tries to automate much of the work necessary for binding an

existing Android library with the help of a tool sometimes known as the Bindings Generator. When binding a

Java library, Xamarin.Android will inspect the Java classes and generate a list of all the packages, types, and

members which to be bound. This list of APIs is stored in an XML file that can be found at {project{project

director y}\obj\Release\api.xmldirector y}\obj\Release\api.xml for a RELEASERELEASE build and at {project director y}\obj\Debug\api.xml{project director y}\obj\Debug\api.xml for a

DEBUGDEBUG build.

The Bindings Generator will use the api.xmlapi.xml file as a guideline for generating the necessary C# wrapper classes.

The contents of this XML file are a variation of Google's Android Open Source Project format. The following

snippet is an example of the contents of api.xmlapi.xml :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/customizing-bindings/java-bindings-metadata.md
https://www.surveymonkey.com/r/KKBHNLT

<api>
 <package name="android">
 <class abstract="false" deprecated="not deprecated" extends="java.lang.Object"
 extends-generic-aware="java.lang.Object"
 final="true"
 name="Manifest"
 static="false"
 visibility="public">
 <constructor deprecated="not deprecated" final="false"
 name="Manifest" static="false" type="android.Manifest"
 visibility="public">
 </constructor>
 </class>
...
</api>

 Metadata.xml Transform File

In this example, api.xmlapi.xml declares a class in the android package named Manifest that extends the

java.lang.Object .

In many cases, human assistance is required to make the Java API feel more ".NET like" or to correct issues that

prevent the binding assembly from compiling. For example, it may be necessary to change Java package names

to .NET namespaces, rename a class, or change the return type of a method.

These changes are not achieved by modifying api.xmlapi.xml directly. Instead, changes are recorded in special XML

files that are provided by the Java Binding Library template. When compiling the Xamarin.Android binding

assembly, the Bindings Generator will be influenced by these mapping files when creating the binding assembly

These XML mapping files may be found in the TransformsTransforms folder of the project:

MetaData.xmlMetaData.xml – Allows changes to be made to the final API, such as changing the namespace of the

generated binding.

EnumFields.xmlEnumFields.xml – Contains the mapping between Java int constants and C# enums .

EnumMethods.xmlEnumMethods.xml – Allows changing method parameters and return types from Java int constants

to C# enums .

The MetaData.xmlMetaData.xml file is the most import of these files as it allows general-purpose changes to the binding

such as:

Renaming namespaces, classes, methods, or fields so they follow .NET conventions.

Removing namespaces, classes, methods, or fields that aren't needed.

Moving classes to different namespaces.

Adding additional support classes to make the design of the binding follow .NET framework patterns.

Lets move on to discuss Metadata.xmlMetadata.xml in more detail.

As we've already learned, the file Metadata.xmlMetadata.xml is used by the Bindings Generator to influence the creation of

the binding assembly. The metadata format uses XPath syntax and is nearly identical to the GAPI Metadata

described in GAPI Metadata guide. This implementation is almost a complete implementation of XPath 1.0 and

thus supports items in the 1.0 standard. This file is a powerful XPath based mechanism to change, add, hide, or

move any element or attribute in the API file. All of the rule elements in the metadata spec include a path

attribute to identify the node to which the rule is to be applied. The rules are applied in the following order :

add-nodeadd-node – Appends a child node to the node specified by the path attribute.

https://www.w3.org/TR/xpath/
https://www.mono-project.com/docs/gui/gtksharp/gapi/#metadata

<metadata>
 <!-- Normalize the namespace for .NET -->
 <attr path="/api/package[@name='com.evernote.android.job']"
 name="managedName">Evernote.AndroidJob</attr>

 <!-- Don't need these packages for the Xamarin binding/public API -->
 <remove-node path="/api/package[@name='com.evernote.android.job.v14']" />
 <remove-node path="/api/package[@name='com.evernote.android.job.v21']" />

 <!-- Change a parameter name from the generic p0 to a more meaningful one. -->
 <attr
path="/api/package[@name='com.evernote.android.job']/class[@name='JobManager']/method[@name='forceApi']/para
meter[@name='p0']"
 name="name">api</attr>
</metadata>

 Adding TypesAdding Types

<add-node path="/api/package[@name='org.alljoyn.bus']">
 <class abstract="false" deprecated="not deprecated" final="false" name="AuthListener.AuthRequest"
static="true" visibility="public" extends="java.lang.Object">
 <constructor deprecated="not deprecated" final="false" name="AuthListener.AuthRequest"
static="false" type="org.alljoyn.bus.AuthListener.AuthRequest" visibility="public" />
 <field name="p0" type="org.alljoyn.bus.AuthListener.Credentials" />
 </class>
</add-node>

 Removing TypesRemoving Types

<remove-node path="/api/package[@name='{package_name}']/class[@name='{name}']" />

 Renaming MembersRenaming Members

attrattr – Sets the value of an attribute of the element specified by the path attribute.

remove-noderemove-node – Removes nodes matching a specified XPath.

The following is an example of a Metadata.xmlMetadata.xml file:

The following lists some of the more commonly used XPath elements for the Java API's:

interface – Used to locate a Java interface. e.g. /interface[@name='AuthListener'] .

class – Used to locate a class . e.g. /class[@name='MapView'] .

method – Used to locate a method on a Java class or interface. e.g.

/class[@name='MapView']/method[@name='setTitleSource'] .

parameter – Identify a parameter for a method. e.g. /parameter[@name='p0']

The add-node element will tell the Xamarin.Android binding project to add a new wrapper class to api.xmlapi.xml . For

example, the following snippet will direct the Binding Generator to create a class with a constructor and a single

field:

It is possible to instruct the Xamarin.Android Bindings Generator to ignore a Java type and not bind it. This is

done by adding a remove-node XML element to the metadata.xmlmetadata.xml file:

Renaming members cannot be done by directly editing the api.xmlapi.xml file because Xamarin.Android requires the

original Java Native Interface (JNI) names. Therefore, the //class/@name attribute cannot be altered; if it is, the

binding will not work.

<attr path="/api/package[@name='android']/class[@name='Manifest']"
 name="name">NewName</attr>

[Register ("android/NewName")]
public class NewName : Java.Lang.Object { ... }

<attr path="/api/package[@name='android']/class[@name='Manifest']"
 name="managedName">NewName</attr>

 Renaming Renaming EventArg Wrapper Classes Wrapper Classes

com.someapp.android.mpa.guidance.NavigationManager.on2DSignNextManuever(NextManueverListener listener);

NavigationManager.2DSignNextManueverEventArgs

<attr path="/api/package[@name='com.someapp.android.mpa.guidance']/
 interface[@name='NavigationManager.Listener']/
 method[@name='on2DSignNextManeuver']"
 name="argsType">NavigationManager.TwoDSignNextManueverEventArgs</attr>

 Supported Attributes

 argsTypeargsType

 eventNameeventName

Consider the case where we want to rename a type, android.Manifest . To accomplish this, we might try to

directly edit api.xmlapi.xml and rename the class like so:

This will result in the Bindings Generator creating the following C# code for the wrapper class:

Notice that the wrapper class has been renamed to NewName , while the original Java type is still Manifest . It is

no longer possible for the Xamarin.Android binding class to access any methods on android.Manifest ; the

wrapper class is bound to a non-existent Java type.

To properly change the managed name of a wrapped type (or method), it is necessary to set the managedName

attribute as shown in this example:

When the Xamarin.Android binding generator identifies an onXXX setter method for a listener type, a C# event

and EventArgs subclass will be generated to support a .NET flavoured API for the Java-based listener pattern. As

an example, consider the following Java class and method:

Xamarin.Android will drop the prefix on from the setter method and instead use 2DSignNextManuever as the

basis for the name of the EventArgs subclass. The subclass will be named something similar to:

This is not a legal C# class name. To correct this problem, the binding author must use the argsType attribute

and provide a valid C# name for the EventArgs subclass:

The following sections describe some of the attributes for transforming Java APIs.

This attribute is placed on setter methods to name the EventArg subclass that will be generated to support Java

listeners. This is described in more detail below in the section Renaming EventArg Wrapper Classes later on in

this guide.

 managedNamemanagedName

<attr path="/api/package[@name='com.my.application']/class[@name='MyClass']"
 name="managedName">NewClassName</attr>

<attr path="/api/package[@name='java.lang']/class[@name='Object']/method[@name='toString']"
 name="managedName">NewMethodName</attr>

 managedTypemanagedType

<attr path="/api/package[@name='de.neom.neoreadersdk']/
 class[@name='Resolution']/
 method[@name='compareTo' and count(parameter)=1 and
 parameter[1][@type='de.neom.neoreadersdk.Resolution']]/
 parameter[1]" name="managedType">Java.Lang.Object</attr>

 managedReturnmanagedReturn

<attr path="/api/package[@name='android.text']/
 class[@name='SpannableStringBuilder']/
 method[@name='append']"
 name="managedReturn">Java.Lang.IAppendable</attr>

 obfuscatedobfuscated

Specifies a name for an event. If empty, it inhibits event generation. This is described in more detail in the section

title Renaming EventArg Wrapper Classes.

This is used to change the name of a package, class, method, or parameter. For example to change the name of

the Java class MyClass to NewClassName :

The next example illustrates an XPath expression for renaming the method java.lang.object.toString to

Java.Lang.Object.NewManagedName :

managedType is used to change the return type of a method. In some situations the Bindings Generator will

incorrectly infer the return type of a Java method, which will result in a compile time error. One possible solution

in this situation is to change the return type of the method.

For example, the Bindings Generator believes that the Java method

de.neom.neoreadersdk.resolution.compareTo() should return an int and take Object as parameters, which

results in the error message Error CS0535: 'DE.Neom.Neoreadersdk .Resolution' does not implementError CS0535: 'DE.Neom.Neoreadersdk .Resolution' does not implement

interface member 'Java.Lang.IComparable.CompareTo(Java.Lang.Object)'interface member 'Java.Lang.IComparable.CompareTo(Java.Lang.Object)' . The following snippet

demonstrates how to change the first parameter's type of the generated C# method from a

DE.Neom.Neoreadersdk.Resolution to a Java.Lang.Object :

Changes the return type of a method. This does not change the return attribute (as changes to return attributes

can result in incompatible changes to the JNI signature). In the following example, the return type of the append

method is changed from SpannableStringBuilder to IAppendable (recall that C# does not support covariant

return types):

Tools that obfuscate Java libraries may interfere with the Xamarin.Android Binding Generator and its ability to

generate C# wrapper classes. Characteristics of obfuscated classes include:

The class name includes a $$, i.e. a$.classa$.class

The class name is entirely compromised of lower case characters, i.e. a.classa.class

This snippet is an example of how to generate an "un-obfuscated" C# type:

<attr path="/api/package[@name='{package_name}']/class[@name='{name}']"
 name="obfuscated">false</attr>

 propertyNamepropertyName

<attr
path="/api/package[@name='org.java_websocket.handshake']/class[@name='HandshakeImpl1Client']/method[@name='s
etResourceDescriptor'
 and count(parameter)=1
 and parameter[1][@type='java.lang.String']]"
 name="propertyName"></attr>
<attr
path="/api/package[@name='org.java_websocket.handshake']/class[@name='HandshakeImpl1Client']/method[@name='g
etResourceDescriptor'
 and count(parameter)=0]"
 name="propertyName"></attr>

 sendersender

<attr path="/api/package[@name='android.app']/
 interface[@name='TimePickerDialog.OnTimeSetListener']/
 method[@name='onTimeSet']/
 parameter[@name='view']"
 name="sender">true</ attr>

 visibilityvisibility

<!-- Change the visibility of a class -->
<attr path="/api/package[@name='namespace']/class[@name='ClassName']" name="visibility">public</attr>

<!-- Change the visibility of a method -->
<attr path="/api/package[@name='namespace']/class[@name='ClassName']/method[@name='MethodName']"
name="visibility">public</attr>

 EnumFields.xml and EnumMethods.xml

 Defining an Enum using EnumFields.xmlDefining an Enum using EnumFields.xml

This attribute can be used to change the name of a managed property.

A specialized case of using propertyName involves the situation where a Java class has only a getter method for

a field. In this situation the Binding Generator would want to create a write-only property, something that is

discouraged in .NET. The following snippet shows how to "remove" the .NET properties by setting the

propertyName to an empty string:

Note that the setter and getter methods will still be created by the Bindings Generator.

Specifies which parameter of a method should be the sender parameter when the method is mapped to an

event. The value can be true or false . For example:

This attribute is used to change the visibility of a class, method, or property. For example, it may be necessary to

promote a protected Java method so that it's corresponding C# wrapper is public :

There are cases where Android libraries use integer constants to represent states that are passed to properties

or methods of the libraries. In many cases, it is useful to bind these integer constants to enums in C#. To facilitate

this mapping, use the EnumFields.xmlEnumFields.xml and EnumMethods.xmlEnumMethods.xml files in your binding project.

The EnumFields.xmlEnumFields.xml file contains the mapping between Java int constants and C# enums . Let's take the

<mapping jni-class="com/skobbler/ngx/map/realreach/SKRealReachSettings" clr-enum-
type="Skobbler.Ngx.Map.RealReach.SKMeasurementUnit">
 <field jni-name="UNIT_SECOND" clr-name="Second" value="0" />
 <field jni-name="UNIT_METER" clr-name="Meter" value="1" />
 <field jni-name="UNIT_MILIWATT_HOURS" clr-name="MilliwattHour" value="2" />
</mapping>

 Defining Getter/Setter Methods using EnumMethods.xmlDefining Getter/Setter Methods using EnumMethods.xml

<mapping jni-class="com/skobbler/ngx/map/realreach/SKRealReachSettings">
 <method jni-name="getMeasurementUnit" parameter="return" clr-enum-
type="Skobbler.Ngx.Map.RealReach.SKMeasurementUnit" />
 <method jni-name="setMeasurementUnit" parameter="measurementUnit" clr-enum-
type="Skobbler.Ngx.Map.RealReach.SKMeasurementUnit" />
</mapping>

realReachSettings.MeasurementUnit = SKMeasurementUnit.Second;

 Summary

 Related Links

following example of a C# enum being created for a set of int constants:

Here we have taken the Java class SKRealReachSettings and defined a C# enum called SKMeasurementUnit in the

namespace Skobbler.Ngx.Map.RealReach . The field entries defines the name of the Java constant (example

UNIT_SECOND), the name of the enum entry (example Second), and the integer value represented by both

entities (example 0).

The EnumMethods.xmlEnumMethods.xml file allows changing method parameters and return types from Java int constants to

C# enums . In other words, it maps the reading and writing of C# enums (defined in the EnumFields.xmlEnumFields.xml file) to

Java int constant get and set methods.

Given the SKRealReachSettings enum defined above, the following EnumMethods.xmlEnumMethods.xml file would define the

getter/setter for this enum:

The first method line maps the return value of the Java getMeasurementUnit method to the SKMeasurementUnit

enum. The second method line maps the first parameter of the setMeasurementUnit to the same enum.

With all of these changes in place, you can use the follow code in Xamarin.Android to set the MeasurementUnit :

This article discussed how Xamarin.Android uses metadata to transform an API definition from the Google

AOSP format. After covering the changes that are possible using Metadata.xml, it examined the limitations

encountered when renaming members and it presented the list of supported XML attributes, describing when

each attribute should be used.

Working with JNI

Binding a Java Library

GAPI Metadata

https://www.mono-project.com/docs/gui/gtksharp/gapi/#metadata

Naming Parameters With Javadoc
 11/2/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Overview

 Integrating Javadoc HTML into a Java Binding Project

NOTENOTE

 Summary

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

This article explains how to recover parameter names in an Java Binding Project by using Javadoc generated

from the Java project.

When binding an existing Java library, some metadata about the bound API is lost. In particular the names of

parameters to methods. Parameter names will appear as p0 , p1 , etc. This is because the Java .class files do

not preserve the parameter names that were used in the Java source code.

A Xamarin.Android Java binding project can provide the parameter names if it has access to the Javadoc HTML

from the original library.

Integrating the Javadoc HTML into a Java Binding project is a manual process consisting of the following steps:

1. Download the Javadoc for the library

2. Edit the .csproj file and add a <JavaDocPaths> property:

3. Clean and rebuild the project

Once this is done, the original Java parameter names should be present in the APIs bound by a Java Binding

Project.

There is a great deal of variance in the JavaDoc output. The .JAR binding toolchain does not support every single possible

permutation and consequently some parameter may not be properly named.

This article covered how use Javadoc in a Java Binding Project to provide meaning parameter names for bound

APIs.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/customizing-bindings/naming-parameters-with-javadoc.md
https://www.surveymonkey.com/r/KKBHNLT

Troubleshooting Bindings
 7/8/2021 • 9 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Overview

 Decompiling an Android Library

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

This article summarizes serveral common errors that may occur when generating bindings, along with possible

causes and suggested ways to resolve them.

Binding an Android library (an .aar.aar or a .jar.jar) file is seldom a straightforward affair ; it usually requires additional

effort to mitigate issues that result from the differences between Java and .NET. These issues will prevent

Xamarin.Android from binding the Android library and present themselves as error messages in the build log.

This guide will provide some tips for troubleshooting the issues, list some of the more common

problems/scenarios, and provide possible solutions to successfully binding the Android library.

When binding an existing Android library, it is necessary to keep in mind the following points:

The external dependencies for the librar yThe external dependencies for the librar y – Any Java dependencies required by the Android library

must be included in the Xamarin.Android project as a ReferenceJarReferenceJar or as an EmbeddedReferenceJarEmbeddedReferenceJar .

The Android API level that the Android librar y is targettingThe Android API level that the Android librar y is targetting – It is not possible to "downgrade" the

Android API level; ensure that the Xamarin.Android binding project is targeting the same API level (or

higher) as the Android library.

The version of the Android JDK that was used to package the Android librar yThe version of the Android JDK that was used to package the Android librar y – Binding errors

may occur if the Android library was built with a different version of JDK than the one in use by

Xamarin.Android. If possible, recompile the Android library using the same version of the JDK that is used

by your installation of Xamarin.Android.

The first step to troubleshooting issues with binding a Xamarin.Android library is to enable diagnostic MSBuild

output. After enabling the diagnostic output, rebuild the Xamarin.Android binding project and examine the build

log to locate clues about what the cause of problem is.

It can also prove helpful to decompile the Android library and examine the types and methods that

Xamarin.Android is trying to bind. This is covered in more detail later on in this guide.

Inspecting the classes and methods of the Java classes can provide valuable information that will assist in

binding a library. JD-GUI is a graphical utility that can display Java source code from the CL ASSCL ASS files contained

in a JAR. It can be run as a stand alone application or as a plug-in for IntelliJ or Eclipse.

To decompile an Android library open the .JAR.JAR file with the Java decompiler. If the library is an .AAR.AAR file, it is

necessary to extract the file classes.jarclasses.jar from the archive file. The following is a sample screenshot of using JD-

GUI to analyze the Picasso JAR:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-java-library/troubleshooting-bindings.md
https://www.surveymonkey.com/r/KKBHNLT
http://jd.benow.ca/
https://square.github.io/picasso/

NOTENOTE

 Inspect API.XML

Once you have decompiled the Android library, examine the source code. Generally speaking, look for :

Classes that have character istics of obfuscationClasses that have character istics of obfuscation – Characteristics of obfuscated classes include:

The class name includes a $$, i.e. a$.classa$.class

The class name is entirely compromised of lower case characters, i.e. a.classa.class

import statements for unreferenced librar ies statements for unreferenced librar ies – Identify the unreferenced library and add those

dependencies to the Xamarin.Android binding project with a Build ActionBuild Action of ReferenceJarReferenceJar or

EmbedddedReferenceJarEmbedddedReferenceJar .

Decompiling a Java library may be prohibited or subject to legal restrictions based on local laws or the license under which

the Java library was published. If necessary, enlist the services of a legal professional before attempting to decompile a

Java library and inspect the source code.

As a part of building a binding project, Xamarin.Android will generate an XML file name obj/Debug/api.xmlobj/Debug/api.xml :

 Known Issues

 Problem: Java Version MismatchProblem: Java Version Mismatch

 Problem: At least one Java library is requiredProblem: At least one Java library is required

 Possible Causes:Possible Causes:

 Problem: Binding tools cannot load the .JAR libraryProblem: Binding tools cannot load the .JAR library

 Possible CausesPossible Causes

 Problem: Missing C# types in generated output.Problem: Missing C# types in generated output.

 Possible Causes:Possible Causes:

This file provides a list of all the Java APIs that Xamarin.Android is trying bind. The contents of this file can help

identify any missing types or methods, duplicate binding. Although inspection of this file is tedious and time

consuming, it can provide for clues on what might be causing any binding problems. For example, api.xmlapi.xml

might reveal that a property is returning an inappropriate type, or that there are two types that share the same

managed name.

This section will list some of the common error messages or symptoms that my occur when trying to bind an

Android library.

Sometimes types will not be generated or unexpected crashes may occur because you are using either a newer

or older version of Java compared to what the library was compiled with. Recompile the Android library with

the same version of the JDK that your Xamarin.Android project is using.

You receive the error "at least one Java library is required," even though a .JAR has been added.

Make sure the build action is set to EmbeddedJar . Since there are multiple build actions for .JAR files (such as

InputJar , EmbeddedJar , ReferenceJar and EmbeddedReferenceJar), the binding generator cannot automatically

guess which one to use by default. For more information about build actions, see Build Actions.

The binding library generator fails to load the .JAR library.

Some .JAR libraries that use code obfuscation (via tools such as Proguard) cannot be loaded by the Java tools.

Since our tool makes use of Java reflection and the ASM byte code engineering library, those dependent tools

may reject the obfuscated libraries while Android runtime tools may pass. The workaround for this is to hand-

bind these libraries instead of using the binding generator.

The binding .dll.dll builds but misses some Java types, or the generated C# source does not build due to an error

stating there are missing types.

This error may occur due to several reasons as listed below:

The library being bound may reference a second Java library. If the public API for the bound library uses

types from the second library, you must reference a managed binding for the second library as well.

It is possible that a library was injected due to Java reflection, similar to the reason for the library load

 Problem: Generated C# source does not build due to parameter type mismatchProblem: Generated C# source does not build due to parameter type mismatch

 Possible Causes:Possible Causes:

 Problem: NoClassDefFoundError in packagingProblem: NoClassDefFoundError in packaging

 Possible Causes:Possible Causes:

 Problem: Duplicate custom EventArgs typesProblem: Duplicate custom EventArgs types

error CS0102: The type `Com.Google.Ads.Mediation.DismissScreenEventArgs' already contains a definition for
`p0'

 Possible Causes:Possible Causes:

<attr path="/api/package[@name='com.some.package']/class[@name='SomeClass']"
 name="visibility">public</attr>

<attr path="/api/package[@name='{package_name}']/class[@name='{name}']"
 name="obfuscated">false</attr>

error above, causing the unexpected loading of metadata. Xamarin.Android's tooling cannot currently

resolve this situation. In such a case, the library must be manually bound.

There was a bug in .NET 4.0 runtime that failed to load assemblies when it should have. This issue has

been fixed in the .NET 4.5 runtime.

Java allows deriving a public class from non-public class, but this is unsupported in .NET. Since the

binding generator does not generate bindings for non-public classes, derived classes such as these

cannot be generated correctly. To fix this, either remove the metadata entry for those derived classes

using the remove-node in Metadata.xmlMetadata.xml , or fix the metadata that is making the non-public class public.

Although the latter solution will create the binding so that the C# source will build, the non-public class

should not be used.

For example:

Tools that obfuscate Java libraries may interfere with the Xamarin.Android Binding Generator and its

ability to generate C# wrapper classes. The following snippet shows how to update Metadata.xmlMetadata.xml to

unobfuscate a class name:

The generated C# source does not build. Overridden method's parameter types do not match.

Xamarin.Android includes a variety of Java fields that are mapped to enums in the C# bindings. These can cause

type incompatibilities in the generated bindings. To resolve this, the method signatures created from the binding

generator need to be modified to use the enums. For more information, please see Correcting Enums.

java.lang.NoClassDefFoundError is thrown in the packaging step.

The most likely reason for this error is that a mandatory Java library needs to be added to the application

project (.csproj.csproj). .JAR files are not automatically resolved. A Java library binding is not always generated against

a user assembly that does not exist in the target device or emulator (such as Google Maps maps.jarmaps.jar). This is not

the case for Android Library project support, as the library .JAR is embedded in the library dll. For example: Bug

4288

Build fails due to duplicate custom EventArgs types. An error like this occurs:

This is because there is some conflict between event types that come from more than one interface "listener"

type that shares methods having identical names. For example, if there are two Java interfaces as seen in the

example below, the generator creates DismissScreenEventArgs for both MediationBannerListener and

MediationInterstitialListener , resulting in the error.

https://bugzilla.xamarin.com/show_bug.cgi?id=4288

// Java:
public interface MediationBannerListener {
 void onDismissScreen(MediationBannerAdapter p0);
}
public interface MediationInterstitialListener {
 void onDismissScreen(MediationInterstitialAdapter p0);
}

<attr path="/api/package[@name='com.google.ads.mediation']/
 interface[@name='MediationBannerListener']/method[@name='onDismissScreen']"
 name="argsType">BannerDismissScreenEventArgs</attr>

<attr path="/api/package[@name='com.google.ads.mediation']/
 interface[@name='MediationInterstitialListener']/method[@name='onDismissScreen']"
 name="argsType">IntersitionalDismissScreenEventArgs</attr>

<attr path="/api/package[@name='android.content']/
 interface[@name='DialogInterface.OnClickListener']"
 name="argsType">DialogClickEventArgs</attr>

 Problem: Class does not implement interface methodProblem: Class does not implement interface method

obj\Debug\generated\src\Oauth.Signpost.Basic.HttpURLConnectionRequestAdapter.cs(8,23):
error CS0738: 'Oauth.Signpost.Basic.HttpURLConnectionRequestAdapter' does not
implement interface member 'Oauth.Signpost.Http.IHttpRequest.Unwrap()'.
'Oauth.Signpost.Basic.HttpURLConnectionRequestAdapter.Unwrap()' cannot implement
'Oauth.Signpost.Http.IHttpRequest.Unwrap()' because it does not have the matching
return type of 'Java.Lang.Object'

 Possible Causes:Possible Causes:

This is by design so that lengthy names on event argument types are avoided. To avoid these conflicts, some

metadata transformation is required. Edit Transforms\Metadata.xmlTransforms\Metadata.xml and add an argsType attribute on either

of the interfaces (or on the interface method):

An error message is produced indicating that a generated class does not implement a method that is required

for an interface which the generated class implements. However, looking at the generated code, you can see that

the method is implemented.

Here is an example of the error :

This is a problem that occurs with binding Java methods with covariant return types. In this example, the

method Oauth.Signpost.Http.IHttpRequest.UnWrap() needs to return Java.Lang.Object . However, the method

Oauth.Signpost.Basic.HttpURLConnectionRequestAdapter.UnWrap() has a return type of HttpURLConnection . There

are two ways to fix this issue:

namespace Oauth.Signpost.Basic {
 partial class HttpURLConnectionRequestAdapter {
 Java.Lang.Object OauthSignpost.Http.IHttpRequest.Unwrap() {
 return Unwrap();
 }
 }
}

Add a partial class declaration for HttpURLConnectionRequestAdapter and explicitly implement

IHttpRequest.Unwrap() :

Remove the covariance from the generated C# code. This involves adding the following transform to

Transforms\Metadata.xmlTransforms\Metadata.xml which will cause the generated C# code to have a return type of

 Problem: Name Collisions on Inner Classes / PropertiesProblem: Name Collisions on Inner Classes / Properties

<!-- Change the visibility of a class -->
<attr path="/api/package[@name='namespace']/class[@name='ClassName']" name="visibility">public</attr>

<!-- Change the visibility of a method -->
<attr path="/api/package[@name='namespace']/class[@name='ClassName']/method[@name='MethodName']"
name="visibility">public</attr>

 Problem: A Problem: A .so.so Library Required by the Binding is Not Loading Library Required by the Binding is Not Loading

Java.Lang.JavaSystem.LoadLibrary("pocketsphinx_jni");

 Summary

 Related Links

<attr

path="/api/package[@name='oauth.signpost.basic']/class[@name='HttpURLConnectionRequestAdapter']/metho
d[@name='unwrap']"
 name="managedReturn">Java.Lang.Object
</attr>

Java.Lang.Object :

Conflicting visibility on inherited objects.

In Java, it's not required that a derived class have the same visibility as its parent. Java will just fix that for you. In

C#, that has to be explicit, so you need to make sure all classes in the hierarchy have the appropriate visibility.

The following example shows how to change a Java package name from com.evernote.android.job to

Evernote.AndroidJob :

Some binding projects may also depend on functionality in a .so.so library. It is possible that Xamarin.Android will

not automatically load the .so.so library. When the wrapped Java code executes, Xamarin.Android will fail to make

the JNI call and the error message java.lang.UnsatisfiedLinkError : Native method not found: will appear in the

logcat out for the application.

The fix for this is to manually load the .so.so library with a call to Java.Lang.JavaSystem.LoadLibrary . For example

assuming that a Xamarin.Android project has shared library libpocketsphinx_jni.solibpocketsphinx_jni.so included in the binding

project with a build action of EmbeddedNativeLibrar yEmbeddedNativeLibrar y , the following snippet (executed before using the

shared library) will load the .so.so library:

In this article, we listed common troubleshooting issues associated with Java Bindings and explained how to

resolve them.

Library Projects

Working with JNI

Enable Diagnostic Output

Xamarin for Android Developers

JD-GUI

https://developer.android.com/tools/projects/index.html#LibraryProjects
http://jd.benow.ca/

Bind Android Kotlin libraries
 11/2/2020 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 High-level approach

 Build the native libraryBuild the native library

 Prepare the Xamarin metadataPrepare the Xamarin metadata

 Build a Xamarin.Android binding libraryBuild a Xamarin.Android binding library

 Consume the Xamarin binding libraryConsume the Xamarin binding library

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

The Android platform, along with its native languages and tooling, is constantly evolving and there are plenty of

third-party libraries that have been developed using the latest offerings. Maximizing code and component reuse

is one of the key goals of cross-platform development. The ability to reuse components built with Kotlin has

become increasingly important to Xamarin developers as their popularity amongst developers continues to

grow. You may already be familiar with the process of binding regular Java libraries. Additional documentation

is now available describing the process of Binding a Kotlin Library, so they are consumable by a Xamarin

application in the same manner. The purpose of this document is to describe a high-level approach to create a

Kotlin Binding for Xamarin.

With Xamarin, you can bind any third-party native library to be consumable by a Xamarin application. Kotlin is

the new language and creating binding for libraries built with this language requires some additional steps and

tooling. This approach involves the following four steps:

1. Build the native library

2. Prepare the Xamarin metadata, which enables Xamarin tooling to generate C# classes

3. Build a Xamarin Binding Library using the native library and the metadata

4. Consume the Xamarin Binding Library in a Xamarin application

The following sections outline these steps with additional details.

The first step is to obtain a native Kotlin library (AAR package, which is an Android archive). You can either

request it directly from a vendor or build it yourself.

The second step is to prepare the metadata transform file, which will be used by the Xamarin tools to generate

the respective C# classes. In the best case scenario, this file could be empty where all classes are discovered and

generated by the Xamarin tools. In some cases, metadata transformation must be applied to generate correct

and/or desired C# code. In many cases, an AAR disassembler, such as Java Decompiler (JD), must be used to

identify hidden dependencies and unwanted classes that you wish to exclude from the final list of C# classes to

be generated. The final metadata should represent the public interface in which the referencing Xamarin.Android

application will interact with.

The third step is to create a special project - a Xamarin.Android Binding Library. It includes the Kotlin libraries as

native references and the metadata transformation defined in the previous step. At time of writing, a separate

Android Binding Library project is required for each AAR package being referenced. The Binding Library must

add the Xamarin.Kotlin.StdLib package in order to support the Kotlin Standard Library.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-kotlin-library/index.md
https://www.surveymonkey.com/r/KKBHNLT
http://java-decompiler.github.io/
https://www.nuget.org/packages/Xamarin.Kotlin.StdLib/

 Walkthrough

 Related links

The fourth and the final step is to reference the binding library in a Xamarin.Android application. Adding a

reference to the Xamarin.Android Binding Library enables your Xamarin application to use the exposed Kotlin

classes from within that package.

The approach above outlines the high-level steps required to create a Kotlin Binding for Xamarin. There are

many lower-level steps involved and further details to consider when preparing these bindings in practice

including adapting to changes in the native tools and languages. The intent is to help you to gain a deeper

understanding of this concept and the high-level steps involved in this process. For a detailed step-by-step

guide, refer to the Xamarin Kotlin Binding Walkthrough documentation.

Android Studio

Gradle Installation

Visual Studio for Mac

Java Decompiler

BubblePicker Kotlin Library

Binding Java Library

XPath

Java Binding Metadata

Xamarin.Kotlin.StdLib NuGet

Sample project repository

https://developer.android.com/studio
https://gradle.org/install/
https://visualstudio.microsoft.com/downloads
http://java-decompiler.github.io/
https://github.com/igalata/Bubble-Picker
https://www.w3.org/TR/xpath/
https://www.nuget.org/packages/Xamarin.Kotlin.StdLib/
https://github.com/xamcat/xamarin-binding-kotlin-framework

Walkthrough: Bind an Android Kotlin library
 7/8/2021 • 11 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Background

 Prerequisites

 Build a native library

We're currently investigating custom binding usage on the Xamarin platform. Please take this sur veythis sur vey to inform future

development efforts.

Xamarin enables mobile developers to create cross-platform native mobile apps using Visual Studio and C#. You

can use the Android platform SDK components out of the box but in many cases you also want to use third-

party SDKs written for that platform and Xamarin allows you to do it via bindings. In order to incorporate a

third-party Android framework into your Xamarin.Android application, you need to create a Xamarin.Android

binding for it before you can use it in your applications.

The Android platform, along with its native languages and tooling, are constantly evolving, including the recent

introduction of the Kotlin language, which is set eventually to replace Java. There are a number of 3d party

SDKs, which have already been migrated from Java to Kotlin and it presents us with new challenges. Even

though the Kotlin binding process is similar to Java, it requires additional steps and configuration settings to

successfully build and run as part of a Xamarin.Android application.

The goal of this document is to outline a high-level approach for addressing this scenario and provide a detailed

step-by-step guide with a simple example.

Kotlin was released in February 2016 and was positioned as an alternative to the standard Java compiler into

Android Studio by 2017. Later in 2019, Google announced that the Kotlin programming language would

became its preferred language for Android app developers. The high-level binding approach is similar to the

binding process of regular Java libraries with a few important Kotlin specific steps.

In order to complete this walkthrough, you will need:

Android Studio

Visual Studio for Mac

Java Decompiler

The first step is to build a native Kotlin library using Android Studio. The library is usually provided by a third-

party developer or available at the Google's Maven repository and other remote repositories. As an example, in

this tutorial a binding for the Bubble Picker Kotlin Library is created:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/binding-kotlin-library/walkthrough.md
https://www.surveymonkey.com/r/KKBHNLT
https://developer.android.com/studio
https://visualstudio.microsoft.com/downloads
http://java-decompiler.github.io/
https://maven.google.com/web/index.html

1. Download the source code from GitHub for the library and unpack it to a local folder Bubble-PickerBubble-Picker .

2. Launch the Android Studio and select Open an existing Android Studio projectOpen an existing Android Studio project menu option

choosing the Bubble-Picker local folder :

3. Verify that the Android Studio is up to date including Gradle. The source code can be successfully built on

Android Studio v3.5.3, Gradle v5.4.1. Instructions on how to update Gradle to the latest Gradle version

could be found here.

4. Verify that required Android SDK is installed. The source code requires Android SDK v25. Open Tools >Tools >

SDK ManagerSDK Manager menu option to install SDK components.

https://github.com/igalata/Bubble-Picker/archive/develop.zip
https://gradle.org/install/

5. Update and synchronize the main build.gradlebuild.gradle configuration file located at the root of the project folder :

buildscript {
 ext.kotlin_version = '1.3.10'
}

allprojects {
 repositories {
 jcenter()
 maven {
 url "https://maven.google.com"
 }
 }
}

TIPTIP

TIPTIP

TIPTIP

Set the Kotlin version to 1.3.10

Register default Google's Maven repository so the support library dependency could be resolved:

Once the configuration file is updated, it's out of sync and Gradle shows the Sync NowSync Now button,

press it and wait for the synchronization process to be completed:

Gradle's dependency cache may be corrupt, this sometimes occurs after a network connection timeout.

Redownload dependencies and sync project (requires network).

The state of a Gradle build process (daemon) may be corrupt. Stopping all Gradle daemons may solve this

problem. Stop Gradle build processes (requires restart). In the case of corrupt Gradle processes, you can

also try closing the IDE and then killing all Java processes.

Your project may be using a third-party plugin, which is not compatible with the other plugins in the

project or the version of Gradle requested by the project.

6. Open the Gradle menu on the right, navigate to the bubblepicker > Tasksbubblepicker > Tasks menu, execute the buildbuild task

by double tapping on it, and wait for the build process to complete:

 Prepare metadata

7. Open the root folder files browser and navigate to the build folder : Bubble-Picker -> bubblepicker ->Bubble-Picker -> bubblepicker ->

build -> outputs -> aarbuild -> outputs -> aar , save the bubblepicker-release.aarbubblepicker-release.aar file as bubblepicker-v1.0.aarbubblepicker-v1.0.aar , this file

will be used later in the binding process:

The AAR file is an Android archive, which contains the compiled Kotlin source code and assets, required by

Android to run an application using this SDK.

The second step is to prepare the metadata transformation file, which is used by Xamarin.Android to generate

respective C# classes. A Xamarin.Android Binding Project will discover all native classes and members from a

given Android archive subsequently generating an XML file with the appropriate metadata. The manually

created metadata transformation file is then applied to the previously generated baseline to create the final XML

definition file used to generate the C# code.

The metadata uses XPath syntax and is used by the Bindings Generator to influence the creation of the binding

assembly. The Java Binding Metadata article provides more information on transformations, which could be

https://www.w3.org/TR/xpath/

applied:

<?xml version="1.0" encoding="UTF-8"?>
<metadata>
</metadata>

1. Create an empty Metadata.xmlMetadata.xml file:

2. Define xml transformations:

The native Kotlin library has two dependencies, which you don't want to expose to C# world, define two

transformations to ignore them completely. Important to say, the native members won't be stripped from

the resulting binary, only C# classes won't be generated. Java Decompiler can be used to identify the

dependencies. Run the tool and open the AAR file created earlier, as a result the structure of the Android

archive will be shown, reflecting all dependencies, values, resources, manifest, and classes:

The transformations to skip processing these packages are defined using XPath instructions:

http://java-decompiler.github.io/

<remove-node path="/api/package[starts-with(@name,'org.jbox2d')]" />
<remove-node path="/api/package[starts-with(@name,'org.slf4j')]" />

<attr
path="/api/package[@name='com.igalata.bubblepicker.rendering']/class[@name='BubblePicker']/method[@na
me='getBackground' and count(parameter)=0]" name="propertyName">BackgroundColor</attr>
<attr
path="/api/package[@name='com.igalata.bubblepicker.rendering']/class[@name='BubblePicker']/method[@na
me='setBackground' and count(parameter)=1 and parameter[1][@type='int']]"
name="propertyName">BackgroundColor</attr>

public open fun fooUIntMethod(value: UInt) : String {
 return "fooUIntMethod${value}"
}

@NotNull
public String fooUIntMethod-WZ4Q5Ns(int value) {
return "fooUIntMethod" + UInt.toString-impl(value);
}

public open fun fooUIntArrayMethod(value: UIntArray) : String {
 return "fooUIntArrayMethod${value.size}"
}

@NotNull
public String fooUIntArrayMethod--ajY-9A(@NotNull int[] value) {
 Intrinsics.checkParameterIsNotNull(value, "value");
 return "fooUIntArrayMethod" + UIntArray.getSize-impl(value);
}

<attr
path="/api/package[@name='com.microsoft.simplekotlinlib']/class[@name='FooClass']/method[@name='fooUI
ntArrayMethod--ajY-9A']" name="managedName">fooUIntArrayMethod</attr>

The native BubblePicker class has two methods getBackgroundColor and setBackgroundColor and the

following transformation will change it into a C# BackgroundColor property:

Unsigned types UInt, UShort, ULong, UByte require special handling. For these types Kotlin changes

method names and parameters types automatically, which is reflected in the generated code:

This code is compiled into the following Java byte code:

Moreover, related types such as UIntArray, UShortArray, ULongArray, UByteArray are also affected by

Kotlin. The method name is changed to include an additional suffix and parameters are changed to an

array of elements of signed versions of the same types. In the example below a parameter of type

UIntArray is converted automatically into int[] and the method name is changed from

fooUIntArrayMethod to fooUIntArrayMethod--ajY-9A . The latter is discovered by Xamarin.Android tools

and generated as a valid method name:

This code is compiled into the following Java byte code:

In order to give it a meaningful name, the following metadata can be added to the Metadata.xmlMetadata.xml , which

will update the name back to originally defined in the Kotlin code:

 Build a binding library

public open fun <T>fooGenericMethod(value: T) : String {
return "fooGenericMethod${value}"
}

[Register ("fooGenericMethod", "(Ljava/lang/Object;)Ljava/lang/String;",
"GetFooGenericMethod_Ljava_lang_Object_Handler")]
[JavaTypeParameters (new string[] {
 "T"
})]

public virtual string FooGenericMethod (Java.Lang.Object value);

TIPTIP

In the BubblePicker sample, there are no members using unsigned types thus no additional changes are

required.

Kotlin members with generic parameters by default transformed into parameters of Java. Lang.Object

type. For example, a Kotlin method has a generic parameter <T>:

Once a Xamarin.Android binding is generated, the method is exposed to C# as below:

Java and Kotlin generics are not supported by Xamarin.Android bindings, thus a generalized C# method

to access the generic API is created. As a work-around you can create a wrapper Kotlin library and expose

required APIs in a strong-typed manner without generics. Alternatively, you can create helpers on C# side

to address the issue in the same way via strong-typed APIs.

By transforming the metadata, any changes could be applied to the generated binding. The Binding Java Library

article explains in details how the metadata is generated and processed.

The next step is to create a Xamarin.Android binding project using the Visual Studio binding template, add

required metadata, native references and then build the project to produce a consumable library:

1. Open Visual Studio for Mac and create a new Xamarin.Android Binding Library project, give it a name, in

this case testBubblePicker.BindingtestBubblePicker.Binding and complete the wizard. The Xamarin.Android binding template is

located by the following path: Android > L ibrar y > Binding L ibrar yAndroid > L ibrar y > Binding L ibrar y :

In the Transformations folder there are three main transformation files:

Metadata.xmlMetadata.xml – Allows changes to be made to the final API, such as changing the namespace of the

generated binding.

EnumFields.xmlEnumFields.xml – Contains the mapping between Java int constants and C# enums.

EnumMethods.xmlEnumMethods.xml – Allows changing method parameters and return types from Java int constants

to C# enums.

Keep empty the EnumFields.xmlEnumFields.xml and EnumMethods.xmlEnumMethods.xml files and update the Metadata.xmlMetadata.xml to define

your transformations.

2. Replace the existing Transformations/Metadata.xmlTransformations/Metadata.xml file with the Metadata.xmlMetadata.xml file created at the

previous step. In the properties window, verify that the file Build ActionBuild Action is set to TransformationFileTransformationFile:

3. Add the bubblepicker-v1.0.aarbubblepicker-v1.0.aar file you built in Step 1 to the binding project as a native reference. To

add native library references, open finder and navigate to the folder with the Android archive. Drag and

drop the archive into the Jars folder in Solution Explorer. Alternatively, you can use the AddAdd context menu

option on the Jars folder and choose Existing Files…Existing Files… . Choose to copy the file to the directory for the

purposes of this walkthrough. Be sure to verify that the Build ActionBuild Action is set to L ibrar yProjectZipLibrar yProjectZip:

 Consume the binding library

TIPTIP

4. Add a reference to the Xamarin.Kotlin.StdLib NuGet package. This package is a binding for Kotlin Standard

Library. Without this package, the binding will only work if the Kotlin library doesn't use any Kotlin

specific types, otherwise all these members will not be exposed to C# and any app that tries to consume

the binding will crash at runtime.

Due to a limitation of the Xamarin.Android, binding tools only a single Android archive (AAR) can be added per

binding project. If multiple AAR files need to be included, then multiple Xamarin.Android projects are required, one

per each AAR. If this were the case for this walkthrough, then the previous four actions of this step would have to

be repeated for each archive. As an alternative option, it is possible to manually merge multiple Android archives

as a single archive and as a result you could use a single Xamarin.Android binding project.

5. The final action is to build the library and make don't have any compilation errors. In case of compilation

errors, they can be addressed and handled using the Metadata.xml file, which you created earlier by

adding xml transformation metadata, which will add, remove, or rename library members.

The final step is to consume the Xamarin.Android binding library in a Xamarin.Android application. Create a new

Xamarin.Android project, add reference to the binding library and render Bubble Picker UI:

1. Create Xamarin.Android project. Use the Android > App > Android AppAndroid > App > Android App as a starting point and select

Latest and GreatestLatest and Greatest as you Target Platforms option to avoid compatibility issues. All the following steps

target this project:

https://www.nuget.org/packages/Xamarin.Kotlin.StdLib/

2. Add a project reference to the binding project or add a reference the DLL created previously:

3. Add a reference to the Xamarin.Kotlin.StdLib NuGet package, that you added to the Xamarin.Android

binding project earlier. It adds support to any Kotlin specific types that need handing in runtime. Without

this package the app can be compiled but will crash at runtime:

https://www.nuget.org/packages/Xamarin.Kotlin.StdLib/

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout …>
 …
 <com.igalata.bubblepicker.rendering.BubblePicker
 android:id="@+id/picker"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:backgroundColor="@android:color/white" />
</RelativeLayout>

protected override void OnCreate(Bundle savedInstanceState)
{
 ...
 var picker = FindViewById<BubblePicker>(Resource.Id.picker);
 picker.BubbleSize = 20;
 picker.Adapter = new BubblePickerAdapter();
 picker.Listener = new BubblePickerListener(picker);
 ...
}

4. Add the BubblePicker control to the Android layout for MainActivity . Open

testBubblePicker/Resources/layout/content_main.xmltestBubblePicker/Resources/layout/content_main.xml file and append the BubblePicker control

node as the last element of the root RelativeLayout control:

5. Update the source code of the app and add the initialization logic to the MainActivity , which activates

the Bubble Picker SDK:

BubblePickerAdapter and BubblePickerListener are two classes to be created from scratch, which handle

the bubbles data and control interaction:

public class BubblePickerAdapter : Java.Lang.Object, IBubblePickerAdapter
{
 private List<string> _bubbles = new List<string>();
 public int TotalCount => _bubbles.Count;
 public BubblePickerAdapter()
 {
 for (int i = 0; i < 10; i++)
 {
 _bubbles.Add($"Item {i}");
 }
 }

 public PickerItem GetItem(int itemIndex)
 {
 if (itemIndex < 0 || itemIndex >= _bubbles.Count)
 return null;

 var result = _bubbles[itemIndex];
 var item = new PickerItem(result);
 return item;
 }
}

public class BubblePickerListener : Java.Lang.Object, IBubblePickerListener
{
 public View Picker { get; }
 public BubblePickerListener(View picker)
 {
 Picker = picker;
 }

 public void OnBubbleDeselected(PickerItem item)
 {
 Snackbar.Make(Picker, $"Deselected: {item.Title}", Snackbar.LengthLong)
 .SetAction("Action", (Android.Views.View.IOnClickListener)null)
 .Show();
 }

 public void OnBubbleSelected(PickerItem item)
 {
 Snackbar.Make(Picker, $"Selected: {item.Title}", Snackbar.LengthLong)
 .SetAction("Action", (Android.Views.View.IOnClickListener)null)
 .Show();
 }
}

6. Run the app, which should render the Bubble Picker UI:

 Related links

The sample requires additional code to render elements style and handle interactions but the

BubblePicker control has been successfully created and activated.

Congratulations! You have successfully created a Xamarin.Android app and a binding library, which consumes a

Kotlin library.

You should now have a basic Xamarin.Android application that uses a native Kotlin library via a Xamarin.Android

binding library. This walkthrough intentionally uses a basic example to better emphasize the key concepts being

introduced. In real world scenarios, you will likely be required to expose a greater number of APIs and apply

metadata transformations to them.

Android Studio

Gradle Installation

Visual Studio for Mac

Java Decompiler

BubblePicker Kotlin Library

Binding Java Library

https://developer.android.com/studio
https://gradle.org/install/
https://visualstudio.microsoft.com/downloads
http://java-decompiler.github.io/
https://github.com/igalata/Bubble-Picker

XPath

Java Binding Metadata

Xamarin.Kotlin.StdLib NuGet

Sample project repository

https://www.w3.org/TR/xpath/
https://www.nuget.org/packages/Xamarin.Kotlin.StdLib/
https://github.com/alexeystrakh/xamarin-binding-kotlin-framework

Using Native Libraries
 4/12/2021 • 2 minutes to read • Edit Online

<ItemGroup>
 <AndroidNativeLibrary Include="path/to/libfoo.so">
 <Abi>armeabi</Abi>
 </AndroidNativeLibrary>
</ItemGroup>

 Debugging Native Code with Visual Studio

 Related Links

Xamarin.Android supports the use of native libraries via the standard PInvoke mechanism. You can also bundle

additional native libraries which are not part of the OS into your .apk.

To deploy a native library with a Xamarin.Android application, add the library binary to the project and set its

Build ActionBuild Action to AndroidNativeLibrar yAndroidNativeLibrar y .

To deploy a native library with a Xamarin.Android library project, add the library binary to the project and set its

Build ActionBuild Action to EmbeddedNativeLibrar yEmbeddedNativeLibrar y .

Note that since Android supports multiple Application Binary Interfaces (ABIs), Xamarin.Android must know

which ABI the native library is built for. There are two ways this can be done:

1. Path "sniffing"

2. By using an AndroidNativeLibrary/Abi element within the project file

With path sniffing, the parent directory name of the native library is used to specify the ABI that the library

targets. Thus, if you add lib/armeabi/libfoo.so to the project, then the ABI will be "sniffed" as armeabi .

Alternatively, you can edit your project file to explicitly specify the ABI to use:

For more information about using native libraries, see Interop with native libraries.

If you're using Visual Studio 2019 or Visual Studio 2017, you don't have to modify your project files as described

above. You can build and debug C++ inside your Xamarin.Android solution by adding a project reference to a

C++ Dynamic Shared L ibrar y (Android)Dynamic Shared L ibrar y (Android) project.

To debug native C++ code in your project, follow these steps:

1. Double-click project Proper tiesProper ties and select the Android OptionsAndroid Options page.

2. Scroll down to Debugging optionsDebugging options .

3. In the DebuggerDebugger dropdown menu, select C++C++ (instead of the default .NET (Xamarin).NET (Xamarin)).

Visual Studio C++ developers can see the SanAngeles_NativeDebug sample to try debugging C++ from Visual

Studio 2019 or Visual Studio 2017 with Xamarin; and refer to our blog post for more information.

SanAngeles_NativeDebug (sample)

Developing Xamarin Android Native Applications

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/native-libraries.md
https://www.mono-project.com/docs/advanced/pinvoke/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/sanangeles-ndk
https://devblogs.microsoft.com/xamarin/build-and-debug-c-libraries-in-xamarin-android-apps-with-visual-studio-2015/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/sanangeles-ndk
https://blogs.msdn.microsoft.com/vcblog/2015/02/23/developing-xamarin-android-native-applications/

An Introduction to Renderscript
 7/8/2021 • 7 minutes to read • Edit Online

 Overview

This guide introduces Renderscript and explains how to use the intrinsic Renderscript API's in a Xamarin.Android

application that targets API level 17 or higher.

Renderscript is a programming framework created by Google for the purpose of improving the performance of

Android applications that require extensive computational resources. It is a low level, high performance API

based on C99. Because it is a low level API that will run on CPUs, GPUs, or DSPs, Renderscript is well suited for

Android apps that may need to perform any of the following:

Graphics

Image Processing

Encryption

Signal Processing

Mathematical Routines

Renderscript will use clang and compile the scripts to LLVM byte code which is bundled into the APK. When the

app is run for the first time, the LLVM byte code will be compiled into machine code for the processors on the

device. This architecture allows an Android application to exploit the advantages of machine code without the

developers themselves having to write it for each processor on the device themselves.

There are two components to a Renderscript routine:

1. The Renderscr ipt runtimeThe Renderscr ipt runtime – This is the native APIs that are responsible for executing the Renderscript.

This includes any Renderscripts written for the application.

2. Managed Wrappers from the Android FrameworkManaged Wrappers from the Android Framework – Managed classes that allow an Android app to

control and interact with the Renderscript runtime and scripts. In addition to the framework provided

classes for controlling the Renderscript runtime, the Android toolchain will examine the Renderscript

source code and generate managed wrapper classes for use by the Android application.

The following diagram illustrates how these components relate:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/platform/renderscript.md
https://en.wikipedia.org/wiki/C99

There are three important concepts for using Renderscripts in an Android application:

1. A contextA context – A managed API provided by the Android SDK that allocates resources to Renderscript and

allows the Android app to pass and receive data from the Renderscript.

2. A A compute kernelcompute kernel – Also known as the root kernel or kernel, this a routine that does the work. The

kernel is very similar to a C function; it is a parallelizable routine that will be run over all the data in

allocated memory .

3. Allocated Memor yAllocated Memor y – Data is passed to and from a kernel through an Allocation. A kernel may have one

input and/or one output Allocation.

The Android.Renderscripts namespace contains the classes for interacting with the Renderscript runtime. In

particular, the Renderscript class will manage the lifecycle and resources of the Renderscript engine. The

Android app must initialize one or more Android.Renderscripts.Allocation objects. An Allocation is a managed

API that is responsible for allocation and accessing the memory that is shared between the Android app and the

Renderscript runtime. Typically, one Allocation is created for input, and optionally another Allocation is created

to hold the output of the kernel. The Renderscript runtime engine and the associated managed wrapper classes

will manage access to the memory held by the Allocations, there is no need for an Android app developer to do

any extra work.

An Allocation will contain one or more Android.Renderscripts.Elements. Elements are a specialized type that

describe data in each Allocation. The Element types of the output Allocation must match the types of the input

Element. When executing, a Renderscript will iterate over each Element in the input Allocation in parallel, and

write the results to the output Allocation. There are two types of Elements:

simple typesimple type – Conceptually this is the same as a C data type, float or a char .

https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.allocation
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.renderscript
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.allocation
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.element

 Requirements

 Using Intrinsic Renderscripts in Xamarin.Android

complex typecomplex type – This type is similar to a C struct .

The Renderscript engine will perform a runtime check to ensure that the Elements in each Allocation are

compatible with what is required by the kernel. If the data type of the Elements in the Allocation do not match

the data type that the kernel is expecting, an exception will be thrown.

All Renderscript kernels will be wrapped by a type that is a descendant of the Android.Renderscripts.Script

class. The Script class is used to set parameters for a Renderscript, set the appropriate Allocations , and run

the Renderscript. There are two Script subclasses in the Android SDK:

Android.Renderscripts.ScriptIntrinsic – Some of the more common Renderscript tasks are bundled in

the Android SDK and are accessible by a subclass of the ScriptIntrinsic class. There is no need for a

developer take any extra steps to use these scripts in their application as they are already provided.

ScriptC_XXXXX – Also known as user scripts, these are scripts that are written by developers and

packaged in the APK. At compile time, the Android toolchain will generate managed wrapper classes that

will allow the scripts to be used in the Android app. The name of these generated classes is the name of

the Renderscript file, prefixed with ScriptC_ . Writing and incorporating user scripts is not officially

supported by Xamarin.Android and beyond the scope of this guide.

Of these two types, only the StringIntrinsic is supported by Xamarin.Android. This guide will discuss how to

use intrinsic scripts in a Xamarin.Android application.

This guide is for Xamarin.Android applications that target API level 17 or higher. The use of user scripts is not

covered in this guide.

The Xamarin.Android V8 Support Library backports the instrinsic Renderscript API's for apps that target older

versions of the Android SDK. Adding this package to a Xamarin.Android project should allow apps that target

older versions of the Android SDK to leverage the intrinsic scripts.

The intrinsic scripts are a great way to perform intensive computing tasks with a minimal amount of additional

code. They have been hand tuned to offer optimal performance on a large cross section of devices. It is not

uncommon for an intrinsic script to run 10x faster than managed code and 2-3x times after than a custom C

implementation. Many of the typical processing scenarios are covered by the intrinsic scripts. This list of the

intrinsic scripts describes the current scripts in Xamarin.Android:

ScriptIntrinsic3DLUT – Converts RGB to RGBA using a 3D lookup table.

ScriptIntrinsicBLAS – Provideshigh performance Renderscript APIs to BLAS. The BLAS (Basic Linear

Algebra Subprograms) are routines that provide standard building blocks for performing basic vector

and matrix operations.

ScriptIntrinsicBlend – Blends two Allocations together.

ScriptIntrinsicBlur – Applies a Gaussian blur to an Allocation.

ScriptIntrinsicColorMatrix – Applies a color matrix to an Allocation (i.e. change colours, adjust hue).

ScriptIntrinsicConvolve3x3 – Applies a 3x3 color matrix to an Allocation.

ScriptIntrinsicConvolve5x5 – Applies a 5x5 color matrix to an Allocation.

ScriptIntrinsicHistogram – An intrinsic histogram filter.

https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.script
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsic
https://www.nuget.org/packages/Xamarin.Android.Support.v8.RenderScript/
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsic3dlut
https://developer.android.com/reference/android/renderscript/ScriptIntrinsicBLAS.html
http://www.netlib.org/blas/
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsicblend
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsicblur
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsiccolormatrix
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsicconvolve3x3
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsicconvolve5x5
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsichistogram

Android.Renderscripts.RenderScript renderScript = RenderScript.Create(this);

Android.Graphics.Bitmap originalBitmap;
Android.Renderscripts.Allocation inputAllocation = Allocation.CreateFromBitmap(renderScript,
 originalBitmap,
 Allocation.MipmapControl.MipmapFull,
 AllocationUsage.Script);

Android.Renderscripts.Allocation outputAllocation = Allocation.CreateTyped(renderScript,
inputAllocation.Type);

Android.Renderscripts.ScriptIntrinsicBlur blurScript = ScriptIntrinsicBlur.Create(renderScript,
Element.U8_4(renderScript));

blurScript.SetInput(inputAllocation);
blurScript.SetRadius(25); // Set a pamaeter
blurScript.ForEach(outputAllocation);

ScriptIntrinsicLUT – Applies a per-channel lookup table to a buffer.

ScriptIntrinsicResize – Script for performing the resize of a 2D allocation.

ScriptIntrinsicYuvToRGB – Converts a YUV buffer to RGB.

Please consult the API documentation for details on each of the intrinsic scripts.

The basic steps for using Renderscript in an Android application are described next.

Create a Renderscr ipt ContextCreate a Renderscr ipt Context – The Renderscript class is a managed wrapper around the Renderscript

context and will control initialization, resource management, and clean up. The Renderscript object is created

using the RenderScript.Create factory method, which takes an Android Context (such as an Activity) as a

parameter. The following line of code demonstrates how to initialize the Renderscript context:

Create AllocationsCreate Allocations – Depending on the intrinsic script, it may be necessary to create one or two Allocation s.

The Android.Renderscripts.Allocation class has several factory methods to help with instantiating an allocation

for an intrinsic. As an example, the following code snippet demonstrates how to create Allocation for Bitmaps.

Often, it will be necessary to create an Allocation to hold the output data of a script. This following snippet

shows how to use the Allocation.CreateTyped helper to instantiate a second Allocation that the same type as

the original:

Instantiate the Scr ipt wrapperInstantiate the Scr ipt wrapper – Each of the intrinsic script wrapper classes should have helper methods

(typically called Create)for instantiating a wrapper object for that script. The following code snippet is an

example of how to instantiate a ScriptIntrinsicBlur blur object. The Element.U8_4 helper method will create

an Element that describes a data type that is 4 fields of 8-bit, unsigned integer values, suitable for holding the

data of a Bitmap object:

Assign Allocation(s), Set Parameters, & Run Scr iptAssign Allocation(s), Set Parameters, & Run Scr ipt – The Script class provides a ForEach method to

actually run the Renderscript. This method will iterate over each Element in the Allocation holding the input

data. In some cases, it may be necessary to provide an Allocation that holds the output. ForEach will overwrite

the contents of the output Allocation. To carry on with the code snippets from the previous steps, this example

shows how to assign an input Allocation, set a parameter, and then finally run the script (copying the results to

the output Allocation):

https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsiclut
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsicresize
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.scriptintrinsicyuvtorgb
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.renderscript
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts.allocation

 Summary

 Related Links

You may wish to check out the Blur an Image with Renderscript recipe, it is a complete example of how to use an

intrinsic script in Xamarin.Android.

This guide introduced Renderscript and how to use it in a Xamarin.Android application. It briefly discussed what

Renderscript is and how it works in an Android application. It described some of the key components in

Renderscript and the difference between user scripts and instrinsic scripts. Finally, this guide discussed the steps

in using an intrinsic script in a Xamarin.Android application.

Android.Renderscripts namespace

Blur an Image with Renderscript

Renderscript

Tutorial: Getting Started with Renderscript

https://github.com/xamarin/recipes/tree/master/Recipes/android/other_ux/drawing/blur_an_image_with_renderscript
https://docs.microsoft.com/en-us/dotnet/api/android.renderscripts
https://github.com/xamarin/recipes/tree/master/Recipes/android/other_ux/drawing/blur_an_image_with_renderscript
https://developer.android.com/guide/topics/renderscript/compute.html
https://software.intel.com/en-us/articles/renderscript-basic-sample-for-android-os

Xamarin.Essentials
 3/5/2021 • 2 minutes to read • Edit Online

 Get Started with Xamarin.Essentials

 Feature Guides

Xamarin.Essentials provides developers with cross-platform APIs for their mobile applications.

Android, iOS, and UWP offer unique operating system and platform APIs that developers have access to all in C#

leveraging Xamarin. Xamarin.Essentials provides a single cross-platform API that works with any

Xamarin.Forms, Android, iOS, or UWP application that can be accessed from shared code no matter how the

user interface is created.

Follow the getting started guide to install the Xamarin.EssentialsXamarin.Essentials NuGet package into your existing or new

Xamarin.Forms, Android, iOS, or UWP projects.

Follow the guides to integrate these Xamarin.Essentials features into your applications:

Accelerometer – Retrieve acceleration data of the device in three dimensional space.

App Actions – Get and set shortcuts for the application.

App Information – Find out information about the application.

App Theme – Detect the current theme requested for the application.

Barometer – Monitor the barometer for pressure changes.

Battery – Easily detect battery level, source, and state.

Clipboard – Quickly and easily set or read text on the clipboard.

Color Converters – Helper methods for System.Drawing.Color.

Compass – Monitor compass for changes.

Connectivity – Check connectivity state and detect changes.

Contacts – Retrieve information about a contact on the device.

Detect Shake – Detect a shake movement of the device.

Device Display Information – Get the device's screen metrics and orientation.

Device Information – Find out about the device with ease.

Email – Easily send email messages.

File Picker – Allow user to pick files from the device.

File System Helpers – Easily save files to app data.

Flashlight – A simple way to turn the flashlight on/off.

Geocoding – Geocode and reverse geocode addresses and coordinates.

Geolocation – Retrieve the device's GPS location.

Gyroscope – Track rotation around the device's three primary axes.

Haptic Feedback – Control click and long press haptics.

Launcher – Enables an application to open a URI by the system.

Magnetometer – Detect device's orientation relative to Earth's magnetic field.

MainThread – Run code on the application's main thread.

Maps – Open the maps application to a specific location.

Media Picker – Allow user to pick or take photos and videos.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/index.md

 Troubleshooting

 Xamarin.Essentials on Q&A

 Release Notes

 API Documentation

Open Browser – Quickly and easily open a browser to a specific website.

Orientation Sensor – Retrieve the orientation of the device in three dimensional space.

Permissions – Check and request permissions from users.

Phone Dialer – Open the phone dialer.

Platform Extensions – Helper methods for converting Rect, Size, and Point.

Preferences – Quickly and easily add persistent preferences.

Screenshot – Take a capture of the current display of the application.

Secure Storage – Securely store data.

Share – Send text and website links to other apps.

SMS – Create an SMS message for sending.

Text-to-Speech – Vocalize text on the device.

Unit Converters – Helper methods to convert units.

Version Tracking – Track the applications version and build numbers.

Vibrate – Make the device vibrate.

Web Authenticator - Start web authentication flows and listen for a callback.

Find help if you are running into issues.

Ask questions about accessing native features with Xamarin.Essentials.

Find full release notes for each release of Xamarin.Essentials.

Browse the API documentation for every feature of Xamarin.Essentials.

https://docs.microsoft.com/en-us/answers/topics/dotnet-xamarinessentials.html
https://docs.microsoft.com/en-us/xamarin/essentials/release-notes/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials

Get Started with Xamarin.Essentials
 3/5/2021 • 2 minutes to read • Edit Online

 Installation

Xamarin.Essentials provides a single cross-platform API that works with any iOS, Android, or UWP application

that can be accessed from shared code no matter how the user interface is created. See the platform & feature

support guide for more information on supported operating systems.

Xamarin.Essentials is available as a NuGet package and is included in every new project in Visual Studio. It can

also be added to any existing projects using Visual Studio with the following steps.

IMPORTANTIMPORTANT

using Xamarin.Essentials;

1. Download and install Visual Studio with the Visual Studio tools for Xamarin.

2. Open an existing project, or create a new project using the Blank App template under Visual Studio C#Visual Studio C#

(Android, iPhone & iPad, or Cross-Platform).

If adding to a UWP project ensure Build 16299 or higher is set in the project properties.

3. Add the Xamarin.EssentialsXamarin.Essentials NuGet package to each project:

Visual Studio

Visual Studio for Mac

In the Solution Explorer panel, right click on the solution name and select Manage NuGet PackagesManage NuGet Packages .

Search for Xamarin.EssentialsXamarin.Essentials and install the package into ALLALL projects including Android, iOS, UWP,

and .NET Standard libraries.

4. Add a reference to Xamarin.Essentials in any C# class to reference the APIs.

5. Xamarin.Essentials requires platform-specific setup:

Android

iOS

UWP

Xamarin.Essentials supports a minimum Android version of 4.4, corresponding to API level 19, but the

target Android version for compiling must be 9.0 or 10.0, corresponding to API level 28 and level 29. (In

Visual Studio, these two versions are set in the Project Properties dialog for the Android project, in the

Android Manifest tab. In Visual Studio for Mac, they're set in the Project Options dialog for the Android

project, in the Android Application tab.)

When compiling against Android 9.0, Xamarin.Essentials installs version 28.0.0.3 of the

Xamarin.Android.Support libraries that it requires. Any other Xamarin.Android.Support libraries that your

application requires should also be updated to version 28.0.0.3 using the NuGet package manager. All

Xamarin.Android.Support libraries used by your application should be the same, and should be at least

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/get-started.md
https://visualstudio.microsoft.com/
https://docs.microsoft.com/en-us/xamarin/get-started/installation/index
https://www.nuget.org/packages/Xamarin.Essentials/

 Xamarin.Essentials - Cross-Platform APIs for Mobile Apps (video)

 Other Resources

protected override void OnCreate(Bundle savedInstanceState) {
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may
also be called: bundle
 //...

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

version 28.0.0.3. Refer to the troubleshooting page if you have issues adding the Xamarin.Essentials

NuGet or updating NuGets in your solution.

Starting with version 1.5.0 when compiling against Android 10.0, Xamarin.Essentials install AndroidX

support libraries that it requires. Read through the AndroidX documentation if you have not made the

transition yet.

In the Android project's MainLauncher or any Activity that is launched, Xamarin.Essentials must be

initialized in the OnCreate method:

To handle runtime permissions on Android, Xamarin.Essentials must receive any

OnRequestPermissionsResult . Add the following code to all Activity classes:

6. Follow the Xamarin.Essentials guides that enable you to copy and paste code snippets for each feature.

We recommend developers new to Xamarin visit getting started with Xamarin development.

Visit the Xamarin.Essentials GitHub Repository to see the current source code, what is coming next, run samples,

and clone the repository. Community contributions are welcome!

Browse through the API documentation for every feature of Xamarin.Essentials.

https://channel9.msdn.com/Shows/XamarinShow/Snack-Pack-XamarinEssentials-Cross-Platform-APIs-for-Mobile-Apps/player?nocookie=true
file:///T:/c1uy/n1bv/xamarin/cross-platform/getting-started/index.html
https://github.com/xamarin/Essentials
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials

Platform Support
 7/8/2021 • 2 minutes to read • Edit Online

P L AT F O RMP L AT F O RM VERSIO NVERSIO N

Android 4.4 (API 19) or higher

iOS 10.0 or higher

Tizen 4.0 or higher

tvOS 10.0 or higher

watchOS 4.0 or higher

UWP 10.0.16299.0 or higher

macOS 10.12.6 (Sierra) or higher

NOTENOTE

 Feature Support

F EAT UREF EAT URE A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN M A C O SM A C O S

Accelerome
ter

App
Actions

App
Information

Xamarin.Essentials supports the following platforms and operating systems:

Tizen is officially supported by the Samsung development team.

tvOS & watchOS have limited API coverage, please see the feature guide for more information.

macOS support is in preview.

Xamarin.Essentials always tries to bring features to every platform, however sometimes there are limitations

based on the device. Below is a guide of what features are supported on each platform.

Icon Guide:

 - Full support

 - Limited support

 - Not supported

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/platform-feature-support.md

App Theme

Barometer

Battery

Clipboard

Color
Converters

Compass

Connectivit
y

Contacts

Detect
Shake

Device
Display
Information

Device
Information

Email

File Picker

File System
Helpers

Flashlight

Geocoding

Geolocatio
n

Gyroscope

Haptic
Feedback

Launcher

Magnetom
eter

F EAT UREF EAT URE A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN M A C O SM A C O S

MainThrea
d

Maps

Media
Picker

Open
Browser

Orientation
Sensor

Permissions

Phone
Dialer

Platform
Extensions

Preferences

Screenshot

Secure
Storage

Share

SMS

Text-to-
Speech

Unit
Converters

Version
Tracking

Vibrate

Web
Authenticat
or

F EAT UREF EAT URE A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN M A C O SM A C O S

Xamarin.Essentials: Accelerometer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Accelerometer

using Xamarin.Essentials;

The AccelerometerAccelerometer class lets you monitor the device's accelerometer sensor, which indicates the acceleration of

the device in three-dimensional space.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Accelerometer functionality works by calling the Start and Stop methods to listen for changes to the

acceleration. Any changes are sent back through the ReadingChanged event. Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/accelerometer.md

public class AccelerometerTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public AccelerometerTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 Accelerometer.ReadingChanged += Accelerometer_ReadingChanged;
 }

 void Accelerometer_ReadingChanged(object sender, AccelerometerChangedEventArgs e)
 {
 var data = e.Reading;
 Console.WriteLine($"Reading: X: {data.Acceleration.X}, Y: {data.Acceleration.Y}, Z:
{data.Acceleration.Z}");
 // Process Acceleration X, Y, and Z
 }

 public void ToggleAccelerometer()
 {
 try
 {
 if (Accelerometer.IsMonitoring)
 Accelerometer.Stop();
 else
 Accelerometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

Accelerometer readings are reported back in G. A G is a unit of gravitation force equal to that exerted by the

earth's gravitational field (9.81 m/s^2).

The coordinate-system is defined relative to the screen of the phone in its default orientation. The axes are not

swapped when the device's screen orientation changes.

The X axis is horizontal and points to the right, the Y axis is vertical and points up and the Z axis points towards

the outside of the front face of the screen. In this system, coordinates behind the screen have negative Z values.

Examples:

When the device lies flat on a table and is pushed on its left side toward the right, the x acceleration value

is positive.

When the device lies flat on a table, the acceleration value is +1.00 G or (+9.81 m/s^2), which correspond

to the acceleration of the device (0 m/s^2) minus the force of gravity (-9.81 m/s^2) and normalized as in

G.

When the device lies flat on a table and is pushed toward the sky with an acceleration of A m/s^2, the

acceleration value is equal to A+9.81 which corresponds to the acceleration of the device (+A m/s^2)

minus the force of gravity (-9.81 m/s^2) and normalized in G.

Sensor Speed

 API

 Related Video

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Accelerometer source code

Accelerometer API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Accelerometer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.accelerometer
https://channel9.msdn.com/Shows/XamarinShow/Accelerometer-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: App Actions
 7/8/2021 • 2 minutes to read • Edit Online

 Get started

[IntentFilter(
 new[] { Xamarin.Essentials.Platform.Intent.ActionAppAction },
 Categories = new[] { Android.Content.Intent.CategoryDefault })]
public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsAppCompatActivity
{
 ...

protected override void OnResume()
{
 base.OnResume();

 Xamarin.Essentials.Platform.OnResume(this);
}

protected override void OnNewIntent(Android.Content.Intent intent)
{
 base.OnNewIntent(intent);

 Xamarin.Essentials.Platform.OnNewIntent(intent);
}

 Create Actions

using Xamarin.Essentials;

The AppActionsAppActions class lets you create and respond to app shortcuts from the app icon.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the AppActionsAppActions functionality the following platform specific setup is required.

Android

iOS

UWP

Add the intent filter to your MainActivity class:

Then add the following logic to handle actions:

Add a reference to Xamarin.Essentials in your class:

App Actions can be created at any time, but are often created when an application starts. Call the SetAsync

method to create the list of actions for your app.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/app-actions.md

try
{
 await AppActions.SetAsync(
 new AppAction("app_info", "App Info", icon: "app_info_action_icon"),
 new AppAction("battery_info", "Battery Info"));
}
catch (FeatureNotSupportedException ex)
{
 Debug.WriteLine("App Actions not supported");
}

 Responding To Actions

public App()
{
 //...
 AppActions.OnAppAction += AppActions_OnAppAction;
}

void AppActions_OnAppAction(object sender, AppActionEventArgs e)
{
 // Don't handle events fired for old application instances
 // and cleanup the old instance's event handler
 if (Application.Current != this && Application.Current is App app)
 {
 AppActions.OnAppAction -= app.AppActions_OnAppAction;
 return;
 }
 MainThread.BeginInvokeOnMainThread(async () =>
 {
 await Shell.Current.GoToAsync($"//{e.AppAction.Id}");
 });
}

 GetActions

If App Actions are not supported on the specific version of the operating system a FeatureNotSupportedException

will be thrown.

The following properties can be set on an AppAction :

Id: A unique identifier used to respond to the action tap.

Title: the visible title to display.

Subtitle: If supported a sub-title to display under the title.

Icon: Must match icons in the corresponding resources directory on each platform.

When your application starts register for the OnAppAction event. When an app action is selected the event will

be sent with information as to which action was selected.

 API

 Related Video

You can get the current list of App Actions by calling AppActions.GetAsync() .

AppActions source code

AppActions API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/AppActions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.appactions
https://channel9.msdn.com/Shows/XamarinShow/App-Actions-XamarinEssentials-API-of-the-Week/player?nocookie=true

Xamarin.Essentials: App Information
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using AppInfo

using Xamarin.Essentials;

 Obtaining Application Information:

// Application Name
var appName = AppInfo.Name;

// Package Name/Application Identifier (com.microsoft.testapp)
var packageName = AppInfo.PackageName;

// Application Version (1.0.0)
var version = AppInfo.VersionString;

// Application Build Number (1)
var build = AppInfo.BuildString;

 Displaying Application Settings

// Display settings page
AppInfo.ShowSettingsUI();

 Platform Implementation Specifics

The AppInfoAppInfo class provides information about your application.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The following information is exposed through the API:

The AppInfoAppInfo class can also display a page of settings maintained by the operating system for the application:

This settings page allows the user to change application permissions and perform other platform-specific tasks.

Android

iOS

UWP

App information is taken from the AndroidManifest.xml for the following fields:

BuildBuild – android:versionCode in manifest node

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/app-information.md

 API

 Related Video

NameName - android:label in the application node

PackageNamePackageName: package in the manifest node

VersionStr ingVersionStr ing – android:versionName in the application node

AppInfo source code

AppInfo API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/AppInfo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.appinfo
https://channel9.msdn.com/Shows/XamarinShow/App-Information-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: App Theme
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using RequestedTheme

using Xamarin.Essentials;

 Obtaining Theme Information

AppTheme appTheme = AppInfo.RequestedTheme;

 Platform Implementation Specifics

 API

The RequestedThemeRequestedTheme API is part of the AppInfo class and provides information as to what theme is requested

for your running app by the system.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The requested application theme can be detected with the following API:

This will provide the current requested theme by the system for your application. The return value will be one of

the following:

Unspecified

Light

Dark

Unspecified will be returned when the operating system does not have a specific user interface style to request.

An example of this is on devices running versions of iOS older than 13.0.

Android

iOS

UWP

Android uses configuration modes to specify the type of theme to request from the user. Based on the version of

Android, it can be changed by the user or is changed when battery saver mode is enabled.

You can read more on the official Android documentation for Dark Theme.

AppInfo source code

AppInfo API documentation

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/app-theme.md
https://developer.android.com/guide/topics/ui/look-and-feel/darktheme
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/AppInfo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.appinfo

 Related Video

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Shows/XamarinShow/Theme-Detection-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Barometer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Barometer

using Xamarin.Essentials;

The BarometerBarometer class lets you monitor the device's barometer sensor, which measures pressure.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Barometer functionality works by calling the Start and Stop methods to listen for changes to the

barometer's pressure reading in hectopascals. Any changes are sent back through the ReadingChanged event.

Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/barometer.md

public class BarometerTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public BarometerTest()
 {
 // Register for reading changes.
 Barometer.ReadingChanged += Barometer_ReadingChanged;
 }

 void Barometer_ReadingChanged(object sender, BarometerChangedEventArgs e)
 {
 var data = e.Reading;
 // Process Pressure
 Console.WriteLine($"Reading: Pressure: {data.PressureInHectopascals} hectopascals");
 }

 public void ToggleBarometer()
 {
 try
 {
 if (Barometer.IsMonitoring)
 Barometer.Stop();
 else
 Barometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 Platform Implementation Specifics

 API

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Android

iOS

UWP

No platform-specific implementation details.

Barometer source code

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Barometer

Barometer API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.barometer

Xamarin.Essentials: Battery
 4/27/2021 • 3 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.BatteryStats)]

<uses-permission android:name="android.permission.BATTERY_STATS" />

 Using Battery

using Xamarin.Essentials;

The Batter yBatter y class lets you check the device's battery information and monitor for changes and provides

information about the device's energy-saver status, which indicates if the device is running in a low-power

mode. Applications should avoid background processing if the device's energy-saver status is on.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the Batter yBatter y functionality the following platform specific setup is required.

Android

iOS

UWP

The Battery permission is required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the Batter yBatter y permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

Check current battery information:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/battery.md

var level = Battery.ChargeLevel; // returns 0.0 to 1.0 or 1.0 when on AC or no battery.

var state = Battery.State;

switch (state)
{
 case BatteryState.Charging:
 // Currently charging
 break;
 case BatteryState.Full:
 // Battery is full
 break;
 case BatteryState.Discharging:
 case BatteryState.NotCharging:
 // Currently discharging battery or not being charged
 break;
 case BatteryState.NotPresent:
 // Battery doesn't exist in device (desktop computer)
 break;
 case BatteryState.Unknown:
 // Unable to detect battery state
 break;
}

var source = Battery.PowerSource;

switch (source)
{
 case BatteryPowerSource.Battery:
 // Being powered by the battery
 break;
 case BatteryPowerSource.AC:
 // Being powered by A/C unit
 break;
 case BatteryPowerSource.Usb:
 // Being powered by USB cable
 break;
 case BatteryPowerSource.Wireless:
 // Powered via wireless charging
 break;
 case BatteryPowerSource.Unknown:
 // Unable to detect power source
 break;
}

public class BatteryTest
{
 public BatteryTest()
 {
 // Register for battery changes, be sure to unsubscribe when needed
 Battery.BatteryInfoChanged += Battery_BatteryInfoChanged;
 }

 void Battery_BatteryInfoChanged(object sender, BatteryInfoChangedEventArgs e)
 {
 var level = e.ChargeLevel;
 var state = e.State;
 var source = e.PowerSource;
 Console.WriteLine($"Reading: Level: {level}, State: {state}, Source: {source}");
 }
}

Whenever any of the battery's properties change an event is triggered:

Devices that run on batteries can be put into a low-power energy-saver mode. Sometimes devices are switched

// Get energy saver status
var status = Battery.EnergySaverStatus;

public class EnergySaverTest
{
 public EnergySaverTest()
 {
 // Subscribe to changes of energy-saver status
 Battery.EnergySaverStatusChanged += OnEnergySaverStatusChanged;
 }

 private void OnEnergySaverStatusChanged(EnergySaverStatusChangedEventArgs e)
 {
 // Process change
 var status = e.EnergySaverStatus;
 }
}

 Platform Differences

 API

 Related Video

into this mode automatically, for example, when the battery drops below 20% capacity. The operating system

responds to energy-saver mode by reducing activities that tend to deplete the battery. Applications can help by

avoiding background processing or other high-power activities when energy-saver mode is on.

You can also obtain the current energy-saver status of the device using the static Battery.EnergySaverStatus

property:

This property returns a member of the EnergySaverStatus enumeration, which is either On , Off , or Unknown . If

the property returns On , the application should avoid background processing or other activities that might

consume a lot of power.

The application should also install an event handler. The Batter yBatter y class exposes an event that is triggered when

the energy-saver status changes:

If the energy-saver status changes to On , the application should stop performing background processing. If the

status changes to Unknown or Off , the application can resume background processing.

Android

iOS

UWP

No platform differences.

Battery source code

Battery API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Battery
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.battery
https://channel9.msdn.com/Shows/XamarinShow/Battery-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Clipboard
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Clipboard

using Xamarin.Essentials;

var hasText = Clipboard.HasText;

await Clipboard.SetTextAsync("Hello World");

var text = await Clipboard.GetTextAsync();

public class ClipboardTest
{
 public ClipboardTest()
 {
 // Register for clipboard changes, be sure to unsubscribe when needed
 Clipboard.ClipboardContentChanged += OnClipboardContentChanged;
 }

 void OnClipboardContentChanged(object sender, EventArgs e)
 {
 Console.WriteLine($"Last clipboard change at {DateTime.UtcNow:T}";);
 }
}

TIPTIP

The ClipboardClipboard class lets you copy and paste text to the system clipboard between applications.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To check if the ClipboardClipboard has text currently ready to be pasted:

To set text to the ClipboardClipboard:

To read text from the ClipboardClipboard:

Whenever any of the clipboard's content has changed an event is triggered:

Access to the Clipboard must be done on the main user interface thread. See the MainThread API to see how to invoke

methods on the main user interface thread.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/clipboard.md

API

 Related Video

Clipboard source code

Clipboard API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Clipboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.clipboard
https://channel9.msdn.com/Shows/XamarinShow/Clipboard-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Color Converters
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Color Converters

using Xamarin.Essentials;

var blueHex = ColorConverters.FromHex("#3498db");
var blueHsl = ColorConverters.FromHsl(204, 70, 53);
var blueUInt = ColorConverters.FromUInt(3447003);

 Using Color Extensions

var blue = ColorConverters.FromHex("#3498db");

// Multiplies the current alpha by 50%
var blueWithAlpha = blue.MultiplyAlpha(.5f);

 Using Platform Extensions

The ColorConver tersColorConver ters class in Xamarin.Essentials provides several helper methods for System.Drawing.Color.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

When working with System.Drawing.Color you can use the built in converters of Xamarin.Forms to create a

color from Hsl, Hex, or UInt.

Extension methods on System.Drawing.Color enable you to apply different properties:

There are several other extension methods including:

GetComplementary

MultiplyAlpha

ToUInt

WithAlpha

WithHue

WithLuminosity

WithSaturation

Additionally, you can convert System.Drawing.Color to the platform specific color structure. These methods can

only be called from the iOS, Android, and UWP projects.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/color-converters.md

var system = System.Drawing.Color.FromArgb(255, 52, 152, 219);

// Extension to convert to Android.Graphics.Color, UIKit.UIColor, or Windows.UI.Color
var platform = system.ToPlatformColor();

var platform = new Android.Graphics.Color(52, 152, 219, 255);

// Back to System.Drawing.Color
var system = platform.ToSystemColor();

 API

 Related Video

The ToSystemColor method applies to Android.Graphics.Color, UIKit.UIColor, and Windows.UI.Color.

Color Converters source code

Color Converters API documentation

Color Extensions source code

Color Extensions API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/ColorConverters.shared.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.colorconverters
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/ColorConverters.shared.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.colorextensions
https://channel9.msdn.com/Shows/XamarinShow/Color-Converters-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Compass
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Compass

using Xamarin.Essentials;

public class CompassTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public CompassTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 Compass.ReadingChanged += Compass_ReadingChanged;
 }

 void Compass_ReadingChanged(object sender, CompassChangedEventArgs e)
 {
 var data = e.Reading;
 Console.WriteLine($"Reading: {data.HeadingMagneticNorth} degrees");
 // Process Heading Magnetic North
 }

 public void ToggleCompass()
 {
 try
 {
 if (Compass.IsMonitoring)
 Compass.Stop();
 else
 Compass.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Some other exception has occurred
 }
 }
}

The CompassCompass class lets you monitor the device's magnetic north heading.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Compass functionality works by calling the Start and Stop methods to listen for changes to the compass.

Any changes are sent back through the ReadingChanged event. Here is an example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/compass.md

 Sensor Speed

 Platform Implementation Specifics

 Low Pass Filter

Compass.Start(SensorSpeed.UI, applyLowPassFilter: true);

 API

 Related Video

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Android

Android does not provide an API for retrieving the compass heading. We utilize the accelerometer and

magnetometer to calculate the magnetic north heading, which is recommended by Google.

In rare instances, you maybe see inconsistent results because the sensors need to be calibrated, which involves

moving your device in a figure-8 motion. The best way of doing this is to open Google Maps, tap on the dot for

your location, and select Calibrate compassCalibrate compass .

Running multiple sensors from your app at the same time may adjust the sensor speed.

Due to how the Android compass values are updated and calculated there may be a need to smooth out the

values. A Low Pass Filter can be applied that averages the sine and cosine values of the angles and can be turned

on by using the Start method overload, which accepts the bool applyLowPassFilter parameter :

This is only applied on the Android platform, and the parameter is ignored on iOS and UWP. More information

can be read here.

Compass source code

Compass API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/pull/354#issuecomment-405316860
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Compass
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.compass
https://channel9.msdn.com/Shows/XamarinShow/Compass-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Connectivity
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.AccessNetworkState)]

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 Using Connectivity

using Xamarin.Essentials;

var current = Connectivity.NetworkAccess;

if (current == NetworkAccess.Internet)
{
 // Connection to internet is available
}

The ConnectivityConnectivity class lets you monitor for changes in the device's network conditions, check the current

network access, and how it is currently connected.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the ConnectivityConnectivity functionality the following platform specific setup is required.

Android

iOS

UWP

The AccessNetworkState permission is required and must be configured in the Android project. This can be

added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the Access Network StateAccess Network State permission. This will automatically update

the AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

Check current network access:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/connectivity.md

var profiles = Connectivity.ConnectionProfiles;
if (profiles.Contains(ConnectionProfile.WiFi))
{
 // Active Wi-Fi connection.
}

public class ConnectivityTest
{
 public ConnectivityTest()
 {
 // Register for connectivity changes, be sure to unsubscribe when finished
 Connectivity.ConnectivityChanged += Connectivity_ConnectivityChanged;
 }

 void Connectivity_ConnectivityChanged(object sender, ConnectivityChangedEventArgs e)
 {
 var access = e.NetworkAccess;
 var profiles = e.ConnectionProfiles;
 }
}

 Limitations

 API

 Related Video

Network access falls into the following categories:

InternetInternet – Local and internet access.

ConstrainedInternetConstrainedInternet – Limited internet access. Indicates captive portal connectivity, where local access to a

web portal is provided, but access to the Internet requires that specific credentials are provided via a portal.

LocalLocal – Local network access only.

NoneNone – No connectivity is available.

UnknownUnknown – Unable to determine internet connectivity.

You can check what type of connection profile the device is actively using:

Whenever the connection profile or network access changes you can receive an event when triggered:

It is important to note that it is possible that Internet is reported by NetworkAccess but full access to the web is

not available. Due to how connectivity works on each platform it can only guarantee that a connection is

available. For instance the device may be connected to a Wi-Fi network, but the router is disconnected from the

internet. In this instance Internet may be reported, but an active connection is not available.

Connectivity source code

Connectivity API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.networkaccess
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.connectionprofile
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Connectivity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.connectivity
https://channel9.msdn.com/Shows/XamarinShow/Connectivity-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Contacts
 3/5/2021 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.ReadContacts)]

<uses-permission android:name="android.permission.READ_CONTACTS" /> />

 Pick a contact

The ContactsContacts class lets a user pick a contact and retrieve information about it.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the ContactsContacts functionality the following platform specific setup is required.

Android

iOS

UWP

The ReadContacts permission is required and must be configured in the Android project. This can be added in

the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check this permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

By calling Contacts.PickContactAsync() the contact dialog will appear and allow the user to receive information

about the user.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/contacts.md

try
{
 var contact = await Contacts.PickContactAsync();

 if(contact == null)
 return;

 var id = contact.Id;
 var namePrefix = contact.NamePrefix;
 var givenName = contact.GivenName;
 var middleName = contact.MiddleName;
 var familyName = contact.FamilyName;
 var nameSuffix = contact.NameSuffix;
 var displayName = contact.DisplayName;
 var phones = contact.Phones; // List of phone numbers
 var emails = contact.Emails; // List of email addresses
}
catch (Exception ex)
{
 // Handle exception here.
}

 Get all contacts

ObservableCollection<Contact> contactsCollect = new ObservableCollection<Contact>();

try
{
 // cancellationToken parameter is optional
 var cancellationToken = default(CancellationToken);
 var contacts = await Contacts.GetAllAsync(cancellationToken);

 if (contacts == null)
 return;

 foreach (var contact in contacts)
 contactsCollect.Add(contact);
}
catch (Exception ex)
{
 // Handle exception here.
}

 Platform differences

 API

Android

iOS

UWP

The cancellationToken parameter in the GetAllAsync method is only used on UWP.

Contacts source code

Contacts API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Contacts
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.contacts

Xamarin.Essentials: Detect Shake
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Detect Shake

using Xamarin.Essentials;

The AccelerometerAccelerometer class lets you monitor the device's accelerometer sensor, which indicates the acceleration of

the device in three-dimensional space. Additionally, it enables you to register for events when the user shakes

the device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To detect a shake of the device you must use the Accelerometer functionality by calling the Start and Stop

methods to listen for changes to the acceleration and to detect a shake. Any time a shake is detected a

ShakeDetected event will fire. It is recommended to use Game or faster for the SensorSpeed . Here is sample

usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/detect-shake.md

public class DetectShakeTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.Game;

 public DetectShakeTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 Accelerometer.ShakeDetected += Accelerometer_ShakeDetected ;
 }

 void Accelerometer_ShakeDetected (object sender, EventArgs e)
 {
 // Process shake event
 }

 public void ToggleAccelerometer()
 {
 try
 {
 if (Accelerometer.IsMonitoring)
 Accelerometer.Stop();
 else
 Accelerometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 Implementation Details

 API

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

The detect shake API uses raw readings from the accelerometer to calculate acceleration. It uses a simple queue

mechanism to detect if 3/4ths of the recent accelerometer events occurred in the last half second. Acceleration is

calculated by adding the square of the X, Y, and Z readings from the accelerometer and comparing it to a specific

threashold.

Accelerometer source code

Accelerometer API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Accelerometer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.accelerometer

Related Video

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Shows/XamarinShow/Detect-Shake-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Device Display Information
 3/11/2021 • 2 minutes to read • Edit Online

 Get started

 Using DeviceDisplay

using Xamarin.Essentials;

 Main Display Info

// Get Metrics
var mainDisplayInfo = DeviceDisplay.MainDisplayInfo;

// Orientation (Landscape, Portrait, Square, Unknown)
var orientation = mainDisplayInfo.Orientation;

// Rotation (0, 90, 180, 270)
var rotation = mainDisplayInfo.Rotation;

// Width (in pixels)
var width = mainDisplayInfo.Width;

// Height (in pixels)
var height = mainDisplayInfo.Height;

// Screen density
var density = mainDisplayInfo.Density;

The DeviceDisplayDeviceDisplay class provides information about the device's screen metrics the application is running on

and can request to keep the screen from falling asleep when the application is running.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

In addition to basic device information the DeviceDisplayDeviceDisplay class contains information about the device's screen

and orientation.

The DeviceDisplayDeviceDisplay class also exposes an event that can be subscribed to that is triggered whenever any screen

metric changes:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/device-display.md

public class DisplayInfoTest
{
 public DisplayInfoTest()
 {
 // Subscribe to changes of screen metrics
 DeviceDisplay.MainDisplayInfoChanged += OnMainDisplayInfoChanged;
 }

 void OnMainDisplayInfoChanged(object sender, DisplayInfoChangedEventArgs e)
 {
 // Process changes
 var displayInfo = e.DisplayInfo;
 }
}

 Keep Screen On

public class KeepScreenOnTest
{
 public void ToggleScreenLock()
 {
 DeviceDisplay.KeepScreenOn = !DeviceDisplay.KeepScreenOn;
 }
}

 Platform Differences

 API

 Related Video

The DeviceDisplayDeviceDisplay class exposes a bool property called KeepScreenOn that can be set to attempt to keep the

device's display from turning off or locking.

Android

iOS

UWP

No differences.

DeviceDisplay source code

DeviceDisplay API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/DeviceDisplay
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.devicedisplay
https://channel9.msdn.com/Shows/XamarinShow/Device-Display-Information-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Device Information
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using DeviceInfo

using Xamarin.Essentials;

// Device Model (SMG-950U, iPhone10,6)
var device = DeviceInfo.Model;

// Manufacturer (Samsung)
var manufacturer = DeviceInfo.Manufacturer;

// Device Name (Motz's iPhone)
var deviceName = DeviceInfo.Name;

// Operating System Version Number (7.0)
var version = DeviceInfo.VersionString;

// Platform (Android)
var platform = DeviceInfo.Platform;

// Idiom (Phone)
var idiom = DeviceInfo.Idiom;

// Device Type (Physical)
var deviceType = DeviceInfo.DeviceType;

 Platforms

 Idioms

The DeviceInfoDeviceInfo class provides information about the device the application is running on.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The following information is exposed through the API:

DeviceInfo.Platform correlates to a constant string that maps to the operating system. The values can be

checked with the DevicePlatform struct:

DevicePlatform.iOSDevicePlatform.iOS – iOS

DevicePlatform.AndroidDevicePlatform.Android – Android

DevicePlatform.UWPDevicePlatform.UWP – UWP

DevicePlatform.UnknownDevicePlatform.Unknown – Unknown

DeviceInfo.Idiom correlates a constant string that maps to the type of device the application is running on. The

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/device-information.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.deviceinfo.platform#xamarin_essentials_deviceinfo_platform
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.deviceinfo.idiom#xamarin_essentials_deviceinfo_idiom

 Device Type

 Platform Implementation Specifics

 API

 Related Video

values can be checked with the DeviceIdiom struct:

DeviceIdiom.PhoneDeviceIdiom.Phone – Phone

DeviceIdiom.TabletDeviceIdiom.Tablet – Tablet

DeviceIdiom.DesktopDeviceIdiom.Desktop – Desktop

DeviceIdiom.TVDeviceIdiom.TV – TV

DeviceIdiom.WatchDeviceIdiom.Watch – Watch

DeviceIdiom.UnknownDeviceIdiom.Unknown – Unknown

DeviceInfo.DeviceType correlates an enumeration to determine if the application is running on a physical or

virtual device. A virtual device is a simulator or emulator.

iOS

iOS does not expose an API for developers to get the model of the specific iOS device. Instead a hardware

identifier is returned such as iPhone10,6 which refers to the iPhone X. A mapping of these identifiers are not

provided by Apple, but can be found on these (non-official sources) The iPhone Wiki and Get iOS Model.

DeviceInfo source code

DeviceInfo API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://www.theiphonewiki.com/wiki/Models
https://github.com/dannycabrera/Get-iOS-Model
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/DeviceInfo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.deviceinfo
https://channel9.msdn.com/Shows/XamarinShow/Device-Information-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Email
 11/2/2020 • 2 minutes to read • Edit Online

<queries>
 <intent>
 <action android:name="android.intent.action.SENDTO" />
 <data android:scheme="mailto" />
 </intent>
</queries>

 Get started

TIPTIP

 Using Email

using Xamarin.Essentials;

The EmailEmail class enables an application to open the default email application with a specified information

including subject, body, and recipients (TO, CC, BCC).

To access the EmailEmail functionality the following platform specific setup is required.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To use the Email API on iOS you must run it on a physical device, else an exception will be thrown.

Add a reference to Xamarin.Essentials in your class:

The Email functionality works by calling the ComposeAsync method an EmailMessage that contains information

about the email:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/email.md
https://developer.android.com/preview/privacy/package-visibility

public class EmailTest
{
 public async Task SendEmail(string subject, string body, List<string> recipients)
 {
 try
 {
 var message = new EmailMessage
 {
 Subject = subject,
 Body = body,
 To = recipients,
 //Cc = ccRecipients,
 //Bcc = bccRecipients
 };
 await Email.ComposeAsync(message);
 }
 catch (FeatureNotSupportedException fbsEx)
 {
 // Email is not supported on this device
 }
 catch (Exception ex)
 {
 // Some other exception occurred
 }
 }
}

 File Attachments

var message = new EmailMessage
{
 Subject = "Hello",
 Body = "World",
};

var fn = "Attachment.txt";
var file = Path.Combine(FileSystem.CacheDirectory, fn);
File.WriteAllText(file, "Hello World");

message.Attachments.Add(new EmailAttachment(file));

await Email.ComposeAsync(message);

 Platform Differences

 API

This feature enables an app to email files in email clients on the device. Xamarin.Essentials will automatically

detect the file type (MIME) and request the file to be added as an attachment. Every email client is different and

may only support specific file extensions, or none at all.

Here is a sample of writing text to disk and adding it as an email attachment:

Android

iOS

UWP

Not all email clients for Android support Html , since there is no way to detect this we recommend using

PlainText when sending emails.

 Related Video

Email source code

Email API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Email
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.email
https://channel9.msdn.com/Shows/XamarinShow/Email-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: File Picker
 5/13/2021 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.ReadExternalStorage)]

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

TIPTIP

 Pick File

The FilePickerFilePicker class lets a user pick a single or multiple files from the device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the FilePickerFilePicker functionality the following platform specific setup is required.

Android

iOS

UWP

The ReadExternalStorage permission is required and must be configured in the Android project. This can be

added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check this permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

All methods must be called on the UI thread because permission checks and requests are automatically handled by

Xamarin.Essentials.

FilePicker.PickAsync() method enables your user to pick a file from the device. You are able to specific

different PickOptions when calling the method enabling you to specify the title to display and the file types the

user is allowed to pick. By default

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/file-picker.md

async Task<FileResult> PickAndShow(PickOptions options)
{
 try
 {
 var result = await FilePicker.PickAsync(options);
 if (result != null)
 {
 Text = $"File Name: {result.FileName}";
 if (result.FileName.EndsWith("jpg", StringComparison.OrdinalIgnoreCase) ||
 result.FileName.EndsWith("png", StringComparison.OrdinalIgnoreCase))
 {
 var stream = await result.OpenReadAsync();
 Image = ImageSource.FromStream(() => stream);
 }
 }

 return result;
 }
 catch (Exception ex)
 {
 // The user canceled or something went wrong
 }

 return null;
}

var customFileType =
 new FilePickerFileType(new Dictionary<DevicePlatform, IEnumerable<string>>
 {
 { DevicePlatform.iOS, new[] { "public.my.comic.extension" } }, // or general UTType values
 { DevicePlatform.Android, new[] { "application/comics" } },
 { DevicePlatform.UWP, new[] { ".cbr", ".cbz" } },
 { DevicePlatform.Tizen, new[] { "*/*" } },
 { DevicePlatform.macOS, new[] { "cbr", "cbz" } }, // or general UTType values
 });
var options = new PickOptions
{
 PickerTitle = "Please select a comic file",
 FileTypes = customFileType,
};

 Pick Multiple Files

TIPTIP

 Platform Differences

Default file types are provided with FilePickerFileType.Images , FilePickerFileType.Png , and

FilePickerFilerType.Videos . You can specify custom files types when creating the PickOptions and they can be

customized per platform. For example here is how you would specify specific comic file types:

If you desire your user to pick multiple files you can call the FilePicker.PickMultipleAsync() method. It also

takes in PickOptions as a parameter to specify additional information. The results are the same as PickAsync ,

but instead of a single FileResult an IEnumerable<FileResult> is returned that can be iterated over.

The FullPath property does not always return the physical path to the file. To get the file, use the OpenReadAsync

method.

Android

 API

 Related Video

iOS

UWP

No platform differences.

FilePicker source code

FilePicker API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/FilePicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.filepicker
https://channel9.msdn.com/Shows/XamarinShow/File-Picker-XamarinEssentials-API-of-the-Week/player?nocookie=true

Xamarin.Essentials: File System Helpers
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using File System Helpers

using Xamarin.Essentials;

var cacheDir = FileSystem.CacheDirectory;

var mainDir = FileSystem.AppDataDirectory;

 using (var stream = await FileSystem.OpenAppPackageFileAsync(templateFileName))
 {
 using (var reader = new StreamReader(stream))
 {
 var fileContents = await reader.ReadToEndAsync();
 }
 }

 Platform Implementation Specifics

The FileSystemFileSystem class contains a series of helpers to find the application's cache and data directories and open

files inside of the app package.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To get the application's directory to store cache datacache data. Cache data can be used for any data that needs to persist

longer than temporary data, but should not be data that is required to properly operate, as the OS dictates when

this storage is cleared.

To get the application's top-level directory for any files that are not user data files. These files are backed up with

the operating system syncing framework. See Platform Implementation Specifics below.

To open a file that is bundled into the application package:

Android

iOS

UWP

CacheDirector yCacheDirector y – Returns the CacheDir of the current context.

AppDataDirector yAppDataDirector y – Returns the FilesDir of the current context and are backed up using Auto Backup

starting on API 23 and above.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/file-system-helpers.md
https://developer.android.com/reference/android/content/Context.html#getCacheDir
https://developer.android.com/reference/android/content/Context.html#getFilesDir
https://developer.android.com/guide/topics/data/autobackup.html

 API

 Related Video

Add any file into the AssetsAssets folder in the Android project and mark the Build Action as AndroidAssetAndroidAsset to use it

with OpenAppPackageFileAsync .

File System Helpers source code

File System API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/FileSystem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.filesystem
https://channel9.msdn.com/Shows/XamarinShow/File-System-Helpers-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Flashlight
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.Flashlight)]
[assembly: UsesPermission(Android.Manifest.Permission.Camera)]

<uses-permission android:name="android.permission.FLASHLIGHT" />
<uses-permission android:name="android.permission.CAMERA" />

[assembly: UsesFeature("android.hardware.camera", Required = false)]
[assembly: UsesFeature("android.hardware.camera.autofocus", Required = false)]

The FlashlightFlashlight class has the ability to turn on or off the device's camera flash to turn it into a flashlight.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the FlashlightFlashlight functionality the following platform specific setup is required.

Android

iOS

UWP

The Flashlight and Camera permissions are required and must be configured in the Android project. This can be

added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the FL ASHLIGHTFL ASHLIGHT and CAMERACAMERA permissions. This will automatically

update the AndroidManifest.xmlAndroidManifest.xml file.

By adding these permissions Google Play will automatically filter out devices without specific hardware. You can

get around this by adding the following to your AssemblyInfo.cs file in your Android project:

This API uses runtime permissions on Android. Please ensure that Xamarin.Essentials is fully initialized and

permission handling is setup in your app.

In the Android project's MainLauncher or any Activity that is launched Xamarin.Essentials must be initialized in

the OnCreate method:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/flashlight.md
https://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions-features

protected override void OnCreate(Bundle savedInstanceState)
{
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may also
be called: bundle
 //...
}

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

 Using Flashlight

using Xamarin.Essentials;

try
{
 // Turn On
 await Flashlight.TurnOnAsync();

 // Turn Off
 await Flashlight.TurnOffAsync();
}
catch (FeatureNotSupportedException fnsEx)
{
 // Handle not supported on device exception
}
catch (PermissionException pEx)
{
 // Handle permission exception
}
catch (Exception ex)
{
 // Unable to turn on/off flashlight
}

 Platform Implementation Specifics

To handle runtime permissions on Android, Xamarin.Essentials must receive any OnRequestPermissionsResult .

Add the following code to all Activity classes:

Add a reference to Xamarin.Essentials in your class:

The flashlight can be turned on and off through the TurnOnAsync and TurnOffAsync methods:

Android

iOS

UWP

The Flashlight class has been optimized based on the device's operating system.

API Level 23 and HigherAPI Level 23 and Higher

 API Level 22 and LowerAPI Level 22 and Lower

 API

 Related Video

On newer API levels, Torch Mode will be used to turn on or off the flash unit of the device.

A camera surface texture is created to turn on or off the FlashMode of the camera unit.

Flashlight source code

Flashlight API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://developer.android.com/reference/android/hardware/camera2/CameraManager.html#setTorchMode
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Flashlight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.flashlight
https://channel9.msdn.com/Shows/XamarinShow/Flashlight-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Geocoding
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Geocoding

using Xamarin.Essentials;

try
{
 var address = "Microsoft Building 25 Redmond WA USA";
 var locations = await Geocoding.GetLocationsAsync(address);

 var location = locations?.FirstOrDefault();
 if (location != null)
 {
 Console.WriteLine($"Latitude: {location.Latitude}, Longitude: {location.Longitude}, Altitude:
{location.Altitude}");
 }
}
catch (FeatureNotSupportedException fnsEx)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Handle exception that may have occurred in geocoding
}

 Using Reverse Geocoding

The GeocodingGeocoding class provides APIs to geocode a placemark to a positional coordinates and reverse geocode

coordinates to a placemark.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the GeocodingGeocoding functionality the following platform specific setup is required.

Android

iOS

UWP

No additional setup required.

Add a reference to Xamarin.Essentials in your class:

Getting location coordinates for an address:

The altitude isn't always available. If it is not available, the Altitude property might be null or the value might

be zero. If the altitude is available, the value is in meters above sea level.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/geocoding.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

try
{
 var lat = 47.673988;
 var lon = -122.121513;

 var placemarks = await Geocoding.GetPlacemarksAsync(lat, lon);

 var placemark = placemarks?.FirstOrDefault();
 if (placemark != null)
 {
 var geocodeAddress =
 $"AdminArea: {placemark.AdminArea}\n" +
 $"CountryCode: {placemark.CountryCode}\n" +
 $"CountryName: {placemark.CountryName}\n" +
 $"FeatureName: {placemark.FeatureName}\n" +
 $"Locality: {placemark.Locality}\n" +
 $"PostalCode: {placemark.PostalCode}\n" +
 $"SubAdminArea: {placemark.SubAdminArea}\n" +
 $"SubLocality: {placemark.SubLocality}\n" +
 $"SubThoroughfare: {placemark.SubThoroughfare}\n" +
 $"Thoroughfare: {placemark.Thoroughfare}\n";

 Console.WriteLine(geocodeAddress);
 }
}
catch (FeatureNotSupportedException fnsEx)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Handle exception that may have occurred in geocoding
}

 Distance between Two Locations

 API

 Related Video

Reverse geocoding is the process of getting placemarks for an existing set of coordinates:

The Location and LocationExtensions classes define methods to calculate the distance between two locations.

See the article Xamarin.Essentials: GeolocationXamarin.Essentials: Geolocation for an example.

Geocoding source code

Geocoding API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.placemark
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.locationextensions
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Geocoding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.geocoding
https://channel9.msdn.com/Shows/XamarinShow/Geocoding-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Geolocation
 7/28/2021 • 5 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.AccessCoarseLocation)]
[assembly: UsesPermission(Android.Manifest.Permission.AccessFineLocation)]
[assembly: UsesFeature("android.hardware.location", Required = false)]
[assembly: UsesFeature("android.hardware.location.gps", Required = false)]
[assembly: UsesFeature("android.hardware.location.network", Required = false)]

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-feature android:name="android.hardware.location" android:required="false" />
<uses-feature android:name="android.hardware.location.gps" android:required="false" />
<uses-feature android:name="android.hardware.location.network" android:required="false" />

[assembly: UsesPermission(Manifest.Permission.AccessBackgroundLocation)]

The GeolocationGeolocation class provides APIs to retrieve the device's current geolocation coordinates.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the GeolocationGeolocation functionality, the following platform-specific setup is required:

Android

iOS

UWP

Coarse and Fine Location permissions are required and must be configured in the Android project. Additionally,

if your app targets Android 5.0 (API level 21) or higher, you must declare that your app uses the hardware

features in the manifest file. This can be added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

Or update the Android manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Or right-click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the ACCESS_COARSE_LOCATIONACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATIONACCESS_FINE_LOCATION

permissions. This will automatically update the AndroidManifest.xmlAndroidManifest.xml file.

If your application is targeting Android 10 - Q (API Level 29 or higher) and is requesting LocationAlwaysLocationAlways , you

must also add the following permission into AssemblyInfo.csAssemblyInfo.cs :

Or directly into your AndroidManifest.xmlAndroidManifest.xml :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/geolocation.md

<uses-permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION" />

protected override void OnCreate(Bundle savedInstanceState)
{
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may also
be called: bundle
 //...
}

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

 Using Geolocation

using Xamarin.Essentials;

If it recommended to read Android documentation on background location updates as there are many

restrictions that need to be considered.

This API uses runtime permissions on Android. Please ensure that Xamarin.Essentials is fully initialized and

permission handling is setup in your app.

In the Android project's MainLauncher or any Activity that is launched Xamarin.Essentials must be initialized in

the OnCreate method:

To handle runtime permissions on Android, Xamarin.Essentials must receive any OnRequestPermissionsResult .

Add the following code to all Activity classes:

Add a reference to Xamarin.Essentials in your class:

The Geolocation API will also prompt the user for permissions when necessary.

You can get the last known location of the device by calling the GetLastKnownLocationAsync method. This is often

faster then doing a full query, but can be less accurate and may return null if no cached location exists.

https://developer.android.com/training/location/permissions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

try
{
 var location = await Geolocation.GetLastKnownLocationAsync();

 if (location != null)
 {
 Console.WriteLine($"Latitude: {location.Latitude}, Longitude: {location.Longitude}, Altitude:
{location.Altitude}");
 }
}
catch (FeatureNotSupportedException fnsEx)
{
 // Handle not supported on device exception
}
catch (FeatureNotEnabledException fneEx)
{
 // Handle not enabled on device exception
}
catch (PermissionException pEx)
{
 // Handle permission exception
}
catch (Exception ex)
{
 // Unable to get location
}

To query the current device's location coordinates, the GetLocationAsync can be used. It is best to pass in a full

GeolocationRequest and CancellationToken since it may take some time to get the device's location.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

CancellationTokenSource cts;

async Task GetCurrentLocation()
{
 try
 {
 var request = new GeolocationRequest(GeolocationAccuracy.Medium, TimeSpan.FromSeconds(10));
 cts = new CancellationTokenSource();
 var location = await Geolocation.GetLocationAsync(request, cts.Token);

 if (location != null)
 {
 Console.WriteLine($"Latitude: {location.Latitude}, Longitude: {location.Longitude}, Altitude:
{location.Altitude}");
 }
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Handle not supported on device exception
 }
 catch (FeatureNotEnabledException fneEx)
 {
 // Handle not enabled on device exception
 }
 catch (PermissionException pEx)
 {
 // Handle permission exception
 }
 catch (Exception ex)
 {
 // Unable to get location
 }
}

protected override void OnDisappearing()
{
 if (cts != null && !cts.IsCancellationRequested)
 cts.Cancel();
 base.OnDisappearing();
}

 Geolocation Accuracy

 LowestLowest

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 500

iOS 3000

UWP 1000 - 5000

 LowLow

Note all values may be available due to how each device queries geolocation through different providers. For

example, the Altitude property might be null , have a value of 0, or have a positive value, which is in meters

above sea level. Other values that may not be present include Speed and Course .

The following table outlines accuracy per platform:

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 500

iOS 1000

UWP 300 - 3000

 Medium (Default)Medium (Default)

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 100 - 500

iOS 100

UWP 30-500

 HighHigh

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 0 - 100

iOS 10

UWP <= 10

 BestBest

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 0 - 100

iOS ~0

UWP <= 10

 Detecting Mock Locations

var request = new GeolocationRequest(GeolocationAccuracy.Medium);
var location = await Geolocation.GetLocationAsync(request);

if (location != null)
{
 if(location.IsFromMockProvider)
 {
 // location is from a mock provider
 }
}

Some devices may return a mock location from the provider or by an application that provides mock locations.

You can detect this by using the IsFromMockProvider on any Location .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

 Distance between Two Locations

Location boston = new Location(42.358056, -71.063611);
Location sanFrancisco = new Location(37.783333, -122.416667);
double miles = Location.CalculateDistance(boston, sanFrancisco, DistanceUnits.Miles);

 Platform Differences

 API

 Related Video

The Location and LocationExtensions classes define CalculateDistance methods that allow you to calculate

the distance between two geographic locations. This calculated distance does not take roads or other pathways

into account, and is merely the shortest distance between the two points along the surface of the Earth, also

known as the great-circle distance or colloquially, the distance "as the crow flies."

Here's an example:

The Location constructor has latitude and longitude arguments in that order. Positive latitude values are north

of the equator, and positive longitude values are east of the Prime Meridian. Use the final argument to

CalculateDistance to specify miles or kilometers. The UnitConverters class also defines KilometersToMiles and

MilesToKilometers methods for converting between the two units.

Altitude is calculated differently on each platform.

Android

iOS

UWP

On Android, altitude, if available, is returned in meters above the WGS 84 reference ellipsoid. If this location

does not have an altitude then 0.0 is returned.

Geolocation source code

Geolocation API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.locationextensions
https://developer.android.com/reference/android/location/Location#getAltitude()
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Geolocation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.geolocation
https://channel9.msdn.com/Shows/XamarinShow/Geolocation-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Gyroscope
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Gyroscope

using Xamarin.Essentials;

The GyroscopeGyroscope class lets you monitor the device's gyroscope sensor which is the rotation around the device's

three primary axes.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Gyroscope functionality works by calling the Start and Stop methods to listen for changes to the

gyroscope. Any changes are sent back through the ReadingChanged event in rad/s. Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/gyroscope.md

public class GyroscopeTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public GyroscopeTest()
 {
 // Register for reading changes.
 Gyroscope.ReadingChanged += Gyroscope_ReadingChanged;
 }

 void Gyroscope_ReadingChanged(object sender, GyroscopeChangedEventArgs e)
 {
 var data = e.Reading;
 // Process Angular Velocity X, Y, and Z reported in rad/s
 Console.WriteLine($"Reading: X: {data.AngularVelocity.X}, Y: {data.AngularVelocity.Y}, Z:
{data.AngularVelocity.Z}");
 }

 public void ToggleGyroscope()
 {
 try
 {
 if (Gyroscope.IsMonitoring)
 Gyroscope.Stop();
 else
 Gyroscope.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 API

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Gyroscope source code

Gyroscope API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Gyroscope
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.gyroscope

Xamarin.Essentials: Haptic Feedback
 3/5/2021 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.Vibrate)]

<uses-permission android:name="android.permission.VIBRATE" />

 Using Haptic Feedback

using Xamarin.Essentials;

The HapticFeedbackHapticFeedback class lets you control haptic feedback on device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the HapticFeedbackHapticFeedback functionality the following platform specific setup is required.

Android

iOS

UWP

The Vibrate permission is required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the VIBRATEVIBRATE permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

The Haptic Feedback functionality can be performed with a Click or LongPress feedback type.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/haptic-feedback.md

try
{
 // Perform click feedback
 HapticFeedback.Perform(HapticFeedbackType.Click);

 // Or use long press
 HapticFeedback.Perform(HapticFeedbackType.LongPress);
}
catch (FeatureNotSupportedException ex)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Other error has occurred.
}

 API
HapticFeedback source code

HapticFeedback API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/HapticFeedback
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.hapticfeedback

Xamarin.Essentials: Launcher
 3/5/2021 • 3 minutes to read • Edit Online

 Get started

 Using Launcher

using Xamarin.Essentials;

public class LauncherTest
{
 public async Task OpenRideShareAsync()
 {
 var supportsUri = await Launcher.CanOpenAsync("lyft://");
 if (supportsUri)
 await Launcher.OpenAsync("lyft://ridetype?id=lyft_line");
 }
}

public class LauncherTest
{
 public async Task<bool> OpenRideShareAsync()
 {
 return await Launcher.TryOpenAsync("lyft://ridetype?id=lyft_line");
 }
}

 Additional Platform SetupAdditional Platform Setup

The LauncherLauncher class enables an application to open a URI by the system. This is often used when deep linking

into another application's custom URI schemes. If you are looking to open the browser to a website then you

should refer to the BrowserBrowser API.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To use the Launcher functionality call the OpenAsync method and pass in a string or Uri to open. Optionally,

the CanOpenAsync method can be used to check if the URI schema can be handled by an application on the

device.

This can be combined into a single call with TryOpenAsync , which checks if the parameter can be opened and if

so open it.

Android

iOS

UWP

No additional setup.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/launcher.md

Files

var fn = "File.txt";
var file = Path.Combine(FileSystem.CacheDirectory, fn);
File.WriteAllText(file, "Hello World");

await Launcher.OpenAsync(new OpenFileRequest
{
 File = new ReadOnlyFile(file)
});

 Presentation Location When Opening Files

await Share.RequestAsync(new ShareFileRequest
{
 Title = Title,
 File = new ShareFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

await Launcher.OpenAsync(new OpenFileRequest
{
 File = new ReadOnlyFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

This features enables an app to request other apps to open and view a file. Xamarin.Essentials will automatically

detect the file type (MIME) and request the file to be opened.

Here is a sample of writing text to disk and requesting it be opened:

When requesting a share or opening launcher on iPadOS you have the ability to present in a pop over control.

This specifies where the pop over will appear and point an arrow directly to. This location is often the control

that launched the action. You can specify the location using the PresentationSourceBounds property:

Everything described here works equally for Share and Launcher .

If you are using Xamarin.Forms you are able to pass in a View and calculate the bounds:

public static class ViewHelpers
{
 public static Rectangle GetAbsoluteBounds(this Xamarin.Forms.View element)
 {
 Element looper = element;

 var absoluteX = element.X + element.Margin.Top;
 var absoluteY = element.Y + element.Margin.Left;

 // Add logic to handle titles, headers, or other non-view bars

 while (looper.Parent != null)
 {
 looper = looper.Parent;
 if (looper is Xamarin.Forms.View v)
 {
 absoluteX += v.X + v.Margin.Top;
 absoluteY += v.Y + v.Margin.Left;
 }
 }

 return new Rectangle(absoluteX, absoluteY, element.Width, element.Height);
 }

 public static System.Drawing.Rectangle ToSystemRectangle(this Rectangle rect) =>
 new System.Drawing.Rectangle((int)rect.X, (int)rect.Y, (int)rect.Width, (int)rect.Height);
}

public Command<Xamarin.Forms.View> ShareCommand { get; } = new Command<Xamarin.Forms.View>(Share);
async void Share(Xamarin.Forms.View element)
{
 try
 {
 Analytics.TrackEvent("ShareWithFriends");
 var bounds = element.GetAbsoluteBounds();

 await Share.RequestAsync(new ShareTextRequest
 {
 PresentationSourceBounds = bounds.ToSystemRectangle(),
 Title = "Title",
 Text = "Text"
 });
 }
 catch (Exception)
 {
 // Handle exception that share failed
 }
}

<Button Text="Share"
 Command="{Binding ShareWithFriendsCommand}"
 CommandParameter="{Binding Source={RelativeSource Self}}"/>

 Platform Differences

This can then be used when calling RequestAsync :

You can pass in the calling element when the Command is triggered:

Android

iOS

 API

 Related Video

UWP

The Task returned from CanOpenAsync completes immediately.

Launcher source code

Launcher API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Launcher
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.launcher
https://channel9.msdn.com/Shows/XamarinShow/Launcher-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Magnetometer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Magnetometer

using Xamarin.Essentials;

The MagnetometerMagnetometer class lets you monitor the device's magnetometer sensor which indicates the device's

orientation relative to Earth's magnetic field.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Magnetometer functionality works by calling the Start and Stop methods to listen for changes to the

magnetometer. Any changes are sent back through the ReadingChanged event. Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/magnetometer.md

public class MagnetometerTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public MagnetometerTest()
 {
 // Register for reading changes.
 Magnetometer.ReadingChanged += Magnetometer_ReadingChanged;
 }

 void Magnetometer_ReadingChanged(object sender, MagnetometerChangedEventArgs e)
 {
 var data = e.Reading;
 // Process MagneticField X, Y, and Z
 Console.WriteLine($"Reading: X: {data.MagneticField.X}, Y: {data.MagneticField.Y}, Z:
{data.MagneticField.Z}");
 }

 public void ToggleMagnetometer()
 {
 try
 {
 if (Magnetometer.IsMonitoring)
 Magnetometer.Stop();
 else
 Magnetometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 API

All data is returned in µT (microteslas).

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Magnetometer source code

Magnetometer API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Magnetometer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.magnetometer

Xamarin.Essentials: MainThread
 11/2/2020 • 3 minutes to read • Edit Online

 Background

 Get started

 Running Code on the Main Thread

using Xamarin.Essentials;

MainThread.BeginInvokeOnMainThread(() =>
{
 // Code to run on the main thread
});

void MyMainThreadCode()
{
 // Code to run on the main thread
}

MainThread.BeginInvokeOnMainThread(MyMainThreadCode);

The MainThreadMainThread class allows applications to run code on the main thread of execution, and to determine if a

particular block of code is currently running on the main thread.

Most operating systems — including iOS, Android, and the Universal Windows Platform — use a single-

threading model for code involving the user interface. This model is necessary to properly serialize user-

interface events, including keystrokes and touch input. This thread is often called the main thread or the user-

interface thread or the UI thread. The disadvantage of this model is that all code that accesses user interface

elements must run on the application's main thread.

Applications sometimes need to use events that call the event handler on a secondary thread of execution. (The

Xamarin.Essentials classes Accelerometer , Compass , Gyroscope , Magnetometer , and OrientationSensor all might

return information on a secondary thread when used with faster speeds.) If the event handler needs to access

user-interface elements, it must run that code on the main thread. The MainThreadMainThread class allows the application

to run this code on the main thread.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To run code on the main thread, call the static MainThread.BeginInvokeOnMainThread method. The argument is an

Action object, which is simply a method with no arguments and no return value:

It is also possible to define a separate method for the code that must run on the main thread:

You can then run this method on the main thread by referencing it in the BeginInvokeOnMainThread method:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/main-thread.md
https://docs.microsoft.com/en-us/dotnet/api/system.action

NOTENOTE

 Determining if Code is Running on the Main Thread

if (MainThread.IsMainThread)
{
 // Code to run if this is the main thread
}
else
{
 // Code to run if this is a secondary thread
}

if (MainThread.IsMainThread)
{
 MyMainThreadCode();
}
else
{
 MainThread.BeginInvokeOnMainThread(MyMainThreadCode);
}

 Additional Methods

M ET H O DM ET H O D A RGUM EN T SA RGUM EN T S RET URN SRET URN S P URP O SEP URP O SE

InvokeOnMainThreadAsync<T> Func<T> Task<T> Invokes a Func<T> on the

main thread, and waits for it
to complete.

InvokeOnMainThreadAsync Action Task Invokes an Action on the

main thread, and waits for it
to complete.

Xamarin.Forms has a method called Device.BeginInvokeOnMainThread(Action) that does the same thing as

MainThread.BeginInvokeOnMainThread(Action) . While you can use either method in a Xamarin.Forms app, consider

whether or not the calling code has any other need for a dependency on Xamarin.Forms. If not,

MainThread.BeginInvokeOnMainThread(Action) is likely a better option.

The MainThread class also allows an application to determine if a particular block of code is running on the main

thread. The IsMainThread property returns true if the code calling the property is running on the main thread.

A program can use this property to run different code for the main thread or a secondary thread:

You might wonder if you should check if code is running on a secondary thread before calling

BeginInvokeOnMainThread , for example, like this:

You might suspect that this check might improve performance if the block of code is already running on the

main thread.

However, this check is not necessary. The platform implementations of BeginInvokeOnMainThread themselves

check if the call is made on the main thread. There is very little performance penalty if you call

BeginInvokeOnMainThread when it's not really necessary.

The MainThread class includes the following additional static methods that can be used to interact with user

interface elements from backgrounds threads:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.begininvokeonmainthread

InvokeOnMainThreadAsync<T> Func<Task<T>> Task<T> Invokes a Func<Task<T>>

on the main thread, and
waits for it to complete.

InvokeOnMainThreadAsync Func<Task> Task Invokes a Func<Task> on

the main thread, and waits
for it to complete.

GetMainThreadSynchronizationContextAsync Task<SynchronizationContext>Returns the
SynchronizationContext

for the main thread.

M ET H O DM ET H O D A RGUM EN T SA RGUM EN T S RET URN SRET URN S P URP O SEP URP O SE

 API

 Related Video

MainThread source code

MainThread API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/MainThread
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.mainthread
https://channel9.msdn.com/Shows/XamarinShow/Main-Thread-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Map
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Map

using Xamarin.Essentials;

public class MapTest
{
 public async Task NavigateToBuilding25()
 {
 var location = new Location(47.645160, -122.1306032);
 var options = new MapLaunchOptions { Name = "Microsoft Building 25" };

 try
 {
 await Map.OpenAsync(location, options);
 }
 catch (Exception ex)
 {
 // No map application available to open
 }
 }
}

The MapMap class enables an application to open the installed map application to a specific location or placemark.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Map functionality works by calling the OpenAsync method with the Location or Placemark to open with

optional MapLaunchOptions .

When opening with a Placemark , the following information is required:

CountryName

AdminArea

Thoroughfare

Locality

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/maps.md

public class MapTest
{
 public async Task NavigateToBuilding25()
 {
 var placemark = new Placemark
 {
 CountryName = "United States",
 AdminArea = "WA",
 Thoroughfare = "Microsoft Building 25",
 Locality = "Redmond"
 };
 var options = new MapLaunchOptions { Name = "Microsoft Building 25" };

 try
 {
 await Map.OpenAsync(placemark, options);
 }
 catch (Exception ex)
 {
 // No map application available to open or placemark can not be located
 }
 }
}

 Extension Methods

public class MapTest
{
 public async Task OpenPlacemarkOnMap(Placemark placemark)
 {
 try
 {
 await placemark.OpenMapAsync();
 }
 catch (Exception ex)
 {
 // No map application available to open
 }
 }
}

 Directions Mode

If you already have a reference to a Location or Placemark , you can use the built-in extension method

OpenMapAsync with optional MapLaunchOptions :

If you call OpenMapAsync without any MapLaunchOptions , the map will launch to the location specified. Optionally,

you can have a navigation route calculated from the device's current position. This is accomplished by setting

the NavigationMode on the MapLaunchOptions :

public class MapTest
{
 public async Task NavigateToBuilding25()
 {
 var location = new Location(47.645160, -122.1306032);
 var options = new MapLaunchOptions { NavigationMode = NavigationMode.Driving };

 await Map.OpenAsync(location, options);
 }
}

 Platform Differences

 Platform Implementation Specifics

 API

 Related Video

Android

iOS

UWP

NavigationMode supports Bicycling, Driving, and Walking.

Android

iOS

UWP

Android uses the geo: Uri scheme to launch the maps application on the device. This may prompt the user to

select from an existing app that supports this Uri scheme. Xamarin.Essentials is tested with Google Maps, which

supports this scheme.

Map source code

Map API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.map
https://channel9.msdn.com/Shows/XamarinShow/Maps-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Media Picker
 7/7/2021 • 2 minutes to read • Edit Online

 Get started

// Needed for Picking photo/video
[assembly: UsesPermission(Android.Manifest.Permission.ReadExternalStorage)]

// Needed for Taking photo/video
[assembly: UsesPermission(Android.Manifest.Permission.WriteExternalStorage)]
[assembly: UsesPermission(Android.Manifest.Permission.Camera)]

// Add these properties if you would like to filter out devices that do not have cameras, or set to false to
make them optional
[assembly: UsesFeature("android.hardware.camera", Required = true)]
[assembly: UsesFeature("android.hardware.camera.autofocus", Required = true)]

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.CAMERA" />

 Using Media Picker

The MediaPickerMediaPicker class lets a user pick or take a photo or video on the device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the MediaPickerMediaPicker functionality the following platform specific setup is required.

Android

iOS

UWP

The following permissions are required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the these permissions. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

The MediaPicker class has the following methods that all return a FileResult that can be used to get the files

location or read it as a Stream .

PickPhotoAsync : Opens the media browser to select a photo.

CapturePhotoAsync : Opens the camera to take a photo.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/media-picker.md

TIPTIP

 General Usage

async Task TakePhotoAsync()
{
 try
 {
 var photo = await MediaPicker.CapturePhotoAsync();
 await LoadPhotoAsync(photo);
 Console.WriteLine($"CapturePhotoAsync COMPLETED: {PhotoPath}");
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature is not supported on the device
 }
 catch (PermissionException pEx)
 {
 // Permissions not granted
 }
 catch (Exception ex)
 {
 Console.WriteLine($"CapturePhotoAsync THREW: {ex.Message}");
 }
}

async Task LoadPhotoAsync(FileResult photo)
{
 // canceled
 if (photo == null)
 {
 PhotoPath = null;
 return;
 }
 // save the file into local storage
 var newFile = Path.Combine(FileSystem.CacheDirectory, photo.FileName);
 using (var stream = await photo.OpenReadAsync())
 using (var newStream = File.OpenWrite(newFile))
 await stream.CopyToAsync(newStream);

 PhotoPath = newFile;
}

TIPTIP

 API

PickVideoAsync : Opens the media browser to select a video.

CaptureVideoAsync : Opens the camera to take a video.

Each method optionally takes in a MediaPickerOptions parameter that allows the Title to be set on some

operating systems that is displayed to the users.

All methods must be called on the UI thread because permission checks and requests are automatically handled by

Xamarin.Essentials.

The FullPath property does not always return the physical path to the file. To get the file, use the OpenReadAsync

method.

MediaPicker source code

MediaPicker API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/MediaPicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.mediapicker

Xamarin.Essentials: Browser
 7/8/2021 • 2 minutes to read • Edit Online

 Get started

<queries>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="http"/>
 </intent>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="https"/>
 </intent>
</queries>

 Using Browser

using Xamarin.Essentials;

The BrowserBrowser class enables an application to open a web link in the optimized system preferred browser or the

external browser.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the BrowserBrowser functionality the following platform specific setup is required.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Add a reference to Xamarin.Essentials in your class:

The Browser functionality works by calling the OpenAsync method with the Uri and BrowserLaunchMode .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/open-browser.md
https://developer.android.com/preview/privacy/package-visibility

public class BrowserTest
{
 public async Task OpenBrowser(Uri uri)
 {
 try
 {
 await Browser.OpenAsync(uri, BrowserLaunchMode.SystemPreferred);
 }
 catch(Exception ex)
 {
 // An unexpected error occured. No browser may be installed on the device.
 }
 }
}

 Customization

await Browser.OpenAsync(uri, new BrowserLaunchOptions
 {
 LaunchMode = BrowserLaunchMode.SystemPreferred,
 TitleMode = BrowserTitleMode.Show,
 PreferredToolbarColor = Color.AliceBlue,
 PreferredControlColor = Color.Violet
 });

 Platform Implementation Specifics

 System Preferred

 External

This method returns after the browser was launched and not necessarily closed by the user. The bool result

indicates whether the launching was successful or not.

When using the system preferred browser there are several customization options available for iOS and

Android. This includes a TitleMode (Android only), and preferred color options for the Toolbar (iOS and

Android) and Controls (iOS only) that appear.

These options are specified using BrowserLaunchOptions when calling OpenAsync .

Android

iOS

UWP

The Launch Mode determines how the browser is launched:

Custom Tabs will attempted to be used to load the Uri and keep navigation awareness.

An Intent will be used to request the Uri be opened through the systems normal browser.

https://developer.chrome.com/multidevice/android/customtabs

 API

 Related Video

Browser source code

Browser API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Browser
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.browser
https://channel9.msdn.com/Shows/XamarinShow/Open-Browser-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: OrientationSensor
 11/2/2020 • 3 minutes to read • Edit Online

NOTENOTE

 Get started

 Using OrientationSensor

using Xamarin.Essentials;

The OrientationSensorOrientationSensor class lets you monitor the orientation of a device in three dimensional space.

This class is for determining the orientation of a device in 3D space. If you need to determine if the device's video display

is in portrait or landscape mode, use the Orientation property of the ScreenMetrics object available from the

DeviceDisplay class.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The OrientationSensor is enabled by calling the Start method to monitor changes to the device's orientation,

and disabled by calling the Stop method. Any changes are sent back through the ReadingChanged event. Here is

a sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/orientation-sensor.md

public class OrientationSensorTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public OrientationSensorTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 OrientationSensor.ReadingChanged += OrientationSensor_ReadingChanged;
 }

 void OrientationSensor_ReadingChanged(object sender, OrientationSensorChangedEventArgs e)
 {
 var data = e.Reading;
 Console.WriteLine($"Reading: X: {data.Orientation.X}, Y: {data.Orientation.Y}, Z:
{data.Orientation.Z}, W: {data.Orientation.W}");
 // Process Orientation quaternion (X, Y, Z, and W)
 }

 public void ToggleOrientationSensor()
 {
 try
 {
 if (OrientationSensor.IsMonitoring)
 OrientationSensor.Stop();
 else
 OrientationSensor.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

OrientationSensor readings are reported back in the form of a Quaternion that describes the orientation of the

device based on two 3D coordinate systems:

The device (generally a phone or tablet) has a 3D coordinate system with the following axes:

The positive X axis points to the right of the display in portrait mode.

The positive Y axis points to the top of the device in portrait mode.

The positive Z axis points out of the screen.

The 3D coordinate system of the Earth has the following axes:

The positive X axis is tangent to the surface of the Earth and points east.

The positive Y axis is also tangent to the surface of the Earth and points north.

The positive Z axis is perpendicular to the surface of the Earth and points up.

The Quaternion describes the rotation of the device's coordinate system relative to the Earth's coordinate

system.

A Quaternion value is very closely related to rotation around an axis. If an axis of rotation is the normalized

vector (a , a , a), and the rotation angle is Θ, then the (X, Y, Z, W) components of the quaternion are:x y z

(a ·sin(Θ/2), a ·sin(Θ/2), a ·sin(Θ/2), cos(Θ/2))x y z

https://docs.microsoft.com/en-us/dotnet/api/system.numerics.quaternion

 Sensor Speed

 API

These are right-hand coordinate systems, so with the thumb of the right hand pointed in the positive direction of

the rotation axis, the curve of the fingers indicate the direction of rotation for positive angles.

Examples:

When the device lies flat on a table with its screen facing up, with the top of the device (in portrait mode)

pointing north, the two coordinate systems are aligned. The Quaternion value represents the identity

quaternion (0, 0, 0, 1). All rotations can be analyzed relative to this position.

When the device lies flat on a table with its screen facing up, and the top of the device (in portrait mode)

pointing west, the Quaternion value is (0, 0, 0.707, 0.707). The device has been rotated 90 degrees

around the Z axis of the Earth.

When the device is held upright so that the top (in portrait mode) points towards the sky, and the back of

the device faces north, the device has been rotated 90 degrees around the X axis. The Quaternion value is

(0.707, 0, 0, 0.707).

If the device is positioned so its left edge is on a table, and the top points north, the device has been

rotated –90 degrees around the Y axis (or 90 degrees around the negative Y axis). The Quaternion value

is (0, -0.707, 0, 0.707).

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

OrientationSensor source code

OrientationSensor API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/OrientationSensor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.orientationsensor

Xamarin.Essentials: Permissions
 7/8/2021 • 6 minutes to read • Edit Online

 Get started

protected override void OnCreate(Bundle savedInstanceState)
{
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may also
be called: bundle
 //...
}

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

 Using Permissions

using Xamarin.Essentials;

 Checking Permissions

var status = await Permissions.CheckStatusAsync<Permissions.LocationWhenInUse>();

The PermissionsPermissions class provides the ability to check and request runtime permissions.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

This API uses runtime permissions on Android. Please ensure that Xamarin.Essentials is fully initialized and

permission handling is setup in your app.

In the Android project's MainLauncher or any Activity that is launched Xamarin.Essentials must be initialized in

the OnCreate method:

To handle runtime permissions on Android, Xamarin.Essentials must receive any OnRequestPermissionsResult .

Add the following code to all Activity classes:

Add a reference to Xamarin.Essentials in your class:

To check the current status of a permission, use the CheckStatusAsync method along with the specific

permission to get the status for.

A PermissionException is thrown if the required permission is not declared.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/permissions.md

 Requesting Permissions

var status = await Permissions.RequestAsync<Permissions.LocationWhenInUse>();

 Permission Status

 Explain Why Permission Is Needed

 Available Permissions

P ERM ISSIO NP ERM ISSIO N A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN

CalendarRead

It's best to check the status of the permission before requesting it. Each operating system returns a different

default state if the user has never been prompted. iOS returns Unknown , while others return Denied . If the status

is Granted then there is no need to make other calls. On iOS if the status is Denied you should prompt the user

to change the permission in the settings and on Android you can call ShouldShowRationale to detect if the user

has already denied the permission in the past.

To request a permission from the users, use the RequestAsync method along with the specific permission to

request. If the user previously granted permission and hasn't revoked it, then this method will return Granted

immediately and not display a dialog.

A PermissionException is thrown if the required permission is not declared.

Note, that on some platforms a permission request can only be activated a single time. Further prompts must be

handled by the developer to check if a permission is in the Denied state and ask the user to manually turn it on.

When using CheckStatusAsync or RequestAsync a PermissionStatus will be returned that can be used to

determine the next steps:

Unknown - The permission is in an unknown state

Denied - The user denied the permission request

Disabled - The feature is disabled on the device

Granted - The user granted permission or is automatically granted

Restricted - In a restricted state

It is best practice to explain why your application needs a specific permission. On iOS you must specify a string

that is displayed to the user. Android does not have this ability and and also defaults permission status to

Disabled. This limits the ability to know if the user denied the permission or if it is the first time prompting the

user. The ShouldShowRationale method can be used to determine if an educational UI should be displayed. If the

method returns true this is because the user has denied or disabled the permission in the past. Other

platforms will always return false when calling this method.

Xamarin.Essentials attempts to abstract as many permissions as possible. However, each operating system has a

different set of runtime permissions. In addition there are differences when providing a single API for some

permissions. Here is a guide to the currently available permissions:

Icon Guide:

 - Supported

 - Not supported/required

CalendarWrit
e

Camera

ContactsRead

ContactsWrit
e

Flashlight

LocationWhe
nInUse

LocationAlwa
ys

Media

Microphone

Phone

Photos

Reminders

Sensors

Sms

Speech

StorageRead

StorageWrite

P ERM ISSIO NP ERM ISSIO N A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN

 General Usage

If a permission is marked as it will always return Granted when checked or requested.

The following code presents the general usage pattern for determining whether a permission has been granted

and requesting it if it has not. This code uses features that are available with Xamarin.Essentials version 1.6.0 or

later.

public async Task<PermissionStatus> CheckAndRequestLocationPermission()
{
 var status = await Permissions.CheckStatusAsync<Permissions.LocationWhenInUse>();

 if (status == PermissionStatus.Granted)
 return status;

 if (status == PermissionStatus.Denied && DeviceInfo.Platform == DevicePlatform.iOS)
 {
 // Prompt the user to turn on in settings
 // On iOS once a permission has been denied it may not be requested again from the application
 return status;
 }

 if (Permissions.ShouldShowRationale<Permissions.LocationWhenInUse>())
 {
 // Prompt the user with additional information as to why the permission is needed
 }

 status = await Permissions.RequestAsync<Permissions.LocationWhenInUse>();

 return status;
}

public async Task GetLocationAsync()
{
 var status = await CheckAndRequestPermissionAsync(new Permissions.LocationWhenInUse());
 if (status != PermissionStatus.Granted)
 {
 // Notify user permission was denied
 return;
 }

 var location = await Geolocation.GetLocationAsync();
}

public async Task<PermissionStatus> CheckAndRequestPermissionAsync<T>(T permission)
 where T : BasePermission
{
 var status = await permission.CheckStatusAsync();
 if (status != PermissionStatus.Granted)
 {
 status = await permission.RequestAsync();
 }

 return status;
}

 Extending Permissions

Each permission type can have an instance of it created that the methods can be called directly.

The Permissions API was created to be flexible and extensible for applications that require additional validation

or permissions that aren't included in Xamarin.Essentials. Create a new class that inherits from BasePermission

and implement the required abstract methods.

public class MyPermission : BasePermission
{
 // This method checks if current status of the permission
 public override Task<PermissionStatus> CheckStatusAsync()
 {
 throw new System.NotImplementedException();
 }

 // This method is optional and a PermissionException is often thrown if a permission is not declared
 public override void EnsureDeclared()
 {
 throw new System.NotImplementedException();
 }

 // Requests the user to accept or deny a permission
 public override Task<PermissionStatus> RequestAsync()
 {
 throw new System.NotImplementedException();
 }
}

public class ReadWriteStoragePermission : Xamarin.Essentials.Permissions.BasePlatformPermission
{
 public override (string androidPermission, bool isRuntime)[] RequiredPermissions => new List<(string
androidPermission, bool isRuntime)>
 {
 (Android.Manifest.Permission.ReadExternalStorage, true),
 (Android.Manifest.Permission.WriteExternalStorage, true)
 }.ToArray();
}

await Permissions.RequestAsync<ReadWriteStoragePermission>();

public interface IReadWritePermission
{
 Task<PermissionStatus> CheckStatusAsync();
 Task<PermissionStatus> RequestAsync();
}

When implementing a permission in a specific platform, the BasePlatformPermission class can be inherited from.

This provides additional platform helper methods to automatically check the declarations. This can help when

creating custom permissions that do groupings. For example, you can request both Read and Write access to

storage on Android using the following custom permission.

Then you can call your new permission from Android project.

If you wanted to call this API from your shared code you could create an interface and use a dependency service

to register and get the implementation.

Then implement the interface in your platform project:

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/index

public class ReadWriteStoragePermission : Xamarin.Essentials.Permissions.BasePlatformPermission,
IReadWritePermission
{
 public override (string androidPermission, bool isRuntime)[] RequiredPermissions => new List<(string
androidPermission, bool isRuntime)>
 {
 (Android.Manifest.Permission.ReadExternalStorage, true),
 (Android.Manifest.Permission.WriteExternalStorage, true)
 }.ToArray();
}

DependencyService.Register<IReadWritePermission, ReadWriteStoragePermission>();

var readWritePermission = DependencyService.Get<IReadWritePermission>();
var status = await readWritePermission.CheckStatusAsync();
if (status != PermissionStatus.Granted)
{
 status = await readWritePermission.RequestAsync();
}

 Platform Implementation Specifics

 API

 Related Video

You can then register the specific implementation:

Then from your shared project you can resolve and use it:

Android

iOS

UWP

Permissions must have the matching attributes set in the Android Manifest file. Permission status defaults to

Denied.

Read more on the Permissions in Xamarin.Android documentation.

Permissions source code

Permissions API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Permissions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.permissions
https://channel9.msdn.com/Shows/XamarinShow/Permissions-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Phone Dialer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

<queries>
 <intent>
 <action android:name="android.intent.action.DIAL" />
 <data android:scheme="tel"/>
 </intent>
</queries>

 Using Phone Dialer

using Xamarin.Essentials;

The PhoneDialerPhoneDialer class enables an application to open a phone number in the dialer.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Add a reference to Xamarin.Essentials in your class:

The Phone Dialer functionality works by calling the Open method with a phone number to open the dialer with.

When Open is requested the API will automatically attempt to format the number based on the country code if

specified.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/phone-dialer.md
https://developer.android.com/preview/privacy/package-visibility

public class PhoneDialerTest
{
 public void PlacePhoneCall(string number)
 {
 try
 {
 PhoneDialer.Open(number);
 }
 catch (ArgumentNullException anEx)
 {
 // Number was null or white space
 }
 catch (FeatureNotSupportedException ex)
 {
 // Phone Dialer is not supported on this device.
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 API

 Related Video

Phone Dialer source code

Phone Dialer API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/PhoneDialer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.phonedialer
https://channel9.msdn.com/Shows/XamarinShow/Phone-Dialer-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Platform Extensions
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Platform Extensions

using Xamarin.Essentials;

 Android Extensions

 Application Context & ActivityApplication Context & Activity

var context = Platform.AppContext;

// Current Activity or null if not initialized or not started.
var activity = Platform.CurrentActivity;

var activity = await Platform.WaitForActivityAsync();

 Activity LifecycleActivity Lifecycle

Xamarin.Essentials provides several platform extension methods when having to work with platform types such

as Rect, Size, and Point. This means that you can convert between the System version of these types for their

iOS, Android, and UWP specific types.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

All platform extensions can only be called from the iOS, Android, or UWP project.

These extensions can only be accessed from an Android project.

Using the platform extensions in the Platform class you can get access to the current Context or Activity for

the running app.

If there is a situation where the Activity is needed, but the application hasn't fully started then the

WaitForActivityAsync method should be used.

In addition to getting the current Activity, you can also register for lifecycle events.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/platform-extensions.md

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 Xamarin.Essentials.Platform.Init(this, bundle);

 Xamarin.Essentials.Platform.ActivityStateChanged += Platform_ActivityStateChanged;
}

protected override void OnDestroy()
{
 base.OnDestroy();
 Xamarin.Essentials.Platform.ActivityStateChanged -= Platform_ActivityStateChanged;
}

void Platform_ActivityStateChanged(object sender, Xamarin.Essentials.ActivityStateChangedEventArgs e) =>
 Toast.MakeText(this, e.State.ToString(), ToastLength.Short).Show();

 iOS Extensions

 Current UIViewControllerCurrent UIViewController

var vc = Platform.GetCurrentUIViewController();

 Cross-platform Extensions

 PointPoint

var system = new System.Drawing.Point(x, y);

// Convert to CoreGraphics.CGPoint, Android.Graphics.Point, and Windows.Foundation.Point
var platform = system.ToPlatformPoint();

// Back to System.Drawing.Point
var system2 = platform.ToSystemPoint();

 SizeSize

Activity states are the following:

Created

Resumed

Paused

Destroyed

SaveInstanceState

Started

Stopped

Read the Activity Lifecycle documentation to learn more.

These extensions can only be accessed from an iOS project.

Gain access to the currently visible UIViewController :

This method will return null if unable to detect a UIViewController .

These extensions exist in every platform.

var system = new System.Drawing.Size(width, height);

// Convert to CoreGraphics.CGSize, Android.Util.Size, and Windows.Foundation.Size
var platform = system.ToPlatformSize();

// Back to System.Drawing.Size
var system2 = platform.ToSystemSize();

 RectangleRectangle

var system = new System.Drawing.Rectangle(x, y, width, height);

// Convert to CoreGraphics.CGRect, Android.Graphics.Rect, and Windows.Foundation.Rect
var platform = system.ToPlatformRectangle();

// Back to System.Drawing.Rectangle
var system2 = platform.ToSystemRectangle();

 API
Converters source code

Point Converters API documentation

Rectangle Converters API documentation

Size Converters API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/PlatformExtensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.pointextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.rectangleextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sizeextensions

Xamarin.Essentials: Preferences
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Preferences

using Xamarin.Essentials;

Preferences.Set("my_key", "my_value");

var myValue = Preferences.Get("my_key", "default_value");

bool hasKey = Preferences.ContainsKey("my_key");

Preferences.Remove("my_key");

Preferences.Clear();

TIPTIP

 Supported Data Types

The PreferencesPreferences class helps to store application preferences in a key/value store.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To save a value for a given key in preferences:

To retrieve a value from preferences or a default if not set:

To check if a given key exists in preferences:

To remove the key from preferences:

To remove all preferences:

The above methods take in an optional string parameter called sharedName . This parameter is used to create

additional containers for preferences which are helpful in some use cases. One use case is when your application needs to

share preferences across extensions or to a watch application. Please read the platform implementation specifics below.

The following data types are supported in PreferencesPreferences :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/preferences.md

 Integrate with System Settings

 Implementation Details

 Platform Implementation Specifics

 Persistence

 Limitations

 API

 Related Video

boolbool

doubledouble

intint

floatfloat

longlong

str ingstr ing

DateTimeDateTime

Preferences are stored natively, which allows you to integrate your settings into the native system settings.

Follow the platform documentation and samples to integrate with the platform:

Apple: Implementing an iOS Settings Bundle

iOS Applicaton Preferences Sample

watchOS Settings

Android: Getting Started with Settings Screens

Values of DateTime are stored in a 64-bit binary (long integer) format using two methods defined by the

DateTime class: The ToBinary method is used to encode the DateTime value, and the FromBinary method

decodes the value. See the documentation of these methods for adjustments that might be made to decoded

values when a DateTime is stored that is not a Coordinated Universal Time (UTC) value.

Android

iOS

UWP

All data is stored into Shared Preferences. If no sharedName is specified the default shared preferences are used,

otherwise the name is used to get a pr ivateprivate shared preferences with the specified name.

Uninstalling the application will cause all Preferences to be removed, with the exception being apps that target

and run on Android 6.0 (API level 23) or later that use Auto BackupAuto Backup. This feature is on by default and preserves

app data including Shared PreferencesShared Preferences , which is what the PreferencesPreferences API utilizes. You can disable this by

following Google's documentation.

When storing a string, this API is intended to store small amounts of text. Performance may be subpar if you try

to use it to store large amounts of text.

Preferences source code

Preferences API documentation

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html
https://docs.microsoft.com/en-us/samples/xamarin/ios-samples/appprefs/
https://developer.xamarin.com/guides/ios/watch/working-with/settings/
https://developer.android.com/guide/topics/ui/settings.html
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.tobinary#system_datetime_tobinary
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.frombinary#system_datetime_frombinary_system_int64_
https://developer.android.com/training/data-storage/shared-preferences.html
https://developer.android.com/guide/topics/data/autobackup
https://developer.android.com/guide/topics/data/autobackup
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Preferences
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.preferences

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Shows/XamarinShow/Preferences-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Screenshot
 4/14/2021 • 2 minutes to read • Edit Online

 Get started

 Using Screenshot

using Xamarin.Essentials;

async Task CaptureScreenshot()
{
 var screenshot = await Screenshot.CaptureAsync();
 var stream = await screenshot.OpenReadAsync();

 Image = ImageSource.FromStream(() => stream);
}

 Limitations

 API

The ScreenshotScreenshot class lets you take a capture of the current displayed screen of the app.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

Then call CaptureAsync to take a screenshot of the current screen of the running application. This will return

back a ScreenshotResult that can be used to get the Width , Height , and a Stream of the screenshot taken.

Not all views support being captured at a screen level such as an OpenGL view.

Screenshot source code

Screenshot API documentation

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/screenshot.md
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Screenshot
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.screenshot

Xamarin.Essentials: Secure Storage
 11/2/2020 • 4 minutes to read • Edit Online

 Get started

TIPTIP

 Enable or disable backupEnable or disable backup

<manifest ... >
 ...
 <application android:allowBackup="false" ... >
 ...
 </application>
</manifest>

 Selective BackupSelective Backup

The SecureStorageSecureStorage class helps securely store simple key/value pairs.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the SecureStorageSecureStorage functionality, the following platform-specific setup is required:

Android

iOS

UWP

Auto Backup for Apps is a feature of Android 6.0 (API level 23) and later that backs up user's app data (shared

preferences, files in the app's internal storage, and other specific files). Data is restored when an app is re-installed or

installed on a new device. This can impact SecureStorage which utilizes share preferences that are backed up and can

not be decrypted when the restore occurs. Xamarin.Essentials automatically handles this case by removing the key so it

can be reset, but you can take an additional step by disabling Auto Backup.

You can choose to disable Auto Backup for your entire application by setting the android:allowBackup setting to

false in the AndroidManifest.xml file. This approach is only recommended if you plan on restoring data in

another way.

Auto Backup can be configured to disable specific content from backing up. You can create a custom rule set to

exclude SecureStore items from being backed up.

<application ...
 android:fullBackupContent="@xml/auto_backup_rules">
</application>

1. Set the android:fullBackupContent attribute in your AndroidManifest.xmlAndroidManifest.xml :

2. Create a new XML file named auto_backup_rules.xmlauto_backup_rules.xml in the Resources/xmlResources/xml directory with the build

action of AndroidResourceAndroidResource. Then set the following content that includes all shared preferences except

for SecureStorage :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/secure-storage.md
https://developer.android.com/guide/topics/data/autobackup

 Using Secure Storage

using Xamarin.Essentials;

try
{
 await SecureStorage.SetAsync("oauth_token", "secret-oauth-token-value");
}
catch (Exception ex)
{
 // Possible that device doesn't support secure storage on device.
}

try
{
 var oauthToken = await SecureStorage.GetAsync("oauth_token");
}
catch (Exception ex)
{
 // Possible that device doesn't support secure storage on device.
}

NOTENOTE

SecureStorage.Remove("oauth_token");

SecureStorage.RemoveAll();

TIPTIP

<?xml version="1.0" encoding="utf-8"?>
<full-backup-content>
 <include domain="sharedpref" path="."/>
 <exclude domain="sharedpref" path="${applicationId}.xamarinessentials.xml"/>
</full-backup-content>

Add a reference to Xamarin.Essentials in your class:

To save a value for a given key in secure storage:

To retrieve a value from secure storage:

If there is no value associated with the requested key, GetAsync will return null .

To remove a specific key, call:

To remove all keys, call:

It is possible that an exception is thrown when calling GetAsync or SetAsync . This can be caused by a device not

supporting secure storage, encryption keys changing, or corruption of data. It is best to handle this by removing and

adding the setting back if possible.

 Platform Implementation Specifics

 Limitations

 API

 Related Video

Android

iOS

UWP

The Android KeyStore is used to store the cipher key used to encrypt the value before it is saved into a Shared

Preferences with a filename of [YOUR-APP-PACKAGE-ID].xamarinessentials[YOUR-APP-PACKAGE-ID].xamarinessentials . The key (not a cryptographic

key, the key to the value) used in the shared preferences file is a MD5 Hash of the key passed into the

SecureStorage APIs.

API Level 23 and HigherAPI Level 23 and Higher

On newer API levels, an AESAES key is obtained from the Android KeyStore and used with an

AES/GCM/NoPaddingAES/GCM/NoPadding cipher to encrypt the value before it is stored in the shared preferences file.

API Level 22 and LowerAPI Level 22 and Lower

On older API levels, the Android KeyStore only supports storing RSARSA keys, which is used with an

RSA/ECB/PKCS1PaddingRSA/ECB/PKCS1Padding cipher to encrypt an AESAES key (randomly generated at runtime) and stored in the

shared preferences file under the key SecureStorageKey, if one has not already been generated.

SecureStorageSecureStorage uses the Preferences API and follows the same data persistence outlined in the Preferences

documentation. If a device upgrades from API level 22 or lower to API level 23 and higher, this type of

encryption will continue to be used unless the app is uninstalled or RemoveAllRemoveAll is called.

This API is intended to store small amounts of text. Performance may be slow if you try to use it to store large

amounts of text.

SecureStorage source code

SecureStorage API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/data-storage/shared-preferences.html
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/SecureStorage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.securestorage
https://channel9.msdn.com/Shows/XamarinShow/Secure-Storage-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Share
 7/15/2021 • 3 minutes to read • Edit Online

 Get started

 Using Share

using Xamarin.Essentials;

public class ShareTest
{
 public async Task ShareText(string text)
 {
 await Share.RequestAsync(new ShareTextRequest
 {
 Text = text,
 Title = "Share Text"
 });
 }

 public async Task ShareUri(string uri)
 {
 await Share.RequestAsync(new ShareTextRequest
 {
 Uri = uri,
 Title = "Share Web Link"
 });
 }
}

The ShareShare class enables an application to share data such as text and web links to other applications on the

device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Android

iOS

UWP

No additional setup required.

Add a reference to Xamarin.Essentials in your class:

The Share functionality works by calling the RequestAsync method with a data request payload that includes

information to share to other applications. Text and Uri can be mixed and each platform will handle filtering

based on content.

User interface to share to external application that appears when request is made:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/share.md

 File

var fn = "Attachment.txt";
var file = Path.Combine(FileSystem.CacheDirectory, fn);
File.WriteAllText(file, "Hello World");

await Share.RequestAsync(new ShareFileRequest
{
 Title = Title,
 File = new ShareFile(file)
});

 Multiple Files

var file1 = Path.Combine(FileSystem.CacheDirectory, "Attachment1.txt");
File.WriteAllText(file, "Content 1");
var file2 = Path.Combine(FileSystem.CacheDirectory, "Attachment2.txt");
File.WriteAllText(file, "Content 2");

await Share.RequestAsync(new ShareMultipleFilesRequest
{
 Title = ShareFilesTitle,
 Files = new List<ShareFile> { new ShareFile(file1), new ShareFile(file2) }
});

 Presentation Location

This features enables an app to share files to other applications on the device. Xamarin.Essentials will

automatically detect the file type (MIME) and request a share. Each platform may only support specific file

extensions.

Here is a sample of writing text to disk and sharing it to other apps:

The usage of share multiple files differs from the single file only in the ability of sending several files at once:

When requesting a share or opening launcher on iPadOS you have the ability to present in a pop over control.

This specifies where the pop over will appear and point an arrow directly to. This location is often the control

that launched the action. You can specify the location using the PresentationSourceBounds property:

await Share.RequestAsync(new ShareFileRequest
{
 Title = Title,
 File = new ShareFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

await Launcher.OpenAsync(new OpenFileRequest
{
 File = new ReadOnlyFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

public static class ViewHelpers
{
 public static Rectangle GetAbsoluteBounds(this Xamarin.Forms.View element)
 {
 Element looper = element;

 var absoluteX = element.X + element.Margin.Top;
 var absoluteY = element.Y + element.Margin.Left;

 // Add logic to handle titles, headers, or other non-view bars

 while (looper.Parent != null)
 {
 looper = looper.Parent;
 if (looper is Xamarin.Forms.View v)
 {
 absoluteX += v.X + v.Margin.Top;
 absoluteY += v.Y + v.Margin.Left;
 }
 }

 return new Rectangle(absoluteX, absoluteY, element.Width, element.Height);
 }

 public static System.Drawing.Rectangle ToSystemRectangle(this Rectangle rect) =>
 new System.Drawing.Rectangle((int)rect.X, (int)rect.Y, (int)rect.Width, (int)rect.Height);
}

Everything described here works equally for Share and Launcher .

If you are using Xamarin.Forms you are able to pass in a View and calculate the bounds:

This can then be used when calling RequestAsync :

public Command<Xamarin.Forms.View> ShareCommand { get; } = new Command<Xamarin.Forms.View>(Share);
async void Share(Xamarin.Forms.View element)
{
 try
 {
 Analytics.TrackEvent("ShareWithFriends");
 var bounds = element.GetAbsoluteBounds();

 await Share.RequestAsync(new ShareTextRequest
 {
 PresentationSourceBounds = bounds.ToSystemRectangle(),
 Title = "Title",
 Text = "Text"
 });
 }
 catch (Exception)
 {
 // Handle exception that share failed
 }
}

<Button Text="Share"
 Command="{Binding ShareWithFriendsCommand}"
 CommandParameter="{Binding Source={RelativeSource Self}}"/>

 Platform Differences

 API

 Related Video

You can pass in the calling element when the Command is triggered:

Android

iOS

UWP

Subject property is used for desired subject of a message.

Share source code

Share API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Share
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.share
https://channel9.msdn.com/Shows/XamarinShow/Share-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: SMS
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

<queries>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="smsto"/>
 </intent>
</queries>

 Using Sms

using Xamarin.Essentials;

The SmsSms class enables an application to open the default SMS application with a specified message to send to a

recipient.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the SmsSms functionality the following platform specific setup is required.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Add a reference to Xamarin.Essentials in your class:

The SMS functionality works by calling the ComposeAsync method an SmsMessage that contains the message's

recipient and the body of the message, both of which are optional.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/sms.md
https://developer.android.com/preview/privacy/package-visibility

public class SmsTest
{
 public async Task SendSms(string messageText, string recipient)
 {
 try
 {
 var message = new SmsMessage(messageText, new []{ recipient });
 await Sms.ComposeAsync(message);
 }
 catch (FeatureNotSupportedException ex)
 {
 // Sms is not supported on this device.
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

public class SmsTest
{
 public async Task SendSms(string messageText, string[] recipients)
 {
 try
 {
 var message = new SmsMessage(messageText, recipients);
 await Sms.ComposeAsync(message);
 }
 catch (FeatureNotSupportedException ex)
 {
 // Sms is not supported on this device.
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 API

 Related Video

Additionally, you can pass in multiple receipients to a SmsMessage :

Sms source code

Sms API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Sms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sms
https://channel9.msdn.com/Shows/XamarinShow/SMS-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Text-to-Speech
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Text-to-Speech

using Xamarin.Essentials;

public async Task SpeakNowDefaultSettings()
{
 await TextToSpeech.SpeakAsync("Hello World");

 // This method will block until utterance finishes.
}

public void SpeakNowDefaultSettings2()
{
 TextToSpeech.SpeakAsync("Hello World").ContinueWith((t) =>
 {
 // Logic that will run after utterance finishes.

 }, TaskScheduler.FromCurrentSynchronizationContext());
}

The TextToSpeechTextToSpeech class enables an application to utilize the built-in text-to-speech engines to speak back text

from the device and also to query available languages that the engine can support.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

Text-to-Speech works by calling the SpeakAsync method with text and optional parameters, and returns after the

utterance has finished.

This method takes in an optional CancellationToken to stop the utterance once it starts.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/text-to-speech.md

CancellationTokenSource cts;
public async Task SpeakNowDefaultSettings()
{
 cts = new CancellationTokenSource();
 await TextToSpeech.SpeakAsync("Hello World", cancelToken: cts.Token);

 // This method will block until utterance finishes.
}

// Cancel speech if a cancellation token exists & hasn't been already requested.
public void CancelSpeech()
{
 if (cts?.IsCancellationRequested ?? true)
 return;

 cts.Cancel();
}

bool isBusy = false;
public void SpeakMultiple()
{
 isBusy = true;
 Task.Run(async () =>
 {
 await TextToSpeech.SpeakAsync("Hello World 1");
 await TextToSpeech.SpeakAsync("Hello World 2");
 await TextToSpeech.SpeakAsync("Hello World 3");
 isBusy = false;
 });

 // or you can query multiple without a Task:
 Task.WhenAll(
 TextToSpeech.SpeakAsync("Hello World 1"),
 TextToSpeech.SpeakAsync("Hello World 2"),
 TextToSpeech.SpeakAsync("Hello World 3"))
 .ContinueWith((t) => { isBusy = false; }, TaskScheduler.FromCurrentSynchronizationContext());
}

 Speech SettingsSpeech Settings

public async Task SpeakNow()
{
 var settings = new SpeechOptions()
 {
 Volume = .75f,
 Pitch = 1.0f
 };

 await TextToSpeech.SpeakAsync("Hello World", settings);
}

PA RA M ET ERPA RA M ET ER M IN IM UMM IN IM UM M A XIM UMM A XIM UM

Pitch 0 2.0

Text-to-Speech will automatically queue speech requests from the same thread.

For more control over how the audio is spoken back with SpeechOptions that allows setting the volume, pitch,

and locale.

The following are supported values for these parameters:

Volume 0 1.0

PA RA M ET ERPA RA M ET ER M IN IM UMM IN IM UM M A XIM UMM A XIM UM

 Speech LocalesSpeech Locales

public async Task SpeakNow()
{
 var locales = await TextToSpeech.GetLocalesAsync();

 // Grab the first locale
 var locale = locales.FirstOrDefault();

 var settings = new SpeechOptions()
 {
 Volume = .75f,
 Pitch = 1.0f,
 Locale = locale
 };

 await TextToSpeech.SpeakAsync("Hello World", settings);
}

 Limitations

 API

 Related Video

Each platform supports different locales, to speak back text in different languages and accents. Platforms have

different codes and ways of specifying the locale, which is why Xamarin.Essentials provides a cross-platform

Locale class and a way to query them with GetLocalesAsync .

Utterance queue is not guaranteed if called across multiple threads.

Background audio playback is not officially supported.

TextToSpeech source code

TextToSpeech API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/TextToSpeech
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.texttospeech
https://channel9.msdn.com/Shows/XamarinShow/Text-to-Speech-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Unit Converters
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Unit Converters

using Xamarin.Essentials;

var celsius = UnitConverters.FahrenheitToCelsius(32.0);

The UnitConver tersUnitConver ters class provides several unit converters to help developers when using Xamarin.Essentials.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

All unit converters are available by using the static UnitConverters class in Xamarin.Essentials. For instance you

can easily convert Fahrenheit to Celsius.

Here is a list of available conversions:

FahrenheitToCelsius

CelsiusToFahrenheit

CelsiusToKelvin

KelvinToCelsius

MilesToMeters

MilesToKilometers

KilometersToMiles

MetersToInternationalFeet

InternationalFeetToMeters

DegreesToRadians

RadiansToDegrees

DegreesPerSecondToRadiansPerSecond

RadiansPerSecondToDegreesPerSecond

DegreesPerSecondToHertz

RadiansPerSecondToHertz

HertzToDegreesPerSecond

HertzToRadiansPerSecond

KilopascalsToHectopascals

HectopascalsToKilopascals

KilopascalsToPascals

HectopascalsToPascals

AtmospheresToPascals

PascalsToAtmospheres

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/unit-converters.md

 API

 Related Video

CoordinatesToMiles

CoordinatesToKilometers

KilogramsToPounds

PoundsToKilograms

StonesToPounds

PoundsToStones

Unit Converters source code

Unit Converters API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/UnitConverters.shared.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.unitconverters
https://channel9.msdn.com/Shows/XamarinShow/Unit-Conversion-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Version Tracking
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Version Tracking

using Xamarin.Essentials;

VersionTracking.Track();

The VersionTrackingVersionTracking class lets you check the applications version and build numbers along with seeing

additional information such as if it is the first time the application launched ever or for the current version, get

the previous build information, and more.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The first time you use the VersionTrackingVersionTracking class it will start tracking the current version. You must call Track

early only in your application each time it is loaded to ensure the current version information is tracked:

After the initial Track is called version information can be read:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/version-tracking.md

// First time ever launched application
var firstLaunch = VersionTracking.IsFirstLaunchEver;

// First time launching current version
var firstLaunchCurrent = VersionTracking.IsFirstLaunchForCurrentVersion;

// First time launching current build
var firstLaunchBuild = VersionTracking.IsFirstLaunchForCurrentBuild;

// Current app version (2.0.0)
var currentVersion = VersionTracking.CurrentVersion;

// Current build (2)
var currentBuild = VersionTracking.CurrentBuild;

// Previous app version (1.0.0)
var previousVersion = VersionTracking.PreviousVersion;

// Previous app build (1)
var previousBuild = VersionTracking.PreviousBuild;

// First version of app installed (1.0.0)
var firstVersion = VersionTracking.FirstInstalledVersion;

// First build of app installed (1)
var firstBuild = VersionTracking.FirstInstalledBuild;

// List of versions installed (1.0.0, 2.0.0)
var versionHistory = VersionTracking.VersionHistory;

// List of builds installed (1, 2)
var buildHistory = VersionTracking.BuildHistory;

 Platform Implementation Specifics

 API

 Related Video

All version information is stored using the Preferences API in Xamarin.Essentials and is stored with a filename of

[YOUR-APP-PACKAGE-ID].xamarinessentials.versiontracking[YOUR-APP-PACKAGE-ID].xamarinessentials.versiontracking and follows the same data persistence

outlined in the Preferences documentation.

Version Tracking source code

Version Tracking API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/VersionTracking
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.versiontracking
https://channel9.msdn.com/Shows/XamarinShow/Version-Tracking-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Vibration
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.Vibrate)]

<uses-permission android:name="android.permission.VIBRATE" />

 Using Vibration

using Xamarin.Essentials;

The VibrationVibration class lets you start and stop the vibrate functionality for a desired amount of time.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the VibrationVibration functionality the following platform specific setup is required.

Android

iOS

UWP

The Vibrate permission is required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the VIBRATEVIBRATE permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

The Vibration functionality can be requested for a set amount of time or the default of 500 milliseconds.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/vibrate.md

try
{
 // Use default vibration length
 Vibration.Vibrate();

 // Or use specified time
 var duration = TimeSpan.FromSeconds(1);
 Vibration.Vibrate(duration);
}
catch (FeatureNotSupportedException ex)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Other error has occurred.
}

try
{
 Vibration.Cancel();
}
catch (FeatureNotSupportedException ex)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Other error has occurred.
}

 Platform Differences

 API

 Related Video

Cancellation of device vibration can be requested with the Cancel method:

Android

iOS

UWP

No platform differences.

Vibration source code

Vibration API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Vibration
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.vibration
https://channel9.msdn.com/Shows/XamarinShow/Vibration-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Web Authenticator
 7/15/2021 • 7 minutes to read • Edit Online

 Overview

 Why use a server back end?

IMPORTANTIMPORTANT

 Get started

The WebAuthenticatorWebAuthenticator class lets you initiate browser based flows which listen for a callback to a specific URL

registered to the app.

Many apps require adding user authentication, and this often means enabling your users to sign in their existing

Microsoft, Facebook, Google, and now Apple Sign In accounts.

Microsoft Authentication Library (MSAL) provides an excellent turn-key solution to adding authentication to

your app. There's even support for Xamarin apps in their client NuGet package.

If you're interested in using your own web service for authentication, it's possible to use WebAuthenticatorWebAuthenticator to

implement the client side functionality.

Many authentication providers have moved to only offering explicit or two-legged authentication flows to

ensure better security. This means you'll need a 'client secret' from the provider to complete the authentication

flow. Unfortunately, mobile apps are not a great place to store secrets and anything stored in a mobile app's

code, binaries, or otherwise is generally considered to be insecure.

The best practice here is to use a web backend as a middle layer between your mobile app and the

authentication provider.

We strongly recommend against using older mobile-only authentication libraries and patterns which do not leverage a

web backend in the authentication flow due to their inherent lack of security for storing client secrets.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the WebAuthenticatorWebAuthenticator functionality the following platform specific setup is required.

Android

iOS

UWP

Android requires an Intent Filter setup to handle your callback URI. This is easily accomplished by subclassing

the WebAuthenticatorCallbackActivity class:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/web-authenticator.md
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview

const string CALLBACK_SCHEME = "myapp";

[Activity(NoHistory = true, LaunchMode = LaunchMode.SingleTop)]
[IntentFilter(new[] { Android.Content.Intent.ActionView },
 Categories = new[] { Android.Content.Intent.CategoryDefault, Android.Content.Intent.CategoryBrowsable },
 DataScheme = CALLBACK_SCHEME)]
public class WebAuthenticationCallbackActivity : Xamarin.Essentials.WebAuthenticatorCallbackActivity
{
}

<queries>
 <intent>
 <action android:name="android.support.customtabs.action.CustomTabsService" />
 </intent>
</queries>

 Using WebAuthenticator

using Xamarin.Essentials;

var authResult = await WebAuthenticator.AuthenticateAsync(
 new Uri("https://mysite.com/mobileauth/Microsoft"),
 new Uri("myapp://"));

var accessToken = authResult?.AccessToken;

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Properties folder and add the following inside of the manifest

node:

Add a reference to Xamarin.Essentials in your class:

The API consists mainly of a single method AuthenticateAsync which takes two parameters: The url which

should be used to start the web browser flow, and the Uri which you expect the flow to ultimately call back to

and which your app is registered to be able to handle.

The result is a WebAuthenticatorResult which includes any query parameters parsed from the callback URI:

The WebAuthenticator API takes care of launching the url in the browser and waiting until the callback is

received:

https://developer.android.com/preview/privacy/package-visibility

 Private authentication sessionPrivate authentication session

var url = new Uri("https://mysite.com/mobileauth/Microsoft");
var callbackUrl = new Uri("myapp://")
var authResult = await WebAuthenticator.AuthenticateAsync(new WebAuthenticatorOptions
 {
 Url = url,
 CallbackUrl = callbackUrl,
 PrefersEphemeralWebBrowserSession = true
 });

 Platform differences

 Apple Sign In

If the user cancels the flow at any point, a TaskCanceledException is thrown.

iOS 13 introduced an ephemeral web browser API for developers to launch the authentication session as

private. This enables developers to request that no shared cookies or browsing data is available between

authentication sessions and will be a fresh login session each time. This is available through the new

WebAuthenticatorOptions that was introduced in Xamarin.Essentials 1.7 for iOS.

Android

iOS

UWP

Custom Tabs are used whenever available, otherwise an Intent is started for the URL.

According to Apple's review guidelines, if your app uses any social login service to authenticate, it must also

offer Apple Sign In as an option.

To add Apple Sign In to your apps, first you'll need to configure your app to use Apple Sign In.

For iOS 13 and higher you'll want to call the AppleSignInAuthenticator.AuthenticateAsync() method. This will

use the native Apple Sign in API's under the hood so your users get the best experience possible on these

devices. You can write your shared code to use the right API at runtime like this:

https://developer.apple.com/app-store/review/guidelines/#sign-in-with-apple
https://docs.microsoft.com/en-us/xamarin/ios/platform/ios13/sign-in

var scheme = "..."; // Apple, Microsoft, Google, Facebook, etc.
WebAuthenticatorResult r = null;

if (scheme.Equals("Apple")
 && DeviceInfo.Platform == DevicePlatform.iOS
 && DeviceInfo.Version.Major >= 13)
{
 // Use Native Apple Sign In API's
 r = await AppleSignInAuthenticator.AuthenticateAsync();
}
else
{
 // Web Authentication flow
 var authUrl = new Uri(authenticationUrl + scheme);
 var callbackUrl = new Uri("xamarinessentials://");

 r = await WebAuthenticator.AuthenticateAsync(authUrl, callbackUrl);
}

var authToken = string.Empty;
if (r.Properties.TryGetValue("name", out var name) && !string.IsNullOrEmpty(name))
 authToken += $"Name: {name}{Environment.NewLine}";
if (r.Properties.TryGetValue("email", out var email) && !string.IsNullOrEmpty(email))
 authToken += $"Email: {email}{Environment.NewLine}";

// Note that Apple Sign In has an IdToken and not an AccessToken
authToken += r?.AccessToken ?? r?.IdToken;

TIPTIP

 ASP.NET core server back end

services.AddAuthentication(o =>
 {
 o.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 })
 .AddCookie()
 .AddFacebook(fb =>
 {
 fb.AppId = Configuration["FacebookAppId"];
 fb.AppSecret = Configuration["FacebookAppSecret"];
 fb.SaveTokens = true;
 });

For non-iOS 13 devices this will start the web authentication flow, which can also be used to enable Apple Sign In on your

Android and UWP devices. You can sign into your iCloud account on your iOS simulator to test Apple Sign In.

It's possible to use the WebAuthenticator API with any web back end service. To use it with an ASP.NET core app,

first you need to configure the web app with the following steps:

1. Setup your desired external social authentication providers in an ASP.NET Core web app.

2. Set the Default Authentication Scheme to CookieAuthenticationDefaults.AuthenticationScheme in your

.AddAuthentication() call.

3. Use .AddCookie() in your Startup.cs .AddAuthentication() call.

4. All providers must be configured with .SaveTokens = true; .

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/?tabs=visual-studio

TIPTIP

 Add a custom mobile auth controllerAdd a custom mobile auth controller

[Route("mobileauth")]
[ApiController]
public class AuthController : ControllerBase
{
 const string callbackScheme = "myapp";

 [HttpGet("{scheme}")] // eg: Microsoft, Facebook, Apple, etc
 public async Task Get([FromRoute]string scheme)
 {
 // 1. Initiate authentication flow with the scheme (provider)
 // 2. When the provider calls back to this URL
 // a. Parse out the result
 // b. Build the app callback URL
 // c. Redirect back to the app
 }
}

NOTENOTE

 API

If you'd like to include Apple Sign In, you can use the AspNet.Security.OAuth.Apple NuGet package. You can view the

full Startup.cs sample in the Essentials GitHub repository.

With a mobile authentication flow it is usually desirable to initiate the flow directly to a provider that the user

has chosen (e.g. by clicking a "Microsoft" button on the sign in screen of the app). It is also important to be able

to return relevant information to your app at a specific callback URI to end the authentication flow.

To achieve this, use a custom API Controller :

The purpose of this controller is to infer the scheme (provider) that the app is requesting, and initiate the

authentication flow with the social provider. When the provider calls back to the web backend, the controller

parses out the result and redirects to the app's callback URI with parameters.

Sometimes you may want to return data such as the provider's access_token back to the app which you can do

via the callback URI's query parameters. Or, you may want to instead create your own identity on your server

and pass back your own token to the app. What and how you do this part is up to you!

Check out the full controller sample in the Essentials repository.

The above sample demonstrates how to return the Access Token from the 3rd party authentication (ie: OAuth) provider.

To obtain a token you can use to authorize web requests to the web backend itself, you should create your own token in

your web app, and return that instead. The Overview of ASP.NET Core authentication has more information about

advanced authentication scenarios in ASP.NET Core.

WebAuthenticator source code

WebAuthenticator API documentation

ASP.NET Core Server Sample

https://github.com/xamarin/Essentials/blob/develop/Samples/Sample.Server.WebAuthenticator/Startup.cs#L32-L60
https://github.com/xamarin/Essentials/blob/develop/Samples/Sample.Server.WebAuthenticator/Controllers/MobileAuthController.cs
https://docs.microsoft.com/en-us/aspnet/core/security/authentication
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/WebAuthenticator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.webauthenticator
https://github.com/xamarin/Essentials/blob/develop/Samples/Sample.Server.WebAuthenticator/

Xamarin.Essentials: Troubleshooting
 11/2/2020 • 2 minutes to read • Edit Online

 Error: Version conflict detected for Xamarin.Android.Support.Compat

NU1107: Version conflict detected for Xamarin.Android.Support.Compat. Reference the package directly from
the project to resolve this issue.
 MyApp -> Xamarin.Essentials 1.3.1 -> Xamarin.Android.Support.CustomTabs 28.0.0.3 ->
Xamarin.Android.Support.Compat (= 28.0.0.3)
 MyApp -> Xamarin.Forms 3.1.0.583944 -> Xamarin.Android.Support.v4 25.4.0.2 ->
Xamarin.Android.Support.Compat (= 25.4.0.2).

The following error may occur when updating NuGet packages (or adding a new package) with a

Xamarin.Forms project that uses Xamarin.Essentials:

The problem is mismatched dependencies for the two NuGets. This can be resolved by manually adding a

specific version of the dependency (in this case Xamarin.Android.Suppor t.CompatXamarin.Android.Suppor t.Compat) that can support both.

To do this, add the NuGet that is the source of the conflict manually, and use the VersionVersion list to select a specific

version. Currently version 28.0.0.3 of the Xamarin.Android.Support.Compat &

Xamarin.Android.Support.Core.Util NuGet will resolve this error.

Refer to this blog post for more information and a video on how to resolve the issue.

If run into any issues or find a bug please report it on the Xamarin.Essentials GitHub repository.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/troubleshooting.md
https://redth.codes/how-to-fix-the-dreaded-version-conflict-nuget-error-in-your-xamarin-android-projects/
https://github.com/xamarin/Essentials

Data and Cloud Services
 10/28/2019 • 2 minutes to read • Edit Online

 Data and Cloud Services

 Data Access

 Google Messaging

Xamarin.Android applications often need access to data (from either a local database or from the cloud), and

many of these apps consume web services implemented using a wide variety of technologies. The guides in this

section examine how to access data and make use of cloud services.

This section discusses data access in Xamarin.Android using SQLite as the database engine.

Google provides both Firebase Cloud Messaging and legacy Google Cloud Messaging services for facilitating

messaging between mobile apps and server applications. This section provides overviews for each service

provided by step-by-step explanation of how to use these services to implement remote notifications (also

called push notifications) in Xamarin.Android applications.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/index.md

Microsoft Azure Active Directory
 7/12/2021 • 2 minutes to read • Edit Online

 Getting Started

 Office 365

 Graph API

Azure Active Directory allows developers to secure resources such as files, links, and Web APIs, Office 365, and

more using the same organizational account that employees use to sign in to their systems or check their

emails.

Follow the getting started instructions to configure the Azure portal and add Active Directory authentication to

your Xamarin apps.

1. Registering with Azure Active Directory on the windowsazure.com portal, then

2. Configure services.

3. Hook up one of the following:

Once you have added Active Directory authentication to an app, you can also use the credentials to interact with

Office 365.

Learn how to access the Graph API using Xamarin (also covered in our blog).

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/data-cloud/active-directory/index.md
https://blog.xamarin.com/authenticate-xamarin-mobile-apps-using-azure-active-directory/

Azure Active Directory
 7/12/2021 • 2 minutes to read • Edit Online

 Conclusion

 Related Links

Register an app to use Azure Active Directory

Azure Active Directory allows developers to secure resources such as files, links, and Web APIs using the same

organizational account that employees use to sign in to their systems or check their emails.

Developing mobile applications which can authenticate with Azure Active Directory involves three steps. The

first two steps are generally the same, regardless of what services you plan to use. The third step is different for

each service-type:

1. Registering with Azure Active Directory on the windowsazure.com portal, then

2. Configure services.

3. Develop mobile apps using the services.

Examples of different services you can access include:

Graph API

Web API

Office365

Using the steps above you can authenticate your mobile apps against Azure Active Directory. The Active

Directory Authentication Library (ADAL) makes it much easier with fewer lines of code, while keeping most of

the code the same and thus making it shareable across platforms.

Microsoft NativeClient sample

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/data-cloud/active-directory/get-started/index.md
https://github.com/AzureADSamples/NativeClient-MultiTarget-DotNet

Step 1. Register an app to use Azure Active
Directory

 7/12/2021 • 2 minutes to read • Edit Online

1. Navigate to windowsazure.com and log in with your Microsoft Account or Organization Account in the

Azure Portal. If you don’t have an Azure subscription, you can get a trial from azure.com

2. After signing in, go to the Active Director yActive Director y (1) section and choose the directory where you want to

register the application (2)

3. Click AddAdd to create new application, then select Add an application my organization is developingAdd an application my organization is developing

4. On the next screen, give your app a name (eg. XAM-DEMO). Make sure you select Native ClientNative Client

ApplicationApplication as the type of application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/data-cloud/active-directory/get-started/register.md
https://manage.windowsazure.com
https://www.azure.com
file:///T:/c1uy/n1bv/xamarin/cross-platform/data-cloud/active-directory/get-started/register-images/01.-active-directory-in-azure-portal.jpg#lightbox
file:///T:/c1uy/n1bv/xamarin/cross-platform/data-cloud/active-directory/get-started/register-images/02.-add-new-application.jpg#lightbox

5. On the final screen, provide a *Redirect URI that is unique to your application as it will return to this URI

when authentication is complete.

6. Once the app is created, navigate to the ConfigureConfigure tab. Write down the Client IDClient ID which we’ll use in our

application later. Also, on this screen you can give your mobile application access to Active Directory or

add another application like Web API or Office365, which can be used by mobile application once

authentication is complete.

 Related Links
Microsoft NativeClient sample

https://github.com/AzureADSamples/NativeClient-MultiTarget-DotNet

Step 2. Configure Service Access for Mobile
Application

 7/12/2021 • 2 minutes to read • Edit Online

Whenever any resource e.g. web application, web service, etc. needs to be secured by Azure Active Directory, it

needs to be registered. All the secure applications or services can be seen under ApplicationsApplications tab. Here you can

select the application which needs to be accessed from mobile application and give access to it.

1. On the ConfigureConfigure tab, locate permissions to other applicationspermissions to other applications section:

2. Click on Add applicationAdd application button. On the next screen pop-up you should see list of all the applications

which are secured by Azure Active Directory. Select the applications that needs to be accessed from the

mobile application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/data-cloud/active-directory/get-started/configure.md

3. After selecting the application, once again select the newly-added application in permissions to otherpermissions to other

applicationsapplications section and give appropriate rights.

4. Finally, SaveSave the configuration. These services should now be available in mobile applications!

Related Links
Microsoft NativeClient sample

https://github.com/AzureADSamples/NativeClient-MultiTarget-DotNet

Accessing the Graph API
 7/12/2021 • 3 minutes to read • Edit Online

 Step 3. Adding Active Directory authentication to an app

IMPORTANTIMPORTANT

Follow these steps to use the Graph API from within a Xamarin application:

1. Registering with Azure Active Directory on the windowsazure.com portal, then

2. Configure services.

In your application, add a reference to Azure Active Director y Authentication L ibrar y (Azure ADAL)Azure Active Director y Authentication L ibrar y (Azure ADAL)

using the NuGet Package Manager in Visual Studio or Visual Studio for Mac. Make sure you select Show pre-Show pre-

release packagesrelease packages to include this package, as it is still in preview.

Note: Azure ADAL 3.0 is currently a preview and there may be breaking changes before the final version is released.

In your application, you will now need to add the following class level variables that are required for the

authentication flow.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/data-cloud/active-directory/graph.md

//Client ID
public static string clientId = "25927d3c-.....-63f2304b90de";
public static string commonAuthority = "https://login.windows.net/common"
//Redirect URI
public static Uri returnUri = new Uri("http://xam-demo-redirect");
//Graph URI if you've given permission to Azure Active Directory
const string graphResourceUri = "https://graph.windows.net";
public static string graphApiVersion = "2013-11-08";
//AuthenticationResult will hold the result after authentication completes
AuthenticationResult authResult = null;

 Write method to acquire Access TokenWrite method to acquire Access Token

public static async Task<AuthenticationResult> GetAccessToken
 (string serviceResourceId, Activity activity)
{
 authContext = new AuthenticationContext(Authority);
 if (authContext.TokenCache.ReadItems().Count() > 0)
 authContext = new AuthenticationContext(authContext.TokenCache.ReadItems().First().Authority);
 var authResult = await authContext.AcquireTokenAsync(serviceResourceId, clientId, returnUri, new
AuthorizationParameters(activity));
 return authResult;
}

 Handle continuation for AndroidHandle continuation for Android

protected override void OnActivityResult(int requestCode, Result resultCode, Intent data)
{
 base.OnActivityResult(requestCode, resultCode, data);
 AuthenticationAgentContinuationHelper.SetAuthenticationAgentContinuationEventArgs(requestCode, resultCode,
data);
}

 Handle continuation for Windows PhoneHandle continuation for Windows Phone

One thing to note here is commonAuthority . When the authentication endpoint is common , your app becomes

multi-tenantmulti-tenant, which means any user can use login with their Active Directory credentials. After authentication,

that user will work on the context of their own Active Directory – i.e. they will see details related to his Active

Directory.

The following code (for Android) will start the authentication and upon completion assign the result in

authResult . The iOS and Windows Phone implementations differ slightly: the second parameter (Activity) is

different on iOS and absent on Windows Phone.

In the above code, the AuthenticationContext is responsible for the authentication with commonAuthority. It has

an AcquireTokenAsync method, which take parameters as a resource which needs to be accessed, in this case

graphResourceUri , clientId , and returnUri . The app will return to the returnUri when authentication

completes. This code will remain the same for all platforms, however, the last parameter,

AuthorizationParameters , will be different on different platforms and is responsible for governing the

authentication flow.

In the case of Android or iOS, we pass this parameter to AuthorizationParameters(this) to share the context,

whereas in Windows it is passed without any parameter as new AuthorizationParameters() .

After authentication is complete, the flow should return to the app. In the case of Android it is handled by

following code, which should be added to MainActivity.csMainActivity.cs :

For Windows Phone modify the OnActivated method in the App.xaml.csApp.xaml.cs file with the below code:

protected override void OnActivated(IActivatedEventArgs args)
{
#if WINDOWS_PHONE_APP
 if (args is IWebAuthenticationBrokerContinuationEventArgs)
 {
 WebAuthenticationBrokerContinuationHelper.SetWebAuthenticationBrokerContinuationEventArgs(args as
IWebAuthenticationBrokerContinuationEventArgs);
 }
#endif
 base.OnActivated(args);
}

Now if you run the application, you should see an authentication dialog. Upon successful authentication, it will

ask your permissions to access the resources (in our case Graph API):

If authentication is successful and you’ve authorized the app to access the resources, you should get an

AccessToken and RefreshToken combo in authResult . These tokens are required for further API calls and for

authorization with Azure Active Directory behind the scenes.

var client = new HttpClient();
var request = new HttpRequestMessage(HttpMethod.Get,
 "https://graph.windows.net/tendulkar.onmicrosoft.com/users?api-version=2013-04-05");
request.Headers.Authorization =
 new AuthenticationHeaderValue("Bearer", authResult.AccessToken);
var response = await client.SendAsync(request);
var content = await response.Content.ReadAsStringAsync();

For example, the code below allows you to get a user list from Active Directory. You can replace the Web API

URL with your Web API which is protected by Azure AD.

Xamarin mobile apps with Azure and App Center
 7/12/2021 • 2 minutes to read • Edit Online

 App Center

 Azure

 Download the poster

Xamarin developers can take advantage of a wide variety of cloud services, from continuous integration build

with App Center to machine learning with Azure. Download this poster or follow the links below to learn more.

Visual Studio App Center supports end to end and integrated services central to mobile app development.

Developers can use BuildBuild, TestTest and Distr ibuteDistr ibute services to set up a Continuous Integration and Delivery

pipeline. Once the app is deployed, developers can monitor the status and usage of their app using the

AnalyticsAnalytics and DiagnosticsDiagnostics services, and engage with users using the PushPush service. Developers can also

leverage AuthAuth to authenticate their users and the DataData service to persist and sync app data in the cloud.

If you are looking to integrate cloud services in your Xamarin apps, visit the docs and sign up with App Center

today.

Learn about mobile app development with cloud services, including SignalR, cognitive services, machine

learning, spatial anchors, search, and more.

Download this PDF (180kb) reference of the most popular Azure and App Center services available for mobile

app development with Xamarin:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/data-cloud/mobile-apps.md
https://docs.microsoft.com/en-us/xamarin/guides/cross-platform/azure/resources/poster.pdf
https://docs.microsoft.com/en-us/appcenter
https://appcenter.ms/signup?utm_source=XamarinDocs&utm_medium=Azure&utm_campaign=docs
https://docs.microsoft.com/en-us/azure/mobile-apps/
https://docs.microsoft.com/en-us/xamarin/guides/cross-platform/azure/resources/poster.pdf
https://docs.microsoft.com/en-us/xamarin/guides/cross-platform/azure/resources/poster.pdf

Xamarin.Android Data Access
 10/28/2019 • 2 minutes to read • Edit Online

 Data Access Overview

 Related Links

Most applications have some requirement to save data on the device locally. Unless the amount of data is

trivially small, this usually requires a database and a data layer in the application to manage database access.

Android has the SQLite database engine 'built in' and access to store and retrieve data is simplified by Xamarin's

platform. This document shows how to access an SQLite database in a cross-platform way.

Most applications have some requirement to save data on the device locally. Unless the amount of data is

trivially small, this usually requires a database and a data layer in the application to manage database access.

Android both has the SQLite database engine "built in" and access to the data is simplified by Xamarin's platform

which comes with the SQLite Data Provider.

Xamarin.Android support database access APIs such as:

ADO.NET framework.

SQLite-NET 3rd party library.

The majority of the code in this section is completely cross-platform and will run on iOS or Android without

modification. There are two sample apps discussed:

DataAccess_BasicDataAccess_Basic – Simple data operations writes the results to a text display control;

DataAccess_AdvancedDataAccess_Advanced – Integrates data operations into a small working application that lists and edits

a simple data structure.

Both sample solutions contain iOS and Android sample application projects.

For Xamarin.Forms applications, read working with databases which explains how to work with SQLite in a PCL

library with Xamarin.Forms.

The topics in this section discuss data access in Xamarin.Android using SQLite as the database engine. The

database can be accessed "directly" by using ADO.NET syntax or you can include the SQLite.NET ORM and

perform data operations in C#.

Two samples are reviewed: one that contains very simple data access code that outputs to a text field, and a

simple application that includes create, read, update and delete functionality. Threading and how to seed your

application with a pre-populated SQLite database is also discussed.

For additional examples of cross-platform data access see our Tasky Pro case study.

DataAccess Basic (sample)

DataAccess Advanced (sample)

Android Data Recipes

Xamarin.Forms data access

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/data-access/index.md
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Basic
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Advanced
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/case-study-tasky
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Basic
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Advanced
https://github.com/xamarin/recipes/tree/master/Recipes/android/data
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases

Introduction
 10/29/2019 • 3 minutes to read • Edit Online

 When to use a Database

 Advantages of using a Database

 SQLite Database Engine

While the storage and processing capabilities of mobile devices are increasing, phones and tablets still lag

behind their desktop and laptop counterparts. For this reason it is worth taking some time to plan the data

storage architecture for your app rather than just assuming a database is the right answer all the time. There are

a number of different options that suit different requirements, such as:

PreferencesPreferences – Android offers a built-in mechanism for storing simple key-value pairs of data. If you are

storing simple user settings or small pieces of data (such as personalization information) then use the

platform’s native features for storing this type of information.

Text FilesText Files – User input or caches of downloaded content (eg. HTML) can be stored directly on the file-

system. Use an appropriate file-naming convention to help you organize the files and find data.

Ser ialized Data FilesSerialized Data Files – Objects can be persisted as XML or JSON on the file-system. The .NET framework

includes libraries that make serializing and de-serializing objects easy. Use appropriate names to organize

data files.

DatabaseDatabase – The SQLite database engine is available on the Android platform, and is useful for storing

structured data that you need to query, sort or otherwise manipulate. Database storage is suited to lists of

data with many properties.

Image filesImage files – Although it’s possible to store binary data in the database on a mobile device, it is

recommended that you store them directly in the file-system. If necessary you can store the filenames in a

database to associate the image with other data. When dealing with large images, or lots of images, it is good

practice to plan a caching strategy that deletes files you no longer need to avoid consuming all the user ’s

storage space.

If a database is the right storage mechanism for your app, the remainder of this document discusses how to use

SQLite on the Xamarin platform.

There are a number of advantages to using an SQL database in your mobile app:

SQL databases allow efficient storage of structured data.

Specific data can be extracted with complex queries.

Query results can be sorted.

Query results can be aggregated.

Developers with existing database skills can utilize their knowledge to design the database and data access

code.

The data model from the server component of a connected application may be re-used (in whole or in part)

in the mobile application.

SQLite is an open-source database engine that has been adopted by Google for their mobile platform. The

SQLite database engine is built-in to both operating systems so there is no additional work for developers to

take advantage of it. SQLite is well suited to cross-platform mobile development because:

The database engine is small, fast and easily portable.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/data-access/introduction.md

 Windows and Windows Phone

 Related Links

A database is stored in a single file, which is easy to manage on mobile devices.

The file format is easy to use across platforms: whether 32- or 64-bit, and big- or little-endian systems.

It implements most of the SQL92 standard.

Because SQLite is designed to be small and fast, there are some caveats on its use:

Some OUTER join syntax is not supported.

Only table RENAME and ADDCOLUMN are supported. You cannot perform other modifications to your

schema.

Views are read-only.

You can learn more about SQLite on the website - SQLite.org - however all the information you need to use

SQLite with Xamarin is contained in this document and associated samples. The SQLite database engine has

been supported in Android since Android 2. Although not covered in this chapter, SQLite is also available for use

on Windows Phone and Windows applications.

SQLite can also be used on Windows platforms, although those platforms are not covered in this document.

Read more in the Tasky and Tasky Pro case studies, and review Tim Heuer’s blog.

DataAccess Basic (sample)

DataAccess Advanced (sample)

Android Data Recipes

Xamarin.Forms data access

https://sqlite.org
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/case-study-tasky
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/case-study-tasky
https://timheuer.com/blog/archive/2012/06/28/seeding-your-metro-style-app-with-sqlite-database.aspx
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Basic
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Advanced
https://github.com/xamarin/recipes/tree/master/Recipes/android/data
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases

Configuration
 10/28/2019 • 2 minutes to read • Edit Online

 Database File Path

string dbPath = Path.Combine (
 Environment.GetFolderPath (Environment.SpecialFolder.Personal),
 "database.db3");
// dbPath contains a valid file path for the database file to be stored

var sqliteFilename = "MyDatabase.db3";
#if __ANDROID__
// Just use whatever directory SpecialFolder.Personal returns
string libraryPath = Environment.GetFolderPath(Environment.SpecialFolder.Personal); ;
#else
// we need to put in /Library/ on iOS5.1 to meet Apple's iCloud terms
// (they don't want non-user-generated data in Documents)
string documentsPath = Environment.GetFolderPath (Environment.SpecialFolder.Personal); // Documents folder
string libraryPath = Path.Combine (documentsPath, "..", "Library"); // Library folder instead
#endif
var path = Path.Combine (libraryPath, sqliteFilename);

 Threading

object locker = new object(); // class level private field
// rest of class code
lock (locker){
 // Do your query or insert here
}

To use SQLite in your Xamarin.Android application you will need to determine the correct file location for your

database file.

Regardless of which data access method you use, you must create a database file before data can be stored with

SQLite. Depending on what platform you are targeting the file location will be different. For Android you can use

Environment class to construct a valid path, as shown in the following code snippet:

There are other things to take into consideration when deciding where to store the database file. For example,

on Android you can choose whether to use internal or external storage.

If you wish to use a different location on each platform in your cross platform application you can use a

compiler directive as shown to generate a different path for each platform:

For hints on using the file system in Android, refer to the Browse Files recipe. See the Building Cross Platform

Applications document for more information on using compiler directives to write code specific to each

platform.

You should not use the same SQLite database connection across multiple threads. Be careful to open, use and

then close any connections you create on the same thread.

To ensure that your code is not attempting to access the SQLite database from multiple threads at the same

time, manually take a lock whenever you are going to access the database, like this:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/data-access/configuration.md
https://github.com/xamarin/recipes/tree/master/Recipes/android/data/files/browse_files
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/index

 Related Links

All database access (reads, writes, updates, etc.) should be wrapped with the same lock. Care must be taken to

avoid a deadlock situation by ensuring that the work inside the lock clause is kept simple and does not call out

to other methods that may also take a lock!

DataAccess Basic (sample)

DataAccess Advanced (sample)

Android Data Recipes

Xamarin.Forms data access

https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Basic
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Advanced
https://github.com/xamarin/recipes/tree/master/Recipes/android/data
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases

Using SQLite.NET with Android
 7/8/2021 • 6 minutes to read • Edit Online

TIPTIP

The SQLite.NET library that Xamarin recommends is a very basic ORM that lets you easily store and retrieve

objects in the local SQLite database on an Android device. ORM stands for Object Relational Mapping – an API

that lets you save and retrieve "objects" from a database without writing SQL statements.

To include the SQLite.NET library in a Xamarin app, add the following NuGet package to your project:

Package Name:Package Name: sqlite-net-pcl

Author :Author : Frank A. Krueger

Id:Id: sqlite-net-pcl

Url:Ur l: nuget.org/packages/sqlite-net-pcl

There are a number of different SQLite packages available – be sure to choose the correct one (it might not be the top

result in search).

Once you have the SQLite.NET library available, follow these three steps to use it to access a database:

using SQLite;

var db = new SQLiteConnection (dbPath);

1. Add a using statementAdd a using statement – Add the following statement to the C# files where data access is required:

2. Create a Blank DatabaseCreate a Blank Database – A database reference can be created by passing the file path the

SQLiteConnection class constructor. You do not need to check if the file already exists – it will

automatically be created if required, otherwise the existing database file will be opened. The dbPath

variable should be determined according the rules discussed earlier in this document:

3. Save DataSave Data – Once you have created a SQLiteConnection object, database commands are executed by

calling its methods, such as CreateTable and Insert like this:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/data-access/using-sqlite-orm.md
https://www.nuget.org/packages/sqlite-net-pcl/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/data-access/using-sqlite-orm-images/image1a.png#lightbox

 Basic Data Access Sample

using SQLite; // from the github SQLite.cs class

db.CreateTable<Stock> ();
db.Insert (newStock); // after creating the newStock object

var stock = db.Get<Stock>(5); // primary key id of 5
var stockList = db.Table<Stock>();

4. Retr ieve DataRetr ieve Data – To retrieve an object (or a list of objects) use the following syntax:

The DataAccess_Basic sample code for this document looks like this when running on Android. The code

illustrates how to perform simple SQLite.NET operations and shows the results in as text in the application's

main window.

AndroidAndroid

The following code sample shows an entire database interaction using the SQLite.NET library to encapsulate the

underlying database access. It shows:

1. Creating the database file

2. Inserting some data by creating objects and then saving them

3. Querying the data

You'll need to include these namespaces:

The last one requires that you have added SQLite to your project. Note that the SQLite database table is defined

by adding attributes to a class (the Stock class) rather than a CREATE TABLE command.

[Table("Items")]
public class Stock {
 [PrimaryKey, AutoIncrement, Column("_id")]
 public int Id { get; set; }
 [MaxLength(8)]
 public string Symbol { get; set; }
}
public static void DoSomeDataAccess () {
 Console.WriteLine ("Creating database, if it doesn't already exist");
 string dbPath = Path.Combine (
 Environment.GetFolderPath (Environment.SpecialFolder.Personal),
 "ormdemo.db3");
 var db = new SQLiteConnection (dbPath);
 db.CreateTable<Stock> ();
 if (db.Table<Stock> ().Count() == 0) {
 // only insert the data if it doesn't already exist
 var newStock = new Stock ();
 newStock.Symbol = "AAPL";
 db.Insert (newStock);
 newStock = new Stock ();
 newStock.Symbol = "GOOG";
 db.Insert (newStock);
 newStock = new Stock ();
 newStock.Symbol = "MSFT";
 db.Insert (newStock);
 }
 Console.WriteLine("Reading data");
 var table = db.Table<Stock> ();
 foreach (var s in table) {
 Console.WriteLine (s.Id + " " + s.Symbol);
 }
}

 SQLite Attributes

Using the [Table] attribute without specifying a table name parameter will cause the underlying database table

to have the same name as the class (in this case, "Stock"). The actual table name is important if you write SQL

queries directly against the database rather than use the ORM data access methods. Similarly the

[Column("_id")] attribute is optional, and if absent a column will be added to the table with the same name as

the property in the class.

Common attributes that you can apply to your classes to control how they are stored in the underlying database

include:

[Pr imar yKey][Pr imar yKey] – This attribute can be applied to an integer property to force it to be the underlying

table's primary key. Composite primary keys are not supported.

[AutoIncrement][AutoIncrement] – This attribute will cause an integer property's value to be auto-increment for each

new object inserted into the database

[Column(name)][Column(name)] – The name parameter sets the underlying database column's name.

[Table(name)][Table(name)] – Marks the class as being able to be stored in an underlying SQLite table with the name

specified.

[MaxLength(value)][MaxLength(value)] – Restrict the length of a text property, when a database insert is attempted.

Consuming code should validate this prior to inserting the object as this attribute is only 'checked' when

a database insert or update operation is attempted.

[Ignore][Ignore] – Causes SQLite.NET to ignore this property. This is particularly useful for properties that have a

type that cannot be stored in the database, or properties that model collections that cannot be resolved

 More Complex Queries

 Getting an object by the primary keyGetting an object by the primary key

var existingItem = db.Get<Stock>(3);

 Selecting an object using LinqSelecting an object using Linq

var apple = from s in db.Table<Stock>()
 where s.Symbol.StartsWith ("A")
 select s;
Console.WriteLine ("-> " + apple.FirstOrDefault ().Symbol);

 Selecting an object using SQLSelecting an object using SQL

var stocksStartingWithA = db.Query<Stock>("SELECT * FROM Items WHERE Symbol = ?", "A");
foreach (var s in stocksStartingWithA) {
 Console.WriteLine ("a " + s.Symbol);
}

NOTENOTE

 Deleting an objectDeleting an object

automatically by SQLite.

[Unique][Unique] – Ensures that the values in the underlying database column are unique.

Most of these attributes are optional. You should always specify an integer primary key so that selection and

deletion queries can be performed efficiently on your data.

The following methods on SQLiteConnection can be used to perform other data operations:

Inser tInser t – Adds a new object to the database.

Get<T>Get<T> – Attempts to retrieve an object using the primary key.

Table<T>Table<T> – Returns all the objects in the table.

DeleteDelete – Deletes an object using its primary key.

Quer y<T>Quer y<T> – Perform an SQL query that returns a number of rows (as objects).

ExecuteExecute – Use this method (and not Query) when you don't expect rows back from the SQL (such as

INSERT, UPDATE and DELETE instructions).

SQLite.Net provides the Get method to retrieve a single object based on its primary key.

Methods that return collections support IEnumerable<T> so you can use Linq to query or sort the contents of a

table. The following code shows an example using Linq to filter out all entries that begin with the letter "A":

Even though SQLite.Net can provide object-based access to your data, sometimes you might need to do a more

complex query than Linq allows (or you may need faster performance). You can use SQL commands with the

Query method, as shown here:

When writing SQL statements directly you create a dependency on the names of tables and columns in your database,

which have been generated from your classes and their attributes. If you change those names in your code you must

remember to update any manually written SQL statements.

var rowcount = db.Delete<Stock>(someStock.Id); // Id is the primary key

 Using SQLite.NET with Multiple Threads

using using Mono.Data.Sqlite;
...
SqliteConnection.SetConfig(SQLiteConfig.Serialized);

 Related Links

The primary key is used to delete the row, as shown here:

You can check the rowcount to confirm how many rows were affected (deleted in this case).

SQLite supports three different threading modes: Single-thread, Multi-thread, and Serialized. If you want to

access the database from multiple threads without any restrictions, you can configure SQLite to use the

SerializedSerialized threading mode. It's important to set this mode early in your application (for example, at the

beginning of the OnCreate method).

To change the threading mode, call SqliteConnection.SetConfig . For example, this line of code configures SQLite

for Ser ializedSerialized mode:

The Android version of SQLite has a limitation that requires a few more steps. If the call to

SqliteConnection.SetConfig produces a SQLite exception such as library used incorrectly , then you must use

the following workaround:

[DllImport("libsqlite.so")]
internal static extern int sqlite3_shutdown();

[DllImport("libsqlite.so")]
internal static extern int sqlite3_initialize();

using using Mono.Data.Sqlite;
...
sqlite3_shutdown();
SqliteConnection.SetConfig(SQLiteConfig.Serialized);
sqlite3_initialize();

1. Link to the native libsqlite.solibsqlite.so library so that the sqlite3_shutdown and sqlite3_initialize APIs are

made available to the app:

2. At the very beginning of the OnCreate method, add this code to shutdown SQLite, configure it for

Ser ializedSerialized mode, and reinitialize SQLite:

This workaround also works for the Mono.Data.Sqlite library. For more information about SQLite and multi-

threading, see SQLite and Multiple Threads.

DataAccess Basic (sample)

DataAccess Advanced (sample)

Xamarin.Forms data access

https://www.sqlite.org/threadsafe.html
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Basic
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Advanced
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases

Using ADO.NET with Android
 7/8/2021 • 5 minutes to read • Edit Online

 Assembly References

 About Mono.Data.Sqlite

var connection = new SqliteConnection ("Data Source=" + dbPath);
connection.Open();
// do stuff
connection.Close();

Xamarin has built-in support for the SQLite database that is available on Android and can be exposed using

familiar ADO.NET-like syntax. Using these APIs requires you to write SQL statements that are processed by

SQLite, such as CREATE TABLE , INSERT and SELECT statements.

To use access SQLite via ADO.NET you must add System.Data and Mono.Data.Sqlite references to your Android

project, as shown here:

Visual Studio

Visual Studio for Mac

Right-click References > Edit References...References > Edit References... then click to select the required assemblies.

We will use the Mono.Data.Sqlite.SqliteConnection class to create a blank database file and then to instantiate

SqliteCommand objects that we can use to execute SQL instructions against the database.

Creating a Blank DatabaseCreating a Blank Database – Call the CreateFile method with a valid (i.e. writeable) file path. You should

check whether the file already exists before calling this method, otherwise a new (blank) database will be

created over the top of the old one, and the data in the old file will be lost.

Mono.Data.Sqlite.SqliteConnection.CreateFile (dbPath); The dbPath variable should be determined according

the rules discussed earlier in this document.

Creating a Database ConnectionCreating a Database Connection – After the SQLite database file has been created you can create a

connection object to access the data. The connection is constructed with a connection string which takes the

form of Data Source=file_path , as shown here:

As mentioned earlier, a connection should never be re-used across different threads. If in doubt, create the

connection as required and close it when you're done; but be mindful of doing this more often than required

too.

Creating and Executing a Database CommandCreating and Executing a Database Command – Once we have a connection we can execute arbitrary SQL

commands against it. The code below shows a CREATE TABLE statement being executed.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/data-access/using-adonet.md

using (var command = connection.CreateCommand ()) {
 command.CommandText = "CREATE TABLE [Items] ([_id] int, [Symbol] ntext, [Name] ntext);";
 var rowcount = command.ExecuteNonQuery ();
}

 Basic Data Access

using System;
using System.IO;
using Mono.Data.Sqlite;

When executing SQL directly against the database you should take the normal precautions not to make invalid

requests, such as attempting to create a table that already exists. Keep track of the structure of your database so

that you don't cause a SqliteException such as SQLite error table [Items] already existsSQLite error table [Items] already exists .

The DataAccess_Basic sample code for this document looks like this when running on Android:

The code below illustrates how to perform simple SQLite operations and shows the results in as text in the

application's main window.

You'll need to include these namespaces:

The following code sample shows an entire database interaction:

1. Creating the database file

2. Inserting some data

3. Querying the data

These operations would typically appear in multiple places throughout your code, for example you may create

the database file and tables when your application first starts and perform data reads and writes in individual

screens in your app. In the example below have been grouped into a single method for this example:

public static SqliteConnection connection;
public static string DoSomeDataAccess ()
{
 // determine the path for the database file
 string dbPath = Path.Combine (
 Environment.GetFolderPath (Environment.SpecialFolder.Personal),
 "adodemo.db3");

 bool exists = File.Exists (dbPath);

 if (!exists) {
 Console.WriteLine("Creating database");
 // Need to create the database before seeding it with some data
 Mono.Data.Sqlite.SqliteConnection.CreateFile (dbPath);
 connection = new SqliteConnection ("Data Source=" + dbPath);

 var commands = new[] {
 "CREATE TABLE [Items] (_id ntext, Symbol ntext);",
 "INSERT INTO [Items] ([_id], [Symbol]) VALUES ('1', 'AAPL')",
 "INSERT INTO [Items] ([_id], [Symbol]) VALUES ('2', 'GOOG')",
 "INSERT INTO [Items] ([_id], [Symbol]) VALUES ('3', 'MSFT')"
 };
 // Open the database connection and create table with data
 connection.Open ();
 foreach (var command in commands) {
 using (var c = connection.CreateCommand ()) {
 c.CommandText = command;
 var rowcount = c.ExecuteNonQuery ();
 Console.WriteLine("\tExecuted " + command);
 }
 }
 } else {
 Console.WriteLine("Database already exists");
 // Open connection to existing database file
 connection = new SqliteConnection ("Data Source=" + dbPath);
 connection.Open ();
 }

 // query the database to prove data was inserted!
 using (var contents = connection.CreateCommand ()) {
 contents.CommandText = "SELECT [_id], [Symbol] from [Items]";
 var r = contents.ExecuteReader ();
 Console.WriteLine("Reading data");
 while (r.Read ())
 Console.WriteLine("\tKey={0}; Value={1}",
 r ["_id"].ToString (),
 r ["Symbol"].ToString ());
 }
 connection.Close ();
}

 More Complex Queries
Because SQLite allows arbitrary SQL commands to be run against the data, you can perform whatever CREATE ,

INSERT , UPDATE , DELETE , or SELECT statements you like. You can read about the SQL commands supported by

SQLite at the SQLite website. The SQL statements are run using one of three methods on an SqliteCommand

object:

ExecuteNonQuer yExecuteNonQuer y – Typically used for table creation or data insertion. The return value for some

operations is the number of rows affected, otherwise it's -1.

ExecuteReaderExecuteReader – Used when a collection of rows should be returned as a SqlDataReader .

 EXECUTENONQUERYEXECUTENONQUERY

using (var c = connection.CreateCommand ()) {
 c.CommandText = "INSERT INTO [Items] ([_id], [Symbol]) VALUES ('1', 'APPL')";
 var rowcount = c.ExecuteNonQuery (); // rowcount will be 1
}

 EXECUTEREADEREXECUTEREADER

public static string MoreComplexQuery ()
{
 var output = "";
 output += "\nComplex query example: ";
 string dbPath = Path.Combine (
 Environment.GetFolderPath (Environment.SpecialFolder.Personal), "ormdemo.db3");

 connection = new SqliteConnection ("Data Source=" + dbPath);
 connection.Open ();
 using (var contents = connection.CreateCommand ()) {
 contents.CommandText = "SELECT * FROM [Items] WHERE Symbol = 'MSFT'";
 var r = contents.ExecuteReader ();
 output += "\nReading data";
 while (r.Read ())
 output += String.Format ("\n\tKey={0}; Value={1}",
 r ["_id"].ToString (),
 r ["Symbol"].ToString ());
 }
 connection.Close ();

 return output;
}

 EXECUTESCALAREXECUTESCALAR

using (var contents = connection.CreateCommand ()) {
 contents.CommandText = "SELECT COUNT(*) FROM [Items] WHERE Symbol <> 'MSFT'";
 var i = contents.ExecuteScalar ();
}

ExecuteScalarExecuteScalar – Retrieves a single value (for example an aggregate).

INSERT , UPDATE , and DELETE statements will return the number of rows affected. All other SQL statements will

return -1.

The following method shows a WHERE clause in the SELECT statement. Because the code is crafting a complete

SQL statement it must take care to escape reserved characters such as the quote (') around strings.

The ExecuteReader method returns a SqliteDataReader object. In addition to the Read method shown in the

example, other useful properties include:

RowsAffectedRowsAffected – Count of the rows affected by the query.

HasRowsHasRows – Whether any rows were returned.

Use this for SELECT statements that return a single value (such as an aggregate).

The ExecuteScalar method's return type is object – you should cast the result depending on the database

query. The result could be an integer from a COUNT query or a string from a single column SELECT query. Note

that this is different to other Execute methods that return a reader object or a count of the number of rows

affected.

Related Links
DataAccess Basic (sample)

DataAccess Advanced (sample)

Android Data Recipes

Xamarin.Forms data access

https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Basic
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Advanced
https://github.com/xamarin/recipes/tree/master/Recipes/android/data
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases

Using Data in an App
 7/8/2021 • 3 minutes to read • Edit Online

The DataAccess_AdvDataAccess_Adv sample shows a working application that allows user-input and CRUD (Create, Read,

Update and Delete) database functionality. The application consists of two screens: a list and a data entry form.

All the data access code is re-usable in iOS and Android without modification.

After adding some data the application screens look like this on Android:

The Android Project is shown below – the code shown in this section is contained within the OrmOrm directory:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/data-access/using-data-in-an-app.md

 Read

public IEnumerable<Stock> GetStocks ()
{
 lock (locker) {
 return (from i in Table<Stock> () select i).ToList ();
 }
}
public Stock GetStock (int id)
{
 lock (locker) {
 return Table<Stock>().FirstOrDefault(x => x.Id == id);
 }
}

 Create and Update

The native UI code for the Activities in Android is out of scope for this document. Refer to the Android ListViews

and Adapters guide for more information on the UI controls.

There are a couple of read operations in the sample:

Reading the list

Reading individual records

The two methods in the StockDatabase class are:

Android renders the data as a ListView .

To simplify the application code, a single save method is provided that does an Insert or Update depending on

whether the PrimaryKey has been set. Because the Id property is marked with a [PrimaryKey] attribute you

should not set it in your code. This method will detect whether the value has been previous saved (by checking

the primary key property) and either insert or update the object accordingly:

public int SaveStock (Stock item)
{
 lock (locker) {
 if (item.Id != 0) {
 Update (item);
 return item.Id;
 } else {
 return Insert (item);
 }
 }
}

 Delete

public int DeleteStock(Stock stock)
{
 lock (locker) {
 return Delete<Stock> (stock.Id);
 }
}

 Using a pre-populated SQLite database file

Real world applications will usually require some validation (such as required fields, minimum lengths or other

business rules). Good cross-platform applications implement as much of the validation logical as possible in

shared code, passing validation errors back up to the UI for display according to the platform's capabilities.

Unlike the Insert and Update methods, the Delete<T> method can accept just the primary key value rather

than a complete Stock object. In this example a Stock object is passed into the method but only the Id

property is passed on to the Delete<T> method.

Some applications are shipped with a database already populated with data. You can easily accomplish this in

your mobile application by shipping an existing SQLite database file with your app and copying it to a writable

directory before accessing it. Because SQLite is a standard file format that is used on many platforms, there are

a number of tools available to create an SQLite database file:

SQLite Manager Firefox ExtensionSQLite Manager Firefox Extension – Works on Mac and Windows and produces files that are

compatible with iOS and Android.

Command LineCommand Line – See www.sqlite.org/sqlite.html .

When creating a database file for distribution with your app, take care with the naming of tables and columns to

ensure they match what your code expects, especially if you're using SQLite.NET which will expect the names to

match your C# classes and properties (or the associated custom attributes).

To ensure that some code runs before anything else in your Android app, you can place it in the first activity to

load or you can create an Application subclass that is loaded before any activities. The code below shows an

Application subclass that copies an existing database file data.sqlitedata.sqlite out of the /Resources/Raw//Resources/Raw/ directory.

https://www.sqlite.org/sqlite.html

[Application]
public class YourAndroidApp : Application {
 public override void OnCreate ()
 {
 base.OnCreate ();
 var docFolder = Environment.GetFolderPath(Environment.SpecialFolder.Personal);
 Console.WriteLine ("Data path:" + Database.DatabaseFilePath);
 var dbFile = Path.Combine(docFolder, "data.sqlite"); // FILE NAME TO USE WHEN COPIED
 if (!System.IO.File.Exists(dbFile)) {
 var s = Resources.OpenRawResource(Resource.Raw.data); // DATA FILE RESOURCE ID
 FileStream writeStream = new FileStream(dbFile, FileMode.OpenOrCreate, FileAccess.Write);
 ReadWriteStream(s, writeStream);
 }
 }
 // readStream is the stream you need to read
 // writeStream is the stream you want to write to
 private void ReadWriteStream(Stream readStream, Stream writeStream)
 {
 int Length = 256;
 Byte[] buffer = new Byte[Length];
 int bytesRead = readStream.Read(buffer, 0, Length);
 // write the required bytes
 while (bytesRead > 0)
 {
 writeStream.Write(buffer, 0, bytesRead);
 bytesRead = readStream.Read(buffer, 0, Length);
 }
 readStream.Close();
 writeStream.Close();
 }
}

 Related Links
DataAccess Basic (sample)

DataAccess Advanced (sample)

Android Data Recipes

Xamarin.Forms data access

https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Basic
https://github.com/xamarin/mobile-samples/tree/master/DataAccess/Advanced
https://github.com/xamarin/recipes/tree/master/Recipes/android/data
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases

Google Messaging
 10/28/2019 • 2 minutes to read • Edit Online

 Firebase Cloud Messaging

 Remote Notifications with Firebase Cloud Messaging

 Google Cloud Messaging

NOTENOTE

 Remote Notifications with Google Cloud Messaging

This section contains guides that describe how to implement Xamarin.Android apps using Google messaging

services.

Firebase Cloud Messaging (FCM) is a service that facilitates messaging between mobile apps and server

applications. FCM is Google's successor to Google Cloud Messaging. This article provides an overview of how

FCM works, and it provides a step-by-step procedure for acquiring credentials so that your app can use FCM

services.

This walkthrough provides a step-by-step explanation of how to use Firebase Cloud Messaging to implement

remote notifications (also called push notifications) in a Xamarin.Android application. It illustrates how to

implement the various classes that are needed for communications with Firebase Cloud Messaging (FCM),

provides examples of how to configure the Android Manifest for access to FCM, and demonstrates downstream

messaging using the Firebase Console.

This section provides a high-level overview of how Google Cloud Messaging (GCM) routes messages between

your app and an app server, and it provides a step-by-step procedure for acquiring credentials so that your app

can use GCM services. (Note that GCM has been superceded by FCM.)

GCM has been superceded by Firebase Cloud Messaging (FCM). GCM server and client APIs have been deprecated and

will no longer be available as soon as April 11th, 2019.

This section provides a step-by-step explanation of how to implement remote notifications in Xamarin.Android

using Google Cloud Messaging. It explains the various components that must be leveraged to enable Google

Cloud Messaging in an Android application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/google-messaging/index.md
https://firebase.googleblog.com/2018/04/time-to-upgrade-from-gcm-to-fcm.html

Firebase Cloud Messaging
 7/8/2021 • 8 minutes to read • Edit Online

 Overview

Firebase Cloud Messaging (FCM) is a service that facilitates messaging between mobile apps and server

applications. This article provides an overview of how FCM works, and it explains how to configure Google

Services so that your app can use FCM.

This topic provides a high-level overview of how Firebase Cloud Messaging routes messages between your

Xamarin.Android app and an app server, and it provides a step-by-step procedure for acquiring credentials so

that your app can use FCM services.

Firebase Cloud Messaging (FCM) is a cross-platform service that handles the sending, routing, and queueing of

messages between server applications and mobile client apps. FCM is the successor to Google Cloud Messaging

(GCM), and it is built on Google Play Services.

As illustrated in the following diagram, FCM acts as an intermediary between message senders and clients. A

client app is an FCM-enabled app that runs on a device. The app server (provided by you or your company) is

the FCM-enabled server that your client app communicates with through FCM. Unlike GCM, FCM makes it

possible for you to send messages to client apps directly via the Firebase Console Notifications GUI:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/google-messaging/firebase-cloud-messaging.md
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/preview.png#lightbox

 Firebase Cloud Messaging in action

Using FCM, app servers can send messages to a single device, to a group of devices, or to a number of devices

that are subscribed to a topic. A client app can use FCM to subscribe to downstream messages from an app

server (for example, to receive remote notifications). For more information about the different types of Firebase

messages, see About FCM Messages.

When a downstream message is sent to a client app from an app server, the app server sends the message to an

FCM connection server provided by Google; the FCM connection server, in turn, forwards the message to a

device that is running the client app. Messages can be sent over HTTP or XMPP (Extensible Messaging and

Presence Protocol). Because client apps are not always connected or running, the FCM connection server

enqueues and stores messages, sending them to client apps as they reconnect and become available. Similarly,

FCM will enqueue upstream messages from the client app to the app server if the app server is unavailable. For

more about FCM connection servers, see About Firebase Cloud Messaging Server.

FCM uses the following credentials to identify the app server and the client app, and it uses these credentials to

authorize message transactions through FCM:

 Sender IDSender ID – The Sender ID is a unique numerical value that is assigned when you create your Firebase

project. The sender ID is used to identify each app server that can send messages to the client app. The

sender ID is also your project number; you obtain the sender ID from the Firebase Console when you

register your project. An example of a Sender ID is 496915549731 .

 API KeyAPI Key – The API key gives the app server access to Firebase services; FCM uses this key to authenticate

the app server. This credential is also referred to as the Server Key or the Web API Key. An example of an

API Key is AJzbSyCTcpfRT1YRqbz-jIwp1h06YdauvewGDzk .

 App IDApp ID – The identity of your client app (independent of any given device) that registers to receive

messages from FCM. An example of an App ID is 1:415712510732:android:0e1eb7a661af2460 .

 Registration TokenRegistration Token – The Registration Token (also referred to as the Instance ID) is the FCM identity of

your client app on a given device. The registration token is generated at run time – your app receives a

registration token when it first registers with FCM while running on a device. The registration token

authorizes an instance of your client app (running on that particular device) to receive messages from

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/01-server-fcm-app.png#lightbox
https://firebase.google.com/docs/cloud-messaging/concept-options
https://firebase.google.com/docs/cloud-messaging/xmpp-server-ref
https://firebase.google.com/docs/cloud-messaging/server

 Registration with FCMRegistration with FCM

 Downstream messagingDownstream messaging

FCM. An example of a registration token is fkBQTHxKKhs:AP91bHuEedxM4xFAUn0z ... JKZS (a very long

string).

Setting Up Firebase Cloud Messaging (later in this guide) provides detailed instructions for creating a project

and generating these credentials. When you create a new project in the Firebase Console, a credentials file called

google-ser vices.jsongoogle-ser vices.json is created – add this file to your Xamarin.Android project as explained in Remote

Notifications with FCM.

The following sections explain how these credentials are used when client apps communicate with app servers

through FCM.

A client app must first register with FCM before messaging can take place. The client app must complete the

registration steps shown in the following diagram:

1. The client app contacts FCM to obtain a registration token, passing the sender ID, API Key, and App ID to

FCM.

2. FCM returns a registration token to the client app.

3. The client app (optionally) forwards the registration token to the app server.

The app server caches the registration token for subsequent communications with the client app. The app server

can send an acknowledgement back to the client app to indicate that the registration token was received. After

this handshake takes place, the client app can receive messages from (or send messages to) the app server. The

client app may receive a new registration token if the old token is compromised (see Remote Notifications with

FCM for an example of how an app receives registration token updates).

When the client app no longer wants to receive messages from the app server, it can send a request to the app

server to delete the registration token. If the client app is uninstalled from a device, FCM detects this and

automatically notifies the app server to delete the registration token.

The following diagram illustrates how Firebase Cloud Messaging stores and forwards downstream messages:

https://console.firebase.google.com/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/02-app-registration.png#lightbox

 Topic messagingTopic messaging

When the app server sends a downstream message to the client app, it uses the following steps as enumerated

in the above diagram:

1. The app server sends the message to FCM.

2. If the client device is not available, the FCM server stores the message in a queue for later transmission.

Messages are retained in FCM storage for a maximum of 4 weeks (for more information, see Setting the

lifespan of a message).

3. When the client device is available, FCM forwards the message to the client app on that device.

4. The client app receives the message from FCM, processes it, and displays it to the user. For example, if the

message is a remote notification, it is presented to the user in the notification area.

In this messaging scenario (where the app server sends a message to a single client app), messages can be up to

4kB in length.

For detailed information about receiving downstream FCM messages on Android, see Remote Notifications with

FCM.

Topic Messaging makes it possible for an app server to send a message to multiple devices that have opted in to

a particular topic. You can also compose and send topic messages via the Firebase Console Notifications GUI.

FCM handles the routing and delivery of topic messages to subscribed clients. This feature can be used for

messages such as weather alerts, stock quotes, and headline news.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/03-downstream.png#lightbox
https://firebase.google.com/docs/cloud-messaging/concept-options#ttl

 Setting up Firebase Cloud Messaging

The following steps are used in topic messaging (after the client app obtains a registration token as explained

earlier):

1. The client app subscribes to a topic by sending a subscribe message to FCM.

2. The app server sends topic messages to FCM for distribution.

3. FCM forwards topic messages to clients that have subscribed to that topic.

For more information about Firebase topic messaging, see Google's Topic Messaging on Android.

Before you can use FCM services in your app, you must create a new project (or import an existing project) via

the Firebase Console. Use the following steps to create a Firebase Cloud Messaging project for your app:

1. Sign into the Firebase Console with your Google account (i.e., your Gmail address) and click CREATECREATE

NEW PROJECTNEW PROJECT:

If you have an existing project, click impor t a Google projectimpor t a Google project.

2. In the Create a projectCreate a project dialog, enter the name of your project and click CREATE PROJECTCREATE PROJECT. In the

following example, a new project called XamarinFCMXamarinFCM is created:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/04-topic-messaging.png#lightbox
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging
https://console.firebase.google.com/
https://console.firebase.google.com/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/05-firebase-console.png#lightbox

3. In the Firebase Console Over viewOver view , click Add Firebase to your Android appAdd Firebase to your Android app:

4. In the next screen, enter the package name of your app. In this example, the package name is

com.xamarin.fcmexamplecom.xamarin.fcmexample. This value must match the package name of your Android app. An app

nickname can also be entered in the App nicknameApp nickname field:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/06-create-a-project.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/07-add-firebase.png#lightbox

 For further reading

5. If your app uses Dynamic links, Invites, or Google Auth, you must also enter your debug signing

certificate. For more information about locating your signing certificate, see Finding your Keystore's MD5

or SHA1 Signature. In this example, the signing certificate is left blank.

6. Click ADD APPADD APP:

A Server API key and a Client ID are automatically generated for the app. This information is packaged in

a google-ser vices.jsongoogle-ser vices.json file that is automatically downloaded when you click ADD APPADD APP. Be sure to save

this file in a safe place.

For a detailed example of how to add google-ser vices.jsongoogle-ser vices.json to an app project to receive FCM push notification

messages on Android, see Remote Notifications with FCM.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/08-package-name.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/firebase-cloud-messaging-images/09-add-app.png#lightbox

 Summary

 Related Links

Google's Firebase Cloud Messaging provides an overview of Firebase Cloud Messaging's key capabilities,

an explanation of how it works, and setup instructions.

Google's Build App Server Send Requests explains how to send messages with your app server.

RFC 6120 and RFC 6121 explain and define the Extensible Messaging and Presence Protocol (XMPP).

About FCM Messages describes the different types of messages that can be sent with Firebase Cloud

Messaging.

This article provided an overview of Firebase Cloud Messaging (FCM). It explained the various credentials that

are used to identify and authorize messaging between app servers and client apps. It illustrated the registration

and downstream messaging scenarios, and it detailed the steps for registering your app with FCM to use FCM

services.

Firebase Cloud Messaging

https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/send-message
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6121
https://firebase.google.com/docs/cloud-messaging/concept-options
https://firebase.google.com/docs/cloud-messaging/

Remote Notifications with Firebase Cloud
Messaging

 7/8/2021 • 23 minutes to read • Edit Online

 FCM notifications overview

This walkthrough provides a step-by-step explanation of how to use Firebase Cloud Messaging to implement

remote notifications (also called push notifications) in a Xamarin.Android application. It illustrates how to

implement the various classes that are needed for communications with Firebase Cloud Messaging (FCM),

provides examples of how to configure the Android Manifest for access to FCM, and demonstrates downstream

messaging using the Firebase Console.

In this walkthrough, a basic app called FCMClientFCMClient will be created to illustrate the essentials of FCM messaging.

FCMClientFCMClient checks for the presence of Google Play Services, receives registration tokens from FCM, displays

remote notifications that you send from the Firebase Console, and subscribes to topic messages:

The following topic areas will be explored:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/google-messaging/remote-notifications-with-fcm.md
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/00-app-example.png#lightbox

 Requirements

 Start an app project

 Set the package nameSet the package name

1. Background Notifications

2. Topic Messages

3. Foreground Notifications

During this walkthrough, you will incrementally add functionality to FCMClientFCMClient and run it on a device or

emulator to understand how it interacts with FCM. You will use logging to witness live app transactions with

FCM servers, and you will observe how notifications are generated from FCM messages that you enter into the

Firebase Console Notifications GUI.

It will be helpful to familiarize yourself with the different types of messages that can be sent by Firebase Cloud

Messaging. The payload of the message will determine how a client app will receive and process the message.

Before you can proceed with this walkthrough, you must acquire the necessary credentials to use Google's FCM

servers; this process is explained in Firebase Cloud Messaging. In particular, you must download the google-google-

ser vices.jsonser vices.json file to use with the example code presented in this walkthrough. If you have not yet created a

project in the Firebase Console (or if you have not yet downloaded the google-ser vices.jsongoogle-ser vices.json file), see Firebase

Cloud Messaging.

To run the example app, you will need an Android test device or emulator that is compatibile with Firebase.

Firebase Cloud Messaging supports clients running on Android 4.0 or higher, and these devices must also have

the Google Play Store app installed (Google Play Services 9.2.1 or later is required). If you do not yet have the

Google Play Store app installed on your device, visit the Google Play web site to download and install it.

Alternately, you can use the Android SDK emulator with Google Play Services installed instead of a test device

(you do not have to install the Google Play Store if you are using the Android SDK emulator).

To begin, create a new empty Xamarin.Android project called FCMClientFCMClient. If you are not familiar with creating

Xamarin.Android projects, see Hello, Android. After the new app is created, the next step is to set the package

name and install several NuGet packages that will be used for communication with FCM.

In Firebase Cloud Messaging, you specified a package name for the FCM-enabled app. This package name also

serves as the application ID that is associated with the API key. Configure the app to use this package name:

Visual Studio

Visual Studio for Mac

1. Open the properties for the FCMClientFCMClient project.

2. In the Android ManifestAndroid Manifest page, set the package name.

In the following example, the package name is set to com.xamarin.fcmexample :

https://firebase.google.com/docs/cloud-messaging/concept-options#notifications_and_data_messages
https://support.google.com/googleplay

IMPORTANTIMPORTANT

 Add the Xamarin Google Play Services Base packageAdd the Xamarin Google Play Services Base package

using Android.Gms.Common;

 Add the Xamarin Firebase Messaging packageAdd the Xamarin Firebase Messaging package

While you are updating the Android ManifestAndroid Manifest, also check to be sure that the Internet permission is enabled.

The client app will be unable to receive a registration token from FCM if this package name does not exactly match the

package name that was entered into the Firebase Console.

Because Firebase Cloud Messaging depends on Google Play Services, the Xamarin Google Play Services - Base

NuGet package must be added to the Xamarin.Android project. You will need version 29.0.0.2 or later.

Visual Studio

Visual Studio for Mac

1. In Visual Studio, right-click References > Manage NuGet Packages ...References > Manage NuGet Packages

2. Click the BrowseBrowse tab and search for Xamarin.GooglePlaySer vices.BaseXamarin.GooglePlaySer vices.Base.

3. Install this package into the FCMClientFCMClient project:

If you get an error during installation of the NuGet, close the FCMClientFCMClient project, open it again, and retry the

NuGet installation.

When you install Xamarin.GooglePlaySer vices.BaseXamarin.GooglePlaySer vices.Base, all of the necessary dependencies are also installed.

Edit MainActivity.csMainActivity.cs and add the following using statement:

This statement makes the GoogleApiAvailability class in Xamarin.GooglePlaySer vices.BaseXamarin.GooglePlaySer vices.Base available to

FCMClientFCMClient code. GoogleApiAvailability is used to check for the presence of Google Play Services.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/01-package-name-vs.png#lightbox
https://www.nuget.org/packages/Xamarin.GooglePlayServices.Base/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/02-google-play-services-vs.png#lightbox

using Firebase.Messaging;
using Firebase.Iid;
using Android.Util;

 Add the Google Services JSON fileAdd the Google Services JSON file

To receive messages from FCM, the Xamarin Firebase - Messaging NuGet package must be added to the app

project. Without this package, an Android application cannot receive messages from FCM servers.

Visual Studio

Visual Studio for Mac

1. In Visual Studio, right-click References > Manage NuGet Packages ...References > Manage NuGet Packages

2. Search for Xamarin.Firebase.MessagingXamarin.Firebase.Messaging.

3. Install this package into the FCMClientFCMClient project:

When you install Xamarin.Firebase.MessagingXamarin.Firebase.Messaging, all of the necessary dependencies are also installed.

Next, edit MainActivity.csMainActivity.cs and add the following using statements:

The first two statements make types in the Xamarin.Firebase.MessagingXamarin.Firebase.Messaging NuGet package available to

FCMClientFCMClient code. Android.UtilAndroid.Util adds logging functionality that will be used to observe transactions with FMS.

The next step is to add the google-ser vices.jsongoogle-ser vices.json file to the root directory of your project:

Visual Studio

Visual Studio for Mac

1. Copy google-ser vices.jsongoogle-ser vices.json to the project folder.

2. Add google-ser vices.jsongoogle-ser vices.json to the app project (click Show All FilesShow All Files in the Solution ExplorerSolution Explorer , right

click google-ser vices.jsongoogle-ser vices.json, then select Include in ProjectInclude in Project).

3. Select google-ser vices.jsongoogle-ser vices.json in the Solution ExplorerSolution Explorer window.

4. In the Proper tiesProper ties pane, set the Build ActionBuild Action to GoogleSer vicesJsonGoogleSer vicesJson:

https://www.nuget.org/packages/Xamarin.Firebase.Messaging/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/03-firebase-messaging-vs.png#lightbox

 Check for Google Play Services and create a notification channel

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="10dp">
 <TextView
 android:text=" "
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/msgText"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:padding="10dp" />
</LinearLayout>

public class MainActivity : AppCompatActivity
{
 static readonly string TAG = "MainActivity";

 internal static readonly string CHANNEL_ID = "my_notification_channel";
 internal static readonly int NOTIFICATION_ID = 100;

 TextView msgText;

NOTENOTE
If the GoogleSer vicesJsonGoogleSer vicesJson build action is not shown, save and close the solution, then reopen it.

When google-ser vices.jsongoogle-ser vices.json is added to the project (and the GoogleSer vicesJsonGoogleSer vicesJson build action is set), the

build process extracts the client ID and API key and then adds these credentials to the merged/generated

AndroidManifest.xmlAndroidManifest.xml that resides at obj/Debug/android/AndroidManifest.xmlobj/Debug/android/AndroidManifest.xml . This merge process

automatically adds any permissions and other FCM elements that are needed for connection to FCM servers.

Google recommends that Android apps check for the presence of the Google Play Services APK before

accessing Google Play Services features (for more information, see Check for Google Play services).

An initial layout for the app's UI will be created first. Edit Resources/layout/Main.axmlResources/layout/Main.axml and replace its

contents with the following XML:

This TextView will be used to display messages that indicate whether Google Play Services is installed. Save the

changes to Main.axmlMain.axml .

Edit MainActivity.csMainActivity.cs and add the following instance variables to the MainActivity class:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/04-google-services-json-vs.png#lightbox
https://firebase.google.com/docs/cloud-messaging/android/client#sample-play

public bool IsPlayServicesAvailable ()
{
 int resultCode = GoogleApiAvailability.Instance.IsGooglePlayServicesAvailable (this);
 if (resultCode != ConnectionResult.Success)
 {
 if (GoogleApiAvailability.Instance.IsUserResolvableError (resultCode))
 msgText.Text = GoogleApiAvailability.Instance.GetErrorString (resultCode);
 else
 {
 msgText.Text = "This device is not supported";
 Finish ();
 }
 return false;
 }
 else
 {
 msgText.Text = "Google Play Services is available.";
 return true;
 }
}

void CreateNotificationChannel()
{
 if (Build.VERSION.SdkInt < BuildVersionCodes.O)
 {
 // Notification channels are new in API 26 (and not a part of the
 // support library). There is no need to create a notification
 // channel on older versions of Android.
 return;
 }

 var channel = new NotificationChannel(CHANNEL_ID,
 "FCM Notifications",
 NotificationImportance.Default)
 {

 Description = "Firebase Cloud Messages appear in this channel"
 };

 var notificationManager =
(NotificationManager)GetSystemService(Android.Content.Context.NotificationService);
 notificationManager.CreateNotificationChannel(channel);
}

The variables CHANNEL_ID and NOTIFICATION_ID will be used in the method CreateNotificationChannel that will

be added to MainActivity later on in this walkthrough.

In the following example, the OnCreate method will verify that Google Play Services is available before the app

attempts to use FCM services. Add the following method to the MainActivity class:

This code checks the device to see if the Google Play Services APK is installed. If it is not installed, a message is

displayed in the TextBox that instructs the user to download an APK from the Google Play Store (or to enable it

in the device's system settings).

 Apps that are running on Android 8.0 (API level 26) or higher must create a notification channel for publishing

their notifications. Add the following method to the MainActivity class which will create the notification channel

(if necessary):

Replace the OnCreate method with the following code:

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);
 SetContentView (Resource.Layout.Main);
 msgText = FindViewById<TextView> (Resource.Id.msgText);

 IsPlayServicesAvailable ();

 CreateNotificationChannel();
}

 Add the instance ID receiver

 Declare the receiver in the Android ManifestDeclare the receiver in the Android Manifest

IsPlayServicesAvailable is called at the end of OnCreate so that the Google Play Services check runs each time

the app starts. The method CreateNotificationChannel is called to ensure that a notification channel exists for

devices running Android 8 or higher. If your app has an OnResume method, it should call

IsPlayServicesAvailable from OnResume as well. Completely rebuild and run the app. If all is configured

properly, you should see a screen that looks like the following screenshot:

If you don't get this result, verify that the Google Play Services APK is installed on your device (for more

information, see Setting Up Google Play Services). Also verify that you have added the

Xamarin.Google.Play.Ser vices.BaseXamarin.Google.Play.Ser vices.Base package to your FCMClientFCMClient project as explained earlier.

The next step is to add a service that extends FirebaseInstanceIdService to handle the creation, rotation, and

updating of Firebase registration tokens. The FirebaseInstanceIdService service is required for FCM to be able

to send messages to the device. When the FirebaseInstanceIdService service is added to the client app, the app

will automatically receive FCM messages and display them as notifications whenever the app is backgrounded.

Edit AndroidManifest.xmlAndroidManifest.xml and insert the following <receiver> elements into the <application> section:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/05-gps-available.png#lightbox
https://developers.google.com/android/guides/setup

<receiver
 android:name="com.google.firebase.iid.FirebaseInstanceIdInternalReceiver"
 android:exported="false" />
<receiver
 android:name="com.google.firebase.iid.FirebaseInstanceIdReceiver"
 android:exported="true"
 android:permission="com.google.android.c2dm.permission.SEND">
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 <action android:name="com.google.android.c2dm.intent.REGISTRATION" />
 <category android:name="${applicationId}" />
 </intent-filter>
</receiver>

 Implement the Firebase Instance ID ServiceImplement the Firebase Instance ID Service

This XML does the following:

Declares a FirebaseInstanceIdReceiver implementation that provides a unique identifier for each app

instance. This receiver also authenticates and authorizes actions.

Declares an internal FirebaseInstanceIdInternalReceiver implementation that is used to start services

securely.

The app ID is stored in the google-ser vices.jsongoogle-ser vices.json file that was added to the project. The

Xamarin.Android Firebase bindings will replace the token ${applicationId} with the app ID; no

additional code is required by the client app to provide the app ID.

The FirebaseInstanceIdReceiver is a WakefulBroadcastReceiver that receives FirebaseInstanceId and

FirebaseMessaging events and delivers them to the class that you derive from FirebaseInstanceIdService .

The work of registering the application with FCM is handled by the custom FirebaseInstanceIdService service

that you provide. FirebaseInstanceIdService performs the following steps:

1. Uses the Instance ID API to generate security tokens that authorize the client app to access FCM and the

app server. In return, the app gets back a registration token from FCM.

2. Forwards the registration token to the app server if the app server requires it.

Add a new file called MyFirebaseIIDSer vice.csMyFirebaseIIDSer vice.cs and replace its template code with the following:

https://developers.google.com/instance-id/
https://developers.google.com/android/reference/com/google/android/gms/iid/InstanceID

using System;
using Android.App;
using Firebase.Iid;
using Android.Util;

namespace FCMClient
{
 [Service]
 [IntentFilter(new[] { "com.google.firebase.INSTANCE_ID_EVENT" })]
 public class MyFirebaseIIDService : FirebaseInstanceIdService
 {
 const string TAG = "MyFirebaseIIDService";
 public override void OnTokenRefresh()
 {
 var refreshedToken = FirebaseInstanceId.Instance.Token;
 Log.Debug(TAG, "Refreshed token: " + refreshedToken);
 SendRegistrationToServer(refreshedToken);
 }
 void SendRegistrationToServer(string token)
 {
 // Add custom implementation, as needed.
 }
 }
}

var refreshedToken = FirebaseInstanceId.Instance.Token;
Log.Debug(TAG, "Refreshed token: " + refreshedToken);

void SendRegistrationToAppServer (string token)
{
 // Add custom implementation here as needed.
}

This service implements an OnTokenRefresh method that is invoked when the registration token is initially

created or changed. When OnTokenRefresh runs, it retrieves the latest token from the

FirebaseInstanceId.Instance.Token property (which is updated asynchronously by FCM). In this example, the

refreshed token is logged so that it can be viewed in the output window:

OnTokenRefresh is invoked infrequently: it is used to update the token under the following circumstances:

When the app is installed or uninstalled.

When the user deletes app data.

When the app erases the Instance ID.

When the security of the token has been compromised.

According to Google's Instance ID documentation, the FCM Instance ID service will request that the app refresh

its token periodically (typically, every 6 months).

OnTokenRefresh also calls SendRegistrationToAppServer to associate the user's registration token with the

server-side account (if any) that is maintained by the application:

Because this implementation depends on the design of the app server, an empty method body is provided in

this example. If your app server requires FCM registration information, modify SendRegistrationToAppServer to

associate the user's FCM instance ID token with any server-side account maintained by your app. (Note that the

token is opaque to the client app.)

https://developers.google.com/instance-id/guides/android-implementation

 Implement client app code

 Log tokensLog tokens

<Button
 android:id="@+id/logTokenButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Log Token" />

When a token is sent to the app server, SendRegistrationToAppServer should maintain a boolean to indicate

whether the token has been sent to the server. If this boolean is false, SendRegistrationToAppServer sends the

token to the app server – otherwise, the token was already sent to the app server in a previous call. In some

cases (such as this FCMClient example), the app server does not need the token; therefore, this method is not

required for this example.

Now that the receiver services are in place, client app code can be written to take advantage of these services. In

the following sections, a button is added to the UI to log the registration token (also called the Instance ID

token), and more code is added to MainActivity to view Intent information when the app is launched from a

notification:

The code added in this step is intended only for demonstration purposes – a production client app would have

no need to log registration tokens. Edit Resources/layout/Main.axmlResources/layout/Main.axml and add the following Button

declaration immediately after the TextView element:

Add the following code to the end of the MainActivity.OnCreate method:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/06-log-token.png#lightbox

var logTokenButton = FindViewById<Button>(Resource.Id.logTokenButton);
logTokenButton.Click += delegate {
 Log.Debug(TAG, "InstanceID token: " + FirebaseInstanceId.Instance.Token);
};

 Handle notification intentsHandle notification intents

if (Intent.Extras != null)
{
 foreach (var key in Intent.Extras.KeySet())
 {
 var value = Intent.Extras.GetString(key);
 Log.Debug(TAG, "Key: {0} Value: {1}", key, value);
 }
}

 Background notifications

This code logs the current token to the output window when the Log TokenLog Token button is tapped.

When the user taps a notification issued from FCMClientFCMClient, any data accompanying that notification message is

made available in Intent extras. Edit MainActivity.csMainActivity.cs and add the following code to the top of the OnCreate

method (before the call to IsPlayServicesAvailable):

The app's launcher Intent is fired when the user taps its notification message, so this code will log any

accompanying data in the Intent to the output window. If a different Intent must be fired, the click_action

field of the notification message must be set to that Intent (the launcher Intent is used when no

click_action is specified).

Build and run the FCMClientFCMClient app. The Log TokenLog Token button is displayed:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/06-log-token.png#lightbox

Log.Debug(TAG, "google app id: " + GetString(Resource.String.google_app_id));

 Send a messageSend a message

Tap the Log TokenLog Token button. A message like the following should be displayed in the IDE output window:

The long string labeled with tokentoken is the instance ID token that you will paste into the Firebase Console – select

and copy this string to the clipboard. If you do not see an instance ID token, add the following line to the top of

the OnCreate method to verify that google-ser vices.jsongoogle-ser vices.json was parsed correctly:

The google_app_id value logged to the output window should match the mobilesdk_app_id value recorded in

google-ser vices.jsongoogle-ser vices.json. The Resource.String.google_app_id is generated by msbuild when processing google-google-

ser vices.jsonser vices.json.

Sign into the Firebase Console, select your project, click NotificationsNotifications , and click SEND YOUR FIRSTSEND YOUR FIRST

MESSAGEMESSAGE:

On the Compose messageCompose message page, enter the message text and select S ingle deviceSingle device. Copy the instance ID token

from the IDE output window and paste it into the FCM registration tokenFCM registration token field of the Firebase Console:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/07-token-received.png#lightbox
https://console.firebase.google.com
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/08-first-notification.png#lightbox

On the Android device (or emulator), background the app by tapping the Android Over viewOver view button and

touching the home screen. When the device is ready, click SEND MESSAGESEND MESSAGE in the Firebase Console:

When the Review messageReview message dialog is displayed, click SENDSEND. The notification icon should appear in the

notification area of the device (or emulator):

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/09-compose-message.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/10-send-message.png#lightbox

Open the notification icon to view the message. The notification message should be exactly what was typed into

the Message textMessage text field of the Firebase Console:

Tap the notification icon to launch the FCMClientFCMClient app. The Intent extras sent to FCMClientFCMClient are listed in the

IDE output window:

In this example, the fromfrom key is set to the Firebase project number of the app (in this example, 41590732), and

the collapse_keycollapse_key is set to its package name (com.xamarin.fcmexamplecom.xamarin.fcmexample). If you do not receive a message, try

deleting the FCMClientFCMClient app on the device (or emulator) and repeat the above steps.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/11-notification-icon.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/12-notification.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/13-intent-extras.png#lightbox

NOTENOTE

 Add a custom default notification iconAdd a custom default notification icon

<meta-data
 android:name="com.google.firebase.messaging.default_notification_icon"
 android:resource="@drawable/ic_stat_ic_notification" />

 Handle topic messages

 Subscribe to a topicSubscribe to a topic

<Button
 android:id="@+id/subscribeButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="20dp"
 android:text="Subscribe to Notifications" />

var subscribeButton = FindViewById<Button>(Resource.Id.subscribeButton);
subscribeButton.Click += delegate {
 FirebaseMessaging.Instance.SubscribeToTopic("news");
 Log.Debug(TAG, "Subscribed to remote notifications");
};

If you force-close the app, FCM will stop delivering notifications. Android prevents background service broadcasts from

inadvertently or unnecessarily launching components of stopped applications. (For more information about this behavior,

see Launch controls on stopped applications.) For this reason, it is necessary to manually uninstall the app each time you

run it and stop it from a debug session – this forces FCM to generate a new token so that messages will continue to be

received.

In the previous example, the notification icon is set to the application icon. The following XML configures a

custom default icon for notifications. Android displays this custom default icon for all notification messages

where the notification icon is not explicitly set.

To add a custom default notification icon, add your icon to the Resources/drawableResources/drawable directory, edit

AndroidManifest.xmlAndroidManifest.xml , and insert the following <meta-data> element into the <application> section:

In this example, the notification icon that resides at Resources/drawable/ic_stat_ic_notification.pngResources/drawable/ic_stat_ic_notification.png will be

used as the custom default notification icon. If a custom default icon is not configured in AndroidManifest.xmlAndroidManifest.xml

and no icon is set in the notification payload, Android uses the application icon as the notification icon (as seen

in the notification icon screenshot above).

The code written thus far handles registration tokens and adds remote notification functionality to the app. The

next example adds code that listens for topic messages and forwards them to the user as remote notifications.

Topic messages are FCM messages that are sent to one or more devices that subscribe to a particular topic. For

more information about topic messages, see Topic Messaging.

Edit Resources/layout/Main.axmlResources/layout/Main.axml and add the following Button declaration immediately after the previous

Button element:

This XML adds a Subscr ibe to NotificationSubscr ibe to Notification button to the layout. Edit MainActivity.csMainActivity.cs and add the following

code to the end of the OnCreate method:

This code locates the Subscr ibe to NotificationSubscr ibe to Notification button in the layout and assigns its click handler to code that

https://developer.android.com/about/versions/android-3.1.html#launchcontrols

 Send a topic messageSend a topic message

calls FirebaseMessaging.Instance.SubscribeToTopic , passing in the subscribed topic, news. When the user taps

the Subscr ibeSubscr ibe button, the app subscribes to the news topic. In the following section, a news topic message will

be sent from the Firebase Console Notifications GUI.

Uninstall the app, rebuild it, and run it again. Click the Subscr ibe to NotificationsSubscr ibe to Notifications button:

If the app has subscribed successfully, you should see topic sync succeededtopic sync succeeded in the IDE output window:

Use the following steps to send a topic message:

1. In the Firebase Console, click NEW MESSAGENEW MESSAGE.

2. On the Compose messageCompose message page, enter the message text and select TopicTopic.

3. In the TopicTopic pull-down menu, select the built-in topic, newsnews :

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/14-subscribe.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/15-topic-sync.png#lightbox

4. On the Android device (or emulator), background the app by tapping the Android Over viewOver view button and

touching the home screen.

5. When the device is ready, click SEND MESSAGESEND MESSAGE in the Firebase Console.

6. Check the IDE output window to see /topics/news/topics/news in the log output:

When this message is seen in the output window, the notification icon should also appear in the notification area

on the Android device. Open the notification icon to view the topic message:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/16-topic-message.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/17-message-arrived.png#lightbox

 Foreground notifications

 Implement FirebaseMessagingServiceImplement FirebaseMessagingService

NOTENOTE

If you do not receive a message, try deleting the FCMClientFCMClient app on the device (or emulator) and repeat the

above steps.

To receive notifications in foregrounded apps, you must implement FirebaseMessagingService . This service is

also required for receiving data payloads and for sending upstream messages. The following examples illustrate

how to implement a service that extends FirebaseMessagingService – the resulting app will be able to handle

remote notifications while it is running in the foreground.

The FirebaseMessagingService service is responsible for receiving and processing the messages from Firebase.

Each app must subclass this type and override the OnMessageReceived to process an incoming message. When

an app is in the foreground, the OnMessageReceived callback will always handle the message.

Apps only have 10 seconds in which to handle an incoming Firebase Cloud Message. Any work that takes longer than this

should be scheduled for background execution using a library such as the Android Job Scheduler or the Firebase Job

Dispatcher.

Add a new file called MyFirebaseMessagingSer vice.csMyFirebaseMessagingSer vice.cs and replace its template code with the following:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/18-other-news.png#lightbox

using System;
using Android.App;
using Android.Content;
using Android.Media;
using Android.Util;
using Firebase.Messaging;

namespace FCMClient
{
 [Service]
 [IntentFilter(new[] { "com.google.firebase.MESSAGING_EVENT" })]
 public class MyFirebaseMessagingService : FirebaseMessagingService
 {
 const string TAG = "MyFirebaseMsgService";
 public override void OnMessageReceived(RemoteMessage message)
 {
 Log.Debug(TAG, "From: " + message.From);
 Log.Debug(TAG, "Notification Message Body: " + message.GetNotification().Body);
 }
 }
}

[IntentFilter(new[] { "com.google.firebase.MESSAGING_EVENT" })]

var body = message.GetNotification().Body;
Log.Debug(TAG, "Notification Message Body: " + body);

NOTENOTE

 Send another messageSend another message

Note that the MESSAGING_EVENT intent filter must be declared so that new FCM messages are directed to

MyFirebaseMessagingService :

When the client app receives a message from FCM, OnMessageReceived extracts the message content from the

passed-in RemoteMessage object by calling its GetNotification method. Next, it logs the message content so that

it can be viewed in the IDE output window:

If you set breakpoints in FirebaseMessagingService , your debugging session may or may not hit these breakpoints

because of how FCM delivers messages.

Uninstall the app, rebuild it, run it again, and follow these steps to send another message:

1. In the Firebase Console, click NEW MESSAGENEW MESSAGE.

2. On the Compose messageCompose message page, enter the message text and select S ingle deviceSingle device.

3. Copy the token string from the IDE output window and paste it into the FCM registration tokenFCM registration token field of

the Firebase Console as before.

4. Ensure that the app is running in the foreground, then click SEND MESSAGESEND MESSAGE in the Firebase Console:

 Add a local notification senderAdd a local notification sender

using FCMClient;
using System.Collections.Generic;

5. When the Review messageReview message dialog is displayed, click SENDSEND.

6. The incoming message is logged to the IDE output window:

In this remaining example, the incoming FCM message will be converted into a local notification that is launched

while the app is running in the foreground. Edit MyFirebaseMessageSer vice.csMyFirebaseMessageSer vice.cs and add the following using

statements:

Add the following method to MyFirebaseMessagingService :

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/19-hello-again.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/20-logged-message.png#lightbox

void SendNotification(string messageBody, IDictionary<string, string> data)
{
 var intent = new Intent(this, typeof(MainActivity));
 intent.AddFlags(ActivityFlags.ClearTop);
 foreach (var key in data.Keys)
 {
 intent.PutExtra(key, data[key]);
 }

 var pendingIntent = PendingIntent.GetActivity(this,
 MainActivity.NOTIFICATION_ID,
 intent,
 PendingIntentFlags.OneShot);

 var notificationBuilder = new NotificationCompat.Builder(this, MainActivity.CHANNEL_ID)
 .SetSmallIcon(Resource.Drawable.ic_stat_ic_notification)
 .SetContentTitle("FCM Message")
 .SetContentText(messageBody)
 .SetAutoCancel(true)
 .SetContentIntent(pendingIntent);

 var notificationManager = NotificationManagerCompat.From(this);
 notificationManager.Notify(MainActivity.NOTIFICATION_ID, notificationBuilder.Build());
}

public override void OnMessageReceived(RemoteMessage message)
{
 Log.Debug(TAG, "From: " + message.From);

 var body = message.GetNotification().Body;
 Log.Debug(TAG, "Notification Message Body: " + body);
 SendNotification(body, message.Data);
}

 Send the last messageSend the last message

To distinguish this notification from background notifications, this code marks notifications with an icon that

differs from the application icon. Add the file ic_stat_ic_notification.png to Resources/drawableResources/drawable and include it

in the FCMClientFCMClient project.

The SendNotification method uses NotificationCompat.Builder to create the notification, and

NotificationManagerCompat is used to launch the notification. The notification holds a PendingIntent that will

allow the user to open the app and view the contents of the string passed into messageBody . For more

information about NotificationCompat.Builder , see Local Notifications.

Call the SendNotification method at end of the OnMessageReceived method:

As a result of these changes, SendNotification will run whenever a notification is received while the app is in

the foreground, and the notification will appear in the notification area.

When an app is in the background, the payload of the message will determine how the message is handled:

NotificationNotification – messages will be sent to the system traysystem tray . A local notification will appear there. When the

user taps on the notification the app will launch.

DataData – messages will be handled by OnMessageReceived .

BothBoth – messages that have both a notification and data payload will be delivered to the system tray. When

the app launches, the data payload will appear in the Extras of the Intent that was used to start the app.

In this example, if the app is backgrounded, SendNotification will run if the message has a data payload.

Otherwise, a background notification (illustrated earlier in this walkthrough) will be launched.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/ic-stat-ic-notification.png
https://firebase.google.com/docs/cloud-messaging/concept-options#notifications_and_data_messages

Uninstall the app, rebuild it, run it again, then use the following steps to send the last message:

1. In the Firebase Console, click NEW MESSAGENEW MESSAGE.

2. On the Compose messageCompose message page, enter the message text and select S ingle deviceSingle device.

3. Copy the token string from the IDE output window and paste it into the FCM registration tokenFCM registration token field of

the Firebase Console as before.

4. Ensure that the app is running in the foreground, then click SEND MESSAGESEND MESSAGE in the Firebase Console:

This time, the message that was logged in the output window is also packaged in a new notification – the

notification icon appears in the notification tray while the app is running in the foreground:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/21-console-fg-msg.png#lightbox

When you open the notification, you should see the last message that was sent from the Firebase Console

Notifications GUI:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/22-foreground-icon.png#lightbox

 Disconnecting from FCM

var unSubscribeButton = FindViewById<Button>(Resource.Id.unsubscribeButton);
unSubscribeButton.Click += delegate {
 FirebaseMessaging.Instance.UnsubscribeFromTopic("news");
 Log.Debug(TAG, "Unsubscribed from remote notifications");
};

FirebaseInstanceId.Instance.DeleteInstanceId();

 Troubleshooting

 FirebaseApp is not InitializedFirebaseApp is not Initialized

To unsubscribe from a topic, call the UnsubscribeFromTopic method on the FirebaseMessaging class. For

example, to unsubscribe from the news topic subscribed to earlier, an Unsubscr ibeUnsubscr ibe button could be added to

the layout with the following handler code:

To unregister the device from FCM altogether, delete the instance ID by calling the DeleteInstanceId method on

the FirebaseInstanceId class. For example:

This method call deletes the instance ID and the data associated with it. As a result, the periodic sending of FCM

data to the device is halted.

The following describe issues and workarounds that may arise when using Firebase Cloud Messaging with

Xamarin.Android.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-fcm-images/23-foreground-msg.png#lightbox
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessaging.html#unsubscribeFromTopic%2528java.lang.String%2529
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessaging
https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceId.html#deleteInstanceId%2528%2529
https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceId

Java.Lang.IllegalStateException: Default FirebaseApp is not initialized in this process
Make sure to call FirebaseApp.initializeApp(Context) first.

 Summary

 Related links

In some cases, you may see this error message:

This is a known problem that you can work around by cleaning the solution and rebuilding the project (Build >Build >

Clean SolutionClean Solution, Build > Rebuild SolutionBuild > Rebuild Solution).

This walkthrough detailed the steps for implementing Firebase Cloud Messaging remote notifications in a

Xamarin.Android application. It described how to install the required packages needed for FCM communications,

and it explained how to configure the Android Manifest for access to FCM servers. It provided example code that

illustrates how to check for the presence of Google Play Services. It demonstrated how to implement an instance

ID listener service that negotiates with FCM for a registration token, and it explained how this code creates

background notifications while the app is backgrounded. It explained how to subscribe to topic messages, and it

provided an example implementation of a message listener service that is used to receive and display remote

notifications while the app is running in the foreground.

FCMNotifications (sample)

Firebase Cloud Messaging

About FCM Messages

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/firebase-fcmnotifications
https://firebase.google.com/docs/cloud-messaging/concept-options

Google Cloud Messaging
 7/8/2021 • 8 minutes to read • Edit Online

WARNINGWARNING

 Overview

 Google Cloud Messaging in Action

Google deprecated GCM as of April 10, 2018. The following docs and sample projects may no longer be maintained.

Google's GCM server and client APIs will be removed as soon as May 29, 2019. Google recommends migrating GCM

apps to Firebase Cloud Messaging (FCM). For more information about GCM deprecation and migration, see Google

Deprecated Cloud Messaging.

To start using Firebase Cloud Messaging with Xamarin, see Firebase Cloud Messaging.

Google Cloud Messaging (GCM) is a service that facilitates messaging between mobile apps and server

applications. This article provides an overview of how GCM works, and it explains how to configure Google

Services so your app can use GCM.

This topic provides a high-level overview of how Google Cloud Messaging routes messages between your app

and an app server, and it provides a step-by-step procedure for acquiring credentials so that your app can use

GCM services.

Google Cloud Messaging (GCM) is a service that handles the sending, routing, and queueing of messages

between server applications and mobile client apps. A client app is a GCM-enabled app that runs on a device.

The app server (provided by you or your company) is the GCM-enabled server that your client app

communicates with through GCM:

Using GCM, app servers can send messages to a single device, a group of devices, or a number of devices that

are subscribed to a topic. Your client app can use GCM to subscribe to downstream messages from an app

server (for example, to receive remote notifications). Also, GCM makes it possible for client apps to send

upstream messages back to the app server.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/google-messaging/google-cloud-messaging.md
https://developers.google.com/cloud-messaging/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/preview.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/01-server-gcm-app.png#lightbox

 Registration with GCMRegistration with GCM

When downstream messages are sent from an app server to a client app, the app server sends the message to a

GCM connection server; the GCM connection server, in turn, forwards the message to a device that is running

your client app. Messages can be sent over HTTP or XMPP (Extensible Messaging and Presence Protocol).

Because client apps are not always connected or running, the GCM connection server enqueues and stores

messages, sending them to client apps as they reconnect and become available. Similarly, GCM will enqueue

upstream messages from the client app to the app server if the app server is unavailable.

GCM uses the following credentials to identify the app server and your client app, and it uses these credentials

to authorize message transactions through GCM:

API KeyAPI Key – The API key gives your app server access to Google services; GCM uses this key to

authenticate your app server. Before you can use the GCM service, you must first obtain an API key from

the Google Developer Console by creating a project. The API Key should be kept secure; for more

information about protecting your API key, see Best practices for securely using API keys.

Sender IDSender ID – The Sender ID authorizes the app server to your client app – it is a unique number that

identifies the app server that is permitted to send messages to your client app. The sender ID is also your

project number; you obtain the sender ID from the Google Developers Console when you register your

project.

Registration TokenRegistration Token – The Registration Token is the GCM identity of your client app on a given device.

The registration token is generated at run time – your app receives a registration token when it first

registers with GCM while running on a device. The registration token authorizes an instance of your client

app (running on that particular device) to receive messages from GCM.

Application IDApplication ID – The identity of your client app (independent of any given device) that registers to

receive messages from GCM. On Android, the application ID is the package name recorded in

AndroidManifest.xmlAndroidManifest.xml , such as com.xamarin.gcmexample .

Setting Up Google Cloud Messaging (later in this guide) provides detailed instructions for creating a project and

generating these credentials.

The following sections explain how these credentials are used when client apps communicate with app servers

through GCM.

A client app installed on a device must first register with GCM before messaging can take place. The client app

must complete the registration steps shown in the following diagram:

1. The client app contacts GCM to obtain a registration token, passing the sender ID to GCM.

2. GCM returns a registration token to the client app.

https://firebase.google.com/docs/cloud-messaging/xmpp-server-ref
https://console.developers.google.com/
https://support.google.com/cloud/answer/6310037?hl=en
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/02-app-registration.png#lightbox

 Downstream MessagingDownstream Messaging

 Topic MessagingTopic Messaging

 Group MessagingGroup Messaging

3. The client app forwards the registration token to the app server.

The app server caches the registration token for subsequent communications with the client app. Optionally, the

app server can send an acknowledgement back to the client app to indicate that the registration token was

received. After this handshake takes place, the client app can receive messages from (or send messages to) the

app server.

When the client app no longer wants to receive messages from the app server, it can send a request to the app

server to delete the registration token. If the client app is receiving topic messages (explained later in this

article), it can unsubscribe from the topic. If the client app is uninstalled from a device, GCM detects this and

automatically notifies the app server to delete the registration token.

When the app server sends a downstream message to the client app, it follows the steps illustrated in the

following diagram:

1. The app server sends the message to GCM.

2. If the client device is not available, the GCM server stores the message in a queue for later transmission.

3. When the client device is available, GCM sends the message to the client app on that device.

4. The client app receives the message from GCM and handles it accordingly. For example, if the message is

a remote notification, it is presented to the user.

In this messaging scenario (where the app server sends a message to a single client app), messages can be up to

4kB in length.

For detailed information (including code samples) about receiving downstream GCM messages on Android, see

Remote Notifications.

Topic Messaging is a type of downstream messaging where the app server sends a single message to multiple

client app devices that subscribe to a topic (such as a weather forecast). Topic messages can be up to 2KB in

length, and topic messaging supports up to one million subscriptions per app. If GCM is being used only for

topic messaging, the client app is not required to send a registration token to the app server.

Group Messaging is a type of downstream messaging where the app server sends a single message to multiple

client app devices that belong to a group (for example, a group of devices that belong to a single user). Group

messages can be up to 2KB in length for iOS devices, and up to 4KB in length for Android devices. A group is

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/03-downstream.png#lightbox

 Upstream MessagingUpstream Messaging

 Setting Up Google Cloud Messaging

 Enable Google Services for Your AppEnable Google Services for Your App

limited to a maximum of 20 members.

If your client app connects to a server that supports XMPP, it can send messages back to the app server as

illustrated in the following diagram:

1. The client app sends a message to the GCM XMPP connection server.

2. If the app server is disconnected, the GCM server stores the message in a queue for later forwarding.

3. When the app server is re-connected, GCM forwards the message to the app server.

4. The app server parses the message to verify the identity of the client app, then it sends an "ack" to GCM

to acknowledge message receipt.

5. The app server processes the message.

Google's Upstream Messages explains how to structure JSON-encoded messages and send them to app servers

that run Google's XMPP-based Cloud Connection Server.

Before you can use GCM services in your app, you must first acquire credentials for access to Google's GCM

servers. The following sections describe the steps required to complete this process:

1. Sign into the Google Developers Console with your Google account (i.e, your gmail address) and create a

new project. If you have an existing project, choose the project that you want to become GCM-enabled. In

the following example, a new project called XamarinGCMXamarinGCM is created:

https://firebase.google.com/docs/cloud-messaging/xmpp-server-ref
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/04-upstream.png#lightbox
https://firebase.google.com/docs/cloud-messaging/xmpp-server-ref#upstream
https://developers.google.com/mobile/add?platform=android

2. Next, enter the package name for your app (in this example, the package name is

com.xamarin.gcmexamplecom.xamarin.gcmexample) and click Continue to Choose and configure ser vicesContinue to Choose and configure ser vices :

Note that this package name is also the application ID for your app.

3. The Choose and configure ser vicesChoose and configure ser vices section lists the Google services that you can add to your app.

Click Cloud MessagingCloud Messaging:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/05-create-gcm-app.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/06-package-name.png#lightbox

4. Next, click ENABLE GOOGLE CLOUD MESSAGINGENABLE GOOGLE CLOUD MESSAGING:

5. A Ser ver API keySer ver API key and a Sender IDSender ID are generated for your app. Record these values and click CLOSECLOSE:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/07-choose-gcm-service.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/08-enable-gcm.png#lightbox

 View Your Project SettingsView Your Project Settings

Protect the API key – it is not intended for public use. If the API key is compromised, unauthorized servers

could publish messages to client applications. Best practices for securely using API keys provides useful

guidelines for protecting your API Key.

You can view your project settings at any time by signing into the Google Cloud Console and selecting your

project. For example, you can view the Sender IDSender ID by selecting your project in the pull down menu at the top of

the page (in this example, the project is called XamarinGCMXamarinGCM). The Sender ID is the Project number as shown in

this screenshot (the Sender ID here is 93499327369349932736):

To view the API keyAPI key , click API ManagerAPI Manager and then click CredentialsCredentials :

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/09-get-api-key-and-id.png#lightbox
https://support.google.com/cloud/answer/6310037?hl=en
https://console.cloud.google.com/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/10-view-server-id.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/google-cloud-messaging-images/11-view-credentials.png#lightbox

 For Further Reading

 Summary

 Related Links

RFC 6120 and RFC 6121 explain and define the Extensible Messaging and Presence Protocol (XMPP).

This article provided an overview of Google Cloud Messaging (GCM). It explained the various credentials that

are used to identify and authorize messaging between app servers and client apps. It illustrated the most

common messaging scenarios, and it detailed the steps for registering your app with GCM to use GCM services.

Cloud Messaging

https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6121
https://developers.google.com/cloud-messaging/

Remote Notifications With Google Cloud
Messaging

 7/8/2021 • 20 minutes to read • Edit Online

WARNINGWARNING

 GCM Notifications Overview

 Walkthrough

Google deprecated GCM as of April 10, 2018. The following docs and sample projects may no longer be maintained.

Google's GCM server and client APIs will be removed as soon as May 29, 2019. Google recommends migrating GCM

apps to Firebase Cloud Messaging (FCM). For more information about GCM deprecation and migration, see Google

Cloud Messaging - DEPRECATED.

To get started with Remote Notifications using Firebase Cloud Messaging with Xamarin, see Remote Notifications with

FCM.

This walkthrough provides a step-by-step explanation of how to use Google Cloud Messaging to implement

remote notifications (also called push notifications) in a Xamarin.Android application. It describes the various

classes that you must implement to communicate with Google Cloud Messaging (GCM), it explains how to set

permissions in the Android Manifest for access to GCM, and it demonstrates end-to-end messaging with a

sample test program.

In this walkthrough, we'll create a Xamarin.Android application that uses Google Cloud Messaging (GCM) to

implement remote notifications (also known as push notifications). We'll implement the various intent and

listener services that use GCM for remote messaging, and we'll test our implementation with a command-line

program that simulates an application server.

Before you can proceed with this walkthrough, you must acquire the necessary credentials to use Google's GCM

servers; this process is explained in Google Cloud Messaging. In particular, you will need an API Key and a

Sender ID to insert into the example code presented in this walkthrough.

We'll use the following steps to create a GCM-enabled Xamarin.Android client app:

1. Install additional packages required for communications with GCM servers.

2. Configure app permissions for access to GCM servers.

3. Implement code to check for the presence of Google Play Services.

4. Implement a registration intent service that negotiates with GCM for a registration token.

5. Implement an instance ID listener service that listens for registration token updates from GCM.

6. Implement a GCM listener service that receives remote messages from the app server through GCM.

This app will use a new GCM feature known as topic messaging. In topic messaging, the app server sends a

message to a topic, rather than to a list of individual devices. Devices that subscribe to that topic can receive

topic messages as push notifications.

When the client app is ready, we'll implement a command-line C# application that sends a push notification to

our client app via GCM.

To begin, let's create a new empty Solution called RemoteNotificationsRemoteNotifications . Next, let's add a new Android project

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/data-cloud/google-messaging/remote-notifications-with-gcm.md
https://developers.google.com/cloud-messaging/

 Add Required PackagesAdd Required Packages

 Add the Xamarin Google Play Services GCM PackageAdd the Xamarin Google Play Services GCM Package

using Android.Gms.Common;
using Android.Util;

 Google Play StoreGoogle Play Store

 Set the Package NameSet the Package Name

to this Solution that is based on the Android AppAndroid App template. Let's call this project ClientAppClientApp. (If you're not

familiar with creating Xamarin.Android projects, see Hello, Android.) The ClientAppClientApp project will contain the

code for the Xamarin.Android client application that receives remote notifications via GCM.

Before we can implement our client app code, we must install several packages that we'll use for communication

with GCM. Also, we must add the Google Play Store application to our device if it is not already installed.

To receive messages from Google Cloud Messaging, the Google Play Services framework must be present on

the device. Without this framework, an Android application cannot receive messages from GCM servers. Google

Play Services runs in the background while the Android device is powered on, quietly listening for messages

from GCM. When these messages arrive, Google Play Services converts the messages into intents and then

broadcasts these intents to applications that have registered for them.

In Visual Studio, right-click References > Manage NuGet Packages ...References > Manage NuGet Packages ... ; in Visual Studio for Mac, right-click

Packages > Add Packages...Packages > Add Packages... . Search for Xamarin Google Play Ser vices - GCMXamarin Google Play Ser vices - GCM and install this package

into the ClientAppClientApp project:

When you install Xamarin Google Play Ser vices - GCMXamarin Google Play Ser vices - GCM, Xamarin Google Play Ser vices - BaseXamarin Google Play Ser vices - Base is

automatically installed. If you get an error, change the project's Minimum Android to target setting to a value

other than Compile using SDK versionCompile using SDK version and try the NuGet install again.

Next, edit MainActivity.csMainActivity.cs and add the following using statements:

This makes types in the Google Play Services GMS package available to our code, and it adds logging

functionality that we will use to track our transactions with GMS.

To receive messages from GCM, the Google Play Store application must be installed on the device. (Whenever a

Google Play application is installed on a device, Google Play Store is also installed, so it's likely that it is already

installed on your test device.) Without Google Play, an Android application cannot receive messages from GCM.

If you do not yet have the Google Play Store app installed on your device, visit the Google Play web site to

download and install Google Play.

Alternately, you can use an Android emulator running Android 2.2 or later instead of a test device (you do not

have to install Google Play Store on an Android emulator). However, if you use an emulator, you must use Wi-Fi

to connect to GCM and you must open several ports in your Wi-Fi firewall as explained later in this walkthrough.

In Google Cloud Messaging, we specified a package name for our GCM-enabled app (this package name also

serves as the application ID that is associated with our API key and Sender ID). Let's open the properties for the

https://www.nuget.org/packages/Xamarin.GooglePlayServices.Gcm/
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/1-google-play-services.png#lightbox
https://support.google.com/googleplay

 Add Permissions to the Android ManifestAdd Permissions to the Android Manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="YOUR_PACKAGE_NAME"
 android:versionCode="1"
 android:versionName="1.0"
 android:installLocation="auto">
 <uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" />
 <uses-permission android:name="android.permission.WAKE_LOCK" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="YOUR_PACKAGE_NAME.permission.C2D_MESSAGE" />
 <permission android:name="YOUR_PACKAGE_NAME.permission.C2D_MESSAGE"
 android:protectionLevel="signature" />
 <application android:label="ClientApp" android:icon="@drawable/Icon">
 </application>
</manifest>

ClientAppClientApp project and set the package name to this string. In this example, we set the package name to

com.xamarin.gcmexample :

Note that the client app will be unable to receive a registration token from GCM if this package name does not

exactly match the package name that we entered into the Google Developer console.

An Android application must have the following permissions configured before it can receive notifications from

Google Cloud Messaging:

com.google.android.c2dm.permission.RECEIVE – Grants permission to our app to register and receive

messages from Google Cloud Messaging. (What does c2dm mean? This stands for Cloud to Device

Messaging, which is the now-deprecated predecessor to GCM. GCM still uses c2dm in many of its

permission strings.)

android.permission.WAKE_LOCK – (Optional) Prevents the device CPU from going to sleep while listening

for a message.

android.permission.INTERNET – Grants internet access so the client app can communicate with GCM.

package_name .permission.C2D_MESSAGE – Registers the application with Android and requests

permission to exclusively receive all C2D (cloud to device) messages. The package_name prefix is the

same as your application ID.

We'll set these permissions in the Android manifest. Let's edit AndroidManifest.xmlAndroidManifest.xml and replace the contents

with the following XML:

In the above XML, change YOUR_PACKAGE_NAME to the package name for your client app project. For example,

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/2-package-name.png#lightbox

 Check for Google Play ServicesCheck for Google Play Services

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="10dp">
 <TextView
 android:text=" "
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/msgText"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:padding="10dp" />
</LinearLayout>

TextView msgText;

public bool IsPlayServicesAvailable ()
{
 int resultCode = GoogleApiAvailability.Instance.IsGooglePlayServicesAvailable (this);
 if (resultCode != ConnectionResult.Success)
 {
 if (GoogleApiAvailability.Instance.IsUserResolvableError (resultCode))
 msgText.Text = GoogleApiAvailability.Instance.GetErrorString (resultCode);
 else
 {
 msgText.Text = "Sorry, this device is not supported";
 Finish ();
 }
 return false;
 }
 else
 {
 msgText.Text = "Google Play Services is available.";
 return true;
 }
}

com.xamarin.gcmexample .

For this walkthrough, we're creating a bare-bones app with a single TextView in the UI. This app doesn't directly

indicate interaction with GCM. Instead, we'll watch the output window to see how our app handshakes with

GCM, and we'll check the notification tray for new notifications as they arrive.

First, let's create a layout for the message area. Edit Resources.layout.Main.axmlResources.layout.Main.axml and replace the contents

with the following XML:

Save Main.axmlMain.axml and close it.

When the client app starts, we want it to verify that Google Play Services is available before we attempt to

contact GCM. Edit MainActivity.csMainActivity.cs and replace the count instance variable declaration with the following

instance variable declaration:

Next, add the following method to the MainActivityMainActivity class:

This code checks the device to see if the Google Play Services APK is installed. If it is not installed, a message is

displayed in the message area that instructs the user to download an APK from the Google Play Store (or enable

it in the device's system settings). Because we want to run this check when the client app starts, we'll add a call to

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 SetContentView (Resource.Layout.Main);
 msgText = FindViewById<TextView> (Resource.Id.msgText);

 IsPlayServicesAvailable ();
}

 Register with GCMRegister with GCM

this method at the end of OnCreate .

Next, replace the OnCreate method with the following code:

This code checks for the presence of the Google Play Services APK and writes the result to the message area.

Let's completely rebuild and run the app. You should see a screen that looks like the following screenshot:

If you don't get this result, verify that the Google Play Services APK is installed on your device and that the

Xamarin Google Play Ser vices - GCMXamarin Google Play Ser vices - GCM package is added to your ClientAppClientApp project as explained earlier. If

you get a build error, try cleaning the Solution and building the project again.

Next, we'll write code to contact GCM and get back a registration token.

Before the app can receive remote notifications from the app server, it must register with GCM and get back a

registration token. The work of registering our application with GCM is handled by an IntentService that we

create. Our IntentService performs the following steps:

1. Uses the InstanceID API to generate security tokens that authorize our client app to access the app server.

In return, we get back a registration token from GCM.

2. Forwards the registration token to the app server (if the app server requires it).

3. Subscribes to one or more notification topic channels.

After we implement this IntentService , we'll test it to see if we get back a registration token from GCM.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/3-first-screen.png#lightbox
https://developers.google.com/instance-id/

using System;
using Android.App;
using Android.Content;
using Android.Util;
using Android.Gms.Gcm;
using Android.Gms.Gcm.Iid;

namespace ClientApp
{
 [Service(Exported = false)]
 class RegistrationIntentService : IntentService
 {
 static object locker = new object();

 public RegistrationIntentService() : base("RegistrationIntentService") { }

 protected override void OnHandleIntent (Intent intent)
 {
 try
 {
 Log.Info ("RegistrationIntentService", "Calling InstanceID.GetToken");
 lock (locker)
 {
 var instanceID = InstanceID.GetInstance (this);
 var token = instanceID.GetToken (
 "YOUR_SENDER_ID", GoogleCloudMessaging.InstanceIdScope, null);

 Log.Info ("RegistrationIntentService", "GCM Registration Token: " + token);
 SendRegistrationToAppServer (token);
 Subscribe (token);
 }
 }
 catch (Exception e)
 {
 Log.Debug("RegistrationIntentService", "Failed to get a registration token");
 return;
 }
 }

 void SendRegistrationToAppServer (string token)
 {
 // Add custom implementation here as needed.
 }

 void Subscribe (string token)
 {
 var pubSub = GcmPubSub.GetInstance(this);
 pubSub.Subscribe(token, "/topics/global", null);
 }
 }
}

Add a new file called RegistrationIntentSer vice.csRegistrationIntentSer vice.cs and replace the template code with the following:

In the above sample code, change YOUR_SENDER_ID to the Sender ID number for your client app project. To get

the Sender ID for your project:

1. Log into the Google Cloud Console and select your project name from the pull down menu. In the

Project infoProject info pane that is displayed for your project, click Go to project settingsGo to project settings :

https://console.cloud.google.com/

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 SetContentView(Resource.Layout.Main);
 msgText = FindViewById<TextView> (Resource.Id.msgText);

 if (IsPlayServicesAvailable ())
 {
 var intent = new Intent (this, typeof (RegistrationIntentService));
 StartService (intent);
 }
}

[Service (Exported = false)]

public RegistrationIntentService() : base ("RegistrationIntentService") { }

2. On the SettingsSettings page, locate the Project numberProject number – this is the Sender ID for your project:

We want to start our RegistrationIntentService when our app starts running. Edit MainActivity.csMainActivity.cs and modify

the OnCreate method so that our RegistrationIntentService is started after we check for the presence of

Google Play Services:

Now let's take a look at each section of RegistrationIntentService to understand how it works.

First, we annotate our RegistrationIntentService with the following attribute to indicate that our service is not

to be instantiated by the system:

The RegistrationIntentService constructor names the worker thread RegistrationIntentService to make

debugging easier.

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/7-choose-project.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/9-project-number.png#lightbox

 Request a Registration TokenRequest a Registration Token

static object locker = new object ();
...
try
{
 lock (locker)
 {
 var instanceID = InstanceID.GetInstance (this);
 var token = instanceID.GetToken (
 "YOUR_SENDER_ID", GoogleCloudMessaging.InstanceIdScope, null);
 ...
 }
}
catch (Exception e)
{
 Log.Debug ...

 Forward the Registration Token to the App ServerForward the Registration Token to the App Server

void SendRegistrationToAppServer (string token)
{
 // Add custom implementation here as needed.
}

 Subscribe to the Notification TopicSubscribe to the Notification Topic

void Subscribe (string token)
{
 var pubSub = GcmPubSub.GetInstance(this);
 pubSub.Subscribe(token, "/topics/global", null);
}

The core functionality of RegistrationIntentService resides in the OnHandleIntent method. Let's walk through

this code to see how it registers our app with GCM.

OnHandleIntent first calls Google's InstanceID.GetToken method to request a registration token from GCM. We

wrap this code in a lock to guard against the possibility of multiple registration intents occurring

simultaneously – the lock ensures that these intents are processed sequentially. If we fail to get a registration

token, an exception is thrown and we log an error. If the registration succeeds, token is set to the registration

token we got back from GCM:

If we get a registration token (that is, no exception was thrown), we call SendRegistrationToAppServer to

associate the user's registration token with the server-side account (if any) that is maintained by our application.

Because this implementation depends on the design of the app server, an empty method is provided here:

In some cases, the app server does not need the user's registration token; in that case, this method can be

omitted. When a registration token is sent to the app server, SendRegistrationToAppServer should maintain a

boolean to indicate whether the token has been sent to the server. If this boolean is false,

SendRegistrationToAppServer sends the token to the app server – otherwise, the token was already sent to the

app server in a previous call.

Next, we call our Subscribe method to indicate to GCM that we want to subscribe to a notification topic. In

Subscribe , we call the GcmPubSub.Subscribe API to subscribe our client app to all messages under

/topics/global :

The app server must send notification messages to /topics/global if we are to receive them. Note that the topic

name under /topics can be anything you want, as long as the app server and the client app both agree on

these names. (Here, we chose the name global to indicate that we want to receive messages on all topics

https://developers.google.com/android/reference/com/google/android/gms/iid/InstanceID.html#getToken(java.lang.String,%20java.lang.String)

 Implement an Instance ID Listener ServiceImplement an Instance ID Listener Service

using Android.App;
using Android.Content;
using Android.Gms.Gcm.Iid;

namespace ClientApp
{
 [Service(Exported = false), IntentFilter(new[] { "com.google.android.gms.iid.InstanceID" })]
 class MyInstanceIDListenerService : InstanceIDListenerService
 {
 public override void OnTokenRefresh()
 {
 var intent = new Intent (this, typeof (RegistrationIntentService));
 StartService (intent);
 }
 }
}

[Service(Exported = false), IntentFilter(new[] { "com.google.android.gms.iid.InstanceID" })]

 Test Registration with GCMTest Registration with GCM

D/Mono (1934): Assembly Ref addref ClientApp[0xb4ac2400] -> Xamarin.GooglePlayServices.Gcm[0xb4ac2640]:
2
I/RegistrationIntentService(1934): Calling InstanceID.GetToken
I/RegistrationIntentService(1934): GCM Registration Token: f8LdveCvXig:APA91bFIsjUAbP-
V8TPQdLR89qQbEJh1SYG38AcCbBUf34z5gSdUc5OsXrgs93YFiGcRSRafPfzkz23lf3-LvYV1CwrFheMjHgwPeFSh12MywnRIhz

 Handle Downstream MessagesHandle Downstream Messages

 Add a Notification IconAdd a Notification Icon

supported by the app server.)

Registration tokens are unique and secure; however, the client app (or GCM) may need to refresh the

registration token in the event of app reinstallation or a security issue. For this reason, we must implement an

InstanceIdListenerService that responds to token refresh requests from GCM.

Add a new file called InstanceIdListenerSer vice.csInstanceIdListenerSer vice.cs and replace the template code with the following:

Annotate InstanceIdListenerService with the following attribute to indicate that the service is not to be

instantiated by the system and that it can receive GCM registration token (also called instance ID) refresh

requests:

The OnTokenRefresh method in our service starts the RegistrationIntentService so that it can intercept the new

registration token.

Let's completely rebuild and run the app. If you successfully receive a registration token from GCM, the

registration token should be displayed in the output window. For example:

The code we have implemented thus far is only "set-up" code; it checks to see if Google Play Services is installed

and negotiates with GCM and the app server to prepare our client app for receiving remote notifications.

However, we have yet to implement code that actually receives and processes downstream notification

messages. To do this, we must implement a GCM Listener Service. This service receives topic messages from the

app server and locally broadcasts them as notifications. After we implement this service, we'll create a test

program to send messages to GCM so that we can see if our implementation works correctly.

Let's first add a small icon that will appear in the notification area when our notification is launched. You can

copy this icon to your project or create your own custom icon. We'll name the icon file

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/ic-stat-ic-notification.png

 Implement a GCM Listener ServiceImplement a GCM Listener Service

using Android.App;
using Android.Content;
using Android.OS;
using Android.Gms.Gcm;
using Android.Util;

namespace ClientApp
{
 [Service (Exported = false), IntentFilter (new [] { "com.google.android.c2dm.intent.RECEIVE" })]
 public class MyGcmListenerService : GcmListenerService
 {
 public override void OnMessageReceived (string from, Bundle data)
 {
 var message = data.GetString ("message");
 Log.Debug ("MyGcmListenerService", "From: " + from);
 Log.Debug ("MyGcmListenerService", "Message: " + message);
 SendNotification (message);
 }

 void SendNotification (string message)
 {
 var intent = new Intent (this, typeof(MainActivity));
 intent.AddFlags (ActivityFlags.ClearTop);
 var pendingIntent = PendingIntent.GetActivity (this, 0, intent, PendingIntentFlags.OneShot);

 var notificationBuilder = new Notification.Builder(this)
 .SetSmallIcon (Resource.Drawable.ic_stat_ic_notification)
 .SetContentTitle ("GCM Message")
 .SetContentText (message)
 .SetAutoCancel (true)
 .SetContentIntent (pendingIntent);

 var notificationManager = (NotificationManager)GetSystemService(Context.NotificationService);
 notificationManager.Notify (0, notificationBuilder.Build());
 }
 }
}

[Service (Exported = false), IntentFilter (new [] { "com.google.android.c2dm.intent.RECEIVE" })]

var message = data.GetString ("message");
Log.Debug ("MyGcmListenerService", "From: " + from);
Log.Debug ("MyGcmListenerService", "Message: " + message);
SendNotification (message);

ic_stat_button_click .pngic_stat_button_click .png and copy it to the Resources/drawableResources/drawable folder. Remember to use Add > ExistingAdd > Existing

Item ...Item ... to include this icon file in your project.

Add a new file called GcmListenerSer vice.csGcmListenerSer vice.cs and replace the template code with the following:

Let's take a look at each section of our GcmListenerService to understand how it works.

First, we annotate GcmListenerService with an attribute to indicate that this service is not to be instantiated by

the system, and we include an intent filter to indicate that it receives GCM messages:

When GcmListenerService receives a message from GCM, the OnMessageReceived method is invoked. This

method extracts the message content from the passed-in Bundle , logs the message content (so we can view it

in the output window), and calls SendNotification to launch a local notification with the received message

content:

 Declare the Receiver in the ManifestDeclare the Receiver in the Manifest

<application android:label="RemoteNotifications" android:icon="@drawable/Icon">
 <receiver android:name="com.google.android.gms.gcm.GcmReceiver"
 android:exported="true"
 android:permission="com.google.android.c2dm.permission.SEND">
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 <action android:name="com.google.android.c2dm.intent.REGISTRATION" />
 <category android:name="YOUR_PACKAGE_NAME" />
 </intent-filter>
 </receiver>
</application>

SET T IN GSET T IN G DESC RIP T IO NDESC RIP T IO N

com.google.android.gms.gcm.GcmReceiver Declares that our app implements a GCM receiver that
captures and processes incoming push notification
messages.

com.google.android.c2dm.permission.SEND Declares that only GCM servers can send messages directly
to the app.

com.google.android.c2dm.intent.RECEIVE Intent filter advertising that our app handles broadcast
messages from GCM.

com.google.android.c2dm.intent.REGISTRATION Intent filter advertising that our app handles new
registration intents (that is, we have implemented an
Instance ID Listener Service).

 Create a Message Sender to Test the AppCreate a Message Sender to Test the App

 Add the Json.NET PackageAdd the Json.NET Package

The SendNotification method uses Notification.Builder to create the notification, and then it uses the

NotificationManager to launch the notification. Effectively, this converts the remote notification message into a

local notification to be presented to the user. For more information about using Notification.Builder and

NotificationManager , see Local Notifications.

Before we can receive messages from GCM, we must declare the GCM listener in the Android manifest. Let's edit

AndroidManifest.xmlAndroidManifest.xml and replace the <application> section with the following XML:

In the above XML, change YOUR_PACKAGE_NAME to the package name for your client app project. In our

walkthrough example, the package name is com.xamarin.gcmexample .

Let's look at what each setting in this XML does:

Alternatively, you can decorate GcmListenerService with these attributes rather than specifying them in XML;

here we specify them in AndroidManifest.xmlAndroidManifest.xml so that the code samples are easier to follow.

Let's add a C# desktop console application project to the Solution and call it MessageSenderMessageSender . We'll use this

console application to simulate an application server – it will send notification messages to ClientAppClientApp via GCM.

In this console app, we're building a JSON payload that contains the notification message we want to send to the

client app. We'll use the Json.NETJson.NET package in MessageSenderMessageSender to make it easier to build the JSON object

required by GCM. In Visual Studio, right-click References > Manage NuGet Packages ...References > Manage NuGet Packages ... ; in Visual Studio for

Mac, right-click Packages > Add Packages...Packages > Add Packages... .

Let's search for the Json.NETJson.NET package and install it in the project:

 Add a Reference to System.Net.HttpAdd a Reference to System.Net.Http

 Implement Code that Sends a Test MessageImplement Code that Sends a Test Message

We'll also need to add a reference to System.Net.Http so that we can instantiate an HttpClient for sending our

test message to GCM. In the MessageSenderMessageSender project, Right-click References > Add ReferenceReferences > Add Reference and scroll

down until you see System.Net.HttpSystem.Net.Http. Put a check mark next to System.Net.HttpSystem.Net.Http and click OKOK.

In MessageSenderMessageSender , edit Program.csProgram.cs and replace the contents with the following code:

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/4-add-json.net.png#lightbox

using System;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json.Linq;

namespace MessageSender
{
 class MessageSender
 {
 public const string API_KEY = "YOUR_API_KEY";
 public const string MESSAGE = "Hello, Xamarin!";

 static void Main (string[] args)
 {
 var jGcmData = new JObject();
 var jData = new JObject();

 jData.Add ("message", MESSAGE);
 jGcmData.Add ("to", "/topics/global");
 jGcmData.Add ("data", jData);

 var url = new Uri ("https://gcm-http.googleapis.com/gcm/send");
 try
 {
 using (var client = new HttpClient())
 {
 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/json"));

 client.DefaultRequestHeaders.TryAddWithoutValidation (
 "Authorization", "key=" + API_KEY);

 Task.WaitAll(client.PostAsync (url,
 new StringContent(jGcmData.ToString(), Encoding.Default, "application/json"))
 .ContinueWith(response =>
 {
 Console.WriteLine(response);
 Console.WriteLine("Message sent: check the client device notification
tray.");
 }));
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Unable to send GCM message:");
 Console.Error.WriteLine(e.StackTrace);
 }
 }
 }
}

{
 "to": "/topics/global",
 "data": {
 "message": "Hello, Xamarin!"
 }
}

In the above code, change YOUR_API_KEY to the API Key for your client app project.

This test app server sends the following JSON-formatted message to GCM:

GCM, in turn, forwards this message to your client app. Let's build MessageSenderMessageSender and open a console

 Try It!Try It!

I/RegistrationIntentService(16103): GCM Registration Token: eX9ggabZV1Q:APA91bHjBnQXMUeBOT6JDiLpRt8m2YWtY
...

MessageSender.exe

mono MessageSender.exe

D/MyGcmListenerService(16103): From: /topics/global
D/MyGcmListenerService(16103): Message: Hello, Xamarin!

window where we can run it from the command line.

Now we're ready to test our client app. If you're using an emulator or if your device is communicating with GCM

over Wi-Fi, you must open the following TCP ports on your firewall for GCM messages to get through: 5228,

5229, and 5230.

Start your client app and watch the output window. After the RegistrationIntentService successfully receives a

registration token from GCM, the output window should display the token with log output resembling the

following:

At this point the client app is ready to receive a remote notification message. From the command line, run the

MessageSender.exeMessageSender.exe program to send a "Hello, Xamarin" notification message to the client app. If you have not

yet built the MessageSenderMessageSender project, do so now.

To run MessageSender.exeMessageSender.exe under Visual Studio, open a command prompt, change to the

MessageSender/bin/DebugMessageSender/bin/Debug directory, and run the command directly:

To run MessageSender.exeMessageSender.exe under Visual Studio for Mac, open a Terminal session, change to

MessageSender/bin/DebugMessageSender/bin/Debug the directory, and use mono to run MessageSender.exeMessageSender.exe

It may take up to a minute for the message to propagate through GCM and back down to your client app. If the

message is received successfully, we should see output resembling the following in the output window:

In addition, you should notice that a new notification icon has appeared in the notification tray:

 Summary

When you open the notification tray to view notifications, you should see our remote notification:

Congratulations, your app has received its first remote notification!

Note that GCM messages will no longer be received if the app is force-stopped. To resume notifications after a

force-stop, the app must be manually restarted. For more information about this Android policy, see Launch

controls on stopped applications and this stack overflow post.

This walkthrough detailed the steps for implementing remote notifications in a Xamarin.Android application. It

described how to install additional packages needed for GCM communications, and it explained how to

file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/5-icon-appears.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/data-cloud/google-messaging/remote-notifications-with-gcm-images/6-notification-in-tray.png#lightbox
https://developer.android.com/about/versions/android-3.1.html#launchcontrols
https://stackoverflow.com/questions/5051687/broadcastreceiver-not-receiving-boot-completed/19856267#19856267

 Related Links

configure app permissions for access to GCM servers. It provided example code that illustrates how to check for

the presence of Google Play Services, how to implement a registration intent service and instance ID listener

service that negotiates with GCM for a registration token, and how to implement a GCM listener service that

receives and processes remote notification messages. Finally, we implemented a command-line test program to

send test notifications to our client app through GCM.

Google Cloud Messaging

Introduction to Web Services
 7/12/2021 • 15 minutes to read • Edit Online

IMPORTANTIMPORTANT

 REST

 Consuming REST Services

This guide demonstrates how to consume different web service technologies. Topics covered include

communicating with REST services, SOAP services, and Windows Communication Foundation services.

To function correctly, many mobile applications are dependent on the cloud, and so integrating web services into

mobile applications is a common scenario. The Xamarin platform supports consuming different web service

technologies, and includes in-built and third-party support for consuming RESTful, ASMX, and Windows

Communication Foundation (WCF) services.

For customers using Xamarin.Forms, there are complete examples using each of these technologies in the

Xamarin.Forms Web Services documentation.

In iOS 9, App Transport Security (ATS) enforces secure connections between internet resources (such as the app's back-

end server) and the app, thereby preventing accidental disclosure of sensitive information. Since ATS is enabled by default

in apps built for iOS 9, all connections will be subject to ATS security requirements. If connections do not meet these

requirements, they will fail with an exception.

You can opt-out of ATS if it is not possible to use the HTTPS protocol and secure communication for internet

resources. This can be achieved by updating the app's Info.plistInfo.plist file. For more information see App Transport

Security.

Representational State Transfer (REST) is an architectural style for building web services. REST requests are

made over HTTP using the same HTTP verbs that web browsers use to retrieve web pages and to send data to

servers. The verbs are:

GETGET – this operation is used to retrieve data from the web service.

POSTPOST – this operation is used to create a new item of data on the web service.

PUTPUT – this operation is used to update an item of data on the web service.

PATCHPATCH – this operation is used to update an item of data on the web service by describing a set of

instructions about how the item should be modified. This verb is not used in the sample application.

DELETEDELETE – this operation is used to delete an item of data on the web service.

Web service APIs that adhere to REST are called RESTful APIs, and are defined using:

A base URI.

HTTP methods, such as GET, POST, PUT, PATCH, or DELETE.

A media type for the data, such as JavaScript Object Notation (JSON).

The simplicity of REST has helped make it the primary method for accessing web services in mobile

applications.

There are a number of libraries and classes that can be used to consume REST services, and the following

subsections discuss them. For more information about consuming a REST service, see Consume a RESTful Web

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/data-cloud/web-services/index.md
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/index
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/web-services/rest

 HttpClientHttpClient

 HTTPWebRequestHTTPWebRequest

var rxcui = "198440";
var request =
HttpWebRequest.Create(string.Format(@"https://rxnav.nlm.nih.gov/REST/RxTerms/rxcui/{0}/allinfo", rxcui));
request.ContentType = "application/json";
request.Method = "GET";

using (HttpWebResponse response = request.GetResponse() as HttpWebResponse)
{
 if (response.StatusCode != HttpStatusCode.OK)
 Console.Out.WriteLine("Error fetching data. Server returned status code: {0}", response.StatusCode);
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 var content = reader.ReadToEnd();
 if(string.IsNullOrWhiteSpace(content)) {
 Console.Out.WriteLine("Response contained empty body...");
 }
 else {
 Console.Out.WriteLine("Response Body: \r\n {0}", content);
 }

 Assert.NotNull(content);
 }
}

 RestSharpRestSharp

Service.

The Microsoft HTTP Client Libraries provides the HttpClient class, which is used to send and receive requests

over HTTP. It provides functionality for sending HTTP requests and receiving HTTP responses from a URI-

identified resource. Each request is sent as an asynchronous operation. For more information about

asynchronous operations, see Async Support Overview.

The HttpResponseMessage class represents an HTTP response message received from the web service after an

HTTP request has been made. It contains information about the response, including the status code, headers,

and body. The HttpContent class represents the HTTP body and content headers, such as Content-Type and

Content-Encoding . The content can be read using any of the ReadAs methods, such as ReadAsStringAsync and

ReadAsByteArrayAsync , depending upon the format of the data.

For more information about the HttpClient class, see Creating the HTTPClient Object.

Calling web services with HTTPWebRequest involves:

Creating the request instance for a particular URI.

Setting various HTTP properties on the request instance.

Retrieving an HttpWebResponse from the request.

Reading data out of the response.

For example, the following code retrieves data from the U.S. National Library of Medicine web service:

The above example creates an HttpWebRequest that will return data formatted as JSON. The data is returned in

an HttpWebResponse , from which a StreamReader can be obtained to read the data.

Another approach to consuming REST services is using the RestSharp library. RestSharp encapsulates HTTP

requests, including support for retrieving results either as raw string content or as a deserialized C# object. For

example, the following code makes a request to the U.S. National Library of Medicine web service, and retrieves

https://www.nuget.org/packages/Microsoft.Net.Http
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/web-services/rest
http://restsharp.org/

var request = new RestRequest(string.Format("{0}/allinfo", rxcui));
request.RequestFormat = DataFormat.Json;
var response = Client.Execute(request);
if(string.IsNullOrWhiteSpace(response.Content) || response.StatusCode != System.Net.HttpStatusCode.OK) {
 return null;
}
rxTerm = DeserializeRxTerm(response.Content);

 NSUrlConnectionNSUrlConnection

var rxcui = "198440";
var request = new NSMutableUrlRequest(new
NSUrl(string.Format("https://rxnav.nlm.nih.gov/REST/RxTerms/rxcui/{0}/allinfo", rxcui)),
 NSUrlRequestCachePolicy.ReloadRevalidatingCacheData, 20);
request["Accept"] = "application/json";

var connectionDelegate = new RxTermNSURLConnectionDelegate();
var connection = new NSUrlConnection(request, connectionDelegate);
connection.Start();

public class RxTermNSURLConnectionDelegate : NSUrlConnectionDelegate
{
 StringBuilder _ResponseBuilder;
 public bool IsFinishedLoading { get; set; }
 public string ResponseContent { get; set; }

 public RxTermNSURLConnectionDelegate()
 : base()
 {
 _ResponseBuilder = new StringBuilder();
 }

 public override void ReceivedData(NSUrlConnection connection, NSData data)
 {
 if(data != null) {
 _ResponseBuilder.Append(data.ToString());
 }
 }
 public override void FinishedLoading(NSUrlConnection connection)
 {
 IsFinishedLoading = true;
 ResponseContent = _ResponseBuilder.ToString();
 }
}

the results as a JSON formatted string:

DeserializeRxTerm is a method that will take the raw JSON string from the RestSharp.RestResponse.Content

property and convert it into a C# object. Deserializing data returned from web services is discussed later in this

article.

In addition to classes available in the Mono base class library (BCL), such as HttpWebRequest , and third party C#

libraries, such as RestSharp, platform-specific classes are also available for consuming web services. For

example, in iOS, the NSUrlConnection and NSMutableUrlRequest classes can be used.

The following code example shows how to call the U.S. National Library of Medicine web service using iOS

classes:

Generally, platform-specific classes for consuming web services should be limited to scenarios where native

code is being ported to C#. Where possible, web service access code should be portable so that it can be shared

cross-platform.

 ServiceStackServiceStack

client.GetAsync<CustomersResponse>("",
 (response) => {
 foreach(var c in response.Customers) {
 Console.WriteLine(c.CompanyName);
 }
 },
 (response, ex) => {
 Console.WriteLine(ex.Message);
 });

IMPORTANTIMPORTANT

 Consuming RESTful Data

 System.JSONSystem.JSON

var obj = JsonObject.Parse(json);
var properties = obj["rxtermsProperties"];
term.BrandName = properties["brandName"];
term.DisplayName = properties["displayName"];
term.Synonym = properties["synonym"];
term.FullName = properties["fullName"];
term.FullGenericName = properties["fullGenericName"];
term.Strength = properties["strength"];

 JSON.NETJSON.NET

Another option for calling web services is the Service Stack library. For example, the following code shows how

to use Service Stack’s IServiceClient.GetAsync method to issue a service request:

While tools like ServiceStack and RestSharp make it easy to call and consume REST services, it is sometimes non-trivial to

consume XML or JSON that does not conform to the standard DataContract serialization conventions. If necessary,

invoke the request and handle the appropriate serialization explicitly using the ServiceStack.Text library discussed below.

RESTful web services typically use JSON messages to return data to the client. JSON is a text-based, data-

interchange format that produces compact payloads, which results in reduced bandwidth requirements when

sending data. In this section, mechanisms for consuming RESTful responses in JSON and Plain-Old-XML (POX)

will be examined.

The Xamarin platform ships with support for JSON out of the box. By using a JsonObject , results can be

retrieved as shown in the following code example:

However, it’s important to be aware that the System.Json tools load the entirety of the data into memory.

The NewtonSoft JSON.NET library is a widely used library for serializing and deserializing JSON messages. The

following code example shows how to use JSON.NET to deserialize a JSON message into a C# object:

https://servicestack.net
https://www.newtonsoft.com/json

var term = new RxTerm();
var properties = JObject.Parse(json)["rxtermsProperties"];
term.BrandName = properties["brandName"].Value<string>();
term.DisplayName = properties["displayName"].Value<string>();
term.Synonym = properties["synonym"].Value<string>();;
term.FullName = properties["fullName"].Value<string>();;
term.FullGenericName = properties["fullGenericName"].Value<string>();;
term.Strength = properties["strength"].Value<string>();
term.RxCUI = properties["rxcui"].Value<string>();

 ServiceStack.TextServiceStack.Text

var result = JsonObject.Parse(json).Object("rxtermsProperties")
 .ConvertTo(x => new RxTerm {
 BrandName = x.Get("brandName"),
 DisplayName = x.Get("displayName"),
 Synonym = x.Get("synonym"),
 FullName = x.Get("fullName"),
 FullGenericName = x.Get("fullGenericName"),
 Strength = x.Get("strength"),
 RxTermDoseForm = x.Get("rxtermsDoseForm"),
 Route = x.Get("route"),
 RxCUI = x.Get("rxcui"),
 RxNormDoseForm = x.Get("rxnormDoseForm"),
 });

 System.Xml.LinqSystem.Xml.Linq

var doc = XDocument.Parse(xml);
var result = doc.Root.Descendants("rxtermsProperties")
.Select(x=> new RxTerm()
 {
 BrandName = x.Element("brandName").Value,
 DisplayName = x.Element("displayName").Value,
 Synonym = x.Element("synonym").Value,
 FullName = x.Element("fullName").Value,
 FullGenericName = x.Element("fullGenericName").Value,
 //bind more here...
 RxCUI = x.Element("rxcui").Value,
 });

 ASP.NET Web Service (ASMX)

ServiceStack.Text is a JSON serialization library designed to work with the ServiceStack library. The following

code example shows how to parse JSON using a ServiceStack.Text.JsonObject :

In the event of consuming an XML-based REST web service, LINQ to XML can be used to parse the XML and

populate a C# object inline, as demonstrated in the following code example:

ASMX provides the ability to build web services that send messages using the Simple Object Access Protocol

(SOAP). SOAP is a platform-independent and language-independent protocol for building and accessing web

services. Consumers of an ASMX service do not need to know anything about the platform, object model, or

programming language used to implement the service. They only need to understand how to send and receive

SOAP messages.

A SOAP message is an XML document containing the following elements:

A root element named Envelope that identifies the XML document as a SOAP message.

 Generating a ProxyGenerating a Proxy

file:///Users/myUserName/projects/MyProjectName/service.wsdl

 Manually Adding a Proxy to a ProjectManually Adding a Proxy to a Project

An optional Header element that contains application-specific information such as authentication data. If the

Header element is present it must be the first child element of the Envelope element.

A required Body element that contains the SOAP message intended for the recipient.

An optional Fault element that's used to indicate error messages. If the Fault element is present, it must be a

child element of the Body element.

SOAP can operate over many transport protocols, including HTTP, SMTP, TCP, and UDP. However, an ASMX

service can only operate over HTTP. The Xamarin platform supports standard SOAP 1.1 implementations over

HTTP, and this includes support for many of the standard ASMX service configurations.

A proxy must be generated to consume an ASMX service, which allows the application to connect to the service.

The proxy is constructed by consuming service metadata that defines the methods and associated service

configuration. This metadata is exposed as a Web Services Description Language (WSDL) document that is

generated by the web service. The proxy is built by using Visual Studio for Mac or Visual Studio to add a web

reference for the web service to the platform-specific projects.

The web service URL can either be a hosted remote source or local file system resource accessible via the

file:/// path prefix, for example:

This generates the proxy in the Web or Service References folder of the project. Since a proxy is generated code,

it should not be modified.

If you have an existing proxy that has been generated using compatible tools, this output can be consumed

when included as part of your project. In Visual Studio for Mac, use the Add files…Add files… menu option to add the

proxy. In addition, this requires System.Web.Services.dll to be referenced explicitly using the Add References…Add References…

dialog.

file:///T:/c1uy/n1bv/xamarin/cross-platform/data-cloud/web-services/images/add-webreference-dialog.png#lightbox

 Consuming the ProxyConsuming the Proxy

public async Task<List<TodoItem>> RefreshDataAsync ()
{
 ...
 var todoItems = await Task.Factory.FromAsync<ASMXService.TodoItem[]> (
 todoService.BeginGetTodoItems,
 todoService.EndGetTodoItems,
 null,
 TaskCreationOptions.None);
 ...
}

 Windows Communication Foundation (WCF)

The generated proxy classes provide methods for consuming the web service that use the Asynchronous

Programming Model (APM) design pattern. In this pattern an asynchronous operation is implemented as two

methods named BeginOperationName and EndOperationName, which begin and end the asynchronous

operation.

The BeginOperationName method begins the asynchronous operation and returns an object that implements

the IAsyncResult interface. After calling BeginOperationName, an application can continue executing

instructions on the calling thread, while the asynchronous operation takes place on a thread pool thread.

For each call to BeginOperationName, the application should also call EndOperationName to get the results of

the operation. The return value of EndOperationName is the same type returned by the synchronous web

service method. The following code example shows an example of this:

The Task Parallel Library (TPL) can simplify the process of consuming an APM begin/end method pair by

encapsulating the asynchronous operations in the same Task object. This encapsulation is provided by multiple

overloads of the Task.Factory.FromAsync method. This method creates a Task that executes the

TodoService.EndGetTodoItems method once the TodoService.BeginGetTodoItems method completes, with the

null parameter indicating that no data is being passed into the BeginGetTodoItems delegate. Finally, the value

of the TaskCreationOptions enumeration specifies that the default behavior for the creation and execution of

tasks should be used.

For more information about APM, see Asynchronous Programming Model and TPL and Traditional .NET

Framework Asynchronous Programming on MSDN.

For more information about consuming an ASMX service, see Consume an ASP.NET Web Service (ASMX).

WCF is Microsoft's unified framework for building service-oriented applications. It enables developers to build

secure, reliable, transacted, and interoperable distributed applications.

WCF describes a service with a variety of different contracts which include the following:

Data contractsData contracts – define the data structures that form the basis for the content within a message.

Message contractsMessage contracts – compose messages from existing data contracts.

Fault contractsFault contracts – allow custom SOAP faults to be specified.

Ser vice contractsSer vice contracts – specify the operations that services support and the messages required for interacting

with each operation. They also specify any custom fault behavior that can be associated with operations on

each service.

There are differences between ASP.NET Web Services (ASMX) and WCF, but it is important to understand that

WCF supports the same capabilities that ASMX provides – SOAP messages over HTTP.

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/asynchronous-programming-model-apm
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/tpl-and-traditional-async-programming
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/web-services/asmx

IMPORTANTIMPORTANT

 Generating a ProxyGenerating a Proxy

 Configuring the ProxyConfiguring the Proxy

var binding = new BasicHttpBinding () {
 Name= "basicHttpBinding",
 MaxReceivedMessageSize = 67108864,
};

binding.ReaderQuotas = new System.Xml.XmlDictionaryReaderQuotas() {
 MaxArrayLength = 2147483646,
 MaxStringContentLength = 5242880,
};

var timeout = new TimeSpan(0,1,0);
binding.SendTimeout= timeout;
binding.OpenTimeout = timeout;
binding.ReceiveTimeout = timeout;

client = new Service1Client (binding, new EndpointAddress ("http://192.168.1.100/Service1.svc"));

 Consuming the ProxyConsuming the Proxy

The Xamarin platform support for WCF is limited to text-encoded SOAP messages over HTTP/HTTPS using the

BasicHttpBinding class. In addition, WCF support requires the use of tools only available in a Windows environment to

generate the proxy.

A proxy must be generated to consume a WCF service, which allows the application to connect to the service.

The proxy is constructed by consuming service metadata that define the methods and associated service

configuration. This metadata is exposed in the form of a Web Services Description Language (WSDL) document

that is generated by the web service. The proxy can be built by using the Microsoft WCF Web Service Reference

Provider in Visual Studio 2017 to add a service reference for the web service to a .NET Standard Library.

An alternative to creating the proxy using the Microsoft WCF Web Service Reference Provider in Visual Studio

2017 is to use the ServiceModel Metadata Utility Tool (svcutil.exe). For more information, see ServiceModel

Metadata Utility Tool (Svcutil.exe).

Configuring the generated proxy will generally take two configuration arguments (depending on SOAP

1.1/ASMX or WCF) during initialization: the EndpointAddress and/or the associated binding information, as

shown in the example below:

A binding is used to specify the transport, encoding, and protocol details required for applications and services

to communicate with each other. The BasicHttpBinding specifies that text-encoded SOAP messages will be sent

over the HTTP transport protocol. Specifying an endpoint address enables the application to connect to different

instances of the WCF service, provided that there are multiple published instances.

The generated proxy classes provide methods for consuming the web services that use the Asynchronous

Programming Model (APM) design pattern. In this pattern, an asynchronous operation is implemented as two

methods named BeginOperationName and EndOperationName, which begin and end the asynchronous

operation.

The BeginOperationName method begins the asynchronous operation and returns an object that implements

the IAsyncResult interface. After calling BeginOperationName, an application can continue executing

instructions on the calling thread, while the asynchronous operation takes place on a thread pool thread.

For each call to BeginOperationName, the application should also call EndOperationName to get the results of

the operation. The return value of EndOperationName is the same type returned by the synchronous web

https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe

public async Task<List<TodoItem>> RefreshDataAsync ()
{
 ...
 var todoItems = await Task.Factory.FromAsync <ObservableCollection<TodoWCFService.TodoItem>> (
 todoService.BeginGetTodoItems,
 todoService.EndGetTodoItems,
 null,
 TaskCreationOptions.None);
 ...
}

 Using Transport SecurityUsing Transport Security

System.Net.ServicePointManager.ServerCertificateValidationCallback +=
(se, cert, chain, sslerror) => { return true; };

 Using Client Credential SecurityUsing Client Credential Security

basicHttpBinding.Security.Transport.ClientCredentialType = HttpClientCredentialType.Basic;

client.ClientCredentials.UserName.UserName = @"foo";
client.ClientCredentials.UserName.Password = @"mrsnuggles";

service method. The following code example shows an example of this:

The Task Parallel Library (TPL) can simplify the process of consuming an APM begin/end method pair by

encapsulating the asynchronous operations in the same Task object. This encapsulation is provided by multiple

overloads of the Task.Factory.FromAsync method. This method creates a Task that executes the

TodoServiceClient.EndGetTodoItems method once the TodoServiceClient.BeginGetTodoItems method completes,

with the null parameter indicating that no data is being passed into the BeginGetTodoItems delegate. Finally,

the value of the TaskCreationOptions enumeration specifies that the default behavior for the creation and

execution of tasks should be used.

For more information about APM, see Asynchronous Programming Model and TPL and Traditional .NET

Framework Asynchronous Programming on MSDN.

For more information about consuming a WCF service, see Consume a Windows Communication Foundation

(WCF) Web Service.

WCF Services may employ transport level security to protect against interception of messages. The Xamarin

platform supports bindings that employ transport level security using SSL. However, there may be cases in

which the stack may need to validate the certificate, which results in unanticipated behavior. The validation can

be overridden by registering a ServerCertificateValidationCallback delegate before invoking the service, as

demonstrated in the following code example:

This maintains transport encryption while ignoring the server-side certificate validation. However, this approach

effectively disregards the trust concerns associated with the certificate and may not be appropriate. For more

information, see Using Trusted Roots Respectfully on mono-project.com.

WCF services may also require the service clients to authenticate using credentials. The Xamarin platform does

not support the WS-Security Protocol, which allows clients to send credentials inside the SOAP message

envelope. However, the Xamarin platform does support the ability to send HTTP Basic Authentication credentials

to the server by specifying the appropriate ClientCredentialType :

Then, basic authentication credentials can be specified:

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/asynchronous-programming-model-apm
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/tpl-and-traditional-async-programming
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/web-services/wcf
https://www.mono-project.com/UsingTrustedRootsRespectfully
https://www.mono-project.com

 Related Links

For more information about HTTP basic authentication, although in the context of a REST web service, see

Authenticating a RESTful Web Service.

Web Services in Xamarin.Forms

ServiceModel Metadata Utility Tool (svcutil.exe)

BasicHttpBinding

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/authentication/rest
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/index
https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.basichttpbinding

Deployment and Testing of Xamarin.Android Apps
 11/2/2020 • 2 minutes to read • Edit Online

 Application Package Sizes

 Apply Changes

 Building Apps

 Command Line Emulator

 Debugging

 Setting the Debuggable Attribute

 Environment

 GDB

 Installing a System App

 Linking on Android

This section includes guides that explain how to test an application, optimize its performance, prepare it for

release, sign it with a certificate, and publish it to an app store.

This article examines the constituent parts of a Xamarin.Android application package and the associated

strategies that can be used for efficient package deployment during debug and release stages of development.

This guide covers the Apply Changes feature which lets you push resource changes to your running app without

restarting your app.

This section describes how the build process works and explains how to build ABI-specific APKs.

This article briefly touches starting the emulator via the command line.

The guides in the section help you to debug your app using Android emulators, real Android devices, and the

debug log.

This article explains how to set the debuggable attribute so that tools such as adb can communicate with the

JVM.

This article describes the Xamarin.Android execution environment and the Android system properties that

influence program execution.

This article explains how to use gdb for debugging a Xamarin.Android application.

This guide explains how to install a Xamarin.Android app as a System Application on an Android device or as

part of a custom ROM.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/index.md

 Xamarin.Android Performance

 Profiling Android Apps

 Preparing an Application for Release

 Signing the Android Application Package

 Publishing an Application

This article discusses the linking process used by Xamarin.Android to reduce the final size of an application. It

describes the various levels of linking that can be performed and provides some guidance and troubleshooting

advice to mitigate errors that might result from using the linker.

There are many techniques for increasing the performance of applications built with Xamarin.Android.

Collectively these techniques can greatly reduce the amount of work being performed by a CPU and the amount

of memory consumed by an application.

This guide explains how to use profiler tools to examine the performance and memory usage of an Android app.

After an application has been coded and tested, it is necessary to prepare a package for distribution. The first

task in preparing this package is to build the application for release, which mainly entails setting some

application attributes.

Learn how to create an Android signing identity, create a new signing certificate for Android applications, and

sign the application with the signing certificate. In addition, this topic explains how to export the app to disk for

ad-hoc distribution. The resulting APK can be sideloaded into Android devices without going through an app

store.

This series of articles explains the steps for public distribution of an application created with Xamarin.Android.

Distribution can take place via channels such as e-mail, a private web server, Google Play, or the Amazon App

Store for Android.

Application Package Size
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

 Release Packages

This article examines the constituent parts of a Xamarin.Android application package and the associated

strategies that can be used for efficient package deployment during debug and release stages of development.

Xamarin.Android uses a variety of mechanisms to minimize package size while maintaining an efficient debug

and release deploy process. In this article, we look at the Xamarin.Android release and debug deployment

workflow and how the Xamarin.Android platform ensures that we build and release small application packages.

To ship a fully contained application, the package must include the application, the associated libraries, the

content, the Mono runtime, and the required Base Class Library (BCL) assemblies. For example, if we take the

default “Hello World” template, the contents of a complete package build would look like this:

15.8 MB is a larger download size than we’d like. The problem is the BCL libraries, as they include mscorlib,

System, and Mono.Android, which provide a lot of the necessary components to run your application. However,

they also provide functionality that you may not be using in your application, so it may be preferable to exclude

these components.

When we build an application for distribution, we execute a process, known as Linking, that examines the

application and removes any code that is not directly used. This process is similar to the functionality that

Garbage Collection provides for heap-allocated memory. But instead of operating over objects, linking operates

over your code. For example, there is a whole namespace in System.dll for sending and receiving email, but if

your application does not make use of this functionality, that code is just wasting space. After running the linker

on the Hello World application, our package now looks like this:

As we can see, this removes a significant amount of the BCL that was not being used. Note that the final BCL size

is dependent on what the application actually uses. For example, if we take a look at a more substantial sample

application called ApiDemo, we can see that the BCL component has increased in size because ApiDemo uses

more of the BCL than Hello, World does:

As illustrated here, your application package size will generally be about 2.9 MB larger than your application and

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/app-package-size.md
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/app-package-size-images/hello-world-package-size-before-linker.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/app-package-size-images/hello-world-package-size-after-linker.png#lightbox

 Debug Packages

 Fast Assembly DeploymentFast Assembly Deployment

its dependencies.

Things are handled slightly differently for debug builds. When redeploying repeatedly to a device, an application

needs to be as fast as possible, so we optimize debug packages for speed of deployment rather than size.

Android is relatively slow to copy and install a package, so we want the package size to be as small as possible.

As we discussed above, one possible way to minimize package size is via the linker. However, linking is slow and

we generally want to deploy only the parts of the application that have changed since the last deployment. To

accomplish this, we separate our application from the core Xamarin.Android components.

The first time we debug on device, we copy two large packages called Shared Runtime and Shared Platform.

Shared Runtime contains the Mono Runtime and BCL, while Shared Platform contains Android API level specific

assemblies:

Copying these core components is only done once as it takes quite a bit of time, but allows any subsequent

applications running in debug mode to utilize them. Finally, we copy the actual application, which is small and

quick:

The Fast Assembly Deployment build option can be used to further decrease the size of the debug install

package by not including the assemblies in the application's package, installing the assemblies directly on the

device only once and only copying over files that have been modified since the last deployment.

To enable Fast Assembly Deployment, do the following:

1. Right click on the Android Project in the Solution Explorer and select OptionsOptions .

2. From the Project Options dialog select Android BuildAndroid Build :

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/app-package-size-images/shared-runtime-package-size.png#lightbox

3. Check the Use shared Mono runtime checkboxUse shared Mono runtime checkbox and the Fast assembly deploymentFast assembly deployment checkboxes:

4. Click the OKOK button to save the changes and close the Project Options dialog.

The next time the application is built for debug, the assemblies will be installed directly on the device (if they

haven't already been) and a smaller application package (that does not include the assemblies) will be installed

on the device. This will shorten the time it takes to get changes to the application up and running for testing.

By enduring the long first deploy of the shared runtime and shared platform, every time we make a change to

the application, we can deploy the new version quickly and painlessly, so we can have a fast change/deploy/run

cycle.

 Summary
In this article we examined the facets of Xamarin.Android Release and Debug profile packaging. Additionally, we

looked at the strategies that the Mono for Android platform uses to facilitate efficient package deployment

during debug and release stages of development.

Apply Changes
 7/8/2021 • 2 minutes to read • Edit Online

 Requirements

 Get started

Apply Changes lets you push resource changes to your running app without restarting your app. This helps you

control how much of your app is restarted when you want to deploy and test small, incremental changes while

preserving your device or emulator's current state.

Apply Changes uses capabilities in the Android JVMTI implementation which is supported on devices or

emulators running Android 8.0 (API level 26) or higher.

The following list shows the requirements for using Apply Changes:

Visual StudioVisual Studio - On Windows, update to Visual Studio 2019 version 16.5 or later. On macOS, update to

Visual Studio 2019 for Mac version 8.5 or later.

Xamarin.AndroidXamarin.Android - Xamarin.Android 10.2 or later must be installed with Visual Studio (Xamarin.Android is

automatically installed as part of the Mobile Development With .NETMobile Development With .NET workload on Windows and installed

as part of the Visual Studio for Mac InstallerVisual Studio for Mac Installer).

Android SDKAndroid SDK - Android API 28 or higher must be installed via the Android SDK Manager.

Target Device or EmulatorTarget Device or Emulator - Your device or emulator must run Android 8.0 (API level 26) or higher.

Visual Studio

Visual Studio for Mac

To get started with Apply Changes, you will need to ensure a device or emulator is running Android 8.0 (API

level 26) or higher. Then run your Android application with or without debugging.

You can then interact with Apply Changes with the following approaches:

1. Toolbar icon.Toolbar icon. You can click on the Apply Changes toolbar icon to apply changes to your target device or

emulator.

2. Keyboard shor tcut.Keyboard shor tcut. You can use the Shift + Alt + F5Shift + Alt + F5 keyboard shortcut to apply changes to your

target device or emulator.

3. Debug menu.Debug menu. You can use the Debug > Apply ChangesDebug > Apply Changes menu item to apply changes to your target

device or emulator.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/apply-changes.md
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#bci
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/apply-changes-images/apply-changes-toolbar.png#lightbox

 Limitations

 Related links

The following changes require an application restart:

Changing C# code.

Adding or removing a resource.

Changing the AndroidManifest.xml.

Changing native libraries (.so files).

Apply Changes

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/apply-changes-images/apply-changes-debug-menu.png#lightbox
https://developer.android.com/studio/run#apply-changes

Building Apps
 11/2/2020 • 2 minutes to read • Edit Online

 Build Process

 Build Targets

 Build Properties

 Build Items

 Building ABI Specific APKs

This section describes how the build process works and explains how to build ABI-specific APKs.

This topic explains the steps and processes involved with the source code, resources, and assets of a

Xamarin.Android application and producing an APK that can be installed on Android devices.

This topic explains the MSBuild targets that are involved for building, signing, installing, and running Android

packages.

This topic explains the available MSBuild properties that can alter the behavior of the Build Targets.

This topic explains the available MSBuild items that can alter the behavior of the Build Targets.

This guide discusses how to create Android APK's that support a single CPU architecture and ABI.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/building-apps/index.md

Build Process
 3/12/2021 • 4 minutes to read • Edit Online

 Application Packages

 Shared Runtime

 Fast Deployment

WARNINGWARNING

The Xamarin.Android build process is responsible for gluing everything together : generating

Resource.designer.cs , supporting the @(AndroidAsset) , @(AndroidResource) , and other build actions,

generating Android-callable wrappers, and generating a .apk for execution on Android devices.

In broad terms, there are two types of Android application packages (.apk files) which the Xamarin.Android

build system can generate:

ReleaseRelease builds, which are fully self-contained and don't require extra packages to execute. These are the

packages that are provided to an App store.

DebugDebug builds, which are not.

These package types match the MSBuild Configuration which produces the package.

Prior to Xamarin.Android 11.2, the shared runtime was a pair of extra Android packages which provide the Base

Class Library (mscorlib.dll , etc.) and the Android binding library (Mono.Android.dll , etc.). Debug builds rely

upon the shared runtime in lieu of including the Base Class Library and Binding assemblies within the Android

application package, allowing the Debug package to be smaller.

The shared runtime could be disabled in Debug builds by setting the $(AndroidUseSharedRuntime) property to

False .

Support for the Shared Runtime was removed in Xamarin.Android 11.2.

Fast deployment works by further shrinking Android application package size. This is done by excluding the

app's assemblies from the package, and instead deploying the app's assemblies directly to the application's

internal files directory, usually located in /data/data/com.some.package . The internal files directory is not a

globally writable folder, so the run-as tool is used to execute all the commands to copy the files into that

directory.

This process speeds up the build/deploy/debug cycle because the package is not reinstalled when only

assemblies are changed. Only the updated assemblies are resynchronized to the target device.

Fast deployment is known to fail on devices which block run-as , which often includes devices older than Android 5.0.

Fast deployment also fails for system applications (android:sharedUserId="android.uid.system") since run-as is also

blocked for system applications.

Fast deployment is enabled by default, and may be disabled in Debug builds by setting the

$(EmbedAssembliesIntoApk) property to True .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/building-apps/build-process.md

 MSBuild Projects

 Binding Projects

 Resource.designer.cs Generation

 Signing Properties

The Enhanced Fast Deployment mode can be used in conjunction with this feature to speed up deployments

even further. This will deploy both assemblies, native libraries, typemaps and dexes to the files directory. But

you should only really need to enable this if you are changing native libraries, bindings or Java code.

The Xamarin.Android build process is based on MSBuild, which is also the project file format used by Visual

Studio for Mac and Visual Studio. Ordinarily, users will not need to edit the MSBuild files by hand – the IDE

creates fully functional projects and updates them with any changes made, and automatically invoke build

targets as needed.

Advanced users may wish to do things not supported by the IDE's GUI, so the build process is customizable by

editing the project file directly. This page documents only the Xamarin.Android-specific features and

customizations – many more things are possible with the normal MSBuild items, properties and targets.

The following MSBuild properties are used with Binding projects:

$(AndroidClassParser)

$(AndroidCodegenTarget)

The Following MSBuild properties are used to control generation of the Resource.designer.cs file:

$(AndroidAapt2CompileExtraArgs)

$(AndroidAapt2LinkExtraArgs)

$(AndroidExplicitCrunch)

$(AndroidR8IgnoreWarnings)

$(AndroidResgenExtraArgs)

$(AndroidResgenFile)

$(AndroidUseAapt2)

$(MonoAndroidResourcePrefix)

Signing properties control how the Application package is signed so that it may be installed onto an Android

device. To allow quicker build iteration, the Xamarin.Android tasks do not sign packages during the build

process, because signing is quite slow. Instead, they are signed (if necessary) before installation or during

export, by the IDE or the Install build target. Invoking the SignAndroidPackage target will produce a package

with the -Signed.apk suffix in the output directory.

By default, the signing target generates a new debug-signing key if necessary. If you wish to use a specific key,

for example on a build server, the following MSBuild properties are used:

$(AndroidDebugKeyAlgorithm)

$(AndroidDebugKeyValidity)

$(AndroidDebugStoreType)

$(AndroidKeyStore)

$(AndroidSigningKeyAlias)

$(AndroidSigningKeyPass)

 keytool Option Mapping Option Mapping

$ keytool -genkey -v -keystore filename.keystore -alias keystore.alias -keyalg RSA -keysize 2048 -validity
10000
Enter keystore password: keystore.filename password
Re-enter new password: keystore.filename password
...
Is CN=... correct?
 [no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA1withRSA) with a validity of 10,000 days
 for: ...
Enter key password for keystore.alias
 (RETURN if same as keystore password): keystore.alias password
[Storing filename.keystore]

<PropertyGroup>
 <AndroidKeyStore>True</AndroidKeyStore>
 <AndroidSigningKeyStore>filename.keystore</AndroidSigningKeyStore>
 <AndroidSigningStorePass>keystore.filename password</AndroidSigningStorePass>
 <AndroidSigningKeyAlias>keystore.alias</AndroidSigningKeyAlias>
 <AndroidSigningKeyPass>keystore.alias password</AndroidSigningKeyPass>
</PropertyGroup>

 Build Extension Points

<PropertyGroup>
 <AfterGenerateAndroidManifest>
 $(AfterGenerateAndroidManifest);
 YourTarget;
 </AfterGenerateAndroidManifest>
</PropertyGroup>

 Target Definitions

$(AndroidSigningKeyStore)

$(AndroidSigningStorePass)

$(JarsignerTimestampAuthorityCertificateAlias)

$(JarsignerTimestampAuthorityUrl)

Consider the following keytool invocation:

To use the keystore generated above, use the property group:

The Xamarin.Android build system exposes a few public extension points for users wanting to hook into our

build process. To use one of these extension points you will need to add your custom target to the appropriate

MSBuild property in a PropertyGroup . For example:

Extension points include:

`$(AfterGenerateAndroidManifest)

`$(BeforeGenerateAndroidManifest)

A word of caution about extending the build process: If not written correctly, build extensions can affect your

build performance, especially if they run on every build. It is highly recommended that you read the MSBuild

documentation before implementing such extensions.

https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild

<PropertyGroup>
 <TargetFrameworkIdentifier>MonoDroid</TargetFrameworkIdentifier>
 <MonoDroidVersion>v1.0</MonoDroidVersion>
 <TargetFrameworkVersion>v2.2</TargetFrameworkVersion>
</PropertyGroup>

<Import Project="$(MSBuildExtensionsPath)\Xamarin\Android\Xamarin.Android.CSharp.targets" />

The Xamarin.Android-specific parts of the build process are defined in

$(MSBuildExtensionsPath)\Xamarin\Android\Xamarin.Android.CSharp.targets , but normal language-specific targets

such as Microsoft.CSharp.targets are also required to build the assembly.

The following build properties must be set before importing any language targets:

All of these targets and properties can be included for C# by importing Xamarin.Android.CSharp.targets:

This file can easily be adapted for other languages.

Build Items
 3/5/2021 • 7 minutes to read • Edit Online

 AndroidAsset

 AndroidAarLibrary

 AndroidAotProfile

 AndroidBoundLayout

<AndroidBoundLayout Include="Resources\layout\Main.axml" />

 AndroidEnvironment

 AndroidFragmentType

 AndroidJavaLibrary

Build items control how a Xamarin.Android application or library project is built.

Supports Android Assets, files that would be included in the assets folder in a Java Android project.

The Build action of AndroidAarLibrary should be used to directly reference .aar files. This build action will be

most commonly used by Xamarin Components. Namely to include references to .aar files which are required

to get Google Play and other services working.

Files with this Build action will be treated in a similar fashion to the embedded resources found in Library

projects. The .aar will be extracted into the intermediate directory. Then any assets, resource and .jar files

will be included in the appropriate item groups.

Used to provide an AOT profile, for use with profile-guided AOT.

It can be also used from Visual Studio by setting the AndroidAotProfile build action to a file containing an AOT

profile.

Indicates that the layout file is to have code-behind generated for it in case when the

AndroidGenerateLayoutBindings property is set to false . In all other aspects it is identical to AndroidResource

described above. This action can be used onlyonly with layout files:

Files with a Build action of AndroidEnvironment are used to initialize environment variables and system

properties during process startup. The AndroidEnvironment Build action may be applied to multiple files, and

they will be evaluated in no particular order (so don't specify the same environment variable or system property

in multiple files).

Specifies the default fully qualified type to be used for all <fragment> layout elements when generating the

layout bindings code. The property defaults to the standard Android Android.App.Fragment type.

Files with a Build action of AndroidJavaLibrary are Java Archives (.jar files) which will be included in the final

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/building-apps/build-items.md
https://developer.android.com/guide/topics/resources/providing-resources#OriginalFiles

 AndroidJavaSource

 AndroidLibrary

<ItemGroup>
 <AndroidLibrary Include="foo.jar" />
 <AndroidLibrary Include="bar.aar" />
</ItemGroup>

 AndroidLintConfig

 AndroidManifestOverlay

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <uses-permission android:name="android.permission.CAMERA" />
</manifest>

Android package.

Files with a Build action of AndroidJavaSource are Java source code which will be included in the final Android

package.

AndroidLibrar yAndroidLibrar y is a new build action for simplifying how .jar and .aar files are included in projects.

Any project can specify:

The result of the above code snippet has a different effect for each Xamarin.Android project type:

Application and class library projects:

Java binding projects:

foo.jar maps to AndroidJavaLibrar yAndroidJavaLibrar y .

bar.aar maps to AndroidAarLibrar yAndroidAarLibrar y .

foo.jar maps to EmbeddedJarEmbeddedJar .

foo.jar maps to EmbeddedReferenceJarEmbeddedReferenceJar if Bind="false" metadata is added.

bar.aar maps to L ibrar yProjectZipLibrar yProjectZip.

This simplification means you can use AndroidLibrar yAndroidLibrar y everywhere.

This build action was added in Xamarin.Android 11.2.

The Build action 'AndroidLintConfig' should be used in conjunction with the $(AndroidLintEnabled) property.

Files with this build action will be merged together and passed to the android lint tooling. They should be

XML files which contain information on which tests to enable and disable.

See the lint documentation for more details.

The AndroidManifestOverlay build action can be used to provide additional AndroidManifest.xml files to the

Manifest Merger tool. Files with this build action will be passed to the Manifest Merger along with the main

AndroidManifest.xml file and any additional manifest files from references. These will then be merged into the

final manifest.

You can use this build action to provide additional changes and settings to your app depending on your build

configuration. For example, if you need to have a specific permission only while debugging, you can use the

overlay to inject that permission when debugging. For example, given the following overlay file contents:

https://developer.android.com/studio/write/lint
https://developer.android.com/studio/build/manifest-merge

<ItemGroup>
 <AndroidManifestOverlay Include="DebugPermissions.xml" Condition=" '$(Configuration)' == 'Debug' " />
</ItemGroup>

 AndroidNativeLibrary

 Item Attribute NameItem Attribute Name

<ItemGroup>
 <AndroidNativeLibrary Include="path/to/libfoo.so">
 <Abi>armeabi-v7a</Abi>
 </AndroidNativeLibrary>
</ItemGroup>

 AndroidResource

<ItemGroup>
 <AndroidResource Include="Resources\values\strings.xml" />
</ItemGroup>

<ItemGroup Condition="'$(Configuration)'!='Debug'">
 <AndroidResource Include="Resources\values\strings.xml" />
</ItemGroup>
<ItemGroup Condition="'$(Configuration)'=='Debug'">
 <AndroidResource Include="Resources-Debug\values\strings.xml"/>
</ItemGroup>
<PropertyGroup>
 <MonoAndroidResourcePrefix>Resources;Resources-Debug</MonoAndroidResourcePrefix>
</PropertyGroup>

You can use the following to add this for a debug build:

This build action was introduced in Xamarin.Android 11.2.

Native libraries are added to the build by setting their Build action to AndroidNativeLibrary .

Note that since Android supports multiple Application Binary Interfaces (ABIs), the build system must know

which ABI the native library is built for. There are two ways this can be done:

1. Path "sniffing".

2. Using the Abi item attribute.

With path sniffing, the parent directory name of the native library is used to specify the ABI that the library

targets. Thus, if you add lib/armeabi-v7a/libfoo.so to the build, then the ABI will be "sniffed" as armeabi-v7a .

AbiAbi – Specifies the ABI of the native library.

All files with an AndroidResource build action are compiled into Android resources during the build process and

made accessible via $(AndroidResgenFile) .

More advanced users might perhaps wish to have different resources used in different configurations but with

the same effective path. This can be achieved by having multiple resource directories and having files with the

same relative paths within these different directories, and using MSBuild conditions to conditionally include

different files in different configurations. For example:

LogicalNameLogicalName – Specifies the resource path explicitly. Allows “aliasing” files so that they will be available as

<ItemGroup Condition="'$(Configuration)'!='Debug'">
 <AndroidResource Include="Resources/values/strings.xml"/>
</ItemGroup>
<ItemGroup Condition="'$(Configuration)'=='Debug'">
 <AndroidResource Include="Resources-Debug/values/strings.xml">
 <LogicalName>values/strings.xml</LogicalName>
 </AndroidResource>
</ItemGroup>

 AndroidResourceAnalysisConfig

 Content

 EmbeddedJar

<Project>
 <ItemGroup>
 <AndroidLibrary Include="Library.jar" />
 </ItemGroup>
</Project>

 EmbeddedNativeLibrary

 EmbeddedReferenceJar

multiple distinct resource names.

The Build action AndroidResourceAnalysisConfig marks a file as a severity level configuration file for the Xamarin

Android Designer layout diagnostics tool. This is currently only used in the layout editor and not for build

messages.

See the Android Resource Analysis documentation for more details.

Added in Xamarin.Android 10.2.

The normal Content Build action is not supported (as we haven't figured out how to support it without a

possibly costly first-run step).

Starting in Xamarin.Android 5.1, attempting to use the @(Content) Build action will result in a XA0101 warning.

In a Xamarin.Android binding project, the EmbeddedJarEmbeddedJar build action binds the Java/Kotlin library and embeds

the .jar file into the library. When a Xamarin.Android application project consumes the library, it will have

access to the Java/Kotlin APIs from C# as well as include the Java/Kotlin code in the final Android application.

Since Xamarin.Android 11.2, you can use the AndroidLibrar yAndroidLibrar y build action as an alternative such as:

In a Xamarin.Android class library or Java binding project, the EmbeddedNativeLibrar yEmbeddedNativeLibrar y build action bundles a

native library such as lib/armeabi-v7a/libfoo.so into the library. When a Xamarin.Android application

consumes the library, the libfoo.so file will be included in the final Android application.

Since Xamarin.Android 11.2, you can use the AndroidNativeLibrar yAndroidNativeLibrar y build action as an alternative.

In a Xamarin.Android binding project, the EmbeddedReferenceJarEmbeddedReferenceJar build action embeds the .jar file into the

library but does not create a C# binding as EmbeddedJarEmbeddedJar does. When a Xamarin.Android application project

consumes the library, it will include the Java/Kotlin code in the final Android application.

<Project>
 <ItemGroup>
 <!-- A .jar file to bind & embed -->
 <AndroidLibrary Include="Library.jar" />
 <!-- A .jar file to only embed -->
 <AndroidLibrary Include="Dependency.jar" Bind="false" />
 </ItemGroup>
</Project>

 JavaDocJar

 JavaSourceJar

 LibraryProjectZip

Since Xamarin.Android 11.2, you can use the AndroidLibrar yAndroidLibrar y build action as an alternative such as

<AndroidLibrary Include="..." Bind="false" /> :

In a Xamarin.Android binding project, the JavaDocJarJavaDocJar build action is used on .jar files which contain Javadoc

HTML. The Javadoc HTML is parsed in order to extract parameter names.

Only certain "Javadoc HTML dialects" are supported, including:

JDK 1.7 javadoc output.

JDK 1.8 javadoc output.

Droiddoc output.

This build action is deprecated in Xamarin.Android 11.3, and will not be supported in .NET 6. The

@(JavaSourceJar) build action is preferred.

In a Xamarin.Android binding project, the JavaSourceJarJavaSourceJar build action is used on .jar files that contain Java

source code, which contain Javadoc documentation comments.

Prior to Xamarin.Android 11.3, the Javadoc would be converted into HTML via the javadoc utility during build

time, and later turned into XML documentation.

Starting with Xamarin.Android 11.3, Javadoc will instead be converted into C# XML Documentation Comments

within the generated binding source code.

$(AndroidJavadocVerbosity) controls how "verbose" or "complete" the imported Javadoc is.

Starting in Xamarin.Android 11.3, the following MSBuild metadata is supported:

%(CopyrightFile) : A path to a file that contains copyright information for the Javadoc contents, which will

be appended to all imported documentation.

%(UrlPrefix) : A URL prefix to support linking to online documentation within imported documentation.

%(UrlStyle) : The "style" of URLs to generate when linking to online documentation. Only one style is

currently supported: developer.android.com/reference@2020-Nov .

In a Xamarin.Android binding project, the L ibrar yProjectZipLibrar yProjectZip build action binds the Java/Kotlin library and

embeds the .zip or .aar file into the library. When a Xamarin.Android application project consumes the

library, it will have access to the Java/Kotlin APIs from C# as well as include the Java/Kotlin code in the final

Android application.

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://docs.microsoft.com/en-us/dotnet/csharp/codedoc

NOTENOTE

 LinkDescription

 ProguardConfiguration

Only a single Librar yProjectZipLibrar yProjectZip can be included in a Xamarin.Android binding project. This limitation will be removed in

.NET 6.

Files with a LinkDescription build action are used to control linker behavior.

Files with a ProguardConfiguration build action contain options which are used to control proguard behavior.

For more information about this build action, see ProGuard.

These files are ignored unless the $(EnableProguard) MSBuild property is True .

https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/linker

Build Properties
 3/5/2021 • 28 minutes to read • Edit Online

 AdbTarget

 AfterGenerateAndroidManifest

 AndroidAapt2CompileExtraArgs

 AndroidAapt2LinkExtraArgs

 AndroidAddKeepAlives

 AndroidAotCustomProfilePath

 AndroidAotProfiles

MSBuild properties control the behavior of the targets. They are specified within the project file, for example

MyApp.csprojMyApp.csproj , within an MSBuild PropertyGroup.

The $(AdbTarget) property specifies the Android target device the Android package may be installed to or

removed from. The value of this property is the same as the adb Target Device option.

MSBuild Targets listed in this property will run directly after the internal _GenerateJavaStubs target, which is

where the AndroidManifest.xml file is generated in the $(IntermediateOutputPath) . If you want to make any

modifications to the generated AndroidManifest.xml file, you can do that using this extension point.

Added in Xamarin.Android 9.4.

Specifies additional command-line options to pass to the aapt2 compileaapt2 compile command when processing Android

assets and resources.

Added in Xamarin.Android 9.1.

Specifies additional command-line options to pass to the aapt2 linkaapt2 link command when processing Android assets

and resources.

Added in Xamarin.Android 9.1.

A boolean property that controls whether the linker will insert GC.KeepAlive() invocations within binding

projects to prevent premature object collection.

Defaults to True for Release configuration builds.

This property was added in Xamarin.Android 11.2.

The file that aprofutil should create to hold profiler data.

A string property that allows the developer to add AOT profiles from the command line. It is a semicolon or

comma-separated list of absolute paths. Added in Xamarin.Android 10.1.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/building-apps/build-properties.md
https://docs.microsoft.com/en-us/visualstudio/msbuild/propertygroup-element-msbuild
https://developer.android.com/tools/help/adb.html#issuingcommands

AndroidAotProfilerPort

 AndroidApkDigestAlgorithm

 AndroidApkSignerAdditionalArguments

 AndroidApkSigningAlgorithm

 AndroidApplication

 AndroidApplicationJavaClass

 AndroidBinUtilsPath

 AndroidBoundExceptionType

The port that aprofutil should connect to when obtaining profiling data.

A string value which specifies the digest algorithm to use with jarsigner -digestalg .

The default value is SHA-256 . In Xamarin.Android 10.0 and earlier, the default value was SHA1 .

Added in Xamarin.Android 9.4.

A string property which allows the developer to provide additional arguments to the apksigner tool.

Added in Xamarin.Android 8.2.

A string value which specifies the signing algorithm to use with jarsigner -sigalg .

The default value is SHA256withRSA . In Xamarin.Android 10.0 and earlier, the default value was md5withRSA .

Added in Xamarin.Android 8.2.

A boolean value that indicates whether the project is for an Android Application (True) or for an Android

Library Project (False or not present).

Only one project with <AndroidApplication>True</AndroidApplication> may be present within an Android

package. (Unfortunately this is not yet verified, which can result in subtle and bizarre errors regarding Android

resources.)

The full Java class name to use in place of android.app.Application when a class inherits from

Android.App.Application.

This property is generally set by other properties, such as the $(AndroidEnableMultiDex) MSBuild property.

Added in Xamarin.Android 6.1.

A path to a directory containing the Android binutils such as ld , the native linker, and as , the native assembler.

These tools are part of the Android NDK and are also included in the Xamarin.Android installation.

The default value is $(MonoAndroidBinDirectory)\ndk\ .

Added in Xamarin.Android 10.0.

A string value that specifies how exceptions should be propagated when a Xamarin.Android-provided type

implements a .NET type or interface in terms of Java types, for example Android.Runtime.InputStreamInvoker and

https://docs.microsoft.com/en-us/dotnet/api/android.app.application
https://android.googlesource.com/toolchain/binutils/

 AndroidBuildApplicationPackage

 AndroidBundleConfigurationFile

 AndroidClassParser

System.IO.Stream , or Android.Runtime.JavaDictionary and System.Collections.IDictionary .

Java : The original Java exception type is propagated as-is.

This means that, for example, InputStreamInvoker does not properly implement the System.IO.Stream

API because Java.IO.IOException may be thrown from Stream.Read() instead of System.IO.IOException .

This is the exception propagation behavior in all releases of Xamarin.Android prior to 11.1.

This is the default value in Xamarin.Android 11.1.

System : The original Java exception type is caught and wrapped in an appropriate .NET exception type.

This means that, for example, InputStreamInvoker properly implements System.IO.Stream , and

Stream.Read() will not throw Java.IO.IOException instances. (It may instead throw a

System.IO.IOException which has a Java.IO.IOException as the Exception.InnerException value.)

This will become the default value in .NET 6.0.

Added in Xamarin.Android 10.2.

A boolean value that indicates whether to create and sign the package (.apk). Setting this value to True is

equivalent to using the SignAndroidPackage build target.

Support for this property was added after Xamarin.Android 7.1.

This property is False by default.

Specifies a filename to use as a configuration file for bundletool when building an Android App Bundle. This file

controls some aspects of how APKs are generated from the bundle, such as on what dimensions the bundle is

split to produce APKs. Note that Xamarin.Android configures some of these settings automatically, including the

list of file extensions to leave uncompressed.

This property is only relevant if $(AndroidPackageFormat) is set to aab .

Added in Xamarin.Android 10.3.

A string property which controls how .jar files are parsed. Possible values include:

class-parseclass-parse: Uses class-parse.exe to parse Java bytecode directly, without assistance of a JVM. This

value is experimental.

jar2xmljar2xml : Use jar2xml.jar to use Java reflection to extract types and members from a .jar file.

The advantages of class-parse over jar2xml are:

class-parse can extract parameter names from Java bytecode which contains debug symbols (bytecode

compiled with javac -g).

class-parse doesn't "skip" classes which inherit from or contain members of unresolvable types.

ExperimentalExperimental . Added in Xamarin.Android 6.0.

The default value is jar2xml .

https://developer.android.com/studio/build/building-cmdline#bundleconfig

 AndroidCodegenTarget

 AndroidCreatePackagePerAbi

 AndroidDebugKeyAlgorithm

 AndroidDebugKeyValidity

 AndroidDebugStoreType

 AndroidDeviceUserId

adb shell pm list users

Support for jar2xml is obsolete, and support for jar2xml will be removed as part of .NET 6.

A string property which controls the code generation target ABI. Possible values include:

XamarinAndroidXamarinAndroid: Uses the JNI binding API present since Mono for Android 1.0. Binding assemblies built

with Xamarin.Android 5.0 or later can only run on Xamarin.Android 5.0 or later (API/ABI additions), but

the source is compatible with prior product versions.

XAJavaInterop1XAJavaInterop1 : Use Java.Interop for JNI invocations. Binding assemblies using XAJavaInterop1 can

only build and execute with Xamarin.Android 6.1 or later. Xamarin.Android 6.1 and later bind

Mono.Android.dll with this value.

The benefits of XAJavaInterop1 include:

Smaller assemblies.

jmethodID caching for base method invocations, so long as all other binding types in the inheritance

hierarchy are built with XAJavaInterop1 or later.

jmethodID caching of Java Callable Wrapper constructors for managed subclasses.

The default value is XAJavaInterop1 .

A boolean property that determines if a set of files -- on per ABI specified in $(AndroidSupportedAbis) -- should

be created instead of having support for all ABIs in a single .apk .

See also the Building ABI-Specific APKs guide.

Specifies the default algorithm to use for the debug.keystore . It defaults to RSA .

Specifies the default validity to use for the debug.keystore . It defaults to 10950 or 30 * 365 or 30 years .

Specifies the key store file format to use for the debug.keystore . It defaults to pkcs12 .

Added in Xamarin.Android 10.2.

Allows deploying and debugging the application under guest or work accounts. The value is the uid value you

get from the following adb command:

This will return the following data:

Users:
 UserInfo{0:Owner:c13} running
 UserInfo{10:Guest:404}

 AndroidDexTool

 AndroidEnableDesugar

 AndroidEnableGooglePlayStoreChecks

 AndroidEnableMultiDex

 AndroidEnablePreloadAssemblies

The uid is the first integer value. In the example they are 0 and 10 .

This property was added in Xamarin.Android 11.2.

An enum-style property with valid values of dx or d8 . Indicates which Android dex compiler is used during

the Xamarin.Android build process. Currently defaults to dx . For further information see our documentation on

D8 and R8.

A boolean property that determines if desugar is enabled. Android does not currently support all Java 8

features, and the default toolchain implements the new language features by performing bytecode

transformations, called desugar , on the output of the javac compiler. Defaults to False if using

AndroidDexTool=dx and defaults to True if using $(AndroidDexTool) = d8 .

A bool property which allows developers to disable the following Google Play Store checks: XA1004, XA1005

and XA1006. This is useful for developers who are not targeting the Google Play Store and do not wish to run

those checks.

Added in Xamarin.Android 9.4.

A boolean property that determines whether or not multi-dex support will be used in the final .apk .

Support for this property was added in Xamarin.Android 5.1.

This property is False by default.

A boolean property which controls whether or not all managed assemblies bundled within the application

package are loaded during process startup or not.

When set to True , all assemblies bundled within the application package will be loaded during process startup,

before any application code is invoked. This is consistent with what Xamarin.Android did in releases prior to

Xamarin.Android 9.2.

When set to False , assemblies will only be loaded on an as-needed basis. This allows applications to startup

faster, and is also more consistent with desktop .NET semantics. To see the time savings, set the debug.mono.log

System Property to include timing , and look for the Finished loading assemblies: preloaded message within

adb logcat .

Applications or libraries which use dependency injection may require that this property be True if they in turn

require that AppDomain.CurrentDomain.GetAssemblies() return all assemblies within the application bundle, even if

the assembly wouldn't otherwise have been needed.

https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://github.com/xamarin/xamarin-android/blob/master/Documentation/guides/D8andR8.md

 AndroidEnableProfiledAot

 AndroidEnableSGenConcurrent

 AndroidErrorOnCustomJavaObject

class BadType : IJavaObject {
 public IntPtr Handle {
 get {return IntPtr.Zero;}
 }

 public void Dispose()
 {
 }
}

 AndroidExplicitCrunch

 AndroidExtraAotOptions

By default this value will be set to True .

Added in Xamarin.Android 9.2.

A boolean property that determines whether or not the AOT profiles are used during Ahead-of-Time

compilation.

The profiles are listed in @(AndroidAotProfile) item group. This ItemGroup contains default profile(s). It can be

overridden by removing the existing one(s) and adding your own AOT profiles.

Support for this property was added in Xamarin.Android 9.4.

This property is False by default.

A boolean property that determines whether or not Mono's concurrent GC collector will be used.

Support for this property was added in Xamarin.Android 7.2.

This property is False by default.

A boolean property that determines whether types may implement Android.Runtime.IJavaObject without also

inheriting from Java.Lang.Object or Java.Lang.Throwable :

When True, such types will generate an XA4212 error, otherwise an XA4212 warning will be generated.

Support for this property was added in Xamarin.Android 8.1.

This property is True by default.

No longer supported in Xamarin.Android 11.0.

A string property that allows passing additional options to the Mono compiler during the Aot task for projects

that have either $(AndroidEnableProfiledAot) or $(AotAssemblies) set to true . The string value of the property

is added to the response file when calling the Mono cross-compiler.

In general, this property should be left blank, but in certain special scenarios it might provide useful flexibility.

Note that this property is different from the related $(AndroidAotAdditionalArguments) property. That property

https://www.mono-project.com/docs/about-mono/releases/4.8.0/#concurrent-sgen

 AndroidFastDeploymentType

 AndroidGenerateJniMarshalMethods

<AndroidGenerateJniMarshalMethods>True</AndroidGenerateJniMarshalMethods>

/p:AndroidGenerateJniMarshalMethods=True

 AndroidGenerateJniMarshalMethodsAdditionalArguments

<AndroidGenerateJniMarshalMethodsAdditionalArguments>-v -d --
keeptemp</AndroidGenerateJniMarshalMethodsAdditionalArguments>

places comma-separated arguments into the --aot option of the Mono compiler. $(AndroidExtraAotOptions)

instead passes full standalone space-separated options like --verbose or --debug to the compiler.

Added in Xamarin.Android 10.2.

A : (colon)-separated list of values to control what types can be deployed to the Fast Deployment directory on

the target device when the $(EmbedAssembliesIntoApk) MSBuild property is False . If a resource is fast deployed,

it is not embedded into the generated .apk , which can speed up deployment times. (The more that is fast

deployed, then the less frequently the .apk needs to be rebuilt, and the install process can be faster.) Valid

values include:

Assemblies : Deploy application assemblies.

Dexes : Deploy .dex files, native libraries and typemaps. This value can This value can onlyonly be used on devices be used on devices

running Android 4.4 or later (API-19).running Android 4.4 or later (API-19).

The default value is Assemblies .

Support for Fast Deploying resources and assets via that system was removed in commit f0d565fe. This was

becuase it required the use of deprecated API's to work.

ExperimentalExperimental . This property was added in Xamarin.Android 6.1.

A bool property which enables generating of JNI marshal methods as part of the build process. This greatly

reduces the System.Reflection usage in the binding helper code.

By default this will be set to False. If the developers wish to use the new JNI marshal methods feature, they can

set

in their .csproj . Alternatively provide the property on the command line via

ExperimentalExperimental . Added in Xamarin.Android 9.2. The default value is False.

A string property which can be used to add additional parameters to the jnimarshalmethod-gen.exe invocation.

This is useful for debugging, so that options such as -v , -d , or --keeptemp can be used.

Default value is empty string. It can be set in the .csproj file or on the command line. For example:

or :

https://github.com/xamarin/xamarin-android/commit/f0d565fe4833f16df31378c77bbb492ffd2904b9

/p:AndroidGenerateJniMarshalMethodsAdditionalArguments="-v -d --keeptemp"

 AndroidGenerateLayoutBindings

 AndroidHttpClientHandlerType

NOTENOTE

NOTENOTE

 AndroidIncludeWrapSh

Added in Xamarin.Android 9.2.

Enables generation of layout code-behind if set to true or disables it completely if set to false . The default

value is false .

Controls the default System.Net.Http.HttpMessageHandler implementation which will be used by the

System.Net.Http.HttpClient default constructor. The value is an assembly-qualified type name of an

HttpMessageHandler subclass, suitable for use with System.Type.GetType(string) . The most common values for

this property are:

Xamarin.Android.Net.AndroidClientHandler : Use the Android Java APIs to perform network requests. This

allows accessing TLS 1.2 URLs when the underlying Android version supports TLS 1.2. Only Android 5.0

and later reliably provide TLS 1.2 support through Java.

This corresponds to the AndroidAndroid option in the Visual Studio property pages and the

AndroidClientHandlerAndroidClientHandler option in the Visual Studio for Mac property pages.

The new project wizard selects this option for new projects when the Minimum Android VersionMinimum Android Version is

configured to Android 5.0 (Lollipop)Android 5.0 (Lollipop) or higher in Visual Studio or when Target PlatformsTarget Platforms is set to

Latest and GreatestLatest and Greatest in Visual Studio for Mac.

Unset/the empty string: This is equivalent to System.Net.Http.HttpClientHandler, System.Net.Http

This corresponds to the DefaultDefault option in the Visual Studio property pages.

The new project wizard selects this option for new projects when the Minimum Android VersionMinimum Android Version is

configured to Android 4.4 .87Android 4.4 .87 or lower in Visual Studio or when Target PlatformsTarget Platforms is set to ModernModern

DevelopmentDevelopment or Maximum CompatibilityMaximum Compatibility in Visual Studio for Mac.

System.Net.Http.HttpClientHandler, System.Net.Http : Use the managed HttpMessageHandler .

This corresponds to the ManagedManaged option in the Visual Studio property pages.

If TLS 1.2 support is required on Android versions prior to 5.0, or if TLS 1.2 support is required with the

System.Net.WebClient and related APIs, then $(AndroidTlsProvider) should be used.

Support for this property works by setting the XA_HTTP_CLIENT_HANDLER_TYPE environment variable. A

$XA_HTTP_CLIENT_HANDLER_TYPE value found in a file with a Build action of @(AndroidEnvironment) will take

precedence.

Added in Xamarin.Android 6.1.

https://github.com/xamarin/xamarin-android/blob/master/Documentation/guides/LayoutCodeBehind.md
https://docs.microsoft.com/en-us/dotnet/api/system.type.gettype#system_type_gettype_system_string_

<AndroidNativeLibrary Include="path/to/arm64-v8a/wrap.sh" />

<AndroidNativeLibrary Include="/path/to/my/arm64-wrap.sh">
 <Link>lib\arm64-v8a\wrap.sh</Link>
</AndroidNativeLibrary>

 AndroidKeyStore

 AndroidLaunchActivity

 AndroidLinkMode

A boolean value which indicates whether the Android wrapper script (wrap.sh) should be packaged into the

APK. The property defaults to false since the wrapper script may significantly influence the way the application

starts up and works and the script should be included only when necessary e.g. for debugging or otherwise

changing the application startup/runtime behavior.

The script is added to the project using the @(AndroidNativeLibrary) build action, because it is placed in the

same directory as architecture-specific native libraries, and must be named wrap.sh .

The easiest way to specify path to the wrap.sh script is to put it in a directory named after the target

architecture. This approach will work if you have just one wrap.sh per architecture:

However, if your project needs more than one wrap.sh per architecture, for different purposes, this approach

won't work. Instead, in such cases the name can be specified using the Link metadata of the

AndroidNativeLibrary :

If the Link metadata is used, the path specified in its value must be a valid native architecture-specific library

path, relative to the APK root directory. The format of the path is lib\ARCH\wrap.sh where ARCH can be one of:

arm64-v8a

armeabi-v7a

x86_64

x86

A boolean value which indicates whether custom signing information should be used. The default value is

False , meaning that the default debug-signing key will be used to sign packages.

The Android activity to launch.

Specifies which type of linking should be performed on assemblies contained within the Android package. Only

used in Android Application projects. The default value is SdkOnly. Valid values are:

NOTENOTE

NoneNone: No linking will be attempted.

SdkOnlySdkOnly : Linking will be performed on the base class libraries only, not user's assemblies.

FullFull : Linking will be performed on base class libraries and user assemblies.

Using an AndroidLinkMode value of Full often results in broken apps, particularly when Reflection is used. Avoid

unless you really know what you're doing.

https://developer.android.com/ndk/guides/wrap-script

<AndroidLinkMode>SdkOnly</AndroidLinkMode>

 AndroidLinkSkip

<AndroidLinkSkip>Assembly1;Assembly2</AndroidLinkSkip>

 AndroidLinkTool

 AndroidLintEnabled

 AndroidLintEnabledIssues

 AndroidLintDisabledIssues

 AndroidLintCheckIssues

 AndroidManagedSymbols

Specifies a semicolon-delimited (;) list of assembly names, without file extensions, of assemblies that should

not be linked. Only used within Android Application projects.

An enum-style property with valid values of proguard or r8 . Indicates which code shrinker is used for Java

code. Currently defaults to an empty string, or proguard if $(AndroidEnableProguard) is True . For further

information see our documentation on D8 and R8.

A bool property which allows the developer to run the android lint tool as part of the packaging process.

When $(AndroidLintEnabled) =True, the following properties are used:

$(AndroidLintEnabledIssues) :

$(AndroidLintDisabledIssues) :

$(AndroidLintCheckIssues) :

The following build actions may also be used:

@(AndroidLintConfig) :

See Lint Help for more details on the android lint tooling.

This property is only used when $(AndroidLintEnabled) =True.

A comma-separated list of lint issues to enable.

This property is only used when $(AndroidLintEnabled) =True.

A comma-separated list of lint issues to disable.

This property is only used when $(AndroidLintEnabled) =True.

A comma-separated list of lint issues to check.

Note: only these issues will be checked.

A boolean property that controls whether sequence points are generated so that file name and line number

https://github.com/xamarin/xamarin-android/blob/master/Documentation/guides/D8andR8.md
https://developer.android.com/studio/write/lint

 AndroidManifest

 AndroidManifestMerger

 AndroidManifestPlaceholders

<application android:label="${assemblyName}"

 AndroidMultiDexClassListExtraArgs

com.android.dex.DexException: Too many classes in --main-dex-list, main dex capacity exceeded

<DxExtraArguments>--force-jumbo </DxExtraArguments>
<AndroidMultiDexClassListExtraArgs>--disable-annotation-resolution-
workaround</AndroidMultiDexClassListExtraArgs>

information can be extracted from Release stack traces.

Added in Xamarin.Android 6.1.

Specifies a filename to use as the template for the app's AndroidManifest.xml . During the build, any other

necessary values will be merged into to produce the actual AndroidManifest.xml . The $(AndroidManifest) must

contain the package name in the /manifest/@package attribute.

Specifies the implementation for merging AndroidManifest.xml files. This is an enum-style property where

legacy selects the original C# implementation and manifestmerger.jar selects Google's Java implementation.

The default value is currently legacy . This will change to manifestmerger.jar in a future release to align

behavior with Android Studio.

Google's merger enables support for xmlns:tools="http://schemas.android.com/tools" as described in the

Android documentation.

Introduced in Xamarin.Android 10.2

A semicolon-separated list of key-value replacement pairs for AndroidManifest.xml, where each pair has the

format key=value .

For example, a property value of assemblyName=$(AssemblyName) defines an ${assemblyName} placeholder that

can then appear in AndroidManifest.xml:

This provides a way to insert variables from the build process into the AndroidManifest.xml file.

A string property which allows developers to pass additional arguments to the

com.android.multidex.MainDexListBuilder when generating the multidex.keep file.

One specific case is if you are getting the following error during the dx compilation.

If you are getting this error you can add the following to the .csproj .

this should allow the dx step to succeed.

Added in Xamarin.Android 8.3.

https://developer.android.com/studio/build/manifest-merge

AndroidPackageFormat

 AndroidPackageNamingPolicy

 AndroidProguardMappingFile

 AndroidR8IgnoreWarnings

 AndroidR8JarPath

 AndroidResgenExtraArgs

 AndroidResgenFile

An enum-style property with valid values of apk or aab . This indicates if you want to package the Android

application as an APK file or Android App Bundle. App Bundles are a new format for Release builds that are

intended for submission on Google Play. This value currently defaults to apk .

When $(AndroidPackageFormat) is set to aab , other MSBuild properties are set, which are required for Android

App Bundles:

$(AndroidUseAapt2) is True .

$(AndroidUseApkSigner) is False .

$(AndroidCreatePackagePerAbi) is False .

An enum-style property for specifying the Java package names of generated Java source code.

In Xamarin.Android 10.2 and later, the only supported value is LowercaseCrc64 .

In Xamarin.Android 10.1, a transitional LowercaseMD5 value was also available that allowed switching back to the

original Java package name style as used in Xamarin.Android 10.0 and earlier. That option was removed in

Xamarin.Android 10.2 to improve compatibility with build environments that have FIPS compliance enforced.

Added in Xamarin.Android 10.1.

Specifies the -printmapping proguard rule for r8 . This will mean the mapping.txt file will be produced in the

$(OutputPath) folder. This file can then be used when uploading packages to the Google Play Store.

The default value is $(OutputPath)mapping.txt .

This property was added in Xamarin.Android 11.2.

Specifies the -ignorewarnings proguard rule for r8 . This allows r8 to continue with dex compilation even if

certain warnings are encountered. Defaults to True , but can be set to False to enforce more strict behavior.

See the ProGuard manual for details.

Added in Xamarin.Android 10.3.

The path to r8.jar for use with the r8 dex-compiler and shrinker. Defaults to a path in the Xamarin.Android

installation. For further information see our documentation on D8 and R8.

Specifies additional command-line options to pass to the aaptaapt command when processing Android assets and

resources.

Specifies the name of the Resource file to generate. The default template sets this to Resource.designer.cs .

https://en.wikipedia.org/wiki/Android_application_package
https://developer.android.com/platform/technology/app-bundle
https://www.guardsquare.com/products/proguard/manual/usage
https://github.com/xamarin/xamarin-android/blob/master/Documentation/guides/D8andR8.md

AndroidSdkBuildToolsVersion

 AndroidSigningKeyAlias

 AndroidSigningKeyPass

<PropertyGroup>
 <AndroidSigningKeyPass>env:AndroidSigningPassword</AndroidSigningKeyPass>
</PropertyGroup>

<PropertyGroup>
 <AndroidSigningKeyPass>file:C:\Users\user1\AndroidSigningPassword.txt</AndroidSigningKeyPass>
</PropertyGroup>

NOTENOTE

 AndroidSigningKeyStore

 AndroidSigningStorePass

The Android SDK build-tools package provides the aaptaapt and zipalignzipalign tools, among others. Multiple different

versions of the build-tools package may be installed simultaneously. The build-tools package chosen for

packaging is done by checking for and using a "preferred" build-tools version if it is present; if the "preferred"

version is not present, then the highest versioned installed build-tools package is used.

The $(AndroidSdkBuildToolsVersion) MSBuild property contains the preferred build-tools version. The

Xamarin.Android build system provides a default value in Xamarin.Android.Common.targets , and the default value

may be overridden within your project file to choose an alternate build-tools version, if (for example) the latest

aapt is crashing out while a previous aapt version is known to work.

Specifies the alias for the key in the keystore. This is the keytool -aliaskeytool -alias value used when creating the keystore.

Specifies the password of the key within the keystore file. This is the value entered when keytool asks EnterEnter

key password for $(AndroidSigningKeyAlias)key password for $(AndroidSigningKeyAlias) .

In Xamarin.Android 10.0 and earlier, this property only supports plain text passwords.

In Xamarin.Android 10.1 and later, this property also supports env: and file: prefixes that can be used to

specify an environment variable or file that contains the password. These options provide a way to prevent the

password from appearing in build logs.

For example, to use an environment variable named AndroidSigningPassword:

To use a file located at C:\Users\user1\AndroidSigningPassword.txt :

The env: prefix is not supported when $(AndroidPackageFormat) is set to aab .

Specifies the filename of the keystore file created by keytool . This corresponds to the value provided to the

keytool -keystorekeytool -keystore option.

Specifies the password to $(AndroidSigningKeyStore) . This is the value provided to keytool when creating the

keystore file and asked Enter keystore password:Enter keystore password:.

In Xamarin.Android 10.0 and earlier, this property only supports plain text passwords.

<PropertyGroup>
 <AndroidSigningStorePass>env:AndroidSigningPassword</AndroidSigningStorePass>
</PropertyGroup>

<PropertyGroup>
 <AndroidSigningStorePass>file:C:\Users\user1\AndroidSigningPassword.txt</AndroidSigningStorePass>
</PropertyGroup>

NOTENOTE

 AndroidSupportedAbis

 AndroidTlsProvider

In Xamarin.Android 10.1 and later, this property also supports env: and file: prefixes that can be used to

specify an environment variable or file that contains the password. These options provide a way to prevent the

password from appearing in build logs.

For example, to use an environment variable named AndroidSigningPassword:

To use a file located at C:\Users\user1\AndroidSigningPassword.txt :

The env: prefix is not supported when $(AndroidPackageFormat) is set to aab .

A string property that contains a semicolon (;)-delimited list of ABIs which should be included into the .apk .

Supported values include:

armeabi-v7a

x86

arm64-v8a : Requires Xamarin.Android 5.1 and later.

x86_64 : Requires Xamarin.Android 5.1 and later.

A string value which specifies which TLS provider should be used in an application. Possible values are:

Unset/the empty string: In Xamarin.Android 7.3 and higher, this is equivalent to btls .

In Xamarin.Android 7.1, this is equivalent to legacy .

This corresponds to the DefaultDefault setting in the Visual Studio property pages.

btls : Use Boring SSL for TLS communication with HttpWebRequest.

This allows use of TLS 1.2 on all Android versions.

This corresponds to the Native TLS 1.2+Native TLS 1.2+ setting in the Visual Studio property pages.

legacy : In Xamarin.Android 10.1 and earlier, use the historical managed SSL implementation for network

interaction. This does not support TLS 1.2.

This corresponds to the Managed TLS 1.0Managed TLS 1.0 setting in the Visual Studio property pages.

In Xamarin.Android 10.2 and later, this value is ignored and the btls setting is used.

default : This value is unlikely to be used in Xamarin.Android projects. The recommended value to use

instead is the empty string, which corresponds to the DefaultDefault setting in the Visual Studio property pages.

https://boringssl.googlesource.com/boringssl
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest

 AndroidUseAapt2

<AndroidUseAapt2>True</AndroidUseAapt2>

/p:AndroidUseAapt2=True

 AndroidUseApkSigner

 AndroidUseDefaultAotProfile

 AndroidUseLegacyVersionCode

 AndroidUseManagedDesignTimeResourceGenerator

 AndroidUseSharedRuntime

The default value is not offered in the Visual Studio property pages.

This is currently equivalent to legacy .

Added in Xamarin.Android 7.1.

A boolean property which allows the developer to control the use of the aapt2 tool for packaging. By default

this will be False and Xamarin.Android will use aapt . If the developer wishes to use the new aapt2

functionality, add:

in their .csproj . Alternatively provide the property on the command line:

This property was added in Xamarin.Android 8.3. Setting AndroidUseAapt2 to false is deprecated in

Xamarin.Android 11.2.

A bool property which allows the developer to use the apksigner tool rather than jarsigner .

Added in Xamarin.Android 8.2.

A bool property that allows the developer to suppress usage of the default AOT profiles.

To suppress the default AOT profiles, set the property to false .

Added in Xamarin.Android 10.1.

A boolean property which allows the developer to revert the versionCode calculation back to its old pre

Xamarin.Android 8.2 behavior. This should ONLY be used for developers with existing applications in the Google

Play Store. It is highly recommended that the new $(AndroidVersionCodePattern) property is used.

Added in Xamarin.Android 8.2.

A boolean property which will switch over the design time builds to use the managed resource parser rather

than aapt .

Added in Xamarin.Android 8.1.

A boolean property that determines whether the shared runtime packages are required in order to run the

Application on the target device. Relying on the shared runtime packages allows the Application package to be

smaller, speeding up the package creation and deployment process, resulting in a faster build/deploy/debug

 AndroidVersionCodePattern

 AndroidVersionCodeProperties

 AotAssemblies

turnaround cycle.

Prior to Xamarin.Android 11.2, this property should be True for Debug builds, and False for Release projects.

This property was removed in Xamarin.Android 11.2.

A string property which allows the developer to customize the versionCode in the manifest. See Creating the

Version Code for the APK for information on deciding a versionCode .

ome examples, if abi is armeabi and versionCode in the manifest s 123 , {abi}{versionCode} ill produce a

versionCode of 1123 when $(AndroidCreatePackagePerAbi) s True, otherwise will produce a value of 123. f abi

is x86_64 and versionCode in the manifest s 44 . This will produce 544 when $(AndroidCreatePackagePerAbi) s

True, otherwise will produce a value of 44 .

If we include a left padding format string {abi}{versionCode:0000} , it would produce 50044 because we are left

padding the versionCode with 0 . Alternatively, you can use the decimal padding such as

{abi}{versionCode:D4} which does the same as the previous example.

Only '0' and 'Dx' padding format strings are supported since the value MUST be an integer.

Pre-defined key items

abiabi – Inserts the targeted abi for the app

2 – armeabi-v7a

3 – x86

4 – arm64-v8a

5 – x86_64

minSDKminSDK – Inserts the minimum supported Sdk value from the AndroidManifest.xml or 11 if none is

defined.

versionCodeversionCode – Uses the version code directly from Properties\AndroidManifest.xml .

You can define custom items using the $(AndroidVersionCodeProperties) property (defined next).

By default the value will be set to {abi}{versionCode:D6} . If a developer wants to keep the old behavior you can

override the default by setting the $(AndroidUseLegacyVersionCode) property to true

Added in Xamarin.Android 7.2.

A string property which allows the developer to define custom items to use with the

$(AndroidVersionCodePattern) . They are in the form of a key=value pair. All items in the value should be

integer values. For example: screen=23;target=$(_AndroidApiLevel) . As you can see you can make use of existing

or custom MSBuild properties in the string.

Added in Xamarin.Android 7.2.

A boolean property that determines whether or not assemblies will be Ahead-of-Time compiled into native code

and included in the .apk .

Support for this property was added in Xamarin.Android 5.1.

 AProfUtilExtraOptions

 BeforeGenerateAndroidManifest

 Configuration

 DebugSymbols

 DebugType

 EmbedAssembliesIntoApk

This property is False by default.

Extra options to pass to aprofutil .

MSBuild Targets listed in this property will run directly before _GenerateJavaStubs .

Added in Xamarin.Android 9.4.

Specifies the build configuration to use, such as "Debug" or "Release". The Configuration property is used to

determine default values for other properties which determine target behavior. Additional configurations may

be created within your IDE.

By default, the Debug configuration will result in the Install and SignAndroidPackage targets creating a

smaller Android package which requires the presence of other files and packages to operate.

The default Release configuration will result in the Install and SignAndroidPackage targets creating an

Android package which is stand-alone, and may be used without installing any other packages or files.

A boolean value which determines whether the Android package is debuggable, in combination with the

$(DebugType) property. A debuggable package contains debug symbols, sets the

//application/@android:debuggable attribute to true , and automatically adds the INTERNET permission so that

a debugger can attach to the process. An application is debuggable if DebugSymbols is True and DebugType is

either the empty string or Full .

Specifies the type of debug symbols to generate as part of the build, which also impacts whether the Application

is debuggable. Possible values include:

FullFull : Full symbols are generated. If the DebugSymbols MSBuild property is also True , then the

Application package is debuggable.

PdbOnlyPdbOnly : "PDB" symbols are generated. The Application package is not debuggable.

If DebugType is not set or is the empty string, then the DebugSymbols property controls whether or not the

Application is debuggable.

A boolean property that determines whether or not the app's assemblies should be embedded into the

Application package.

This property should be True for Release builds and False for Debug builds. It may need to be True in Debug

builds if Fast Deployment doesn't support the target device.

When this property is False , then the $(AndroidFastDeploymentType) MSBuild property also controls what will

be embedded into the .apk , which can impact deployment and rebuild times.

https://developer.android.com/guide/topics/manifest/application-element#debug
https://developer.android.com/reference/android/Manifest.permission#INTERNET
https://docs.microsoft.com/en-us/visualstudio/msbuild/csc-task

EnableLLVM

 EnableProguard

 JavaMaximumHeapSize

<JavaMaximumHeapSize>1G</JavaMaximumHeapSize>

 JavaOptions

 JarsignerTimestampAuthorityCertificateAlias

<PropertyGroup>
 <JarsignerTimestampAuthorityCertificateAlias>Alias</JarsignerTimestampAuthorityCertificateAlias>
</PropertyGroup>

 JarsignerTimestampAuthorityUrl

A boolean property that determines whether or not LLVM will be used when Ahead-of-Time compiling

assemblies into native code.

The Android NDK must be installed to build a project that has this property enabled.

Support for this property was added in Xamarin.Android 5.1.

This property is False by default.

This property is ignored unless the $(AotAssemblies) MSBuild property is True .

A boolean property that determines whether or not proguard is run as part of the packaging process to link

Java code.

Support for this property was added in Xamarin.Android 5.1.

This property is False by default.

When True , @(ProguardConfiguration) files will be used to control proguard execution.

Specifies the value of the javajava -Xmx parameter value to use when building the .dex file as part of the

packaging process. If not specified, then the -Xmx option supplies javajava with a value of 1G . This was found to be

commonly required on Windows in comparison to other platforms.

Specifying this property is necessary if the _CompileDex target throws a java.lang.OutOfMemoryError .

Customize the value by changing:

Specifies additional command-line options to pass to javajava when building the .dex file.

This property allows you to specify an alias in the keystore for a timestamp authority. See the Java Signature

Timestamp Support documentation for more details.

This property allows you to specify a URL to a timestamp authority service. This can be used to make sure your

.apk signature includes a timestamp. See the Java Signature Timestamp Support documentation for more

details.

https://developer.android.com/tools/help/proguard.html
https://bugzilla.xamarin.com/show_bug.cgi?id=18327
https://docs.oracle.com/javase/8/docs/technotes/guides/security/time-of-signing.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/time-of-signing.html

<PropertyGroup>
 <JarsignerTimestampAuthorityUrl>http://example.tsa.url</JarsignerTimestampAuthorityUrl>
</PropertyGroup>

 LinkerDumpDependencies

 MandroidI18n

A bool property which enables generating of linker dependencies file. This file can be used as input for

illinkanalyzer tool.

The dependencies file named linker-dependencies.xml.gz is written to the project directory. On .NET5/6 it is

written next to the linked assemblies in obj/<Configuration>/android<ABI>/linked directory.

The default value is False.

Specifies the internationalization support included with the Application, such as collation and sorting tables. The

value is a comma- or semicolon-separated list of one or more of the following case-insensitive values:

NoneNone: Include no additional encodings.

AllAll : Include all available encodings.

CJKCJK: Include Chinese, Japanese, and Korean encodings such as Japanese (EUC) [enc-jp, CP51932],

Japanese (Shift-JIS) [iso-2022-jp, shift_jis, CP932], Japanese (JIS) [CP50220], Chinese Simplified (GB2312)

[gb2312, CP936], Korean (UHC) [ks_c_5601-1987, CP949], Korean (EUC) [euc-kr, CP51949], Chinese

Traditional (Big5) [big5, CP950], and Chinese Simplified (GB18030) [GB18030, CP54936].

MidEastMidEast: Include Middle-Eastern encodings such as Turkish (Windows) [iso-8859-9, CP1254], Hebrew

(Windows) [windows-1255, CP1255], Arabic (Windows) [windows-1256, CP1256], Arabic (ISO) [iso-

8859-6, CP28596], Hebrew (ISO) [iso-8859-8, CP28598], Latin 5 (ISO) [iso-8859-9, CP28599], and

Hebrew (Iso Alternative) [iso-8859-8, CP38598].

OtherOther : Include Other encodings such as Cyrillic (Windows) [CP1251], Baltic (Windows) [iso-8859-4,

CP1257], Vietnamese (Windows) [CP1258], Cyrillic (KOI8-R) [koi8-r, CP1251], Ukrainian (KOI8-U) [koi8-u,

CP1251], Baltic (ISO) [iso-8859-4, CP1257], Cyrillic (ISO) [iso-8859-5, CP1251], ISCII Davenagari [x-iscii-

de, CP57002], ISCII Bengali [x-iscii-be, CP57003], ISCII Tamil [x-iscii-ta, CP57004], ISCII Telugu [x-iscii-te,

CP57005], ISCII Assamese [x-iscii-as, CP57006], ISCII Oriya [x-iscii-or, CP57007], ISCII Kannada [x-iscii-ka,

CP57008], ISCII Malayalam [x-iscii-ma, CP57009], ISCII Gujarati [x-iscii-gu, CP57010], ISCII Punjabi [x-

iscii-pa, CP57011], and Thai (Windows) [CP874].

RareRare: Include Rare encodings such as IBM EBCDIC (Turkish) [CP1026], IBM EBCDIC (Open Systems Latin

1) [CP1047], IBM EBCDIC (US-Canada with Euro) [CP1140], IBM EBCDIC (Germany with Euro) [CP1141],

IBM EBCDIC (Denmark/Norway with Euro) [CP1142], IBM EBCDIC (Finland/Sweden with Euro) [CP1143],

IBM EBCDIC (Italy with Euro) [CP1144], IBM EBCDIC (Latin America/Spain with Euro) [CP1145], IBM

EBCDIC (United Kingdom with Euro) [CP1146], IBM EBCDIC (France with Euro) [CP1147], IBM EBCDIC

(International with Euro) [CP1148], IBM EBCDIC (Icelandic with Euro) [CP1149], IBM EBCDIC (Germany)

[CP20273], IBM EBCDIC (Denmark/Norway) [CP20277], IBM EBCDIC (Finland/Sweden) [CP20278], IBM

EBCDIC (Italy) [CP20280], IBM EBCDIC (Latin America/Spain) [CP20284], IBM EBCDIC (United Kingdom)

[CP20285], IBM EBCDIC (Japanese Katakana Extended) [CP20290], IBM EBCDIC (France) [CP20297], IBM

EBCDIC (Arabic) [CP20420], IBM EBCDIC (Hebrew) [CP20424], IBM EBCDIC (Icelandic) [CP20871], IBM

EBCDIC (Cyrillic - Serbian, Bulgarian) [CP21025], IBM EBCDIC (US-Canada) [CP37], IBM EBCDIC

(International) [CP500], Arabic (ASMO 708) [CP708], Central European (DOS) [CP852], Cyrillic (DOS)

[CP855], Turkish (DOS) [CP857], Western European (DOS with Euro) [CP858], Hebrew (DOS) [CP862],

Arabic (DOS) [CP864], Russian (DOS) [CP866], Greek (DOS) [CP869], IBM EBCDIC (Latin 2) [CP870], and

https://github.com/mono/linker/blob/master/src/analyzer/README.md

<MandroidI18n>West</MandroidI18n>

 MonoAndroidResourcePrefix

 MonoSymbolArchive

IBM EBCDIC (Greek) [CP875].

WestWest: Include Western encodings such as Western European (Mac) [macintosh, CP10000], Icelandic

(Mac) [x-mac-icelandic, CP10079], Central European (Windows) [iso-8859-2, CP1250], Western European

(Windows) [iso-8859-1, CP1252], Greek (Windows) [iso-8859-7, CP1253], Central European (ISO) [iso-

8859-2, CP28592], Latin 3 (ISO) [iso-8859-3, CP28593], Greek (ISO) [iso-8859-7, CP28597], Latin 9 (ISO)

[iso-8859-15, CP28605], OEM United States [CP437], Western European (DOS) [CP850], Portuguese

(DOS) [CP860], Icelandic (DOS) [CP861], French Canadian (DOS) [CP863], and Nordic (DOS) [CP865].

Specifies a path prefix that is removed from the start of filenames with a Build action of AndroidResource . This is

to allow changing where resources are located.

The default value is Resources . Change this to res for the Java project structure.

A boolean property which controls whether .mSYM artifacts are created for later use with mono-symbolicate , to

extract “real” filename and line number information from Release stack traces.

This is True by default for “Release” apps which have debugging symbols enabled: $(EmbedAssembliesIntoApk) is

True, $(DebugSymbols) is True, and $(Optimize) is True.

Added in Xamarin.Android 7.1.

https://docs.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-properties

Build Targets
 11/2/2020 • 2 minutes to read • Edit Online

 Build

msbuild /p:AndroidBuildApplicationPackage=True App.sln

 BuildAndStartAotProfiling

 Clean

 FinishAotProfiling

aprofutil $(AProfUtilExtraOptions) -s -v -f -p $(AndroidAotProfilerPort) -o "$(AndroidAotCustomProfilePath)"

 Install

The following build targets are defined for Xamarin.Android projects.

Builds the source code within a project and all dependencies.

This target does not create an Android package (.apk file). To create an Android package, use the

SignAndroidPackage target, or set the `$(AndroidBuildApplicationPackage) property to True when building:

Builds the app with an embedded AOT profiler, sets the profiler TCP port to $(AndroidAotProfilerPort) , and

starts the default activity.

The default TCP port is 9999 .

Added in Xamarin.Android 10.2.

Removes all files generated by the build process.

Must be called after the BuildAndStartAotProfiling target.

Collects the AOT profiler data from the device or emulator through the TCP port $(AndroidAotProfilerPort) and

writes them to $(AndroidAotCustomProfilePath) .

The default values for port and custom profile are 9999 and custom.aprof .

To pass additional options to aprofutil , set them in the $(AProfUtilExtraOptions) property.

This is equivalent to:

Added in Xamarin.Android 10.2.

Creates, signs, and installs the Android package onto the default device or virtual device.

The $(AdbTarget) property specifies the Android target device the Android package may be installed to or

removed from.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/building-apps/build-targets.md

Install package onto emulator via -e
Use `/Library/Frameworks/Mono.framework/Commands/msbuild` on OS X
MSBuild /t:Install ProjectName.csproj /p:AdbTarget=-e

 SignAndroidPackage

 StartAndroidActivity

adb shell am start @PACKAGE_NAME@/$(AndroidLaunchActivity)

 StopAndroidPackage

adb shell am force-stop @PACKAGE_NAME@

 Uninstall

 UpdateAndroidResources

Creates and signs the Android package (.apk) file.

Use with /p:Configuration=Release to generate self-contained "Release" packages.

Starts the default activity on the device or the running emulator.

To start a different activity, set the $(AndroidLaunchActivity) property to the activity name.

This is equivalent to:

Added in Xamarin.Android 10.2.

Completely stops the application package on the device or the running emulator.

This is equivalent to:

Added in Xamarin.Android 10.2.

Uninstalls the Android package from the default device or virtual device.

The $(AdbTarget) property specifies the Android target device the Android package may be installed to or

removed from.

Updates the Resource.designer.cs file.

This target is usually called by the IDE when new resources are added to the project.

Building ABI-Specific APKs
 7/8/2021 • 7 minutes to read • Edit Online

 Overview

 Creating the Version Code for the APKCreating the Version Code for the APK

This document will discuss how to build an APK that will target a single ABI using Xamarin.Android.

In some situations it may be advantageous for an application to have multiple APKs - each APK is signed with

the same keystore and shares the same package name but it is compiled for a specific device or Android

configuration. This is not the recommended approach - it is much simpler to have one APK that can support

multiple devices and configurations. There are some situations where creating multiple APKs can be useful, such

as:

Reduce the size of the APKReduce the size of the APK - Google Play imposes a 100MB size limit on APK files. Creating device

specific APK's can reduce the size of the APK as you only need to supply a subset of assets and resources

for the application.

Suppor t different CPU architecturesSuppor t different CPU architectures - If your application has shared libraries for specific CPU's, you

can distribute only the shared libraries for that CPU.

Multiple APKs can complicate distribution - a problem that is addressed by Google Play. Google Play will ensure

that the correct APK is delivered to a device based on the application's version code and other metadata

contained with AndroidManifest.XMLAndroidManifest.XML . For specific details and restrictions on how Google Play supports

multiple APKs for an application, consult Google's documentation on multiple APK support.

This guide will address how to script the building multiple APKs for a Xamarin.Android application, each APK

targeting a specific ABI. It will cover the following topics:

1. Create a unique version code for the APK.

2. Create a temporary version of AndroidManifest.XMLAndroidManifest.XML that will be used for this APK.

3. Build the application using the AndroidManifest.XMLAndroidManifest.XML from the previous step.

4. Prepare the APK for release by signing and zip-aligning it.

At the end of this guide is a walkthrough that will demonstrate how to script these steps using Rake.

Google recommends a particular algorithm for the version code that uses a seven digit version code (please see

the section Using a version code scheme in the Multiple APK support document). By expanding this version code

scheme to eight digits, it is possible to include some ABI information into the version code that will ensure that

Google Play will distribute the correct APK to a device. The following list explains this eight digit version code

format (indexed from left to right):

Index 0Index 0 (red in diagram below) – An integer for the ABI:

1 – armeabi

2 – armeabi-v7a

6 – x86

Index 1-2Index 1-2 (orange in diagram below) – The minimum API level supported by the application.

Index 3-4Index 3-4 (blue in diagram below) – The screen sizes supported:

1 – small

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/building-apps/abi-specific-apks.md
https://developer.android.com/google/play/publishing/multiple-apks.html
https://martinfowler.com/articles/rake.html
https://developer.android.com/google/play/publishing/multiple-apks.html

 Create A Temporary AndroidManifest.XMLCreate A Temporary AndroidManifest.XML

 Compiling the APKCompiling the APK

/Library/Frameworks/Mono.framework/Commands/xbuild /t:Package /p:AndroidSupportedAbis=<TARGET_ABI>
/p:IntermediateOutputPath=obj.<TARGET_ABI>/ /p:AndroidManifest=<PATH_TO_ANDROIDMANIFEST.XML>
/p:OutputPath=bin.<TARGET_ABI> /p:Configuration=Release <CSPROJ FILE>

2 – normal

3 – large

4 – xlarge

Index 5-7Index 5-7 (green in diagram below) – A unique number for the version code. This is set by the developer.

It should increase for each public release of the application.

The following diagram illustrates the position of each code described in the above list:

Google Play will ensure that the correct APK is delivered to the device based on the versionCode and APK

configuration. The APK with the highest version code will be delivered to the device. As an example, an

application could have three APKs with the following version codes:

11413456 - The ABI is armeabi ; targeting API level 14; small to large screens; with a version number of 456.

21423456 - The ABI is armeabi-v7a ; targeting API level 14; normal & large screens; with a version number

of 456.

61423456 - The ABI is x86 ; targeting API level 14; normal & large screens; with a version number of 456.

To continue on with this example, imagine that a bug was fixed which was specific to armeabi-v7a . The app

version increases to 457, and an new APK is built with the android:versionCode set to 21423457. The

versionCodes for the armeabi and x86 versions would remain the same.

Now imagine that the x86 version receives some updates or bug fixes that target a newer API (API level 19),

making this version 500 of the app. The new versionCode would change to 61923500 while the

armeabi/armeabi-v7a remain unchanged. At this point in time, the version codes would be:

11413456 - The ABI is armeabi ; targeting API level 14; small to large screens; with a version name of 456.

21423457 - The ABI is armeabi-v7a ; targeting API level 14; normal & large screens; with a version name of

457.

61923500 - The ABI is x86 ; targeting API level 19; normal & large screens; with a version name of 500.

Maintaining these version codes manually can be a significant burden on the developer. The process of

calculating the correct android:versionCode and then building the APK's should be automated. An example of

how to do so will be covered in the walkthrough at the end of this document.

Although not strictly necessary, creating an temporary AndroidManifest.XMLAndroidManifest.XML for each ABI can help prevent

issues that might arise with information leaking from one APK to the other. For example, it is crucial that the

android:versionCode attribute is unique for each APK.

How this is done depends on the scripting system involved, but typically involves taking a copy of the Android

manifest used during development, modifying it, and then using that modify manifest during the build process.

Building the APK per ABI is best accomplished by using either xbuild or msbuild as shown in the following

sample command line:

The following list explains each command line parameter :

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/building-apps/abi-specific-apks-images/image00.png#lightbox

 Sign and Zipalign The APKSign and Zipalign The APK

jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore <PATH/TO/KEYSTORE> -storepass <PASSWORD> -
signedjar <PATH/FOR/SIGNED_JAR> <PATH/FOR/JAR/TO/SIGN> <NAME_OF_KEY_IN_KEYSTORE>

zipalign -f -v 4 <SIGNED_APK_TO_ZIPALIGN> <PATH/TO/ZIP_ALIGNED.APK>

 Automating APK Creation With Rake

/t:Package – Creates an Android APK that is signed using the debug keystore

/p:AndroidSupportedAbis=<TARGET_ABI> – This the ABI to target. Must one of armeabi , armeabi-v7a , or

x86

/p:IntermediateOutputPath=obj.<TARGET_ABI>/ – This is the directory that will hold the intermediate files

that are created as a part of the build. If necessary, Xamarin.Android will create a directory named after

the ABI, such as obj.armeabi-v7a . It is recommended to use one folder for each ABI as this will prevent

issues that make result with files "leaking" from one build to another. Notice that this value is terminated

with a directory separator (a / in the case of OS X).

/p:AndroidManifest – This property specifies the path to the AndroidManifest.XMLAndroidManifest.XML file that will be

used during the build.

/p:OutputPath=bin.<TARGET_ABI> – This is the directory that will house the final APK. Xamarin.Android will

create a directory named after the ABI, for example bin.armeabi-v7a .

/p:Configuration=Release – Perform a Release build of the APK. Debug builds may not be uploaded to

Google Play.

<CS_PROJ FILE> – This is the path to the .csproj file for the Xamarin.Android project.

It is necessary to sign the APK before it can be distributed via Google Play. This can be performed by using the

jarsigner application that is a part of the Java Developer's Kit. The following command line demonstrats how

to use jarsigner at the command line:

All Xamarin.Android applications must be zip-aligned before they can be run on a device. This is the format of

the command line to use:

The sample project OneABIPerAPK is a simple Android project that will demonstrate how to calculate an ABI

specific version number and build three separate APK's for each of the following ABI's:

armeabi

armeabi-v7a

x86

The rakefile in the sample project performs each of the steps that were described in the previous sections:

1. Create an android:versionCode for the APK.

2. Write the android:versionCode to a custom AndroidManifest.XMLAndroidManifest.XML for that APK.

3. Compile a release build of the Xamarin.Android project that will singularly target the ABI and using the

AndroidManifest.XMLAndroidManifest.XML that was created in the previous step.

4. Sign the APK with a production keystore.

https://github.com/xamarin/monodroid-samples/tree/master/OneABIPerAPK
https://github.com/xamarin/monodroid-samples/blob/master/OneABIPerAPK/Rakefile.rb
https://github.com/xamarin/monodroid-samples/blob/master/OneABIPerAPK/Rakefile.rb#L30
https://github.com/xamarin/monodroid-samples/blob/master/OneABIPerAPK/Rakefile.rb#L55
https://github.com/xamarin/monodroid-samples/blob/master/OneABIPerAPK/Rakefile.rb#L63
https://github.com/xamarin/monodroid-samples/blob/master/OneABIPerAPK/Rakefile.rb#L66

$ rake build
==> Building an APK for ABI armeabi with ./Properties/AndroidManifest.xml.armeabi, android:versionCode =
10814120.
==> Building an APK for ABI x86 with ./Properties/AndroidManifest.xml.x86, android:versionCode = 60814120.
==> Building an APK for ABI armeabi-v7a with ./Properties/AndroidManifest.xml.armeabi-v7a,
android:versionCode = 20814120.

5. Zipalign the APK.

To build all of the APKs for the application, run the build Rake task from the command line:

Once the rake task has completed, there will be three bin folders with the file xamarin.helloworld.apk . The next

screenshot shows each of these folders with their contents:

https://github.com/xamarin/monodroid-samples/blob/master/OneABIPerAPK/Rakefile.rb#L67

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/building-apps/abi-specific-apks-images/image01.png#lightbox

NOTENOTE

 Summary

 Related Links

The build process outlined in this guide may be implemented in one of many different build systems. Although we don't

have a pre-written example, it should also be possible with Powershell / psake or Fake.

This guide provided some suggestions with how to create Android APK's that target a specify ABI. It also

discussed one possible scheme for creating android:versionCodes that will identify the CPU architecture that the

APK is intended for. The walkthrough included a sample project that has it's build scripted using Rake.

OneABIPerAPK (sample)

Publishing an Application

Multiple APK Support for Google Play

https://docs.microsoft.com/en-us/powershell/
https://github.com/psake/psake
https://fsharp.github.io/FAKE/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/oneabiperapk
https://developer.android.com/google/play/publishing/multiple-apks.html

Command Line Emulator
 10/28/2019 • 2 minutes to read • Edit Online

 Running the Android emulator from the command line

emulator.exe -avd NameOfYourEmulator -partition-size 512

./emulator -avd NameOfYourEmulator -partition-size 512

To enable running the Android emulator from the command line, you can use the "emulator" tool provided by

the Android SDK. This tool can be used to run the emulator from Terminal on OS X or from Command Prompt

on a Windows machine.

To launch a specific Android emulator, run the following command from the tools directory in the android SDK

location (such as C:\android-sdk-windows\tools):

On Windows

On macOS

The reason for needing the partition size is to allow the emulator to have plenty of space to get the

Xamarin.Android platform installed on the emulator as by default the size of the emulator is small.

You can find out more information on extra parameters on the Android site here -

https://developer.android.com/studio/run/emulator-commandline

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/command-line-emulator.md
https://developer.android.com/studio/run/emulator-commandline

Debug Xamarin.Android apps
 12/31/2019 • 2 minutes to read • Edit Online

 Debugging Overview

 Debugging on the Android EmulatorDebugging on the Android Emulator

 Debugging on a DeviceDebugging on a Device

 Android Debug LogAndroid Debug Log

This section discusses how to debug a Xamarin.Android app on devices or emulators.

Developing Android applications requires running the application, either on physical hardware or using an

emulator. Using hardware is the best approach, but not always the most practical. In many cases, it can be

simpler and more cost effective to simulate/emulate Android hardware using one of the emulators described

below.

This article explains how launch the Android emulator from Visual Studio and run your app in a virtual device.

This article shows how to configure a physical Android device so that Xamarin.Android application can be

deployed to it directly from either Visual Studio or Visual Studio for Mac.

One very common trick developers use to debug their applications is using Console.WriteLine . However, on a

mobile platform like Android there is no console. Android devices provides a log that you will likely need to

utilize while writing apps. This is sometimes referred to as logcatlogcat due to the command typed to retrieve it. This

article describes how to use logcatlogcat.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/debugging/index.md

Debug on the Android Emulator
 7/8/2021 • 4 minutes to read • Edit Online

 Using a Pre-Configured Virtual Device

In this guide, you will learn how to launch a virtual device in the Android Emulator to debug and test your app.

The Android Emulator (installed as part of the Mobile development with .NETMobile development with .NET workload), can be run in a

variety of configurations to simulate different Android devices. Each one of these configurations is created as a

virtual device. In this guide, you will learn how to launch the emulator from Visual Studio and run your app in a

virtual device. For information about configuring the Android Emulator and creating new virtual devices, see

Android Emulator Setup.

Visual Studio

Visual Studio for Mac

Visual Studio includes pre-configured virtual devices that appear in the device drop-down menu. For example, in

the following Visual Studio 2017 screenshot, several pre-configured virtual devices are available:

VisualStudio_android-23_arm_phoneVisualStudio_android-23_arm_phone

VisualStudio_android-23_arm_tabletVisualStudio_android-23_arm_tablet

VisualStudio_android-23_x86_phoneVisualStudio_android-23_x86_phone

VisualStudio_android-23_x86_tabletVisualStudio_android-23_x86_tablet

Typically, you would select the VisualStudio_android-23_x86_phoneVisualStudio_android-23_x86_phone virtual device to test and debug a

phone app. If one of these pre-configured virtual devices meets your requirements (i.e., matches your app's

target API level), skip to Launching the Emulator to begin running your app in the emulator. (If you are not yet

familiar with Android API levels, see Understanding Android API Levels.)

If your Xamarin.Android project is using a Target Framework level that is incompatible with the available virtual

devices, the drop-down menu lists the unusable virtual devices under Unsuppor ted DevicesUnsuppor ted Devices . For example, the

following project has a Target Framework set to Android 7.1 Nougat (API 25)Android 7.1 Nougat (API 25) , which is incompatible with the

Android 6.0Android 6.0 virtual devices that are listed in this example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/debugging/debug-on-emulator.md
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/debugging/debug-on-emulator-images/win/01-virtual-devices.png#lightbox

 Editing Virtual Devices

 Launching the Emulator

You can click Change Minimum Android TargetChange Minimum Android Target to change the project's Minimum Android Version so that it

matches the API level of the available virtual devices. Alternately, you can use the Android Device Manager to

create new virtual devices that support your target API level. Before you can configure virtual devices for a new

API level, you must first install the corresponding system images for that API level (see Setting up the Android

SDK for Xamarin.Android).

To modify virtual devices (or to create new ones), you must use the Android Device Manager.

Near the top of Visual Studio, there is a drop-down menu that can be used to select DebugDebug or ReleaseRelease mode.

Choosing DebugDebug causes the debugger to attach to the application process running inside the emulator after the

app starts. Choosing ReleaseRelease mode disables the debugger (however, you can still run the app and use log

statements for debug). After you have chosen a virtual device from the device drop-down menu, select either

DebugDebug or ReleaseRelease mode, then click the Play button to run the application:

Visual Studio

Visual Studio for Mac

After the emulator starts, Xamarin.Android will deploy the app to the emulator. The emulator runs the app with

the configured virtual device image. An example screenshot of the Android Emulator is displayed below. In this

example, the emulator is running a blank app called MyAppMyApp:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/debugging/debug-on-emulator-images/win/02-incompatible-level.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/debugging/debug-on-emulator-images/win/17-debug-release.png#lightbox

 Quick Boot

The emulator may be left running: it is not necessary to shut it down and wait for it to restart each time the app

is launched. The first time a Xamarin.Android app is run in the emulator, the Xamarin.Android shared runtime for

the targeted API level is installed, followed by the application. The runtime installation may take a few moments,

so please be patient. Installation of the runtime takes place only when the first Xamarin.Android app is deployed

to the emulator – subsequent deployments are faster because only the app is copied to the emulator.

Newer versions of the Android Emulator include a feature called Quick Boot that launches the emulator in only a

few seconds. When you close the emulator, it takes a snapshot of the virtual device state so that it can be quickly

restored from that state when it is restarted. To access this feature, you will need the following:

Android Emulator version 27.0.2 or later

Android SDK Tools version 26.1.1 or later

When the above-listed versions of the emulator and SDK tools are installed, the Quick Boot feature is enabled by

default.

The first cold boot of the virtual device takes place without a speed improvement because a snapshot has not

yet been created:

When you exit out of the emulator, Quick Boot saves the state of the emulator in a snapshot:

Subsequent virtual device starts are much faster because the emulator simply restores the state at which you

closed the emulator.

Troubleshooting

 Summary

For tips and workarounds for common emulator problems, see Android Emulator Troubleshooting.

This guide explained the process for configuring the Android Emulator to run and test Xamarin.Android apps. It

described the steps for launching the emulator using pre-configured virtual devices, and it provided the steps

for deploying an application to the emulator from Visual Studio.

For more information about using the Android Emulator, see the following Android Developer topics:

Navigating on the Screen

Performing Basic Tasks in the Emulator

Working with Extended Controls, Settings, and Help

Run the emulator with Quick Boot

https://developer.android.com/studio/run/emulator.html#navigate
https://developer.android.com/studio/run/emulator.html#tasks
https://developer.android.com/studio/run/emulator.html#extended
https://developer.android.com/studio/run/emulator#quickboot

Debug on an Android device
 7/8/2021 • 2 minutes to read • Edit Online

 Debug Application

This article explains how to debug a Xamarin.Android application on a physical Android device.

It is possible to debug a Xamarin.Android app on an Android device using either Visual Studio for Mac or Visual

Studio. Before debugging can occur on a device, it must be setup for development and connected to your PC or

Mac.

Once a device is connected to your computer, debugging a Xamarin.Android application is done in the same way

as any other Xamarin product or .NET application. Ensure that the DebugDebug configuration and the external device

is selected in the IDE, this will ensure that the necessary debug symbols are available and that the IDE can

connect to the running application:

Visual Studio

Visual Studio for Mac

Next, a breakpoint is set in the code:

Once the device has been selected, Xamarin.Android will connect to the device, deploy the application, and then

run it. When the breakpoint is reached, the debugger will stop the application, allowing the application to be

debugged in a fashion similar to any other C# application:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/debugging/debug-on-device.md

 Summary

 Related Links

In this document discussed how to debug a Xamarin.Android application by setting a breakpoint and selecting

the target device.

Set Up Device for Development

Setting the Debuggable Attribute

Android Debug Log
 7/8/2021 • 5 minutes to read • Edit Online

 Android Debug Log Overview

NOTENOTE

 Accessing the Debug Log from Visual Studio

One very common trick developers use to debug their applications is to make calls to Console.WriteLine .

However, on a mobile platform like Android there is no console. Android devices provides a log that you can use

while writing apps. This is sometimes referred to as logcat due to the command that you type to retrieve it. Use

the Debug LogDebug Log tool to view the logged data.

The Debug LogDebug Log tool provides a way to view log output while debugging an app through Visual Studio. The

debug log supports the following devices:

Physical Android phones, tablets, and wearables.

An Android Virtual device running on the Android Emulator.

The Debug LogDebug Log tool does not work with Xamarin Live Player.

The Debug LogDebug Log does not display log messages that are generated while the app is running standalone on the

device (i.e., while it is disconnected from Visual Studio).

Visual Studio

Visual Studio for Mac

To open the Device LogDevice Log tool, click Device Log (logcat)Device Log (logcat) icon on the toolbar :

Alternately, launch the Device LogDevice Log tool from one of the following menu selections:

View > Other Windows > Device LogView > Other Windows > Device Log

Tools > Android > Device LogTools > Android > Device Log

The following screenshot illustrates the various parts of the Debug ToolDebug Tool window:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/debugging/android-debug-log.md
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/debugging/android-debug-log-images/vswin-01-logcat.png#lightbox

 Accessing from the Command Line

Device SelectorDevice Selector – Selects which physical device or running emulator to monitor.

Log Entr iesLog Entr ies – A table of log messages from logcat.

Clear Log Entr iesClear Log Entr ies – Clears all current log entries from the table.

Play/PausePlay/Pause – Toggles between updating or pausing the display of new log entries.

StopStop – Halts the display of new log entries.

Search BoxSearch Box – Enter search strings in this box to filter for a subset of log entries.

When the Debug LogDebug Log tool window is displayed, use the device pull-down menu to choose the Android device

to monitor :

After the device is selected, the Device LogDevice Log tool automatically adds log entries from a running app – these log

entries are shown in the table of log entries. Switching between devices stops and starts device logging. Note

that an Android project must be loaded before any devices will appear in the device selector. If the device does

not appear in the device selector, verify that it is available in the Visual Studio device drop-down menu next to

the Star tStar t button.

Visual Studio

Visual Studio for Mac

Another option is to view the debug log via the command line. Open a command prompt window and navigate

to the Android SDK platform-tools folder (typically, the SDK platform-tools folder is located at C:\ProgramC:\Program

Files (x86)\Android\android-sdk\platform-toolsFiles (x86)\Android\android-sdk\platform-tools).

If only a single device (physical device or emulator) is attached, the log can be viewed by entering the following

command:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/debugging/android-debug-log-images/vswin-03-features.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/debugging/android-debug-log-images/vswin-02-devices-combo.png#lightbox

$ adb logcat

 Writing to the Debug Log

string tag = "myapp";

Log.Info (tag, "this is an info message");
Log.Warn (tag, "this is a warning message");
Log.Error (tag, "this is an error message");

I/myapp (11103): this is an info message
W/myapp (11103): this is a warning message
E/myapp (11103): this is an error message

System.Console.WriteLine ("DEBUG - Button Clicked!");

Info (19543) / mono-stdout: DEBUG - Button Clicked!

 Interesting Messages

I/ActivityManager(12944): Starting: Intent { act=android.intent.action.MAIN cat=
[android.intent.category.LAUNCHER] flg=0x10200000 cmp=GcTest.GcTest/gctest.Activity1 } from pid 24175

^I.*ActivityManager.*Starting: Intent

If more than one device is attached, the device must be explicitly identified. For example adb -d logcatadb -d logcat displays

the log of the only physical device connected, while adb -e logcatadb -e logcat shows the log of the only emulator running.

More commands can be found by entering adbadb and reading the help messages.

Messages can be written to the Debug LogDebug Log by using the methods of the Android.Util.Log class. For example:

This produces output similar to the following:

It is also possible to use Console.WriteLine to write to the Debug LogDebug Log – these messages appear in logcat with a

slightly different output format (this technique is particularly useful when debugging Xamarin.Forms apps on

Android):

This produces output similar to the following in logcat:

When reading the log (and especially when providing log snippets to others), perusing the log file in its entirety

is often too cumbersome. To make it easier to navigate through log messages, start by looking for a log entry

that resembles the following:

In particular, look for a line matching the regular expression that also contains the name of the application

package:

This is the line which corresponds to the start of an activity, and most (but not all) of the following messages

should relate to the application.

Notice that every message contains the process identifier (pid) of the process generating the message. In the

https://docs.microsoft.com/en-us/dotnet/api/android.util.log

I/ActivityThread(602): Pub TouchTest.TouchTest.__mono_init__: mono.MonoRuntimeProvider

above ActivityManager message, process 12944 generated the message. To determine which process is the

process of the application being debugged, look for the mono.MonoRuntimeProvidermono.MonoRuntimeProvider message:

This message comes from the process that was started. All subsequent messages that contain this pid come

from the same process.

Debuggable Attribute
 12/13/2019 • 2 minutes to read • Edit Online

 AndroidManifest.xml

 Add an Application class attribute

 Add an assembly attribute

 Summary

"Error The "GenerateJavaStubs" task failed unexpectedly.
System.InvalidOperationException: Application cannot have both a type with an [Application] attribute and an
[assembly:Application] attribute."

To make debugging possible, Android supports the Java Debug Wire Protocol (JDWP). This is a technology that

allows tools such as ADB to communicate with a JVM. While JDWP is important during development, it should

be disabled prior to the application being published.

JDWP can be configured by the value of the android:debuggable attribute in an Android application. Choose one

of the following three ways to set this attribute in Xamarin.Android:

Create or open AndroidManifext.xml file, and set the android:debuggable attribute there. Take extra care not to

ship your release build with debugging enabled.

If your Xamarin.Android app has a class with an [Application] attribute, update the attribute to

[Application(Debuggable = true)] . Set it to false to disable.

If your Xamarin.Android app does NOT already have an [Application] class attribute, add an assembly-level

attribute [assembly: Application(Debuggable=true)] in a c# file. Set it to false to disable.

If both the AndroidManifest.xml and the ApplicationAttribute are present, the contents of AndroidManifest.xml

take priority over what is specified by the ApplicationAttribute .

If you add both a class attribute and an assembly attribute, there will be a compiler error :

By default – if neither the AndroidManifest.xml nor the ApplicationAttribute is present – the value of the

android:debuggable attribute depends on whether or not debug symbols are generated. If debug symbols are

present, then Xamarin.Android will set the android:debuggable attribute to true for you.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/debuggable-attribute.md

WARNINGWARNING

#if DEBUG
[Application(Debuggable = true)]
#else
[Application(Debuggable = false)]
#endif

 Related Links

The value of the android:debuggable attribute does NOT necessarily depend on the build configuration. It is possible

for release builds to have the android:debuggable attribute set to true. If you use an attribute to set this value, you can

choose to wrap the attribute in a compiler directive:

Debuggable apps in the Android market

https://labs.f-secure.com/archive/debuggable-apps-in-android-market/

Xamarin.Android Environment
 3/5/2021 • 4 minutes to read • Edit Online

 Execution Environment

Enable GREF logging
adb shell setprop debug.mono.log gref

Set the MONO_LOG_LEVEL and MONO_LOG_MASK environment variables
so that additional Mono messages will be written to `adb logcat`.
adb shell setprop debug.mono.env "'MONO_LOG_LEVEL=info|MONO_LOG_MASK=asm'"

 Xamarin.Android Environment Variables

 XA_HTTP_CLIENT_HANDLER_TYPE

 Xamarin.Android System Properties

The execution environment is the set of environment variables and Android system properties that influence

program execution. Android system properties can be set with the adb shell setprop command, while

environment variables can be set by setting the debug.mono.env system property:

Android system properties are set for all processes on the target device.

Starting with Xamarin.Android 4.6, both system properties and environment variables may be set or overridden

on a per-app basis by adding an environment file to the project. An environment file is a Unix-formatted plain-

text file with a Build actionBuild action of AndroidEnvironment . The environment file contains lines with the format

key=value. Comments are lines which start with # . Blank lines are ignored.

If key starts with an uppercase letter, then key is treated as an environment variable and setenvsetenv (3) is used to set

the environment variable to the specified value during process startup.

If key starts with a lowercase letter, then key is treated as an Android system property and value is the default

value: Android system properties which control Xamarin.Android execution behavior are looked up first from

the Android system property store, and if no value is present then the value specified in the environment file is

used. This is to permit adb shell setprop to be used to override values which come from the environment file

for diagnostic purposes.

Xamarin.Android supports the XA_HTTP_CLIENT_HANDLER_TYPE variable, which may be set either via

adb shell setprop debug.mono.env or via the $(AndroidEnvironment) Build action.

The assembly-qualified type which must inherit from HttpMessageHandler and is constructed from the

HttpClient() default constructor.

In Xamarin.Android 6.1, this environment variable is not set by default, and HttpClientHandler will be used.

Alternatively, the value Xamarin.Android.Net.AndroidClientHandler may be specified to use

java.net.URLConnection for network access, which may permit use of TLS 1.2 when Android supports it.

Added in Xamarin.Android 6.1.

Xamarin.Android supports the following system properties, which may be set either via adb shell setprop or

via the $(AndroidEnvironment) Build action.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/environment.md
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpmessagehandler?view=xamarinandroid-7.1
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.-ctor?view=xamarinandroid-7.1#system_net_http_httpclient__ctor
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclienthandler?view=xamarinandroid-7.1
https://docs.microsoft.com/en-us/dotnet/api/java.net.urlconnection

 debug.mono.debug

 debug.mono.env

 debug.mono.gc

 debug.mono.log

 debug.mono.max_grefc

 debug.mono.profile

debug.mono.debug

debug.mono.env

debug.mono.gc

debug.mono.log

debug.mono.max_grefc

debug.mono.profile

debug.mono.runtime_args

debug.mono.trace

debug.mono.wref

XA_HTTP_CLIENT_HANDLER_TYPE

The value of the debug.mono.debug system property is an integer. If 1 , then behave "as if" the process were

started with mono --debug . This generally shows file and line information in stack traces, etc., without requiring

that the app be started from a debugger.

Contains a | -separated list of environment variables.

The value of the debug.mono.gc system property is an integer. If 1 , then GC information should be logged.

This is equivalent to having the debug.mono.log system property contain gc .

Controls which additional information Xamarin.Android will log to adb logcat . It is a comma-separated string (

,), containing one of the following values:

all : Print out all messages. This is seldom a good idea, as it includes lref messages.

assembly : Print out .apk and assembly parsing messages.

gc : Print out GC-related messages.

gref : Print out JNI Global Reference messages.

lref : Print out JNI Local Reference messages.

NOTENOTE

timing : Print out some method timing information. This will also create the files .__override__/methods.txt

and .__override__/counters.txt .

This will really spam adb logcat . In Xamarin.Android 5.1, this will also create a .__override__/lrefs.txt file,

which can get gigantic. Avoid.

The value of the debug.mono.max_grefc system property is an integer. It's value overrides the default detected

maximum GREF count for the target device.

Please note: This is only usable with adb shell setprop debug.mono.max_grefc as the value will not be available in

time with an environment.txtenvironment.txt file.

The debug.mono.profile system property enables the profiler. It is equivalent to, and uses the same values as,

 debug.mono.runtime_args

 debug.mono.trace

 debug.mono.wref

 XA_HTTP_CLIENT_HANDLER_TYPEXA_HTTP_CLIENT_HANDLER_TYPE

XA_HTTP_CLIENT_HANDLER_TYPE=Xamarin.Android.Net.AndroidClientHandler

NOTENOTE

 Example

Comments are lines which start with '#'
Blank lines are ignored.

Enable GREF messages to `adb logcat`
debug.mono.log=gref

Clear out a Mono environment variable to decrease logging
MONO_LOG_LEVEL=

 Related Links

the mono --profile option. (See the monomono(1) man page for more information.)

The debug.mono.runtime_args system property contains additional options that should be parsed by monomono.

The debug.mono.trace system property enables tracing. It is equivalent to, and uses the same values as, the

mono --trace option. (See the monomono(1) man page for more information.)

In general, do not use. Use of tracing will spam adb logcat output, severaly slow down program behavior, and

alter program behavior (up to and including adding additional error conditions).

Sometimes, however, it allows some additional investigation to be performed...

The debug.mono.wref system property allows overriding the default detected JNI Weak Reference mechanism.

There are two supported values:

jni : Use JNI weak references, as created by JNIEnv::NewWeakGlobalRef() and destroyed by

JNIEnv::DeleteWeakGlobalREf() .

java : Use JNI Global references which reference java.lang.WeakReference instances.

java is used, by default, up through API-7 and on API-19 (Kit Kat) with ART enabled. (API-8 added jni

references, and ART broke jni references.)

This system property is useful for testing and certain forms of investigation. In general, it should not be

changed.

First introduced in Xamarin.Android 6.1, this environment variable declares the default HttpMessageHandler

implementation that will be used by the HttpClient . By default this variable is not set, and Xamarin.Android will

use the HttpClientHandler .

The underlying Android device must support TLS 1.2. Android 5.0 and later support TLS 1.2

Transport Layer Security

http://docs.go-mono.com/?link=man%253amono(1)
http://docs.go-mono.com/?link=man%253amono(1)
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/transport-layer-security

GDB
 11/2/2020 • 3 minutes to read • Edit Online

 Overview

NOTENOTE

 Debug Builds with Fast DeploymentDebug Builds with Fast Deployment

$ /Library/Frameworks/Mono.framework/Commands/xbuild /t:Install *.csproj

$ /Library/Frameworks/Mono.framework/Commands/xbuild /t:_Gdb *.csproj
...
 Target _Gdb:
 "/opt/android/ndk/toolchains/arm-linux-androideabi-4.4.3/prebuilt/darwin-x86/bin/arm-linux-
androideabi-gdb" -x "/Users/jon/Development/Projects/Scratch.HelloXamarin20//gdb-symbols/gdb.env"
...

NOTENOTE

Xamarin.Android 4.10 introduced partial support for using gdb by using the _Gdb MSBuild target.

gdb support requires that the Android NDK be installed.

There are three ways to use gdb :

1. Debug builds with Fast Deployment enabled .

2. Debug builds with Fast Deployment disabled .

3. Release builds .

When things go wrong, please see the Troubleshooting section.

When building and deploying a Debug build with Fast Deployment enabled, gdb can be attached by using the

_Gdb MSBuild target.

First, install the app. This can be done via the IDE, or via the command line:

Secondly, run the _Gdb target. At the end of execution, a gdb command line will be printed:

The _Gdb target will launch an arbitrary launcher Activity declared within your AndroidManifest.xml file. To

explicitly specify which Activity to run, use the RunActivity MSBuild property. Starting Services and other

Android constructs is not supported at this time.

The _Gdb target will create a gdb-symbols directory and copy the contents of your target's /system/lib and

$APPDIR/lib directories there.

The contents of the gdb-symbols directory are tied to the Android target you deployed to, and will not be automatically

replaced should you change the target. (Consider this a bug.) If you change Android target devices, you will need to

manually delete this directory.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/gdb.md

$ "/opt/android/ndk/toolchains/arm-linux-androideabi-4.4.3/prebuilt/darwin-x86/bin/arm-linux-androideabi-
gdb" -x "/Users/jon/Development/Projects/Scratch.HelloXamarin20//gdb-symbols/gdb.env"
GNU gdb (GDB) 7.3.1-gg2
...
(gdb) bt
#0 0x40082e84 in nanosleep () from /Users/jon/Development/Projects/Scratch.HelloXamarin20/gdb-
symbols/libc.so
#1 0x4008ffe6 in sleep () from /Users/jon/Development/Projects/Scratch.HelloXamarin20/gdb-symbols/libc.so
#2 0x74e46240 in ?? ()
#3 0x74e46240 in ?? ()
(gdb) c

 Debug Builds without Fast Deployment

 Setting the Setting the debug.mono.log System Property System Property

$ adb shell setprop debug.mono.log gc

$ /Library/Frameworks/Mono.framework/Commands/xbuild /t:_Gdb *.csproj
 ...
 Target _Gdb:
 "/opt/android/ndk/toolchains/arm-linux-androideabi-4.4.3/prebuilt/darwin-x86/bin/arm-linux-
androideabi-gdb" -x "/Users/jon/Development/Projects/Scratch.HelloXamarin20//gdb-symbols/gdb.env"
 ...
$ "/opt/android/ndk/toolchains/arm-linux-androideabi-4.4.3/prebuilt/darwin-x86/bin/arm-linux-androideabi-
gdb" -x "/Users/jon/Development/Projects/Scratch.HelloXamarin20//gdb-symbols/gdb.env"
GNU gdb (GDB) 7.3.1-gg2
...
(gdb) c

 Including Including gdbserver in your app in your app

Finally, copy the generated gdb command and execute it in your shell:

Debug builds with Fast Deployment operate by copying the Android NDK's gdbserver program into the Fast

Deployment .__override__ directory. When Fast Deployment is disabled, this directory may not exist.

There are two workarounds:

Set the debug.mono.log system property so that the .__override__ directory is created.

Include gdbserver within your .apk .

To set the debug.mono.log system property, use the adb command:

Once the system property has been set, execute the _Gdb target and the printed gdb command, as with the

Debug Builds with Fast Deployment configuration:

To include gdbserver within your app:

1. Find gdbserver within your Android NDK (it should be in $ANDROID_NDK_PATH/prebuilt/android-$ANDROID_NDK_PATH/prebuilt/android-

arm/gdbser ver/gdbser verarm/gdbser ver/gdbser ver), and copy it into your Project directory.

2. Rename gdbserver to libs/armeabi-v7a/libgdbser ver.solibs/armeabi-v7a/libgdbser ver.so.

3. Add libs/armeabi-v7a/libgdbser ver.solibs/armeabi-v7a/libgdbser ver.so to your Project with a Build actionBuild action of AndroidNativeLibrary .

4. Rebuild and reinstall your application.

Once the app has been reinstalled, execute the _Gdb target and the printed gdb command, as with the Debug

$ /Library/Frameworks/Mono.framework/Commands/xbuild /t:_Gdb *.csproj
 ...
 Target _Gdb:
 "/opt/android/ndk/toolchains/arm-linux-androideabi-4.4.3/prebuilt/darwin-x86/bin/arm-linux-
androideabi-gdb" -x "/Users/jon/Development/Projects/Scratch.HelloXamarin20//gdb-symbols/gdb.env"
 ...
$ "/opt/android/ndk/toolchains/arm-linux-androideabi-4.4.3/prebuilt/darwin-x86/bin/arm-linux-androideabi-
gdb" -x "/Users/jon/Development/Projects/Scratch.HelloXamarin20//gdb-symbols/gdb.env"
GNU gdb (GDB) 7.3.1-gg2
...
(gdb) c

 Release Builds

<application android:label="Example.Name.Here" android:debuggable="true">

 Troubleshooting
 mono_pmip doesn't work doesn't work

$ adb pull /data/data/Mono.Android.DebugRuntime/lib/libmonosgen-2.0.so Project/gdb-symbols

 Bus error: 10 when running the Bus error: 10 when running the gdb command command

Builds with Fast Deployment configuration:

gdb support requires three things:

1. The INTERNET permission.

2. App Debugging enabled.

3. An accessible gdbserver .

The INTERNET permission is enabled by default in Debug apps. If it is not already present in your application,

you may add it either by editing Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml or by editing the Project Properties.

App debugging can be enabled by either setting the ApplicationAttribute.Debugging custom attribute property

to true , or by editing Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml and setting the //application/@android:debuggable

attribute to true :

An accessible gdbserver may be provided by following the Debug Builds without Fast Deployment section.

One wrinkle: The _Gdb MSBuild target will kill any previously running app instances. This will not work on pre-

Android v4.0 targets.

The mono_pmip function (useful for obtaining managed stack frames) is exported from libmonosgen-2.0.so ,

which the _Gdb target does not currently pull down. (This will be fixed in a future release.)

To enable calling functions located in libmonosgen-2.0.so , copy it from the target device into the gdb-symbols

directory:

Then restart your debugging session.

When the gdb command errors out with "Bus error: 10" , restart the Android device.

https://github.com/xamarin/recipes/tree/master/Recipes/android/general/projects/add_permissions_to_android_manifest
https://docs.microsoft.com/en-us/dotnet/api/android.app.applicationattribute.debuggable#android_app_applicationattribute_debuggable
https://www.mono-project.com/docs/debug+profile/debug/#debugging-with-gdb

$ "/path/to/arm-linux-androideabi-gdb" -x "Project/gdb-symbols/gdb.env"
GNU gdb (GDB) 7.3.1-gg2
Copyright (C) 2011 Free Software Foundation, Inc.
...
Bus error: 10
$

 No stack trace after attachNo stack trace after attach

$ "/path/to/arm-linux-androideabi-gdb" -x "Project/gdb-symbols/gdb.env"
GNU gdb (GDB) 7.3.1-gg2
Copyright (C) 2011 Free Software Foundation, Inc.
...
(gdb) bt
No stack.

This is usually a sign that the contents of the gdb-symbols directory are not synchronized with your Android

target. (Did you change your Android target?)

Please delete the gdb-symbols directory and try again.

Linking on Android
 7/5/2021 • 5 minutes to read • Edit Online

C O N F IGURAT IO NC O N F IGURAT IO N 1. 2. 0 SIZ E1. 2. 0 SIZ E 4. 0. 1 SIZ E4. 0. 1 SIZ E

Release without Linking: 14.0 MB 16.0 MB

Release with Linking: 4.2 MB 2.9 MB

 Control

// To play along at home, Example must be in a different assembly from MyActivity.
public class Example {
 // Compiler provides default constructor...
}

[Activity (Label="Linker Example", MainLauncher=true)]
public class MyActivity {
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Will this work?
 var o = Activator.CreateInstance (typeof (ExampleLibrary.Example));
 }
}

 Linker BehaviorLinker Behavior

Xamarin.Android applications use a linker to reduce the size of the application. The linker employs static analysis

of your application to determine which assemblies are actually used, which types are actually used, and which

members are actually used. The linker then behaves like a garbage collector, continually looking for the

assemblies, types, and members that are referenced until the entire closure of referenced assemblies, types, and

members is found. Then everything outside of this closure is discarded.

For example, the Hello, Android sample:

Linking results in a package that is 30% the size of the original (unlinked) package in 1.2.0, and 18% of the

unlinked package in 4.0.1.

Linking is based on static analysis. Consequently, anything that depends upon the runtime environment won't

be detected:

The primary mechanism for controlling the linker is the L inker BehaviorL inker Behavior (Linking in Visual Studio) drop-down

within the Project OptionsProject Options dialog box. There are three options:

1. Don't L inkDon't L ink (None in Visual Studio)

2. L ink SDK AssembliesL ink SDK Assemblies (Sdk Assemblies Only)

3. L ink All AssembliesL ink All Assemblies (Sdk and User Assemblies)

The Don't L inkDon't L ink option turns off the linker ; the above "Release without Linking" application size example used

this behavior. This is useful for troubleshooting runtime failures, to see if the linker is responsible. This setting is

not usually recommended for production builds.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/linker.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/hellom4a

E/mono (17755): [0xafd4d440:] EXCEPTION handling: System.MissingMethodException: Default constructor not
found for type ExampleLibrary.Example.
I/MonoDroid(17755): UNHANDLED EXCEPTION: System.MissingMethodException: Default constructor not found for
type ExampleLibrary.Example.
I/MonoDroid(17755): at System.Activator.CreateInstance (System.Type,bool) <0x00180>
I/MonoDroid(17755): at System.Activator.CreateInstance (System.Type) <0x00017>
I/MonoDroid(17755): at LinkerScratch2.Activity1.OnCreate (Android.OS.Bundle) <0x00027>
I/MonoDroid(17755): at Android.App.Activity.n_OnCreate_Landroid_os_Bundle_ (intptr,intptr,intptr) <0x00057>
I/MonoDroid(17755): at (wrapper dynamic-method) object.95bb4fbe-bef8-4e5b-8e99-ca83a5d7a124
(intptr,intptr,intptr) <0x00033>
E/mono (17755): [0xafd4d440:] EXCEPTION handling: System.MissingMethodException: Default constructor not
found for type ExampleLibrary.Example.
E/mono (17755):
E/mono (17755): Unhandled Exception: System.MissingMethodException: Default constructor not found for
type ExampleLibrary.Example.
E/mono (17755): at System.Activator.CreateInstance (System.Type type, Boolean nonPublic) [0x00000] in
<filename unknown>:0
E/mono (17755): at System.Activator.CreateInstance (System.Type type) [0x00000] in <filename unknown>:0
E/mono (17755): at LinkerScratch2.Activity1.OnCreate (Android.OS.Bundle bundle) [0x00000] in <filename
unknown>:0
E/mono (17755): at Android.App.Activity.n_OnCreate_Landroid_os_Bundle_ (IntPtr jnienv, IntPtr
native__this, IntPtr native_savedInstanceState) [0x00000] in <filename unknown>:0
E/mono (17755): at (wrapper dynamic-method) object:95bb4fbe-bef8-4e5b-8e99-ca83a5d7a124
(intptr,intptr,intptr)

 Preserving CodePreserving Code

public class Example
{
 [Android.Runtime.Preserve]
 public Example ()
 {
 }
}

The L ink SDK AssembliesL ink SDK Assemblies option only links assemblies that come with Xamarin.Android. All other assemblies

(such as your code) are not linked.

The L ink All AssembliesL ink All Assemblies option links all assemblies, which means your code may also be removed if there are

no static references.

The above example will work with the Don't Link and Link SDK Assemblies options, and will fail with the Link All

Assemblies behavior, generating the following error :

The linker will sometimes remove code that you want to preserve. For example:

You might have code that you call dynamically via System.Reflection.MemberInfo.Invoke .

If you instantiate types dynamically, you may want to preserve the default constructor of your types.

If you use XML serialization, you may want to preserve the properties of your types.

In these cases, you can use the Android.Runtime.Preserve attribute. Every member that is not statically linked by

the application is subject to be removed, so this attribute can be used to mark members that are not statically

referenced but are still needed by your application. You can apply this attribute to every member of a type, or to

the type itself.

In the following example, this attribute is used to preserve the constructor of the Example class:

If you want to preserve the entire type, you can use the following attribute syntax:

https://docs.microsoft.com/en-us/dotnet/api/android.runtime.preserveattribute

[Android.Runtime.Preserve (AllMembers = true)]

[Android.Runtime.Preserve (AllMembers = true)]
class Example
{
 // Compiler provides default constructor...
}

[Android.Runtime.Preserve (Conditional = true)]

namespace Android.Runtime
{
 public sealed class PreserveAttribute : System.Attribute
 {
 public bool AllMembers;
 public bool Conditional;
 }
}

 falseflagfalseflag

[Activity (Label="Linker Example", MainLauncher=true)]
class MyActivity {

#pragma warning disable 0219, 0649
 static bool falseflag = false;
 static MyActivity ()
 {
 if (falseflag) {
 var ignore = new Example ();
 }
 }
#pragma warning restore 0219, 0649

 // ...
}

 linkskiplinkskip

For example, in the following code fragment the entire Example class is preserved for XML serialization:

Sometimes you want to preserve certain members, but only if the containing type was preserved. In those

cases, use the following attribute syntax:

If you do not want to take a dependency on the Xamarin libraries – for example, you are building a cross

platform portable class library (PCL) – you can still use the Android.Runtime.Preserve attribute. To do this,

declare a PreserveAttribute class within the Android.Runtime namespace like this:

In the above examples, the Preserve attribute is declared in the Android.Runtime namespace; however, you can

use the Preserve attribute in any namespace because the linker looks up this attribute by type name.

If the [Preserve] attribute can't be used, it is often useful to provide a block of code so that the linker believes

that the type is used, while preventing the block of code from being executed at runtime. To make use of this

technique, we could do:

It is possible to specify that a set of user-provided assemblies should not be linked at all, while allowing other

user assemblies to be skipped with the Link SDK Assemblies behavior by using the AndroidLinkSkip MSBuild

<PropertyGroup>
 <AndroidLinkSkip>Assembly1;Assembly2</AndroidLinkSkip>
</PropertyGroup>

 LinkDescriptionLinkDescription

 Custom AttributesCustom Attributes

 Related Links

property:

The @(LinkDescription) Build actionBuild action may be used on files which can contain a Custom linker configuration

file. file. Custom linker configuration files may be required to preserve internal or private members that

need to be preserved.

When an assembly is linked, the following custom attribute types will be removed from all members:

System.ObsoleteAttribute

System.MonoDocumentationNoteAttribute

System.MonoExtensionAttribute

System.MonoInternalNoteAttribute

System.MonoLimitationAttribute

System.MonoNotSupportedAttribute

System.MonoTODOAttribute

System.Xml.MonoFIXAttribute

When an assembly is linked, the following custom attribute types will be removed from all members in Release

builds:

System.Diagnostics.DebuggableAttribute

System.Diagnostics.DebuggerBrowsableAttribute

System.Diagnostics.DebuggerDisplayAttribute

System.Diagnostics.DebuggerHiddenAttribute

System.Diagnostics.DebuggerNonUserCodeAttribute

System.Diagnostics.DebuggerStepperBoundaryAttribute

System.Diagnostics.DebuggerStepThroughAttribute

System.Diagnostics.DebuggerTypeProxyAttribute

System.Diagnostics.DebuggerVisualizerAttribute

Custom Linker Configuration

Linking on iOS

https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/linker
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/linker
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/linker

Multi-Core Devices & Xamarin.Android
 7/8/2021 • 9 minutes to read • Edit Online

 Overview

 armeabi and Thread Safetyarmeabi and Thread Safety

NOTENOTE

 ABI DescriptionsABI Descriptions

 armeabiarmeabi

Android can run on several different computer architectures. This document discusses the different CPU

architectures that may be employed for a Xamarin.Android application. This document will also explain how

Android applications are packaged to support different CPU architectures. The Application Binary Interface (ABI)

will be introduced, and guidance will be provided regarding which ABIs to use in a Xamarin.Android application.

Android allows for the creation of "fat binaries," a single .apk file that contains machine code that will support

multiple, different CPU architectures. This is accomplished by associating each piece of machine code with an

Application Binary Interface. The ABI is used to control which machine code will run on a given hardware device.

For example, for an Android application to run on an x86 device, it is necessary to include x86 ABI support when

compiling the application.

Specifically, each Android application will support at least one embedded-application binary interface (EABI).

EABI are conventions specific to embedded software programs. A typical EABI will describe things such as:

The CPU instruction set.

The endianness of memory stores and loads at run time.

The binary format of object files and program libraries, as well as which type of content is allowed or

supported in these files and libraries.

The various conventions used to pass data between application code and the system (for example: how

registers and/or the stack are used when functions are called, alignment constraints, etc.)

Alignment and size constraints for enum types, structures, fields, and arrays.

The list of function symbols available to your machine code at run time, generally from a very specific

selected set of libraries.

The Application Binary Interface will be discussed in detail below, but it is important to remember that the

armeabi runtime used by Xamarin.Android is not thread safe. If an application that has armeabi support is

deployed to an armeabi-v7a device, many strange and unexplainable exceptions will occur.

Due to a bug in Android 4.0.0, 4.0.1, 4.0.2, and 4.0.3, the native libraries will be picked up from the armeabi

directory even though there is an armeabi-v7a directory present and the device is an armeabi-v7a device.

Xamarin.Android will ensure that .so are added to the APK in the correct order. This bug should not be an issue for

users of Xamarin.Android.

Each ABI supported by Android is identified by a unique name.

This is the name of an EABI for ARM-based CPUs that support at least the ARMv5TE instruction set. Android

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/multicore-devices.md

IMPORTANTIMPORTANT

 armeabi-v7aarmeabi-v7a

NOTENOTE

 arm64-v8aarm64-v8a

 x86x86

NOTENOTE

 x86_64x86_64

 APK File FormatAPK File Format

follows the little-endian ARM GNU/Linux ABI. This ABI does not support hardware-assisted floating-point

computations. All FP operations are performed by software helper functions that come from the compiler's

libgcc.a static library. SMP devices are not supported by armeabi .

Xamarin.Android's armeabi code is not thread safe and should not be used on multi-CPU armeabi-v7a devices

(described below). Using armeabi code on a single-core armeabi-v7a device is safe.

This is another ARM-based CPU instruction set that extends the armeabi EABI described above. The

armeabi-v7a EABI has support for hardware floating-point operations and multiple CPU (SMP) devices. An

application that uses the armeabi-v7a EABI can expect substantial performance improvements over an

application that uses armeabi .

armeabi-v7a machine code will not run on ARMv5 devices.

This is a 64-bit instruction set that is based on the ARMv8 CPU architecture. This architecture is used in the

Nexus 9. Xamarin.Android 5.1 introduced support for this architecture (for more information, see 64-bit runtime

support).

This is the name of an ABI for CPUs that support the instruction set commonly named x86 or IA-32. This ABI

corresponds to instructions for the Pentium Pro instruction set, including the MMX, SSE, SSE2, and SSE3

instruction sets. It does not include any other optional IA-32 instruction set extensions such as:

the MOVBE instruction.

Supplemental SSE3 extension (SSSE3).

any variant of SSE4.

Google TV, although it runs on x86, is not supported by Android's NDK.

This is the name of an ABI for CPUs that support the 64-bit x86 instruction set (also referred to as x64 or

AMD64). Xamarin.Android 5.1 introduced support for this architecture (for more information, see 64-bit runtime

support).

The Android Application Package is the file format that holds all of the code, assets, resources, and certificates

necessary for an Android application. It is a .zip file, but uses the .apk file name extension. When expanded,

the contents of an .apk created by Xamarin.Android can be seen in the screenshot below:

https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_5/xamarin.android_5.1/index.md#64-bit-runtime-support
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_5/xamarin.android_5.1/index.md#64-bit-runtime-support

NOTENOTE

 Android Device ABI SupportAndroid Device ABI Support

 Android Native Library InstallationAndroid Native Library Installation

 Installing Native Libraries: Pre-Android 4.0Installing Native Libraries: Pre-Android 4.0

A quick description of the contents of the .apk file:

AndroidManifest.xmlAndroidManifest.xml – This is the AndroidManifest.xml file, in binary XML format.

classes.dexclasses.dex – This contains the application code, compiled into the dex file format that is used by the

Android runtime VM.

resources.arscresources.arsc – This file contains all of the precompiled resources for the application.

liblib – This directory holds the compiled code for each ABI. It will contain one subfolder for each ABI that

was described in the previous section. In the screenshot above, the .apk in question has native libraries

for both armeabi-v7a and for x86 .

META-INFMETA-INF – This directory (if present) is used to store signing information, package, and extension

configuration data.

resres – This directory holds the resources that were not compiled into resources.arsc .

The file libmonodroid.so is the native library required by all Xamarin.Android applications.

Each Android device supports executing native code in up to two ABIs:

The "pr imar y" ABIThe "pr imar y" ABI – This corresponds to the machine code used in the system image.

A "secondar y" ABIA "secondar y" ABI – This is an optional ABI that is also supported by the system image.

For example, a typical ARMv5TE device will only have a primary ABI of armeabi , while an ARMv7 device would

specify a primary ABI of armeabi-v7a and a secondary ABI of armeabi . A typical x86 device would only specify a

primary ABI of x86 .

At package installation time, native libraries within the .apk are extracted into the app's native library directory,

typically /data/data/<package-name>/lib , and are thereafter referred to as $APP/lib .

Android's native library installation behavior varies dramatically between Android versions.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/multicore-devices-images/00.png#lightbox

lib/armeabi/libone.so
lib/armeabi/libtwo.so
lib/armeabi-v7a/libtwo.so

$APP/lib/libtwo.so # from the armeabi-v7a directory in the apk

lib/armeabi/libone.so
lib/armeabi/libtwo.so
lib/armeabi-v7a/libone.so
lib/armeabi-v7a/libtwo.so

 Installing Native Libraries: Android 4.0 – Android 4.0.3Installing Native Libraries: Android 4.0 – Android 4.0.3

lib/armeabi/libone.so
lib/armeabi/libtwo.so
lib/armeabi-v7a/libtwo.so

$APP/lib/libone.so
$APP/lib/libtwo.so

Android prior to 4.0 Ice Cream Sandwich will only extract native libraries from a single ABI within the .apk .

Android apps of this vintage will first try to extract all native libraries for the primary ABI, and if no such libraries

exist, Android will then extract all native libraries for the secondary ABI. No "merging" is done.

For example, consider a situation where an application is installed on an armeabi-v7a device. The .apk, which

supports both armeabi and armeabi-v7a , has the following ABI lib directories and files in it:

After installation, the native library directory will contain:

In other words, no libone.so is installed. This will cause problems, as libone.so is not present for the

application to load at run time. This behavior, while unexpected, has been logged as a bug and reclassified as

"working as intended."

Consequently, when targeting Android versions prior to 4.0, it is necessary to provide all native libraries for each

ABI that the application will support, that is, the .apk should contain:

Android 4.0 Ice Cream Sandwich changes the extraction logic. It will enumerate all native libraries, see if the file's

basename has already been extracted, and if both of the following conditions are met, then the library will be

extracted:

It hasn't already been extracted.

The native library's ABI matches the target's primary or secondary ABI.

Meeting these conditions allows "merging" behavior ; that is, if we have an .apk with the following contents:

Then after installation, the native library directory will contain:

Unfortunately, this behavior is order dependent, as described in the following document - Issue 24321: Galaxy

Nexus 4.0.2 uses armeabi native code when both armeabi and armeabi-v7a is included in apk.

The native libraries are processed "in order" (as listed by, for example, unzip), and the first match is extracted.

Since the .apk contains armeabi and armeabi-v7a versions of libtwo.so , and the armeabi is listed first, it's

the armeabi version that is extracted, not the armeabi-v7a version:

https://code.google.com/p/android/issues/detail?id=9089
https://code.google.com/p/android/issues/detail?id=25321

$APP/lib/libone.so # armeabi
$APP/lib/libtwo.so # armeabi, NOT armeabi-v7a!

<AndroidSupportedAbis>armeabi,armeabi-v7a</AndroidSupportedAbis>

 I n s t a l l i n g N a t i v e L i b r a r i e s : A n d r o i d 4 .0 .4 a n d l a t e rIn s t a l l i n g N a t i v e L i b r a r i e s : A n d r o i d 4 .0 .4 a n d l a t e r

lib/armeabi/libone.so
lib/armeabi/libtwo.so
lib/armeabi-v7a/libtwo.so

$APP/lib/libone.so # from armeabi
$APP/lib/libtwo.so # from armeabi-v7a

 Xamarin.Android and ABIsXamarin.Android and ABIs

NOTENOTE

NOTENOTE

 Declaring Supported ABI'sDeclaring Supported ABI's

Furthermore, even if both armeabi and armeabi-v7a ABIs are specified (as described below in the section

Declaring Supported ABIs), Xamarin.Android will create the following element in the . csproj :

Consequently, the armeabi libmonodroid.so will be found first within the .apk , and the armeabi

libmonodroid.so will be the one that is extracted, even though the armeabi-v7a libmonodroid.so is present and

optimized for the target. This can also result in obscure run-time errors, as armeabi is not SMP safe.

Android 4.0.4 changes the extraction logic: it will enumerate all native libraries, read the file's basename, then

extract the primary ABI version (if present), or the secondary ABI (if present). This allows "merging" behavior ;

that is, if we have an .apk with the following contents:

Then after installation, the native library directory will contain:

Xamarin.Android supports the following 64-bit architectures:

arm64-v8a

x86_64

From August 2018 new apps will be required to target API level 26, and from August 2019 apps will be required to

provide 64-bit versions in addition to the 32-bit version.

Xamarin.Android supports these 32-bit architectures:

armeabi ^

armeabi-v7a

x86

^̂ As of Xamarin.Android 9.2, armeabi is no longer supported.

Xamarin.Android does not currently provide support for mips .

By default, Xamarin.Android will default to armeabi-v7a for ReleaseRelease builds, and to armeabi-v7a and x86 for

https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://docs.microsoft.com/en-us/xamarin/android/release-notes/9/9.2#removal-of-support-for-armeabi-cpu-architecture

DebugDebug builds. Support for different ABIs can be set through the Project Options for a Xamarin.Android project.

In Visual Studio, this can be set in the Android OptionsAndroid Options page of project Proper tiesProper ties , under the AdvancedAdvanced tab,

as shown in the following screenshot:

In Visual Studio for Mac, the supported architectures may be selected on the Android BuildAndroid Build page of ProjectProject

OptionsOptions , under the AdvancedAdvanced tab, as shown in the following screenshot:

 Summary

 Related Links

There are some situations when it may be necessary to declare additional ABI support such as when:

Deploying the application to an x86 device.

Deploying the application to an armeabi-v7a device to ensure thread safety.

This document discussed the different CPU architectures that an Android application may run on. It introduced

the Application Binary Interface and how it is used by Android to support disparate CPU architectures. It then

went on to discuss how to specify ABI support in a Xamarin.Android application and highlighted the issues that

arise when using Xamarin.Android applications on an armeabi-v7a device that are intended only for armeabi .

Android NDK

Issue 9089:Nexus One - Won't load ANY native libraries from armeabi if there's at least one library at

armeabi-v7a

Issue 24321: Galaxy Nexus 4.0.2 uses armeabi native code when both armeabi and armeabi-v7a is included

in apk

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/multicore-devices-images/xs-abi-selections.png#lightbox
https://developer.android.com/tools/sdk/ndk/index.html
https://code.google.com/p/android/issues/detail?id=9089
https://code.google.com/p/android/issues/detail?id=25321

Xamarin.Android Performance
 11/2/2020 • 7 minutes to read • Edit Online

 Performance Overview

NOTENOTE

 Optimize Layout Hierarchies

There are many techniques for increasing the performance of applications built with Xamarin.Android.

Collectively these techniques can greatly reduce the amount of work being performed by a CPU, and the

amount of memory consumed by an application. This article describes and discusses these techniques.

Poor application performance presents itself in many ways. It can make an application seem unresponsive, can

cause slow scrolling, and can reduce battery life. However, optimizing performance involves more than just

implementing efficient code. The user's experience of application performance must also be considered. For

example, ensuring that operations execute without blocking the user from performing other activities can help

to improve the user's experience.

There are a number of techniques for increasing the performance, and perceived performance, of applications

built with Xamarin.Android. They include:

Optimize Layout Hierarchies

Optimize List Views

Remove Event Handlers in Activities

Limit the Lifespan of Services

Release Resources when Notified

Release Resources when the User Interface is Hidden

Optimize Image Resources

Dispose of Unused Image Resources

Avoid Floating-Point Arithmetic

Dismiss Dialogs

Before reading this article you should first read Cross-Platform Performance, which discusses non-platform specific

techniques to improve the memory usage and performance of applications built using the Xamarin platform.

Each layout added to an application requires initialization, layout, and drawing. The layout pass can be expensive

when nesting LinearLayout instances that use the weight parameter, because each child will be measured

twice. Using nested instances of LinearLayout can lead to a deep view hierarchy, which can result in poor

performance for layouts that are inflated multiple times, such as in a ListView . Therefore, it's important that

such layouts are optimized, as the performance benefits will then be multiplied.

For example, consider the LinearLayout for a list view row that has an icon, a title, and a description. The

LinearLayout will contain an ImageView and a vertical LinearLayout that contains two TextView instances:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/performance.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.imageview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="?android:attr/listPreferredItemHeight"
 android:padding="5dip">
 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:layout_marginRight="5dip"
 android:src="@drawable/icon" />
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="0dip"
 android:layout_weight="1"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:gravity="center_vertical"
 android:text="Mei tempor iuvaret ad." />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:singleLine="true"
 android:ellipsize="marquee"
 android:text="Lorem ipsum dolor sit amet." />
 </LinearLayout>
</LinearLayout>

This layout is 3-levels deep, and is wasteful when inflated for each ListView row. However, it can be improved

by flattening the layout, as shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="?android:attr/listPreferredItemHeight"
 android:padding="5dip">
 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:layout_alignParentTop="true"
 android:layout_alignParentBottom="true"
 android:layout_marginRight="5dip"
 android:src="@drawable/icon" />
 <TextView
 android:id="@+id/secondLine"
 android:layout_width="fill_parent"
 android:layout_height="25dip"
 android:layout_toRightOf="@id/icon"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"
 android:singleLine="true"
 android:ellipsize="marquee"
 android:text="Lorem ipsum dolor sit amet." />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/icon"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"
 android:layout_above="@id/secondLine"
 android:layout_alignWithParentIfMissing="true"
 android:gravity="center_vertical"
 android:text="Mei tempor iuvaret ad." />
</RelativeLayout>

 Optimize List Views

 Reuse Row ViewsReuse Row Views

The previous 3-level hierarchy has been reduced to a 2-level hierarchy, and a single RelativeLayout has

replaced two LinearLayout instances. A significant performance increase will be gained when inflating the

layout for each ListView row.

Users expect smooth scrolling and fast load times for ListView instances. However, scrolling performance can

suffer when each list view row contains deeply nested view hierarchies, or when list view rows contain complex

layouts. However, there are techniques that can be used to avoid poor ListView performance:

Reuse row views For more information, see Reuse Row Views.

Flatten layouts, where possible.

Cache row content that is retrieved from a web service.

Avoid image scaling.

Collectively these techniques can help to keep ListView instances scrolling smoothly.

When displaying hundreds of rows in a ListView , it would be a waste of memory to create hundreds of View

objects when only a small number of them are displayed on screen at once. Instead, only the View objects

visible in the rows on screen can be loaded into memory, with the contentcontent being loaded into these reused

objects. This prevents the instantiation of hundreds of additional objects, saving time and memory.

Therefore, when a row disappears from the screen its view can be placed in a queue for reuse, as shown in the

following code example:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.linearlayout
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.views.view

public override View GetView(int position, View convertView, ViewGroup parent)
{
 View view = convertView; // re-use an existing view, if one is supplied
 if (view == null) // otherwise create a new one
 view = context.LayoutInflater.Inflate(Android.Resource.Layout.SimpleListItem1, null);
 // set view properties to reflect data for the given row
 view.FindViewById<TextView>(Android.Resource.Id.Text1).Text = items[position];
 // return the view, populated with data, for display
 return view;
}

 Remove Event Handlers in Activities

EventHandler<UpdatingEventArgs> service1UpdateHandler;

service1UpdateHandler = (object s, UpdatingEventArgs args) => {
 this.RunOnUiThread (() => {
 this.updateStatusText1.Text = args.Message;
 });
};
App.Current.Service1.Updated += service1UpdateHandler;

App.Current.Service1.Updated -= service1UpdateHandler;

 Limit the Lifespan of Services

 Release Resources when Notified

As the user scrolls, the ListView calls the GetView override to request new views to display – if available it

passes an unused view in the convertView parameter. If this value is null then the code creates a new View

instance, otherwise the convertView properties can be reset and reused.

For more information, see Row View Re-Use in Populating a ListView with Data.

When an activity is destroyed in the Android runtime, it could still be alive in the Mono runtime. Therefore,

remove event handlers to external objects in Activity.OnPause to prevent the runtime from keeping a reference

to an activity that has been destroyed.

In an activity, declare event handler(s) at class level:

Then implement the handlers in the activity, such as in OnResume :

When the activity exits the running state, OnPause is called. In the OnPause implementation, remove the

handlers as follows:

When a service starts, Android keeps the service process running. This makes the process expensive because its

memory can't be paged, or used elsewhere. Leaving a service running when it's not required therefore increases

the risk of an application exhibiting poor performance due to memory constraints. It can also make application

switching less efficient as it reduces the number of processes Android can cache.

The lifespan of a service can be limited by using an IntentService , which terminates itself once it's handled the

intent that started it.

https://docs.microsoft.com/en-us/dotnet/api/android.widget.listview
https://docs.microsoft.com/en-us/dotnet/api/android.views.view

 Release Resources when the User Interface is Hidden

 Optimize Image Resources

 Dispose of Unused Image Resources

using (Bitmap smallPic = BitmapFactory.DecodeByteArray(smallImageByte, 0, smallImageByte.Length))
{
 // Use the smallPic bit map here
}

During the application lifecycle, the OnTrimMemory callback provides a notification when the device memory is

low. This callback should be implemented to listen for the following memory level notifications:

TrimMemoryRunningModerate – the application may want to release some unneeded resources.

TrimMemoryRunningLow – the application should release unneeded resources.

TrimMemoryRunningCritical – the application should release as many non-critical processes as it can.

In addition, when the application process is cached, the following memory level notifications may be received by

the OnTrimMemory callback:

TrimMemoryBackground – release resources that can be quickly and efficiently rebuilt if the user returns to the

app.

TrimMemoryModerate – releasing resources can help the system keep other processes cached for better overall

performance.

TrimMemoryComplete – the application process will soon be terminated if more memory isn't soon recovered.

Notifications should be responded to by releasing resources based on the received level.

Release any resources used by the app's user interface when the user navigates to another app, as it can

significantly increase Android's capacity for cached processes, which in turn can have an impact on the user

experience quality.

To receive a notification when the user exits the UI, implement the OnTrimMemory callback in Activity classes

and listen for the TrimMemoryUiHidden level, which indicates that the UI is hidden from view. This notification will

be received only when all the UI components of the application become hidden from the user. Releasing UI

resources when this notification is received ensures that if the user navigates back from another activity in the

app, the UI resources are still available to quickly resume the activity.

Images are some of the most expensive resources that applications use, and are often captured at high

resolutions. Therefore, when displaying an image, display it at the resolution required for the device's screen. If

the image is of a higher resolution than the screen, it should be scaled down.

For more information, see Optimize Image Resources in the Cross-Platform Performance guide.

To save on memory usage, it is a good idea to dispose of large image resources that are no longer needed.

However, it is important to ensure that images are disposed of correctly. Instead of using an explicit .Dispose()

invocation, you can take advantage of using statements to ensure correct use of IDisposable objects.

For example, the Bitmap class implements IDisposable . Wrapping the instantiation of a BitMap object in a

using block ensures that it will be disposed of correctly on exit from the block:

For more information about releasing disposable resources, see Release IDisposable Resources.

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.ontrimmemory
https://docs.microsoft.com/en-us/dotnet/api/android.content.componentcallbacks2.trimmemoryrunningmoderate
https://docs.microsoft.com/en-us/dotnet/api/android.content.componentcallbacks2.trimmemoryrunninglow
https://docs.microsoft.com/en-us/dotnet/api/android.content.componentcallbacks2.trimmemoryrunningcritical
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.ontrimmemory
https://docs.microsoft.com/en-us/dotnet/api/android.content.componentcallbacks2.trimmemorybackground
https://docs.microsoft.com/en-us/dotnet/api/android.content.componentcallbacks2.trimmemorymoderate
https://docs.microsoft.com/en-us/dotnet/api/android.content.componentcallbacks2.trimmemorycomplete
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.ontrimmemory
https://docs.microsoft.com/en-us/dotnet/api/android.content.componentcallbacks2.trimmemoryuihidden
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.bitmap
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices

 Avoid Floating-Point Arithmetic

NOTENOTE

 Dismiss Dialogs

 Summary

 Related Links

On Android devices, floating-point arithmetic is about 2x slower than integer arithmetic. Therefore, replace

floating-point arithmetic with integer arithmetic if possible. However, there's no execution time difference

between float and double arithmetic on recent hardware.

Even for integer arithmetic, some CPUs lack hardware divide capabilities. Therefore, integer division and modulus

operations are often performed in software.

When using the ProgressDialog class (or any dialog or alert), instead of calling the Hide method when the

dialog's purpose is complete, call the Dismiss method. Otherwise, the dialog will still be alive and will leak the

activity by holding a reference to it.

This article described and discussed techniques for increasing the performance of applications built with

Xamarin.Android. Collectively these techniques can greatly reduce the amount of work being performed by a

CPU, and the amount of memory consumed by an application.

Cross-Platform Performance

https://docs.microsoft.com/en-us/dotnet/api/android.app.progressdialog
https://docs.microsoft.com/en-us/dotnet/api/android.app.dialog.hide
https://docs.microsoft.com/en-us/dotnet/api/android.app.dialog.dismiss
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices

Profiling Android Apps
 7/8/2021 • 3 minutes to read • Edit Online

 Xamarin Profiler

NOTENOTE

 Android Studio Profiler

 Launching a Xamarin Android app in Android ProfilerLaunching a Xamarin Android app in Android Profiler

Before deploying your app to an app store, it's important to identify and fix any performance bottlenecks,

excessive memory usage issues, or inefficient use of network resources. Two profiler tools are available to serve

this purpose:

Xamarin Profiler

Android Profiler in Android Studio

This guide introduces the Xamarin Profiler and provides detailed information for getting started with using the

Android Profiler.

The Xamarin Profiler is a standalone application that is integrated with Visual Studio and Visual Studio for Mac

for profiling Xamarin apps from within the IDE. For more information about using the Xamarin Profiler, see

Xamarin Profiler.

You must be a Visual Studio Enterprise subscriber to unlock the Xamarin Profiler feature in either Visual Studio Enterprise

on Windows or Visual Studio for Mac.

Android Studio 3.0 and later includes an Android Profiler tool. You can use the Android Profiler to measure the

performance of a Xamarin Android app built with Visual Studio – without the need for a Visual Studio Enterprise

license. However, unlike the Xamarin Profiler, the Android Profiler is not integrated with Visual Studio and can

only be used to profile an Android application package (APK) that has been built in advance and imported into

the Android Profiler.

The following steps explain how to launch an Xamarin Android application in Android Studio's Android Profiler

tool. In the example screenshots below, the Xamarin Forms XamagonXuzzle app is built and profiled using

Android Profiler :

1. In the Android project build options, disable Use Shared RuntimeUse Shared Runtime. This ensures that the Android

application package (APK) is built without a dependency on the shared development-time Mono runtime.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/profiling.md
https://docs.microsoft.com/en-us/xamarin/tools/profiler/index
https://visualstudio.microsoft.com/vs/compare/
https://docs.microsoft.com/en-us/samples/xamarin/mobile-samples/liveplayer-xamagonxuzzlelp/

2. Build the app for DebugDebug and deploy it to a physical device or emulator. This causes a signed DebugDebug

version of the APK to be built. For the XamagonXuzzleXamagonXuzzle example, the resulting APK is named

com.companyname.XamagonXuzzle-Signed.apkcom.companyname.XamagonXuzzle-Signed.apk .

3. Open the project folder and navigate to bin/Debugbin/Debug. In this folder, locate the S igned.apkSigned.apk version of the

app and copy it to a conveniently-accessible place (such as the desktop). In the following screenshot, the

APK com.companyname.XamagonXuzzle-Signed.apkcom.companyname.XamagonXuzzle-Signed.apk is located and copied to the desktop:

4. Launch Android Studio and select Profile or debug APKProfile or debug APK:

5. In the Select APK FileSelect APK File dialog, navigate to the APK that you built and copied earlier. Select the APK and

click OKOK:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/02-locating-the-debug-apk.png#lightbox

6. Android Studio will load the APK and dissassembles classes.dexclasses.dex:

7. After the APK is loaded, Android Studio displays the following project screen for the APK. Right-click the

app name in the tree view on the left and select Open Module SettingsOpen Module Settings :

8. Navigate to Project Settings > ModulesProject Settings > Modules , select the -S igned-Signed node of the app, then click <No SDK><No SDK>:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/06-open-module-settings.png#lightbox

9. In the Module SDKModule SDK pull-down menu, select the Android SDK level that was used to build the app (in this

example, API level 26 was used to build XamagonXuzzleXamagonXuzzle):

Click ApplyApply and OKOK to save this setting.

10. Launch the profiler from the toolbar icon:

11. Select the deployment target for running/profiling the app and click OKOK. The deployment target can be a

physical device or a virtual device running in an emulator. In this example, a Nexus 5X device is used:

12. After the profiler starts, it will take a few seconds for it to connect to the deployment device and the app

process. While it is installing the APK, Android Profiler will report No connected devicesNo connected devices and NoNo

debuggable processesdebuggable processes .

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/07-project-settings-modules.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/08-project-sdk-level.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/09-launch-profiler.png#lightbox

 Using the Android ProfilerUsing the Android Profiler

13. After several seconds, Android Profiler will complete APK installation and launch the APK, reporting the

device name and the name of the app process being profiled (in this example, LGE Nexus 5XLGE Nexus 5X and

com.companyname.XamagonXuzzlecom.companyname.XamagonXuzzle, respectively):

14. After the device and debuggable process are identified, Android Profiler begins profiling the app:

15. If you tap the RANDOMIZERANDOMIZE button on XamagonXuzzleXamagonXuzzle (which causes it to shift and randomize tiles),

you will see the CPU usage increase during the app's randomization interval:

Detailed information for using the Android Profiler is included in the Android Studio documentation. The

following topics will be of interest to Xamarin Android developers:

CPU Profiler – Explains how to inspect the app's CPU usage and thread activity in real-time.

Memory Profiler – Displays a real-time graph of the app's memory usage, and includes a button to

record memory allocations for analysis.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/11-no-connected-devices.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/12-profiler-starts.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/13-profiler-running.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/profiling-images/vswin/14-tap-randomize.png#lightbox
https://developer.android.com/studio/profile/android-profiler.html
https://developer.android.com/studio/profile/cpu-profiler.html
https://developer.android.com/studio/profile/memory-profiler.html

Network Profiler – Displays real-time network activity of data sent and received by the app.

https://developer.android.com/studio/profile/network-profiler.html

Preparing an Application for Release
 7/8/2021 • 17 minutes to read • Edit Online

 Specify the Application Icon

After an application has been coded and tested, it is necessary to prepare a package for distribution. The first

task in preparing this package is to build the application for release, which mainly entails setting some

application attributes.

Use the following steps to build the app for release:

Specify the Application IconSpecify the Application Icon – Each Xamarin.Android application should have an application icon

specified. Although not technically necessary, some markets, such as Google Play, require it.

Version the ApplicationVersion the Application – This step involves initializing or updating the versioning information. This is

important for future application updates and to ensure that the users are aware of which version of the

application they have installed.

Shrink the APKShrink the APK – The size of the final APK can be substantially reduced by using the Xamarin.Android

linker on the managed code and ProGuard on the Java bytecode.

Protect the ApplicationProtect the Application – Prevent users or attackers from debugging, tampering, or reverse

engineering the application by disabling debugging, obfuscating the managed code, adding anti-debug

and anti-tamper, and using native compilation.

Set Packaging Proper tiesSet Packaging Proper ties – Packaging properties control the creation of the Android application

package (APK). This step optimizes the APK, protects its assets, and modularizes the packaging as needed.

Additionally, you can provide your users with an Android App Bundle that's optimized for their devices.

CompileCompile – This step compiles the code and assets to verify that it builds in Release mode.

Archive for PublishingArchive for Publishing – This step builds the app and places it in an archive for signing and publishing.

Each of these steps is described below in more detail.

It is strongly recommended that each Xamarin.Android application specifies an application icon. Some

application marketplaces will not allow an Android application to be published without one. The Icon property

of the Application attribute is used to specify the application icon for a Xamarin.Android project.

Visual Studio

Visual Studio for Mac

In Visual Studio 2017 and later, specify the application icon through the Android ManifestAndroid Manifest section of project

Proper tiesProper ties , as shown in the following screenshot:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/release-prep/index.md

[assembly: Application(Icon = "@drawable/icon")]

 Version the Application

In these examples, @drawable/icon refers to an icon file that is located at Resources/drawable/icon.pngResources/drawable/icon.png (note

that the .png.png extension is not included in the resource name). This attribute can also be declared in the file

Proper ties\AssemblyInfo.csProper ties\AssemblyInfo.cs , as shown in this sample snippet:

Normally, using Android.App is declared at the top of AssemblyInfo.csAssemblyInfo.cs (the namespace of the Application

attribute is Android.App); however, you may need to add this using statement if it is not already present.

Versioning is important for Android application maintenance and distribution. Without some sort of versioning

in place, it is difficult to determine if or how an application should be updated. To assist with versioning, Android

recognizes two different types of information:

Version NumberVersion Number – An integer value (used internally by Android and the application) that represents the

version of the application. Most applications start out with this value set to 1, and then it is incremented

with each build. This value has no relationship or affinity with the version name attribute (see below).

Applications and publishing services should not display this value to users. This value is stored in the

AndroidManifest.xmlAndroidManifest.xml file as android:versionCode .

Version NameVersion Name – A string that is used only for communicating information to the user about the version

of the application (as installed on a specific device). The version name is intended to be displayed to users

or in Google Play. This string is not used internally by Android. The version name can be any string value

that would help a user identify the build that is installed on their device. This value is stored in the

AndroidManifest.xmlAndroidManifest.xml file as android:versionName .

Visual Studio

Visual Studio for Mac

In Visual Studio, these values can be set in the Android ManifestAndroid Manifest section of project Proper tiesProper ties , as shown in

the following screenshot:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/01-application-icon.png#lightbox

 Shrink the APK

 Configure the LinkerConfigure the Linker

 ProGuardProGuard

Xamarin.Android APKs can be made smaller through a combination of the Xamarin.Android linker, which

removes unnecessary managed code, and the ProGuard tool from the Android SDK, which removes unused

Java bytecode. The build process first uses the Xamarin.Android linker to optimize the app at the managed code

(C#) level, and then it later uses ProGuard (if enabled) to optimize the APK at the Java bytecode level.

Release mode turns off the shared runtime and turns on linking so that the application only ships the pieces of

Xamarin.Android required at runtime. The linker in Xamarin.Android uses static analysis to determine which

assemblies, types, and type members are used or referenced by a Xamarin.Android application. The linker then

discards all the unused assemblies, types, and members that are not used (or referenced). This can result in a

significant reduction in the package size. For example, consider the HelloWorld sample, which experiences an

83% reduction in the final size of its APK:

Configuration: None – Xamarin.Android 4.2.5 Size = 17.4 MB.

Configuration: SDK Assemblies Only – Xamarin.Android 4.2.5 Size = 3.0 MB.

Visual Studio

Visual Studio for Mac

Set linker options through the Android OptionsAndroid Options section of the project Proper tiesProper ties :

The L inkingLinking pull-down menu provides the following options for controlling the linker :

NoneNone – This turns off the linker ; no linking will be performed.

SDK Assemblies OnlySDK Assemblies Only – This will only link the assemblies that are required by Xamarin.Android. Other

assemblies will not be linked.

Sdk and User AssembliesSdk and User Assemblies – This will link all assemblies that are required by the application, and not

just the ones required by Xamarin.Android.

Linking can produce some unintended side effects, so it is important that an application be re-tested in Release

mode on a physical device.

ProGuard is an Android SDK tool that links and obfuscates Java code. ProGuard is normally used to create

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/02-versioning.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/03-linking.png#lightbox

smaller applications by reducing the footprint of large included libraries (such as Google Play Services) in your

APK. ProGuard removes unused Java bytecode, which makes the resulting app smaller. For example, using

ProGuard on small Xamarin.Android apps usually achieves about a 24% reduction in size – using ProGuard on

larger apps with multiple library dependencies typically achieves an even greater size reduction.

ProGuard is not an alternative to the Xamarin.Android linker. The Xamarin.Android linker links managed code,

while ProGuard links Java bytecode. The build process first uses the Xamarin.Android linker to optimize the

managed (C#) code in the app, and then it later uses ProGuard (if enabled) to optimize the APK at the Java

bytecode level.

When Enable ProGuardEnable ProGuard is checked, Xamarin.Android runs the ProGuard tool on the resulting APK. A ProGuard

configuration file is generated and used by ProGuard at build time. Xamarin.Android also supports custom

ProguardConfiguration build actions. You can add a custom ProGuard configuration file to your project, right-

click it, and select it as a build action as shown in this example:

Visual Studio

Visual Studio for Mac

ProGuard is disabled by default. The Enable ProGuardEnable ProGuard option is available only when the project is set to

ReleaseRelease mode. All ProGuard build actions are ignored unless Enable ProGuardEnable ProGuard is checked. The

Xamarin.Android ProGuard configuration does not obfuscate the APK, and it is not possible to enable

obfuscation, even with custom configuration files. If you wish to use obfuscation, please see Application

Protection with Dotfuscator.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/05-proguard-build-action.png#lightbox

 Protect the Application

 Disable DebuggingDisable Debugging

IMPORTANTIMPORTANT

#if DEBUG
[assembly: Application(Debuggable=true)]
#else
[assembly: Application(Debuggable=false)]
#endif

 Application Protection with DotfuscatorApplication Protection with Dotfuscator

 Bundle Assemblies into Native CodeBundle Assemblies into Native Code

For more detailed information about using the ProGuard tool, see ProGuard.

During development of an Android application, debugging is performed with the use of the Java Debug Wire

Protocol (JDWP). This is a technology that allows tools such as adbadb to communicate with a JVM for the purposes

of debugging. JDWP is turned on by default for Debug builds of a Xamarin.Android application. While JDWP is

important during development, it can pose a security issue for released applications.

Always disable the debug state in a released application as it is possible (via JDWP) to gain full access to the Java process

and execute arbitrary code in the context of the application if this debug state is not disabled.

The Android Manifest contains the android:debuggable attribute, which controls whether or not the application

may be debugged. It is considered a good practice to set the android:debuggable attribute to false . The

simplest way to do this is by adding a conditional compile statement in AssemblyInfo.csAssemblyInfo.cs :

Note that Debug builds automatically set some permissions to make debug easier (such as InternetInternet and

ReadExternalStorageReadExternalStorage). Release builds, however, use only the permissions that you explicitly configure. If you

find that switching to the Release build causes your app to lose a permission that was available in the Debug

build, verify that you have explicitly enabled this permission in the Required permissionsRequired permissions list as described in

Permissions.

Visual Studio

Visual Studio for Mac

Even with debugging disabled, it is still possible for attackers to re-package an application, adding or removing

configuration options or permissions. This allows them to reverse-engineer, debug, or tamper with the

application. Dotfuscator Community Edition (CE) can be used to obfuscate managed code and inject runtime

security state detection code into a Xamarin.Android app at build time to detect and respond if the app is

running on a rooted device.

Dotfuscator CE is included with Visual Studio 2017. To use Dotfuscator, click Tools > PreEmptive Protection -Tools > PreEmptive Protection -

DotfuscatorDotfuscator .

To configure Dotfuscator CE, please see Using Dotfuscator Community Edition with Xamarin. Once it is

configured, Dotfuscator CE will automatically protect each build that is created.

When this option is enabled, assemblies are bundled into a native shared library. This allows assemblies to be

compressed, permitting smaller .apk files. Assembly compression also confers a minimal form of obfuscation;

such obfuscation should not be relied upon.

https://www.preemptive.com/products/dotfuscator/overview
https://www.preemptive.com/obfuscating-xamarin-with-dotfuscator

 AOT CompilationAOT Compilation

 LLVM Optimizing CompilerLLVM Optimizing Compiler

NOTENOTE

 Set Packaging Properties

This option requires an Enterprise license and is only available when Use Fast DeploymentUse Fast Deployment is disabled.

Bundle assemblies into native codeBundle assemblies into native code is disabled by default.

Note that the Bundle into Native CodeBundle into Native Code option does not mean that the assemblies are compiled into native

code. It is not possible to use AOT CompilationAOT Compilation to compile assemblies into native code.

The AOT CompilationAOT Compilation option (on the Packaging Properties page) enables Ahead-of-Time (AOT) compilation of

assemblies. When this option is enabled, Just In Time (JIT) startup overhead is minimized by precompiling

assemblies before runtime. The resulting native code is included in the APK along with the uncompiled

assemblies. This results in shorter application startup time, but at the expense of slightly larger APK sizes.

The AOT CompilationAOT Compilation option requires an Enterprise license or higher. AOT compilationAOT compilation is available only

when the project is configured for Release mode, and it is disabled by default. For more information about AOT

Compilation, see AOT.

The LLVM Optimizing Compiler will create smaller and faster compiled code and convert AOT-compiled

assemblies into native code, but at the expense of slower build times. The LLVM compiler is disabled by default.

To use the LLVM compiler, the AOT CompilationAOT Compilation option must first be enabled (on the Packaging Properties

page).

The LLVM Optimizing CompilerLLVM Optimizing Compiler option requires an Enterprise license.

Visual Studio

Visual Studio for Mac

Packaging properties can be set in the Android OptionsAndroid Options section of project Proper tiesProper ties , as shown in the

following screenshot:

Many of these properties, such as Use Shared RuntimeUse Shared Runtime, and Use Fast DeploymentUse Fast Deployment are intended for Debug

https://www.mono-project.com/docs/advanced/aot/
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/04-packaging.png#lightbox

 Specify Supported ArchitecturesSpecify Supported Architectures

 Generate One Package (.APK) per Selected ABIGenerate One Package (.APK) per Selected ABI

 Multi-DexMulti-Dex

 Android App BundlesAndroid App Bundles

 Compile

 Archive for Publishing

mode. However, when the application is configured for Release mode, there are other settings that determine

how the app is optimized for size and execution speed, how it is protected from tampering, and how it can be

packaged to support different architectures and size restrictions.

When preparing a Xamarin.Android app for release, it is necessary to specify the CPU architectures that are

supported. A single APK can contain machine code to support multiple, different architectures. See CPU

Architectures for details about supporting multiple CPU architectures.

When this option is enabled, one APK will be created for each of the supported ABI's (selected on the AdvancedAdvanced

tab, as described in CPU Architectures) rather than a single, large APK for all supported ABI's. This option is

available only when the project is configured for Release mode, and it is disabled by default.

When the Enable Multi-DexEnable Multi-Dex option is enabled, Android SDK tools are used to bypass the 65K method limit of

the .dex.dex file format. The 65K method limitation is based on the number of Java methods that an app references

(including those in any libraries that the app depends on) – it is not based on the number of methods that are

written in the source code. If an application only defines a few methods but uses many (or large libraries), it is

possible that the 65K limit will be exceeded.

It is possible that an app is not using every method in every library that is referenced; therefore, it is possible

that a tool such as ProGuard (see above) can remove the unused methods from code. The best practice is to

enable Enable Multi-DexEnable Multi-Dex only if absolutely necessary, i.e.the app still references more than 65K Java methods

even after using ProGuard.

For more information about Multi-Dex, see Configure Apps with Over 64K Methods.

App bundles differ from APKs as they cannot be deployed directly to a device. Rather, it's a format that is

intended to be uploaded with all of your compiled code and resources. After you upload your signed app

bundle, Google Play will have everything it needs to build and sign your application's APKs and serve them to

your users using Dynamic Delivery.

To enable support for Android App Bundles, you'll need to opt-in to the bundle value of the Android PackageAndroid Package

FormatFormat property within your Android project options. Before you do this, ensure you change your project to a

Release configuration as app bundles are intended for release packages only.

You can now generate an app bundle by following the Archive Flow. This will generate an app bundle for your

application.

For more information about Android App Bundles, see Android App Bundles.

Visual Studio

Visual Studio for Mac

After all of the above steps are completed, the app is ready for compilation. Select Build > Rebuild SolutionBuild > Rebuild Solution

to verify that it builds successfully in Release mode. Note that this step does not yet produce an APK.

Signing the App Package discusses packaging and signing in more detail.

https://developer.android.com/tools/building/multidex.html
https://developer.android.com/guide/app-bundle/

Visual Studio

Visual Studio for Mac

To begin the publishing process, right-click the project in Solution ExplorerSolution Explorer and select the Archive...Archive... context

menu item:

Archive...Archive... launches the Archive ManagerArchive Manager and begins the process of archiving the App bundle as shown in this

screenshot:

Another way to create an archive is to right-click the Solution in the Solution ExplorerSolution Explorer and select ArchiveArchive

All...All ... , which builds the solution and archives all Xamarin projects that can generate an archive:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/07-archive-for-publishing.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/08-archive-manager.png#lightbox

 The Archive ManagerThe Archive Manager

Both ArchiveArchive and Archive AllArchive All automatically launch the Archive ManagerArchive Manager . To launch the Archive ManagerArchive Manager

directly, click the Tools > Archive Manager...Tools > Archive Manager... menu item:

The solution's archives at any time by right clicking the SolutionSolution node and selecting View ArchivesView Archives :

The Archive ManagerArchive Manager is comprised of a Solution L istSolution L ist pane, an Archives L istArchives L ist, and a Details PanelDetails Panel :

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/09-archive-all.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/10-launch-archive-manager.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/11-view-archives.png#lightbox

 DistributionDistribution

The Solution L istSolution L ist displays all solutions having at least one archived project. The Solution L istSolution L ist includes the

following sections:

Current SolutionCurrent Solution – Displays the current solution. Note that this area may be empty if the current solution

does not have an existing archive.

All ArchivesAll Archives – Displays all solutions that have an archive.

SearchSearch text box (at the top) – Filters the solutions listed in the All ArchivesAll Archives list according to the search

string entered in the text box.

The Archives L istArchives L ist displays the list of all archives for the selected solution. The Archives L istArchives L ist includes the

following sections:

Selected solution nameSelected solution name – Displays the name of the solution selected in the Solution L istSolution L ist. All information

shown in the Archives L istArchives L ist refers to this selected solution.

Platforms FilterPlatforms Filter – This field makes it possible to filter archives by platform type (such as iOS or Android).

Archive ItemsArchive Items – List of archives for the selected solution. Each item in this list includes the project name,

creation date, and platform. It can also show additional information such as the progress when an item is

being archived or published.

The Details PanelDetails Panel displays additional information about each archive. It also allows the user to start the

Distribution workflow or open the folder where the distribution has been created. The Build CommentsBuild Comments

section makes it possible to include build comments in the archive.

When an archived version of the application is ready to publish, select the archive in the Archive ManagerArchive Manager and

click the Distr ibute...Distr ibute... button:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/12-archive-manager-detail.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/13-distribute.png#lightbox

 Related Links

The Distr ibution ChannelDistr ibution Channel dialog shows information about the app, an indication of distribution workflow

progress, and a choice of distribution channels. On the first run, two choices are presented:

It is possible to choose one of the following distribution channels:

Ad-HocAd-Hoc – Saves a signed APK to disk that can be sideloaded to Android devices. Continue to Signing the

App Package to learn how to create an Android signing identity, create a new signing certificate for

Android applications, and publish an ad hoc version of the app to disk. This is a good way to create an

APK for testing.

Google PlayGoogle Play – Publishes a signed APK to Google Play. Continue to Publishing to Google Play to learn

how to sign and publish an APK in the Google Play store.

Multi-Core Devices and Xamarin.Android

CPU Architectures

AOT

Shrink Your Code and Resources

Configure Apps with Over 64K Methods

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/images/vs/14-distribution-channel.png#lightbox
https://www.mono-project.com/docs/advanced/aot/
https://developer.android.com/tools/help/proguard.html
https://developer.android.com/tools/building/multidex.html

ProGuard
 7/8/2021 • 8 minutes to read • Edit Online

 Overview

 ProGuard in Xamarin.Android

Xamarin.Android ProGuard is a Java class file shrinker, optimizer, and pre-verifier. It detects and removes unused

code, analyzes and optimizes bytecode. This guide explains how ProGuard works, how to enable it in your

project, and how to configure it. It also provides several examples of ProGuard configurations.

ProGuard detects and removes unused classes, fields, methods, and attributes from your packaged application.

It can even do the same for referenced libraries (this can help you avoid the 64k reference limit). The ProGuard

tool from the Android SDK will also optimize bytecode and remove unused code instructions. ProGuard reads

input jarsinput jars and then shrinks, optimizes, and pre-verifies them; it writes the results to one or more output jarsoutput jars .

ProGuard processes input APK's using the following steps:

1. Shr inking stepShrinking step – ProGuard recursively determines which classes and class members are used. All other

classes and class members are discarded.

2. Optimization stepOptimization step – ProGuard further optimizes the code. Among other optimizations, classes and

methods that are not entry points can be made private, static, or final, unused parameters can be

removed, and some methods may be inlined.

3. Obfuscation stepObfuscation step – In native Android development, ProGuard renames classes and class members that

are not entry points. Retaining entry points ensures that they can still be accessed by their original

names. However, this step is not supported by Xamarin.Android because the app is compiled down to

Intermediate Language (IL).

4. Prever ification stepPreverification step – Performs checks on Java bytecodes ahead of runtime and annotates class files

for the benefit of the Java VM. This is the only step that doesn't have to know the entry points.

Each of these steps is optional. As will be explained in the next section, Xamarin.Android ProGuard uses only a

subset of these steps.

The Xamarin.Android ProGuard configuration does not obfuscate the APK. In fact, it is not possible to enable

obfuscation through ProGuard (even through the use of custom configuration files). Thus, Xamarin.Android's

ProGuard performs only the shr inkingshrinking and optimizationoptimization steps:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/release-prep/proguard.md

 Linker StepLinker Step

 ProGuard StepProGuard Step

 Using ProGuard

One important item to know in advance before using ProGuard is how it works within the Xamarin.Android

build process. This process uses two separate steps:

1. Xamarin Android Linker

2. ProGuard

Each of these steps is described next.

The Xamarin.Android linker employs static analysis of your application to determine the following:

Which assemblies are actually used.

Which types are actually used.

Which members are actually used.

The linker will always run before the ProGuard step. Because of this, the linker can strip an

assembly/type/member that you might expect ProGuard to run on. (For more information about linking in

Xamarin.Android, see Linking on Android.)

After the linker step completes successfully, ProGuard is run to remove unused Java bytecode. This is the step

that optimizes the APK.

To use ProGuard in your app project, you must first enable ProGuard. Next, you can either let the

Xamarin.Android build process use a default ProGuard configuration file, or you can create your own custom

configuration file for ProGuard to use.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/proguard-images/01-xa-chain.png#lightbox

 Enabling ProGuardEnabling ProGuard
Use the following steps to enable ProGuard in your app project:

1. Ensure that your project is set to the ReleaseRelease configuration (this is important because the linker must run

in order for ProGuard to run):

2. Choose ProGuardProGuard from the Code shr inkerCode shr inker drop-down list on the Proper ties > Android OptionsProper ties > Android Options

window:

For most Xamarin.Android apps, the default ProGuard configuration file supplied by Xamarin.Android will be

sufficient to remove all (and only) unused code. To view the default ProGuard configuration, open the file at

obj\Release\proguard\proguard_xamarin.cfgobj\Release\proguard\proguard_xamarin.cfg.

The following example illustrates a typical generated proguard_xamarin.cfgproguard_xamarin.cfg file:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/proguard-images/02-set-release.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/proguard-images/03-enable-proguard-shrinker.png#lightbox

This is Xamarin-specific (and enhanced) configuration.

-dontobfuscate

-keep class mono.MonoRuntimeProvider { *; <init>(...); }
-keep class mono.MonoPackageManager { *; <init>(...); }
-keep class mono.MonoPackageManager_Resources { *; <init>(...); }
-keep class mono.android.** { *; <init>(...); }
-keep class mono.java.** { *; <init>(...); }
-keep class mono.javax.** { *; <init>(...); }
-keep class opentk.platform.android.AndroidGameView { *; <init>(...); }
-keep class opentk.GameViewBase { *; <init>(...); }
-keep class opentk_1_0.platform.android.AndroidGameView { *; <init>(...); }
-keep class opentk_1_0.GameViewBase { *; <init>(...); }

-keep class android.runtime.** { <init>(***); }
-keep class assembly_mono_android.android.runtime.** { <init>(***); }
hash for android.runtime and assembly_mono_android.android.runtime.
-keep class md52ce486a14f4bcd95899665e9d932190b.** { *; <init>(...); }
-keepclassmembers class md52ce486a14f4bcd95899665e9d932190b.** { *; <init>(...); }

Android's template misses fluent setters...
-keepclassmembers class * extends android.view.View {
 *** set*(***);
}

also misses those inflated custom layout stuff from xml...
-keepclassmembers class * extends android.view.View {
 <init>(android.content.Context,android.util.AttributeSet);
 <init>(android.content.Context,android.util.AttributeSet,int);
}

 Customizing ProGuardCustomizing ProGuard

The next section describes how to create a customized ProGuard configuration file.

Optionally, you can add a custom ProGuard Configuration file to exert more control over the ProGuard tooling.

For example, you may want to explicitly tell ProGuard which classes to keep. To do this, create a new .cfg.cfg file and

apply the ProGuardConfiguration build action in the Proper tiesProper ties pane of the Solution ExplorerSolution Explorer :

Keep in mind that this configuration file does not replace the Xamarin.Android proguard_xamarin.cfgproguard_xamarin.cfg file

since both are used by ProGuard.

There might be cases where ProGuard is unable to properly analyze your application; it could potentially remove

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/release-prep/proguard-images/04-build-action.png#lightbox

-keep public class MyClass

 ProGuard OptionsProGuard Options

 ProGuard and Android Nougat

 Example ProGuard Configurations

code that your application actually needs. If this happens, you can add a -keep line to your custom ProGuard

configuration file:

In this example, MyClass is set to the actual name of the class that you want ProGuard to skip.

You can also register your own names with [Register] annotations and use these names to customize

ProGuard rules. You can register names for Adapters, Views, BroadcastReceivers, Services, ContentProviders,

Activities, and Fragments. For more information about using the [Register] custom attribute, see Working with

JNI.

ProGuard offers a number of options that you can configure to provide finer control over its operation. The

ProGuard Manual provides complete reference documentation for the use of ProGuard.

Xamarin.Android supports the following ProGuard options:

Input/Output Options

Keep Options

Shrinking Options

General Options

Class Paths

File Names

File Filters

Filters

Overview of Keep Options

Keep Option Modifiers

Class Specifications

The following options are ignored by Xamarin.Android:

Optimization Options

Obfuscation Options

Preverification Options

If you are trying to use ProGuard against Android 7.0 or later, you must download a newer version of ProGuard

because the Android SDK does not ship a new version that is compatible with JDK 1.8.

You can use this NuGet package to install a newer version of proguard.jar . For more information about

updating the default Android SDK proguard.jar , see this Stack Overflow discussion.

You can find all versions of ProGuard at the SourceForge page.

https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/introduction.html
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#iooptions
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#keepoptions
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#shrinkingoptions
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#generaloptions
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#classpath
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#filename
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#filefilters
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#filters
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#keepoverview
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#keepoptionmodifiers
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#classspecification
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#optimizationoptions
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#obfuscationoptions
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/manual/usage.html#preverificationoptions
https://www.nuget.org/packages/name.atsushieno.proguard.facebook/5.3.0
https://stackoverflow.com/questions/39514518/xamarin-android-proguard-unsupported-class-version-number-52-0/39514706#39514706
https://sourceforge.net/projects/proguard/files/

 A simple Android activityA simple Android activity

-injars bin/classes
-outjars bin/classes-processed.jar
-libraryjars /usr/local/java/android-sdk/platforms/android-9/android.jar

-dontpreverify
-repackageclasses ''
-allowaccessmodification
-optimizations !code/simplification/arithmetic

-keep public class mypackage.MyActivity

 A complete Android applicationA complete Android application

-injars bin/classes
-injars libs
-outjars bin/classes-processed.jar
-libraryjars /usr/local/java/android-sdk/platforms/android-9/android.jar

-dontpreverify
-repackageclasses ''
-allowaccessmodification
-optimizations !code/simplification/arithmetic
-keepattributes *Annotation*

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider

-keep public class * extends android.view.View {
public <init>(android.content.Context);
public <init>(android.content.Context, android.util.AttributeSet);
public <init>(android.content.Context, android.util.AttributeSet, int);
public void set*(...);
}

-keepclasseswithmembers class * {
public <init>(android.content.Context, android.util.AttributeSet);
}

-keepclasseswithmembers class * {
public <init>(android.content.Context, android.util.AttributeSet, int);
}

-keepclassmembers class * implements android.os.Parcelable {
static android.os.Parcelable$Creator CREATOR;
}

-keepclassmembers class **.R$* {
public static <fields>;
}

 ProGuard and the Xamarin.Android Build Process

Two example ProGuard configuration files are listed below. Please note that, in these cases, the Xamarin.Android

build process will supply the inputinput, outputoutput, and librar ylibrar y jars. Thus, you can focus on other options like -keep .

The following example illustrates the configuration for a simple Android activity:

The following example illustrates the configuration for a complete Android app:

 What command is ProGuard running?What command is ProGuard running?

java -jar proguard.jar options ...

 The ProGuard TaskThe ProGuard Task

ProGuardJarPath = C:\Android\android-sdk\tools\proguard\lib\proguard.jar
AndroidSdkDirectory = C:\Android\android-sdk\
JavaToolPath = C:\Program Files (x86)\Java\jdk1.8.0_92\\bin
ProGuardToolPath = C:\Android\android-sdk\tools\proguard\
JavaPlatformJarPath = C:\Android\android-sdk\platforms\android-25\android.jar
ClassesOutputDirectory = obj\Release\android\bin\classes
AcwMapFile = obj\Release\acw-map.txt
ProGuardCommonXamarinConfiguration = obj\Release\proguard\proguard_xamarin.cfg
ProGuardGeneratedReferenceConfiguration = obj\Release\proguard\proguard_project_references.cfg
ProGuardGeneratedApplicationConfiguration = obj\Release\proguard\proguard_project_primary.cfg
ProGuardConfigurationFiles

 {sdk.dir}tools\proguard\proguard-android.txt;
 {intermediate.common.xamarin};
 {intermediate.references};
 {intermediate.application};
 ;

JavaLibrariesToEmbed = C:\Program Files (x86)\Reference
Assemblies\Microsoft\Framework\MonoAndroid\v7.0\mono.android.jar
ProGuardJarInput = obj\Release\proguard__proguard_input__.jar
ProGuardJarOutput = obj\Release\proguard__proguard_output__.jar
DumpOutput = obj\Release\proguard\dump.txt
PrintSeedsOutput = obj\Release\proguard\seeds.txt
PrintUsageOutput = obj\Release\proguard\usage.txt
PrintMappingOutput = obj\Release\proguard\mapping.txt

C:\Program Files (x86)\Java\jdk1.8.0_92\\bin\java.exe -jar C:\Android\android-
sdk\tools\proguard\lib\proguard.jar -include obj\Release\proguard\proguard_xamarin.cfg -include
obj\Release\proguard\proguard_project_references.cfg -include
obj\Release\proguard\proguard_project_primary.cfg "-injars
'obj\Release\proguard__proguard_input__.jar';'C:\Program Files (x86)\Reference
Assemblies\Microsoft\Framework\MonoAndroid\v7.0\mono.android.jar'" "-libraryjars 'C:\Android\android-
sdk\platforms\android-25\android.jar'" -outjars "obj\Release\proguard__proguard_output__.jar" -
optimizations !code/allocation/variable

 Troubleshooting
 File IssuesFile Issues

The following sections explain how ProGuard runs during a Xamarin.Android ReleaseRelease build.

ProGuard is simply a .jar provided with the Android SDK. Thus, it is invoked in a command:

The ProGuard task is found inside the Xamarin.Android.Build.Tasks.dllXamarin.Android.Build.Tasks.dll assembly. It is part of the

_CompileToDalvikWithDx target, which is a part of the _CompileDex target.

The following listing provides an example of the default parameters that are generated after you a create a new

project using File > New ProjectFile > New Project:

The next example illustrates a typical ProGuard command that is run from the IDE:

The following error message may be displayed when ProGuard reads its configuration file:

Unknown option '-keep' in line 1 of file 'proguard.cfg'

 Other IssuesOther Issues

 Summary

 Related Links

This issue typically happens on Windows because the .cfg file has the wrong encoding. ProGuard cannot

handle byte order mark (BOM) which may be present in text files. If a BOM is present, then ProGuard will exit

with the above error.

Visual Studio

Visual Studio for Mac

To prevent this problem, edit the custom configuration file from a text editor that will allow the file to be saved

without a BOM. To solve this problem, ensure that your text editor has its encoding set to UTF-8 . For example,

the text editor Notepad++ can save files without the BOM by selecting the Encoding > Encode in UTF-8Encoding > Encode in UTF-8

Without BOMWithout BOM when saving the file.

The ProGuard Troubleshooting page discusses common issues you may encounter (and solutions) when using

ProGuard.

This guide explained how ProGuard works in Xamarin.Android, how to enable it in your app project, and how to

configure it. It provided example ProGuard configurations, and it described solutions to common problems. For

more information about the ProGuard tool and Android, see Shrink Your Code and Resources.

Preparing an Application for Release

https://notepad-plus-plus.org/
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/troubleshooting.html
https://developer.android.com/tools/help/proguard.html

Signing the Android Application Package
 7/8/2021 • 4 minutes to read • Edit Online

 Create a New Certificate

In Preparing an App for Release the Archive ManagerArchive Manager was used to build the app and place it in an archive for

signing and publishing. This section explains how to create an Android signing identity, create a new signing

certificate for Android applications, and publish the archived app ad hoc to disk. The resulting APK can be

sideloaded into Android devices without going through an app store.

Visual Studio

Visual Studio for Mac

In Archive for Publishing, the Distr ibution ChannelDistr ibution Channel dialog presents two choices for distribution. Select Ad-Ad-

HocHoc:

Visual Studio

Visual Studio for Mac

After Ad-HocAd-Hoc is selected, Visual Studio opens the S igning IdentityS igning Identity page of the dialog as shown in the next

screenshot. To publish the .APK, it must first be signed with a signing key (also referred to as a certificate).

An existing certificate can be used by clicking the Impor tImpor t button and then proceeding to Sign the APK.

Otherwise, click the click the ++ button to create a new certificate:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/signing/index.md
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/01-distribution-channel.png#lightbox

The Create Android Key StoreCreate Android Key Store dialog is displayed; use this dialog to create a new signing certificate that can

be used for signing Android applications. Enter the required information (outlined in red) as shown in this

dialog:

The following example illustrates the kind of information that must be provided. Click CreateCreate to create the new

certificate:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/02-ad-hoc-signing-identity-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/03-create-android-key-store-vs.png#lightbox

IMPORTANTIMPORTANT

 Sign the APK

The resulting keystore resides in the following location:

C:\Users\C:\Users\USERNAMEUSERNAME\AppData\Local\Xamarin\Mono for Android\Keystore\\AppData\Local\Xamarin\Mono for Android\Keystore\ALIASALIAS \\ALIASALIAS .keystore.keystore

For example, using chimpchimp as the alias, the above steps would create a new signing key in the following location:

C:\Users\C:\Users\USERNAMEUSERNAME\AppData\Local\Xamarin\Mono for Android\Keystore\chimp\chimp.keystore\AppData\Local\Xamarin\Mono for Android\Keystore\chimp\chimp.keystore

The AppData folder is hidden by default and you may need to unhide it to access it.

In addition, be sure to back up the resulting keystore file and password in a safe place – it is not included in the Solution.

If you lose your keystore file (for example, because you moved to another computer or reinstalled Windows), you will be

unable to sign your app with the same certificate as previous versions.

For more information about the keystore, see Finding your Keystore's MD5 or SHA1 Signature.

Visual Studio

Visual Studio for Mac

When CreateCreate is clicked, a new key store (containing a new certificate) will be saved and listed under S igningSigning

IdentityIdentity as shown in the next screenshot. To publish an app on Google Play, click CancelCancel and go to Publishing

to Google Play. To publish ad-hoc, select the signing identity to use for signing and click Save AsSave As to publish the

app for independent distribution. For example, the chimpchimp signing identity (created earlier) is selected in this

screenshot:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/04-key-store-example-vs.png#lightbox

Next, the Archive ManagerArchive Manager displays the publishing progress. When the publishing process completes, the

Save AsSave As dialog opens to ask for a location where the generated .APK file is to be stored:

Navigate to the desired location and click SaveSave. If the key password is unknown, the S igning PasswordSigning Password dialog

will appear to prompt for the password for the selected certificate:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/05-save-as-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/06-save-as-dialog-vs.png#lightbox

 Next Steps

After the signing process completes, click Open Distr ibutionOpen Distr ibution:

This causes Windows Explorer to open the folder containing the generated APK file. At this point, Visual Studio

has compiled the Xamarin.Android application into an APK that is ready for distribution. The following

screenshot displays an example of the ready-to-publish app, MyApp.MyApp.apkMyApp.MyApp.apk :

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/07-signing-password-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/08-open-distribution.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/signing/images/vs/09-generated-app-vs.png#lightbox

 Related Links

After the application package has been signed for release, it must be published. The following sections describe

several ways to publish an application.

Android Generate Keystore

https://developer.android.com/studio/publish/app-signing#generate-key

Manually Signing the APK
 11/2/2020 • 6 minutes to read • Edit Online

 Prerequisites

 Create a Private Keystore

After the application has been built for release, the APK must be signed prior to distribution so that it can be run

on an Android device. This process is typically handled with the IDE, however there are some situations where it

is necessary to sign the APK manually, at the command line. The following steps are involved with signing an

APK:

1. Create a Pr ivate KeyCreate a Pr ivate Key – This step needs to be performed only once. A private key is necessary to

digitally sign the APK. After the private key has been prepared, this step can be skipped for future release

builds.

2. Zipalign the APKZipalign the APK – Zipalign is an optimization process that is performed on an application. It enables

Android to interact more efficiently with the APK at runtime. Xamarin.Android conducts a check at

runtime, and will not allow the application to run if the APK has not been zipaligned.

3. S ign the APKSign the APK – This step involves using the apksignerapksigner utility from the Android SDK and signing the

APK with the private key that was created in the previous step. Applications that are developed with older

versions of the Android SDK build tools prior to v24.0.3 will use the jarsignerjarsigner app from the JDK. Both of

these tools will be discussed in more detail below.

The order of the steps is important and is dependent on which tool used to sign the APK. When using

apksignerapksigner , it is important to first zipalignzipalign the application, and then to sign it with apksignerapksigner . If it is necessary

to use jarsignerjarsigner to sign the APK, then it is important to first sign the APK and then run zipalignzipalign.

This guide will focus on using apksignerapksigner from the Android SDK build tools, v24.0.3 or higher. It assumes that an

APK has already been built.

Applications that are built using an older version of the Android SDK Build Tools must use jarsignerjarsigner as

described in Sign the APK with jarsigner below.

A keystore is a database of security certificates that is created by using the program keytool from the Java SDK.

A keystore is critical to publishing a Xamarin.Android application, as Android will not run applications that have

not been digitally signed.

During development, Xamarin.Android uses a debug keystore to sign the application, which allows the

application to be deployed directly to the emulator or to devices configured to use debuggable applications.

However, this keystore is not recognized as a valid keystore for the purposes of distributing applications.

For this reason, a private keystore must be created and used for signing applications. This is a step that should

only be performed once, as the same key will be used for publishing updates and can then be used to sign other

applications.

It is important to protect this keystore. If it is lost, then it will not be possible to publish updates to the

application with Google Play. The only solution to the problem caused by a lost keystore would be to create a

new keystore, re-sign the APK with the new key, and then submit a new application. Then the old application

would have to be removed from Google Play. Likewise, if this new keystore is compromised or publicly

distributed, then it is possible for unofficial or malicious versions of an application to be distributed.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/signing/manually-signing-the-apk.md
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

 Create a New KeystoreCreate a New Keystore

$ keytool -genkeypair -v -keystore <filename>.keystore -alias <key-name> -keyalg RSA \
 -keysize 2048 -validity 10000

$ keytool -genkeypair -v -keystore xample.keystore -alias publishingdoc -keyalg RSA -keysize 2048 -validity
10000
Enter keystore password:
Re-enter new password:
What is your first and last name?
 [Unknown]: Ham Chimpanze
What is the name of your organizational unit?
 [Unknown]: NASA
What is the name of your organization?
 [Unknown]: NASA
What is the name of your City or Locality?
 [Unknown]: Cape Canaveral
What is the name of your State or Province?
 [Unknown]: Florida
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Ham Chimpanze, OU=NASA, O=NASA, L=Cape Canaveral, ST=Florida, C=US correct?
 [no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA1withRSA) with a validity of 10,000 days
 for: CN=Ham Chimpanze, OU=NASA, O=NASA, L=Cape Canaveral, ST=Florida, C=US
Enter key password for <publishingdoc>
 (RETURN if same as keystore password):
Re-enter new password:
[Storing xample.keystore]

$ keytool -list -keystore xample.keystore

 Zipalign the APK

$ zipalign -f -v 4 mono.samples.helloworld-unsigned.apk helloworld.apk

Creating a new keystore requires the command line tool keytool from the Java SDK. The following snippet is an

example of how to use keytoolkeytool (replace <my-filename> with the file name for the keystore and <key-name> with

the name of the key within the keystore):

The first thing that keytoolkeytool will ask for is the password for the keystore. Then it will ask for some information to

help with creating the key. The following snippet is an example of creating a new key called publishingdoc that

will be stored in the file xample.keystore :

To list the keys that are stored in a keystore, use the keytoolkeytool with the – list option:

Before signing an APK with apksignerapksigner , it is important to first optimize the file using the zipalignzipalign tool from the

Android SDK. zipalignzipalign will restructure the resources in an APK along 4-byte boundaries. This alignment allows

Android to quickly load the resources from the APK, increasing the performance of the application and

potentially reducing memory use. Xamarin.Android will conduct a run-time check to determine if the APK has

been zipaligned. If the APK is not zipaligned, then the application will not run.

The follow command will use the signed APK and produce a signed, zipaligned APK called helloworld.apkhelloworld.apk that

is ready for distribution.

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Sign the APK

$ ls $ANDROID_HOME/build-tools/25.0.3/apksigner
/Users/tom/android-sdk-macosx/build-tools/25.0.3/apksigner*

$ apksigner sign --ks xample.keystore --ks-key-alias publishingdoc mono.samples.helloworld.apk

NOTENOTE

 Sign the APK with jarsignerSign the APK with jarsigner

WARNINGWARNING

$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore xample.keystore
mono.samples.helloworld.apk publishingdoc

NOTENOTE

 Related Links

After zipaligning the APK, it is necessary to sign it using a keystore. This is done with the apksignerapksigner tool, found

in the build-toolsbuild-tools directory of the version of the SDK build tools. For example, if the Android SDK build tools

v25.0.3 is installed, then apksignerapksigner can be found in the directory:

The following snippet assumes that apksignerapksigner is accessible by the PATH environment variable. It will sign an

APK using the key alias publishingdoc that is contained in the file xample.keystorexample.keystore:

When this command is run, apksignerapksigner will ask for the password to the keystore if necessary.

See Google's documentation for more details on the use of apksignerapksigner .

According to Google issue 62696222, apksignerapksigner is "missing" from the Android SDK. The workaround for this is to install

the Android SDK build tools v25.0.3 and use that version of apksignerapksigner .

This section only applies if it is nececssary to sign the APK with the jarsignerjarsigner utility. Developers are encouraged to use

apksignerapksigner to sign the APK.

This technique involves signing the APK file using the jarsignerjarsigner command from the Java SDK. The jarsignerjarsigner

tool is provided by the Java SDK.

The following shows how to sign an APK by using jarsignerjarsigner and the key publishingdoc that is contained in a

keystore file named xample.keystorexample.keystore :

When using jarsignerjarsigner , it is important to sign the APK first, and then to use zipalignzipalign.

Application Signing

jarsigner

keytool

zipalign

Build Tools 26.0.0 - where did apksigner go?

https://developer.android.com/studio/command-line/apksigner.html
https://issuetracker.google.com/issues/62696222
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html
https://source.android.com/security/apksigning/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://developer.android.com/studio/command-line/zipalign.html
https://issuetracker.google.com/issues/62696222

Finding your Keystore's Signature
 4/12/2021 • 3 minutes to read • Edit Online

 For Debug / Non-Custom Signed Builds

keytool.exe -list -v -keystore "%LocalAppData%\Xamarin\Mono for Android\debug.keystore" -alias
androiddebugkey -storepass android -keypass android

Alias name: androiddebugkey
Creation date: Aug 19, 2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 53f3b126
Valid from: Tue Aug 19 13:18:46 PDT 2014 until: Sun Nov 15 12:18:46 PST 2043
Certificate fingerprints:
 MD5: 27:78:7C:31:64:C2:79:C6:ED:E5:80:51:33:9C:03:57
 SHA1: 00:E5:8B:DA:29:49:9D:FC:1D:DA:E7:EE:EE:1A:8A:C7:85:E7:31:23
 SHA256: 21:0D:73:90:1D:D6:3D:AB:4C:80:4E:C4:A9:CB:97:FF:34:DD:B4:42:FC:
08:13:E0:49:51:65:A6:7C:7C:90:45
 Signature algorithm name: SHA1withRSA
 Version: 3

 For Release / Custom Signed Builds

The MD5 or SHA1 signature of a Xamarin.Android app depends on the .keystore.keystore file that was used to sign the

APK. Typically, a debug build will use a different .keystore.keystore file than a release build.

Xamarin.Android signs all debug builds with the same debug.keystoredebug.keystore file. This file is generated when

Xamarin.Android is first installed.The steps below detail the process for finding the MD5 or SHA1 signature of

the default Xamarin.Android debug.keystoredebug.keystore file.

Visual Studio

Visual Studio for Mac

Locate the Xamarin debug.keystoredebug.keystore file that is used to sign the app. By default, the keystore that is used to sign

debug versions of a Xamarin.Android application can be found at the following location:

C:\Users\C:\Users\USERNAMEUSERNAME\AppData\Local\Xamarin\Mono for Android\debug.keystore\AppData\Local\Xamarin\Mono for Android\debug.keystore

Information about a keystore is obtained by running the keytool.exe command from the JDK. This tool is

typically found in the following location:

C:\Program Files (x86)\Java\jdkC:\Program Files (x86)\Java\jdkVERSIONVERSION\bin\keytool.exe\bin\keytool.exe

Add the directory containing keytool.exekeytool.exe to the PATH environment variable. Open a Command PromptCommand Prompt and

run keytool.exe using the following command:

When run, keytool.exekeytool.exe should output the following text. The MD5:MD5: and SHA1:SHA1: labels identify the respective

signatures:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/signing/keystore-signature.md

The process for release builds that are signed with a custom .keystore.keystore file are the same as above, with the

release .keystore.keystore file replacing the debug.keystoredebug.keystore file that is used by Xamarin.Android. Replace your own

values for the keystore password, and alias name from when the release keystore file was created.

Visual Studio

Visual Studio for Mac

When the Visual Studio Distr ibuteDistr ibute wizard is used to sign a Xamarin.Android app, the resulting keystore resides

in the following location:

C:\Users\C:\Users\USERNAMEUSERNAME\AppData\Local\Xamarin\Mono for Android\Keystore\\AppData\Local\Xamarin\Mono for Android\Keystore\aliasalias \\aliasalias .keystore.keystore

For example, if you followed the steps in Create a New Certificate to create a new signing key, the resulting

example keystore resides in the following location:

C:\Users\C:\Users\USERNAMEUSERNAME\AppData\Local\Xamarin\Mono for Android\Keystore\chimp\chimp.keystore\AppData\Local\Xamarin\Mono for Android\Keystore\chimp\chimp.keystore

For more information about signing a Xamarin.Android app, see Signing the Android Application Package.

Publishing an Application
 7/8/2021 • 3 minutes to read • Edit Online

 Overview

After a great application has been created, people will want to use it. This section covers the steps involved with

the public distribution of an application created with Xamarin.Android via channels such as e-mail, a private web

server, Google Play, or the Amazon App Store for Android.

The final step in the development of a Xamarin.Android application is to publish the application. Publishing is

the process of compiling a Xamarin.Android application so that it is ready for users to install on their devices,

and it involves two essential tasks:

Preparing for PublicationPreparing for Publication – A release version of the application is created that can be deployed to

Android-powered devices (see Preparing an Application for Release for more information about release

preparation).

Distr ibutionDistr ibution – The release version of an application is made available through one or more of the

various distribution channels.

The following diagram illustrates the steps involved with publishing a Xamarin.Android application:

As can be seen by the diagram above, the preparation is the same regardless of the distribution method that is

used. There are several ways that an Android application may be released to users:

Via a WebsiteVia a Website – A Xamarin.Android application can be made available for download on a website, from

which users may then install the application by clicking on a link.

By e-mailBy e-mail – It is possible for users to install a Xamarin.Android application from their e-mail. The application

will be installed when the attachment is opened with an Android-powered device.

Through a MarketThrough a Market – There are several application marketplaces that exist for distribution, such as Google

Play or Amazon App Store for Android .

Using an established marketplace is the most common way to publish an application as it provides the broadest

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/index.md
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/images/build-and-deploy-steps.png#lightbox
https://play.google.com/
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011

market reach and the greatest control over distribution. However, publishing an application through a

marketplace requires additional effort.

Multiple channels can distribute a Xamarin.Android application simultaneously. For example, an application

could be published on Google Play, the Amazon App Store for Android, and also be downloaded from a web

server.

The other two methods of distribution (downloading or e-mail) are most useful for a controlled subset of users,

such as an enterprise environment or an application that is only meant for a small or well-specified set of users.

Server and e-mail distribution are also simpler publishing models, requiring less preparation to publish an

application.

The Amazon Mobile App Distribution Program enables mobile app developers to distribute and sell their

applications on Amazon. Users can discover and shop for apps on their Android-powered devices by using the

Amazon App Store application. A screenshot of the Amazon App Store running on an Android device appears

below:

Google Play is arguably the most comprehensive and popular marketplace for Android applications. Google

Play allows users to discover, download, rate, and pay for applications by clicking a single icon either on their

device or on their computer. Google Play also provides tools to assist in the analysis of sales and market trends

and to control which devices and users may download an application. A screenshot of Google Play running on

an Android device appears below:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/images/google-play-app.png#lightbox

 Related Links

This section shows how to upload the application to a store such as Google Play, along with the appropriate

promotional materials. APK expansion files are explained, providing a conceptual overview of what they are and

how they work. Google Licensing services are also described. Finally, alternate means of distribution are

introduced, including the use of an HTTP web server, simple e-mail distribution, and the Amazon App Store for

Android.

HelloWorldPublishing (sample)

Build Process

Linking

Obtaining A Google Maps API Key

Deploy via Visual Studio App Center

Application Signing

Publishing on Google Play

Google Application Licensing

Android.Play.ExpansionLibrary

Mobile App Distribution Portal

Amazon Mobile App Distribution FAQ

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/helloworldpublishing
https://docs.microsoft.com/en-us/appcenter/distribution/stores/googleplay
https://source.android.com/security/apksigning/
https://developer.android.com/distribute/googleplay/publish/index.html
https://developer.android.com/guide/google/play/licensing/index.html
https://github.com/mattleibow/Android.Play.ExpansionLibrary
https://developer.amazon.com/welcome.html
https://developer.amazon.com/help/faq.html

Publishing to Google Play
 7/8/2021 • 12 minutes to read • Edit Online

 Requirements

 Becoming a Publisher

 Preparing Promotional AssetsPreparing Promotional Assets

 Launcher IconsLauncher Icons

Although there are many app markets for distributing an application, Google Play is arguably the largest and

most visited store in the world for Android apps. Google Play provides a single platform for distributing,

advertising, selling, and analyzing the sales of an Android application.

This section will cover topics that are specific to Google Play, such as registering to become a publisher,

gathering assets to help Google Play promote and advertise your application, guidelines for rating your

application on Google Play, and using filters to restrict the deployment of an application to certain devices.

To distribute an application through Google Play, a developer account must be created. This only needs to be

performed once, and does involve a one time fee of $25 USD.

All applications need to be signed with a cryptographic key that expires after October 22, 2033.

The maximum size for an APK published on Google Play is 100MB. If an application exceeds that size, Google

Play will allow extra assets to be delivered through APK Expansion Files. Android Expansion files permit the APK

to have 2 additional files, each of them up to 2GB in size. Google Play will host and distribute these files at no

cost. Expansion files will be discussed in another section.

Google Play is not globally available. Some locations may not be supported for the distribution of applications.

To publish applications on Google play, it is necessary to have a publisher account. To sign up for a publisher

account follow these steps:

1. Visit the Google Play Developer Console.

2. Enter basic information about your developer identity.

3. Read and accept the Developer Distribution Agreement for your locale.

4. Pay the $25 USD registration fee.

5. Confirm verification by e-mail.

6. After the account has been created, it is possible to publish applications using Google Play.

Google Play does not support all countries in the world. The most up-to-date lists of countries can be found in

the following links:

1. Supported Locations for Developer & Merchant Registration – This is a list of all countries where

developers may register as merchants and sell paid applications.

2. Supported Locations for distribution to Google Play users – This is a list of all countries where

applications may be distributed.

To effectively promote and advertise an application on Google Play, Google allows developers to submit

promotional assets such as screenshots, graphics, and video to be submitted. Google Play will then use those

assets to advertise and promote the application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/publishing-to-google-play/index.md
https://play.google.com/apps/publish
https://support.google.com/googleplay/android-developer/bin/answer.py?hl=en&answer=150324
https://support.google.com/googleplay/android-developer/bin/answer.py?hl=en&answer=138294

 High Resolution Application IconsHigh Resolution Application Icons

 ScreenshotsScreenshots

 Promotional GraphicPromotional Graphic

 Feature GraphicFeature Graphic

 Video LinkVideo Link

A launcher icon is a graphic that represents an application. Each launcher icon should be a 32-bit PNG with an

alpha channel for transparency. An application should have icons for all of the generalized screen densities as

outlined in the list below:

ldpildpi (120dpi) – 36 x 36 px

mdpimdpi (160dpi) – 48 x 48 px

hdpihdpi (240dpi) – 72 x 72 px

xhdpixhdpi (320dpi) – 96 x 96 px

Launcher icons are the first things that a user will see of applications on Google Play, so care should be taken to

make the launcher icons visually appealing and meaningful.

Tips for Launcher Icons:

1. S imple and unclutteredSimple and uncluttered– Launcher icons should be kept simple and uncluttered. This means excluding

the name of the application from the icon. Simpler icons will be more memorable, and will be easier to

distinguish at the smaller sizes.

2. Icons should not be thinIcons should not be thin– Overly thin icons will not stand out well on all backgrounds.

3. Use the alpha channelUse the alpha channel– Icons should make use of the alpha channel, and should not be full-framed

images.

Applications on Google Play require a high fidelity version of the application icon. It is only used by Google Play,

and does not replace the application launcher icon. The specifications for the high-resolution icon are:

1. 32-bit PNG with an alpha channel

2. 512 x 512 pixels

3. Maximum size of 1024KB

The Android Asset Studio is a helpful tool for creating suitable launcher icons and the high-resolution

application icon.

Google play requires a minimum of two and a maximum of eight screenshots for an application. They will be

displayed on an application's details page in Google Play.

The specs for screenshots are:

1. 24 bit PNG or JPG with no alpha channel

2. 320w x 480h or 480w x 800h or 480w x 854h. Landscaped images will be cropped.

This is an optional image used by Google Play:

1. It is a 180w x 120h 24 bit PNG or JPG with no alpha channel.

2. No border in art.

Used by the featured section of Google Play. This graphic may be displayed alone without an application icon.

1. 1024w x 500h PNG or JPG with no alpha channel and no transparency.

2. All of the important content should be within a frame of 924x500. Pixels outside of this frame may be

cropped for stylistic purposes.

3. This graphic may be scaled down: use large text and keep graphics simple.

https://romannurik.github.io/AndroidAssetStudio/

 Publishing to Google PlayPublishing to Google Play

This is a URL to a YouTube video showcasing the application. The video should be 30 seconds to 2 minutes in

length and showcase the best parts of your application.

Visual Studio

Visual Studio for Mac

Xamarin Android 7.0 introduces an integrated workflow for publishing apps to Google Play from Visual Studio.

If you are using a version of Xamarin Android earlier than 7.0, you must manually upload your APK via the

Google Play Developer Console. Also, you must have at least one APK already uploaded before you can use the

integrated workflow. If you have not yet uploaded your first APK, you must upload it manually. For more

information, see Manually Uploading the APK.

Creating a New Certificate, explained how to create a new certificate for signing Android apps. The next step is

to publish a signed app to Google Play:

1. Sign into your Google Play Developer account to create a new project that is linked to your Google Play

Developer account.

2. Create an OAuth ClientOAuth Client that authenticates your app.

3. Enter the resulting Client ID and Client secret into Visual Studio.

4. Register your account with Visual Studio.

5. Sign the app with your certificate.

6. Publish your signed app to Google Play.

In Archive for Publishing, the Distr ibution ChannelDistr ibution Channel dialog presented two choices for distribution: Ad HocAd Hoc and

Google PlayGoogle Play . If the S igning IdentityS igning Identity dialog is displayed instead, click BackBack to return to the Distr ibutionDistr ibution

ChannelChannel dialog. Select Google PlayGoogle Play :

In the S igning IdentityS igning Identity dialog, select the identity created in Creating a New Certificate and click ContinueContinue:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/01-distribution-channel.png#lightbox

In the Google Play AccountsGoogle Play Accounts dialog, click the ++ button to add a new Google Play Account:

In the Register Google API AccessRegister Google API Access dialog, you must provide the Client ID and Client secret that provides API

access to your Google Play Developer account:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/02-select-identity.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/03-google-play-accounts.png#lightbox

 Create a Google API ProjectCreate a Google API Project

The next section explains how to create a new Google API project and generate the needed Client ID and Client

secret.

First, sign into your Google Play Developer account. If you do not already have a Google Play Developer account,

see Get Started with Publishing. Also, the Google Play Developer API Getting Started explains how to use the

Google Play Developer API. After you sign into the Google Play Developer Console, click CREATECREATE

APPLICATIONAPPLICATION:

After creating the new project, it will be linked to your Google Play Developer Console account.

The next step is to create an OAuth Client for the app (if one has not already been created). When users request

access to their private data using your app, your OAuth Client ID is used to authenticate your app.

Go to the SettingsSettings page.

In the SettingsSettings page, select API accessAPI access and click CREATE OAUTH CLIENTCREATE OAUTH CLIENT to create a new OAuth client:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/04-register-google-api-access.png#lightbox
https://play.google.com/apps/publish
https://developer.android.com/distribute/googleplay/start.html
https://developers.google.com/android-publisher/getting_started
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/01-create-new-project.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/02-google-play-developer-console.png#lightbox

After a few seconds, a new Client ID is generated. Click View in Google Developers ConsoleView in Google Developers Console to see your new

Client ID in the Google Developer's Console:

The Client ID is displayed along its name and creation date. Click the Edit OAuth ClientEdit OAuth Client icon to view the Client

secret for your app:

The default name of the OAuth client is Google Play Android Developer. This can be changed to the name of

Xamarin.Android app, or any suitable name. In this example, the OAuth Client name is changed to the name of

the app, MyAppMyApp:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/03-create-oauth-client.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/04-generated-client-id.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/05-google-developer-console.png#lightbox

 Register Google API AccessRegister Google API Access

Click SaveSave to save changes. This returns to the CredentialsCredentials page where to download the credentials by clicking

on the Download JSONDownload JSON icon:

This JSON file contains the Client ID and Client secret that you can cut and paste into the S ign and Distr ibuteSign and Distr ibute

dialog in the next step.

Visual Studio

Visual Studio for Mac

Use the Client ID and Client secret to complete the Google Play API AccountGoogle Play API Account dialog in Visual Studio for Mac. It

is possible to give the account a description – this makes it possible to register more than one Google Play

account and upload future APK's to different Google Play accounts. Copy the Client ID and Client secret to this

dialog and click RegisterRegister :

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/06-client-id-and-secret.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/07-download-json.png#lightbox

 PublishPublish

A web browser will open and prompt you to sign into your Google Play Android Developer account (if you are

not already signed in). After you sign in, the following prompt is displayed in the web browser. Click AllowAllow to

authorize the app:

After clicking AllowAllow , the browser reports Received verification code. Closing... and the app is added to the list of

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/05-enter-client-id-and-secret.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/06-authorize-app.png#lightbox

Google Play Accounts in Visual Studio. In the Google Play AccountsGoogle Play Accounts dialog, click ContinueContinue:

Next, the Google Play TrackGoogle Play Track dialog is presented. Google Play offers five possible tracks for uploading your app:

InternalInternal – Used for quickly distributing your app for internal testing and quality assurance checks.

AlphaAlpha – Used for uploading an early version of your app to a small list of testers.

BetaBeta – Used for uploading an early version of your app to a larger list of testers.

ProductionProduction – Used for full distribution to the Google Play store.

CustomCustom – Used for testing pre-release versions of your app with specific users by creating a list of testers by

email address.

Choose which Google Play track will be used for uploading the app and click UploadUpload.

For more information about Google Play testing, see Set up open/closed/internal tests.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/07-account-added.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/08-google-play-track.png#lightbox
https://support.google.com/googleplay/android-developer/answer/3131213?hl=en

 TroubleshootingTroubleshooting

Next, a dialog is presented to enter the password for the signing certificate. Enter the password and click OKOK:

The Archive ManagerArchive Manager displays the progress of the upload:

When the upload finishes, completion status is shown in the lower left hand corner of Visual Studio:

If you do not see your custom track when selecting a Google Play track, make sure you have created a release

for that track on the Google Play Developer Console. For instructions on how to create a release, see Prepare &

roll out releases.

Note that one APK must have already been submitted to the Google Play store before the Publish to GooglePublish to Google

PlayPlay will work. If an APK is not already uploaded the Publishing Wizard will display the following error in the

ErrorsErrors pane:

When this error occurs, manually upload an APK (such as an Ad Hoc build) via the Google Play Developer

Console and use the Distr ibution ChannelDistr ibution Channel dialog for subsequent APK updates. For more information, see

Manually Uploading the APK. The version code of the APK must change with each upload, otherwise the

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/09-certificate-password.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/10-uploading-apk.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/11-published.png#lightbox
https://support.google.com/googleplay/android-developer/answer/7159011?hl=en
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/12-upload-error.png#lightbox

following error will occur :

To resolve this error, rebuild the app with a different version number and resubmit it to Google Play via the

Distr ibution ChannelDistr ibution Channel dialog.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/images/vs/13-version-code-error.png#lightbox

Google Licensing Services
 7/8/2021 • 2 minutes to read • Edit Online

Prior to Google Play, Android applications relied on the legacy Copy Protection provided by Google Market to

ensure that only authorized users could run applications on their devices. The limitations of the Copy Protection

mechanism made it a less-than-ideal solution for application protection.

Google Licensing is a replacement for this legacy Copy Protection mechanism. Google Licensing is a flexible,

secure, network-based service that Android applications may query to determine if an application is licensed to

run on a given device.

Google Licensing is flexible in that Android applications have full control over when to check the license, how

often to check the license, and how to handle the response from the licensing server.

Google Licensing is secure in that each response is signed using an RSA key pair that is shared exclusively

between the Google Play server and the application. Google Play provides a public key for developers that is

embedded within the Android application and is used to authenticate the responses. The Google Play server

keeps the private key internally.

An application that has implemented Google Licensing makes a request to a service hosted by the Google Play

application on the device. Google Play then sends this request on to the Google Licensing server, which

responds with the license status:

The above diagram illustrates this workflow:

The application provides the package name, a nonce (a cryptographic authenticator) that is used to

validate server response, and a callback that can handle the response asynchronously.

Google Play provides information such as the Google account and the device itself, such as the IMSI

number.

Google Licensing service is also a key component of APK expansion files (which are discussed later in this

document). APK expansion files utilize Google Licensing services to obtain the URLs of the expansion files that

will be downloaded.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/publishing-to-google-play/google-licensing-services.md
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/google-licensing-services-images/gp-licensing-service-overview.png#lightbox

 Requirements
Applications that are not purchased through Google Play will receive no benefit from the Google Licensing

services. If Google Play is not installed on a device, then applications that use Licensing Services will still operate

normally on that device.

Google Play requires Internet access for functionality. An application can cache the license to accommodate

scenarios where the device does not have access to the Google Play Licensing servers.

Free applications only require Google Licensing when the application uses APK expansion files.

APK Expansion Files
 7/8/2021 • 6 minutes to read • Edit Online

 Expansion File Storage

Some applications (some games, for instance) require more resources and assets than can be provided in the

maximum Android app size limit imposed by Google Play. This limit depends on the version of Android that

your APK is targeted for :

100MB for APKs that target Android 4.0 or higher (API level 14 or higher).

50MB for APKs that target Android 3.2 or lower (API level 13 or higher).

To overcome this limitation, Google Play will host and distribute two expansion files to go along with an APK,

allowing an application to indirectly exceed this limit.

On most devices, when an application is installed, expansion files will be downloaded along with the APK and

will be saved to the shared storage location (the SD card or the USB-mountable partition) on the device. On a

few older devices, the expansion files may not automatically install with the APK. In these situations, it is

necessary for the application to contain code that will download the expansion files when the user first runs the

applications.

Expansion files are treated as opaque binary blobs (obb) and may be up to 2GB in size. Android does not

perform any special processing on these files after they are downloaded – the files can be in any format that is

appropriate for the application. Conceptually, the recommended approach to expansion files is as follows:

Main expansionMain expansion – This file is the primary expansion file for resources and assets that will not fit in the APK

size limit. The main expansion file should contain the primary assets that an application needs and should

rarely be updated.

Patch expansionPatch expansion – This is intended for small updates to the main expansion file. This file can be updated. It

is the responsibility of the application to perform any necessary patches or updates from this file.

The expansion files must be uploaded at the same time as the APK is uploaded. Google play does not allow an

expansion file to be uploaded to an existing APK or for existing APKs to be updated. If it is necessary to update

an expansion file, then a new APK must be uploaded with the versionCode updated.

When the files are downloaded to a device, they will be stored in shared-storeshared-store/Android/obb//Android/obb/package-package-

namename:

shared-storeshared-store – This is the directory specified by Android.OS.Environment.ExternalStorageDirectory .

package-namepackage-name – This is the application's Java-style package name.

Once downloaded, expansion files should not be moved, altered, renamed, or deleted from their location on the

device. To do so will cause the expansion files to be downloaded again, and the old file(s) will be deleted.

Additionally, the expansion file directory should contain only the expansion pack files.

Expansion files offer no security or protection around their content – other applications or users may access any

files saved on the shared storage.

If it is necessary to unpack an expansion file, the unpacked files should be stored in a separate directory, such as

one in Android.OS.Environment.ExternalStorageDirectory .

An alternative to extracting files from an expansion file is to read the assets or resources directly from the

expansion file. The expansion file is nothing more than a zip file that can be used with an appropriate

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/publishing-to-google-play/apk-expansion-files.md

 FileName FormatFileName Format

[main|patch].<expansion-version>.<package-name>.obb

 Download Process

ContentProvider . The Android.Play.ExpansionLibrary contains an assembly, System.IO.Compression.Zip, which

includes a ContentProvider that will allow for direct file access to some media files. If media files are being

packaged into a zip file, media playback calls may directly use files in the zip without having to unpack the zip

file. The media files should not be compressed when added to the zip file.

When the expansion files are downloaded, Google Play will use the following scheme to name the expansion:

The three components of this scheme are:

main or patch – This specifies whether this is the main or patch expansion file. There can be only one of

each.

<expansion-version> – This is an integer that matches the versionCode of the APK that the file was first

associated with.

<package-name> – This is the application's Java-style package name.

For example, if the APK version is 21, and the package name is mono.samples.helloworld , the main expansion file

will be named main.21.mono.samples.helloworldmain.21.mono.samples.helloworld.

When an application is installed from Google Play, the expansion files should be downloaded and saved along

with the APK. In certain situations this may not happen, or expansion files may be deleted. To handle this

condition, an app needs to check to see whether the expansion files exist and then download them, if necessary.

The following flowchart displays the recommended workflow of this process:

When an application starts up, it should check to see if the appropriate expansion files exist on the current

https://github.com/mattleibow/Android.Play.ExpansionLibrary
https://github.com/mattleibow/Android.Play.ExpansionLibrary/tree/master/System.IO.Compression.Zip
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/apk-expansion-files-images/apkexpansion.png#lightbox

 Architectural Overview

device. If they do not, then the application must make a request from Google Play’s Application Licensing. This

check is made by using the License Verification Library (LVL), and must be made for both free and licensed

applications. The LVL is primarily used by paid applications to enforce license restrictions. However, Google has

extended the LVL so that it can be used with expansion libraries as well. Free applications have to perform the

LVL check, but can ignore the license restrictions. The LVL request is responsible for providing the following

information about the expansion files that the application requires:

File S izeFile S ize – The file sizes of the expansion files are used as part of the check that determines whether or not

the correct expansion files have already been downloaded.

FilenamesFilenames – This is the file name (on the current device) to which the expansion packs must be saved.

URL for DownloadURL for Download – The URL that should be used to download the expansion packs. This is unique for

every download and will expire shortly after it is provided.

After the LVL check has been performed, the application should download the expansion files, taking into

consideration the following points as part of the download:

The device may not have enough space to store the expansion files.

If Wi-Fi is not available, then the user should be allowed to pause or cancel the download to prevent

unwanted data charges.

The expansion files are downloaded in the background to avoid blocking user interactions.

While the download is occurring in the background, a progress indicator should be displayed.

Errors that occur during the download are gracefully handled and recoverable.

When the main activity starts, it checks to see if the expansion files are downloaded. If the files are downloaded,

they must be checked for validity.

If the expansion files have not been downloaded or if the current files are invalid, then new expansion files must

be downloaded. A bounded service is created as part of the application. When the main activity of the

application is started, it uses the bounded service to perform a check against the Google Licensing services to

find out the expansion file names and the URL of the files to download. The bounded service will then download

the files on a background thread.

To ease the effort required to integrate expansion files into an application, Google created several libraries in

Java. The libraries in question are:

Downloader L ibrar yDownloader L ibrar y – This is a library that reduces the effort required to integrate expansion files in an

application. The library will download the expansion files in a background service, display user notifications,

handle network connectivity issues, resume downloads, etc.

L icense Verification L ibrar y (LVL)L icense Verification L ibrar y (LVL) – A library for making and processing the calls to the Application

Licensing services. It can also be used to perform licensing checks, to see if the application is authorized for

use on the device.

APK Expansion Zip L ibrar y (optional)APK Expansion Zip L ibrar y (optional) – If the expansion files are in a zip file, this library will act as a

content provider and allow an application to read resources and assets directly from the zip file without

having to expand the zip file.

These libraries have been ported to C# and are available under the Apache 2.0 license. To quickly integrate

expansion files into an existing application, these libraries can be added to an existing Xamarin.Android

application. The code is available at the Android.Play.ExpansionLibrary on GitHub.

https://developer.android.com/google/play/licensing/index.html
https://github.com/mattleibow/Android.Play.ExpansionLibrary

Manually Uploading the APK
 7/8/2021 • 7 minutes to read • Edit Online

 Google Play Developer Console

The first time an APK is submitted to Google Play (or if an early version of Xamarin.Android is used) the APK

must be manually uploaded through the Google Play Developer Console. This guide explains the steps required

for this process.

Once the APK has been compiled and the promotional assets prepared, the application must be uploaded to

Google Play. This is done by logging in to the Google Play Developer Console, pictured next. Click the PublishPublish

an Android App on Google Playan Android App on Google Play button to initialize the process of distributing an application.

If you already have an existing app registered with Google Play, click the Add new applicationAdd new application button:

When the ADD NEW APPLICATIONADD NEW APPLICATION dialog is displayed, enter the name of the app and click Upload APKUpload APK:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk.md
https://play.google.com/apps/publish
https://play.google.com/apps/publish
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/00-google-play-developer-console.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/01-existing-app.png#lightbox

The next screen allows the app to be published for alpha testing, beta testing, or production. In the following

example, the ALPHA TESTINGALPHA TESTING tab is selected. Because MyAppMyApp does not use licensing services, the Get licenseGet license

keykey button does not have to be clicked for this example. Here, the Upload your first APK to AlphaUpload your first APK to Alpha button is

clicked to publish to the Alpha channel:

The UPLOAD NEW APK TO ALPHAUPLOAD NEW APK TO ALPHA dialog is displayed. The APK can be uploaded by either clicking the

Browse filesBrowse files button or by dragging-and-dropping the APK:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/02-add-new-application.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/03-upload-to-alpha.png#lightbox

Be sure to upload the release-ready APK that is to be distributed. The next dialog indicates the progress of the

APK upload:

After the APK is uploaded, it is possible to select a testing method:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/04-upload-dialog.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/05-upload-progress.png#lightbox

 Store Listing

 Graphics AssetsGraphics Assets

For more information about app testing, see Google's Set up alpha/beta tests guide.

After the APK is uploaded, it is saved as a draft. It cannot be published until more details are provided to Google

Play as described next.

Click Store L istingStore L isting in the Google Play Developer ConsoleGoogle Play Developer Console to enter the information that Google Play will

display to potentials users of the application:

Scroll down to the GRAPHICS ASSETSGRAPHICS ASSETS section of the Store L istingStore L isting page:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/06-select-testing-method.png#lightbox
https://support.google.com/googleplay/android-developer/answer/3131213?hl=en
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/07-store-listing.png#lightbox

 CategorizationCategorization

 Contact DetailsContact Details

All of the promotional assets that were prepared earlier are uploaded in this section. Guidance is provided as to

what promotional assets must be provided and what format they should be provided in.

After the GRAPHICS ASSETSGRAPHICS ASSETS section is a CATEGORIZATIONCATEGORIZATION section, select the application type and category:

Content rating is covered after the next section.

The final section of this page is a CONTACT DETAILSCONTACT DETAILS section. This section is used to collect contact information

about the developer of the application:

It is possible to provide a URL for the privacy policy of the App in the PRIVACY POLICYPRIVACY POLICY section, as indicated

above.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/08-graphic-assets.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/09-categorization.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/10-contact-details.png#lightbox

Content Rating

 Pricing & Distribution

Click Content RatingContent Rating in the Google Play Developer ConsoleGoogle Play Developer Console. In this page, you specify the content rating for

your app. Google Play requires that all applications specify a content rating. Click the ContinueContinue button to

complete the content rating questionaire:

All applications on Google Play must be rated according to the Google Play ratings system. In addition to the

content rating, all applications must adhere to Google's Developer Content Policy.

The following lists the four levels in the Google Play rating system and provides some guidelines as features or

content that would require or force the rating level:

Ever yoneEver yone – May not access, publish, or share location data. May not host any user-generated content.

May not enable communication between users.

Low maturityLow maturity – Applications that access, but do not share, location data. Depictions of mild or cartoon

violence.

Medium maturityMedium maturity – References to drugs, alcohol or tobacco. Gambling themes or simulated gambling.

Inflammatory content. Profanity or crude humor. Suggestive or sexual references. Intense fantasy

violence. Realistic violence. Allowing users to find each other. Allowing users to communicate with each

other. Sharing of a user's location data.

High maturityHigh maturity – A focus on the consumption or sale of alcohol, tobacco, or drugs. A focus on suggestive

or sexual references. Graphic violence.

The items in the Medium maturity list are subjective, as such it is possible that a guideline that may seem to

dictate a Medium maturity rating may be intense enough to warrant a High maturity rating.

Click Pr icing and Distr ibutionPricing and Distr ibution in the Google Play Developer ConsoleGoogle Play Developer Console. In this page, set a price if the app is

a paid app. Alternately, the application can be distributed free of charge to all users. Once an application is

specified as free, it must remain free. Google Play will not allow an application that is free to be changed to a

priced app (however, it is possible to sell content with in-app billing with a free app). Google Play will allow a

paid app to change to a free app at any time.

A merchant account is required to before publishing a paid app.To do so, click set up a merchant accountset up a merchant account and

follow the instructions.

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/11-content-rating.png#lightbox
https://www.android.com/us/developer-content-policy.html

 Manage CountriesManage Countries

 Other InformationOther Information

 ConsentConsent

The next section, Manage Countr iesManage Countr ies , provides control over what countries an app may be distributed to:

Scroll down further to specify whether the app contains ads. Also, the DEVICE CATEGORIESDEVICE CATEGORIES section provides

options to optionally distribute the app for Android Wear, Android TV, or Android Auto:

After this section are additional options that may be selected, such as opting into Designed for FamiliesDesigned for Families and

distributing the app through Google Play for Education.

At the bottom of the Pr icing & Distr ibutionPricing & Distr ibution page is the CONSENTCONSENT section. This is a mandatory section and is

used to declare that the application meets the Android Content Guidelines and acknowledgement that the

application is subject to U.S. export laws:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/12-pricing.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/13-manage-countries.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/14-contains-ads.png#lightbox
https://play.google.com/about/restricted-content/

 Google Play Filters

There is much more to publishing a Xamarin.Android app than can be covered in this guide. For more

information about publishing your app in Google Play, see Welcome to the Google Play Developer Console Help

Center.

When users browse the Google Play website for applications, they are able to search all published applications.

When users browse Google Play from an Android device, the results are slightly different. The results will be

filtered according to compatibility with the device that is being used. For example, if an application must send

SMS messages, then Google Play will not show that application to any device which cannot send SMS messages.

The filters that are applied to a search are created from the following:

1. The hardware configuration of the device.

2. Declarations in the applications manifest file.

3. The carrier that is used (if any).

4. The location of the device.

It is possible to add elements to the app's manifest to help control how app is filtered in the Google Play store.

The following lists manifest elements and attributes that can be used to filter applications:

[assembly: UsesLibrary("com.google.android.maps", true)]

supports-screen – Google Play will use the attributes to determine if an application can be deployed to a

device based on the screen size. Google Play will assume that Android can adapt smaller layout to larger

screens, but not vice-versa. So an application that declares support for normal screens will appear in

searches for large screens, but not small screens. If a Xamarin.Android application does not provide a

<supports-screen> element in the manifest file, then Google Play will assume all attributes have a value

of true and that the application supports all screen sizes. This element must be added to

AndroidManifest.xmlAndroidManifest.xml manually.

uses-configuration – This manifest element is used to request certain hardware features, such as the type

of keyboard, navigation devices, a touch screen, etc. This element must be added to

AndroidManifest.xmlAndroidManifest.xml manually.

uses-feature – This manifest element declares hardware or software features that a device must have in

order for the application to function. This attribute is informational only. Google Play will not display the

application to devices that do not meet this filter. It's still possible to install the application by other means

(manually or downloading). This element must be added to AndroidManifest.xmlAndroidManifest.xml manually.

uses-library – This element specifies that certain shared libraries must be present on the device, for

example Google Maps. This element may also be specified with the Android.App.UsesLibraryAttribute .

For example:

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-google-play/manually-uploading-the-apk-images/15-consent.png#lightbox
https://support.google.com/googleplay/android-developer#topic=3450769
https://developer.android.com/guide/topics/manifest/supports-screens-element.html
https://developer.android.com/guide/topics/manifest/uses-configuration-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-library-element.html

[assembly: UsesPermission(Manifest.Permission.Camera)]

uses-permission – This element is used to infer certain hardware features that are required for the

application to run that may not have been properly declared with a <uses-feature> element. For

example, if an application requests permission to use the camera, then Google Play assumes that devices

must have a camera, even if there is no <uses-feature> element declaring the camera. This element may

be set with the Android.App.UsesPermissionsAttribute . For example:

uses-sdk – The element is used to declare the minimum Android API Level required for the application.

This element may set in the Xamarin.Android options of a Xamarin.Android project.

compatible-screens – This element is used to filter applications that do not match the screen size and

density specified by this element. Most applications should not use this filter. It is intended for specific

high performance games or applications that required strict controls on application distribution. The

<support-screen> attribute mentioned above is preferred.

supports-gl-texture – This element is used to declare GL texture compression formations that the

application requires. Most applications should not use this filter. It is intended for specific high

performance games or applications that required strict controls on application distribution.

For more information about configuring the app manifest, see the Android App Manifest topic.

https://developer.android.com/guide/topics/manifest/uses-permission-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide/topics/manifest/compatible-screens-element.html
https://developer.android.com/guide/topics/manifest/supports-gl-texture-element.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html

Publishing to the Amazon App Store
 7/8/2021 • 2 minutes to read • Edit Online

The Amazon Mobile App Distribution Program enables mobile app developers to publish their applications on

Amazon. This section briefly covers the Amazon App Store for Android.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/publishing-to-amazon.md

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-to-amazon-images/amazon-app-store.png#lightbox

 Submitting Apps: Binary Info

 Approval Process

Amazon does not limit the size of APKs. However, if an APK is larger than 30MB, then it will use FTP for

distribution rather than the Amazon Mobile App Distribution Portal.

Submitting an application to the Amazon App Store is a similar process to submitting an application to Google

Play. Applications distributed by Amazon require the following assets:

IconIcon – This is a 114 x 114 .png file with a transparent background. It is required.

ThumbnailThumbnail – This is a larger version of the icon above. It is 512 x 512 pixels with a transparent background.

This icon is also mandatory.

ScreenshotsScreenshots – Amazon requires a minimum of three and a maximum of 10 screenshots. The screenshots

must be 1024w x 600h pixels or 800w x 480h pixels. Both .png and .jpg formats are acceptable.

Promotional ImagePromotional Image – In order for an application to be featured in promotional placements such as the

home page, a promotional image may be optionally submitted. It should be a 1024w x 500h pixel .png or .jpg

file, in landscape orientation. It may not have any animation.

Updates to five videos may be provided.

Once an application has been submitted, it goes through an approval process. Amazon will review your

application to ensure that it works as outlined in the product description, does not put customer data at risk, and

will not impair the operation of the device. Once the approval process is complete, Amazon will send out a

notification and distribute the application.

Publishing Independently
 7/8/2021 • 3 minutes to read • Edit Online

 Xamarin Licensing

 Allow Installation from Unknown Sources

It is possible to publish an application without using any of the existing Android marketplaces. This section will

explain these other publishing methods and the licensing levels of Xamarin.Android.

A number of licenses are available for development, deployment, and distribution of Xamarin.Android apps:

Visual Studio CommunityVisual Studio Community – For students, small teams, and OSS developers who use Windows.

Visual Studio ProfessionalVisual Studio Professional – For individual developers or small teams (Windows only). This license

offers a standard or cloud subscription and no usage restrictions.

Visual Studio EnterpriseVisual Studio Enterprise – For teams of any size (Windows only). This license includes enterprise

capabilities, a standard or cloud subscription.

Visit the visualstudio.com to download the Community Edition or to learn more about purchasing the

Professional and Enterprise editions.

By default, Android prevents users from downloading and installing applications from locations other than

Google Play. To allow installation from non-marketplace sources, a user must enable the Unknown sources

setting on a device before attempting to install an application. The setting for this may be found under SettingsSettings

> Security> Security , as shown in the following diagram:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/publishing-independently.md
https://visualstudio.microsoft.com/xamarin/

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-independently-images/settings.png#lightbox

IMPORTANTIMPORTANT

 Publishing by E-Mail

 Publishing by Web

 Manually Installing an APK

Some network providers might prevent the installation of applications from unknown sources, regardless of this setting.

Attaching the release APK to an e-mail is a quick and easy way to distribute an application to users. When the

user opens the e-mail on an Android-powered device, Android will recognize the APK attachment and display an

InstallInstall button as shown in the following image:

Although distribution via e-mail is simple, it provides few protections against piracy or unauthorized

distribution. It is best reserved for situations where the recipients of the application are few, and they are trusted

not to distribute the application.

It is possible to distribute an application by a web server. This is accomplished by uploading the application to

the web server, and then providing a download link to users. When an Android-powered device browses to a

link and then downloads the application, that application will automatically be installed once the download is

complete.

Manual installation is a third option for installing applications. To effect a manual installation of an application:

1. Distr ibute a copy of the APK to userDistr ibute a copy of the APK to user – For example, this copy may be distributed on a CD or USB flash

drive.

2. (The user) installs the application on an Android device(The user) installs the application on an Android device – Use the command-line Android Debug

Bridge (adbadb) tool. adbadb is a versatile command-line tool that enables communication with either an emulator

instance or an Android-powered device. The Android SDK includes adbadb; it can be found in the directory

file:///T:/c1uy/n1bv/xamarin/android/deploy-test/publishing/publishing-independently-images/publishing-via-email.png#lightbox

$ adb devices
List of devices attached
 0149B2EC03012005device

$ adb install <path-to-apk>

$ adb install helloworld.apk
3772 KB/s (3013594 bytes in 0.780s)
 pkg: /data/local/tmp/helloworld.apk
Success

$ adb install helloworld.apk
4037 KB/s (3013594 bytes in 0.728s)
 pkg: /data/local/tmp/helloworld.apk
Failure [INSTALL_FAILED_ALREADY_EXISTS]

adb uninstall <package_name>

$ adb uninstall mono.samples.helloworld
Success

<sdk>/platform-tools/<sdk>/platform-tools/.

The Android device must be connected with a USB cable to the computer. Windows computers might also

require additional USB drivers from the phone vendor to be recognized by adbadb. Installation instructions for

these additional USB drivers is beyond the scope of this document.

Before issuing any adbadb commands, it is helpful to know which emulator instances or devices are connected, if

any. It is possible to see a list of what is attached by using the devices command, as demonstrated in the

following snippet:

After the connected devices have been confirmed, the application can be installed by issuing the install

command with adbadb:

The following snippet shows an example of installing an application to a connected device:

If the application is already installed, the adb install will be unable to install the APK and will report a failure,

as shown in the following example:

It will be necessary to uninstall the application from the device. First, issue the adb uninstall command:

The following snippet is an example of uninstalling an application:

Installing Xamarin.Android as a System App
 7/8/2021 • 3 minutes to read • Edit Online

 System App

 Restrictions

 Install a Xamarin.Android App as a System App

This guide will discuss the differences between a system app and a user app, and how to install a

Xamarin.Android application as a system application. This guide applies to authors of custom Android ROM

images. It will not explain how to create a custom ROM.

Authors of custom Android ROM images or manufacturers of Android devices may wish to include a

Xamarin.Android application as a system app when distributing a ROM or a device. A system app is an app that

is considered to be important to the functioning of the device or provide functionality that the custom ROM

author always wants to be available.

System apps are installed in the folder /system/app//system/app/ (a read-only directory on the file system) and cannot be

deleted or moved by the user unless that user has root access. In contrast, an application that is installed by the

user (typically from Google Play or by sideloading the app) is known as a user app. User apps can be deleted by

the user and in many cases can be moved to a different location on the device (such as some kind of external

storage).

System apps behave exactly like user apps, but have the following notable exceptions:

System apps are upgradable just like a normal user app. However, because a copy of the app always

exists in /system/app//system/app/, it is always possible to roll back the application to the original version.

System apps may be granted certain system-only permissions that are not available to a user app. An

example of a system-only permission is BLUETOOTH_PRIVILEGED , which allows applications to pair with

Bluetooth devices without any user interaction.

It is possible to distribute a Xamarin.Android app as a system application. In addition to providing an APK to the

custom ROM, there are two shared libraries, libmonodroid.solibmonodroid.so and libmonosgen-2.0.solibmonosgen-2.0.so that must be

manually copied from the APK to the filesytem of the ROM image. This guide will explain the steps involved.

This guide applies to authors of custom Android ROM images. It will not explain how to create a custom ROM.

This guide assumes familiarity with packaging a release APK for a Xamarin.Android and an understanding of

CPU Architectures for Android applications.

The following steps describe how to install a Xamarin.Android app as a system app.

1. Package a release APK of the Xamarin.Android appPackage a release APK of the Xamarin.Android app – This is described in more detail by the

Publishing an Application guide.

2. Extract shared librar ies from the APKExtract shared librar ies from the APK – Using any ZIP utility program, open up the APK file and

examine the contents of the /lib//lib/ folder. This folder will have a subdirectory for each application binary

interface (ABI)that is supported by the application; the contents of this folder will include all of the shared

libraries that are required by the app on that particular ABI:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/install-system-app.md
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_PRIVILEGED

 Summary

 Related Links

In the previous screenshot, there is only one supported ABI (armeabi-v7aarmeabi-v7a) holding the two .so.so files that

are required by the app. Note that it is only necessary to extract the ABI files that are appropriate for the

device or the target architecture of the device ROM, i.e. do not copy .so.so files from the x86x86 folder to an

armeabi-v7aarmeabi-v7a device or ROM.

3. Copy .so files to /system/libCopy .so files to /system/lib – Copy the .so.so files that were extracted from the APK in the previous step

to the /system/lib//system/lib/ folder on the custom ROM.

4. Copy the APK file to /system/appCopy the APK file to /system/app – The final step is to copy the APK file to the /system/app/system/app folder

on the ROM.

This guide discussed the difference between a system app and a user app, and explained how to install a

Xamarin.Android application as a system app.

Publishing an Application

CPU Architectures

BLUETOOTH_PRIVILEGED

ABI Management

https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_PRIVILEGED
https://developer.android.com/ndk/guides/abis

Advanced Concepts and Internals
 10/28/2019 • 2 minutes to read • Edit Online

 Architecture

 API Design

 Assemblies

This section contains topics that explain the architecture, API design, and limitations of Xamarin.Android. In

addition, it includes topics that explain its garbage collection implementation and the assemblies that are

available in Xamarin.Android. Because Xamarin.Android is open-source, it is also possible to understand the

inner workings of Xamarin.Android by examining its source code.

This article explains the underlying architecture behind a Xamarin.Android application. It explains how

Xamarin.Android applications run inside a Mono execution environment alongside with the Android runtime

Virtual Machine and explains such key concepts as Android Callable Wrappers and Managed Callable Wrappers.

In addition to the core Base Class Libraries that are part of Mono, Xamarin.Android ships with bindings for

various Android APIs to allow developers to create native Android applications with Mono.

At the core of Xamarin.Android there is an interop engine that bridges the C# world with the Java world and

provides developers with access to the Java APIs from C# or other .NET languages.

Xamarin.Android ships with several assemblies. Just as Silverlight is an extended subset of the desktop .NET

assemblies, Xamarin.Android is also an extended subset of several Silverlight and desktop .NET assemblies.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/internals/index.md
https://github.com/xamarin/xamarin-android

Architecture
 7/8/2021 • 8 minutes to read • Edit Online

 Application Packages

Xamarin.Android applications run within the Mono execution environment. This execution environment runs

side-by-side with the Android Runtime (ART) virtual machine. Both runtime environments run on top of the

Linux kernel and expose various APIs to the user code that allows developers to access the underlying system.

The Mono runtime is written in the C language.

You can be using the System, System.IO, System.Net and the rest of the .NET class libraries to access the

underlying Linux operating system facilities.

On Android, most of the system facilities like Audio, Graphics, OpenGL and Telephony are not available directly

to native applications, they are only exposed through the Android Runtime Java APIs residing in one of the

Java.* namespaces or the Android.* namespaces. The architecture is roughly like this:

Xamarin.Android developers access the various features in the operating system either by calling into .NET APIs

that they know (for low-level access) or using the classes exposed in the Android namespaces which provides a

bridge to the Java APIs that are exposed by the Android Runtime.

For more information on how the Android classes communicate with the Android Runtime classes see the API

Design document.

Android application packages are ZIP containers with a .apk file extension. Xamarin.Android application

packages have the same structure and layout as normal Android packages, with the following additions:

The application assemblies (containing IL) are stored uncompressed within the assemblies folder. During

process startup in Release builds the .apk is mmap() ed into the process and the assemblies are loaded

from memory. This permits faster app startup, as assemblies do not need to be extracted prior to

execution.

Note: Assembly location information such as Assembly.Location and Assembly.CodeBase cannot be relied

upon in Release builds. They do not exist as distinct filesystem entries, and they have no usable location.

Native libraries containing the Mono runtime are present within the .apk . A Xamarin.Android application

must contain native libraries for the desired/targeted Android architectures, e.g. armeabi , armeabi-v7a ,

x86 . Xamarin.Android applications cannot run on a platform unless it contains the appropriate runtime

libraries.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/internals/architecture.md
https://docs.microsoft.com/en-us/dotnet/api/system
https://docs.microsoft.com/en-us/dotnet/api/system.io
https://docs.microsoft.com/en-us/dotnet/api/system.net
https://docs.microsoft.com/en-us/dotnet/api/java.lang
https://docs.microsoft.com/en-us/dotnet/api/android
file:///T:/c1uy/n1bv/xamarin/android/internals/architecture-images/architecture1.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.location#system_reflection_assembly_location
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.codebase#system_reflection_assembly_codebase

 Android Callable Wrappers

 Managed Callable Wrappers

 Managed Callable Wrapper Subclasses

 Java ActivationJava Activation

Xamarin.Android applications also contain Android Callable Wrappers to allow Android to call into managed

code.

Android callable wrappersAndroid callable wrappers are a JNI bridge which are used any time the Android runtime needs to invoke

managed code. Android callable wrappers are how virtual methods can be overridden and Java interfaces

can be implemented. See the Java Integration Overview doc for more.

Managed callable wrappers are a JNI bridge which are used any time managed code needs to invoke Android

code and provide support for overriding virtual methods and implementing Java interfaces. The entire Android.*

and related namespaces are managed callable wrappers generated via .jar binding. Managed callable wrappers

are responsible for converting between managed and Android types and invoking the underlying Android

platform methods via JNI.

Each created managed callable wrapper holds a Java global reference, which is accessible through the

Android.Runtime.IJavaObject.Handle property. Global references are used to provide the mapping between Java

instances and managed instances. Global references are a limited resource: emulators allow only 2000 global

references to exist at a time, while most hardware allows over 52,000 global references to exist at a time.

To track when global references are created and destroyed, you can set the debug.mono.log system property to

contain gref.

Global references can be explicitly freed by calling Java.Lang.Object.Dispose() on the managed callable wrapper.

This will remove the mapping between the Java instance and the managed instance and allow the Java instance

to be collected. If the Java instance is re-accessed from managed code, a new managed callable wrapper will be

created for it.

Care must be exercised when disposing of Managed Callable Wrappers if the instance can be inadvertently

shared between threads, as disposing the instance will impact references from any other threads. For maximum

safety, only Dispose() of instances which have been allocated via new or from methods which you know

always allocate new instances and not cached instances which may cause accidental instance sharing between

threads.

Managed callable wrapper subclasses are where all the "interesting" application-specific logic may live. These

include custom Android.App.Activity subclasses (such as the Activity1 type in the default project template).

(Specifically, these are any Java.Lang.Object subclasses which do not contain a RegisterAttribute custom

attribute or RegisterAttribute.DoNotGenerateAcw is false, which is the default.)

Like managed callable wrappers, managed callable wrapper subclasses also contain a global reference,

accessible through the Java.Lang.Object.Handle property. Just as with managed callable wrappers, global

references can be explicitly freed by calling Java.Lang.Object.Dispose(). Unlike managed callable wrappers, great

care should be taken before disposing of such instances, as Dispose()-ing of the instance will break the mapping

between the Java instance (an instance of an Android Callable Wrapper) and the managed instance.

When an Android Callable Wrapper (ACW) is created from Java, the ACW constructor will cause the

corresponding C# constructor to be invoked. For example, the ACW for MainActivity will contain a default

constructor which will invoke MainActivity's default constructor. (This is done through the

TypeManager.Activate() call within the ACW constructors.)

https://en.wikipedia.org/wiki/Java_Native_Interface
https://docs.microsoft.com/en-us/dotnet/api/android
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.ijavaobject.handle#android_runtime_ijavaobject_handle
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.dispose#java_lang_object_dispose
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
https://github.com/xamarin/monodroid-samples/blob/master/HelloM4A/Activity1.cs#L13
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute.donotgenerateacw#android_runtime_registerattribute_donotgenerateacw
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.handle#java_lang_object_handle
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.dispose#java_lang_object_dispose

 Premature Dispose() CallsPremature Dispose() Calls

There is one other constructor signature of consequence: the (IntPtr, JniHandleOwnership) constructor. The

(IntPtr, JniHandleOwnership) constructor is invoked whenever a Java object is exposed to managed code and a

Managed Callable Wrapper needs to be constructed to manage the JNI handle. This is usually done

automatically.

There are two scenarios in which the (IntPtr, JniHandleOwnership) constructor must be manually provided on a

Managed Callable Wrapper subclass:

1. Android.App.Application is subclassed. Application is special; the default Applicaton constructor will never

be invoked, and the (IntPtr, JniHandleOwnership) constructor must instead be provided.

2. Virtual method invocation from a base class constructor.

Note that (2) is a leaky abstraction. In Java, as in C#, calls to virtual methods from a constructor always invoke

the most derived method implementation. For example, the TextView(Context, AttributeSet, int) constructor

invokes the virtual method TextView.getDefaultMovementMethod(), which is bound as the

TextView.DefaultMovementMethod property. Thus, if a type LogTextBox were to (1) subclass TextView, (2)

override TextView.DefaultMovementMethod, and (3) activate an instance of that class via XML, the overridden

DefaultMovementMethod property would be invoked before the ACW constructor had a chance to execute, and

it would occur before the C# constructor had a chance to execute.

This is supported by instantiating an instance LogTextBox through the LogTextView(IntPtr, JniHandleOwnership)

constructor when the ACW LogTextBox instance first enters managed code, and then invoking the

LogTextBox(Context, IAttributeSet, int) constructor on the same instance when the ACW constructor executes.

Order of events:

1. Layout XML is loaded into a ContentView.

2. Android instantiates the Layout object graph, and instantiates an instance of

monodroid.apidemo.LogTextBox , the ACW for LogTextBox .

3. The monodroid.apidemo.LogTextBox constructor executes the android.widget.TextView constructor.

4. The TextView constructor invokes monodroid.apidemo.LogTextBox.getDefaultMovementMethod() .

5. monodroid.apidemo.LogTextBox.getDefaultMovementMethod() invokes

LogTextBox.n_getDefaultMovementMethod() , which invokes TextView.n_GetDefaultMovementMethod() ,

which invokes Java.Lang.Object.GetObject<TextView> (handle, JniHandleOwnership.DoNotTransfer) .

6. Java.Lang.Object.GetObject<TextView>() checks to see if there is already a corresponding C# instance for

handle . If there is, it is returned. In this scenario, there isn't, so Object.GetObject<T>() must create one.

7. Object.GetObject<T>() looks for the LogTextBox(IntPtr, JniHandleOwneship) constructor, invokes it,

creates a mapping between handle and the created instance, and returns the created instance.

8. TextView.n_GetDefaultMovementMethod() invokes the LogTextBox.DefaultMovementMethod property

getter.

9. Control returns to the android.widget.TextView constructor, which finishes execution.

10. The monodroid.apidemo.LogTextBox constructor executes, invoking TypeManager.Activate() .

11. The LogTextBox(Context, IAttributeSet, int) constructor executes on the same instance created in (7) .

12. If the (IntPtr, JniHandleOwnership) constructor cannot be found, then a System.MissingMethodException]

(xref:System.MissingMethodException) will be thrown.

https://docs.microsoft.com/en-us/dotnet/api/android.app.application
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/SanityTests/Hello.cs#L105
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview#ctor*
https://developer.android.com/reference/android/widget/TextView.html#getDefaultMovementMethod()
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview.defaultmovementmethod#android_widget_textview_defaultmovementmethod
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/ApiDemo/Text/LogTextBox.cs
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/ApiDemo/Text/LogTextBox.cs#L26
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/ApiDemo/Text/LogTextBox.cs#L45
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/ApiDemo/Resources/layout/log_text_box_1.xml#L29
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/ApiDemo/Text/LogTextBox.cs#L28
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/ApiDemo/Text/LogTextBox.cs#L41
https://github.com/xamarin/monodroid-samples/blob/f01b5c31/ApiDemo/Text/LogTextBox1.cs#L41
https://developer.android.com/reference/android/widget/TextView.html#TextView%2528android.content.Context,%20android.util.AttributeSet%2529
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.getobject

class ManagedValue : Java.Lang.Object {

 public string Value {get; private set;}

 public ManagedValue (string value)
 {
 Value = value;
 }

 public override string ToString ()
 {
 return string.Format ("[Managed: Value={0}]", Value);
 }
}

var list = new JavaList<IJavaObject>();
list.Add (new ManagedValue ("value"));
list [0].Dispose ();
Console.WriteLine (list [0].ToString ());

E/mono (2906): Unhandled Exception: System.NotSupportedException: Unable to activate instance of type
Scratch.PrematureDispose.ManagedValue from native handle 4051c8c8 --->
System.MissingMethodException: No constructor found for
Scratch.PrematureDispose.ManagedValue::.ctor(System.IntPtr, Android.Runtime.JniHandleOwnership)
E/mono (2906): at Java.Interop.TypeManager.CreateProxy (System.Type type, IntPtr handle,
JniHandleOwnership transfer) [0x00000] in <filename unknown>:0
E/mono (2906): at Java.Interop.TypeManager.CreateInstance (IntPtr handle, JniHandleOwnership transfer,
System.Type targetType) [0x00000] in <filename unknown>:0
E/mono (2906): --- End of inner exception stack trace ---
E/mono (2906): at Java.Interop.TypeManager.CreateInstance (IntPtr handle, JniHandleOwnership transfer,
System.Type targetType) [0x00000] in <filename unknown>:0
E/mono (2906): at Java.Lang.Object.GetObject (IntPtr handle, JniHandleOwnership transfer, System.Type
type) [0x00000] in <filename unknown>:0
E/mono (2906): at Java.Lang.Object._GetObject[IJavaObject] (IntPtr handle, JniHandleOwnership
transfer) [0x00000

I/mono-stdout(2993): [Managed: Value=]

There is a mapping between a JNI handle and the corresponding C# instance. Java.Lang.Object.Dispose() breaks

this mapping. If a JNI handle enters managed code after the mapping has been broken, it looks like Java

Activation, and the (IntPtr, JniHandleOwnership) constructor will be checked for and invoked. If the constructor

doesn't exist, then an exception will be thrown.

For example, given the following Managed Callable Wraper subclass:

If we create an instance, Dispose() of it, and cause the Managed Callable Wrapper to be re-created:

The program will die:

If the subclass does contain an (IntPtr, JniHandleOwnership) constructor, then a new instance of the type will be

created. As a result, the instance will appear to "lose" all instance data, as it's a new instance. (Note that the Value

is null.)

Only Dispose() of managed callable wrapper subclasses when you know that the Java object will not be used

anymore, or the subclass contains no instance data and a (IntPtr, JniHandleOwnership) constructor has been

provided.

Application Startup
When an activity, service, etc. is launched, Android will first check to see if there is already a process running to

host the activity/service/etc. If no such process exists, then a new process will be created, the

AndroidManifest.xml is read, and the type specified in the /manifest/application/@android:name attribute is

loaded and instantiated. Next, all types specified by the /manifest/application/provider/@android:name attribute

values are instantiated and have their ContentProvider.attachInfo%28) method invoked. Xamarin.Android hooks

into this by adding a mono.MonoRuntimeProvider ContentProvider to AndroidManifest.xml during the build

process. The mono.MonoRuntimeProvider.attachInfo() method is responsible for loading the Mono runtime into

the process. Any attempts to use Mono prior to this point will fail. (Note: This is why types which subclass

Android.App.Application need to provide an (IntPtr, JniHandleOwnership) constructor, as the Application

instance is created before Mono can be initialized.)

Once process initialization has completed, AndroidManifest.xml is consulted to find the class name of the

activity/service/etc. to launch. For example, the /manifest/application/activity/@android:name attribute is used

to determine the name of an Activity to load. For Activities, this type must inherit android.app.Activity. The

specified type is loaded via Class.forName() (which requires that the type be a Java type, hence the Android

Callable Wrappers), then instantiated. Creation of an Android Callable Wrapper instance will trigger creation of

an instance of the corresponding C# type. Android will then invoke Activity.onCreate(Bundle) , which will cause

the corresponding Activity.OnCreate(Bundle) to be invoked, and you're off to the races.

https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/application-element.html#nm
https://developer.android.com/guide/topics/manifest/provider-element.html#nm
https://docs.microsoft.com/en-us/dotnet/api/android.content.contentprovider.attachinfo
https://docs.microsoft.com/en-us/dotnet/api/android.app.application
https://github.com/xamarin/monodroid-samples/blob/a9e8ef23/SanityTests/Hello.cs#L103
https://developer.android.com/guide/topics/manifest/activity-element.html#nm
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
https://developer.android.com/reference/java/lang/Class.html#forName(java.lang.String)
https://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.oncreate

Available Assemblies
 7/12/2021 • 2 minutes to read • Edit Online

 .NET Standard Libraries

 Portable Class Libraries

 Supported Assemblies

A SSEM B LYA SSEM B LY A P I C O M PAT IB IL IT YA P I C O M PAT IB IL IT Y XA M A RIN IO SXA M A RIN IO S XA M A RIN A N DRO IDXA M A RIN A N DRO ID XA M A RIN M A CXA M A RIN M A C

FSharp.Core.dll

l18N.dll Includes CJK,
MidEast, Other, Rare,
West

Microsoft.CSharp.dll

Mono.CSharp.dll

Mono.Data.Sqlite.dll ADO.NET provider for
SQLite; see
limitations.

Xamarin.iOS, Xamarin.Android, and Xamarin.Mac all ship with over a dozen assemblies. Just as Silverlight is an

extended subset of the desktop .NET assemblies, Xamarin platforms is also an extended subset of several

Silverlight and desktop .NET assemblies.

Xamarin platforms are not ABI compatible with existing assemblies compiled for a different profile. You must

recompile your source code to generate assemblies targeting the correct profile (just as you need to recompile

source code to target Silverlight and .NET 3.5 separately).

Xamarin.Mac applications can be compiled in three modes: one that uses Xamarin's curated Mobile Profile, the

Xamarin.Mac .NET 4.5 Framework which allows you target existing full desktop assemblies, and an unsupported

one that uses the .NET API found in a system Mono installation. For more information, please see our Target

Frameworks documentation.

In addition to the iOS, Android, and Mac bindings, Xamarin projects can consume .NET Standard libraries.

Xamarin projects can also consume .NET Portable Class Libraries, although this technology is being deprecated

in favor of .NET Standard.

These are the assemblies available in the Reference Manager > Assemblies > FrameworkReference Manager > Assemblies > Framework (Visual Studio

2017) and Edit References > PackagesEdit References > Packages (Visual Studio for Mac), and their compatibility with Xamarin

platforms.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/internals/available-assemblies.md
https://docs.microsoft.com/en-us/xamarin/mac/platform/target-framework
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/net-standard
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/pcl

Mono.Data.Tds.dll TDS Protocol
support; used for
System.Data.SqlClient
support within
System.Data.

Mono.Dynamic.
Interpreter.dll

Mono.Security.dll Cryptographic APIs.

monotouch.dll This assembly
contains the C#
binding to the
CocoaTouch API. This
is only available
within Classic iOS
Projects.

MonoTouch.Dialog-
1.dll

MonoTouch.
NUnitLite.dll

mscorlib.dll Silverlight

OpenTK-1.0.dll The OpenGL/OpenAL
object oriented APIs,
extended to provide
iPhone device
support.

A SSEM B LYA SSEM B LY A P I C O M PAT IB IL IT YA P I C O M PAT IB IL IT Y XA M A RIN IO SXA M A RIN IO S XA M A RIN A N DRO IDXA M A RIN A N DRO ID XA M A RIN M A CXA M A RIN M A C

https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient
https://docs.microsoft.com/en-us/dotnet/api/system.data
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc838194(v=vs.95)

System.dll Silverlight, plus types
from the following
namespaces:
System.Collections.Sp
ecialized
System.
ComponentModel
System.Component
Model.Design
System.Diagnostics
System.IO
System.IO.Compressi
on
System.IO.Compressi
on.FileSystem
System.Net
System.Net.Cache
System.Net.Mail
System.Net.Mime
System.Net.
NetworkInformation
System.Net.Security
System.Net.Sockets
System.Runtime.
InteropServices
System.Runtime.Versi
oning
System.Security.
AccessControl
System.Security.Auth
entication
System.Security.
Cryptography
System.Security.Permi
ssions
System.Threading
System.Timers

System.
ComponentModel.
Composition.dll

System.
ComponentModel.
DataAnnotations.dll

System.Core.dll Silverlight

System.Data.dll .NET 3.5 , with some
functionality
removed.

System.Data.Services.
Client.dll

Full oData client.

System.IO.
Compression

A SSEM B LYA SSEM B LY A P I C O M PAT IB IL IT YA P I C O M PAT IB IL IT Y XA M A RIN IO SXA M A RIN IO S XA M A RIN A N DRO IDXA M A RIN A N DRO ID XA M A RIN M A CXA M A RIN M A C

https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc838194(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc838194(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/ms229335(v=vs.100)
https://docs.microsoft.com/en-us/xamarin/ios/data-cloud/system.data

System.IO.
Compression.
FileSystem

System.Json.dll Silverlight

System.Net.Http.dll

System.Numerics.dll

System.Runtime.
Serialization.dll

Silverlight

System.
ServiceModel.dll

WCF stack as present
in Silverlight

System.ServiceModel.
Internals.dll

System.ServiceModel.
Web.dll

Silverlight, plus types
from the following
namespaces:
System
System.ServiceModel.
Channels
System.ServiceModel.
Description
System.ServiceModel.
Web

System.
Transactions.dll

.NET 3.5; part of
System.Data support.

System.Web.
Services.dll

Basic Web services
from the .NET 3.5
profile, with the
server features
removed.

System.Windows.dll

System.Xml.dll .NET 3.5

System.Xml.Linq.dll .NET 3.5

System.Xml.Serializati
on.dll

Xamarin.iOS.dll This assembly
contains the C#
binding to the
CocoaTouch API. This
is only used in
Unified iOS Projects.

A SSEM B LYA SSEM B LY A P I C O M PAT IB IL IT YA P I C O M PAT IB IL IT Y XA M A RIN IO SXA M A RIN IO S XA M A RIN A N DRO IDXA M A RIN A N DRO ID XA M A RIN M A CXA M A RIN M A C

https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc838194(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc838194(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc838194(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc838194(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/ms229335(v=vs.100)
https://docs.microsoft.com/en-us/xamarin/ios/data-cloud/system.data
https://docs.microsoft.com/en-us/previous-versions/ms229335(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/ms229335(v=vs.100)

Java.Interop.dll

Mono.Android.dll

Mono.Android.
Export.dll

Mono.Posix.dll

System.
EnterpriseServices.dll

Xamarin.Android.
NUnitLite.dll

Mono.CompilerServic
es.SymbolWriter.dll

For compiler writers.

Xamarin.Mac.dll

System.Drawing.dll System.Drawing is
not supported in the
Unified API for the
Xamarin.Mac, .NET
4.5, or Mobile
frameworks.
System.Drawing
support can be
added to iOS and
macOS using the
sysdrawing-
coregraphics library

A SSEM B LYA SSEM B LY A P I C O M PAT IB IL IT YA P I C O M PAT IB IL IT Y XA M A RIN IO SXA M A RIN IO S XA M A RIN A N DRO IDXA M A RIN A N DRO ID XA M A RIN M A CXA M A RIN M A C

https://github.com/mono/sysdrawing-coregraphics

Xamarin.Android API Design Principles
 11/2/2020 • 11 minutes to read • Edit Online

 Design Principles

 Assemblies

 Binding Design

In addition to the core Base Class Libraries that are part of Mono, Xamarin.Android ships with bindings for

various Android APIs to allow developers to create native Android applications with Mono.

At the core of Xamarin.Android there is an interop engine that bridges the C# world with the Java world and

provides developers with access to the Java APIs from C# or other .NET languages.

These are some of our design principles for the Xamarin.Android binding

Conform to the .NET Framework Design Guidelines.

Allow developers to subclass Java classes.

Subclass should work with C# standard constructs.

Derive from an existing class.

Call base constructor to chain.

Overriding methods should be done with C#'s override system.

Make common Java tasks easy, and hard Java tasks possible.

Expose JavaBean properties as C# properties.

Expose a strongly typed API:

Increase type-safety.

Minimize runtime errors.

Get IDE intellisense on return types.

Allows for IDE popup documentation.

Encourage in-IDE exploration of the APIs:

Utilize Framework Alternatives to Minimize Java Classlib exposure.

Expose C# delegates (lambdas, anonymous methods and System.Delegate) instead of single-

method interfaces when appropriate and applicable.

Provide a mechanism to call arbitrary Java libraries (Android.Runtime.JNIEnv).

Xamarin.Android includes a number of assemblies that constitute the MonoMobile Profile. The Assemblies page

has more information.

The bindings to the Android platform are contained in the Mono.Android.dll assembly. This assembly contains

the entire binding for consuming Android APIs and communicating with the Android runtime VM.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/internals/api-design.md
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv

 CollectionsCollections

// This fails:
var badSource = new List<int> { 1, 2, 3 };
var badAdapter = new ArrayAdapter<int>(context, textViewResourceId, badSource);
badAdapter.Add (4);
if (badSource.Count != 4) // true
 throw new InvalidOperationException ("this is thrown");

// this works:
var goodSource = new JavaList<int> { 1, 2, 3 };
var goodAdapter = new ArrayAdapter<int> (context, textViewResourceId, goodSource);
goodAdapter.Add (4);
if (goodSource.Count != 4) // false
 throw new InvalidOperationException ("should not be reached.");

 PropertiesProperties

 Events and ListenersEvents and Listeners

The Android APIs utilize the java.util collections extensively to provide lists, sets, and maps. We expose these

elements using the System.Collections.Generic interfaces in our binding. The fundamental mappings are:

java.util.Set<E> maps to system type ICollection<T>, helper class Android.Runtime.JavaSet<T>.

java.util.List<E> maps to system type IList<T>, helper class Android.Runtime.JavaList<T>.

java.util.Map<K,V> maps to system type IDictionary<TKey,TValue>, helper class

Android.Runtime.JavaDictionary<K,V>.

java.util.Collection<E> maps to system type ICollection<T>, helper class

Android.Runtime.JavaCollection<T>.

We have provided helper classes to facilitate faster copyless marshaling of these types. When possible, we

recommend using these provided collections instead of the framework provided implementation, like List<T>

or Dictionary<TKey, TValue> . The Android.Runtime implementations utilize a native Java collection internally

and therefore do not require copying to and from a native collection when passing to an Android API member.

You can pass any interface implementation to an Android method accepting that interface, e.g. pass a List<int>

to the ArrayAdapter<int>(Context, int, IList<int>) constructor. However, for all implementations except for the

Android.Runtime implementations, this involves copying the list from the Mono VM into the Android runtime

VM. If the list is later changed within the Android runtime (e.g. by invoking the ArrayAdapter<T>.Add(T)

method), those changes will not be visible in managed code. If a JavaList<int> were used, those changes would

be visible.

Rephrased, collections interface implementations that are not one of the above listed Helper ClassHelper Classes only

marshal [In]:

Java methods are transformed into properties, when appropriate:

The Java method pair T getFoo() and void setFoo(T) are transformed into the Foo property. Example:

Activity.Intent.

The Java method getFoo() is transformed into the read-only Foo property. Example:

Context.PackageName.

Set-only properties are not generated.

Properties are not generated if the property type would be an array.

The Android APIs are built on top of Java and its components follow the Java pattern for hooking up event

listeners. This pattern tends to be cumbersome as it requires the user to create an anonymous class and declare

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic
https://developer.android.com/reference/java/util/Set.html
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.javaset-1
https://developer.android.com/reference/java/util/List.html
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.javalist-1
https://developer.android.com/reference/java/util/Map.html
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.idictionary-2
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.javadictionary-2
https://developer.android.com/reference/java/util/Collection.html
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.javacollection-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/api/android.runtime
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter-1
https://docs.microsoft.com/en-us/dotnet/api/android.widget.arrayadapter-1.add
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.intent#android_app_activity_intent
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.packagename#android_content_context_packagename

final android.widget.Button button = new android.widget.Button(context);

button.setText(this.count + " clicks!");
button.setOnClickListener (new View.OnClickListener() {
 public void onClick (View v) {
 button.setText(++this.count + " clicks!");
 }
});

var button = new Android.Widget.Button (context) {
 Text = string.Format ("{0} clicks!", this.count),
};
button.Click += (sender, e) => {
 button.Text = string.Format ("{0} clicks!", ++this.count);
};

the methods to override, for example, this is how things would be done in Android with Java:

The equivalent code in C# using events would be:

Note that both of the above mechanisms are available with Xamarin.Android. You can implement a listener

interface and attach it with View.SetOnClickListener, or you can attach a delegate created via any of the usual C#

paradigms to the Click event.

When the listener callback method has a void return, we create API elements based on an

EventHandler<TEventArgs> delegate. We generate an event like the above example for these listener types.

However, if the listener callback returns a non-void and non- booleanboolean value, events and EventHandlers are not

used. We instead generate a specific delegate for the signature of the callback and add properties instead of

events. The reason is to deal with delegate invocation order and return handling. This approach mirrors what is

done with the Xamarin.iOS API.

C# events or properties are only automatically generated if the Android event-registration method:

1. Has a set prefix, e.g. setOnClickListener.

2. Has a void return type.

3. Accepts only one parameter, the parameter type is an interface, the interface has only one method, and

the interface name ends in Listener , e.g. View.OnClick Listener.

Furthermore, if the Listener interface method has a return type of booleanboolean instead of voidvoid, then the generated

EventArgs subclass will contain a Handled property. The value of the Handled property is used as the return

value for the Listener method, and it defaults to true .

For example, the Android View.setOnKeyListener() method accepts the View.OnKeyListener interface, and the

View.OnKeyListener.onKey(View, int, KeyEvent) method has a boolean return type. Xamarin.Android generates a

corresponding View.KeyPress event, which is an EventHandler<View.KeyEventArgs>. The KeyEventArgs class in

turn has a View.KeyEventArgs.Handled property, which is used as the return value for the

View.OnKeyListener.onKey() method.

We intend to add overloads for other methods and ctors to expose the delegate-based connection. Also,

listeners with multiple callbacks require some additional inspection to determine if implementing individual

callbacks is reasonable, so we are converting these as they are identified. If there is no corresponding event,

listeners must be used in C#, but please bring any that you think could have delegate usage to our attention. We

have also done some conversions of interfaces without the "Listener" suffix when it was clear they would benefit

from a delegate alternative.

All of the listeners interfaces implement the Android.Runtime.IJavaObject interface, because of the

https://docs.microsoft.com/en-us/dotnet/api/system.eventhandler-1
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.setonclicklistener
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.ionclicklistener
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.setonkeylistener
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.ionkeylistener
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.ionkeylistener.onkey
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.keypress
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.keyeventargs
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.keyeventargs.handled#android_views_view_keyeventargs_handled
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.ijavaobject

 RunnablesRunnables

 Inner ClassesInner Classes

class CubeWallpaper : WallpaperService {
 public override WallpaperService.Engine OnCreateEngine ()
 {
 return new CubeEngine (this);
 }

 class CubeEngine : WallpaperService.Engine {
 public CubeEngine (CubeWallpaper s)
 : base (s)
 {
 }
 }
}

 InterfacesInterfaces

implementation details of the binding, so listener classes must implement this interface. This can be done by

implementing the listener interface on a subclass of Java.Lang.Object or any other wrapped Java object, such as

an Android activity.

Java utilizes the java.lang.Runnable interface to provide a delegation mechanism. The java.lang.Thread class is a

notable consumer of this interface. Android has employed the interface in the API as well.

Activity.runOnUiThread() and View.post() are notable examples.

The Runnable interface contains a single void method, run(). It therefore lends itself to binding in C# as a

System.Action delegate. We have provided overloads in the binding which accept an Action parameter for all

API members which consume a Runnable in the native API, e.g. Activity.RunOnUiThread() and View.Post().

We left the IRunnable overloads in place instead of replacing them since several types implement the interface

and can therefore be passed as runnables directly.

Java has two different types of nested classes: static nested classes and non-static classes.

Java static nested classes are identical to C# nested types.

Non-static nested classes, also called inner classes, are significantly different. They contain an implicit reference

to an instance of their enclosing type and cannot contain static members (among other differences outside the

scope of this overview).

When it comes to binding and C# use, static nested classes are treated as normal nested types. Inner classes,

meanwhile, have two significant differences:

1. The implicit reference to the containing type must be provided explicitly as a constructor parameter.

2. When inheriting from an inner class, the inner class must be nested within a type that inherits from the

containing type of the base inner class, and the derived type must provide a constructor of the same type

as the C# containing type.

For example, consider the Android.Service.Wallpaper.WallpaperService.Engine inner class. Since it's an inner

class, the WallpaperService.Engine() constructor takes a reference to a WallpaperService instance (compare and

contrast to the Java WallpaperService.Engine() constructor, which takes no parameters).

An example derivation of an inner class is CubeWallpaper.CubeEngine:

Note how CubeWallpaper.CubeEngine is nested within CubeWallpaper , CubeWallpaper inherits from the

containing class of WallpaperService.Engine , and CubeWallpaper.CubeEngine has a constructor which takes the

declaring type -- CubeWallpaper in this case -- all as specified above.

https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/java.lang.runnable
https://docs.microsoft.com/en-us/dotnet/api/java.lang.thread
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.runonuithread
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.post
https://docs.microsoft.com/en-us/dotnet/api/java.lang.runnable.run#java_lang_runnable_run
https://docs.microsoft.com/en-us/dotnet/api/system.action
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.runonuithread
https://docs.microsoft.com/en-us/dotnet/api/android.views.view.post
https://docs.microsoft.com/en-us/dotnet/api/java.lang.irunnable
https://download.oracle.com/javase/tutorial/java/javaOO/nested.html
https://docs.microsoft.com/en-us/dotnet/api/android.service.wallpaper.wallpaperservice.engine
https://docs.microsoft.com/en-us/dotnet/api/android.service.wallpaper.wallpaperservice.engine#ctor
https://docs.microsoft.com/en-us/dotnet/api/android.service.wallpaper.wallpaperservice

NOTENOTE

Java interfaces can contain three sets of members, two of which cause problems from C#:

1. Methods

2. Types

3. Fields

Java interfaces are translated into two types:

1. An (optional) interface containing method declarations. This interface has the same name as the Java

interface, except it also has an ' I ' prefix.

2. An (optional) static class containing any fields declared within the Java interface.

Nested types are "relocated" to be siblings of the enclosing interface instead of nested types, with the enclosing

interface name as a prefix.

For example, consider the android.os.Parcelable interface. The Parcelable interface contains methods, nested

types, and constants. The Parcelable interface methods are placed into the Android.OS.IParcelable interface. The

Parcelable interface constants are placed into the Android.OS.ParcelableConsts type. The nested

android.os.Parcelable.ClassLoaderCreator<T> and android.os.Parcelable.Creator<T> types are currently not

bound due to limitations in our generics support; if they were supported, they would be present as the

Android.OS.IParcelableClassLoaderCreator and Android.OS.IParcelableCreator interfaces. For example, the

nested android.os.IBinder.DeathRecipient interface is bound as the Android.OS.IBinderDeathRecipient interface.

Beginning with Xamarin.Android 1.9, Java interface constants are duplicated in an effort to simplify porting Java code. This

helps to improve porting Java code that relies on android provider interface constants.

In addition to the above types, there are four further changes:

1. A type with the same name as the Java interface is generated to contain constants.

2. Types containing interface constants also contain all constants that come from implemented Java

interfaces.

3. All classes that implement a Java interface containing constants get a new nested InterfaceConsts type

which contains constants from all implemented interfaces.

4. The Consts type is now obsolete.

For the android.os.Parcelable interface, this means that there will now be an Android.OS.Parcelable type to

contain the constants. For example, the Parcelable.CONTENTS_FILE_DESCRIPTOR constant will be bound as the

Parcelable.ContentsFileDescriptor constant, instead of as the ParcelableConsts.ContentsFileDescriptor constant.

For interfaces containing constants which implement other interfaces containing yet more constants, the union

of all constants is now generated. For example, the android.provider.MediaStore.Video.VideoColumns interface

implements the android.provider.MediaStore.MediaColumns interface. However, prior to 1.9, the

Android.Provider.MediaStore.Video.VideoColumnsConsts type has no way of accessing the constants declared

on Android.Provider.MediaStore.MediaColumnsConsts. As a result, the Java expression

MediaStore.Video.VideoColumns.TITLE needs to be bound to the C# expression

MediaStore.Video.MediaColumnsConsts.Title which is hard to discover without reading lots of Java

documentation. In 1.9, the equivalent C# expression will be MediaStore.Video.VideoColumns.Title.

Furthermore, consider the android.os.Bundle type, which implements the Java Parcelable interface. Since it

implements the interface, all constants on that interface are accessible "through" the Bundle type, e.g.

https://docs.microsoft.com/en-us/dotnet/api/android.os.parcelable
https://docs.microsoft.com/en-us/dotnet/api/android.os.iparcelable
https://docs.microsoft.com/en-us/dotnet/api/android.os.parcelableconsts
https://developer.android.com/reference/android/os/Parcelable.ClassLoaderCreator.html
https://developer.android.com/reference/android/os/Parcelable.Creator.html
https://developer.android.com/reference/android/os/IBinder.DeathRecipient.html
https://docs.microsoft.com/en-us/dotnet/api/android.os.ibinderdeathrecipient
https://developer.android.com/reference/android/provider/package-summary.html
https://docs.microsoft.com/en-us/dotnet/api/android.os.parcelable
https://developer.android.com/reference/android/os/Parcelable.html#CONTENTS_FILE_DESCRIPTOR
https://docs.microsoft.com/en-us/dotnet/api/android.os.parcelable.contentsfiledescriptor
https://developer.android.com/reference/android/provider/MediaStore.Video.VideoColumns.html
https://docs.microsoft.com/en-us/dotnet/api/android.provider.mediastore.mediacolumns
https://docs.microsoft.com/en-us/dotnet/api/android.provider.mediastore.video.videocolumnsconsts
https://docs.microsoft.com/en-us/dotnet/api/android.provider.mediastore.mediacolumnsconsts
https://docs.microsoft.com/en-us/dotnet/api/android.provider.mediastore.video.videocolumns.title
https://docs.microsoft.com/en-us/dotnet/api/android.os.bundle

 Resources

Resources/
 drawable-hdpi/
 icon.png

 drawable-ldpi/
 icon.png

 drawable-mdpi/
 icon.png

 layout/
 main.axml

 values/
 strings.xml

public class Resource {
 public class Drawable {
 public const int icon = 0x123;
 }

 public class Layout {
 public const int main = 0x456;
 }

 public class String {
 public const int first_string = 0xabc;
 public const int second_string = 0xbcd;
 }
}

Bundle.CONTENTS_FILE_DESCRIPTOR is a perfectly valid Java expression. Previously, to port this expression to

C# you would need to look at all the interfaces which are implemented to see from which type the

CONTENTS_FILE_DESCRIPTOR came from. Starting in Xamarin.Android 1.9, classes implementing Java

interfaces which contain constants will have a nested InterfaceConsts type, which will contain all the inherited

interface constants. This will allow translating Bundle.CONTENTS_FILE_DESCRIPTOR to

Bundle.InterfaceConsts.ContentsFileDescriptor.

Finally, types with a Consts suffix such as Android.OS.ParcelableConsts are now Obsolete, other than the newly

introduced InterfaceConsts nested types. They will be removed in Xamarin.Android 3.0.

Images, layout descriptions, binary blobs and string dictionaries can be included in your application as resource

files. Various Android APIs are designed to operate on the resource IDs instead of dealing with images, strings or

binary blobs directly.

For example, a sample Android app that contains a user interface layout (main.axml), an internationalization

table string (strings.xml) and some icons (drawable-*/icon.png) would keep its resources in the "Resources"

directory of the application:

The native Android APIs do not operate directly with filenames, but instead operate on resource IDs. When you

compile an Android application that uses resources, the build system will package the resources for distribution

and generate a class called Resource that contains the tokens for each one of the resources included. For

example, for the above Resources layout, this is what the R class would expose:

You would then use Resource.Drawable.icon to reference the drawable/icon.png file, or Resource.Layout.main to

reference the layout/main.xml file, or Resource.String.first_string to reference the first string in the

https://docs.microsoft.com/en-us/dotnet/api/android.os.bundle.interfaceconsts.contentsfiledescriptor
https://developer.android.com/guide/topics/resources/providing-resources.html
https://developer.android.com/guide/topics/resources/accessing-resources.html

 Constants and Enumerations

dictionary file values/strings.xml .

The native Android APIs have many methods that take or return an int that must be mapped to a constant field

to determine what the int means. To use these methods, the user is required to consult the documentation to see

which constants are appropriate values, which is less than ideal.

For example, consider Activity.requestWindowFeature(int featureID).

In these cases, we endeavor to group related constants together into a .NET enumeration, and remap the

method to take the enumeration instead. By doing this, we are able to offer IntelliSense selection of the potential

values.

The above example becomes: Activity.RequestWindowFeature(WindowFeatures featureId).

Note that this is a very manual process to figure out which constants belong together, and which APIs consume

these constants. Please file bugs for any constants used in the API that would be better expressed as an

enumeration.

https://developer.android.com/reference/android/app/Activity.html#requestWindowFeature(int)
https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.requestwindowfeature

Garbage Collection
 11/2/2020 • 15 minutes to read • Edit Online

NOTENOTE

 Cross-VM Object Collections

Xamarin.Android uses Mono's Simple Generational garbage collector. This is a mark-and-sweep garbage

collector with two generations and a large object space, with two kinds of collections:

Minor collections (collects Gen0 heap)

Major collections (collects Gen1 and large object space heaps).

In the absence of an explicit collection via GC.Collect() collections are on demand, based upon heap allocations. This is not

a reference counting system; objects will not be collected as soon as there are no outstanding references, or when a scope

has exited. The GC will run when the minor heap has run out of memory for new allocations. If there are no allocations, it

will not run.

Minor collections are cheap and frequent, and are used to collect recently allocated and dead objects. Minor

collections are performed after every few MB of allocated objects. Minor collections may be manually

performed by calling GC.Collect (0)

Major collections are expensive and less frequent, and are used to reclaim all dead objects. Major collections are

performed once memory is exhausted for the current heap size (before resizing the heap). Major collections

may be manually performed by calling GC.Collect () or by calling GC.Collect (int) with the argument

GC.MaxGeneration.

There are three categories of object types.

Managed objectsManaged objects : types which do not inherit from Java.Lang.Object , e.g. System.String. These are

collected normally by the GC.

Java objectsJava objects : Java types which are present within the Android runtime VM but not exposed to the Mono

VM. These are boring, and won't be discussed further. These are collected normally by the Android

runtime VM.

Peer objectsPeer objects : types which implement IJavaObject , e.g. all Java.Lang.Object and Java.Lang.Throwable

subclasses. Instances of these types have two "halfs" a managed peer and a native peer. The managed

peer is an instance of the C# class. The native peer is an instance of a Java class within the Android

runtime VM, and the C# IJavaObject.Handle property contains a JNI global reference to the native peer.

There are two types of native peers:

Framework peersFramework peers : "Normal" Java types which know nothing of Xamarin.Android, e.g.

android.content.Context.

User peersUser peers : Android Callable Wrappers which are generated at build time for each Java.Lang.Object

subclass present within the application.

As there are two VMs within a Xamarin.Android process, there are two types of garbage collections:

Android runtime collections

Mono collections

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/internals/garbage-collection.md
https://www.mono-project.com/docs/advanced/garbage-collector/sgen/
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/system.gc.maxgeneration#system_gc_maxgeneration
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.ijavaobject
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/java.lang.throwable
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.ijavaobject.handle#android_runtime_ijavaobject_handle
https://docs.microsoft.com/en-us/dotnet/api/android.content.context

 Object Cycles

 Automatic Collections

I/monodroid-gc(PID): 46800 outstanding GREFs. Performing a full GC!

 GC Bridge Options

Android runtime collections operate normally, but with a caveat: a JNI global reference is treated as a GC root.

Consequently, if there is a JNI global reference holding onto an Android runtime VM object, the object cannot be

collected, even if it's otherwise eligible for collection.

Mono collections are where the fun happens. Managed objects are collected normally. Peer objects are collected

by performing the following process:

1. All Peer objects eligible for Mono collection have their JNI global reference replaced with a JNI weak

global reference.

2. An Android runtime VM GC is invoked. Any Native peer instance may be collected.

3. The JNI weak global references created in (1) are checked. If the weak reference has been collected, then

the Peer object is collected. If the weak reference has not been collected, then the weak reference is

replaced with a JNI global reference and the Peer object is not collected. Note: on API 14+, this means

that the value returned from IJavaObject.Handle may change after a GC.

The end result of all this is that an instance of a Peer object will live as long as it is referenced by either managed

code (e.g. stored in a static variable) or referenced by Java code. Furthermore, the lifetime of Native peers will

be extended beyond what they would otherwise live, as the Native peer won't be collectible until both the Native

peer and the Managed peer are collectible.

Peer objects are logically present within both the Android runtime and Mono VM's. For example, an

Android.App.Activity managed peer instance will have a corresponding android.app.Activity framework peer

Java instance. All objects that inherit from Java.Lang.Object can be expected to have representations within both

VMs.

All objects that have representation in both VMs will have lifetimes which are extended compared to objects

which are present only within a single VM (such as a System.Collections.Generic.List<int>). Calling GC.Collect

won't necessarily collect these objects, as the Xamarin.Android GC needs to ensure that the object isn't

referenced by either VM before collecting it.

To shorten object lifetime, Java.Lang.Object.Dispose() should be invoked. This will manually "sever" the

connection on the object between the two VMs by freeing the global reference, thus allowing the objects to be

collected faster.

Beginning with Release 4.1.0, Xamarin.Android automatically performs a full GC when a gref threshold is

crossed. This threshold is 90% of the known maximum grefs for the platform: 1800 grefs on the emulator (2000

max), and 46800 grefs on hardware (maximum 52000). Note: Xamarin.Android only counts the grefs created by

Android.Runtime.JNIEnv, and will not know about any other grefs created in the process. This is a heuristic only.

When an automatic collection is performed, a message similar to the following will be printed to the debug log:

The occurrence of this is non-deterministic, and may happen at inopportune times (e.g. in the middle of graphics

rendering). If you see this message, you may want to perform an explicit collection elsewhere, or you may want

to try to reduce the lifetime of peer objects.

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity
https://developer.android.com/reference/android/app/Activity.html
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect
https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.dispose#java_lang_object_dispose
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/mono_for_android_4/mono_for_android_4.1.0/index.md
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.jnienv

MONO_GC_PARAMS=bridge-implementation=tarjan

 Helping the GC

 Disposing of Peer instancesDisposing of Peer instances

Xamarin.Android offers transparent memory management with Android and the Android runtime. It is

implemented as an extension to the Mono garbage collector called the GC Bridge.

The GC Bridge works during a Mono garbage collection and figures out which peer objects needs their

"liveness" verified with the Android runtime heap. The GC Bridge makes this determination by doing the

following steps (in order):

1. Induce the mono reference graph of unreachable peer objects into the Java objects they represent.

2. Perform a Java GC.

3. Verify which objects are really dead.

This complicated process is what enables subclasses of Java.Lang.Object to freely reference any objects; it

removes any restrictions on which Java objects can be bound to C#. Because of this complexity, the bridge

process can be very expensive and it can cause noticeable pauses in an application. If the application is

experiencing significant pauses, it's worth investigating one of the following three GC Bridge implementations:

Tar janTarjan - A completely new design of the GC Bridge based on Robert Tarjan's algorithm and backwards

reference propagation. It has the best performance under our simulated workloads, but it also has the

larger share of experimental code.

NewNew - A major overhaul of the original code, fixing two instances of quadratic behavior but keeping the

core algorithm (based on Kosaraju's algorithm for finding strongly connected components).

OldOld - The original implementation (considered the most stable of the three). This is the bridge that an

application should use if the GC_BRIDGE pauses are acceptable.

The only way to figure out which GC Bridge works best is by experimenting in an application and analyzing the

output. There are two ways to collect the data for benchmarking:

Enable loggingEnable logging - Enable logging (as describe in the Configuration section) for each GC Bridge option,

then capture and compare the log outputs from each setting. Inspect the GC messages for each option;

in particular, the GC_BRIDGE messages. Pauses up to 150ms for non-interactive applications are tolerable,

but pauses above 60ms for very interactive applications (such as games) are a problem.

Enable br idge accountingEnable br idge accounting - Bridge accounting will display the average cost of the objects pointed by

each object involved in the bridge process. Sorting this information by size will provide hints as to what is

holding the largest amount of extra objects.

The default setting is Tar janTarjan. If you find a regression, you may find it necessary to set this option to OldOld. Also,

you may choose to use the more stable OldOld option if Tar janTarjan does not produce an improvement in performance.

To specify which GC_BRIDGE option an application should use, pass bridge-implementation=old ,

bridge-implementation=new or bridge-implementation=tarjan to the MONO_GC_PARAMS environment variable. This

is accomplished by adding a new file to your project with a Build actionBuild action of AndroidEnvironment . For example:

For more information, see Configuration.

There are multiple ways to help the GC to reduce memory use and collection times.

The GC has an incomplete view of the process and may not run when memory is low because the GC doesn't

https://en.wikipedia.org/wiki/Tarjan%2527s_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Kosaraju%2527s_algorithm

NOTENOTE

 Sharing Between Multiple ThreadsSharing Between Multiple Threads

 Disposing Bound Java TypesDisposing Bound Java Types

using (var d = Drawable.CreateFromPath ("path/to/filename"))
 imageView.SetImageDrawable (d);

 Disposing Other TypesDisposing Other Types

partial class MyClickListener : Java.Lang.Object, View.IOnClickListener {
 // ...
}

know that memory is low.

For example, an instance of a Java.Lang.Object type or derived type is at least 20 bytes in size (subject to change

without notice, etc., etc.). Managed Callable Wrappers do not add additional instance members, so when you

have a Android.Graphics.Bitmap instance that refers to a 10MB blob of memory, Xamarin.Android's GC won't

know that – the GC will see a 20-byte object and will be unable to determine that it's linked to Android runtime-

allocated objects that's keeping 10MB of memory alive.

It is frequently necessary to help the GC. Unfortunately, GC.AddMemoryPressure() and

GC.RemoveMemoryPressure() are not supported, so if you know that you just freed a large Java-allocated

object graph you may need to manually call GC.Collect() to prompt a GC to release the Java-side memory, or

you can explicitly dispose of Java.Lang.Object subclasses, breaking the mapping between the managed callable

wrapper and the Java instance. For example, see Bug 1084.

You must be extremely careful when disposing of Java.Lang.Object subclass instances.

To minimize the possibility of memory corruption, observe the following guidelines when calling Dispose() .

If the Java or managed instance may be shared between multiple threads, it should not be Dispose() d, everever .

For example, Typeface.Create() may return a cached instance. If multiple threads provide the same arguments,

they will obtain the same instance. Consequently, Dispose() ing of the Typeface instance from one thread may

invalidate other threads, which can result in ArgumentException s from JNIEnv.CallVoidMethod() (among others)

because the instance was disposed from another thread.

If the instance is of a bound Java type, the instance can be disposed of as long as the instance won't be reused

from managed code and the Java instance can't be shared amongst threads (see previous Typeface.Create()

discussion). (Making this determination may be difficult.) The next time the Java instance enters managed code,

a new wrapper will be created for it.

This is frequently useful when it comes to Drawables and other resource-heavy instances:

The above is safe because the Peer that Drawable.CreateFromPath() returns will refer to a Framework peer, not a

User peer. The Dispose() call at the end of the using block will break the relationship between the managed

Drawable and framework Drawable instances, allowing the Java instance to be collected as soon as the Android

runtime needs to. This would not be safe if Peer instance referred to a User peer ; here we're using "external"

information to know that the Drawable cannot refer to a User peer, and thus the Dispose() call is safe.

If the instance refers to a type that isn't a binding of a Java type (such as a custom Activity), DO NOTDO NOT call

Dispose() unless you know that no Java code will call overridden methods on that instance. Failure to do so

results in NotSupportedException s.

For example, if you have a custom click listener :

https://docs.microsoft.com/en-us/dotnet/api/java.lang.object
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.bitmap
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect
https://bugzilla.xamarin.com/show_bug.cgi?id=1084#c6
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.typeface.create
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.drawables.drawable.createfrompath
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.drawables.drawable
https://developer.android.com/reference/android/graphics/drawable/Drawable.html

// BAD CODE; DO NOT USE
Button b = FindViewById<Button> (Resource.Id.myButton);
using (var listener = new MyClickListener ())
 b.SetOnClickListener (listener);

 Using Explicit Checks to Avoid ExceptionsUsing Explicit Checks to Avoid Exceptions

System.ArgumentException: 'jobject' must not be IntPtr.Zero.
Parameter name: jobject
at Android.Runtime.JNIEnv.CallVoidMethod

class MyClass : Java.Lang.Object, ISomeInterface
{
 protected override void Dispose (bool disposing)
 {
 base.Dispose (disposing);
 for (int i = 0; i < this.childViews.Count; ++i)
 {
 // ...
 }
 }
}

You should not dispose of this instance, as Java will attempt to invoke methods on it in the future:

If you've implemented a Java.Lang.Object.Dispose overload method, avoid touching objects that involve JNI.

Doing so may create a double-dispose situation that makes it possible for your code to (fatally) attempt to

access an underlying Java object that has already been garbage-collected. Doing so produces an exception

similar to the following:

This situation often occurs when the first dispose of an object causes a member to become null, and then a

subsequent access attempt on this null member causes an exception to be thrown. Specifically, the object's

Handle (which links a managed instance to its underlying Java instance) is invalidated on the first dispose, but

managed code still attempts to access this underlying Java instance even though it is no longer available (see

Managed Callable Wrappers for more about the mapping between Java instances and managed instances).

A good way to prevent this exception is to explicitly verify in your Dispose method that the mapping between

the managed instance and the underlying Java instance is still valid; that is, check to see if the object's Handle is

null (IntPtr.Zero) before accessing its members. For example, the following Dispose method accesses a

childViews object:

If an initial dispose pass causes childViews to have an invalid Handle , the for loop access will throw an

ArgumentException . By adding an explicit Handle null check before the first childViews access, the following

Dispose method prevents the exception from occurring:

https://docs.microsoft.com/en-us/dotnet/api/java.lang.object.dispose

class MyClass : Java.Lang.Object, ISomeInterface
{
 protected override void Dispose (bool disposing)
 {
 base.Dispose (disposing);

 // Check for a null handle:
 if (this.childViews.Handle == IntPtr.Zero)
 return;

 for (int i = 0; i < this.childViews.Count; ++i)
 {
 // ...
 }
 }
}

 Reduce Referenced InstancesReduce Referenced Instances

class BadActivity : Activity {

 private List<string> strings;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 strings.Value = new List<string> (
 Enumerable.Range (0, 10000)
 .Select(v => new string ('x', v % 1000)));
 }
}

Whenever an instance of a Java.Lang.Object type or subclass is scanned during the GC, the entire object graph

that the instance refers to must also be scanned. The object graph is the set of object instances that the "root

instance" refers to, plus everything referenced by what the root instance refers to, recursively.

Consider the following class:

When BadActivity is constructed, the object graph will contain 10004 instances (1x BadActivity , 1x strings ,

1x string[] held by strings , 10000x string instances), all of which will need to be scanned whenever the

BadActivity instance is scanned.

This can have detrimental impacts on your collection times, resulting in increased GC pause times.

You can help the GC by reducing the size of object graphs which are rooted by User peer instances. In the above

example, this can be done by moving BadActivity.strings into a separate class which doesn't inherit from

Java.Lang.Object:

class HiddenReference<T> {

 static Dictionary<int, T> table = new Dictionary<int, T> ();
 static int idgen = 0;

 int id;

 public HiddenReference ()
 {
 lock (table) {
 id = idgen ++;
 }
 }

 ~HiddenReference ()
 {
 lock (table) {
 table.Remove (id);
 }
 }

 public T Value {
 get { lock (table) { return table [id]; } }
 set { lock (table) { table [id] = value; } }
 }
}

class BetterActivity : Activity {

 HiddenReference<List<string>> strings = new HiddenReference<List<string>>();

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 strings.Value = new List<string> (
 Enumerable.Range (0, 10000)
 .Select(v => new string ('x', v % 1000)));
 }
}

 Minor Collections

 Major Collections

Minor collections may be manually performed by calling GC.Collect(0). Minor collections are cheap (when

compared to major collections), but do have a significant fixed cost, so you don't want to trigger them too often,

and should have a pause time of a few milliseconds.

If your application has a "duty cycle" in which the same thing is done over and over, it may be advisable to

manually perform a minor collection once the duty cycle has ended. Example duty cycles include:

The rendering cycle of a single game frame.

The whole interaction with a given app dialog (opening, filling, closing)

A group of network requests to refresh/sync app data.

Major collections may be manually performed by calling GC.Collect() or GC.Collect(GC.MaxGeneration) .

They should be performed rarely, and may have a pause time of a second on an Android-style device when

collecting a 512MB heap.

Major collections should only be manually invoked, if ever :

https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect#system_gc_collect

 Diagnostics

 Configuration

MONO_GC_PARAMS=soft-heap-limit=128m

At the end of lengthy duty cycles and when a long pause won't present a problem to the user.

Within an overridden Android.App.Activity.OnLowMemory() method.

To track when global references are created and destroyed, you can set the debug.mono.log system property to

contain gref and/or gc.

The Xamarin.Android garbage collector can be configured by setting the MONO_GC_PARAMS environment variable.

Environment variables may be set with a Build action of AndroidEnvironment.

The MONO_GC_PARAMS environment variable is a comma-separated list of the following parameters:

nursery-size = size : Sets the size of the nursery. The size is specified in bytes and must be a power of

two. The suffixes k , m and g can be used to specify kilo-, mega- and gigabytes, respectively. The

nursery is the first generation (of two). A larger nursery will usually speed up the program but will

obviously use more memory. The default nursery size 512 kb.

soft-heap-limit = size : The target maximum managed memory consumption for the app. When

memory use is below the specified value, the GC is optimized for execution time (fewer collections).

Above this limit, the GC is optimized for memory usage (more collections).

evacuation-threshold = threshold : Sets the evacuation threshold in percent. The value must be an

integer in the range 0 to 100. The default is 66. If the sweep phase of the collection finds that the

occupancy of a specific heap block type is less than this percentage, it will do a copying collection for that

block type in the next major collection, thereby restoring occupancy to close to 100 percent. A value of 0

turns evacuation off.

bridge-implementation = bridge implementation : This will set the GC Bridge option to help address GC

performance issues. There are three possible values: old , new , tarjan.

bridge-require-precise-merge : The Tarjan bridge contains an optimization which may, on rare occasions,

cause an object to be collected one GC after it first becomes garbage. Including this option disables that

optimization, making GCs more predictable but potentially slower.

For example, to configure the GC to have a heap size limit of 128MB, add a new file to your Project with a BuildBuild

actionaction of AndroidEnvironment with the contents:

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity.onlowmemory#android_app_activity_onlowmemory

Limitations
 10/28/2019 • 3 minutes to read • Edit Online

 Limited Dynamic Language Support

 Limited Java Generation Support

 Missing constructorsMissing constructors

[Service]
class MyIntentService : IntentService {
 public MyIntentService (): base ("value")
 {
 }
}

Since applications on Android require generating Java proxy types during the build process, it is not possible to

generate all code at runtime.

These are the Xamarin.Android limitations compared to desktop Mono:

Android callable wrappers are needed any time the Android runtime needs to invoke managed code. Android

callable wrappers are generated at compile time, based on static analysis of IL. The net result of this: you cannot

use dynamic languages (IronPython, IronRuby, etc.) in any scenario where subclassing of Java types is required

(including indirect subclassing), as there's no way of extracting these dynamic types at compile time to generate

the necessary Android callable wrappers.

Android Callable Wrappers need to be generated in order for Java code to call managed code. By default,

Android callable wrappers will only contain (certain) declared constructors and methods which override a

virtual Java method (i.e. it has RegisterAttribute) or implement a Java interface method (interface likewise has

Attribute).

Prior to the 4.1 release, no additional methods could be declared. With the 4.1 release, the Export and

ExportField custom attributes can be used to declare Java methods and fields within the Android Callable

Wrapper.

Constructors remain tricky, unless ExportAttribute is used. The algorithm for generating Android callable

wrapper constructors is that a Java constructor will be emitted if:

1. There is a Java mapping for all the parameter types

2. The base class declares the same constructor – This is required because the Android callable wrapper must

invoke the corresponding base class constructor ; no default arguments can be used (as there's no easy way

to determine what values should be used within Java).

For example, consider the following class:

While this looks perfectly logical, the resulting Android callable wrapper in Release builds will not contain a

default constructor. Consequently, if you attempt to start this service (e.g. Context.StartService , it will fail:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/internals/limitations.md
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute
https://docs.microsoft.com/en-us/dotnet/api/java.interop.exportattribute
https://docs.microsoft.com/en-us/dotnet/api/android.content.context.startservice

E/AndroidRuntime(31766): FATAL EXCEPTION: main
E/AndroidRuntime(31766): java.lang.RuntimeException: Unable to instantiate service example.MyIntentService:
java.lang.InstantiationException: can't instantiate class example.MyIntentService; no empty constructor
E/AndroidRuntime(31766): at android.app.ActivityThread.handleCreateService(ActivityThread.java:2347)
E/AndroidRuntime(31766): at android.app.ActivityThread.access$1600(ActivityThread.java:130)
E/AndroidRuntime(31766): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1277)
E/AndroidRuntime(31766): at android.os.Handler.dispatchMessage(Handler.java:99)
E/AndroidRuntime(31766): at android.os.Looper.loop(Looper.java:137)
E/AndroidRuntime(31766): at android.app.ActivityThread.main(ActivityThread.java:4745)
E/AndroidRuntime(31766): at java.lang.reflect.Method.invokeNative(Native Method)
E/AndroidRuntime(31766): at java.lang.reflect.Method.invoke(Method.java:511)
E/AndroidRuntime(31766): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:786)
E/AndroidRuntime(31766): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:553)
E/AndroidRuntime(31766): at dalvik.system.NativeStart.main(Native Method)
E/AndroidRuntime(31766): Caused by: java.lang.InstantiationException: can't instantiate class
example.MyIntentService; no empty constructor
E/AndroidRuntime(31766): at java.lang.Class.newInstanceImpl(Native Method)
E/AndroidRuntime(31766): at java.lang.Class.newInstance(Class.java:1319)
E/AndroidRuntime(31766): at android.app.ActivityThread.handleCreateService(ActivityThread.java:2344)
E/AndroidRuntime(31766): ... 10 more

[Service]
class MyIntentService : IntentService {
 [Export (SuperArgumentsString = "\"value\"")]
 public MyIntentService (): base("value")
 {
 }

 // ...
}

 Generic C# classesGeneric C# classes

The workaround is to declare a default constructor, adorn it with the ExportAttribute , and set the

ExportAttribute.SuperStringArgument :

Generic C# classes are only partially supported. The following limitations exist:

public abstract class Parcelable<T> : Java.Lang.Object, IParcelable
{
 // Invalid; generates XA4207
 [ExportField ("CREATOR")]
 public static IParcelableCreator CreateCreator ()
 {
 ...
}

Generic types may not use [Export] or [ExportField]. Attempting to do so will generate an XA4207

error.

Generic methods may not use [Export] or [ExportField] :

https://docs.microsoft.com/en-us/dotnet/api/java.interop.exportattribute.superargumentsstring#java_interop_exportattribute_superargumentsstring

 Partial Java Generics Support

 Related Links

public class Example : Java.Lang.Object
{

 // Invalid; generates XA4207
 [Export]
 public static void Method<T>(T value)
 {
 ...
 }
}

public class Example : Java.Lang.Object
{
 // Invalid; generates XA4208
 [ExportField ("CREATOR")]
 public static void CreateSomething ()
 {
 }
}

[Activity (Label="Die!", MainLauncher=true)]
public class BadGenericActivity<T> : Activity
{
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);
 }
}

[ExportField] may not be used on methods which return void :

Instances of Generic types must not be created from Java code. They can only safely be created from

managed code:

The Java generics binding support is limited. Particularly, members in a generic instance class that is derived

from another generic (non-instantiated) class are left exposed as Java.Lang.Object. For example,

Android.Content.Intent.GetParcelableExtra method returns Java.Lang.Object. This is due to erased Java generics.

We have some classes that do not apply this limitation, but they are manually adjusted.

Android Callable Wrappers

Working with JNI

ExportAttribute

SuperString

RegisterAttribute

https://docs.microsoft.com/en-us/dotnet/api/android.content.intent.getparcelableextra
https://docs.microsoft.com/en-us/dotnet/api/java.interop.exportattribute
https://docs.microsoft.com/en-us/dotnet/api/java.interop.exportattribute.superargumentsstring#java_interop_exportattribute_superargumentsstring
https://docs.microsoft.com/en-us/dotnet/api/android.runtime.registerattribute

Troubleshooting Xamarin.Android
 7/12/2021 • 2 minutes to read • Edit Online

 Troubleshooting Tips

 Frequently Asked Questions

 Resolving Library Installation Errors

 Changes to the Android SDK Tooling

 Xamarin.Android Errors Reference

Documents in this section cover features specific to troubleshooting with Android.

Troubleshooting tips and tricks.

Frequently asked Xamarin.Android troubleshooting questions.

This guide provides workarounds for some common errors that may occur while referencing and automatically

downloading Android Support Libraries or Google Play services.

Starting in 26.0.1 of the Android SDK Tools, Google has removed the existing AVD and SDK managers in favour

of new command line tooling.

An errors reference guide, showing the most common errors you may experience when using Xamarin.Android

in Visual Studio

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/index.md
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/questions/index.html#body
https://docs.microsoft.com/en-us/xamarin/android/errors-and-warnings/

Troubleshooting Tips
 7/8/2021 • 22 minutes to read • Edit Online

 Getting Diagnostic Information

 Diagnostic MSBuild Output

 Device Deployment Logs

Xamarin.Android has a few places to look when tracking down various bugs. These include:

1. Diagnostic MSBuild output.

2. Device deployment logs.

3. Android Debug Log Output.

Diagnostic MSBuild can contain additional information relating to package building and may contain some

package deployment information.

To enable diagnostic MSBuild output within Visual Studio:

1. Click Tools > Options...Tools > Options...

2. In the left-hand tree view, select Projects and Solutions > Build and RunProjects and Solutions > Build and Run

3. In the right-hand panel, set the MSBuild build output verbosity dropdown to Diagnostic

4. Click OKOK

5. Clean and rebuild your package.

6. Diagnostic output is visible within the Output panel.

To enable diagnostic MSBuild output within Visual Studio for Mac/OS X:

1. Click Visual Studio for Mac > Preferences...Visual Studio for Mac > Preferences...

2. In the left-hand tree view, select Projects > BuildProjects > Build

3. In the right-hand panel, set the Log verbosity drop-down to Diagnostic

4. Click OKOK

5. Restart Visual Studio for Mac

6. Clean and rebuild your package.

7. Diagnostic output is visible within the Errors Pad (View > Pads > ErrorsView > Pads > Errors), by clicking the Build Output

button.

To enable device deployment logging within Visual Studio:

1. Tools > Options...Tools > Options...>

2. In the left-hand tree view, select Xamarin > Android SettingsXamarin > Android Settings

3. In the right-hand panel, enable the [X] extension debug logging (writes monodroid.log to yourextension debug logging (writes monodroid.log to your

desktop)desktop) check box.

4. Log messages are written to the monodroid.log file on your desktop.

Visual Studio for Mac always writes device deployment logs. FInding them is slightly more difficult; a

AndroidUtils log file is created for every day + time that a deployment occurs, for example: AndroidTools-AndroidTools-

2012-10-24_12-35-45.log2012-10-24_12-35-45.log.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/troubleshooting.md

 Android Debug Log Output

adb shell setprop PROPERTY_NAME PROPERTY_VALUE

 Xamarin.Android System PropertiesXamarin.Android System Properties

 Deleting bin and obj

On Windows, log files are written to %LOCALAPPDATA%\XamarinStudio-{VERSION}\Logs .

On OS X, log files are written to $HOME/Library/Logs/XamarinStudio-{VERSION} .

Android will write many messages to the Android Debug Log. Xamarin.Android uses Android system properties

to control the generation of additional messages to the Android Debug Log. Android system properties can be

set through the setprop command within the Android Debug Bridge (adb):

System properties are read during process startup, and thus must be either set before the application is

launched or the application must be restarted after the system properties are changed.

Xamarin.Android supports the following system properties:

NOTENOTE

NOTENOTE

adb shell setprop debug.mono.env "'MONO_LOG_LEVEL=info|MONO_LOG_MASK=asm'"

NOTENOTE

debug.mono.debug: If a non-empty string, this is equivalent to *mono-debug* .

debug.mono.env: A pipe-separated ('|') list of environment variables to export during application startup,

before mono has been initialized. This allows setting environment variables that control mono logging.

Since the value is '|'-separated, the value must have an extra level of quoting, as the `adb shell` command will

remove a set of quotes.

Android system property values can be no longer than 92 characters in length.

Example:

debug.mono.log: A comma-separated (',') list of components that should print additional messages to the

Android Debug Log. By default, nothing is set. Components include:

all: Print all messages

gc: Print GC-related messages.

gref: Print (weak, global) reference allocation and deallocation messages.

lref: Print local reference allocation and deallocation messages.

These are extremely verbose. Do not enable unless you really need to.

debug.mono.trace: Allows setting the mono --trace =PROPERTY_VALUE setting.

Xamarin.Android has suffered in the past from a situation such as:

https://developer.android.com/guide/developing/tools/adb.html
http://docs.go-mono.com/?link=man%253amono(1)

 Xamarin.Android cannot resolve System.ValueTuple

 GC Messages

I/monodroid-gc(12331): GC cleanup summary: 81 objects tested - resurrecting 21.

adb shell setprop debug.mono.env MONO_LOG_LEVEL=debug

D/Mono (15723): GC_BRIDGE num-objects 1 num_hash_entries 81226 sccs size 81223 init 0.00ms df1 285.36ms sort
38.56ms dfs2 50.04ms setup-cb 9.95ms free-data 106.54ms user-cb 20.12ms clenanup 0.05ms links
5523436/5523436/5523096/1 dfs passes 1104 6883/11046605
D/Mono (15723): GC_MINOR: (Nursery full) pause 2.01ms, total 287.45ms, bridge 225.60 promoted 0K major
325184K los 1816K
D/Mono (2073): GC_MAJOR: (user request) pause 2.17ms, total 2.47ms, bridge 28.77 major 576K/576K los 0K/16K

You encounter a strange build or runtime error.

You Clean , Rebuild , or manually delete your bin and obj directories.

The problem goes away.

We are heavily invested into fixing problems such as these due to their impact on developer productivity.

If a problem such as this happens to you:

1. Make a mental note. What was the last action that got your project into this state?

2. Save your current build log. Try building again, and record a diagnostic build log.

3. Submit a bug report.

Before deleting your bin and obj directories, zip them up and save them for later diagnosis if needed. You can

probably merely Clean your Xamarin.Android application project to get things working again.

This error occurs due to an incompatibility with Visual Studio.

Visual Studio 2017 Update 1Visual Studio 2017 Update 1 (version 15.1 or older) is only compatible with the System.ValueTupleSystem.ValueTuple

NuGet 4.3 .0NuGet 4.3 .0 (or older).

Visual Studio 2017 Update 2Visual Studio 2017 Update 2 (version 15.2 or newer) is only compatible with the System.ValueTupleSystem.ValueTuple

NuGet 4.3 .1NuGet 4.3 .1 (or newer).

Please choose the correct System.ValueTuple NuGet that corresponds with your Visual Studio 2017 installation.

GC component messages can be viewed by setting the debug.mono.log system property to a value that contains

gc.

GC messages are generated whenever the GC executes and provides information about how much work the GC

did:

Additional GC information such as timing information can be generated by setting the MONO_LOG_LEVEL

environment variable to debug :

This will result in (lots of) additional Mono messages, including these three of consequence:

In the GC_BRIDGE message, num-objects is the number of bridge objects this pass is considering, and

num_hash_entries is the number of objects processed during this invocation of the bridge code.

In the GC_MINOR and GC_MAJOR messages, total is the amount of time while the world is paused (no threads

https://github.com/xamarin/xamarin-android/wiki/Submitting-Bugs,-Feature-Requests,-and-Pull-Requests

 Global Reference Messages

adb shell setprop debug.mono.log gref

NOTENOTE

I/monodroid-gref(12405): +g+ grefc 108 gwrefc 0 obj-handle 0x40517468/L -> new-handle 0x40517468/L from
at Java.Lang.Object.RegisterInstance(IJavaObject instance, IntPtr value, JniHandleOwnership transfer)
I/monodroid-gref(12405): at Java.Lang.Object.SetHandle(IntPtr value, JniHandleOwnership transfer)
I/monodroid-gref(12405): at Java.Lang.Object..ctor(IntPtr handle, JniHandleOwnership transfer)
I/monodroid-gref(12405): at Java.Lang.Thread+RunnableImplementor..ctor(System.Action handler, Boolean
removable)
I/monodroid-gref(12405): at Java.Lang.Thread+RunnableImplementor..ctor(System.Action handler)
I/monodroid-gref(12405): at Android.App.Activity.RunOnUiThread(System.Action action)
I/monodroid-gref(12405): at Mono.Samples.Hello.HelloActivity.UseLotsOfMemory(Android.Widget.TextView
textview)
I/monodroid-gref(12405): at Mono.Samples.Hello.HelloActivity.<OnCreate>m__3(System.Object o)
I/monodroid-gref(12405): handle 0x40517468; key_handle 0x40517468: Java Type:
`mono/java/lang/RunnableImplementor`; MCW type: `Java.Lang.Thread+RunnableImplementor`
I/monodroid-gref(12405): Disposing handle 0x40517468
I/monodroid-gref(12405): -g- grefc 107 gwrefc 0 handle 0x40517468/L from at
Java.Lang.Object.Dispose(System.Object instance, IntPtr handle, IntPtr key_handle, JObjectRefType
handle_type)
I/monodroid-gref(12405): at Java.Lang.Object.Dispose()
I/monodroid-gref(12405): at Java.Lang.Thread+RunnableImplementor.Run()
I/monodroid-gref(12405): at Java.Lang.IRunnableInvoker.n_Run(IntPtr jnienv, IntPtr native__this)
I/monodroid-gref(12405): at System.Object.c200fe6f-ac33-441b-a3a0-47659e3f6750(IntPtr , IntPtr)
I/monodroid-gref(27679): +w+ grefc 1916 gwrefc 296 obj-handle 0x406b2b98/G -> new-handle 0xde68f4bf/W from
take_weak_global_ref_jni
I/monodroid-gref(27679): -w- grefc 1915 gwrefc 294 handle 0xde691aaf/W from take_global_ref_jni

are executing), while bridge is the amount of time taken in the bridge processing code (which deals with the

Java VM). The world is not paused while bridge processing occurs.

In general, the larger the value of num_hash_entries , the more time that the bridge collections will take, and the

larger the total time spent collecting will be.

To enable Global Reference loggig (GREF) logging, the debug.mono.log system property must contain gref, e.g.:

Xamarin.Android uses Android global references to provide mappings between Java instances and the

associated managed instances, as when invoking a Java method a Java instance needs to be provided to Java.

Unfortunately, Android emulators only allow 2000 global references to exist at a time. Hardware has a much

higher limit of 52000 global references. The lower limit can be problematic when running applications on the

emulator, so knowing where the instance came from can be very useful.

The global reference count is internal to Xamarin.Android, and does not (and cannot) include global references taken out

by other native libraries loaded into the process. Use the global reference count as an estimate.

There are four messages of consequence:

Global reference creation: these are the lines that start with +g+ , and will provide a stack trace for the

creating code path.

Global reference destruction: these are the lines that start with -g- , and may provide a stack trace for the

code path disposing of the global reference. If the GC is disposing of the gref, no stack trace will be provided.

Weak global reference creation: these are the lines that start with +w+ .

Weak global reference destruction: these are lines that start with -w- .

 Java instance is created and wrapped by a MCW

I/monodroid-gref(27679): +g+ grefc 2211 gwrefc 0 obj-handle 0x4066df10/L -> new-handle 0x4066df10/L from ...
I/monodroid-gref(27679): handle 0x4066df10; key_handle 0x4066df10: Java Type:
`android/graphics/drawable/TransitionDrawable`; MCW type: `Android.Graphics.Drawables.TransitionDrawable`

 A GC is being performed...

I/monodroid-gref(27679): +w+ grefc 1953 gwrefc 259 obj-handle 0x4066df10/G -> new-handle 0xde68f95f/W from
take_weak_global_ref_jni
I/monodroid-gref(27679): -g- grefc 1952 gwrefc 259 handle 0x4066df10/G from take_weak_global_ref_jni

 Object is still alive, as handle != null

 wref turned back into a gref

I/monodroid-gref(27679): *try_take_global obj=0x4976f080 -> wref=0xde68f95f handle=0x4066df10
I/monodroid-gref(27679): +g+ grefc 1930 gwrefc 39 obj-handle 0xde68f95f/W -> new-handle 0x4066df10/G from
take_global_ref_jni
I/monodroid-gref(27679): -w- grefc 1930 gwrefc 38 handle 0xde68f95f/W from take_global_ref_jni

 Object is dead, as handle == null

 wref is freed, no new gref created

I/monodroid-gref(27679): *try_take_global obj=0x4976f080 -> wref=0xde68f95f handle=0x0
I/monodroid-gref(27679): -w- grefc 1914 gwrefc 296 handle 0xde68f95f/W from take_global_ref_jni

 Querying ProgrammaticallyQuerying Programmatically

In all messages, The grefc value is the count of global references that Xamarin.Android has created, while the

grefwc value is the count of weak global references that Xamarin.Android has created. The handle or obj-handle

value is the JNI handle value, and the character after the ' /' is the type of handle value: /L for local reference, /G

for global references, and /W for weak global references.

As part of the GC process, global references (+g+) are converted into weak global references (causing a +w+

and -g-), a Java-side GC is kicked, and then the weak global reference is checked to see if it was collected. If it's

still alive, a new gref is created around the weak ref (+g+, -w-), otherwise the weak ref is destroyed (-w).

There is one "interesting" wrinkle here: on targets running Android prior to 4.0, the gref value is equal to the

address of the Java object in the Android runtime's memory. (That is, the GC is a non-moving, conservative,

collector, and it's handing out direct references to those objects.) Thus after a +g+, +w+, -g-, +g+, -w- sequence,

the resulting gref will have the same value as the original gref value. This makes grepping through logs fairly

straightforward.

Android 4.0, however, has a moving collector and no longer hands out direct references to Android runtime VM

objects. Consequently, after a +g+, +w+, -g-, +g+, -w- sequence, the gref value will be different. If the object

survives multiple GCs, it will go by several gref values, making it harder to determine where an instance was

actually allocated from.

You can query both the GREF and WREF counts by querying the JniRuntime object.

 Android Debug Logs

 Floating-Point performance is terrible!

 Could not locate Android SDK

Java.Interop.JniRuntime.CurrentRuntime.GlobalReferenceCount - Global Reference Count

Java.Interop.JniRuntime.CurrentRuntime.WeakGlobalReferenceCount - Weak Reference Count

The Android Debug Logs may provide additional context regarding any runtime errors you're seeing.

Alternatively, "My app runs 10x faster with the Debug build than with the Release build!"

Xamarin.Android supports multiple device ABIs: armeabi, armeabi-v7a, and x86. Device ABIs can be specified

within Project Proper ties > Application tab > Suppor ted architecturesProject Proper ties > Application tab > Suppor ted architectures .

Debug builds use an Android package which provides all ABIs, and thus will use the fastest ABI for the target

device.

Release builds will only include the ABIs selected in the Project Properties tab. More than one can be selected.

armeabi is the default ABI, and has the broadest device support. However, armeabi doesn't support multi-CPU

devices and hardware floating-point, amont other things. Consequently, apps using the armeabi Release runtime

will be tied to a single core and will be using a soft-float implementation. Both of these can contribute to

significantly slower performance for your app.

If your app requires decent floating-point performance (e.g. games), you should enable the armeabi-v7a ABI.

You may want to only support the armeabi-v7a runtime, though this means that older devices which only

support armeabi will be unable to run your app.

There are 2 downloads available from Google for the Android SDK for Windows. If you choose the .exe installer,

it will write registry keys that tell Xamarin.Android where it was installed. If you choose the .zip file and unzip it

yourself, Xamarin.Android does not know where to look for the SDK. You can tell Xamarin.Android where the

SDK is in Visual Studio by going to Tools > Options > Xamarin > Android SettingsTools > Options > Xamarin > Android Settings :

file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/troubleshooting-images/01.png#lightbox

IDE does not display target device

adb devices

adb kill-server
adb start-server

 The specified task executable "keytool" could not be run

 monodroid.exe or aresgen.exe exited with code 1

 There is not enough storage space on the device to deploy the
package

emulator -partition-size 512 -avd MonoDroid

 INSTALL_FAILED_INVALID_APK when installing a package

Sometimes you will attempt to deploy your application to a device, but the device you want to deploy to isn't

shown in the Select Device dialog. This can happen when the Android Debug Bridge decides to go on vacation.

To diagnose this issue, find the adb program, then run:

If your device isn't present, then you need to restart the Android Debug Bridge server so that your device can be

found:

HTC Sync software may prevent adb star t-ser veradb star t-ser ver from working properly. If the adb star t-ser veradb star t-ser ver command

doesn't print out which port it's starting on, please exit the HTC Sync software and try restarting the adb server.

This means that your PATH does not contain the directory where the Java SDK's bin directory is located. Check

that you followed those steps from the Installation guide.

To help you debug this problem, go into Visual Studio and change the MSBuild verbosity level, to do this, select:

Tools > Options > ProjectTools > Options > Project and Solutions > BuildSolutions > Build and Run > MSBuild Project Build Output VerbosityRun > MSBuild Project Build Output Verbosity

and set this value to NormalNormal .

Rebuild, and check Visual Studio's Output pane, which should contain the full error.

This occurs when you don't start the emulator from within Visual Studio. When starting the emulator outside of

Visual Studio, you need to pass the -partition-size 512 options, e.g.

Ensure you use the correct simulator name, i.e. the name you used when configuring the simulator.

Android package names must contain a period ('.'). Edit your package name so that it contains a period.

Within Visual Studio:

Within Visual Studio for Mac:

Right click your project > Properties

Click the Android Manifest tab on the left.

Update the Package name field.

If you see the message “No AndroidManifest.xml found. Click to add one.”, click the link and

then update the Package name field.

 INSTALL_FAILED_MISSING_SHARED_LIBRARY when installing a
package

 INSTALL_FAILED_UPDATE_INCOMPATIBLE when installing a package

E/PackageManager(146): Package [PackageName] signatures do not match the previously installed version;
ignoring!

 INSTALL_FAILED_UID_CHANGED when installing a package

Right click your project > Options.

Navigate to the Build / Android Application section.

Change the Package name field to contain a '.'.

A "shared library" in this context is not a native shared library (libfoo.so) file; it is instead a library that must be

separately installed on the target device, such as Google Maps.

The Android package specifies which shared libraries are required with the <uses-library/> element. If a

required library is not present on the target device (e.g. //uses-library/@android:required is true, which is the

default), then package installation will fail with INSTALL_FAILED_MISSING_SHARED_LIBRARY.

To determine which shared libraries are required, view the generated AndroidManifest.xmlAndroidManifest.xml file (e.g.

obj\Debug\android\AndroidManifest.xmlobj\Debug\android\AndroidManifest.xml) and look for the <uses-library/> elements. <uses-library/>

elements can be added manually in your project's Proper ties\AndroidManifest.xmlProper ties\AndroidManifest.xml file and via the

UsesLibraryAttribute custom attribute.

For example, adding an assembly reference to Mono.Android.GoogleMaps.dll will implicitly add a

<uses-library/> for the Google Maps shared library.

Android packages have three requirements:

They must contain a '.' (see previous entry)

They must have a unique string package name (hence the reverse-tld convention seen in Android app names,

e.g. com.android.chrome for the Chrome app)

When upgrading packages, the package must have the same signing key.

Thus, imagine this scenario:

1. You build & deploy your app as a Debug app

2. You change the signing key, e.g. to use as a Release app (or because you don't like the default-provided

Debug signing key)

3. You install your app without removing it first, e.g. Debug > Start Without Debugging within Visual Studio

When this happens, package installation will fail with a INSTALL_FAILED_UPDATE_INCOMPATIBLE error, because

the package name didn't change while the signing key did. The Android Debug Log will also contain a message

similar to:

To fix this error, completely remove the application from your device before re-installing.

When an Android package is installed, it is assigned a user id (UID). Sometimes, for currently unknown reasons,

when installing over an already installed app, the installation will fail with INSTALL_FAILED_UID_CHANGED :

https://docs.microsoft.com/en-us/dotnet/api/android.app.useslibraryattribute

ERROR [2015-03-23 11:19:01Z]: ANDROID: Deployment failed
Mono.AndroidTools.InstallFailedException: Failure [INSTALL_FAILED_UID_CHANGED]
 at Mono.AndroidTools.Internal.AdbOutputParsing.CheckInstallSuccess(String output, String packageName)
 at Mono.AndroidTools.AndroidDevice.<>c__DisplayClass2c.<InstallPackage>b__2b(Task`1 t)
 at System.Threading.Tasks.ContinuationTaskFromResultTask`1.InnerInvoke()
 at System.Threading.Tasks.Task.Execute()

$ adb uninstall @PACKAGE_NAME@

 Release apps fail to launch on device

D/AndroidRuntime(1710): Shutting down VM
W/dalvikvm(1710): threadid=1: thread exiting with uncaught exception (group=0xb412f180)
E/AndroidRuntime(1710): FATAL EXCEPTION: main
E/AndroidRuntime(1710): java.lang.UnsatisfiedLinkError: Couldn't load monodroid: findLibrary returned null
E/AndroidRuntime(1710): at java.lang.Runtime.loadLibrary(Runtime.java:365)

adb shell getprop ro.product.cpu.abi
adb shell getprop ro.product.cpu.abi2

$ adb shell getprop | grep ro.product.cpu
[ro.product.cpu.abi2]: [armeabi]
[ro.product.cpu.abi]: [armeabi-v7a]

 The OutPath property is not set for project “MyApp.csproj”

To work around this issue, fully uninstall the Android package, either by installing the app from the Android

target's GUI, or using adb :

DO NOT USEDO NOT USE adb uninstall -k , as this will preserve application data, and thus preserve the conflicting UID on

the target device.

Does the Android Debug Log output will contain a message similar to:

If so, there are two possible causes for this:

1. The .apk doesn't provide an ABI that the target device supports. For example, the .apk only contains

armeabi-v7a binaries, and the target device only supports armeabi.

2. An Android bug. If this is the case, uninstall the app, cross your fingers, and reinstall the app.

To fix (1), edit the Project Options/Properties and add support for the required ABI to the list of Supported

ABIs. To determine which ABI you need to add, run the following adb command against your target device:

The output will contain the primary (and optional secondary) ABIs.

This generally means you have an HP computer and the environment variable “Platform” has been set to

something like MCD or HPD. This conflicts with the MSBuild Platform property that is generally set to “Any CPU”

or “x86”. You will need to remove this environment variable from your machine before MSBuild can function:

Control Panel > System > Advanced > Environment Variables

Restart Visual Studio or Visual Studio for Mac and try to rebuild. Things should now work as expected.

https://code.google.com/p/android/issues/detail?id=21670

java.lang.ClassCastException: mono.android.runtime.JavaObject
cannot be cast to...

// BAD CODE; DO NOT USE
var groupData = new List<IDictionary<string, object>> () {
 new Dictionary<string, object> {
 { "NAME", "Group 1" },
 { "IS_EVEN", "This group is odd" },
 },
};
var childData = new List<IList<IDictionary<string, object>>> () {
 new List<IDictionary<string, object>> {
 new Dictionary<string, object> {
 { "NAME", "Child 1" },
 { "IS_EVEN", "This group is odd" },
 },
 },
};
mAdapter = new SimpleExpandableListAdapter (
 this,
 groupData,
 Android.Resource.Layout.SimpleExpandableListItem1,
 new string[] { "NAME", "IS_EVEN" },
 new int[] { Android.Resource.Id.Text1, Android.Resource.Id.Text2 },
 childData,
 Android.Resource.Layout.SimpleExpandableListItem2,
 new string[] { "NAME", "IS_EVEN" },
 new int[] { Android.Resource.Id.Text1, Android.Resource.Id.Text2 }
);

E/AndroidRuntime(2991): FATAL EXCEPTION: main
E/AndroidRuntime(2991): java.lang.ClassCastException: mono.android.runtime.JavaObject cannot be cast to
java.util.Map
E/AndroidRuntime(2991): at
android.widget.SimpleExpandableListAdapter.getGroupView(SimpleExpandableListAdapter.java:278)
E/AndroidRuntime(2991): at
android.widget.ExpandableListConnector.getView(ExpandableListConnector.java:446)
E/AndroidRuntime(2991): at android.widget.AbsListView.obtainView(AbsListView.java:2271)
E/AndroidRuntime(2991): at android.widget.ListView.makeAndAddView(ListView.java:1769)
E/AndroidRuntime(2991): at android.widget.ListView.fillDown(ListView.java:672)
E/AndroidRuntime(2991): at android.widget.ListView.fillFromTop(ListView.java:733)
E/AndroidRuntime(2991): at android.widget.ListView.layoutChildren(ListView.java:1622)

Xamarin.Android 4.x doesn't properly marshal nested generic types properly. For example, consider the

following C# code using SimpleExpandableListAdapter:

The problem is that Xamarin.Android incorrectly marshals nested generic types. The

List<IDictionary<string, object>> is being marshaled to a java.lang.ArrrayList, but the ArrayList is containing

mono.android.runtime.JavaObject instances (which reference the Dictionary<string, object> instances) instead

of something that implements java.util.Map, resulting in the following exception:

The workaround is to use the provided Java Collection types instead of the System.Collections.Generic types

for the “inner” types. This will result in appropriate Java types when marshaling the instances. (The following

code is more complicated than necessary in order to reduce gref lifetimes. It can be simplified to altering the

original code via s/List/JavaList/g and s/Dictionary/JavaDictionary/g if gref lifetimes aren't a worry.)

https://docs.microsoft.com/en-us/dotnet/api/android.widget.simpleexpandablelistadapter
https://docs.microsoft.com/en-us/dotnet/api/java.util.arraylist
https://docs.microsoft.com/en-us/dotnet/api/java.util.imap

// insert good code here
using (var groupData = new JavaList<IDictionary<string, object>> ()) {
 using (var groupEntry = new JavaDictionary<string, object> ()) {
 groupEntry.Add ("NAME", "Group 1");
 groupEntry.Add ("IS_EVEN", "This group is odd");
 groupData.Add (groupEntry);
 }
 using (var childData = new JavaList<IList<IDictionary<string, object>>> ()) {
 using (var childEntry = new JavaList<IDictionary<string, object>> ())
 using (var childEntryDict = new JavaDictionary<string, object> ()) {
 childEntryDict.Add ("NAME", "Child 1");
 childEntryDict.Add ("IS_EVEN", "This child is odd.");
 childEntry.Add (childEntryDict);
 childData.Add (childEntry);
 }
 mAdapter = new SimpleExpandableListAdapter (
 this,
 groupData,
 Android.Resource.Layout.SimpleExpandableListItem1,
 new string[] { "NAME", "IS_EVEN" },
 new int[] { Android.Resource.Id.Text1, Android.Resource.Id.Text2 },
 childData,
 Android.Resource.Layout.SimpleExpandableListItem2,
 new string[] { "NAME", "IS_EVEN" },
 new int[] { Android.Resource.Id.Text1, Android.Resource.Id.Text2 }
);
 }
}

 Unexpected NullReferenceExceptions

E/mono(15202): Unhandled Exception: System.NullReferenceException: Object reference not set to an instance
of an object
E/mono(15202): at Java.Lang.Object.GetObject (IntPtr handle, System.Type type, Boolean owned)
E/mono(15202): at Java.Lang.Object._GetObject[IOnTouchListener] (IntPtr handle, Boolean owned)
E/mono(15202): at Java.Lang.Object.GetObject[IOnTouchListener] (IntPtr handle, Boolean owned)
E/mono(15202): at
Android.Views.View+IOnTouchListenerAdapter.n_OnTouch_Landroid_view_View_Landroid_view_MotionEvent_(IntPtr
jnienv, IntPtr native__this, IntPtr native_v, IntPtr native_e)
E/mono(15202): at (wrapper dynamic-method) object:b039cbb0-15e9-4f47-87ce-442060701362
(intptr,intptr,intptr,intptr)

E/mono (4176): Unhandled Exception:
E/mono (4176): System.NullReferenceException: Object reference not set to an instance of an object
E/mono (4176): at Android.Runtime.JNIEnv.NewString (string)
E/mono (4176): at Android.Util.Log.Info (string,string)

This will be fixed in a future release.

Occasionally the Android Debug Log will mention NullReferenceExceptions that “cannot happen,” or come from

Mono for Android runtime code shortly before the app dies:

or

This can happen when the Android runtime decides to abort the process, which can happen for any number of

reasons, including hitting the target's GREF limit or doing something “wrong” with JNI.

To see if this is the case, check the Android Debug Log for a message from your process similar to:

https://bugzilla.xamarin.com/show_bug.cgi?id=5401

E/dalvikvm(123): VM aborting

 Abort due to Global Reference Exhaustion

D/dalvikvm(602): GREF has increased to 1801

The Android runtime's JNI layer only supports a limited number of JNI object references to be valid at any given

point in time. When this limit is exceeded, things break.

The GREF (global reference) limit is 2000 references in the emulator, and ~52000 references on hardware.

You know you're starting to create too many GREFs when you see messages such as this in the Android Debug

Log:

When you reach the GREF limit, a message such as the following is printed:

D/dalvikvm(602): GREF has increased to 2001
W/dalvikvm(602): Last 10 entries in JNI global reference table:
W/dalvikvm(602): 1991: 0x4057eff8 cls=Landroid/graphics/Point; (20 bytes)
W/dalvikvm(602): 1992: 0x4057f010 cls=Landroid/graphics/Point; (28 bytes)
W/dalvikvm(602): 1993: 0x40698e70 cls=Landroid/graphics/Point; (20 bytes)
W/dalvikvm(602): 1994: 0x40698e88 cls=Landroid/graphics/Point; (20 bytes)
W/dalvikvm(602): 1995: 0x40698ea0 cls=Landroid/graphics/Point; (28 bytes)
W/dalvikvm(602): 1996: 0x406981f0 cls=Landroid/graphics/Point; (20 bytes)
W/dalvikvm(602): 1997: 0x40698208 cls=Landroid/graphics/Point; (20 bytes)
W/dalvikvm(602): 1998: 0x40698220 cls=Landroid/graphics/Point; (28 bytes)
W/dalvikvm(602): 1999: 0x406956a8 cls=Landroid/graphics/Point; (20 bytes)
W/dalvikvm(602): 2000: 0x406956c0 cls=Landroid/graphics/Point; (20 bytes)
W/dalvikvm(602): JNI global reference table summary (2001 entries):
W/dalvikvm(602): 51 of Ljava/lang/Class; 164B (41 unique)
W/dalvikvm(602): 46 of Ljava/lang/Class; 188B (17 unique)
W/dalvikvm(602): 6 of Ljava/lang/Class; 212B (6 unique)
W/dalvikvm(602): 11 of Ljava/lang/Class; 236B (7 unique)
W/dalvikvm(602): 3 of Ljava/lang/Class; 260B (3 unique)
W/dalvikvm(602): 4 of Ljava/lang/Class; 284B (2 unique)
W/dalvikvm(602): 8 of Ljava/lang/Class; 308B (6 unique)
W/dalvikvm(602): 1 of Ljava/lang/Class; 316B
W/dalvikvm(602): 4 of Ljava/lang/Class; 332B (3 unique)
W/dalvikvm(602): 1 of Ljava/lang/Class; 356B
W/dalvikvm(602): 2 of Ljava/lang/Class; 380B (1 unique)
W/dalvikvm(602): 1 of Ljava/lang/Class; 428B
W/dalvikvm(602): 1 of Ljava/lang/Class; 452B
W/dalvikvm(602): 1 of Ljava/lang/Class; 476B
W/dalvikvm(602): 2 of Ljava/lang/Class; 500B (1 unique)
W/dalvikvm(602): 1 of Ljava/lang/Class; 548B
W/dalvikvm(602): 1 of Ljava/lang/Class; 572B
W/dalvikvm(602): 2 of Ljava/lang/Class; 596B (2 unique)
W/dalvikvm(602): 1 of Ljava/lang/Class; 692B
W/dalvikvm(602): 1 of Ljava/lang/Class; 956B
W/dalvikvm(602): 1 of Ljava/lang/Class; 1004B
W/dalvikvm(602): 1 of Ljava/lang/Class; 1148B
W/dalvikvm(602): 2 of Ljava/lang/Class; 1172B (1 unique)
W/dalvikvm(602): 1 of Ljava/lang/Class; 1316B
W/dalvikvm(602): 1 of Ljava/lang/Class; 3428B
W/dalvikvm(602): 1 of Ljava/lang/Class; 3452B
W/dalvikvm(602): 1 of Ljava/lang/String; 28B
W/dalvikvm(602): 2 of Ldalvik/system/VMRuntime; 12B (1 unique)
W/dalvikvm(602): 10 of Ljava/lang/ref/WeakReference; 28B (10 unique)
W/dalvikvm(602): 1 of Ldalvik/system/PathClassLoader; 44B
W/dalvikvm(602): 1553 of Landroid/graphics/Point; 20B (1553 unique)
W/dalvikvm(602): 261 of Landroid/graphics/Point; 28B (261 unique)
W/dalvikvm(602): 1 of Landroid/view/MotionEvent; 100B
W/dalvikvm(602): 1 of Landroid/app/ActivityThread$ApplicationThread; 28B
W/dalvikvm(602): 1 of Landroid/content/ContentProvider$Transport; 28B
W/dalvikvm(602): 1 of Landroid/view/Surface$CompatibleCanvas; 44B
W/dalvikvm(602): 1 of Landroid/view/inputmethod/InputMethodManager$ControlledInputConnectionWrapper;
36B
W/dalvikvm(602): 1 of Landroid/view/ViewRoot$1; 12B
W/dalvikvm(602): 1 of Landroid/view/ViewRoot$W; 28B
W/dalvikvm(602): 1 of Landroid/view/inputmethod/InputMethodManager$1; 28B
W/dalvikvm(602): 1 of Landroid/view/accessibility/AccessibilityManager$1; 28B
W/dalvikvm(602): 1 of Landroid/widget/LinearLayout$LayoutParams; 44B
W/dalvikvm(602): 1 of Landroid/widget/LinearLayout; 332B
W/dalvikvm(602): 2 of Lorg/apache/harmony/xnet/provider/jsse/TrustManagerImpl; 28B (1 unique)
W/dalvikvm(602): 1 of Landroid/view/SurfaceView$MyWindow; 36B
W/dalvikvm(602): 1 of Ltouchtest/RenderThread; 92B
W/dalvikvm(602): 1 of Landroid/view/SurfaceView$3; 12B
W/dalvikvm(602): 1 of Ltouchtest/DrawingView; 412B
W/dalvikvm(602): 1 of Ltouchtest/Activity1; 180B
W/dalvikvm(602): Memory held directly by tracked refs is 75624 bytes
E/dalvikvm(602): Excessive JNI global references (2001)
E/dalvikvm(602): VM aborting

 Abort due to JNI type mismatch

W/dalvikvm(123): JNI WARNING: can't call Ljava/Type;;.method on instance of Lanother/java/Type;
W/dalvikvm(123): in Lmono/java/lang/RunnableImplementor;.n_run:()V (CallVoidMethodA)
...
E/dalvikvm(123): VM aborting

 Dynamic Code Support
 Dynamic code does not compileDynamic code does not compile

 In Release build, MissingMethodException occurs for dynamic code at run time.In Release build, MissingMethodException occurs for dynamic code at run time.

 Projects built with AOT+LLVM crash on x86 devices

Assertion: should not be reached at /Users/.../external/mono/mono/mini/tramp-x86.c:124
Fatal signal 6 (SIGABRT), code -6 in tid 4051 (Xamarin.bug56111)

In the above example (which, incidentally, comes from bug 685215) the problem is that too many

Android.Graphics.Point instances are being created; see comment #2 for a list of fixes for this particular bug.

Typically, a useful solution is to find which type has too many instances allocated – Android.Graphics.Point in the

above dump – then find where they're created in your source code and dispose of them appropriately (so that

their Java-object lifetime is shortened). This is not always appropriate (#685215 is multithreaded, so the trivial

solution avoids the Dispose call), but it's the first thing to consider.

You can enable GREF Logging to see when GREFs are created and how many exist.

If you hand-roll JNI code, it's possible that the types won't match correctly, e.g. if you try to invoke

java.lang.Runnable.run on a type that doesn't implement java.lang.Runnable . When this occurs, there will be a

message similar to this in the Android Debug Log:

To use C# dynamic in your application or library, you have to add System.Core.dll, Microsoft.CSharp.dll and

Mono.CSharp.dll to your project.

It is likely that your application project does not have references to System.Core.dll, Microsoft.CSharp.dll

or Mono.CSharp.dll. Make sure those assemblies are referenced.

Keep in mind that dynamic code always costs. If you need efficient code, consider not using dynamic

code.

In the first preview, those assemblies were excluded unless types in each assembly are explicitly used by

the application code. See the following for a workaround:

http://lists.ximian.com/pipermail/mo...il/009798.html

When deploying an app built with AOT+LLVM on x86-based devices, you may see an exception error message

similar to the following:

This is a known issue – the workaround is to disable LLVM.

https://bugzilla.novell.com/show_bug.cgi?id=685215
https://bugzilla.novell.com/show_bug.cgi?id=685215#c2
http://lists.ximian.com/pipermail/monodroid/2012-April/009798.html

Which Android SDK packages should I install?
 1/24/2020 • 2 minutes to read • Edit Online

 Tools

 Android Platform(s)

 System Images

 Extras

Installing the Android SDK doesn't automatically include all the minimum required packages for developing.

While individual developer needs vary, the following packages will generally be required for developing with

Xamarin.Android:

Install the latest tools from the Tools folder in the SDK manager :

Android SDK Tools

Android SDK Platform-Tools

Android SDK Build-Tools

Install the "SDK Platform" for the Android versions you've set as minimum & target.

Examples:

Target API 23

Minimum API 23

Only need to install SDK Platform for API 23

Target API 23

Minimum API 15

Need to install SDK Platforms for API 15 and 23. Note that you do not need to install the API levels between the

minimum and target (even if you are backporting to those API levels).

These are only required if you want to use the out-of-the-box Android emulators from Google. For more

information, see Android Emulator Setup

The Android SDK Extras are usually not required; but it is useful to be aware of them since they may be required

depending on your use case.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/install-android-sdk-packages.md

Where can I set my Android SDK locations?
 7/8/2021 • 2 minutes to read • Edit Online

Visual Studio

Visual Studio for Mac

In Visual Studio, navigate to Tools > Options > Xamarin > Android SettingsTools > Options > Xamarin > Android Settings to view and set the Android

SDK location:

The default location for each path is as follows:

Java Development Kit Location:

C:\Program Files\Java\jdk1.8.0_131C:\Program Files\Java\jdk1.8.0_131

Android SDK Location:

C:\Program Files (x86)\Android\android-sdkC:\Program Files (x86)\Android\android-sdk

Android NDK Location:

C:\ProgramData\Microsoft\AndroidNDK64\android-ndk-r13bC:\ProgramData\Microsoft\AndroidNDK64\android-ndk-r13b

Note that the version number of the NDK may vary. For example, instead of android-ndk-r13bandroid-ndk-r13b, it could be an

earlier version such as android-ndk-r10eandroid-ndk-r10e.

To set the Android SDK location, enter the full path of the Android SDK directory into the Android SDKAndroid SDK

LocationLocation box. You can navigate to the Android SDK location in File Explorer, copy the path from the address bar,

and paste this path into the Android SDK LocationAndroid SDK Location box. For example, if your Android SDK location is at

C:\Users\username\AppData\Local\Android\SdkC:\Users\username\AppData\Local\Android\Sdk, clear the old path in the Android SDK LocationAndroid SDK Location box,

paste in this path, and click OKOK.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/android-sdk-location.md
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/questions/android-sdk-location-images/win/01-locations.png#lightbox

How do I update the Java Development Kit (JDK)
version?

 7/8/2021 • 2 minutes to read • Edit Online

 Overview

This article illustrates how to update the Java Development Kit (JDK) version on Windows and Mac.

Xamarin.Android uses the Java Development Kit (JDK) to integrate with the Android SDK for building Android

apps and running the Android designer. The latest versions of the Android SDK (API 24 and higher) require JDK

8 (1.8). Alternately, you can install the Microsoft Mobile OpenJDK Preview. The Microsoft Mobile OpenJDK will

eventually replace JDK 8 for Xamarin.Android development.

To update to the Microsoft Mobile OpenJDK, see Microsoft Mobile OpenJDK Preview. To update to JDK 8, follow

these steps:

Visual Studio

Visual Studio for Mac

1. Download JDK 8 (1.8) from the Oracle website:

2. Pick the 64-bit version to allow rendering of custom controls in the Xamarin Android designer :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/update-jdk.md
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/vs/xamarin.vs_4/xamarin.vs_4.2/index.md#androiddesignercustomcontrols

3. Run the .exe and install the Development ToolsDevelopment Tools :

4. Open Visual Studio and update the Java Development Kit LocationJava Development Kit Location to point to the new JDK under

Tools > Options > Xamarin > Android Settings > Java Development Kit LocationTools > Options > Xamarin > Android Settings > Java Development Kit Location:

Be sure to restart Visual Studio after updating the location.

file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/questions/update-jdk-images/image4.png#lightbox

Xamarin.Android and Java Development Kit 9 or
later

 9/17/2021 • 2 minutes to read • Edit Online

 Overview

NOTENOTE

 JDK Errors

Building with JDK Version `9.0.4` is not supported. Please install JDK version `1.8.0`. See
https://aka.ms/xamarin/jdk9-errors

 Checking the JDK Version

java -version

java version "9.0.4"
Java(TM) SE Runtime Environment (build 9.0.4+11)
Java HotSpot(TM) 64-Bit Server VM (build 9.0.4+11, mixed mode)

This article explains how to resolve Java Development Kit (JDK) 9 or later errors in Xamarin.Android.

Xamarin.Android uses the Java Development Kit (JDK) to integrate with the Android SDK for building Android

apps and running the Android designer. The latest versions of the Android SDK (API 24 and higher) require JDK

8 (1.8) or the Microsoft Mobile OpenJDK Preview. Because the Android SDK tools available from GoogleBecause the Android SDK tools available from Google

are not yet compatible with JDK 9, Xamarin.Android does not work with JDK 9 or later.are not yet compatible with JDK 9, Xamarin.Android does not work with JDK 9 or later.

To target Android API 31, you need to install JDK 11. Learn more about JDK 11 impacts to Visual Studio here.

If you try to build a Xamarin.Android project with a version of the JDK later than JDK 8, you will get an explicit

error indicating that this version of JDK is not supported. For example:

To resolve these errors, you must install JDK 8 (1.8) as explained in How do I update the Java Development Kit

(JDK) version?. Alternately, you can install the Microsoft Mobile OpenJDK Preview The Microsoft Mobile

OpenJDK will eventually replace JDK 8 for Xamarin.Android development.

You can check to see which version of Java you have installed by entering the following command (the JDK bin

directory must be in your PATH):

If JDK 9 installed, you will see a message like the following:

If JDK 9 or later is installed, you must install Java JDK 8 (1.8) or the Microsoft Mobile OpenJDK Preview. For

information about how to install JDK 8, see How do I update the Java Development Kit (JDK) version?. For

information about how to install the Microsoft Mobile OpenJDK, see Microsoft Mobile OpenJDK Preview.

Note that you do not have to uninstall a later version of the JDK; however, you must ensure that Xamarin is

using JDK 8 rather than a later JDK version. In Visual Studio, click Tools > Options > Xamarin > AndroidTools > Options > Xamarin > Android

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/jdk9-errors.md
https://aka.ms/vs2019-and-jdk-11

 Known Issues with JDK 9
 apksignerapksigner

SettingsSettings . If Java Development Kit LocationJava Development Kit Location is not set to a JDK 8 location (such as C:\ProgramC:\Program

Files\Java\jdk1.8.0_111Files\Java\jdk1.8.0_111), click ChangeChange and set it to the location where JDK 8 is installed. In Visual Studio for

Mac, navigate to Preferences > Projects > SDK Locations > Android > Java SDK (JDK)Preferences > Projects > SDK Locations > Android > Java SDK (JDK) and click

BrowseBrowse to update this path.

There is a known issue with apksigner and JDK 9 in which the apksigner.bat file invokes the apksigner.jar

with -Djava.ext.dirs instead of -classpath which JDK 9 expects. It is recommended to use JDK 8 (1.8). For

information about how to install JDK 8, see How do I update the Java Development Kit (JDK) version?

If you have installed JDK 9, ensure that the following path is not set on your PATH environment variable as it

will still point to JDK 9: C:\ProgramData\Oracle\Java\javapath . After removing it, java-version at a command

line should show JDK 8.

How can I manually install the Android Support
libraries required by the Xamarin.Android.Support
packages?

 7/8/2021 • 4 minutes to read • Edit Online

 Example steps for Xamarin.Android.Support.v4

ildasm /caverbal /text /item:Xamarin.Android.Support.v4
packages\Xamarin.Android.Support.v4.23.4.0.1\lib\MonoAndroid403\Xamarin.Android.Support.v4.dll | findstr
SourceUrl

property string 'SourceUrl' = string('https://dl-
ssl.google.com/android/repository/android_m2repository_r32.zip')
property string 'SourceUrl' = string('https://dl-
ssl.google.com/android/repository/android_m2repository_r32.zip')
property string 'SourceUrl' = string('https://dl-
ssl.google.com/android/repository/android_m2repository_r32.zip')

Visual Studio

Visual Studio for Mac

Download the desired Xamarin.Android.Support NuGet package (for example by installing it with the NuGet

package manager).

Use ildasm to check which version of android_m2repositor y.zipandroid_m2repositor y.zip the NuGet package needs:

Example output:

Download android_m2repositor y.zipandroid_m2repositor y.zip from Google using the URL returned from ildasmildasm. Alternately, you can

check which version of the Android Support Repository you currently have installed in the Android SDK

Manager :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/install-android-support-library.md

$url = "https://dl-ssl.google.com/android/repository/android_m2repository_r32.zip"
(([System.Security.Cryptography.MD5]::Create()).ComputeHash([System.Text.Encoding]::UTF8.GetBytes($url)) | %
{ $_.ToString("X02") }) -join ""

F16A3455987DBAE5783F058F19F7FCDF

If the version matches the one you need for the NuGet package, then you don't have to download anything new.

You can instead re-zip the existing m2repositor ym2repositor y directory that is located under extras\androidextras\android in the SDK

Path (as shown the top of the Android SDK Manager window).

Calculate the MD5 hash of the URL returned from ildasmildasm. Format the resulting string to use all uppercase

letters and no spaces. For example, adjust the $url variable as needed and then run the following 2 lines

(based on the original C# code from Xamarin.Android) in PowerShell:

Example output:

Copy android_m2repositor y.zipandroid_m2repositor y.zip into the %LOCAL APPDATA%\Xamarin\zips\%LOCAL APPDATA%\Xamarin\zips\ folder. Rename the file to use

the MD5 hash from the previous MD5 hash calculating step. For example:

%LOCAL APPDATA%\Xamarin\zips\F16A3455987DBAE5783F058F19F7FCDF.zip%LOCAL APPDATA%\Xamarin\zips\F16A3455987DBAE5783F058F19F7FCDF.zip

(Optional) Unzip the file into

https://github.com/xamarin/xamarin-android/blob/8e8a4dd90f26eb39172876cc52181b6639e20524/src/Xamarin.Android.Build.Tasks/Tasks/GetAdditionalResourcesFromAssemblies.cs#L208

ildasm /caverbal /text /item:Xamarin.Android.Support.v4
packages\Xamarin.Android.Support.v4.23.4.0.1\lib\MonoAndroid403\Xamarin.Android.Support.v4.dll | findstr
/C:"string 'Version'"

property string 'Version' = string('23.4.0.0')}
property string 'Version' = string('23.4.0.0')}
property string 'Version' = string('23.4.0.0')}

 Additional references

 Next StepsNext Steps

%LOCAL APPDATA%\Xamarin\Xamarin.Android.Suppor t.v4\23.4.0 .0\content\%LOCAL APPDATA%\Xamarin\Xamarin.Android.Suppor t.v4\23.4.0 .0\content\ (creating a

content\m2repositor ycontent\m2repositor y subdirectory). If you skip this step, then the first build that uses the library will take a

little longer because it will need to complete this step. The version number for the subdirectory (23.4 .0 .023.4.0 .0 in this

example) is not quite the same as the NuGet package version. You can use ildasm to find the correct version

number:

Example output:

Bug 43245 – Inaccurate "Download failed. Please download {0} and put it to the {1} directory." and "Please

install package: '{0}' available in SDK installer" error messages related to Xamarin.Android.Support packages

This document discusses the current behavior as of August 2016. The technique described in this document is

not part of the stable testing suite for Xamarin, so it could break in the future.

For further assistance, to contact us, or if this issue remains even after utilizing the above information, please

see What support options are available for Xamarin? for information on contact options, suggestions, as well as

how to file a new bug if needed.

https://bugzilla.xamarin.com/show_bug.cgi?id=43245
file:///T:/c1uy/n1bv/xamarin/cross-platform/troubleshooting/support-options.html

What USB drivers do I need to debug Android on
Windows?

 11/2/2020 • 2 minutes to read • Edit Online

 Finding USB Drivers

 Alternatives

To debug on an Android device when developing in Windows; you need to install a compatible USB driver. The

Android SDK Manager includes the "Google USB Driver" by default, which adds support for Nexus devices as

described here: https://developer.android.com/sdk/win-usb.html

Other devices require USB drivers specifically published by the device manufacturer. Some links for the most

common manufacturers are included in this guide: https://developer.android.com/tools/extras/oem-usb.html

Depending on the manfacturer, it can be difficult to track down the exact USB driver needed. Some alternatives

for testing Android apps developed in Windows including using an Android emulator or using external testing

services. Some of these include:

App Center Test - Cloud Testing services run on hundreds of real Android devices.

Visual Studio Emulator for Android

Debugging on the Android Emulator

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/android-drivers-debug-windows.md
https://developer.android.com/sdk/win-usb.html
https://developer.android.com/tools/extras/oem-usb.html
https://docs.microsoft.com/en-us/appcenter/test-cloud/
https://visualstudio.microsoft.com/vs/msft-android-emulator/

Is it possible to connect to Android emulators
running on a Mac from a Windows VM?

 11/2/2020 • 3 minutes to read • Edit Online

NOTENOTE

To connect to the Android Emulator running on a Mac from a Windows virtual machine, use the following steps:

We recommend using an Android Emulator that does not include the Google Play Store.

adb kill-server

lsof -iTCP -sTCP:LISTEN -P | grep 'emulator\|qemu'

emulator6 94105 macuser 20u IPv4 0xa8dacfb1d4a1b51f 0t0 TCP localhost:5555 (LISTEN)
emulator6 94105 macuser 21u IPv4 0xa8dacfb1d845a51f 0t0 TCP localhost:5554 (LISTEN)

cd /tmp
mkfifo backpipe
nc -kl 5555 0<backpipe | nc 127.0.0.1 5555 > backpipe

sed '/rdr-anchor/a rdr pass on vmnet8 inet proto tcp from any to any port 5555 -> 127.0.0.1 port
5555' /etc/pf.conf | sudo pfctl -ef -

1. Start the emulator on the Mac.

2. Kill the adb server on the Mac:

3. Note that the emulator is listening on 2 TCP ports on the loopback network interface:

The odd-numbered port is the one used to connect to adb . See also

https://developer.android.com/tools/devices/emulator.html#emulatornetworking.

4. Option 1: Use nc to forward inbound TCP packets received externally on port 5555 (or any other port

you like) to the odd-numbered port on the loopback interface (127.0.0 .1 5555127.0.0 .1 5555 in this example), and to

forward the outbound packets back the other way:

As long as the nc commands stay running in a Terminal window, the packets will be forwarded as

expected. You can type Control-C in the Terminal window to quit the nc commands once you're done

using the emulator.

(Option 1 is usually easier than Option 2, especially if System Preferences > Security & Pr ivacy >System Preferences > Security & Pr ivacy >

FirewallFirewall is switched on.)

Option 2: Use pfctl to redirect TCP packets from port 5555 (or any other port you like) on the Shared

Networking interface to the odd-numbered port on the loopback interface (127.0.0.1:5555 in this

example):

This command sets up port forwarding using the pf packet filter system service. The line breaks are

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/connect-android-emulator-mac-windows.md
https://developer.android.com/tools/devices/emulator.html#emulatornetworking
https://kb.parallels.com/en/4948

 Alternate technique using Alternate technique using ssh

 Alternate technique using Alternate technique using adb -H is not yet supported is not yet supported

 Contact information

C:\> adb connect ip-address-of-the-mac:5555

important. Be sure to keep them intact when copy-pasting. You will also need to adjust the interface name

from vmnet8 if you're using Parallels. vmnet8 is the name of the special NAT device for the Shared

Networking mode in VMWare Fusion. The appropriate network interface in Parallels is likely vnic0.

5. Connect to the emulator from the Windows machine:

Replace "ip-address-of-the-mac" with the IP address of the Mac, for example as listed by

ifconfig vmnet8 | grep 'inet ' . If needed, replace 5555 with the other port you like from step 4. (Note:

one way to get command-line access to adb is via Tools > Android > Android Adb CommandTools > Android > Android Adb Command

PromptPrompt in Visual Studio.)

If you have enabled Remote Login on the Mac, then you can use ssh port forwarding to connect to the

emulator.

C:\> ssh -L localhost:15555:127.0.0.1:5555 mac-username@ip-address-of-the-mac

C:\> adb connect localhost:15555

1. Install an SSH client on Windows. One option is to install Git for Windows. The ssh command will then

be available in the Git BashGit Bash command prompt.

2. Follow steps 1-3 from above to start the emulator, kill the adb server on the Mac, and identify the

emulator ports.

3. Run ssh on Windows to set up two-way port forwarding between a local port on Windows (

localhost:15555 in this example) and the odd-numbered emulator port on the Mac's loopback interface (

127.0.0.1:5555 in this example):

Replace mac-username with your Mac username as listed by whoami . Replace ip-address-of-the-mac with

the IP address of the Mac.

4. Connect to the emulator using the local port on Windows:

(Note: one easy way to get command-line access to adb is via Tools > Android > Android AdbTools > Android > Android Adb

Command PromptCommand Prompt in Visual Studio.)

A small caution: if you use port 5555 for the local port, adb will think that the emulator is running locally on

Windows. This doesn't cause any trouble in Visual Studio, but in Visual Studio for Mac it causes the app to exit

immediately after launch.

In theory, another approach would be to use adb 's built-in capability to connect to an adb server running on a

remote machine (see for example https://stackoverflow.com/a/18551325). But the Xamarin.Android IDE

extensions do not currently provide a way to configure that option.

This document discusses the current behavior as of March, 2016. The technique described in this document is

not part of the stable testing suite for Xamarin, so it could break in the future.

If you notice that the technique no longer works, or if you notice any other mistakes in the document, feel free to

https://download.parallels.com/doc/psbm/en/Parallels_Server_Bare_Metal_Users_Guide/29258.htm
https://docs.microsoft.com/en-us/xamarin/cross-platform/troubleshooting/questions/version-logs
https://git-for-windows.github.io/
https://docs.microsoft.com/en-us/xamarin/cross-platform/troubleshooting/questions/version-logs
https://stackoverflow.com/a/18551325

add to the discussion on the following forum thread: http://forums.xamarin.com/discussion/33702/android-

emulator-from-host-device-inside-windows-vm. Thanks!

https://forums.xamarin.com/discussion/33702/android-emulator-from-host-device-inside-windows-vm

How do I automate an Android NUnit Test project?
 11/2/2020 • 2 minutes to read • Edit Online

NOTENOTE

adb shell am instrument

This guide explains how to automate an Android NUnit test project, not a Xamarin.UITest project. Xamarin.UITest guides

can be found here.

When you create a Unit Test App (Android)Unit Test App (Android) project in Visual Studio (or Android Unit TestAndroid Unit Test project in Visual

Studio for Mac), this project will not automatically run your tests by default. To run NUnit tests on a target

device, you can create an Android.App.Instrumentation subclass that is started by using the following command:

The following steps explain this process:

using System;
using System.Reflection;
using Android.App;
using Android.Content;
using Android.Runtime;
using Xamarin.Android.NUnitLite;

namespace App.Tests {

 [Instrumentation(Name="app.tests.TestInstrumentation")]
 public class TestInstrumentation : TestSuiteInstrumentation {

 public TestInstrumentation (IntPtr handle, JniHandleOwnership transfer) : base (handle,
transfer)
 {
 }

 protected override void AddTests ()
 {
 AddTest (Assembly.GetExecutingAssembly ());
 }
 }
}

1. Create a new file called TestInstrumentation.csTestInstrumentation.cs :

In this file, Xamarin.Android.NUnitLite.TestSuiteInstrumentation (from Xamarin.Android.NUnitL ite.dllXamarin.Android.NUnitL ite.dll)

is subclassed to create TestInstrumentation .

2. Implement the TestInstrumentation constructor and the AddTests method. The AddTests method

controls which tests are actually executed.

3. Modify the .csproj file to add TestInstrumentation.csTestInstrumentation.cs . For example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/automate-android-nunit-test.md
https://docs.microsoft.com/en-us/appcenter/test-cloud/preparing-for-upload/xamarin-android-uitest
https://docs.microsoft.com/en-us/dotnet/api/android.app.instrumentation

NOTENOTE

<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 ...
 <ItemGroup>
 <Compile Include="TestInstrumentation.cs" />
 </ItemGroup>
 <Target Name="RunTests" DependsOnTargets="_ValidateAndroidPackageProperties">
 <Exec Command=""$(_AndroidPlatformToolsDirectory)adb" $(AdbTarget) $(AdbOptions)
shell am instrument -w $(_AndroidPackage)/app.tests.TestInstrumentation" />
 </Target>
 ...
</Project>

adb shell am instrument -w PACKAGE_NAME/app.tests.TestInstrumentation

msbuild /t:RunTests Project.csproj

4. Deploy your application in debug or release mode, then stop it.

5. Use the following command to run the unit tests. Replace PACKAGE_NAME with the app's package name

(the package name can be found in the app's /manifest/@package attribute located in

AndroidManifest.xmlAndroidManifest.xml):

6. Optionally, you can modify the .csproj file to add the RunTests MSBuild target. This makes it possible

to invoke the unit tests with a command like the following:

(Note that using this new target is not required; the earlier adb command can be used instead of

msbuild .)

For more information about using the adb shell am instrument command to run unit tests, see the Android

Developer Running tests with ADB topic.

With the Xamarin.Android 5.0 release, the default package names for Android Callable Wrappers will be based on the

MD5SUM of the assembly-qualified name of the type being exported. This allows the same fully-qualified name to be

provided from two different assemblies and not get a packaging error. So make sure that you use the Name property on

the Instrumentation attribute to generate a readable ACW/class name.

The ACW name must be used in the adb command above. Renaming/refactoring the C# class will thus require

modifying the RunTests command to use the correct ACW name.

https://developer.android.com/studio/test/command-line.html#RunTestsDevice
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_5/xamarin.android_5.1/index.md#Android_Callable_Wrapper_Naming

Why can't my Android release build connect to the
Internet?

 10/28/2019 • 2 minutes to read • Edit Online

 Cause

 Fix

The most common cause of this issue is that the INTERNETINTERNET permission is automatically included in a debug

build, but must be set manually for a release build. This is because the Internet permission is used to allow a

debugger to attach to the process, as described for "DebugSymbols" here.

To resolve the issue, you can require the Internet permission in the Android Manifest. This can be done either

through the manifest editor or the manifest's sourcecode:

<Manifest>
...
<uses-permission android:name="android.permission.INTERNET" />
</Manifest>

Fix in Editor : In your Android project, go to Proper ties -> AndroidManifest.xml -> RequiredProper ties -> AndroidManifest.xml -> Required

PermissionsPermissions and check InternetInternet

Fix in Sourcecode: Open the AndroidManifest in a source editor and add the permission tag inside the

<Manifest> tags:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/android-internet.md

Smarter Xamarin Android Support v4 / v13 NuGet
Packages

 10/28/2019 • 2 minutes to read • Edit Online

 About the Android Support Libraries

 Problems with Referencing

 Type-Forwarded v4 Binding Assembly

 NuGet Assistance

Google has created support libraries to make new features available to older versions of Android. In general,

Support Libraries are given a version number in their name, which is the lowest Android API Level they are

compatible with (eg: Support-v4 can only be used on API Level 4 and higher. More info in this Stack Overflow

discussion).

Two of the support libraries: Support-v4 and Support-v13 can not be used together in the same app, that is,

they are mutually exclusive. This is because Support-v13 actually contains all of the types and implementation

of Support-v4 . If you try and reference both in the same project you will encounter duplicate type errors.

Since Support-v4 has become so popular, a lot of 3rd party libraries now depend on it. They could have chosen

to depend on Support-v13 instead, but it's more common to depend on v4 since that gives any apps using these

3rd party libraries the option of supporting API levels all the way down to 4.

If a Xamarin 3rd party library references the Xamarin.Android.Support.v4.dll binding to Support-v4 , any app

that uses this library must also reference Xamarin.Android.Support.v4.dll . This becomes a problem when the

same app also wants to use some of the functionality from the Xamarin.Android.Support.v13.dll binding to

Support-v13 . If you reference both bindings, you will encounter duplicate type errors.

To get around this problem, we have created a special Xamarin.Android.Support.v4.dll assembly which has no

implementation, but simply [assembly: TypeForwardedTo (..)] attributes which forward all of the Support-v4

types to the implementation within the Xamarin.Android.Support.v13.dll assembly.

This means a developer can reference this type-forwarded assembly in their app which will satisfy the reference

to Xamarin.Android.Support.v4.dll by any 3rd party libraries, while still allowing

Xamarin.Android.Support.v13.dll to be used in the app.

While a developer could manually add the correct references necessary, we are able to use NuGet to help

choose the right assembly (either the normal v4 binding or the type-forwarded v4 assembly) when the NuGet

package is installed.

So, the Xamarin.Android.Support.v4 NuGet package now contains the following logic:

If your app is targeting API Level 13 (Gingerbread 3.2) or higher :

Xamarin.Android.Support.v13 NuGet will automatically be added as a dependency

The type-forwarded Xamarin.Android.Support.v4.dll will be referenced in the project

If your app is targeting anything lower than API Level 13, you will get the normal

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/android-support-v4v13-libraries.md
https://stackoverflow.com/questions/9926403/android-support-package-compatibility-library-use-v4-or-v13

 Do I have to use Support-v13?

Xamarin.Android.Support.v4.dll binding referenced in your project.

If your app is targeting API Level 13 or higher and you choose to use the Xamarin Android Support-v4 NuGet

package, then the Xamarin Android Support v13 NuGet package is a required dependency.

We feel the very minor increase in app size (the two .jar files differ by 17kb) is well worth the compatibility and

fewer headaches it results in.

If you are adamant about using Support-v4 in an app that targets API Level 13 or higher, you can always

manually download the .nupkg , extract it, and reference the assembly.

How do I resolve a PathTooLongException error?
 11/2/2020 • 2 minutes to read • Edit Online

 Cause

 Fix

<PropertyGroup>
 <UseShortFileNames>True</UseShortFileNames>
</PropertyGroup>

<PropertyGroup>
 <IntermediateOutputPath>C:\Projects\MyApp</IntermediateOutputPath>
</PropertyGroup>

Generated path names in a Xamarin.Android project can be quite long. For example, a path like the following

could be generated during a build:

C:\Some\Director y\Solution\Project\obj\Debug\C:\Some\Director y\Solution\Project\obj\Debug\librar y_projectslibrar y_projects \Xamarin.Forms.Platform.Android\\Xamarin.Forms.Platform.Android\

librar y_project_impor ts\assetslibrar y_project_impor ts\assets

On Windows (where the maximum length for a path is 260 characters), a PathTooLongExceptionPathTooLongException could be

produced while building the project if a generated path exceeds the maximum length.

The UseShortFileNames MSBuild property is set to True to circumvent this error by default. When this property

is set to True , the build process uses shorter path names to reduce the likelihood of producing a

PathTooLongExceptionPathTooLongException. For example, when UseShortFileNames is set to True , the above path is shortened to

path that is similar to the following:

C:\Some\Director y\Solution\Project\obj\Debug\lp\1\jl\assetsC:\Some\Director y\Solution\Project\obj\Debug\lp\1\jl\assets

To set this property manually, add the following MSBuild property to the project .csproj.csproj file:

If setting this flag does not fix the PathTooLongExceptionPathTooLongException error, another approach is to specify a common

intermediate output root for projects in your solution by setting IntermediateOutputPath in the project .csproj.csproj

file. Try to use a relatively short path. For example:

For more information about setting build properties, see Build Process.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/path-too-long-exception.md
https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file
https://docs.microsoft.com/en-us/archive/blogs/kirillosenkov/using-a-common-intermediate-and-output-directory-for-your-solution

What version of Xamarin.Android added Lollipop
support?

 11/2/2020 • 2 minutes to read • Edit Online

NOTENOTE

 "Missing android.jar for API Level 21" in Android L Preview

Error 1 Could not find android.jar for API Level 21.

This guide was originally written for the Android L preview.

Xamarin.Android 4.17 added Android L Preview support.

Xamarin.Android 4.20 added Android Lollipop support.

Xamarin only actively supports the current stable release of the Xamarin tools. The information below is

provided "as-is" for older versions of the tools. For the latest information on Xamarin releases, please check the

release notes.

Visual Studio

Visual Studio for Mac

The following error message (or similar) may show up:

This message means that the Android SDK platform for API Level 21 is not installed. Either install it in the

Android SDK Manager (Tools > Open Android SDK Manager...Tools > Open Android SDK Manager...), or change your Xamarin.Android project to

target an API version that is installed.

There are a few workarounds for this issue:

1. Change your project so that it targets API 19 or lower.

2. Rename your android-21 folder from android-21 to android-L. (At best, this should only be used as a

temporary fix, and it might not work very well at all.)

%LOCAL APPDATA%\Android\android-sdk\platforms\android-21%LOCAL APPDATA%\Android\android-sdk\platforms\android-21

3. Temporarily downgrade back to the Android API Level 21 "L" preview [1]:

a. Delete the %LOCAL APPDATA%\Android\android-sdk\platforms\android-21%LOCAL APPDATA%\Android\android-sdk\platforms\android-21

b. Extract [1] into C:\Users\<username>\AppData\Local\Android\android-sdk\platformsC:\Users\<username>\AppData\Local\Android\android-sdk\platforms to

create an android-Landroid-L folder.

[1] - https://dl-ssl.google.com/android/repository/android-L_r04.zip

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/xa-lollipop.md
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_4/xamarin.android_4.17/index.md
https://github.com/xamarin/release-notes-archive/blob/master/release-notes/android/xamarin.android_4/xamarin.android_4.20/index.md
https://docs.microsoft.com/en-us/xamarin/android/release-notes/
https://dl-ssl.google.com/android/repository/android-L_r04.zip

Android.Support.v7.AppCompat - No resource
found that matches the given name: attr
'android:actionModeShareDrawable'

 1/7/2020 • 2 minutes to read • Edit Online

NOTENOTE

 See Also

1. Make sure you download the latest extras as well as the Android 5.0 (API 21) SDK via the Android SDK

Manager.

2. Ensure that you are compiling your application with compileSdkVersion set to 21. You can optionally set

the targetSdkVersion to 21 as well.

3. If you require a previous version such as API 19, please download the respective version found on the

NuGet page:

https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/

If you manually install this via Package Manager Console, make sure you also install the same version of

Xamarin.Android.Support.v4

https://www.nuget.org/packages/Xamarin.Android.Support.v4/

Stack Overflow Reference: https://stackoverflow.com/questions/26431676/appcompat-v721-0-0-no-resource-

found-that-matches-the-given-name-attr-andro

Which Android SDK packages should I install?

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/missing-action-mode-share-drawable.md
https://www.nuget.org/packages/Xamarin.Android.Support.v7.AppCompat/
https://www.nuget.org/packages/Xamarin.Android.Support.v4/
https://stackoverflow.com/questions/26431676/appcompat-v721-0-0-no-resource-found-that-matches-the-given-name-attr-andro

Adjusting Java memory parameters for the Android
designer

 11/2/2020 • 2 minutes to read • Edit Online

 New Android designer properties and corresponding Java options

The default memory parameters that are used when starting the java process for the Android designer might

be incompatible with some system configurations.

Starting with Xamarin Studio 5.7.2.7 (and later, Visual Studio for Mac) and Visual Studio Tools for Xamarin

3.9.344, these settings can be customized on a per-project basis.

The following property names correspond to the indicated java command-line option

AndroidDesignerJavaRendererMinMemor yAndroidDesignerJavaRendererMinMemor y -Xms

AndroidDesignerJavaRendererMaxMemor yAndroidDesignerJavaRendererMaxMemor y -Xmx

AndroidDesignerJavaRendererPermSizeAndroidDesignerJavaRendererPermSize -XX:MaxPermSize

Visual Studio

Visual Studio for Mac

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="12.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <ProjectView>ProjectFiles</ProjectView>
 </PropertyGroup>
 <PropertyGroup>
 <AndroidDesignerJavaRendererMinMemory>128m</AndroidDesignerJavaRendererMinMemory>
 <AndroidDesignerJavaRendererMaxMemory>750m</AndroidDesignerJavaRendererMaxMemory>
 <AndroidDesignerJavaRendererPermSize>350m</AndroidDesignerJavaRendererPermSize>
 </PropertyGroup>
</Project>

1. Open your solution in Visual Studio.

2. Select each Android project one-by-one in the Solution Explorer and click Show All Files twice on each

project. You can skip projects that do not contain any .axml layout files. This step will ensure that each

project directory contains a .csproj.user file.

3. Quit Visual Studio.

4. Locate the .csproj.user file for each of the projects from step 2.

5. Edit each .csproj.user file in a text editor.

6. Add any or all of the new Android designer memory properties within a <PropertyGroup> element. You

can use an existing <PropertyGroup> or create a new one. Here's a complete example .csproj.user file

that includes all 3 attributes set to their default values:

7. Save and close all of the updated .csproj.user files.

8. Restart Visual Studio and reopen your solution.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/android-designer-java-memory.md
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/4afxey9h(v=vs.90)

My Android Resource.designer.cs file will not update
 10/28/2019 • 2 minutes to read • Edit Online

NOTENOTE

 Two possible approaches to fixing up the project file

 If this does not solve the problemIf this does not solve the problem

This issue has been resolved in Xamarin Studio 5.1.4 and later versions. However, if the issue occurs in Visual Studio for

Mac, please file a new bug with your full versioning information and full build log output.

A bug in Xamarin.Studio 5.1 previously corrupted .csproj files by partially or completely deleting the xml code in

the .csproj file. This would cause important parts of the Android build system (such as updating the Android

Resource.designer.cs) to fail. As of the 5.1.4 stable release on July 15th, this bug has been fixed; but in many

cases the project file has to be repaired manually, as described below.

Either :Either :

1. Create a brand new Xamarin.Android application project, set all the project properties to match your old

project, and add all of your resources, source files, etc. back into the project.

OROR

2. Make a backup copy of your original project's .csproj file, then open it in a text editor, and add back in the

missing elements from a cleanly generated .csproj file.

After experimenting with these elements, you may notice that after adding back the elements and rebuilding the

project, the Resource.designer.cs file would update, but then you might still have to close and re-open the

solution to get code completion to recognize the new types contained in Resource.designer.cs.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/questions/resource-designer-wont-update.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/troubleshooting/questions/howto-file-bug

Resolving Library Installation Errors
 7/8/2021 • 5 minutes to read • Edit Online

 Overview

 Errors While Downloading m2Repository

Download failed. Please download https://dl-ssl.google.com/android/repository/android_m2repository_r16.zip
and extract it to the C:\Users\mgm\AppData\Local\Xamarin\Android.Support.v4\22.2.1\content directory.

 Automatic Recovery from m2repository ErrorsAutomatic Recovery from m2repository Errors

In some cases, you may get errors while installing Android support libraries. This guide provides workarounds

for some common errors.

While building a Xamarin.Android app project, you may get build errors when Visual Studio or Visual Studio for

Mac attempt to download and install dependency libraries. Many of these errors are caused by network

connectivity issues, file corruption, or versioning problems. This guide describes the most common support

library installation errors and provides the steps to work around these issues and get your app project building

again.

You may see m2repositor ym2repositor y errors when referencing a NuGet package of the Android Support Libraries or

Google Play services. The error message resembles the following:

This example is for android_m2repositor y_r16android_m2repositor y_r16 , but you may see this same error message for a different

version such as android_m2repositor y_r18android_m2repositor y_r18 or android_m2repositor y_r25android_m2repositor y_r25 .

Often, this issue can be remedied by deleting the problematic library and rebuilding according to these steps:

1. Navigate to the support library directory on your computer :

On Windows, support libraries are located at C:\Users\C:\Users\usernameusername\AppData\Local\Xamarin\AppData\Local\Xamarin .

On Mac OS X, support libraries are located at /Users//Users/usernameusername/.local/share/Xamarin/.local/share/Xamarin .

2. Locate the library and version folder corresponding to the error message. For example, the library and

version folder for the above error message is located at Android.Suppor t.v4\22.2.1Android.Suppor t.v4\22.2.1 :

3. Delete the contents of the version folder. Be sure to remove the .zip.zip file as well as the contentcontent and

embeddedembedded subdirectories within this folder. For the example error message shown above, the files and

subdirectories shown in this screenshot (contentcontent, embeddedembedded, and android_m2repositor y_r16.zipandroid_m2repositor y_r16.zip)

are to be deleted:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/resolving-library-installation-errors.md
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/01-example-location.png#lightbox

 Manually Downloading m2repositoryManually Downloading m2repository

Note that it is important to delete the entire contents of this folder. Although this folder may initially

contain the "missing" android_m2repositor y_r16.zipandroid_m2repositor y_r16.zip file, this file may have been partially

downloaded or corrupted.

4. Rebuild the project – doing so will cause the build process to re-download the missing library.

In most cases, these steps will resolve the build error and allow you to continue. If deleting this library does not

resolve the build error, you must manually download and install the android_m2repositor y_r_nn_.zipandroid_m2repositor y_r_nn_.zip file as

described in the next section.

If you have tried using the automatic recovery steps above and still have build errors, you can manually

download the android_m2repositor y_r_nn_.zipandroid_m2repositor y_r_nn_.zip file (using a web browser) and install it according to the

following steps. This procedure is also useful if you do not have internet access on your development computer

but you are able to download the archive using a different computer.

1. Download the android_m2repositor y_r_nn_.zipandroid_m2repositor y_r_nn_.zip file that corresponds to the error message – links are

provided in the following list (along with the corresponding MD5 hash of each link's URL):

android_m2repository_r33.zip – 5FB756A25962361D17BBE99C3B3FCC44

android_m2repository_r32.zip – F16A3455987DBAE5783F058F19F7FCDF

android_m2repository_r31.zip – 99A8907CE2324316E754A95E4C2D786E

android_m2repository_r30.zip – 05AD180B8BDC7C21D6BCB94DDE7F2C8F

android_m2repository_r29.zip – 2A3A8A6D6826EF6CC653030E7D695C41

android_m2repository_r28.zip – 17BE247580748F1EDB72E9F374AA0223

android_m2repository_r27.zip – C9FD4FCD69D7D12B1D9DF076B7BE4E1C

android_m2repository_r26.zip – 8157FC1C311BB36420C1D8992AF54A4D

android_m2repository_r25.zip – 0B3F1796C97C707339FB13AE8507AF50

android_m2repository_r24.zip – 8E3C9EC713781EDFE1EFBC5974136BEA

android_m2repository_r23.zip – D5BB66B3640FD9B9C6362C9DB5AB0FE7

android_m2repository_r22.zip – 96659D653BDE0FAEDB818170891F2BB0

android_m2repository_r21.zip – CD3223F2EFE068A26682B9E9C4B6FBB5

android_m2repository_r20.zip – 650E58DF02DB1A832386FA4A2DE46B1A

android_m2repository_r19.zip – 263B062D6EFAA8AEE39E9460B8A5851A

android_m2repository_r18.zip – 25947AD38DCB4865ABEB61522FAFDA0E

android_m2repository_r17.zip – 49054774F44AE5F35A6BA9D3C117EFD8

file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/02-example-folder-vs.png#lightbox
https://dl-ssl.google.com/android/repository/android_m2repository_r33.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r32.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r31.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r30.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r29.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r28.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r27.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r26.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r25.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r24.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r23.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r22.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r21.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r20.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r19.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r18.zip
https://dl-ssl.google.com/android/repository/android_m2repository_r17.zip

 Manually Downloading and Installing m2repository FilesManually Downloading and Installing m2repository Files

Unzipping failed. Please download https://dl-ssl.google.com/android/repository/android_m2repository_r25.zip
and extract it to the C:\Users\mgm\AppData\Local\Xamarin\Android.Support.v4\23.1.1\content directory.

android_m2repository_r16.zip – 0595E577D19D31708195A83087881EE6

If the m2repositor ym2repositor y archive is not shown in this table, you can create the download URL by prepending

https://dl-ssl.google.com/android/repository/ to the name of the m2repositor ym2repositor y to download. For

example, use https://dl-ssl.google.com/android/repositor y/android_m2repositor y_r10.ziphttps://dl-ssl.google.com/android/repositor y/android_m2repositor y_r10.zip to

download android_m2repositor y_r10.zipandroid_m2repositor y_r10.zip.

2. Rename the file to the corresponding MD5 hash of the download URL as shown in the above table. For

example, if you downloaded android_m2repositor y_r25.zipandroid_m2repositor y_r25.zip, rename it to

0B3F1796C97C707339FB13AE8507AF50.zip0B3F1796C97C707339FB13AE8507AF50.zip. If the MD5 hash for the download URL of the

downloaded file is not shown in the table, you can use an online MD5 generator to convert the URL to an

MD5 hash string.

3. Copy the file to the Xamarin zipszips folder :

On Windows, this folder is located at C:\Users\C:\Users\usernameusername\AppData\Local\Xamarin\zips\AppData\Local\Xamarin\zips .

On Mac OS X, this folder is located at /Users//Users/usernameusername/.local/share/Xamarin/zips/.local/share/Xamarin/zips .

For example, the following screenshot illustrates the result when android_m2repositor y_r16.zipandroid_m2repositor y_r16.zip is

downloaded and renamed to the MD5 hash of its download URL on Windows:

If this procedure does not resolve the build error, you must manually download the

android_m2repositor y_r_nn_.zipandroid_m2repositor y_r_nn_.zip file, unzip it, and install its contents as described in the next section.

The fully manual process for recovering from m2repositor ym2repositor y errors entails downloading the

android_m2repositor y_r_nn_.zipandroid_m2repositor y_r_nn_.zip file (using a web browser), unzipping it, and copying its contents to the

support library directory on your computer. In the following example, we'll recover from this error message:

Use the following steps to download m2repositor ym2repositor y and install its contents:

1. Delete the contents of the library folder corresponding to the error message. For example, in the above

error message you would delete the contents of

C:\Users\C:\Users\usernameusername\AppData\Local\Xamarin\Android.Suppor t.v4\23.1.1 .0\AppData\Local\Xamarin\Android.Suppor t.v4\23.1.1 .0 . As described earlier,

you must delete the entire contents of this directory:

https://dl-ssl.google.com/android/repository/android_m2repository_r16.zip
https://dl-ssl.google.com/android/repository/android%255C_m2repository%255C_r10.zip
http://www.webconfs.com/online-md5-generator.php
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/03-md5-rename-vs.png#lightbox

2. Download the android_m2repositor y_r_nn_.zipandroid_m2repositor y_r_nn_.zip file from Google that corresponds to the error

message (see the table in the previous section for links).

3. Extract this .zip.zip archive to any location (such as the Desktop). This should create a directory that

corresponds to the name of the .zip.zip archive. Within this directory, you should find a subdirectory called

m2repositor ym2repositor y :

4. In the versioned library directory that you purged in step 1, re-create the contentcontent and embeddedembedded

subdirectories. For example, the following screenshot illustrates contentcontent and embeddedembedded subdirectories

being created in the 23.1.1 .023.1.1 .0 folder for android_m2repositor y_r25.zipandroid_m2repositor y_r25.zip:

5. Copy m2repositor ym2repositor y from the extracted .zip.zip into the contentcontent directory that you created in the previous

step:

6. In the extracted .zip.zip directory, browse to m2repositor y\com\android\suppor t\suppor t-v4m2repositor y\com\android\suppor t\suppor t-v4 and

open the folder corresponding the version number created above (in this example, 23.1 .123.1.1):

file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/04-delete-contents-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/05-m2repository-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/06-recreate-folders-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/07-copied-m2repository-vs.png#lightbox

 Summary

7. Copy all of the files in this folder to the embeddedembedded directory created in step 4:

8. Verify that all files are copied over. The embeddedembedded directory should now contain files such as .jar.jar , .aar.aar ,

and .pom.pom.

9. Unzip the contents of any extracted .aar.aar files to the embeddedembedded directory. On Windows, append a .zip.zip

extension to the .aar.aar file, open it, and copy the contents to the embeddedembedded directory. On macOS, unzip

the .aar.aar file by using the unzipunzip command in the Terminal (for example, unzip file.aarunzip file.aar).

At this point, you have manually installed the missing components and your project should build without errors.

If not, verify that you have downloaded the m2repositor ym2repositor y .zip.zip archive version that corresponds exactly to the

version in the error message, and verify that you have installed its contents in the correct locations as described

in the above steps.

This article explained how to recover from common errors that can take place during the automatic download

and installation of dependency libraries. It described how to delete the problematic library and rebuild the

project as a way to re-download and re-install the library. It described how to download the library and install it

in the zipszips folder. It also described a more involved procedure for manually downloading and installing the

necessary files as a way to work around issues that cannot be resolved via automatic means.

file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/08-zip-contents-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/troubleshooting/resolving-library-installation-errors-images/09-copied-vs.png#lightbox

Changes to the Android SDK Tooling
 10/28/2019 • 2 minutes to read • Edit Online

 Changes to Android SDK Tooling

The "android" command is deprecated.
For manual SDK, AVD, and project management, please use Android Studio.
For command-line tools, use tools\bin\sdkmanager.bat
and tools\bin\avdmanager.bat

 UI ToolsUI Tools

 CLI ToolsCLI Tools

 sdkmanagersdkmanager

 avdmanageravdmanager

 DowngradingDowngrading

Changes to how the Android SDK manages the installed API levels and AVDs.

In recent versions of the SDK Tools for Android, Google has removed the existing AVD and SDK managers in

favor of new CLI (Command Line Interface) tooling. The androidandroid program has been removed and the Google

GUI (Graphical User Interface) managers in Visual Studio for Mac and older versions of Visual Studio Tools for

Xamarin will no longer work past version 25.2.5 of Android SDK Tools. For example, attempting to use the

androidandroid program via the command line will result in an error message like the following:

The following sections explain how to manage the Android SDK and Android Virtual Devices using Android SDK

25.3.0 and later.

Visual Studio and Visual Studio for Mac now provide Xamarin replacements for the discontinued Google GUI-

based managers:

To download Android SDK tools, platforms, and other components that you need for developing

Xamarin.Android apps, use the Xamarin Android SDK Manager instead of the legacy Google SDK

Manager.

To create and configure Android Virtual Devices, use the Android Device Manager instead of the legacy

Google Emulator Manager.

These tools are functionally equivalent to the Google GUI-based managers they replace.

Alternately, you can use CLI tools to manage and update your emulators and Android SDK. The following

programs now make up the command line interface for the Android SDK tools:

Added In:Added In: Android SDK Tools 25.2.3 (November, 2016) and higher.

There is a new program called sdkmanagersdkmanager in the tools/bintools/bin folder of your Android SDK. This tool is used to

maintain the Android SDK at the command line. For more information about using this tool, see sdkmanager.

Added In:Added In: Android SDK Tools 25.3.0 (March, 2017) and higher.

There is a new program called avdmanageravdmanager in the tools/bintools/bin folder of your Android SDK. This tool is used to

maintain the AVDs for the Android Emulator. For more information about using this tool, see avdmanager.

You can downgrade your Android SDK ToolsAndroid SDK Tools version by installing a previous version of the Android SDK from

the Android Developer website.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/troubleshooting/sdk-cli-tooling-changes.md
https://developer.android.com/studio/command-line/sdkmanager.html
https://developer.android.com/studio/command-line/avdmanager.html
https://developer.android.com/studio/index.html

 Using the old GUIUsing the old GUI

 Related Links

You can still use the original GUI by running the androidandroid program inside your toolstools folder as long as you are

on Android SDK ToolsAndroid SDK Tools version 25.2.525.2.5 or lower.

Android SDK Setup

Android Device Manager

Understanding Android API levels

SDK Tools Release Notes (Google)

sdkmanager

avdmanager

https://developer.android.com/studio/releases/sdk-tools.html
https://developer.android.com/studio/command-line/sdkmanager.html
https://developer.android.com/studio/command-line/avdmanager.html

Android Wear
 7/8/2021 • 2 minutes to read • Edit Online

 Getting Started

 User Interface

 Platform Features

 Screen Sizes

 Deployment & Testing

 Wear APIs

 Samples

SA M P L ESA M P L E DESC RIP T IO NDESC RIP T IO N SC REEN SH OTSC REEN SH OT

Android Wear is a version of Android that is designed for wearable devices such as smart watches. This section

includes instructions on how to install and configure tools required for Wear development, a step-by-step

walkthrough for creating your first Wear device, and a list of samples that you can refer to for creating your own

Wear apps.

Introduces Android Wear, describes how to install and configure your computer for Wear development, and

provides steps to help you create and run your first Android Wear app on an emulator or Wear device.

Explains Android Wear-specific controls and provides links to samples that demonstrate how to use these

controls.

Documents in this section cover features specific to Android Wear. Here you'll find a topic that describes how to

create a WatchFace.

Preview and optimize your user interface for the available screen sizes.

Explains how to deploy your Android Wear app to an Android Wear device or to Android emulator configured

for Wear. It also includes debugging tips and information for how to set up a Bluetooth connection between

your development computer and an Android device.

The Android Developer site provides detailed information about key Wear APIs such as Wearable Activity,

Intents, Authentication, Complications, Complications Rendering, Notifications, Views, and WatchFace.

You can find a number of samples using Android Wear (or go directly to github).

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/index.md
https://developer.android.com/reference/android/support/wearable
https://developer.android.com/reference/android/support/wearable/activity/package-summary.html
https://developer.android.com/reference/com/google/android/wearable/intent/package-summary.html
https://developer.android.com/reference/android/support/wearable/authentication/package-summary.html
https://developer.android.com/reference/android/support/wearable/complications/package-summary.html
https://developer.android.com/reference/android/support/wearable/complications/rendering/package-summary.html
https://developer.android.com/reference/android/support/wearable/notifications/package-summary.html
https://developer.android.com/reference/android/support/wearable/view/package-summary.html
https://developer.android.com/reference/android/support/wearable/watchface/package-summary.html
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.android%252bwear
https://github.com/xamarin/monodroid-samples/tree/master/wear

SkeletonWear A simple example of the basics of
wearable projects, including
GridViewPager and interactive
notifications.

WatchViewStub A simple demo of the WatchViewStub
control that detects screen shape and
automatically loads the correct layout.
See how WatchViewStub works in the
Resources/layout/main_activity.xResources/layout/main_activity.x
mlml layout.

RecipeAssistant Demonstration of Wear notification
pages, in the form of recipe steps.
Notifications are created in
RecipeService.cs.

ElizaChat Fun sample of interacting with a
"personal assistant" called Eliza, using
Wear interactive notifications to create
a conversation using canned
responses.

GridViewPager GridViewPager implements the 2D
navigation pattern, where the user
swipes vertically and then horizontally
to navigate through options and
content.

WatchFace WatchFace is a custom watch face with
analog-style hour, minute, and second
hands. This sample demonstrates how
to create a watch face service that
draws the current time and handles
ambient mode and visibility change
events. It includes a broadcast receiver
that listens for time zone changes and
automatically updates the time
accordingly.

SA M P L ESA M P L E DESC RIP T IO NDESC RIP T IO N SC REEN SH OTSC REEN SH OT

 Videos
Check out these video links that discuss Xamarin.Android with Wear support:

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-skeletonwear
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-watchviewstub
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-recipeassistant
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-elizachat
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-gridviewpager
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-watchface

DESC RIP T IO NDESC RIP T IO N SC REEN SH OTSC REEN SH OT

Android L and So Much More – The Android L Developer
Preview introduced a plethora of new APIs for developers to
take advantage of, including Material Design, notifications,
and new animations, to name a few.

C# is in my Ears and in my Eyes: Google Glass and Android
Wear – Wearable computing might seem like something
from the future (or an Inspector Gadget episode), but many
people are already embracing the future today! C#
developers know this and already have the tools and skills to
harness the power of wearable devices (from Evolve 2014).

What's new in Xamarin.Android – Android L, Android Wear,
Android TV, Android Auto, Material Design, and ART; what
does this mean to you as a Xamarin developer? from Evolve
2014.

https://blog.xamarin.com/webinar-recording-android-l-and-so-much-more/
https://www.youtube.com/watch?v=80H8tXByZQc
https://www.youtube.com/watch?v=Gpqc2XZIQfU

Get Started with Android Wear
 10/28/2019 • 2 minutes to read • Edit Online

 Introduction to Wear

 Setup & Installation

 Hello, Wear

The guides in this section introduce Android Wear, describe how to install and configure your computer for

Wear development, and provide steps to help you create and run your first Android Wear app.

Provides a basic overview of Android Wear, describes its key features, lists some of the more popular Android

Wear devices, and provides links to essential Google Android Wear documentation for further reading.

Walks through the installation steps and configuration details required to prepare your computer and devices

for Android Wear development.

This walkthrough provides step-by-step instructions for creating a small Android Wear project that handles

button clicks and displays a click counter on the Wear device.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/get-started/index.md

Introduction to Android Wear
 7/8/2021 • 8 minutes to read • Edit Online

 Overview

 Android Wear Basics

 Usage ScenariosUsage Scenarios

 Wearable NotificationsWearable Notifications

With the introduction of Google's Android Wear, you are no longer restricted to just phones and tablets when it

comes to developing great Android apps. Xamarin.Android's support for Android Wear makes it possible for

you to run C# code on your wrist! This introduction provides a basic overview of Android Wear, describes its key

features, and offers an overview of the features available in Android Wear 2.0. It lists some of the more popular

Android Wear devices, and it provides links to essential Google Android Wear documentation for further

reading.

Android Wear runs on a variety of devices, including the first-generation Motorola 360, LG's G watch, and the

Samsung Gear Live. A second generation, including Sony's SmartWatch 3, has also been released with

additional capabilities including built-in GPS and offline music playback. For Android Wear 2.0, Google has

teamed up with LG for two new watches: the LG Watch Sport and the LG Watch Style.

Xamarin.Android 5.0 and later supports Android Wear through our Android 4.4W (API 20) support and a NuGet

package that adds additional Wear-specific UI controls. Xamarin.Android 5.0 and later also includes functionality

for packaging your Wear apps. NuGet packages are also available for Android Wear 2.0 as described later in this

guide.

Android Wear has a user interface paradigm that differs from that of Android handheld apps. The first wave of

Wear apps were designed to extend a companion handheld app in some way, but beginning with Android Wear

2.0, Wear apps can be used standalone. When you deploy a Wear app, it is packaged with a companion

handheld app. Because most Wear apps depend upon a handheld companion app, they need some way to

communicate with handheld apps. The following sections describe these usage scenarios and outline the

essential Android Wear features.

The first version of Android Wear was focused primarily on extending current handheld applications with

enhanced notifications and syncing data between the handheld app and the wearable app. Therefore, these

scenarios are relatively straightforward to implement.

The simplest way to support Android Wear is to take advantage of the shared nature of notifications between

the handheld and the wearable device. By using the support v4 notification API and the WearableExtender class

(available in the Xamarin Android Support Library), you can tap into the native features of the platform, like

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/get-started/intro-to-wear.md
https://www.nuget.org/packages/Xamarin.Android.Support.v4/

 Companion ApplicationsCompanion Applications

 User InterfaceUser Interface

 CommunicationsCommunications

inbox style cards or voice input. The RecipeAssistant sample provides example code that demonstrates how to

send a list of notifications to an Android Wear device.

Another strategy is to create a complete application that runs natively on the wearable device and pairs with a

companion handheld app. A good example of this approach is the Quiz sample app, which demonstrates how to

create a quiz that runs on a handheld device and asks quiz questions on the wearable device.

The primary navigation pattern for Wear is a series of cards arranged vertically. Each of these cards can have

associated actions that are layered out on the same row. The GridViewPager class provides this functionality; it

adheres to the same adapter concept as ListView . You typically associate the GridViewPager with a

FragmentGridPagerAdaptor (or GridPagerAdaptor) that lets you represent each row and column cells as a

Fragment :

Wear also makes use of action buttons that consist of a big colored circle with small description text underneath

it (as illustrated above). The GridViewPager sample demonstrates how to use GridViewPager and

GridPagerAdapter in a Wear app.

Android Wear 2.0 adds a navigation drawer, an action drawer, and inline action buttons to the Wear user

interface. For more about Android Wear 2.0 user interface elements, see the Android Anatomy topic.

Android Wear provides two different communication APIs to facilitate communications between wearable apps

and companion handheld apps:

Data APIData API – This API is similar to a synchronized data store between the wearable device and the handheld

device. Android takes care of propagating changes between wearable and handheld when it is optimal to do so.

When the wearable is out of range, it queues synchronization for a later time. The main entry point for this API is

WearableClass.DataApi . For more information about this API, see the Android Syncing Data Items topic.

Message APIMessage API – This API makes it possible for you to use a lower level communications path: a small payload is

sent one-way without synchronization between the handheld and wearable apps. The main entry point for this

API is WearableClass.MessageApi . For more information about this API, see the Android Sending and Receiving

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-recipeassistant
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-quiz
file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/intro-to-wear-images/2d-picker.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-gridviewpager
https://www.google.com/design/spec-wear/system-overview/anatomy.html
https://developer.android.com/training/wearables/data-layer/data-items.html
https://developer.android.com/training/wearables/data-layer/messages.html

 DeploymentDeployment

 Going Further

 Android Wear 2.0

 Install Wear 2.0 PackagesInstall Wear 2.0 Packages

Messages topic.

You can choose to register callbacks for receiving those messages via each of the API listener interfaces or,

alternatively, implement a service in your app that derives from WearableListenerService . This service will be

automatically instantiated by Android Wear. The FindMyPhone sample illustrates how to implement a

WearableListenerService .

Each wearable app is deployed with its own APK file embedded inside the main application APK. This packaging

is handled automatically in Xamarin.Android 5.0 and later, but must be performed manually for versions of

Xamarin.Android earlier than version 5.0. Working with Packaging explains deployment in more detail.

The best way to become familiar with Android Wear is to build and test your first app. The following list

provides a recommended reading order to help you get up to speed quickly:

1. Setup & Installation provides detailed instructions for installing and configuring your development

environment for building Xamarin.Android Wear apps.

2. After you have installed the required packages and configured an emulator or device, see Hello, Wear for

step-by-step instructions that explain how to create a small Android Wear project that handles button

clicks and displays a click counter on the Wear device.

3. Deployment & Testing provides more detailed information about configuring and deploying to emulators

and devices, including instructions on how to deploy your app to a Wear device via Bluetooth.

4. Working with Screen Sizes explains how to preview and optimize your user interface for the various

available screen sizes on Wear devices.

5. Working with Packaging describes the steps for manually packaging Wear apps for distribution on

Google Play.

After you have created your first Wear app, you may want to try building a custom watch face for Android Wear.

Creating a Watch Face provides step-by-step instructions and example code for developing a stripped down

digital watch face service, followed by more code that enhances it to an analog-style watch face with extra

features.

Android Wear 2.0 introduces a variety of new features and capabilities, such as complications, curved layouts,

navigation and action drawers, and expanded notifications. Also, Wear 2.0 makes it possible for you to build

standalone apps that work independently of handheld apps. The new wrist gestures capability enables one-

handed interactions with your app. The following sections highlight these features and provide links to help you

get started with using them in your app.

To build a Wear 2.0 app with Xamarin.Android, you must add the Xamarin.Android.Wear v2.0Xamarin.Android.Wear v2.0 package to

your project (click the Browse tabBrowse tab):

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-findmyphonesample

 Key Features of Wear 2.0Key Features of Wear 2.0

 ComplicationsComplications

 Navigation and Action DrawersNavigation and Action Drawers

This NuGet package contains bindings for both the Android Support Wearable and Wear Compat libraries.

In addition to Xamarin.Android.WearXamarin.Android.Wear , we recommend that you install the

Xamarin.GooglePlaySer vices.WearableXamarin.GooglePlaySer vices.Wearable NuGet:

Android Wear 2.0 is the biggest update to Android Wear since its initial launch in 2014. The following sections

highlight the key features of Android Wear 2.0, and links are provided to help you get started using these new

features in your app.

Complications are small watch face widgets that you can see at a glance without having to swipe the watch face.

Complications are similar to desktop-style dashboard widgets; they display information such as the weather,

battery life, calendar events, and fitness app statistics:

For more about complications, see the Android Watch Face Complications topic.

Two new drawers are included in Wear 2.0. The navigation drawer, which appears at the top of the screen,

allows users to navigate between app views (as shown on the left below). The action drawer, which appears at

the bottom of the screen (as shown on the right), allows users to choose from a list of actions.

file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/intro-to-wear-images/wear-nuget-2.0.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/intro-to-wear-images/gpsw-nuget.png#lightbox
https://developer.android.com/wear/preview/features/complications.html

 Curved LayoutsCurved Layouts

 Standalone AppsStandalone Apps

 Wrist GesturesWrist Gestures

 Devices

For more information about these two new interactive drawers, see the Android Wear Navigation and Actions

topic.

Wear 2.0 introduces new features for displaying curved layouts on round Wear devices. Specifically, the new

WearableRecyclerView class is optimized for displaying a list of vertical items on round displays:

WearableRecyclerView extends the RecyclerView class to support curved layouts and circular scrolling gestures.

For more information, see the Android WearableRecyclerView API documentation.

Android Wear 2.0 apps can work independently of handheld apps. This means that, for example, a smart watch

can continue to offer full functionality even if the companion handheld device is turned off or far away from the

wearable device. For more information about this feature, see the Android Standalone Apps topic.

Wrist gestures make it possible for users to interact with your app without using the touch screen – users can

respond to the app with a single hand. Two wrist gestures are supported:

Flick wrist out

Flick wrist in

For more information, see the Android Wrist Gestures topic.

There are many more Wear 2.0 features such as inline actions, smart reply, remote input, expanded notifications,

and a new bridging mode for notifications. For more information about the new Wear 2.0 features, see the

Android API Overview.

Here are some examples of the devices that can run Android Wear:

Motorola 360

LG G Watch

https://developer.android.com/wear/preview/features/ui-nav-actions.html
https://developer.android.com/reference/android/support/wearable/view/WearableRecyclerView.html
https://developer.android.com/wear/preview/features/standalone-apps.html
https://developer.android.com/wear/preview/features/gestures.html
https://developer.android.com/wear/preview/api-overview.html
https://moto360.motorola.com/
https://www.lg.com/us/smart-watches/lg-W100-g-watch

 Further Reading

 Summary

 Related Links

LG G Watch R

Samsung Gear Live

Sony SmartWatch 3

ASUS ZenWatch

Check out Google's Android Wear documentation:

About Android Wear

Android Wear App Design

android.support.wearable library

Android Wear 2.0

This introduction provided an overview of Android Wear. It outlined the basic features of Android Wear and

included a overview of the features introduced in Android Wear 2.0. It provided links to essential reading to help

developers get started with Xamarin.Android Wear development, and it listed examples of some of the Android

Wear devices currently on the market.

Installation and Setup

Getting Started

https://www.lg.com/us/smartwatch/g-watch-r
https://www.samsung.com/global/microsite/gear/gearlive_design.html
https://www.sonymobile.com/global-en/products/smartwear/smartwatch-3-swr50/
https://www.asus.com/us/Phones/ASUS_ZenWatch_WI500Q/
https://www.android.com/wear/
https://developer.android.com/design/wear/index.html
https://developer.android.com/reference/android/support/wearable/view/package-summary.html
https://developer.android.com/wear/preview/index.html

Install and setup Wear OS on Xamarin.Android
 7/8/2021 • 2 minutes to read • Edit Online

 Requirements

IMPORTANTIMPORTANT

 Installation

 Install Android SDK and toolsInstall Android SDK and tools

This article walks through the installation steps and configuration details required to prepare your computer

and devices for Android Wear development. By the end of this article, you'll have a working Xamarin.Android

Wear installation integrated into Visual Studio for Mac and/or Microsoft Visual Studio, and you'll be ready to

start building your first Xamarin.Android Wear application.

The following is required to create Xamarin-based Android Wear apps:

Visual Studio or Visual Studio for MacVisual Studio or Visual Studio for Mac – Visual Studio 2017 Community or later is required.

Xamarin.AndroidXamarin.Android – Xamarin.Android 4.17 or later must be installed and configured with either Visual

Studio or Visual Studio for Mac.

Android SDKAndroid SDK - Android SDK 5.0.1 (API 21) or later must be installed via the Android SDK Manager.

Java Developer KitJava Developer Kit – Xamarin Android development requires JDK 1.8 if you are developing for API level

24 or greater (JDK 1.8 also supports API levels earlier than 24).

You can continue to use JDK 1.7 if you are developing specifically for API level 23 or earlier.

Xamarin.Android does not support JDK 9.

After you have installed Xamarin.Android, perform the following steps so that you're ready to build and test

Android Wear apps:

1. Install the required Android SDK and tools.

2. Configure a test device.

3. Create your first Android Wear app.

These steps are described in the following sections.

Launch the Android SDK ManagerAndroid SDK Manager :

Visual Studio

Visual Studio for Mac

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/get-started/installation.md
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

 Configuration

 Android Wear EmulatorAndroid Wear Emulator

 Android Wear DeviceAndroid Wear Device

Ensure that you have the following Android SDK and tools installed:

Android SDK Tools v 24.0.0 or higher, and

Android 4.4W (API20), or

Android 5.0.1 (API21) or higher.

If you do not have the latest SDK and tools installed, download the required SDK tools and the API bits (you may

need to scroll a bit to find them – the API selection is shown below):

Visual Studio

Visual Studio for Mac

Before you can use test your app, you must configure an Android Wear emulator or an actual Android Wear

device.

Before you can use an Android Wear emulator, you must configure an Android Wear Android Virtual Device

(AVD) using the Google Emulator ManagerGoogle Emulator Manager :

Visual Studio

Visual Studio for Mac

For more information about setting up an Android Wear emulator, see Debug Android Wear on an Emulator.

If you have an Android Wear device such as an Android Wear Smartwatch, You can debug the app on this device

instead of using an emulator. For information about developing with a Wear device, see Debug on a Wear

 Create Your First Android Wear App

 Packaging Your App

 Related Links

Device.

Follow the Hello, Wear instructions to build your first watch app.

Android wear applications are always distributed with a companion Android phone app.

When you add your Android Wear application as a reference to your main Android application it is

automatically assumed to be an Android Wear project and will generate all necessary XML and metadata for

you. In addition, it will verify that package and version numbers match so you can easily ship your apps to

Google Play.

To learn more about packaging Wear apps, see Working with Packaging.

SkeletonWear (sample)

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-skeletonwear

Hello, Wear
 7/8/2021 • 3 minutes to read • Edit Online

 Your first Wear app

 1. Create a new Android project1. Create a new Android project

Create your first Android Wear app and run it on a Wear emulator or device. This walkthrough provides step-

by-step instructions for creating a small Android Wear project that handles button clicks and displays a click

counter on the Wear device. It explains how to debug the app using a Wear emulator or a Wear device that is

connected via Bluetooth to an Android phone. It also provides a set of debugging tips for Android Wear.

Follow these steps to create your first Xamarin.Android Wear app:

Create a new Android Wear ApplicationAndroid Wear Application:

Visual Studio

Visual Studio for Mac

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/get-started/hello-wear.md

 2. Choose the correct 2. Choose the correct Target FrameworkTarget Framework

 3. Edit the 3. Edit the Main.axmlMain.axml layout layout

This template automatically includes the Xamarin Android Wearable L ibrar yXamarin Android Wearable L ibrar y NuGet (and dependencies) so

you'll have access to Wear-specific widgets. If you don't see the Wear template, review the Installation and Setup

guide to double-check that you have installed a supported Android SDK.

Visual Studio

Visual Studio for Mac

Ensure that Minimum Android to targetMinimum Android to target is set to Android 5.0 (Lollipop)Android 5.0 (Lollipop) or later :

For more information on setting the target framework, see Understanding Android API Levels.

Configure the layout to contain a TextView and a Button for the sample:

file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/hello-wear-images/vs/new-solution.w157.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/hello-wear-images/vs/target-framework.png#lightbox

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
 <ScrollView
 android:id="@+id/scroll"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#000000"
 android:fillViewport="true">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="2dp"
 android:text="Main Activity"
 android:textSize="36sp"
 android:textColor="#006600" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="2dp"
 android:textColor="#cccccc"
 android:id="@+id/result" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="showNotification"
 android:text="Click Me!"
 android:id="@+id/click_button" />
 </LinearLayout>
 </ScrollView>
</FrameLayout>

 4. Edit the 4. Edit the MainActivity.csMainActivity.cs source source

[Activity (Label = "WearTest", MainLauncher = true, Icon = "@drawable/icon")]
public class MainActivity : Activity
{
 int count = 1;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 SetContentView (Resource.Layout.Main);

 Button button = FindViewById<Button> (Resource.Id.click_button);
 TextView text = FindViewById<TextView> (Resource.Id.result);

 button.Click += delegate {
 text.Text = string.Format ("{0} clicks!", count++);
 };
 }
}

 5. Setup an Emulator or Device5. Setup an Emulator or Device

Add the code to increment a counter and display it whenever the button is clicked:

The next step is set up an emulator or device to deploy and run the app. If you are not yet familiar with the

process of deploying and running Xamarin.Android apps in general, see the Hello, Android Quickstart.

 6. Run the Android Wear app6. Run the Android Wear app

If you do not have an Android Wear device such as an Android Wear Smartwatch, You can run the app on an

emulator. For information about debugging Wear apps on an emulator, see Debug Android Wear on an

Emulator.

If you have an Android Wear device such as an Android Wear Smartwatch, You can run the app on the device

instead of using an emulator. For more information about debugging on a Wear device, see Debug on a Wear

Device.

The Android Wear device should appear in the device pulldown menu. Be sure to choose the correct Android

Wear device or AVD before you start debugging. After selecting the device, click the Play button to deploy the

app to the emulator or device.

Visual Studio

Visual Studio for Mac

You may see a Just a minute...Just a minute... message (or some other interstitial screen) at first:

If you are using a watch emulator, it can take a while to start up the app. When you are using Bluetooth, it takes

more time to deploy the app than it would over USB. (For example, it takes about 5 minutes to deploy this app

to an LG G Watch that is Bluetooth-connected to a Nexus 5 phone.)

After the app successfully deploys, the screen of the Wear device should display a screen like the following:

Tap the CLICK ME!CLICK ME! button on the face of the Wear device and see the count increment with each tap:

file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/hello-wear-images/vs/choose-wear-sim.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/hello-wear-images/mainactivity-screen.png#lightbox

 Next Steps

 Related Links

Check out the Wear samples including Android Wear apps with companion Phone apps.

When you are ready to distribute your app, see Working with Packaging.

Click Me App (sample)

file:///T:/c1uy/n1bv/xamarin/android/wear/get-started/hello-wear-images/mainactivity-counts.png#lightbox
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.android%252bwear
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-weartest

User Interfaces for Wear OS with Xamarin.Android
 11/2/2020 • 2 minutes to read • Edit Online

 Controls

The following sections explain the various tools and building blocks that are used to compose user interfaces in

Android Wear apps.

Explains Android Wear-specific controls and provides links to samples that demonstrate how to use these

controls.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/user-interface/index.md

Android Wear Controls
 7/8/2021 • 2 minutes to read • Edit Online

 Related Links

Android Wear apps can use many of the same controls already in use for regular Android apps, including

Button , TextView , and image drawables. Layout controls including ScrollView , LinearLayout , and

RelativateLayout can also be used.

This page links to the Android-Wear-specific controls from the wearable UI library available in Xamarin projects

via the Wearable Support NuGet package. These controls include the following:

GridViewPagerGridViewPager – Create a two-dimensional navigation interface where the user scrolls down then

across to make a selection (for more information, see GridViewPager):

Other important controls for Wear apps include:

BoxInsetLayout (see working with screen sizes),

WatchViewStub (see working with screen sizes),

CardFrame (see Android Creating Cards),

CardScrollView (see Android Creating Cards),

WearableListView (see Android Create Lists).

Android.Support.Wearable docs

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/user-interface/controls/index.md
https://developer.android.com/training/wearables/apps/layouts.html#UiLibrary
https://www.nuget.org/packages/Xamarin.Android.Wear/
https://developer.android.com/training/wearables/ui/cards.html
https://developer.android.com/training/wearables/ui/cards.html
https://developer.android.com/training/wearables/ui/lists.html
https://developer.android.com/reference/android/support/wearable/view/package-summary.html

GridViewPager
 7/8/2021 • 2 minutes to read • Edit Online

<android.support.wearable.view.GridViewPager xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:keepScreenOn="true" />

pager.Adapter = new SimpleGridPagerAdapter (this, FragmentManager);

 Related Links

The GridViewPager sample demonstrates how to implement the 2D picker navigation pattern for Android Wear.

First add the Xamarin Android Wear Support NuGet package to your project.

The layout XML looks like this:

Create a GridPagerAdapter (or subclass such as FragmentGridPagerAdapter to supply views to display as the user

navigates.

The sample adapter shows how to implement the required methods, including overrides for RowCount ,

GetColumnCount , GetBackground , and GetFragment

Wire up the adapter as shown:

Google's 2D Picker doc

android.support.wearable docs

GridViewPager (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/user-interface/controls/gridviewpager.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-gridviewpager
https://www.nuget.org/packages/Xamarin.Android.Wear/
https://developer.android.com/reference/android/support/wearable/view/GridPagerAdapter.html
https://developer.android.com/reference/android/support/wearable/view/FragmentGridPagerAdapter.html
https://github.com/xamarin/monodroid-samples/blob/master/wear/GridViewPager/GridViewPager/SimpleGridPagerAdapter.cs
https://developer.android.com/training/wearables/ui/2d-picker.html
https://developer.android.com/reference/android/support/wearable/view/package-summary.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-gridviewpager

Wear OS Platform Features with Xamarin.Android
 11/2/2020 • 2 minutes to read • Edit Online

 Creating a Watch Face

Documents in this section cover features specific to Android Wear. Here you'll find a topic that describes how to

create a WatchFace.

A step-by-step walkthrough for implementing a custom watch face service for Android Wear. Instructions are

provided for building a stripped down digital watch face service, and then more code is added to create an

analog-style watch face with extra features.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/platform/index.md

Creating a Watch Face
 7/8/2021 • 14 minutes to read • Edit Online

 Overview

 Requirements

This guide explains how to implement a custom watch face service for Android Wear 1.0. Step-by-step

instructions are provided for building a stripped down digital watch face service, followed by more code to

create an analog-style watch face.

In this walkthrough, a basic watch face service is created to illustrate the essentials of creating a custom Android

Wear 1.0 watch face. The initial watch face service displays a simple digital watch that displays the current time

in hours and minutes:

After this digital watch face is developed and tested, more code is added to upgrade it to a more sophisticated

analog watch face with three hands:

Watch face services are bundled and installed as part of a Wear 1.0 app. In the following examples,

MainActivity contains nothing more than the code from the Wear 1.0 app template so that the watch face

service can be packaged and deployed to the smart watch as part of the app. In effect, this app will serve purely

as a vehicle for getting the watch face service loaded into the Wear 1.0 device (or emulator) for debugging and

testing.

To implement a watch face service, the following is required:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/platform/creating-a-watchface.md
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/01-initial-face.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/02-example-watchface.png#lightbox

 Start an App Project

Android 5.0 (API level 21) or higher on the Wear device or emulator.

The Xamarin Android Wear Support Libraries must be added to the Xamarin.Android project.

Although Android 5.0 is the minimum API level for implementing a watch face service, Android 5.1 or later is

recommended. Android Wear devices running Android 5.1 (API 22) or higher allow Wear apps to control what's

displayed on the screen while the device is in low-power ambient mode. When the device leaves low-power

ambient mode, it is in interactive mode. For more about these modes, see Keeping Your App Visible.

Create a new Android Wear 1.0 project called WatchFaceWatchFace (for more information about creating new

Xamarin.Android projects, see Hello, Android):

Visual Studio

Visual Studio for Mac

Set the package name to com.xamarin.watchface :

Visual Studio

Visual Studio for Mac

https://www.nuget.org/packages/Xamarin.Android.Wear
https://developer.android.com/training/wearables/apps/always-on.html
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/03-wear-project-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/04-package-name-vs.png#lightbox

 Add the Xamarin.Android Wear Package

Visual Studio

Visual Studio for Mac

In addition, scroll down and enable the INTERNETINTERNET and WAKE_LOCKWAKE_LOCK permissions:

Next, download preview.png – this will be added to the drawablesdrawables folder later in this walkthrough.

Visual Studio

Visual Studio for Mac

Start the NuGet Package Manager (in Visual Studio, right-click ReferencesReferences in the Solution ExplorerSolution Explorer and select

Manage NuGet Packages ...Manage NuGet Packages ...). Update the project to the latest stable version of Xamarin.Android.WearXamarin.Android.Wear :

Next, if Xamarin.Android.Suppor t.v13Xamarin.Android.Suppor t.v13 is installed, uninstall it:

Build and run the app on a Wear device or emulator (for more information about how to do this, see the Getting

Started guide). You should see the following app screen on the Wear device:

file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/05-required-permissions-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/preview.png
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/06-add-wear-pkg-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/07-uninstall-v13.png#lightbox

 CanvasWatchFaceService

At this point, the basic Wear app does not have watch face functionality because it does not yet provide a watch

face service implementation. This service will be added next.

Android Wear implements watch faces via the CanvasWatchFaceService class. CanvasWatchFaceService is derived

from WatchFaceService , which itself is derived from WallpaperService as shown in the following diagram:

CanvasWatchFaceService includes a nested CanvasWatchFaceService.Engine ; it instantiates a

CanvasWatchFaceService.Engine object that does the actual work of drawing the watch face.

CanvasWatchFaceService.Engine is derived from WallpaperService.Engine as shown in the above diagram.

Not shown in this diagram is a Canvas that CanvasWatchFaceService uses for drawing the watch face – this

Canvas is passed in via the OnDraw method as described below.

In the following sections, a custom watch face service will be created by following these steps:

1. Define a class called MyWatchFaceService that is derived from CanvasWatchFaceService .

2. Within MyWatchFaceService , create a nested class called MyWatchFaceEngine that is derived from

CanvasWatchFaceService.Engine .

file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/08-app-screen.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/09-inheritance-diagram.png#lightbox

 Add the CanvasWatchFaceServiceAdd the CanvasWatchFaceService

using System;
using Android.Views;
using Android.Support.Wearable.Watchface;
using Android.Service.Wallpaper;
using Android.Graphics;

namespace WatchFace
{
 class MyWatchFaceService : CanvasWatchFaceService
 {
 public override WallpaperService.Engine OnCreateEngine()
 {
 return new MyWatchFaceEngine(this);
 }

 public class MyWatchFaceEngine : CanvasWatchFaceService.Engine
 {
 CanvasWatchFaceService owner;
 public MyWatchFaceEngine (CanvasWatchFaceService owner) : base(owner)
 {
 this.owner = owner;
 }
 }
 }
}

3. In MyWatchFaceService , implement a CreateEngine method that instantiates MyWatchFaceEngine and

returns it.

4. In MyWatchFaceEngine , implement the OnCreate method to create the watch face style and perform any

other initialization tasks.

5. Implement the OnDraw method of MyWatchFaceEngine . This method is called whenever the watch face

needs to be redrawn (i.e. invalidated). OnDraw is the method that draws (and redraws) watch face

elements such as hour, minute, and second hands.

6. Implement the OnTimeTick method of MyWatchFaceEngine . OnTimeTick is called at least once per minute

(in both ambient and interactive modes) or when the date/time has changed.

For more information about CanvasWatchFaceService , see the Android CanvasWatchFaceService API

documentation. Similarly, CanvasWatchFaceService.Engine explains the actual implementation of the watch face.

Visual Studio

Visual Studio for Mac

Add a new file called MyWatchFaceSer vice.csMyWatchFaceSer vice.cs (in Visual Studio, right-click WatchFaceWatchFace in the SolutionSolution

ExplorerExplorer , click Add > New Item...Add > New Item..., and select ClassClass).

Replace the contents of this file with the following code:

MyWatchFaceService (derived from CanvasWatchFaceService) is the "main program" of the watch face.

MyWatchFaceService implements only one method, OnCreateEngine , which instantiates and returns a

MyWatchFaceEngine object (MyWatchFaceEngine is derived from CanvasWatchFaceService.Engine). The instantiated

MyWatchFaceEngine object must be returned as a WallpaperService.Engine . The encapsulating

MyWatchFaceService object is passed into the constructor.

MyWatchFaceEngine is the actual watch face implementation – it contains the code that draws the watch face. It

also handles system events such as screen changes (ambient/interactive modes, screen turning off, etc.).

https://developer.android.com/reference/android/support/wearable/watchface/CanvasWatchFaceService.html
https://developer.android.com/reference/android/support/wearable/watchface/CanvasWatchFaceService.Engine.html

Implement the Engine OnCreate methodImplement the Engine OnCreate method

Paint hoursPaint;

public override void OnCreate(ISurfaceHolder holder)
{
 base.OnCreate (holder);

 SetWatchFaceStyle (new WatchFaceStyle.Builder(owner)
 .SetCardPeekMode (WatchFaceStyle.PeekModeShort)
 .SetBackgroundVisibility (WatchFaceStyle.BackgroundVisibilityInterruptive)
 .SetShowSystemUiTime (false)
 .Build ());

 hoursPaint = new Paint();
 hoursPaint.Color = Color.White;
 hoursPaint.TextSize = 48f;
}

 Implement the Engine OnDraw methodImplement the Engine OnDraw method

public override void OnDraw (Canvas canvas, Rect frame)
{
 var str = DateTime.Now.ToString ("h:mm tt");
 canvas.DrawText (str,
 (float)(frame.Left + 70),
 (float)(frame.Top + 80), hoursPaint);
}

The OnCreate method initializes the watch face. Add the following field to MyWatchFaceEngine :

This Paint object will be used to draw the current time on the watch face. Next, add the following method to

MyWatchFaceEngine :

OnCreate is called shortly after MyWatchFaceEngine is started. It sets up the WatchFaceStyle (which controls how

the Wear device interacts with the user) and instantiates the Paint object that will be used to display the time.

The call to SetWatchFaceStyle does the following:

1. Sets peek mode to PeekModeShort , which causes notifications to appear as small "peek" cards on the

display.

2. Sets the background visibility to Interruptive , which causes the background of a peek card to be shown

only briefly if it represents an interruptive notification.

3. Disables the default system UI time from being drawn on the watch face so that the custom watch face

can display the time instead.

For more information about these and other watch face style options, see the Android WatchFaceStyle.Builder

API documentation.

After SetWatchFaceStyle completes, OnCreate instantiates the Paint object (hoursPaint) and sets its color to

white and its text size to 48 pixels (TextSize must be specified in pixels).

The OnDraw method is perhaps the most important CanvasWatchFaceService.Engine method – it is the method

that actually draws watch face elements such as digits and clock face hands. In the following example, it draws a

time string on the watch face. Add the following method to MyWatchFaceEngine :

When Android calls OnDraw , it passes in a Canvas instance and the bounds in which the face can be drawn. In

https://developer.android.com/reference/android/support/wearable/watchface/WatchFaceStyle.Builder.html
https://developer.android.com/reference/android/graphics/Paint.html#setTextSize%2528float%2529

 Implement the Engine OnTimeTick methodImplement the Engine OnTimeTick method

public override void OnTimeTick()
{
 Invalidate();
}

 Register the CanvasWatchFaceService

<service
 android:name="watchface.MyWatchFaceService"
 android:label="Xamarin Sample"
 android:allowEmbedded="true"
 android:taskAffinity=""
 android:permission="android.permission.BIND_WALLPAPER">
 <meta-data
 android:name="android.service.wallpaper"
 android:resource="@xml/watch_face" />
 <meta-data
 android:name="com.google.android.wearable.watchface.preview"
 android:resource="@drawable/preview" />
 <intent-filter>
 <action android:name="android.service.wallpaper.WallpaperService" />
 <category android:name="com.google.android.wearable.watchface.category.WATCH_FACE" />
 </intent-filter>
</service>

the above code example, DateTime is used to calculate the current time in hours and minutes (in 12-hour

format). The resulting time string is drawn on the canvas by using the Canvas.DrawText method. The string will

appear 70 pixels over from the left edge and 80 pixels down from the top edge.

For more information about the OnDraw method, see the Android onDraw API documentation.

Android periodically calls the OnTimeTick method to update the time shown by the watch face. It is called at

least once per minute (in both ambient and interactive modes), or when the date/time or timezone have

changed. Add the following method to MyWatchFaceEngine :

This implementation of OnTimeTick simply calls Invalidate . The Invalidate method schedules OnDraw to

redraw the watch face.

For more information about the OnTimeTick method, see the Android onTimeTick API documentation.

MyWatchFaceService must be registered in the AndroidManifest.xmlAndroidManifest.xml of the associated Wear app. To do this,

add the following XML to the <application> section:

This XML does the following:

1. Sets the android.permission.BIND_WALLPAPER permission. This permission gives the watch face service

permission to change the system wallpaper on the device. Note that this permission must be set in the

<service> section rather than in the outer <application> section.

2. Defines a watch_face resource. This resource is a short XML file that declares a wallpaper resource (this

file will be created in the next section).

3. Declares a drawable image called preview that will be displayed by the watch picker selection screen.

4. Includes an intent-filter to let Android know that MyWatchFaceService will be displaying a watch face.

That completes the code for the basic WatchFace example. The next step is to add the necessary resources.

https://developer.android.com/reference/android/support/wearable/watchface/CanvasWatchFaceService.Engine#ondraw
https://developer.android.com/reference/android/support/wearable/watchface/WatchFaceService.Engine.html#onTimeTick()

 Add resource files

<?xml version="1.0" encoding="UTF-8"?>
<wallpaper xmlns:android="http://schemas.android.com/apk/res/android" />

 Try it!

Before you can run the watch service, you must add the watch_facewatch_face resource and the preview image. First,

create a new XML file at Resources/xml/watch_face.xmlResources/xml/watch_face.xml and replace its contents with the following XML:

Set this file's build action to AndroidResourceAndroidResource:

Visual Studio

Visual Studio for Mac

This resource file defines a simple wallpaper element that will be used for the watch face.

If you have not yet done so, download preview.png. Install it at Resources/drawable/preview.pngResources/drawable/preview.png. Be sure to

add this file to the WatchFace project. This preview image is displayed to the user in the watch face picker on the

Wear device. To create a preview image for your own watch face, you can take a screenshot of the watch face

while it is running. (For more about getting screenshots from Wear devices, see Taking screenshots).

Build and deploy the app to the Wear device. You should see the Wear app screen appear as before. Do the

following to enable the new watch face:

1. Swipe to the right until you see the background of the watch screen.

2. Touch and hold anywhere on the background of the screen for two seconds.

3. Swipe from left to right to browse through the various watch faces.

4. Select the Xamarin SampleXamarin Sample watch face (shown on the right):

file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/10-android-resource-vs.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/preview.png

 Upgrading the watch face

 Update Engine featuresUpdate Engine features

5. Tap the Xamarin SampleXamarin Sample watch face to select it.

This changes the watch face of the Wear device to use the custom watch face service implemented so far :

This is a relatively crude watch face because the app implementation is so minimal (for example, it doesn't

include a watch face background and it doesn't call Paint anti-alias methods to improve the appearance).

However, it does implement the bare-bones functionality that is required to create a custom watch face.

In the next section, this watch face will be upgraded to a more sophisticated implementation.

In the remainder of this walkthrough, MyWatchFaceService is upgraded to display an analog-style watch face and

it is extended to support more features. The following capabilities will be added to create the upgraded watch

face:

1. Indicates the time with analog hour, minute, and second hands.

2. Reacts to changes in visibility.

3. Responds to changes between ambient mode and interactive mode.

4. Reads the properties of the underlying Wear device.

5. Automatically updates the time when a time zone change takes place.

Before implementing the code changes below, download drawable.zip, unzip it, and move the unzipped .png

files to Resources/drawableResources/drawable (overwrite the previous preview.pngpreview.png). Add the new .png files to the WatchFace

project.

The next step is upgrade MyWatchFaceSer vice.csMyWatchFaceSer vice.cs to an implementation that draws an analog watch face and

file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/11-watchface-picker.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/12-digital-watchface.png#lightbox
https://github.com/xamarin/monodroid-samples/blob/master/wear/WatchFace/Resources/drawable.zip?raw=true

 OnCreateOnCreate

 OnDrawOnDraw

 OnPropertiesChangedOnPropertiesChanged

 OnAmbientModeChangedOnAmbientModeChanged

 OnVisibilityChangedOnVisibilityChanged

 Time zone featureTime zone feature

supports new features. Replace the contents of MyWatchFaceSer vice.csMyWatchFaceSer vice.cs with the analog version of the watch

face code in MyWatchFaceService.cs (you can cut and paste this source into the existing

MyWatchFaceSer vice.csMyWatchFaceSer vice.cs).

This version of MyWatchFaceSer vice.csMyWatchFaceSer vice.cs adds more code to the existing methods and includes additional

overridden methods to add more functionality. The following sections provide a guided tour of the source code.

The updated OnCreateOnCreate method configures the watch face style as before, but it includes some additional steps:

1. Sets the background image to the xamarin_backgroundxamarin_background resource that resides in

Resources/drawable-hdpi/xamarin_background.pngResources/drawable-hdpi/xamarin_background.png.

2. Initializes Paint objects for drawing the hour hand, minute hand, and second hand.

3. Initializes a Paint object for drawing the hour ticks around the edge of the watch face.

4. Creates a timer that calls the Invalidate (redraw) method so that the second hand will be redrawn every

second. Note that this timer is necessary because OnTimeTick calls Invalidate only once every minute.

This example includes only one xamarin_background.pngxamarin_background.png image; however, you may want to create a different

background image for each screen density that your custom watch face will support.

The updated OnDrawOnDraw method draws an analog-style watch face using the following steps:

1. Gets the current time, which is now maintained in a time object.

2. Determines the bounds of the drawing surface and its center.

3. Draws the background, scaled to fit the device when the background is drawn.

4. Draws twelve ticks around the face of the clock (corresponding to the hours on the clock face).

5. Calculates the angle, rotation, and length for each watch hand.

6. Draws each hand on the watch surface. Note that the second hand is not drawn if the watch is in ambient

mode.

This method is called to inform MyWatchFaceEngine about the properties of the Wear device (such as low-bit

ambient mode and burn-in protection). In MyWatchFaceEngine , this method only checks for low bit ambient

mode (in low bit ambient mode, the screen supports fewer bits for each color).

For more information about this method, see the Android onPropertiesChanged API documentation.

This method is called when the Wear device enters or exits ambient mode. In the MyWatchFaceEngine

implementation, the watch face disables anti-aliasing when it is in ambient mode.

For more information about this method, see the Android onAmbientModeChanged API documentation.

This method is called whenever the watch becomes visible or hidden. In MyWatchFaceEngine , this method

registers/unregisters the time zone receiver (described below) according to the visibility state.

For more information about this method, see the Android onVisibilityChanged API documentation.

The new MyWatchFaceSer vice.csMyWatchFaceSer vice.cs also includes functionality to update the current time whenever the time

zone changes (such as while traveling across time zones). Near the end of MyWatchFaceSer vice.csMyWatchFaceSer vice.cs , a time

https://github.com/xamarin/monodroid-samples/blob/master/wear/WatchFace/WatchFace/MyWatchFaceService.cs
https://developer.android.com/reference/android/support/wearable/watchface/WatchFaceService.Engine.html#onPropertiesChanged%2528android.os.Bundle%2529
https://developer.android.com/reference/android/support/wearable/watchface/WatchFaceService.Engine.html#onAmbientModeChanged%2528boolean%2529
https://developer.android.com/reference/android/support/wearable/watchface/WatchFaceService.Engine.html#onVisibilityChanged%2528boolean%2529

public class TimeZoneReceiver: BroadcastReceiver
{
 public Action<Intent> Receive { get; set; }
 public override void OnReceive (Context context, Intent intent)
 {
 if (Receive != null)
 Receive (intent);
 }
}

timeZoneReceiver = new TimeZoneReceiver ();
timeZoneReceiver.Receive = (intent) => {
 time.Clear (intent.GetStringExtra ("time-zone"));
 time.SetToNow ();
};

IntentFilter filter = new IntentFilter(Intent.ActionTimezoneChanged);
Application.Context.RegisterReceiver (timeZoneReceiver, filter);

Application.Context.UnregisterReceiver (timeZoneReceiver);

 Run the improved watch faceRun the improved watch face

zone change BroadcastReceiver is defined that handles timezone-changed Intent objects:

The RegisterTimezoneReceiver and UnregisterTimezoneReceiver methods are called by the OnVisibilityChanged

method. UnregisterTimezoneReceiver is called when the visibility state of the watch face is changed to hidden.

When the watch face is visible again, RegisterTimezoneReceiver is called (see the OnVisibilityChanged method).

The engine RegisterTimezoneReceiver method declares a handler for this time zone receiver's Receive event;

this handler updates the time object with the new time whenever a time zone is crossed:

An intent filter is created and registered for the time zone receiver :

The UnregisterTimezoneReceiver method unregisters the time zone receiver :

Build and deploy the app to the Wear device again. Select the watch face from the watch face picker as before.

The preview in the watch picker is shown on the left, and the new watch face is shown on the right:

In this screenshot, the second hand is moving once per second. When you run this code on a Wear device, the

second hand disappears when the watch enters ambient mode.

file:///T:/c1uy/n1bv/xamarin/android/wear/platform/creating-a-watchface-images/13-analog-watchface.png#lightbox

Summary

 Related Links

In this walkthrough, a custom Android Wear 1.0 watchface was implemented and tested. The

CanvasWatchFaceService and CanvasWatchFaceService.Engine classes were introduced, and the essential methods

of the engine class were implemented to create a simple digital watch face. This implementation was updated

with more functionality to create an analog watch face, and additional methods were implemented to handle

changes in visibility, ambient mode, and differences in device properties. Finally, a time zone broadcast receiver

was implemented so that the watch automatically updates the time when a time zone is crossed.

Creating Watch Faces

WatchFace sample

WatchFaceService.Engine

https://developer.android.com/training/wearables/watch-faces/index.html
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-watchface
https://developer.android.com/reference/android/support/wearable/watchface/WatchFaceService.Engine.html

Working with Screen Sizes
 7/8/2021 • 2 minutes to read • Edit Online

 Identifying Screen Type

 WatchViewStubWatchViewStub

<android.support.wearable.view.WatchViewStub
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/stub"
 app:rectLayout="@layout/rect_layout"
 app:roundLayout="@layout/round_layout" />

 BoxInsetLayoutBoxInsetLayout

Android Wear devices can have either a rectangular or a round display, which can also be different sizes.

The Wear support library provides some controls that help you detect and adapt to different screen shapes,

such as WatchViewStub and BoxInsetLayout .

Be aware that some of the other support library controls (such as GridViewPager) automatically detect screen

shape themselves and shouldn't be added as children of the controls described below.

See the WatchViewStub sample to see how to detect screen type and display a different layout for each type.

The main layout file contains a android.support.wearable.view.WatchViewStub which references different layouts

for rectangular and round screens using the app:rectLayout and app:roundLayout attributes:

The solution contains different layouts for each style which will be selected at run-time:

Rather than build different layouts for each screen type, you can also create a single view that adapts to

rectangular or round screens.

This Google example shows how to use the BoxInsetLayout to use the same layout on both rectangular and

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/screen-sizes.md
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-watchviewstub
https://developer.android.com/training/wearables/ui/layouts.html#same-layout

 Wear UI Designer

 Wear Simulator

round screens.

The Xamarin Android Designer supports both rectangular and round screens:

The design surface in rectangular style is shown here:

The design surface in round style is shown here:

The Google Emulator ManagerGoogle Emulator Manager contains device definitions for both screen types. You can create rectangular

and round emulators to test your app.

The emulator will render like this for a rectangular screen:

 Video

It will render like this for a round screen:

Fullscreen apps for Android Wear from developers.google.com.

https://www.youtube.com/watch?v=naf_WbtFAlY
https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw

Deployment and Testing of Wear OS Apps
 11/2/2020 • 2 minutes to read • Edit Online

 Debug Android Wear on an Emulator

 Debug on a Wear Device

 Packaging Wear Apps

This section explains how to test your Android Wear app on an Android Wear device (or on an Android emulator

configured for Wear). It also includes debugging tips and information for how to set up a Bluetooth connection

between your development computer and an Android device. When your app is ready, the last topic explains

how to prepare your app for deployment.

How to debug a Xamarin.Android Wear application on the Android SDK emulator.

How to configure an Android device so that Xamarin.Android Wear applications can be deployed to it directly

from either Visual Studio or Visual Studio for Mac.

How to package Xamarin.Android Wear apps for distribution on Google Play.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/deploy-test/index.md

Debug Android Wear on an Emulator
 7/8/2021 • 2 minutes to read • Edit Online

 Debug Wear on Emulator Overview

 Configure the Android Emulator

 Launch The Wear Virtual Device

These articles explain how to debug a Xamarin.Android Wear application on an emulator.

Developing Android Wear applications requires running the application, either on physical hardware or using an

emulator or simulator. Using hardware is the best approach, but not always the most practical. In many cases, it

can be simpler and more cost effective to simulate/emulate Android Wear hardware using an emulator as

described below. If you are not yet familiar with the process of deploying and running Android Wear apps, see

Hello, Wear.

To run your Wear app on an emulator, you must install the Android SDK Android Emulator and configure it for

Android Wear. For overall Android SDK Emulator installation and configuration information, see Android

Emulator Setup.

When you create a Wear virtual device, select an Android Wear device profile (such as Android Wear SquareAndroid Wear Square).

For improved performance, use the Wear x86x86 CPU/ABI as seen in this example:

After you have created an Android Wear virtual device, you can choose it from the device pull-down menu in

the IDE before you start debugging. If your virtual device is not available in the device pull-down, verify that

your project is an Android Wear app project (not an Android app project) and that its target API level is set to the

same API level as the virtual device. For example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/deploy-test/debug-on-emulator.md
file:///T:/c1uy/n1bv/xamarin/android/wear/deploy-test/debug-on-emulator-images/01-wear-avd-example.png#lightbox
file:///T:/c1uy/n1bv/xamarin/android/wear/deploy-test/debug-on-emulator-images/vs/choose-wear-sim.png#lightbox

 Summary

After the Android emulator starts, Xamarin.Android will deploy the Wear app to the emulator. The emulator runs

the app with the configured virtual device image.

Don't be surprised if you see this (or another interstitial screen) at first. The watch emulator can take a while to

start up:

The emulator may be left running; it is not necessary to shut it down and restart it each time the app is run.

This guide explained how to configure the Android Emulator for Wear development and launch a Wear virtual

device for debugging.

Debug on a Wear Device
 11/2/2020 • 3 minutes to read • Edit Online

 Overview

 Prepare The Wear Device:

 Debugging over USB

 Debugging over Bluetooth

 Prepare Your PhonePrepare Your Phone

 Connect The DeviceConnect The Device

This article explains how to debug a Xamarin.Android Wear application on a Wear device.

If you have an Android Wear device such as an Android Wear Smartwatch, You can run the app on the device

instead of using an emulator. (If you are not yet familiar with the process of deploying and running Android

Wear apps, see Hello, Wear.)

Use the following steps to enable debugging on the Android Wear device:

1. Open the SettingsSettings menu on the Android Wear device.

2. Scroll to the bottom of the menu and tap AboutAbout.

3. Tap the build number 7 times.

4. On the SettingsSettings menu, tap Developer OptionsDeveloper Options .

5. Confirm that ADB debuggingADB debugging is enabled.

If your Wear device has a USB port, you can connect the Wear device to your computer, deploy to it, and

run/debug the app as you would using an Android phone (for more information, see Debug on a Device).

If your Wear device does not have a USB port, you can deploy the app to the Wear device over Bluetooth by

routing the app's debug output to an Android phone that is connected to your computer.

Use the following steps to prepare your phone for making Bluetooth connections to the Wear device:

1. If you have not already done so, set up your phone for Xamarin.Android development as explained in Set

Up Device for Development.

2. Download and install the free Android Wear app from the Google Play Store.

Use the following steps to connect your Wear device to your Phone:

1. On the phone that will act as Bluetooth intermediary (configured above), start the Android Wear app.

2. Tap the SettingsSettings icon.

3. Enable Debugging over BluetoothDebugging over Bluetooth. You should see the following status displayed on the screen of the

Android Wear app:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/deploy-test/debug-on-device.md
https://play.google.com/store/apps/details?id=com.google.android.wearable.app

 Taking screenshotsTaking screenshots

adb -s 127.0.0.1:4444 shell screencap -p /sdcard/DCIM/screencap.png

adb -s 127.0.0.1:4444 pull /sdcard/DCIM/screencap.png

adb -s 127.0.0.1:4444 shell rm /sdcard/DCIM/screencap.png

 Uninstalling an appUninstalling an app

adb -s 127.0.0.1:4444 uninstall <package name>

Host: disconnected
Target: connected

adb forward tcp:4444 localabstract:/adb-hub
adb connect 127.0.0.1:4444

NOTENOTE

Host: connected
Target: connected

List of devices attached
127.0.0.1:4444 device
019ad61df0a69399 device

4. Connect the phone to your computer over USB. On your computer, enter the following commands:

If port 4444 is not available, you can use any other available port to which you have access.

If you restart Visual Studio or Visual Studio for Mac, you must run these commands again to setup a connection

to the Wear device.

5. When the Wear device prompts you, confirm that you are allowing ADB DebuggingADB Debugging. In the Android

Wear app, you should see the status change to:

6. After you complete the above steps, running adb devices shows the status of both the phone and the

Android Wear device:

At this point, you can deploy your app to the Wear device.

You can take a screenshot of the Wear device by entering the following command:

Copy the screenshot to your computer by entering the following command:

Delete the screenshot on the device by entering the following command:

You can uninstall an app from the wear device by entering the following command:

adb -s 127.0.0.1:4444 uninstall com.xamarin.weartest

 Debugging a Wear app with a companion phone app

 Summary

For example, to remove the app with the package name com.xamarin.weartest , enter the following command:

For more information about debugging Android Wear devices over Bluetooth, see Debugging over Bluetooth.

Android Wear apps are packaged with a companion Android phone app for distribution on Google Play (for

more information, see Working with Packaging). However, you still develop the Wear app and its companion

app separately. When you release your app through the Google Play Store, the Wear app will be packaged with

the companion app and automatically installed if possible.

To debug the Wear app with a companion app:

1. Build and deploy the companion app to the phone.

2. Right-click the Wear project and set it as the default start project.

3. Deploy the Wear project to the wearable device.

4. Run and debug the Wear app on the device.

This article explained how to configure an Android Wear device for Wear debug from Visual Studio via

Bluetooth, and how to debug a Wear app with a companion phone app. It also provided common debugging

tips for debugging a Wear app via Bluetooth.

https://developer.android.com/training/wearables/apps/bt-debugging.html

Packaging Wear Apps
 11/2/2020 • 3 minutes to read • Edit Online

WARNINGWARNING

 Automatic Packaging

Error XA5211: Embedded wear app package name differs from handheld
app package name (com.companyname.mywearapp != com.companyname.myapp). (XA5211)

The following docs and sample projects may no longer be maintained. As of Xamarin.Android 11.1, automatically

packaging an Android Wear application within an Android handheld application is no longer supported. It is

recommended to distribute Android Wear applications as standalone applications instead.

Android Wear 1.0 apps are packaged with a full Android app for distribution on Google Play.

Android Wear 2.0 apps can be submitted to Google Play as standalone applications.

Starting with Xamarin Android 5.0, your Wear app is automatically packaged as a resource in your Handheld

app when you create a project reference from the Handheld project to the Wear project. You can use the

following steps to create this association:

Visual Studio

Visual Studio for Mac

1. If your Wear app is not already part of your Handheld solution, right-click the solution node and select

Add > Add Existing Project...Add > Add Existing Project... .

2. Navigate to the .csproj.csproj file of your Wear app, select it, and click OpenOpen. The Wear app project should now

be visible in your Handheld solution.

3. Right-click the ReferencesReferences node and select Add ReferenceAdd Reference.

4. In the Reference ManagerReference Manager dialog, enable your Wear project (click to add a check mark), then click OKOK.

5. Change the package name for your Wear project so that it matches the package name of the Handheld

project (the package name can be changed under Proper ties > Android ManifestProper ties > Android Manifest).

Note that you will get an XA5211XA5211 error if the package name of the Wear app does not match the package name

of the Handheld app. For example:

To correct this error, change the package name of the Wear app so that it matches the package name of the

Handheld app.

When you click Build > Build AllBuild > Build All , this association triggers automatic packaging of the Wear project into the

main Handheld (Phone) project. The Wear app is automatically built and included as a resource in the Handheld

app.

The assembly that the Wear app project generates is not used as an assembly reference in the Handheld (Phone)

project. Instead, the build process does the following:

Verifies that the package names match.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/wear/deploy-test/packaging.md
https://docs.microsoft.com/en-us/xamarin/android/release-notes/11/11.1
https://developer.android.com/training/wearables/apps/standalone-apps
https://developer.android.com/training/wearables/apps/standalone-apps

 Manual Packaging

<!-- Handheld (Phone) Project.csproj -->
<ProjectReference Include="..\MyWearApp\MyWearApp.csproj">
 <Project>{D80E1FEF-653B-448C-B2AA-609C74E88340}</Project>
 <Name>MyWearApp</Name>
 <IsAppExtension>True</IsAppExtension>
</ProjectReference>

Generates XML and adds it to the Handheld project to associate it with the Wear app. For example:

Adds the Wear app as a rawraw resource to the Handheld project.

You can write Android Wear apps in Xamarin.Android before version 5.0, but you must follow these manual

packaging instructions to distribute the app:

<wearableApp package="wearable.app.package.name">
 <versionCode>1</versionCode>
 <versionName>1.0</versionName>
 <rawPathResId>NAME_OF_APK_FROM_STEP_3</rawPathResId>
</wearableApp>

<meta-data android:name="com.google.android.wearable.beta.app"
 android:resource="@xml/wearable_app_desc"/>

1. Ensure that your Wearable project and Handheld (Phone) projects have the same version number and

package name.

2. Manually build the Wearable project as a ReleaseRelease build.

3. Manually add the release .APK.APK from step (2) into the Resources/rawResources/raw directory of the Handheld (Phone)

project.

4. Manually add a new XML resource Resources/xml/wearable_app_desc.xmlResources/xml/wearable_app_desc.xml in the Handheld project

which refers to Wearable APKAPK from step (3):

5. Manually add a <meta-data /> element to the Handheld project's AndroidManifest.xmlAndroidManifest.xml <application>

element that refers to the new XML resource:

See also the Android Developer site's manual packging instructions.

https://developer.android.com/training/wearables/apps/packaging.html#PackageManually

Xamarin.Android samples
 7/8/2021 • 2 minutes to read • Edit Online

 Material DesignMaterial Design

 Google Play ServicesGoogle Play Services

These Xamarin Android sample apps and code demos can help you get started building mobile apps with C#

and Xamarin.

All Xamarin.Android samples

This sample demonstrates the new Material Design APIs introduced in Android Lollipop.

This solution uses the Xamarin Google Play Services NuGet to demonstrate a few uses of the maps API.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/samples/index.md
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.android
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-googleio2014master/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-googleio2014master/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/googleplayservices/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/googleplayservices/

 Flash Card PagerFlash Card Pager

 FragmentsFragments

This sample demonstrates how to use ViewPager and PagerTabStrip together to implement an app that presents

a series of math problems on flash cards.

Fragments are self-contained, modular components that are used to help address the complexity of writing

applications that may run on screens of different sizes.

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-flashcardpager/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/userinterface-flashcardpager/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/fragmentswalkthrough/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/fragmentswalkthrough/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-fingerpaint/

Finger PaintFinger Paint

 RecyclerViewerRecyclerViewer

 ToolbarToolbar

Colorful finger-painting app using multi-touch tracking on Android.

Use this sample to learn how to use the new CardView and RecyclerView widgets introduced with Android 5.0

Lollipop.

Android sample replacing the ActionBar with the new ToolBar in Android 5.0 Lollipop.

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/applicationfundamentals-fingerpaint/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-recyclerviewer/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-toolbar/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/android50-toolbar/

 WatchFaceWatchFace

 All samples

How to implement a custom Android Wear watch face.

For the complete set of Xamarin Android sample apps and code demos see All Xamarin.Android samples.

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-watchface/
https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/wear-watchface/
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.android

	Cover Page
	Xamarin.Android
	Get Started
	Setup and Installation
	Windows Installation
	Android SDK Setup
	Android Emulator Setup
	Hardware Acceleration (Hyper-V & HAXM)
	Device Manager
	Device Properties
	Troubleshooting

	Android Device Setup
	Microsoft Mobile OpenJDK Preview

	Hello, Android
	Part 1: Quickstart
	Part 2: Deep Dive

	Hello, Android Multiscreen
	Part 1: Quickstart
	Part 2: Deep Dive

	Xamarin for Java Developers

	Application Fundamentals
	Accessibility
	Android API Levels
	Android Resources
	Android Resource Basics
	Default Resources
	Alternate Resources
	Creating Resources for Varying Screens
	Application Localization and String Resources
	Using Android Assets
	Fonts

	Activity Lifecycle
	Walkthrough - Saving the Activity state

	Android Services
	Creating a Service
	Bound Services
	Intent Services
	Started Services

	Foreground Services
	Out of Process Services
	Service Notifications

	Broadcast Receivers
	Localization
	Permissions
	Graphics and Animation
	CPU Architectures
	Handling Rotation
	Audio
	Notifications
	Local Notifications
	Local Notifications Walkthrough

	Touch
	Touch in Android
	Walkthrough – Using Touch in Android
	Multi-Touch Tracking

	HttpClient Stack and SSL/TLS
	Writing Responsive Apps

	User Interface
	Android Designer
	Using the Android Designer
	Designer Basics
	Resource Qualifiers and Visualization Options
	Alternative Layout Views
	Material Design Features
	Android Layout Diagnostics
	Android Designer Diagnostic Analyzers

	Material Theme
	User Profile
	Splash Screen
	Layouts
	LinearLayout
	RelativeLayout
	TableLayout
	RecyclerView
	Parts and Functionality
	RecyclerView Example
	Extending the Example

	ListView
	ListView Parts and Functionality
	Populating a ListView With Data
	Customizing a ListView's Appearance
	Using CursorAdapters
	Using a ContentProvider
	ListView and the Activity Lifecycle

	GridView
	GridLayout
	Tabbed Layouts
	Navigation Tabs with the ActionBar

	Controls
	ActionBar
	Auto Complete
	Buttons
	Radio Button
	Toggle Button
	CheckBox
	Custom Button

	Calendar
	CardView
	EditText
	Gallery
	Navigation Bar
	Pickers
	Date Picker
	Time Picker

	Popup Menu
	RatingBar
	Spinner
	Switch
	TextureView
	Toolbar
	Replacing the Action Bar
	Adding a Second Toolbar
	Toolbar Compatibility

	ViewPager
	ViewPager with Views
	ViewPager with Fragments

	WebView

	Platform Features
	Android Beam
	Android Manifest
	File Access with Xamarin.Android
	External Storage

	Fingerprint Authentication
	Getting Started
	Scanning for Fingerprints
	Creating the CryptoObject
	Responding to Authentication Callbacks
	Guidance & Summary
	Enrolling a Fingerprint

	Android Job Scheduler
	Firebase Job Dispatcher
	Fragments
	Implementing Fragments
	Fragments Walkthrough - Part 1
	Fragments Walkthrough - Part 2

	Creating a Fragment
	Managing Fragments
	Specialized Fragment Classes
	Providing Backwards Compatibility

	App Linking
	AndroidX
	Android 10
	Android 9 Pie
	Android 8 Oreo
	Android 7 Nougat
	Android 6 Marshmallow
	Android 5 Lollipop
	Android 4.4 KitKat
	Android 4.1 Jelly Bean
	Android 4.0 Ice Cream Sandwich
	Content Providers
	How it Works
	Using the Contacts ContentProvider
	Creating a Custom ContentProvider

	Maps and Location
	Location
	Maps
	Maps Application
	Maps API
	Obtaining a Google Maps API Key

	Using Android.Speech
	Java Integration
	Android Callable Wrappers
	Working With JNI
	Porting Java to C#

	Binding a Java Library
	Binding a .JAR
	Binding an .AAR
	Binding an Eclipse Library Project
	Customizing Bindings
	Java Bindings Metadata
	Naming Parameters with Javadoc

	Troubleshooting Bindings

	Bind a Kotlin Library
	Walkthrough

	Using Native Libraries
	Renderscript

	Xamarin.Essentials
	Getting Started
	Platform & Feature Support
	Accelerometer
	App Actions
	App Information
	App Theme
	Barometer
	Battery
	Clipboard
	Color Converters
	Compass
	Connectivity
	Contacts
	Detect Shake
	Device Display Information
	Device Information
	Email
	File Picker
	File System Helpers
	Flashlight
	Geocoding
	Geolocation
	Gyroscope
	Haptic Feedback
	Launcher
	Magnetometer
	Main Thread
	Maps
	Media Picker
	Open Browser
	Orientation Sensor
	Permissions
	Phone Dialer
	Platform Extensions
	Preferences
	Screenshot
	Secure Storage
	Share
	SMS
	Text-to-Speech
	Unit Converters
	Version Tracking
	Vibrate
	Web Authenticator
	Xamarin.Essentials release notes
	Troubleshooting
	Xamarin.Essentials on Q&A

	Data and Cloud Services
	Azure Active Directory
	Getting Started
	Step 1. Register
	Step 2. Configure

	Accessing the Graph API

	Azure Mobile Apps
	Data Access
	Introduction
	Configuration
	Using SQLite.NET ORM
	Using ADO.NET
	Using Data in an App

	Google Messaging
	Firebase Cloud Messaging
	FCM Notifications Walkthrough
	Google Cloud Messaging
	GCM Notifications Walkthrough

	Web Services

	Deployment and Testing
	App Package Size
	Apply Changes
	Building Apps
	Build Process
	Build Items
	Build Properties
	Build Targets
	Building ABI-Specific APKs

	Command Line Emulator
	Debugging
	Debug on the Emulator
	Debug on a Device
	Android Debug Log

	Debuggable Attribute
	Environment
	GDB
	Custom Linker Settings
	Multi-core devices
	Performance
	Profiling
	Preparing for Release
	ProGuard

	Signing the APK
	Manually Signing the APK
	Finding Your Keystore Signature

	Publishing an App
	Publishing to Google Play
	Google Licensing Services
	APK Expansion Files
	Manually Uploading the APK

	Publishing to Amazon
	Publishing Independently

	Install as System App

	Advanced Concepts and Internals
	Architecture
	Available Assemblies
	API Design
	Garbage Collection
	Limitations

	Troubleshooting
	Troubleshooting Tips
	Frequently Asked Questions
	Which Android SDK packages should I install?
	Where can I set my Android SDK locations?
	How do I update the Java Development Kit (JDK) version?
	Can I use Java Development Kit (JDK) version 9 or later?
	How can I manually install the Android Support libraries required by the Xamarin.Android.Support packages?
	What USB drivers do I need to debug Android on Windows?
	Is it possible to connect to Android emulators running on a Mac from a Windows VM?
	How do I automate an Android NUnit Test project?
	Why can't my Android release build connect to the Internet?
	Smarter Xamarin Android Support v4 / v13 NuGet Packages
	How do I resolve a PathTooLongException?
	What version of Xamarin.Android added Lollipop support?
	Android.Support.v7.AppCompat - No resource found that matches the given name: attr 'android:actionModeShareDrawable'
	Adjusting Java memory parameters for the Android designer
	My Android Resource.designer.cs file will not update

	Resolving Library Installation Errors
	Changes to the Android SDK Tooling
	Xamarin.Android errors and warnings reference

	Wear
	Get Started
	Introduction to Android Wear
	Setup & Installation
	Hello, Wear

	User Interface
	Controls
	GridViewPager

	Platform Features
	Creating a Watch Face

	Screen Sizes
	Deployment & Testing
	Debug on an Emulator
	Debug on a Wear Device
	Packaging

	Xamarin.Android on Q&A
	Release Notes
	Samples

