
ContentsContents

 Get Started
 What is Xamarin.Forms
 Installation

 Installing Xamarin on Windows
 Installing Xamarin Previews (Windows)
 Uninstalling Xamarin from Visual Studio

 Installing Visual Studio for Mac
 Installing Xamarin Previews (Mac)
 Uninstalling Visual Studio for Mac

 Xamarin Firewall Configuration Instructions
 Supported platforms
 First App
 Quickstarts

 File > New
 Multipage
 Database
 Styling
 Deep dive

 Tutorials
 Stack Layout
 Label
 Button
 Text entry
 Text editor
 Images
 Grid Layout
 Lists
 Pop-ups
 App lifecycle

file:///T:/c1uy/wq21/xamarin/get-started/index.html#body
https://docs.microsoft.com/visualstudio/mac/installation/
https://docs.microsoft.com/visualstudio/mac/update/
https://docs.microsoft.com/visualstudio/mac/uninstall
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/stacklayout/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/label/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/button/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/entry/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/editor/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/image/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/grid/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/collectionview/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/pop-ups/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/app-lifecycle/index.html#body

 Local database
 Web services

 Learn about Xamarin
 .NET developers
 Java developers
 Objective-C developers
 Azure

 Development guidance
 XAML

 Overview
 XAML Basics

 Part 1. Get Started with XAML
 Part 2. Essential XAML Syntax
 Part 3. XAML Markup Extensions
 Part 4. Data Binding Basics
 Part 5. From Data Bindings to MVVM

 XAML Controls
 XAML Compilation
 XAML Markup Extensions

 Consuming XAML Markup Extensions
 Creating XAML Markup Extensions

 Tooling
 XAML Hot Reload
 Live Visual Tree
 XAML Toolbox
 XAML Previewer

 Design-time data
 Custom controls

 Namespaces
 XAML Namespaces
 XAML Custom Namespace Schemas
 XAML Namespace Recommended Prefixes

file:///T:/c1uy/wq21/xamarin/get-started/tutorials/local-database/index.html#body
file:///T:/c1uy/wq21/xamarin/get-started/tutorials/web-service/index.html#body
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/index.html#body
file:///T:/c1uy/wq21/xamarin/cross-platform/index.html#body
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/index.html#body

 Additional Capabilities
 Bindable Properties
 Attached Properties
 Resource Dictionaries
 Passing Arguments
 Generics
 Field Modifiers
 Loading XAML at Runtime

 Xamarin.Forms XAML on Q&A
 Application Fundamentals

 Overview
 Accessibility

 Automation Properties
 Keyboard Accessibility

 App Class
 App Lifecycle
 Application Indexing and Deep Linking
 Behaviors

 Introduction
 Attached Behaviors
 Xamarin.Forms Behaviors
 Reusable EffectBehavior

 Custom Renderers
 Introduction
 Renderer Base Classes and Native Controls
 Customizing an Entry
 Customizing a ContentPage
 Customizing a Map Pin
 Customizing a ListView
 Customizing a ViewCell
 Customizing a WebView
 Implementing a View

https://docs.microsoft.com/answers/topics/dotnet-xamarinforms-xaml.html
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/index.html#body

 Data Binding
 Basic Bindings
 Binding Mode
 String Formatting
 Binding Path
 Binding Value Converters
 Relative Bindings
 Binding Fallbacks
 Multi-Bindings
 The Command Interface
 Compiled Bindings

 DependencyService
 Introduction
 Registration and Resolution
 Picking from the Photo Library

 Dual-screen
 Get started
 Dual-screen patterns
 TwoPaneView layout
 DualScreenInfo helper class
 Dual-screen triggers

 Effects
 Introduction
 Effect Creation
 Passing Parameters

 Parameters as CLR Properties
 Parameters as Attached Properties

 Invoking Events
 Reusable RoundEffect

 Gestures
 Tap
 Pinch

 Pan
 Swipe
 Drag and Drop

 Local Notifications
 Localization

 String and Image Localization
 Right-to-Left Localization

 MessagingCenter
 Navigation

 Hierarchical Navigation
 TabbedPage
 CarouselPage
 FlyoutPage
 Modal Pages

 Shell
 Introduction
 Create a Shell application
 Flyout
 Tabs
 Pages
 Navigation
 Search
 Lifecycle
 Custom Renderers

 Templates
 Overview
 Control Templates
 Data Templates

 Introduction
 Data Template Creation
 Data Template Selection

 Triggers

 User Interface
 Overview
 Controls reference

 Overview
 Pages
 Layouts
 Views
 Cells
 Common properties, methods, and events
 Third-party controls

 Present data
 BoxView
 Image
 Label
 Map

 Overview
 Initialization and Configuration
 Map Control
 Position and Distance
 Pins
 Polygons, Polylines, and Circles
 Geocoding
 Launch the Native Map App

 Shapes
 Overview
 Ellipse
 Fill rules
 Geometries
 Line
 Paths

 Path
 Path markup syntax

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/index.html#body

 Path transforms
 Polygon
 Polyline
 Rectangle

 WebView
 Initiate commands

 Button
 ImageButton
 RadioButton
 RefreshView
 SearchBar
 SwipeView

 Set values
 CheckBox
 DatePicker
 Slider
 Stepper
 Switch
 TimePicker

 Edit text
 Editor
 Entry

 Indicate activity
 ActivityIndicator
 ProgressBar

 Display collections
 CarouselView

 Introduction
 Data
 Layout
 Interaction
 EmptyView

 Scrolling
 CollectionView

 Introduction
 Data
 Layout
 Selection
 EmptyView
 Scrolling
 Grouping

 IndicatorView
 ListView

 Data Sources
 Cell Appearance
 List Appearance
 Interactivity
 Performance

 Picker
 Setting a Picker's ItemsSource Property
 Adding Data to a Picker's Items Collection

 TableView
 Additional controls

 MenuItem
 ToolbarItem

 Concepts
 Animation

 Simple Animations
 Easing Functions
 Custom Animations

 Brushes
 Overview
 Solid Colors
 Gradients

 Overview
 Linear Gradients
 Radial Gradients

 Colors
 Display pop-ups
 Fonts
 Graphics with SkiaSharp
 Splash screen
 Styles

 Styling Xamarin.Forms Apps using XAML Styles
 Introduction
 Explicit Styles
 Implicit Styles
 Global Styles
 Style Inheritance
 Dynamic Styles
 Device Styles
 Style Classes

 Styling Xamarin.Forms Apps using Cascading Style Sheets (CSS)
 Theming

 Theme an Application
 Respond to System Theme Changes

 Visual
 Material Visual
 Create a Visual Renderer

 Visual state manager
 Layouts

 Overview
 Choose a Layout
 Core layouts

 AbsoluteLayout
 FlexLayout

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/index.html#body

 Grid
 RelativeLayout
 StackLayout

 Additional layouts
 ContentView
 Frame
 ScrollView

 Concepts
 Bindable Layouts
 Custom Layouts
 Device Orientation
 LayoutOptions
 Layout Compression
 Margin and Padding
 Tablet & Desktop

 Platform Features
 Overview
 Android

 Overview
 AndroidX Migration
 Button Padding and Shadows
 Entry Input Method Editor Options
 ImageButton Drop Shadows
 ListView Fast Scrolling
 NavigationPage Bar Height
 Page Lifecycle Events
 Soft Keyboard Input Mode
 SwipeView Swipe Transition Mode
 TabbedPage Page Swiping
 TabbedPage Page Transition Animations
 TabbedPage Toolbar Placement and Color
 ViewCell Context Actions

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/index.html#body

 VisualElement Elevation
 VisualElement Legacy Color Mode
 WebView Mixed Content
 WebView Zoom

 iOS
 Overview
 Accessibility Scaling for Named Font Sizes
 Cell Background Color
 DatePicker Item Selection
 Entry Cursor Color
 Entry Font Size
 FlyoutPage Shadow
 Formatting
 Modal Page Presentation Style
 Large Page Titles
 ListView Group Header Style
 ListView Row Animations
 ListView Separator Style
 Main Thread Control Updates
 NavigationPage Bar Separator
 NavigationPage Bar Text Color Mode
 NavigationPage Bar Translucency
 Page Home Indicator Visibility
 Page Status Bar Visibility
 Picker Item Selection
 Safe Area Layout Guide
 ScrollView Content Touches
 SearchBar Style
 Simultaneous Pan Gesture Recognition
 Slider Thumb Tap
 SwipeView Swipe Transition Mode
 TabbedPage Translucent TabBar

 TimePicker Item Selection
 VisualElement Blur
 VisualElement Drop Shadows
 VisualElement Legacy Color Mode
 VisualElement First Responder

 Windows
 Overview
 Default Image Directory
 FlyoutPage Navigation Bar
 InputView Reading Order
 ListView SelectionMode
 Page Toolbar Placement
 Platform Setup
 RefreshView Pull Direction
 SearchBar Spell Check
 TabbedPage Icons
 VisualElement Access Keys
 VisualElement Legacy Color Mode
 WebView Execution Mode
 WebView JavaScript Alerts

 Create Platform-Specifics
 Device Class
 Native Forms
 Native Views

 Native Views in XAML
 Native Views in C#

 Sign In with Apple
 Setup for iOS
 Setup for other platforms
 Use Sign In with Apple

 Other Platforms
 GTK#

 Mac
 Tizen
 WPF

 Xamarin.Essentials
 Get Started
 Platform & Feature Support
 Accelerometer
 App Actions
 App Information
 App Theme
 Barometer
 Battery
 Clipboard
 Color Converters
 Compass
 Connectivity
 Contacts
 Detect Shake
 Device Display Information
 Device Information
 Email
 File Picker
 File System Helpers
 Flashlight
 Geocoding
 Geolocation
 Gyroscope
 Haptic Feedback
 Launcher
 Magnetometer
 Main Thread
 Maps

 Media Picker
 Open Browser
 Orientation Sensor
 Permissions
 Phone Dialer
 Platform Extensions
 Preferences
 Screenshot
 Secure Storage
 Share
 SMS
 Text-to-Speech
 Unit Converters
 Version Tracking
 Vibrate
 Web Authenticator
 Xamarin.Essentials release notes
 Troubleshooting
 Xamarin.Essentials on Q&A

 Data & Azure Cloud Services
 Overview
 Local data storage

 Overview
 File Handling
 Local Databases

 Azure Services
 Azure services overview
 Azure Cosmos DB Document Database
 Azure Notification Hubs
 Azure Storage
 Azure Search
 Azure Functions

https://docs.microsoft.com/xamarin/essentials/release-notes/
https://docs.microsoft.com/answers/topics/dotnet-xamarinessentials.html
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/index.html#body
https://docs.microsoft.com/azure/developer/mobile-apps/notification-hubs-backend-service-xamarin-forms

 Azure Cognitive Services
 Cognitive services overview
 Introduction
 Speech Recognition
 Spell Check
 Text Translation
 Perceived Emotion Recognition

 Web Services
 Web services overview
 Introduction
 ASMX
 WCF
 REST

 Authentication
 Authentication overview
 REST
 Azure Active Directory B2C
 Azure Cosmos DB Authentication

 Deployment & Testing
 Overview
 Improve Performance
 Hot Restart
 Automate Testing with Visual Studio App Center
 Publish iOS apps
 Publish Android apps
 Publish UWP apps
 Publish Mac apps

 Advanced Concepts and Internals
 Overview
 Controls Class Hierarchy
 Dependency Resolution
 Experimental Flags

file:///T:/c1uy/wq21/xamarin/xamarin-forms/deploy-test/index.html#body
https://docs.microsoft.com/appcenter/test-cloud/uitest/get-started-xamarin-forms
https://docs.microsoft.com/windows/uwp/packaging/

 Fast Renderers
 Source Link

 Troubleshooting
 Frequently Asked Questions

 How do I migrate my app to Xamarin.Forms 5.0?
 Can I update the Xamarin.Forms default template to a newer NuGet package?
 Why doesn't the Visual Studio XAML designer work for Xamarin.Forms XAML files?
 Android build error: The LinkAssemblies task failed unexpectedly
 Why does my Xamarin.Forms.Maps Android project fail with COMPILETODALVIK :

UNEXPECTED TOP-LEVEL ERROR?
 Xamarin.Forms on Q&A
 Release notes
 Samples
 Creating Mobile Apps with Xamarin.Forms Book
 Enterprise Application Patterns eBook
 SkiaSharp Graphics in Xamarin.Forms

file:///T:/c1uy/wq21/xamarin/xamarin-forms/troubleshooting/questions/index.html#body
https://docs.microsoft.com/answers/topics/dotnet-xamarinforms.html
https://docs.microsoft.com/xamarin/xamarin-forms/release-notes/

What is Xamarin.Forms?
 7/8/2021 • 2 minutes to read • Edit Online

 Who Xamarin.Forms is for

 How Xamarin.Forms works

Xamarin.Forms is an open-source UI framework. Xamarin.Forms allows developers to build Xamarin.Android,

Xamarin.iOS, and Windows applications from a single shared codebase.

Xamarin.Forms allows developers to create user interfaces in XAML with code-behind in C#. These interfaces are

rendered as performant native controls on each platform.

Xamarin.Forms is for developers with the following goals:

Share UI layout and design across platforms.

Share code, test and business logic across platforms.

Write cross-platform apps in C# with Visual Studio.

Xamarin.Forms provides a consistent API for creating UI elements across platforms. This API can be

implemented in either XAML or C# and supports databinding for patterns such as Model-View-ViewModel

(MVVM).

At runtime, Xamarin.Forms utilizes platform renderers to convert the cross-platform UI elements into native

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/what-is-xamarin-forms.md
file:///T:/c1uy/wq21/xamarin/get-started/what-is-xamarin-forms-images/xamarin-forms-app.png#lightbox

 Additional functionality

 Xamarin.EssentialsXamarin.Essentials

 ShellShell

 Platform-specificsPlatform-specifics

 Material VisualMaterial Visual

controls on Xamarin.Android, Xamarin.iOS and UWP. This allows developers to get the native look, feel and

performance while realizing the benefits of code sharing across platforms.

Xamarin.Forms applications typically consist of a shared .NET Standard library and individual platform projects.

The shared library contains the XAML or C# views and any business logic such as services, models or other

code. The platform projects contain any platform-specific logic or packages the application requires.

Xamarin.Forms uses the Xamarin platform to run .NET applications natively across platforms. For more

information about the Xamarin platform, see What is Xamarin?.

Xamarin.Forms has a large ecosystem of libraries that add diverse functionality to applications. This section

describes some of this additional functionality.

Xamarin.Essentials is a library that provides cross-platform APIs for native device features. Like Xamarin itself,

Xamarin.Essentials is an abstraction that simplifies the process of accessing native utilities. Some examples of

utilities provided by Xamarin.Essentials include:

Device info

File system

Accelerometer

Phone dialer

Text-to-speech

Screen lock

For more information, see Xamarin.Essentials.

Xamarin.Forms Shell reduces the complexity of mobile application development by providing the fundamental

features that most applications require. Some examples of features provided by Shell include:

Common navigation experience

URI-based navigation scheme

Integrated search handler

For more information, see Xamarin.Forms Shell

Xamarin.Forms provides a common API that renders native controls across platforms, but a specific platform

may have functionality that doesn't exist on other platforms. For example, the Android platform has native

functionality for Fast Scrolling in a ListView but iOS does not. Xamarin.Forms platform-specifics allow you to

utilize functionality that is only available on a specific platform without creating custom renderers or effects.

Xamarin.Forms includes pre-built solutions for a variety of platform-specific functionality. For more information,

see:

Xamarin.Forms platform-specifics

Android platform-specifics

iOS platform-specifics

Windows platform-specifics

Xamarin.Forms Material Visual is used to apply Material Design rules to Xamarin.Forms applications.

https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin

 Related links

Xamarin.Forms Material Visual utilizes the Visual property to selectively apply custom renderers to the UI,

resulting in an application with a consistent look and feel across iOS and Android.

For more information, see Xamarin.Forms Material Visual

Get started with Xamarin.Forms

Xamarin.Essentials

Xamarin.Forms Shell

Xamarin.Forms Material Visual

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/index

Installing Xamarin
 11/2/2020 • 2 minutes to read • Edit Online

 Installing Xamarin on Windows

 Step-by-step instructions

How to set up Visual Studio and Xamarin to start building mobile apps with .NET.

Xamarin can be installed as part of a new Visual Studio 2019 installation, with the following steps:

1. Download Visual Studio 2019 Community, Visual Studio Professional, or Visual Studio Enterprise from

the Visual Studio page (download links are provided at the bottom).

2. Double-click the downloaded package to start installation.

3. Select the Mobile development with .NETMobile development with .NET workload from the installation screen:

4. When you are ready to begin Visual Studio 2019 installation, click the InstallInstall button in the lower right-

hand corner :

Use the progress bars to monitor the installation:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/installation/index.md
https://channel9.msdn.com/Shows/XamarinShow/Installing-Visual-Studio-2019-for-Mobile-Development-with-NET--Xamarin/player?nocookie=true
https://visualstudio.microsoft.com/vs/
file:///T:/c1uy/wq21/xamarin/get-started/installation/windows-images/vs2019-mobile-dev-workload.png#lightbox

 Adding Xamarin to Visual Studio 2019Adding Xamarin to Visual Studio 2019

 Installing Xamarin on Windows

 Step-by-step instructions

5. When Visual Studio 2019 installation has completed, click the LaunchLaunch button to start Visual Studio:

If Visual Studio 2019 is already installed, add Xamarin by re-running the Visual Studio 2019 installer to modify

workloads (see Modify Visual Studio for details). Next, follow the steps listed above to install Xamarin.

For more information about downloading and installing Visual Studio 2019, see Install Visual Studio 2019.

Xamarin can be installed as part of a new Visual Studio 2017 installation, with the following steps:

1. Download Visual Studio 2017 Community, Visual Studio Professional, or Visual Studio Enterprise from

the Visual Studio page (download links are provided at the bottom).

2. Double-click the downloaded package to start installation.

3. Select the Mobile development with .NETMobile development with .NET workload from the installation screen:

4. While Mobile development with .NETMobile development with .NET is selected, have a look at the Installation detailsInstallation details panel on the

right. Here, you can deselect mobile development options that you do not want to install.

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://channel9.msdn.com/Shows/XamarinShow/Installing-Visual-Studio-2017-for-Mobile-Development-with-NET/player?nocookie=true
https://visualstudio.microsoft.com/vs/

 Adding Xamarin to Visual Studio 2017Adding Xamarin to Visual Studio 2017

5. When you are ready to begin Visual Studio 2017 installation, click the InstallInstall button in the lower right-

hand corner :

Depending on which edition of Visual Studio 2017 you are installing, the installation process can take a

long time to complete. You can use the progress bars to monitor the installation:

6. When Visual Studio 2017 installation has completed, click the LaunchLaunch button to start Visual Studio:

If Visual Studio 2017 is already installed, add Xamarin by re-running the Visual Studio 2017 installer to modify

workloads (see Modify Visual Studio for details). Next, follow the steps listed above to install Xamarin.

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio

 Installing Xamarin on macOS

 Step-by-step instructions

 Related Links

For more information about downloading and installing Visual Studio 2017, see Install Visual Studio 2017.

In addition to this video, there is a step-by-step installation guide that covers Visual Studio for Mac and Xamarin.

Uninstalling Xamarin

Xamarin Firewall Configuration Instructions

https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://channel9.msdn.com/Shows/XamarinShow/Installing-Visual-Studio-for-Mac-for-Mobile-Development-with-NET/player?nocookie=true
https://docs.microsoft.com/en-us/visualstudio/mac/installation/

Installing Xamarin in Visual Studio 2019
 7/8/2021 • 2 minutes to read • Edit Online

 Installation

Check the system requirements before you begin.

Xamarin can be installed as part of a new Visual Studio 2019 installation, with the following steps:

1. Download Visual Studio 2019 Community, Visual Studio Professional, or Visual Studio Enterprise from

the Visual Studio page (download links are provided at the bottom).

2. Double-click the downloaded package to start installation.

3. Select the Mobile development with .NETMobile development with .NET workload from the installation screen:

4. When you are ready to begin Visual Studio 2019 installation, click the InstallInstall button in the lower right-

hand corner :

Use the progress bars to monitor the installation:

5. When Visual Studio 2019 installation has completed, click the LaunchLaunch button to start Visual Studio:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/installation/windows.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/get-started/requirements
https://visualstudio.microsoft.com/vs/
file:///T:/c1uy/wq21/xamarin/get-started/installation/windows-images/vs2019-mobile-dev-workload.png#lightbox

 Adding Xamarin to Visual Studio 2019Adding Xamarin to Visual Studio 2019

If Visual Studio 2019 is already installed, add Xamarin by re-running the Visual Studio 2019 installer to modify

workloads (see Modify Visual Studio for details). Next, follow the steps listed above to install Xamarin.

For more information about downloading and installing Visual Studio 2019, see Install Visual Studio 2019.

In Visual Studio 2019, verify that Xamarin is installed by clicking the HelpHelp menu. If Xamarin is installed, you

should see a XamarinXamarin menu item as shown in this screenshot:

You can also click Help > About Microsoft Visual StudioHelp > About Microsoft Visual Studio and scroll through the list of installed products to

see if Xamarin is installed:

For more information about locating version information, see Where can I find my version information and

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/xamarin/cross-platform/troubleshooting/questions/version-logs

 Next steps

 iOSiOS

 AndroidAndroid

logs?

Installing Xamarin in Visual Studio 2019 allows you to start writing code for your apps, but does require

additional setup for building and deploying your apps to simulator, emulator, and device. Visit the following

guides to complete your installation and start building cross platform apps.

For more detailed information, see the Installing Xamarin.iOS on Windows guide.

1. Install Visual Studio for Mac

2. Connect Visual Studio to your Mac build host

3. iOS Developer Setup - Required to run your application on device

4. Remoted iOS Simulator

5. Introduction to Xamarin.iOS for Visual Studio

For more detailed information, see the Installing Xamarin.Android on Windows guide.

1. Xamarin.Android Configuration

2. Using the Xamarin Android SDK Manager

3. Android SDK Emulator

4. Set Up Device for Development

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/index
https://docs.microsoft.com/en-us/visualstudio/mac/installation
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/index
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/device-provisioning/index
https://docs.microsoft.com/en-us/xamarin/tools/ios-simulator/index
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/introduction-to-xamarin-ios-for-visual-studio
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/windows
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/windows
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-sdk
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/index
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/set-up-device-for-development

Installing Xamarin Preview on Windows
 7/8/2021 • 2 minutes to read • Edit Online

TIPTIP

Visual Studio 2019 and Visual Studio 2017 do not support alpha, beta, and stable channels in the same way as

earlier versions. Instead, there are just two options:

ReleaseRelease – equivalent to the Stable channel in Visual Studio for Mac

PreviewPreview – equivalent to the Alpha and Beta channels in Visual Studio for Mac

To try out pre-release features, you should download the Visual Studio Preview installer, which will offer the option to

install PreviewPreview versions of Visual Studio side-by-Side with the stable (Release) version. More information on What's new

in Visual Studio 2019 can be found in the release notes.

The Preview version of Visual Studio may include corresponding Preview versions of Xamarin functionality,

including:

Xamarin.Forms

Xamarin.iOS

Xamarin.Android

Xamarin Profiler

Xamarin Inspector

Xamarin Remote iOS Simulator

The Preview InstallerPreview Installer screenshot below shows both Preview and Release options (notice the grey version

numbers: version 15.0 is release and version 15.1 is a Preview):

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/installation/windows-preview.md
https://visualstudio.microsoft.com/vs/preview/
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes

 Uninstalling Visual Studio 2019 PreviewUninstalling Visual Studio 2019 Preview

During the installation process, an Installation NicknameInstallation Nickname can be applied to the side-by-side installation (so

they can be distinguished in the Start menu), as shown below:

The Visual Studio InstallerVisual Studio Installer should also be used to un-install preview versions of Visual Studio 2019. Read the

uninstalling Xamarin guide for more information.

file:///T:/c1uy/wq21/xamarin/get-started/installation/windows-images/vs2017-nickname.png#lightbox

Uninstall Xamarin from Visual Studio
 7/8/2021 • 2 minutes to read • Edit Online

 Visual Studio 2019 and Visual Studio 2017

This guide explains how to remove Xamarin from Visual Studio on Windows.

Xamarin is uninstalled from Visual Studio 2019 and Visual Studio 2017 using the installer app:

1. Use the Star t menuStar t menu to open the Visual Studio InstallerVisual Studio Installer .

2. Press the ModifyModify button for the instance you wish to change.

3. In the WorkloadsWorkloads tab, de-select the Mobile Development with .NETMobile Development with .NET option (in the Mobile &Mobile &

GamingGaming section).

4. Click the ModifyModify button in the bottom right of the window.

5. The installer will remove the de-selected components (Visual Studio 2017 must be closed before the

installer can make any changes).

Individual Xamarin components (such as the Profiler or Workbooks) can be uninstalled by switching to the

Individual ComponentsIndividual Components tab in step 3, and unchecking specific components:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/installation/uninstalling-xamarin.md
file:///T:/c1uy/wq21/xamarin/get-started/installation/uninstalling-xamarin-images/vs2017-02.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/installation/uninstalling-xamarin-images/vs2017-03.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/installation/uninstalling-xamarin-images/vs2017-04.png#lightbox

IMPORTANTIMPORTANT

 Visual Studio 2015 and earlier

To uninstall Visual Studio 2017 completely, choose UninstallUninstall from the three-bar menu next to the LaunchLaunch

button.

If you have two (or more) instances of Visual Studio installed side-by-side (SxS) – such as a Release and a Preview version

– uninstalling one instance might remove some Xamarin functionality from the other Visual Studio instance(s), including:

Xamarin Profiler

Xamarin Workbooks/Inspector

Xamarin Remote iOS Simulator

Apple Bonjour SDK

Under certain conditions, uninstalling one of the SxS instances can result in the incorrect removal of these features. This

may degrade the performance of the Xamarin Platform on the Visual Studio instance(s) that remain on the system after

the uninstallation of the SxS instance.

This is resolved by running the RepairRepair option in the Visual Studio installer, which will re-install the missing components.

To uninstall Visual Studio 2015 completely, use the support answer on visualstudio.com.

Xamarin can be uninstalled from a Windows machine through Control PanelControl Panel . Navigate to Programs andPrograms and

FeaturesFeatures or Programs > Uninstall a ProgramPrograms > Uninstall a Program as illustrated below:

file:///T:/c1uy/wq21/xamarin/get-started/installation/uninstalling-xamarin-images/vs2017-components.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/installation/uninstalling-xamarin-images/vs2017-uninstall.png#lightbox
https://visualstudio.microsoft.com/vs/support/vs2015/uninstall-visual-studio-2015/

C:\Program Files*\Microsoft Visual Studio 1*.0\Common7\IDE\Extensions\Xamarin

%LOCALAPPDATA%\Microsoft\VisualStudio\1*.0\ComponentModelCache

%LOCALAPPDATA%\VirtualStore

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\SharedDlls

C:\Program Files*\Microsoft Visual Studio 1*.0\Common7\IDE\Extensions\Xamarin

HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\1*.0\ExtensionManager\PendingDeletions

From the Control Panel, uninstall any of the following that are present:

Xamarin

Xamarin for Windows

Xamarin.Android

Xamarin.iOS

Xamarin for Visual Studio

In Explorer, delete any remaining files from the Xamarin Visual Studio extension folders (all versions, including

both Program Files and Program Files (x86)):

Delete Visual Studio's MEF component cache directory, which should be located in the following location:

Check in the Vir tualStoreVir tualStore directory to see if Windows might have stored any overlay files for the

Extensions\XamarinExtensions\Xamarin or ComponentModelCacheComponentModelCache directories there:

Open the registry editor (regedit) and look for the following key:

Find and delete any entries that match this pattern:

Look for this key:

Delete any entries that look like they might be related to Xamarin. For example, anything containing the terms

file:///T:/c1uy/wq21/xamarin/get-started/installation/uninstalling-xamarin-images/image3.png#lightbox

"%ProgramFiles(x86)%\Microsoft Visual Studio 14.0\Common7\IDE\devenv.exe" /setup
"%ProgramFiles(x86)%\Microsoft Visual Studio 14.0\Common7\IDE\devenv.exe" /updateconfiguration

mono or xamarin .

Open an administrator cmd.exe command prompt, and then run the devenv /setup and

devenv /updateconfiguration commands for each installed version of Visual Studio. For example, for Visual

Studio 2015:

Xamarin firewall configuration instructions
 11/2/2020 • 2 minutes to read • Edit Online

 Endpoints to allow
 Xamarin installerXamarin installer

 NuGet (including Xamarin.Forms)NuGet (including Xamarin.Forms)

 Software updatesSoftware updates

 Xamarin Mac Agent

A list of hosts that you need to allow in your firewall to allow Xamarin’s platform to work for your company.

In order for Xamarin products to install and work properly, certain endpoints must be accessible to download

the required tools and updates for your software. If you or your company have strict firewall settings, you may

experience issues with installation, licensing, components, and more. This document outlines some of the known

endpoints that need to be allowed in your firewall in order for Xamarin to work. This list does not include the

endpoints required for any third-party tools included in the download. If you are still experiencing trouble after

going through this list, refer to the Apple or Android installation troubleshooting guides.

The following known addresses will need to be added in order for the software to install properly when using

the latest release of the Xamarin installer :

xamarin.com (installer manifests)

dl.xamarin.com (Package download location)

dl.google.com (to download the Android SDK)

download.oracle.com (JDK)

visualstudio.com (Setup packages download location)

go.microsoft.com (Setup URL resolution)

aka.ms (Setup URL resolution)

If you are using a Mac and are encountering Xamarin.Android install issues, please ensure that macOS is able to

download Java.

The following addresses will need to be added to access NuGet (Xamarin.Forms is packaged as a NuGet):

www.nuget.org (to access NuGet)

globalcdn.nuget.org (NuGet downloads)

dl-ssl.google.com (Google components for Android and Xamarin.Forms)

The following addresses will need to be added to ensure that software updates can download properly:

software.xamarin.com (updater service)

download.visualstudio.microsoft.com

dl.xamarin.com

To connect Visual Studio to a Mac build host using the Xamarin Mac Agent requires the SSH port to be open. By

default this is Por t 22Por t 22 .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/installation/firewall.md
https://www.nuget.org

Xamarin.Forms supported platforms
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Additional platform support

 Android platform support

Xamarin.Forms applications can be written for the following operating systems:

iOS 9 or higher.

Android 4.4 (API 19) or higher (more details). However, Android 5.0 (API 21) is recommended as the

minimum API. This ensures full compatibility with all the Android support libraries, while still targeting the

majority of Android devices.

Windows 10 Universal Windows Platform, build 10.0.16299.0 or greater for .NET Standard 2.0 support.

However, build 10.0.18362.0 or greater is recommended.

Xamarin.Forms apps for iOS, Android, and the Universal Windows Platform (UWP) can be built in Visual Studio.

However, a networked Mac is required for iOS development using the latest version of Xcode and the minimum

version of macOS specified by Apple. For more information, see Windows requirements.

Xamarin.Forms apps for iOS and Android can be built in Visual Studio for Mac. For more information, see

macOS requirements.

Developing apps using Xamarin.Forms requires familiarity with .NET Standard.

Xamarin.Forms supports additional platforms beyond iOS, Android, and Windows:

Samsung Tizen

macOS 10.13 or higher

GTK#

WPF

The status of these platforms is available on the Xamarin.Forms GitHub platform support wiki.

You should have the latest Android SDK Tools and Android API platform installed. You can update to the latest

versions using the Android SDK Manager.

Additionally, the target/compile version for Android projects mustmust be set to Use latest installed platform.

However the minimum version can be set to API 19 so you can continue to support devices that use Android 4.4

and newer. These values are set in the Project OptionsProject Options :

Visual Studio

Visual Studio for Mac

Project Options > Application > Application Proper tiesProject Options > Application > Application Proper ties

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/supported-platforms.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/get-started/requirements
https://docs.microsoft.com/en-us/xamarin/cross-platform/get-started/requirements
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/net-standard
https://github.com/xamarin/Xamarin.Forms/wiki/Platform-Support
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-sdk

 Deprecated platforms
These platforms are not supported when using Xamarin.Forms 3.0 or newer:

Windows 8.1 / Windows Phone 8.1 WinRT

Windows Phone 8 Silverlight

Build your first Xamarin.Forms App
 7/8/2021 • 3 minutes to read • Edit Online

 Step-by-step instructions for Windows

Watch this video and follow along to create your first mobile app with Xamarin.Forms.

 Download the sample

Follow these steps along with the video above:

1. Choose File > New > Project...File > New > Project... or press the Create new project...Create new project... button:

2. Search for "Xamarin" or choose MobileMobile from the Project typeProject type menu. Select the Mobile AppMobile App

(Xamarin.Forms)(Xamarin.Forms) project type:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/first-app/index.md
https://channel9.msdn.com/Shows/XamarinShow/Build-Your-First-Android-App-with-Visual-Studio-2019-and-Xamarin/player?nocookie=true
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-firstapp/
file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/win-2019/01.png#lightbox

3. Choose a project name – the example uses "AwesomeApp":

4. Click on the BlankBlank project type and ensure AndroidAndroid and iOSiOS are selected:

5. Wait until the NuGet packages are restored (a "Restore completed" message will appear in the status bar).

6. New Visual Studio 2019 installations won't have an Android emulator configured. Click the dropdown

arrow on the DebugDebug button and choose Create Android EmulatorCreate Android Emulator to launch the emulator creation

screen:

file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/win-2019/02.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/win-2019/03.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/win-2019/04.png#lightbox

 Customize the application

7. In the emulator creation screen, use the default settings and click the CreateCreate button:

8. Creating an emulator will return you to the Device Manager window. Click the Star tStar t button to launch the

new emulator :

9. Visual Studio 2019 should now show the name of the new emulator on the DebugDebug button:

10. Click the DebugDebug button to build and deploy the application to the Android emulator :

file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/win-2019/create-emulator.png#lightbox

NOTENOTE

 Build an iOS app in Visual Studio 2019

The application can be customized to add interactive functionality. Perform the following steps to add user

interaction to the application:

<Button Text="Click Me" Clicked="Button_Clicked" />

int count = 0;
void Button_Clicked(object sender, System.EventArgs e)
{
 count++;
 ((Button)sender).Text = $"You clicked {count} times.";
}

1. Edit MainPage.xamlMainPage.xaml , adding this XAML before the end of the </StackLayout> :

2. Edit MainPage.xaml.csMainPage.xaml.cs , adding this code to the end of the class:

3. Debug the app on Android:

The sample application includes the additional interactive functionality that is not covered in the video.

It's possible to build and debug the iOS app from Visual Studio with a networked Mac computer. Refer to the

setup instructions for more information.

This video covers the process of building and testing an iOS app using Visual Studio 2019 on Windows:

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/index
https://channel9.msdn.com/Shows/XamarinShow/Build-Your-First-iOS-App-with-Visual-Studio-2019-and-Xamarin/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow/Building-Your-First-Android--iOS-App-in-Visual-Studio-2017/player?nocookie=true

 Step-by-step instructions for Windows

 Download the sample

Follow these steps along with the video above:

<Button Text="Click Me" Clicked="Button_Clicked" />

1. Choose File > New > Project...File > New > Project... or press the Create new project...Create new project... button, then select Visual C# >Visual C# >

Cross-Platform > Mobile App (Xamarin.Forms)Cross-Platform > Mobile App (Xamarin.Forms) :

2. Ensure AndroidAndroid and iOSiOS are selected, with .NET Standard.NET Standard code sharing:

3. Wait until the NuGet packages are restored (a "Restore completed" message will appear in the status bar).

4. Launch Android emulator by pressing the debug button (or the Debug > Star t DebuggingDebug > Star t Debugging menu item).

5. Edit MainPage.xamlMainPage.xaml , adding this XAML before the end of the </StackLayout> :

6. Edit MainPage.xaml.csMainPage.xaml.cs , adding this code to the end of the class:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-firstapp/
file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/win/01.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/win/02.png#lightbox

 Step-by-step instructions for Mac

int count = 0;
void Button_Clicked(object sender, System.EventArgs e)
{
 count++;
 ((Button)sender).Text = $"You clicked {count} times.";
}

TIPTIP

7. Debug the app on Android:

It is possible to build and debug the iOS app from Visual Studio with a networked Mac computer. Refer to the

setup instructions for more information.

 Download the sample

Follow these steps along with the video above:

1. Choose File > New Solution...File > New Solution... or press the New Project...New Project... button, then select Multiplatform > AppMultiplatform > App

> Blank Forms App> Blank Forms App:

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/index
https://channel9.msdn.com/Shows/XamarinShow/Building-Your-First-iOS--Android-App-in-Visual-Studio-for-Mac/player?nocookie=true
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-firstapp/

<Button Text="Click Me" Clicked="Handle_Clicked" />

int count = 0;
void Handle_Clicked(object sender, System.EventArgs e)
{
 count++;
 ((Button)sender).Text = $"You clicked {count} times.";
}

2. Ensure AndroidAndroid and iOSiOS are selected, with .NET Standard.NET Standard code sharing:

3. Restore NuGet packages, by right-clicking on the solution:

4. Launch Android emulator by pressing the debug button (or Run > Star t DebuggingRun > Star t Debugging).

5. Edit MainPage.xamlMainPage.xaml , adding this XAML before the end of the </StackLayout> :

6. Edit MainPage.xaml.csMainPage.xaml.cs , adding this code to the end of the class:

7. Debug the app on Android:

file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/01.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/02.png#lightbox

8. Right-click to set iOS to the Star tup ProjectStar tup Project:

9. Debug the app on iOS:

file:///T:/c1uy/wq21/xamarin/get-started/first-app/images/08.png#lightbox

 Next Steps

You can download the completed code from the samples gallery or view it on GitHub.

Single Page Quickstart – Build a more functional app.

Xamarin.Forms Samples – Download and run code examples and sample apps.

Creating Mobile Apps ebook – In-depth chapters that teach Xamarin.Forms development, available as a PDF

and including hundreds of additional samples.

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-firstapp/
https://github.com/xamarin/xamarin-forms-samples/tree/master/GetStarted/FirstApp

Xamarin.Forms quickstarts
 3/5/2021 • 2 minutes to read • Edit Online

 Create a Xamarin.Forms application

 Perform navigation in a Xamarin.Forms application

 Store data in a local SQLite.NET database

 Style a cross-platform Xamarin.Forms application

 Quickstart deep dive

Learn how to create mobile applications with Xamarin.Forms.

Learn how to create a cross-platform Xamarin.Forms application, which enables you to enter a note and persist

it to device storage.

Learn how to turn the application, capable of storing a single note, into an application capable of storing

multiple notes.

Learn how to store data in a local SQLite.NET database.

Learn how to style a cross-platform Xamarin.Forms application with XAML styles.

Read about the fundamentals of application development using Xamarin.Forms, with a focus on the application

developed throughout the quickstarts.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/quickstarts/index.md

Create a Xamarin.Forms application quickstart
 7/8/2021 • 17 minutes to read • Edit Online

 PrerequisitesPrerequisites

 Get started with Visual Studio 2019

 Download the sample

In this quickstart, you will learn how to:

Create a Xamarin.Forms Shell application.

Define the user interface for a page using eXtensible Application Markup Language (XAML), and interact with

XAML elements from code.

Describe the visual hierarchy of a Shell application by subclassing the Shell class.

The quickstart walks through how to create a cross-platform Xamarin.Forms Shell application, which enables

you to enter a note and persist it to device storage. The final application is shown below:

Visual Studio 2019 (latest release), with the Mobile development with .NETMobile development with .NET workload installed.

Knowledge of C#.

(optional) A paired Mac to build the application on iOS.

For more information about these prerequisites, see Installing Xamarin. For information about connecting Visual

Studio 2019 to a Mac build host, see Pair to Mac for Xamarin.iOS development.

1. Launch Visual Studio 2019, and in the start window click Create a new projectCreate a new project to create a new project:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/quickstarts/app.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-app/
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/app-images/screenshots1.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/app-images/screenshots2.png#lightbox
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/index

2. In the Create a new projectCreate a new project window, select MobileMobile in the Project typeProject type drop-down, select the MobileMobile

App (Xamarin.Forms)App (Xamarin.Forms) template, and click the NextNext button:

3. In the Configure your new projectConfigure your new project window, set the Project nameProject name to NotesNotes , choose a suitable

location for the project, and click the CreateCreate button:

IMPORTANTIMPORTANT
The C# and XAML snippets in this quickstart requires that the solution and project are both named NotesNotes . Using

a different name will result in build errors when you copy code from this quickstart into the project.

4. In the New Mobile AppNew Mobile App dialog, select the TabbedTabbed template, and click the CreateCreate button:

When the project has been created, close the GettingStar ted.txtGettingStar ted.txt file.

For more information about the .NET Standard library that gets created, see Anatomy of a Xamarin.Forms

Shell application in the Xamarin.Forms Shell Quickstart Deep Dive.

5. In Solution ExplorerSolution Explorer , in the NotesNotes project, delete the following folders (and their contents):

ModelsModels

Ser vicesSer vices

ViewModelsViewModels

ViewsViews

6. In Solution ExplorerSolution Explorer , in the NotesNotes project, delete GettingStar ted.txtGettingStar ted.txt.

7. In Solution ExplorerSolution Explorer , in the NotesNotes project, add a new folder named ViewsViews .

8. In Solution ExplorerSolution Explorer , in the NotesNotes project, select the ViewsViews folder, right-click, and select Add > NewAdd > New

Item...Item.... In the Add New ItemAdd New Item dialog, select Visual C# Items > Xamarin.Forms > Content PageVisual C# Items > Xamarin.Forms > Content Page,

name the new file NotesPageNotesPage, and click the AddAdd button:

This will add a new page named NotesPageNotesPage to the ViewsViews folder. This page will be the main page in the

application.

9. In Solution ExplorerSolution Explorer , in the NotesNotes project, double-click NotesPage.xamlNotesPage.xaml to open it:

10. In NotesPage.xamlNotesPage.xaml , remove all of the template code and replace it with the following code:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NotesPage"
 Title="Notes">
 <!-- Layout children vertically -->
 <StackLayout Margin="20">
 <Editor x:Name="editor"
 Placeholder="Enter your note"
 HeightRequest="100" />
 <!-- Layout children in two columns -->
 <Grid ColumnDefinitions="*,*">
 <Button Text="Save"
 Clicked="OnSaveButtonClicked" />
 <Button Grid.Column="1"
 Text="Delete"
 Clicked="OnDeleteButtonClicked"/>
 </Grid>
 </StackLayout>
</ContentPage>

This code declaratively defines the user interface for the page, which consists of an Editor for text input,

and two Button objects that direct the application to save or delete a file. The two Button objects are

horizontally laid out in a Grid , with the Editor and Grid being vertically laid out in a StackLayout . For

more information about creating the user interface, see User interface in the Xamarin.Forms Shell

Quickstart Deep Dive.

Save the changes to NotesPage.xamlNotesPage.xaml by pressing CTRL+SCTRL+S .

11. In Solution ExplorerSolution Explorer , in the NotesNotes project, double-click NotesPage.xaml.csNotesPage.xaml.cs to open it:

12. In NotesPage.xaml.csNotesPage.xaml.cs , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

using System;
using System.IO;
using Xamarin.Forms;

namespace Notes.Views
{
 public partial class NotesPage : ContentPage
 {
 string _fileName =
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData), "notes.txt");

 public NotesPage()
 {
 InitializeComponent();

 // Read the file.
 if (File.Exists(_fileName))
 {
 editor.Text = File.ReadAllText(_fileName);
 }
 }

 void OnSaveButtonClicked(object sender, EventArgs e)
 {
 // Save the file.
 File.WriteAllText(_fileName, editor.Text);
 }

 void OnDeleteButtonClicked(object sender, EventArgs e)
 {
 // Delete the file.
 if (File.Exists(_fileName))
 {
 File.Delete(_fileName);
 }
 editor.Text = string.Empty;
 }
 }
}

This code defines a _fileName field, which references a file named notes.txt that will store note data in

the local application data folder for the application. When the page constructor is executed the file is read,

if it exists, and displayed in the Editor . When the SaveSave Button is pressed the OnSaveButtonClicked

event handler is executed, which saves the content of the Editor to the file. When the DeleteDelete Button is

pressed the OnDeleteButtonClicked event handler is executed, which deletes the file, provided that it

exists, and removes any text from the Editor . For more information about user interaction, see

Responding to user interaction in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to NotesPage.xaml.csNotesPage.xaml.cs by pressing CTRL+SCTRL+S .

13. In Solution ExplorerSolution Explorer , in the NotesNotes project, select the ViewsViews folder, right-click, and select Add > NewAdd > New

Item...Item.... In the Add New ItemAdd New Item dialog, select Visual C# Items > Xamarin.Forms > Content PageVisual C# Items > Xamarin.Forms > Content Page,

name the new file AboutPageAboutPage, and click the AddAdd button:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

This will add a new page named AboutPageAboutPage to the ViewsViews folder.

14. In Solution ExplorerSolution Explorer , in the NotesNotes project, double-click AboutPage.xamlAboutPage.xaml to open it:

15. In AboutPage.xamlAboutPage.xaml , remove all of the template code and replace it with the following code:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.AboutPage"
 Title="About">
 <!-- Layout children in two rows -->
 <Grid RowDefinitions="Auto,*">
 <Image Source="xamarin_logo.png"
 BackgroundColor="{OnPlatform iOS=LightSlateGray, Android=#2196F3}"
 VerticalOptions="Center"
 HeightRequest="64" />
 <!-- Layout children vertically -->
 <StackLayout Grid.Row="1"
 Margin="20"
 Spacing="20">
 <Label FontSize="22">
 <Label.FormattedText>
 <FormattedString>
 <FormattedString.Spans>
 <Span Text="Notes"
 FontAttributes="Bold"
 FontSize="22" />

 </FormattedString.Spans>
 </FormattedString>
 </Label.FormattedText>
 </Label>
 <Label Text="This app is written in XAML and C# with the Xamarin Platform." />
 <Button Text="Learn more"
 Clicked="OnButtonClicked" />
 </StackLayout>
 </Grid>
</ContentPage>

This code declaratively defines the user interface for the page, which consists of an Image , two Label

objects that display text, and a Button . The two Label objects and Button are vertically laid out in a

StackLayout , with the Image and StackLayout being vertically laid out in a Grid . For more information

about creating the user interface, see User interface in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to AboutPage.xamlAboutPage.xaml by pressing CTRL+SCTRL+S .

16. In Solution ExplorerSolution Explorer , in the NotesNotes project, double-click AboutPage.xaml.csAboutPage.xaml.cs to open it:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

using System;
using Xamarin.Essentials;
using Xamarin.Forms;

namespace Notes.Views
{
 public partial class AboutPage : ContentPage
 {
 public AboutPage()
 {
 InitializeComponent();
 }

 async void OnButtonClicked(object sender, EventArgs e)
 {
 // Launch the specified URL in the system browser.
 await Launcher.OpenAsync("https://aka.ms/xamarin-quickstart");
 }
 }
}

17. In AboutPage.xaml.csAboutPage.xaml.cs , remove all of the template code and replace it with the following code:

This code defines the OnButtonClicked event handler, which is executed when the Learn moreLearn more Button is

pressed. When the button is pressed, a web browser is launched and the page represented by the URI

argument to the OpenAsync method is displayed. For more information about user interaction, see

Responding to user interaction in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to AboutPage.xaml.csAboutPage.xaml.cs by pressing CTRL+SCTRL+S .

18. In Solution ExplorerSolution Explorer , in the NotesNotes project, double-click AppShell.xamlAppShell.xaml to open it:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

<?xml version="1.0" encoding="UTF-8"?>
<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Notes.Views"
 x:Class="Notes.AppShell">
 <!-- Display a bottom tab bar containing two tabs -->
 <TabBar>
 <ShellContent Title="Notes"
 Icon="icon_feed.png"
 ContentTemplate="{DataTemplate views:NotesPage}" />
 <ShellContent Title="About"
 Icon="icon_about.png"
 ContentTemplate="{DataTemplate views:AboutPage}" />
 </TabBar>
</Shell>

19. In AppShell.xamlAppShell.xaml , remove all of the template code and replace it with the following code:

This code declaratively defines the visual hierarchy of the application, which consists of a TabBar

containing two ShellContent objects. These objects don't represent any user interface elements, but

rather the organization of the application's visual hierarchy. Shell will take these objects and produce the

user interface for the content. For more information about creating the user interface, see User interface

in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to AppShell.xamlAppShell.xaml by pressing CTRL+SCTRL+S .

20. In Solution ExplorerSolution Explorer , in the NotesNotes project, expand AppShell.xamlAppShell.xaml , and double-click

AppShell.xaml.csAppShell.xaml.cs to open it:

using Xamarin.Forms;

namespace Notes
{
 public partial class AppShell : Shell
 {
 public AppShell()
 {
 InitializeComponent();
 }
 }
}

21. In AppShell.xaml.csAppShell.xaml.cs , remove all of the template code and replace it with the following code:

Save the changes to AppShell.xaml.csAppShell.xaml.cs by pressing CTRL+SCTRL+S .

22. In Solution ExplorerSolution Explorer , in the NotesNotes project, double-click App.xamlApp.xaml to open it:

23. In App.xamlApp.xaml , remove all of the template code and replace it with the following code:

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.App">

</Application>

This code declaratively defines an App class, which is responsible for instantiating the application.

Save the changes to App.xamlApp.xaml by pressing CTRL+SCTRL+S .

24. In Solution ExplorerSolution Explorer , in the NotesNotes project, expand App.xamlApp.xaml , and double-click App.xaml.csApp.xaml.cs to open it:

25. In App.xaml.csApp.xaml.cs , remove all of the template code and replace it with the following code:

 Building the quickstartBuilding the quickstart

using Xamarin.Forms;

namespace Notes
{
 public partial class App : Application
 {

 public App()
 {
 InitializeComponent();
 MainPage = new AppShell();
 }

 protected override void OnStart()
 {
 }

 protected override void OnSleep()
 {
 }

 protected override void OnResume()
 {
 }
 }
}

This code defines the code-behind for the App class, that is responsible for instantiating the application.

It initializes the MainPage property to the subclassed Shell object.

Save the changes to App.xaml.csApp.xaml.cs by pressing CTRL+SCTRL+S .

1. In Visual Studio, select the Build > Build SolutionBuild > Build Solution menu item (or press F6). The solution will build and a

success message will appear in the Visual Studio status bar :

If there are errors, repeat the previous steps and correct any mistakes until the projects build successfully.

2. In the Visual Studio toolbar, press the Star tStar t button (the triangular button that resembles a Play button) to

launch the application in your chosen Android emulator :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.mainpage#xamarin_forms_application_mainpage

NOTENOTE

Enter a note and press the SaveSave button. Then, close the application and re-launch it to ensure the note

you entered is reloaded.

Press the AboutAbout tab icon to navigate to the AboutPage :

Press the Learn moreLearn more button to launch the quickstarts web page.

For more information about how the application is launched on each platform, see Launching the

application on each platform in the Xamarin.Forms Quickstart Deep Dive.

The following steps should only be carried out if you have a paired Mac that meets the system requirements for

Xamarin.Forms development.

3. In the Visual Studio toolbar, right-click on the Notes.iOSNotes.iOS project, and select Set as Star tUp ProjectSet as Star tUp Project.

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/index

4. In the Visual Studio toolbar, press the Star tStar t button (the triangular button that resembles a Play button) to

launch the application in your chosen iOS remote simulator:

Enter a note and press the SaveSave button. Then, close the application and re-launch it to ensure the note

you entered is reloaded.

Press the AboutAbout tab icon to navigate to the AboutPage :

https://docs.microsoft.com/en-us/xamarin/tools/ios-simulator/index
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/app-images/vs/notes1-ios-large.png#lightbox

 PrerequisitesPrerequisites

 Get started with Visual Studio for Mac

Press the Learn moreLearn more button to launch the quickstarts web page.

For more information about how the application is launched on each platform, see Launching the

application on each platform in the Xamarin.Forms Quickstart Deep Dive.

Visual Studio for Mac (latest release), with iOS and Android platform support installed.

Xcode (latest release).

Knowledge of C#.

For more information about these prerequisites, see Installing Xamarin.

1. Launch Visual Studio for Mac, and in the start window click NewNew to create a new project:

2. In the Choose a template for your new projectChoose a template for your new project dialog, click Multiplatform > AppMultiplatform > App, select the ShellShell

Forms AppForms App template, and click the NextNext button:

file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/app-images/vs/notes2-ios-large.png#lightbox

3. In the Configure your Shell Forms appConfigure your Shell Forms app dialog, name the new app NotesNotes , and click the NextNext button:

4. In the Configure your new Shell Forms appConfigure your new Shell Forms app dialog, leave the Solution and Project names set to

NotesNotes , choose a suitable location for the project, and click the CreateCreate button to create the project:

IMPORTANTIMPORTANT
The C# and XAML snippets in this quickstart requires that the solution and project are both named NotesNotes . Using

a different name will result in build errors when you copy code from this quickstart into the project.

For more information about the .NET Standard library that gets created, see Anatomy of a Xamarin.Forms

Shell application in the Xamarin.Forms Shell Quickstart Deep Dive.

5. In the Solution PadSolution Pad, in the NotesNotes project, delete the following folders (and their contents):

ModelsModels

Ser vicesSer vices

ViewModelsViewModels

ViewsViews

6. In the Solution PadSolution Pad, in the NotesNotes project, delete GettingStar ted.txtGettingStar ted.txt.

7. In the Solution PadSolution Pad, in the NotesNotes project, add a new folder named ViewsViews .

8. In the Solution PadSolution Pad, in the NotesNotes project, select the ViewsViews folder, right-click, and select Add > NewAdd > New

File...File... . In the New FileNew File dialog, select Forms > Forms ContentPage XAMLForms > Forms ContentPage XAML , name the new file

NotesPageNotesPage, and click the NewNew button:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NotesPage"
 Title="Notes">
 <!-- Layout children vertically -->
 <StackLayout Margin="20">
 <Editor x:Name="editor"
 Placeholder="Enter your note"
 HeightRequest="100" />
 <!-- Layout children in two columns -->
 <Grid ColumnDefinitions="*,*">
 <Button Text="Save"
 Clicked="OnSaveButtonClicked" />
 <Button Grid.Column="1"
 Text="Delete"
 Clicked="OnDeleteButtonClicked"/>
 </Grid>
 </StackLayout>
</ContentPage>

This will add a new page named NotesPageNotesPage to the ViewsViews folder. This page will be the main page in the

application.

9. In the Solution PadSolution Pad, in the NotesNotes project, double-click NotesPage.xamlNotesPage.xaml to open it:

10. In NotesPage.xamlNotesPage.xaml , remove all of the template code and replace it with the following code:

This code declaratively defines the user interface for the page, which consists of an Editor for text input,

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor

and two Button objects that direct the application to save or delete a file. The two Button objects are

horizontally laid out in a Grid , with the Editor and Grid being vertically laid out in a StackLayout . For

more information about creating the user interface, see User interface in the Xamarin.Forms Shell

Quickstart Deep Dive.

Save the changes to NotesPage.xamlNotesPage.xaml by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

11. In the Solution PadSolution Pad, in the NotesNotes project, double-click NotesPage.xaml.csNotesPage.xaml.cs to open it:

12. In NotesPage.xaml.csNotesPage.xaml.cs , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

using System;
using System.IO;
using Xamarin.Forms;

namespace Notes.Views
{
 public partial class NotesPage : ContentPage
 {
 string _fileName =
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData), "notes.txt");

 public NotesPage()
 {
 InitializeComponent();

 // Read the file.
 if (File.Exists(_fileName))
 {
 editor.Text = File.ReadAllText(_fileName);
 }
 }

 void OnSaveButtonClicked(object sender, EventArgs e)
 {
 // Save the file.
 File.WriteAllText(_fileName, editor.Text);
 }

 void OnDeleteButtonClicked(object sender, EventArgs e)
 {
 // Delete the file.
 if (File.Exists(_fileName))
 {
 File.Delete(_fileName);
 }
 editor.Text = string.Empty;
 }
 }
}

This code defines a _fileName field, which references a file named notes.txt that will store note data in

the local application data folder for the application. When the page constructor is executed the file is read,

if it exists, and displayed in the Editor . When the SaveSave Button is pressed the OnSaveButtonClicked

event handler is executed, which saves the content of the Editor to the file. When the DeleteDelete Button is

pressed the OnDeleteButtonClicked event handler is executed, which deletes the file, provided that it

exists, and removes any text from the Editor . For more information about user interaction, see

Responding to user interaction in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to NotesPage.xaml.csNotesPage.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

13. In the Solution PadSolution Pad, in the NotesNotes project, select the ViewsViews folder, right-click, and select Add > NewAdd > New

File...File... . In the New FileNew File dialog, select Forms > Forms ContentPage XAMLForms > Forms ContentPage XAML , name the new file

AboutPageAboutPage, and click the NewNew button:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

14. In the Solution PadSolution Pad, in the NotesNotes project, double-click AboutPage.xamlAboutPage.xaml to open it:

This will add a new page named AboutPageAboutPage to the ViewsViews folder.

15. In AboutPage.xamlAboutPage.xaml , remove all of the template code and replace it with the following code:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.AboutPage"
 Title="About">
 <!-- Layout children in two rows -->
 <Grid RowDefinitions="Auto,*">
 <Image Source="xamarin_logo.png"
 BackgroundColor="{OnPlatform iOS=LightSlateGray, Android=#2196F3}"
 VerticalOptions="Center"
 HeightRequest="64" />
 <!-- Layout children vertically -->
 <StackLayout Grid.Row="1"
 Margin="20"
 Spacing="20">
 <Label FontSize="22">
 <Label.FormattedText>
 <FormattedString>
 <FormattedString.Spans>
 <Span Text="Notes"
 FontAttributes="Bold"
 FontSize="22" />

 </FormattedString.Spans>
 </FormattedString>
 </Label.FormattedText>
 </Label>
 <Label Text="This app is written in XAML and C# with the Xamarin Platform." />
 <Button Text="Learn more"
 Clicked="OnButtonClicked" />
 </StackLayout>
 </Grid>
</ContentPage>

This code declaratively defines the user interface for the page, which consists of an Image , two Label

objects that display text, and a Button . The two Label objects and Button are vertically laid out in a

StackLayout , with the Image and StackLayout being vertically laid out in a Grid . For more information

about creating the user interface, see User interface in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to AboutPage.xamlAboutPage.xaml by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

16. In the Solution PadSolution Pad, in the NotesNotes project, double-click AboutPage.xaml.csAboutPage.xaml.cs to open it:

17. In AboutPage.xaml.csAboutPage.xaml.cs , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

using System;
using Xamarin.Essentials;
using Xamarin.Forms;

namespace Notes.Views
{
 public partial class AboutPage : ContentPage
 {
 public AboutPage()
 {
 InitializeComponent();
 }

 async void OnButtonClicked(object sender, EventArgs e)
 {
 // Launch the specified URL in the system browser.
 await Launcher.OpenAsync("https://aka.ms/xamarin-quickstart");
 }
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Notes.Views"
 x:Class="Notes.AppShell">
 <!-- Display a bottom tab bar containing two tabs -->
 <TabBar>
 <ShellContent Title="Notes"
 Icon="icon_feed.png"
 ContentTemplate="{DataTemplate views:NotesPage}" />
 <ShellContent Title="About"
 Icon="icon_about.png"
 ContentTemplate="{DataTemplate views:AboutPage}" />
 </TabBar>
</Shell>

This code defines the OnButtonClicked event handler, which is executed when the Learn moreLearn more Button is

pressed. When the button is pressed, a web browser is launched and the page represented by the URI

argument to the OpenAsync method is displayed. For more information about user interaction, see

Responding to user interaction in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to AboutPage.xaml.csAboutPage.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

18. In the Solution PadSolution Pad, in the NotesNotes project, double-click AppShell.xamlAppShell.xaml to open it:

19. In AppShell.xamlAppShell.xaml , remove all of the template code and replace it with the following code:

This code declaratively defines the visual hierarchy of the application, which consists of a TabBar

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

using Xamarin.Forms;

namespace Notes
{
 public partial class AppShell : Shell
 {
 public AppShell()
 {
 InitializeComponent();
 }
 }
}

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.App">

</Application>

containing two ShellContent objects. These objects don't represent any user interface elements, but

rather the organization of the application's visual hierarchy. Shell will take these objects and produce the

user interface for the content. For more information about creating the user interface, see User interface

in the Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to AppShell.xamlAppShell.xaml by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

20. In the Solution PadSolution Pad, in the NotesNotes project, expand AppShell.xamlAppShell.xaml , and double-click AppShell.xaml.csAppShell.xaml.cs

to open it:

21. In AppShell.xaml.csAppShell.xaml.cs , remove all of the template code and replace it with the following code:

Save the changes to AppShell.xaml.csAppShell.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

22. In the Solution PadSolution Pad, in the NotesNotes project, double-click App.xamlApp.xaml to open it:

23. In App.xamlApp.xaml , remove all of the template code and replace it with the following code:

 Building the quickstartBuilding the quickstart

using Xamarin.Forms;

namespace Notes
{
 public partial class App : Application
 {

 public App()
 {
 InitializeComponent();
 MainPage = new AppShell();
 }

 protected override void OnStart()
 {
 }

 protected override void OnSleep()
 {
 }

 protected override void OnResume()
 {
 }
 }
}

This code declaratively defines an App class, which is responsible for instantiating the application.

Save the changes to App.xamlApp.xaml by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

24. In the Solution PadSolution Pad, in the NotesNotes project, expand App.xamlApp.xaml , and double-click App.xaml.csApp.xaml.cs to open it:

25. In App.xaml.csApp.xaml.cs , remove all of the template code and replace it with the following code:

This code defines the code-behind for the App class, that is responsible for instantiating the application.

It initializes the MainPage property to the subclassed Shell object.

Save the changes to App.xaml.csApp.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

1. In Visual Studio for Mac, select the Build > Build AllBuild > Build All menu item (or press ⌘⌘ + B + B). The projects will build

and a success message will appear in the Visual Studio for Mac toolbar :

If there are errors, repeat the previous steps and correct any mistakes until the projects build successfully.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.mainpage#xamarin_forms_application_mainpage

2. In the Solution PadSolution Pad, select the Notes.iOSNotes.iOS project, right-click, and select Set As Star tup ProjectSet As Star tup Project:

3. In the Visual Studio for Mac toolbar, press the Star tStar t button (the triangular button that resembles a Play

button) to launch the application inside your chosen iOS Simulator :

Enter a note and press the SaveSave button. Then, close the application and re-launch it to ensure the note

you entered is reloaded.

Press the AboutAbout tab icon to navigate to the AboutPage :

Press the Learn moreLearn more button to launch the quickstarts web page.

For more information about how the application is launched on each platform, see Launching the

application on each platform in the Xamarin.Forms Quickstart Deep Dive.

4. In the Solution PadSolution Pad, select the Notes.DroidNotes.Droid project, right-click, and select Set As Star tup ProjectSet As Star tup Project:

5. In the Visual Studio for Mac toolbar, press the Star tStar t button (the triangular button that resembles a Play

button) to launch the application inside your chosen Android emulator :

 Next steps

 Related links

Enter a note and press the SaveSave button. Then, close the application and re-launch it to ensure the note

you entered is reloaded.

Press the AboutAbout tab icon to navigate to the AboutPage :

Press the Learn moreLearn more button to launch the quickstarts web page.

For more information about how the application is launched on each platform, see Launching the

application on each platform in the Xamarin.Forms Quickstart Deep Dive.

In this quickstart, you learned how to:

Create a Xamarin.Forms Shell application.

Define the user interface for a page using eXtensible Application Markup Language (XAML), and interact with

XAML elements from code.

Describe the visual hierarchy of a Shell application by subclassing the Shell class.

Continue to the next quickstart to add additional pages to this Xamarin.Forms Shell application.

Next

Notes (sample)

Xamarin.Forms Shell quickstart deep dive

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-app/

Perform navigation in a Xamarin.Forms application
 7/8/2021 • 17 minutes to read • Edit Online

 PrerequisitesPrerequisites

 Update the app with Visual Studio

 Download the sample

In this quickstart, you will learn how to:

Add additional pages to a Xamarin.Forms Shell application.

Perform navigation between pages.

Use data binding to synchronize data between user interface elements and their data source.

The quickstart walks through how to turn a cross-platform Xamarin.Forms Shell application, capable of storing a

single note, into an application capable of storing multiple notes. The final application is shown below:

You should successfully complete the previous quickstart before attempting this quickstart. Alternatively,

download the previous quickstart sample and use it as the starting point for this quickstart.

1. Launch Visual Studio. In the start window, click the NotesNotes solution in the recent projects/solutions list, or

click Open a project or solutionOpen a project or solution, and in the Open Project/SolutionOpen Project/Solution dialog select the solution file for

the Notes project:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/quickstarts/navigation.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-navigation/
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/navigation-images/screenshots1.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/navigation-images/screenshots2.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-app/

2. In Solution ExplorerSolution Explorer , right-click on the NotesNotes project, and select Add > New FolderAdd > New Folder :

3. In Solution ExplorerSolution Explorer , name the new folder ModelsModels :

4. In Solution ExplorerSolution Explorer , select the ModelsModels folder, right-click, and select Add > Class...Add > Class... :

5. In the Add New ItemAdd New Item dialog, select Visual C# Items > ClassVisual C# Items > Class , name the new file NoteNote, and click the

AddAdd button:

using System;

namespace Notes.Models
{
 public class Note
 {
 public string Filename { get; set; }
 public string Text { get; set; }
 public DateTime Date { get; set; }
 }
}

This will add a class named NoteNote to the ModelsModels folder of the NotesNotes project.

6. In Note.csNote.cs , remove all of the template code and replace it with the following code:

This class defines a Note model that will store data about each note in the application.

Save the changes to Note.csNote.cs by pressing CTRL+SCTRL+S .

7. In Solution ExplorerSolution Explorer , in the NotesNotes project, select the ViewsViews folder, right-click, and select Add > NewAdd > New

Item...Item.... In the Add New ItemAdd New Item dialog, select Visual C# Items > Xamarin.Forms > Content PageVisual C# Items > Xamarin.Forms > Content Page,

name the new file NoteEntr yPageNoteEntr yPage, and click the AddAdd button:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NoteEntryPage"
 Title="Note Entry">
 <!-- Layout children vertically -->
 <StackLayout Margin="20">
 <Editor Placeholder="Enter your note"
 Text="{Binding Text}"
 HeightRequest="100" />
 <!-- Layout children in two columns -->
 <Grid ColumnDefinitions="*,*">
 <Button Text="Save"
 Clicked="OnSaveButtonClicked" />
 <Button Grid.Column="1"
 Text="Delete"
 Clicked="OnDeleteButtonClicked"/>
 </Grid>
 </StackLayout>
</ContentPage>

using System;
using System.IO;
using Notes.Models;
using Xamarin.Forms;

namespace Notes.Views
{
 [QueryProperty(nameof(ItemId), nameof(ItemId))]
 public partial class NoteEntryPage : ContentPage
 {

This will add a new page named NoteEntr yPageNoteEntr yPage to the ViewsViews folder of the project. This page will be

used for note entry.

8. In NoteEntr yPage.xamlNoteEntr yPage.xaml , remove all of the template code and replace it with the following code:

This code declaratively defines the user interface for the page, which consists of an Editor for text input,

and two Button objects that direct the application to save or delete a file. The two Button instances are

horizontally laid out in a Grid , with the Editor and Grid being vertically laid out in a StackLayout . In

addition, the Editor uses data binding to bind to the Text property of the Note model. For more

information about data binding, see Data binding in the Xamarin.Forms Quickstart Deep Dive.

Save the changes to NoteEntr yPage.xamlNoteEntr yPage.xaml by pressing CTRL+SCTRL+S .

9. In NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

 {
 public string ItemId
 {
 set
 {
 LoadNote(value);
 }
 }

 public NoteEntryPage()
 {
 InitializeComponent();

 // Set the BindingContext of the page to a new Note.
 BindingContext = new Note();
 }

 void LoadNote(string filename)
 {
 try
 {
 // Retrieve the note and set it as the BindingContext of the page.
 Note note = new Note
 {
 Filename = filename,
 Text = File.ReadAllText(filename),
 Date = File.GetCreationTime(filename)
 };
 BindingContext = note;
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load note.");
 }
 }

 async void OnSaveButtonClicked(object sender, EventArgs e)
 {
 var note = (Note)BindingContext;

 if (string.IsNullOrWhiteSpace(note.Filename))
 {
 // Save the file.
 var filename = Path.Combine(App.FolderPath, $"{Path.GetRandomFileName()}.notes.txt");
 File.WriteAllText(filename, note.Text);
 }
 else
 {
 // Update the file.
 File.WriteAllText(note.Filename, note.Text);
 }

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
 }

 async void OnDeleteButtonClicked(object sender, EventArgs e)
 {
 var note = (Note)BindingContext;

 // Delete the file.
 if (File.Exists(note.Filename))
 {
 File.Delete(note.Filename);
 }

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
 }
 }

 }
}

WARNINGWARNING

This code stores a Note instance, which represents a single note, in the BindingContext of the page. The

class is decorated with a QueryPropertyAttribute that enables data to be passed into the page, during

navigation, via query parameters. The first argument for the QueryPropertyAttribute specifies the name

of the property that will receive the data, with the second argument specifying the query parameter id.

Therefore, the QueryParameterAttribute in the above code specifies that the ItemId property will receive

the data passed in the ItemId query parameter from the URI specified in a GoToAsync method call. The

ItemId property then calls the LoadNote method to create a Note object from the file on the device, and

sets the BindingContext of the page to the Note object.

When the SaveSave Button is pressed the OnSaveButtonClicked event handler is executed, which either saves

the content of the Editor to a new file with a randomly generated filename, or to an existing file if a note

is being updated. In both cases, the file is stored in the local application data folder for the application.

Then the method navigates back to the previous page. When the DeleteDelete Button is pressed the

OnDeleteButtonClicked event handler is executed, which deletes the file, provided that it exists, and

navigates back to the previous page. For more information about navigation, see Navigation in the

Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs by pressing CTRL+SCTRL+S .

The application will not currently build due to errors that will be fixed in subsequent steps.

10. In Solution ExplorerSolution Explorer , in the NotesNotes project, open NotesPage.xamlNotesPage.xaml in the ViewsViews folder.

11. In NotesPage.xamlNotesPage.xaml , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NotesPage"
 Title="Notes">
 <!-- Add an item to the toolbar -->
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add"
 Clicked="OnAddClicked" />
 </ContentPage.ToolbarItems>

 <!-- Display notes in a list -->
 <CollectionView x:Name="collectionView"
 Margin="20"
 SelectionMode="Single"
 SelectionChanged="OnSelectionChanged">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="10" />
 </CollectionView.ItemsLayout>
 <!-- Define the appearance of each item in the list -->
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Label Text="{Binding Text}"
 FontSize="Medium"/>
 <Label Text="{Binding Date}"
 TextColor="Silver"
 FontSize="Small" />
 </StackLayout>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</ContentPage>

This code declaratively defines the user interface for the page, which consists of a CollectionView and a

ToolbarItem . The CollectionView uses data binding to display any notes that are retrieved by the

application. Selecting a note will navigate to the NoteEntryPage where the note can be modified.

Alternatively, a new note can be created by pressing the ToolbarItem . For more information about data

binding, see Data binding in the Xamarin.Forms Quickstart Deep Dive.

Save the changes to NotesPage.xamlNotesPage.xaml by pressing CTRL+SCTRL+S .

12. In Solution ExplorerSolution Explorer , in the NotesNotes project, expand NotesPage.xamlNotesPage.xaml in the ViewsViews folder and open

NotesPage.xaml.csNotesPage.xaml.cs .

13. In NotesPage.xaml.csNotesPage.xaml.cs , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Notes.Models;
using Xamarin.Forms;

namespace Notes.Views
{
 public partial class NotesPage : ContentPage
 {
 public NotesPage()
 {
 InitializeComponent();
 }

 protected override void OnAppearing()
 {
 base.OnAppearing();

 var notes = new List<Note>();

 // Create a Note object from each file.
 var files = Directory.EnumerateFiles(App.FolderPath, "*.notes.txt");
 foreach (var filename in files)
 {
 notes.Add(new Note
 {
 Filename = filename,
 Text = File.ReadAllText(filename),
 Date = File.GetCreationTime(filename)
 });
 }

 // Set the data source for the CollectionView to a
 // sorted collection of notes.
 collectionView.ItemsSource = notes
 .OrderBy(d => d.Date)
 .ToList();
 }

 async void OnAddClicked(object sender, EventArgs e)
 {
 // Navigate to the NoteEntryPage, without passing any data.
 await Shell.Current.GoToAsync(nameof(NoteEntryPage));
 }

 async void OnSelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 if (e.CurrentSelection != null)
 {
 // Navigate to the NoteEntryPage, passing the filename as a query parameter.
 Note note = (Note)e.CurrentSelection.FirstOrDefault();
 await Shell.Current.GoToAsync($"{nameof(NoteEntryPage)}?
{nameof(NoteEntryPage.ItemId)}={note.Filename}");
 }
 }
 }
}

This code defines the functionality for the NotesPage . When the page appears, the OnAppearing method

is executed, which populates the CollectionView with any notes that have been retrieved from the local

application data folder. When the ToolbarItem is pressed the OnAddClicked event handler is executed.

This method navigates to the NoteEntryPage . When an item in the CollectionView is selected the

OnSelectionChanged event handler is executed. This method navigates to the NoteEntryPage , provided

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem

WARNINGWARNING

using Notes.Views;
using Xamarin.Forms;

namespace Notes
{
 public partial class AppShell : Shell
 {
 public AppShell()
 {
 InitializeComponent();
 Routing.RegisterRoute(nameof(NoteEntryPage), typeof(NoteEntryPage));
 }
 }
}

that an item in the CollectionView is selected, passing the Filename property of the selected Note as a

query parameter to the page. For more information about navigation, see Navigation in the

Xamarin.Forms Quickstart Deep Dive.

Save the changes to NotesPage.xaml.csNotesPage.xaml.cs by pressing CTRL+SCTRL+S .

The application will not currently build due to errors that will be fixed in subsequent steps.

14. In Solution ExplorerSolution Explorer , in the NotesNotes project, expand AppShell.xamlAppShell.xaml and open AppShell.xaml.csAppShell.xaml.cs . Then

replace the existing code with the following code:

This code registers a route for the NoteEntryPage , which isn't represented in the Shell visual hierarchy

(AppShell.xamlAppShell.xaml). This page can then be navigated to using URI-based navigation, with the GoToAsync

method.

Save the changes to AppShell.xaml.csAppShell.xaml.cs by pressing CTRL+SCTRL+S .

15. In Solution ExplorerSolution Explorer , in the NotesNotes project, expand App.xamlApp.xaml and open App.xaml.csApp.xaml.cs . Then replace the

existing code with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

 Update the app with Visual Studio for Mac

using System;
using System.IO;
using Xamarin.Forms;

namespace Notes
{
 public partial class App : Application
 {
 public static string FolderPath { get; private set; }

 public App()
 {
 InitializeComponent();
 FolderPath =
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData));
 MainPage = new AppShell();
 }

 protected override void OnStart()
 {
 }

 protected override void OnSleep()
 {
 }

 protected override void OnResume()
 {
 }
 }
}

This code adds a namespace declaration for the System.IO namespace, and adds a declaration for a static

FolderPath property of type string . The FolderPath property is used to store the path on the device

where note data will be stored. In addition, the code initializes the FolderPath property in the App

constructor, and initializes the MainPage property to the subclassed Shell object.

Save the changes to App.xaml.csApp.xaml.cs by pressing CTRL+SCTRL+S .

16. Build and run the project on each platform. For more information, see Building the quickstart.

On the NotesPageNotesPage press the AddAdd button to navigate to the NoteEntr yPageNoteEntr yPage and enter a note. After

saving the note the application will navigate back to the NotesPageNotesPage.

Enter several notes, of varying length, to observe the application behavior. Close the application and re-

launch it to ensure that the notes you entered were saved to the device.

1. Launch Visual Studio for Mac. In the start window click OpenOpen, and in the dialog select the solution file for

the Notes project:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.mainpage#xamarin_forms_application_mainpage

2. In the Solution PadSolution Pad, right-click on the NotesNotes project, and select Add > New FolderAdd > New Folder :

3. In the New FolderNew Folder dialog, name the new folder ModelsModels :

4. In the Solution PadSolution Pad, select the ModelsModels folder, right-click, and select Add > New Class...Add > New Class... :

using System;

namespace Notes.Models
{
 public class Note
 {
 public string Filename { get; set; }
 public string Text { get; set; }
 public DateTime Date { get; set; }
 }
}

5. In the New FileNew File dialog, select General > Empty ClassGeneral > Empty Class , name the new file NoteNote, and click the NewNew

button:

This will add a class named NoteNote to the ModelsModels folder of the NotesNotes project.

6. In Note.csNote.cs , remove all of the template code and replace it with the following code:

This class defines a Note model that will store data about each note in the application.

Save the changes to Note.csNote.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

7. In the Solution PadSolution Pad, select the NotesNotes project, right-click, and select Add > New File...Add > New File... . In the New FileNew File

dialog, select Forms > Forms ContentPage XAMLForms > Forms ContentPage XAML , name the new file NoteEntr yPageNoteEntr yPage, and click the

NewNew button:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NoteEntryPage"
 Title="Note Entry">
 <!-- Layout children vertically -->
 <StackLayout Margin="20">
 <Editor Placeholder="Enter your note"
 Text="{Binding Text}"
 HeightRequest="100" />
 <!-- Layout children in two columns -->
 <Grid ColumnDefinitions="*,*">
 <Button Text="Save"
 Clicked="OnSaveButtonClicked" />
 <Button Grid.Column="1"
 Text="Delete"
 Clicked="OnDeleteButtonClicked"/>
 </Grid>
 </StackLayout>
</ContentPage>

using System;
using System.IO;
using Notes.Models;

This will add a new page named NoteEntr yPageNoteEntr yPage to the ViewsViews folder of the project. This page will be

used for note entry.

8. In NoteEntr yPage.xamlNoteEntr yPage.xaml , remove all of the template code and replace it with the following code:

This code declaratively defines the user interface for the page, which consists of an Editor for text input,

and two Button objects that direct the application to save or delete a file. The two Button instances are

horizontally laid out in a Grid , with the Editor and Grid being vertically laid out in a StackLayout . In

addition, the Editor uses data binding to bind to the Text property of the Note model. For more

information about data binding, see Data binding in the Xamarin.Forms Quickstart Deep Dive.

Save the changes to NoteEntr yPage.xamlNoteEntr yPage.xaml by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

9. In NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

using Notes.Models;
using Xamarin.Forms;

namespace Notes.Views
{
 [QueryProperty(nameof(ItemId), nameof(ItemId))]
 public partial class NoteEntryPage : ContentPage
 {
 public string ItemId
 {
 set
 {
 LoadNote(value);
 }
 }

 public NoteEntryPage()
 {
 InitializeComponent();

 // Set the BindingContext of the page to a new Note.
 BindingContext = new Note();
 }

 void LoadNote(string filename)
 {
 try
 {
 // Retrieve the note and set it as the BindingContext of the page.
 Note note = new Note
 {
 Filename = filename,
 Text = File.ReadAllText(filename),
 Date = File.GetCreationTime(filename)
 };
 BindingContext = note;
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load note.");
 }
 }

 async void OnSaveButtonClicked(object sender, EventArgs e)
 {
 var note = (Note)BindingContext;

 if (string.IsNullOrWhiteSpace(note.Filename))
 {
 // Save the file.
 var filename = Path.Combine(App.FolderPath, $"{Path.GetRandomFileName()}.notes.txt");
 File.WriteAllText(filename, note.Text);
 }
 else
 {
 // Update the file.
 File.WriteAllText(note.Filename, note.Text);
 }

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
 }

 async void OnDeleteButtonClicked(object sender, EventArgs e)
 {
 var note = (Note)BindingContext;

 // Delete the file.
 if (File.Exists(note.Filename))
 {

 {
 File.Delete(note.Filename);
 }

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
 }
 }
}

WARNINGWARNING

This code stores a Note instance, which represents a single note, in the BindingContext of the page. The

class is decorated with a QueryPropertyAttribute that enables data to be passed into the page, during

navigation, via query parameters. The first argument for the QueryPropertyAttribute specifies the name

of the property that will receive the data, with the second argument specifying the query parameter id.

Therefore, the QueryParameterAttribute in the above code specifies that the ItemId property will receive

the data passed in the ItemId query parameter from the URI specified in a GoToAsync method call. The

ItemId property then calls the LoadNote method to create a Note object from the file on the device, and

sets the BindingContext of the page to the Note object.

When the SaveSave Button is pressed the OnSaveButtonClicked event handler is executed, which either saves

the content of the Editor to a new file with a randomly generated filename, or to an existing file if a note

is being updated. In both cases, the file is stored in the local application data folder for the application.

Then the method navigates back to the previous page. When the DeleteDelete Button is pressed the

OnDeleteButtonClicked event handler is executed, which deletes the file, provided that it exists, and

navigates back to the previous page. For more information about navigation, see Navigation in the

Xamarin.Forms Shell Quickstart Deep Dive.

Save the changes to NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

The application will not currently build due to errors that will be fixed in subsequent steps.

10. In the Solution PadSolution Pad, in the NotesNotes project, open NotesPage.xamlNotesPage.xaml in the ViewsViews folder.

11. In NotesPage.xamlNotesPage.xaml , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NotesPage"
 Title="Notes">
 <!-- Add an item to the toolbar -->
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add"
 Clicked="OnAddClicked" />
 </ContentPage.ToolbarItems>

 <!-- Display notes in a list -->
 <CollectionView x:Name="collectionView"
 Margin="20"
 SelectionMode="Single"
 SelectionChanged="OnSelectionChanged">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="10" />
 </CollectionView.ItemsLayout>
 <!-- Define the appearance of each item in the list -->
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Label Text="{Binding Text}"
 FontSize="Medium"/>
 <Label Text="{Binding Date}"
 TextColor="Silver"
 FontSize="Small" />
 </StackLayout>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</ContentPage>

This code declaratively defines the user interface for the page, which consists of a CollectionView and a

ToolbarItem . The CollectionView uses data binding to display any notes that are retrieved by the

application. Selecting a note will navigate to the NoteEntryPage where the note can be modified.

Alternatively, a new note can be created by pressing the ToolbarItem . For more information about data

binding, see Data binding in the Xamarin.Forms Quickstart Deep Dive.

Save the changes to NotesPage.xamlNotesPage.xaml by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

12. In the Solution PadSolution Pad, in the NotesNotes project, expand NotesPage.xamlNotesPage.xaml in the ViewsViews folder and open

NotesPage.xaml.csNotesPage.xaml.cs .

13. In NotesPage.xaml.csNotesPage.xaml.cs , remove all of the template code and replace it with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Notes.Models;
using Xamarin.Forms;

namespace Notes.Views
{
 public partial class NotesPage : ContentPage
 {
 public NotesPage()
 {
 InitializeComponent();
 }

 protected override void OnAppearing()
 {
 base.OnAppearing();

 var notes = new List<Note>();

 // Create a Note object from each file.
 var files = Directory.EnumerateFiles(App.FolderPath, "*.notes.txt");
 foreach (var filename in files)
 {
 notes.Add(new Note
 {
 Filename = filename,
 Text = File.ReadAllText(filename),
 Date = File.GetCreationTime(filename)
 });
 }

 // Set the data source for the CollectionView to a
 // sorted collection of notes.
 collectionView.ItemsSource = notes
 .OrderBy(d => d.Date)
 .ToList();
 }

 async void OnAddClicked(object sender, EventArgs e)
 {
 // Navigate to the NoteEntryPage, without passing any data.
 await Shell.Current.GoToAsync(nameof(NoteEntryPage));
 }

 async void OnSelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 if (e.CurrentSelection != null)
 {
 // Navigate to the NoteEntryPage, passing the filename as a query parameter.
 Note note = (Note)e.CurrentSelection.FirstOrDefault();
 await Shell.Current.GoToAsync($"{nameof(NoteEntryPage)}?
{nameof(NoteEntryPage.ItemId)}={note.Filename}");
 }
 }
 }
}

This code defines the functionality for the NotesPage . When the page appears, the OnAppearing method

is executed, which populates the CollectionView with any notes that have been retrieved from the local

application data folder. When the ToolbarItem is pressed the OnAddClicked event handler is executed.

This method navigates to the NoteEntryPage . When an item in the CollectionView is selected the

OnSelectionChanged event handler is executed. This method navigates to the NoteEntryPage , provided

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem

WARNINGWARNING

using Notes.Views;
using Xamarin.Forms;

namespace Notes
{
 public partial class AppShell : Shell
 {
 public AppShell()
 {
 InitializeComponent();
 Routing.RegisterRoute(nameof(NoteEntryPage), typeof(NoteEntryPage));
 }
 }
}

that an item in the CollectionView is selected, passing the Filename property of the selected Note as a

query parameter to the page. For more information about navigation, see Navigation in the

Xamarin.Forms Quickstart Deep Dive.

Save the changes to NotesPage.xaml.csNotesPage.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

The application will not currently build due to errors that will be fixed in subsequent steps.

14. In the Solution PadSolution Pad, in the NotesNotes project, expand AppShell.xamlAppShell.xaml and open AppShell.xaml.csAppShell.xaml.cs . Then

replace the existing code with the following code:

This code registers a route for the NoteEntryPage , which isn't represented in the Shell visual hierarchy.

This page can then be navigated to using URI-based navigation, with the GoToAsync method.

Save the changes to AppShell.xaml.csAppShell.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

15. In the Solution PadSolution Pad, in the NotesNotes project, expand App.xamlApp.xaml and open App.xaml.csApp.xaml.cs . Then replace the

existing code with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

 Next steps

 Related links

using System;
using System.IO;
using Xamarin.Forms;

namespace Notes
{
 public partial class App : Application
 {
 public static string FolderPath { get; private set; }

 public App()
 {
 InitializeComponent();
 FolderPath =
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData));
 MainPage = new AppShell();
 }

 protected override void OnStart()
 {
 }

 protected override void OnSleep()
 {
 }

 protected override void OnResume()
 {
 }
 }
}

This code adds a namespace declaration for the System.IO namespace, and adds a declaration for a static

FolderPath property of type string . The FolderPath property is used to store the path on the device

where note data will be stored. In addition, the code initializes the FolderPath property in the App

constructor, and initializes the MainPage property to the subclassed Shell object.

Save the changes to App.xaml.csApp.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

16. Build and run the project on each platform. For more information, see Building the quickstart.

On the NotesPageNotesPage press the AddAdd button to navigate to the NoteEntr yPageNoteEntr yPage and enter a note. After

saving the note the application will navigate back to the NotesPageNotesPage.

Enter several notes, of varying length, to observe the application behavior. Close the application and re-

launch it to ensure that the notes you entered were saved to the device.

In this quickstart, you learned how to:

Add additional pages to a Xamarin.Forms Shell application.

Perform navigation between pages.

Use data binding to synchronize data between user interface elements and their data source.

Continue to the next quickstart to modify the application so that it stores its data in a local SQLite.NET database.

Next

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.mainpage#xamarin_forms_application_mainpage

Notes (sample)

Xamarin.Forms Shell quickstart deep dive

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-navigation/

Store data in a local SQLite.NET database
 7/8/2021 • 11 minutes to read • Edit Online

 Prerequisites

 Update the app with Visual Studio

 Download the sample

In this quickstart, you will learn how to:

Store data locally in a SQLite.NET database.

The quickstart walks through how to store data in a local SQLite.NET database, from a Xamarin.Forms Shell

application. The final application is shown below:

You should successfully complete the previous quickstart before attempting this quickstart. Alternatively,

download the previous quickstart sample and use it as the starting point for this quickstart.

1. Launch Visual Studio and open the Notes solution.

2. In Solution ExplorerSolution Explorer , right-click the NotesNotes solution and select Manage NuGet Packages forManage NuGet Packages for

Solution...Solution...:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/quickstarts/database.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-database/
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/database-images/screenshots1.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/database-images/screenshots2.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-navigation/

WARNINGWARNING

3. In the NuGet Package ManagerNuGet Package Manager , select the BrowseBrowse tab, and search for the sqlite-net-pclsqlite-net-pcl NuGet

package.

There are many NuGet packages with similar names. The correct package has these attributes:

Authors:Authors: SQLite-net

NuGet link :NuGet link : sqlite-net-pcl

Despite the package name, this NuGet package can be used in .NET Standard projects.

In the NuGet Package ManagerNuGet Package Manager , select the correct sqlite-net-pclsqlite-net-pcl package, check the ProjectProject

checkbox, and click the InstallInstall button to add it to the solution:

This package will be used to incorporate database operations into the application, and will be added to

every project in the solution.

Close the NuGet Package ManagerNuGet Package Manager .

4. In Solution ExplorerSolution Explorer , in the NotesNotes project, open Note.csNote.cs in the ModelsModels folder and replace the existing

code with the following code:

https://www.nuget.org/packages/sqlite-net-pcl/

using System;
using SQLite;

namespace Notes.Models
{
 public class Note
 {
 [PrimaryKey, AutoIncrement]
 public int ID { get; set; }
 public string Text { get; set; }
 public DateTime Date { get; set; }
 }
}

WARNINGWARNING

This class defines a Note model that will store data about each note in the application. The ID property

is marked with PrimaryKey and AutoIncrement attributes to ensure that each Note instance in the

SQLite.NET database will have a unique id provided by SQLite.NET.

Save the changes to Note.csNote.cs by pressing CTRL+SCTRL+S .

The application will not currently build due to errors that will be fixed in subsequent steps.

5. In Solution ExplorerSolution Explorer , add a new folder named DataData to the NotesNotes project.

6. In Solution ExplorerSolution Explorer , in the NotesNotes project, add a new class named NoteDatabaseNoteDatabase to the DataData folder.

7. In NoteDatabase.csNoteDatabase.cs , replace the existing code with the following code:

using System.Collections.Generic;
using System.Threading.Tasks;
using SQLite;
using Notes.Models;

namespace Notes.Data
{
 public class NoteDatabase
 {
 readonly SQLiteAsyncConnection database;

 public NoteDatabase(string dbPath)
 {
 database = new SQLiteAsyncConnection(dbPath);
 database.CreateTableAsync<Note>().Wait();
 }

 public Task<List<Note>> GetNotesAsync()
 {
 //Get all notes.
 return database.Table<Note>().ToListAsync();
 }

 public Task<Note> GetNoteAsync(int id)
 {
 // Get a specific note.
 return database.Table<Note>()
 .Where(i => i.ID == id)
 .FirstOrDefaultAsync();
 }

 public Task<int> SaveNoteAsync(Note note)
 {
 if (note.ID != 0)
 {
 // Update an existing note.
 return database.UpdateAsync(note);
 }
 else
 {
 // Save a new note.
 return database.InsertAsync(note);
 }
 }

 public Task<int> DeleteNoteAsync(Note note)
 {
 // Delete a note.
 return database.DeleteAsync(note);
 }
 }
}

WARNINGWARNING

This class contains code to create the database, read data from it, write data to it, and delete data from it.

The code uses asynchronous SQLite.NET APIs that move database operations to background threads. In

addition, the NoteDatabase constructor takes the path of the database file as an argument. This path will

be provided by the App class in the next step.

Save the changes to NoteDatabase.csNoteDatabase.cs by pressing CTRL+SCTRL+S .

The application will not currently build due to errors that will be fixed in subsequent steps.

using System;
using System.IO;
using Notes.Data;
using Xamarin.Forms;

namespace Notes
{
 public partial class App : Application
 {
 static NoteDatabase database;

 // Create the database connection as a singleton.
 public static NoteDatabase Database
 {
 get
 {
 if (database == null)
 {
 database = new
NoteDatabase(Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData),
"Notes.db3"));
 }
 return database;
 }
 }

 public App()
 {
 InitializeComponent();
 MainPage = new AppShell();
 }

 protected override void OnStart()
 {
 }

 protected override void OnSleep()
 {
 }

 protected override void OnResume()
 {
 }
 }
}

WARNINGWARNING

8. In Solution ExplorerSolution Explorer , in the NotesNotes project, expand App.xamlApp.xaml and double-click App.xaml.csApp.xaml.cs to open it.

Then replace the existing code with the following code:

This code defines a Database property that creates a new NoteDatabase instance as a singleton, passing

in the filename of the database as the argument to the NoteDatabase constructor. The advantage of

exposing the database as a singleton is that a single database connection is created that's kept open while

the application runs, therefore avoiding the expense of opening and closing the database file each time a

database operation is performed.

Save the changes to App.xaml.csApp.xaml.cs by pressing CTRL+SCTRL+S .

The application will not currently build due to errors that will be fixed in subsequent steps.

9. In Solution ExplorerSolution Explorer , in the NotesNotes project, expand NotesPage.xamlNotesPage.xaml in the ViewsViews folder and open

protected override async void OnAppearing()
{
 base.OnAppearing();

 // Retrieve all the notes from the database, and set them as the
 // data source for the CollectionView.
 collectionView.ItemsSource = await App.Database.GetNotesAsync();
}

async void OnSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 if (e.CurrentSelection != null)
 {
 // Navigate to the NoteEntryPage, passing the ID as a query parameter.
 Note note = (Note)e.CurrentSelection.FirstOrDefault();
 await Shell.Current.GoToAsync($"{nameof(NoteEntryPage)}?{nameof(NoteEntryPage.ItemId)}=
{note.ID.ToString()}");
 }
}

WARNINGWARNING

NotesPage.xaml.csNotesPage.xaml.cs . Then replace the OnAppearing and OnSelectionChanged methods with the following

code:

The OnAppearing method populates the CollectionView with any notes stored in the database. The

OnSelectionChanged method navigates to the NoteEntryPage , passing the ID property of the selected

Note object as a query parameter.

Save the changes to NotesPage.xaml.csNotesPage.xaml.cs by pressing CTRL+SCTRL+S .

The application will not currently build due to errors that will be fixed in subsequent steps.

10. In Solution ExplorerSolution Explorer , expand NoteEntr yPage.xamlNoteEntr yPage.xaml in the ViewsViews folder and open

NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs . Then replace the LoadNote , OnSaveButtonClicked , and OnDeleteButtonClicked

methods with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

 Update the app with Visual Studio for Mac

async void LoadNote(string itemId)
{
 try
 {
 int id = Convert.ToInt32(itemId);
 // Retrieve the note and set it as the BindingContext of the page.
 Note note = await App.Database.GetNoteAsync(id);
 BindingContext = note;
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load note.");
 }
}

async void OnSaveButtonClicked(object sender, EventArgs e)
{
 var note = (Note)BindingContext;
 note.Date = DateTime.UtcNow;
 if (!string.IsNullOrWhiteSpace(note.Text))
 {
 await App.Database.SaveNoteAsync(note);
 }

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
}

async void OnDeleteButtonClicked(object sender, EventArgs e)
{
 var note = (Note)BindingContext;
 await App.Database.DeleteNoteAsync(note);

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
}

The NoteEntryPage uses the LoadNote method to retrieve the note from the database, whose ID was

passed as a query parameter to the page, and store it as a Note object in the BindingContext of the

page. When the OnSaveButtonClicked event handler is executed, the Note instance is saved to the

database and the application navigates back to the previous page. When the OnDeleteButtonClicked

event handler is executed, the Note instance is deleted from the database and the application navigates

back to the previous page.

Save the changes to NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs by pressing CTRL+SCTRL+S .

11. Build and run the project on each platform. For more information, see Building the quickstart.

On the NotesPageNotesPage press the AddAdd button to navigate to the NoteEntr yPageNoteEntr yPage and enter a note. After

saving the note the application will navigate back to the NotesPageNotesPage.

Enter several notes, of varying length, to observe the application behavior. Close the application and re-

launch it to ensure that the notes you entered were saved to the database.

1. Launch Visual Studio for Mac and open the Notes solution.

2. In the Solution PadSolution Pad, right-click the NotesNotes solution and select Manage NuGet Packages...Manage NuGet Packages... :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext

WARNINGWARNING

3. In the Manage NuGet PackagesManage NuGet Packages dialog, select the BrowseBrowse tab, and search for the sqlite-net-pclsqlite-net-pcl

NuGet package.

There are many NuGet packages with similar names. The correct package has these attributes:

Authors:Authors: SQLite-net

NuGet link :NuGet link : sqlite-net-pcl

Despite the package name, this NuGet package can be used in .NET Standard projects.

In the Manage NuGet PackagesManage NuGet Packages dialog, select the sqlite-net-pclsqlite-net-pcl package, and click the Add PackageAdd Package

button to add it to the solution:

This package will be used to incorporate database operations into the application.

4. In the Select ProjectsSelect Projects dialog, ensure that every checkbox is checked and press the OkOk button:

https://www.nuget.org/packages/sqlite-net-pcl/

using System;
using SQLite;

namespace Notes.Models
{
 public class Note
 {
 [PrimaryKey, AutoIncrement]
 public int ID { get; set; }
 public string Text { get; set; }
 public DateTime Date { get; set; }
 }
}

WARNINGWARNING

This will add the NuGet package to every project in the solution.

5. In the Solution PadSolution Pad, in the NotesNotes project, open Note.csNote.cs in the ModelsModels folder and replace the existing

code with the following code:

This class defines a Note model that will store data about each note in the application. The ID property

is marked with PrimaryKey and AutoIncrement attributes to ensure that each Note instance in the

SQLite.NET database will have a unique id provided by SQLite.NET.

Save the changes to Note.csNote.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

The application will not currently build due to errors that will be fixed in subsequent steps.

6. In the Solution PadSolution Pad, add a new folder named DataData to the NotesNotes project.

7. In the Solution PadSolution Pad, in the NotesNotes project, add a new class named NoteDatabaseNoteDatabase to the DataData folder.

8. In NoteDatabase.csNoteDatabase.cs , replace the existing code with the following code:

using System.Collections.Generic;
using System.Threading.Tasks;
using SQLite;
using Notes.Models;

namespace Notes.Data
{
 public class NoteDatabase
 {
 readonly SQLiteAsyncConnection database;

 public NoteDatabase(string dbPath)
 {
 database = new SQLiteAsyncConnection(dbPath);
 database.CreateTableAsync<Note>().Wait();
 }

 public Task<List<Note>> GetNotesAsync()
 {
 //Get all notes.
 return database.Table<Note>().ToListAsync();
 }

 public Task<Note> GetNoteAsync(int id)
 {
 // Get a specific note.
 return database.Table<Note>()
 .Where(i => i.ID == id)
 .FirstOrDefaultAsync();
 }

 public Task<int> SaveNoteAsync(Note note)
 {
 if (note.ID != 0)
 {
 // Update an existing note.
 return database.UpdateAsync(note);
 }
 else
 {
 // Save a new note.
 return database.InsertAsync(note);
 }
 }

 public Task<int> DeleteNoteAsync(Note note)
 {
 // Delete a note.
 return database.DeleteAsync(note);
 }
 }
}

WARNINGWARNING

This class contains code to create the database, read data from it, write data to it, and delete data from it.

The code uses asynchronous SQLite.NET APIs that move database operations to background threads. In

addition, the NoteDatabase constructor takes the path of the database file as an argument. This path will

be provided by the App class in the next step.

Save the changes to NoteDatabase.csNoteDatabase.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

The application will not currently build due to errors that will be fixed in subsequent steps.

using System;
using System.IO;
using Notes.Data;
using Xamarin.Forms;

namespace Notes
{
 public partial class App : Application
 {
 static NoteDatabase database;

 // Create the database connection as a singleton.
 public static NoteDatabase Database
 {
 get
 {
 if (database == null)
 {
 database = new
NoteDatabase(Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData),
"Notes.db3"));
 }
 return database;
 }
 }

 public App()
 {
 InitializeComponent();
 MainPage = new AppShell();
 }

 protected override void OnStart()
 {
 }

 protected override void OnSleep()
 {
 }

 protected override void OnResume()
 {
 }
 }
}

WARNINGWARNING

9. In the Solution PadSolution Pad, in the NotesNotes project, expand App.xamlApp.xaml and double-click App.xaml.csApp.xaml.cs to open it.

Then replace the existing code with the following code:

This code defines a Database property that creates a new NoteDatabase instance as a singleton, passing

in the filename of the database as the argument to the NoteDatabase constructor. The advantage of

exposing the database as a singleton is that a single database connection is created that's kept open while

the application runs, therefore avoiding the expense of opening and closing the database file each time a

database operation is performed.

Save the changes to App.xaml.csApp.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

The application will not currently build due to errors that will be fixed in subsequent steps.

10. In the Solution PadSolution Pad, in the NotesNotes project, expand NotesPage.xamlNotesPage.xaml in the ViewsViews folder and open

protected override async void OnAppearing()
{
 base.OnAppearing();

 // Retrieve all the notes from the database, and set them as the
 // data source for the CollectionView.
 collectionView.ItemsSource = await App.Database.GetNotesAsync();
}

async void OnSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 if (e.CurrentSelection != null)
 {
 // Navigate to the NoteEntryPage, passing the ID as a query parameter.
 Note note = (Note)e.CurrentSelection.FirstOrDefault();
 await Shell.Current.GoToAsync($"{nameof(NoteEntryPage)}?{nameof(NoteEntryPage.ItemId)}=
{note.ID.ToString()}");
 }
}

WARNINGWARNING

NotesPage.xaml.csNotesPage.xaml.cs . Then replace the OnAppearing and OnSelectionChanged methods with the following

code:

The OnAppearing method populates the CollectionView with any notes stored in the database. The

OnSelectionChanged method navigates to the NoteEntryPage , passing the ID property of the selected

Note object as a query parameter.

Save the changes to NotesPage.xaml.csNotesPage.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

The application will not currently build due to errors that will be fixed in subsequent steps.

11. In the Solution PadSolution Pad, expand NoteEntr yPage.xamlNoteEntr yPage.xaml in the ViewsViews folder and open

NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs . Then replace the LoadNote , OnSaveButtonClicked , and OnDeleteButtonClicked

methods with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

 Next steps

async void LoadNote(string itemId)
{
 try
 {
 int id = Convert.ToInt32(itemId);
 // Retrieve the note and set it as the BindingContext of the page.
 Note note = await App.Database.GetNoteAsync(id);
 BindingContext = note;
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load note.");
 }
}

async void OnSaveButtonClicked(object sender, EventArgs e)
{
 var note = (Note)BindingContext;
 note.Date = DateTime.UtcNow;
 if (!string.IsNullOrWhiteSpace(note.Text))
 {
 await App.Database.SaveNoteAsync(note);
 }

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
}

async void OnDeleteButtonClicked(object sender, EventArgs e)
{
 var note = (Note)BindingContext;
 await App.Database.DeleteNoteAsync(note);

 // Navigate backwards
 await Shell.Current.GoToAsync("..");
}

The NoteEntryPage uses the LoadNote method to retrieve the note from the database, whose ID was

passed as a query parameter to the page, and store it as a Note object in the BindingContext of the

page. When the OnSaveButtonClicked event handler is executed, the Note instance is saved to the

database and the application navigates back to the previous page. When the OnDeleteButtonClicked

event handler is executed, the Note instance is deleted from the database and the application navigates

back to the previous page.

Save the changes to NoteEntr yPage.xaml.csNoteEntr yPage.xaml.cs by choosing File > SaveFile > Save (or by pressing ⌘⌘ + S + S).

12. Build and run the project on each platform. For more information, see Building the quickstart.

On the NotesPageNotesPage press the AddAdd button to navigate to the NoteEntr yPageNoteEntr yPage and enter a note. After

saving the note the application will navigate back to the NotesPageNotesPage.

Enter several notes, of varying length, to observe the application behavior. Close the application and re-

launch it to ensure that the notes you entered were saved to the database.

In this quickstart, you learned how to:

Store data locally in a SQLite.NET database.

Continue to the next quickstart to style the application with XAML styles.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext

 Related links

Next

Notes (sample)

Xamarin.Forms Shell Quickstart Deep Dive

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-database/

Style a cross-platform Xamarin.Forms application
 7/8/2021 • 10 minutes to read • Edit Online

 PrerequisitesPrerequisites

 Update the app with Visual Studio

 Download the sample

In this quickstart, you will learn how to:

Style a Xamarin.Forms Shell application using XAML styles.

Use XAML Hot Reload to see UI changes without rebuilding your application.

The quickstart walks through how to style a cross-platform Xamarin.Forms application with XAML styles. In

addition, the quickstart uses XAML Hot Reload to update the UI of your running application, without having to

rebuild the application. For more information about XAML Hot Reload, see XAML Hot Reload for Xamarin.Forms.

The final application is shown below:

You should successfully complete the previous quickstart before attempting this quickstart. Alternatively,

download the previous quickstart sample and use it as the starting point for this quickstart.

1. Launch Visual Studio and open the Notes solution.

2. Build and run the project on your chosen platform. For more information, see Building the quickstart.

Leave the application running and return to Visual Studio.

3. In Solution ExplorerSolution Explorer , in the NotesNotes project, open App.xamlApp.xaml . Then replace the existing code with the

following code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/quickstarts/styling.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-styled/
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/styling-images/screenshots1.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/styling-images/screenshots2.png#lightbox
file:///T:/c1uy/wq21/xamarin/get-started/quickstarts/styling-images/screenshots3.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-database/

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.App">

 <!-- Resources used by multiple pages in the application -->
 <Application.Resources>

 <Thickness x:Key="PageMargin">20</Thickness>

 <!-- Colors -->
 <Color x:Key="AppPrimaryColor">#1976D2</Color>
 <Color x:Key="AppBackgroundColor">AliceBlue</Color>
 <Color x:Key="PrimaryColor">Black</Color>
 <Color x:Key="SecondaryColor">White</Color>
 <Color x:Key="TertiaryColor">Silver</Color>

 <!-- Implicit styles -->
 <Style TargetType="ContentPage"
 ApplyToDerivedTypes="True">
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppBackgroundColor}" />
 </Style>

 <Style TargetType="Button">
 <Setter Property="FontSize"
 Value="Medium" />
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppPrimaryColor}" />
 <Setter Property="TextColor"
 Value="{StaticResource SecondaryColor}" />
 <Setter Property="CornerRadius"
 Value="5" />
 </Style>

 </Application.Resources>
</Application>

This code defines a Thickness value, a series of Color values, and implicit styles for the ContentPage

and Button types. Note that these styles, which are in the application-level ResourceDictionary , can be

consumed throughout the application. For more information about XAML styling, see Styling in the

Xamarin.Forms Quickstart Deep Dive.

After making the changes to App.xamlApp.xaml , XAML Hot Reload will update the UI of the running app, with no

need to rebuild the application. Specifically, the background color each page will change. By default Hot

Reload applies changes immediately after stopping typing. However, there's a preference setting that can

be changed, if you prefer, to wait until file save to apply changes.

4. In Solution ExplorerSolution Explorer , in the NotesNotes project, open AppShell.xamlAppShell.xaml . Then replace the existing code with

the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<?xml version="1.0" encoding="UTF-8"?>
<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Notes.Views"
 x:Class="Notes.AppShell">

 <Shell.Resources>
 <!-- Style Shell elements -->
 <Style x:Key="BaseStyle"
 TargetType="Element">
 <Setter Property="Shell.BackgroundColor"
 Value="{StaticResource AppPrimaryColor}" />
 <Setter Property="Shell.ForegroundColor"
 Value="{StaticResource SecondaryColor}" />
 <Setter Property="Shell.TitleColor"
 Value="{StaticResource SecondaryColor}" />
 <Setter Property="Shell.TabBarUnselectedColor"
 Value="#95FFFFFF"/>
 </Style>
 <Style TargetType="TabBar"
 BasedOn="{StaticResource BaseStyle}" />
 </Shell.Resources>

 <!-- Display a bottom tab bar containing two tabs -->
 <TabBar>
 <ShellContent Title="Notes"
 Icon="icon_feed.png"
 ContentTemplate="{DataTemplate views:NotesPage}" />
 <ShellContent Title="About"
 Icon="icon_about.png"
 ContentTemplate="{DataTemplate views:AboutPage}" />
 </TabBar>
</Shell>

This code adds two styles to the Shell resource dictionary, which define a series of Color values used

by the application.

After making the AppShell.xamlAppShell.xaml changes, XAML Hot Reload will update the UI of the running app,

without rebuilding the application. Specifically, the background color of the Shell chrome will change.

5. In Solution ExplorerSolution Explorer , in the NotesNotes project, open NotesPage.xamlNotesPage.xaml in the ViewsViews folder. Then replace the

existing code with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NotesPage"
 Title="Notes">

 <ContentPage.Resources>
 <!-- Define a visual state for the Selected state of the CollectionView -->
 <Style TargetType="StackLayout">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="Selected">
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppPrimaryColor}" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>
 </ContentPage.Resources>

 <!-- Add an item to the toolbar -->
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add"
 Clicked="OnAddClicked" />
 </ContentPage.ToolbarItems>

 <!-- Display notes in a list -->
 <CollectionView x:Name="collectionView"
 Margin="{StaticResource PageMargin}"
 SelectionMode="Single"
 SelectionChanged="OnSelectionChanged">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="10" />
 </CollectionView.ItemsLayout>
 <!-- Define the appearance of each item in the list -->
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Label Text="{Binding Text}"
 FontSize="Medium" />
 <Label Text="{Binding Date}"
 TextColor="{StaticResource TertiaryColor}"
 FontSize="Small" />
 </StackLayout>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</ContentPage>

This code adds an implicit style for the StackLayout that defines the appearance of each selected item in

the CollectionView , to the page-level ResourceDictionary , and sets the CollectionView.Margin and

Label.TextColor property to values defined in the application-level ResourceDictionary . Note that the

StackLayout implicit style was added to the page-level ResourceDictionary , because it is only consumed

by the NotesPage .

After making the NotesPage.xamlNotesPage.xaml changes, XAML Hot Reload will update the UI of the running app,

without rebuilding the application. Specifically, the color of selected items in the CollectionView will

change.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NoteEntryPage"
 Title="Note Entry">
 <ContentPage.Resources>
 <!-- Implicit styles -->
 <Style TargetType="{x:Type Editor}">
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppBackgroundColor}" />
 </Style>
 </ContentPage.Resources>

 <!-- Layout children vertically -->
 <StackLayout Margin="{StaticResource PageMargin}">
 <Editor Placeholder="Enter your note"
 Text="{Binding Text}"
 HeightRequest="100" />
 <Grid ColumnDefinitions="*,*">
 <!-- Layout children in two columns -->
 <Button Text="Save"
 Clicked="OnSaveButtonClicked" />
 <Button Grid.Column="1"
 Text="Delete"
 Clicked="OnDeleteButtonClicked"/>
 </Grid>
 </StackLayout>
</ContentPage>

6. In Solution ExplorerSolution Explorer , in the NotesNotes project, open NoteEntr yPage.xamlNoteEntr yPage.xaml in the ViewsViews folder. Then

replace the existing code with the following code:

This code adds an implicit style for the Editor to the page-level ResourceDictionary , and sets the

StackLayout.Margin property to a value defined in the application-level ResourceDictionary . Note that

the Editor implicit styles was added to the page-level ResourceDictionary because it's only consumed

by the NoteEntryPage .

7. In the running application, navigate to the NoteEntryPage .

XAML Hot Reload updated the UI of the application, without rebuilding it. Specifically, the background

color of the Editor changed in the running application, as well as the appearance of the Button objects.

8. In Solution ExplorerSolution Explorer , in the NotesNotes project, open AboutPage.xamlAboutPage.xaml in the ViewsViews folder. Then replace

the existing code with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

 Update the app with Visual Studio for Mac

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.AboutPage"
 Title="About">
 <!-- Layout children in two rows -->
 <Grid RowDefinitions="Auto,*">
 <Image Source="xamarin_logo.png"
 BackgroundColor="{StaticResource AppPrimaryColor}"
 Opacity="0.85"
 VerticalOptions="Center"
 HeightRequest="64" />
 <!-- Layout children vertically -->
 <StackLayout Grid.Row="1"
 Margin="{StaticResource PageMargin}"
 Spacing="20">
 <Label FontSize="22">
 <Label.FormattedText>
 <FormattedString>
 <FormattedString.Spans>
 <Span Text="Notes"
 FontAttributes="Bold"
 FontSize="22" />

 </FormattedString.Spans>
 </FormattedString>
 </Label.FormattedText>
 </Label>
 <Label Text="This app is written in XAML and C# with the Xamarin Platform." />
 <Button Text="Learn more"
 Clicked="OnButtonClicked" />
 </StackLayout>
 </Grid>
</ContentPage>

This code sets the Image.BackgroundColor and StackLayout.Margin properties to values defined in the

application-level ResourceDictionary .

9. In the running application, navigate to the AboutPage .

XAML Hot Reload updated the UI of the application, without rebuilding it. Specifically, the background

color of the Image changed in the running application.

1. Launch Visual Studio for Mac and open the Notes project.

2. Build and run the project on your chosen platform. For more information, see Building the quickstart.

Leave the application running and return to Visual Studio for Mac.

3. In the Solution PadSolution Pad, in the NotesNotes project, open App.xamlApp.xaml . Then replace the existing code with the

following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.App">

 <!-- Resources used by multiple pages in the application -->
 <Application.Resources>

 <Thickness x:Key="PageMargin">20</Thickness>

 <!-- Colors -->
 <Color x:Key="AppPrimaryColor">#1976D2</Color>
 <Color x:Key="AppBackgroundColor">AliceBlue</Color>
 <Color x:Key="PrimaryColor">Black</Color>
 <Color x:Key="SecondaryColor">White</Color>
 <Color x:Key="TertiaryColor">Silver</Color>

 <!-- Implicit styles -->
 <Style TargetType="ContentPage"
 ApplyToDerivedTypes="True">
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppBackgroundColor}" />
 </Style>

 <Style TargetType="Button">
 <Setter Property="FontSize"
 Value="Medium" />
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppPrimaryColor}" />
 <Setter Property="TextColor"
 Value="{StaticResource SecondaryColor}" />
 <Setter Property="CornerRadius"
 Value="5" />
 </Style>
 </Application.Resources>
</Application>

This code defines a Thickness value, a series of Color values, and implicit styles for the ContentPage

and Button types. Note that these styles, which are in the application-level ResourceDictionary , can be

consumed throughout the application. For more information about XAML styling, see Styling in the

Xamarin.Forms Quickstart Deep Dive.

After making the changes to App.xamlApp.xaml , XAML Hot Reload will update the UI of the running app, with no

need to rebuild the application. Specifically, the background color each page will change. By default Hot

Reload applies changes immediately after stopping typing. However, there's a preference setting that can

be changed, if you prefer, to wait until file save to apply changes.

4. In the Solution PadSolution Pad, in the NotesNotes project, open AppShell.xamlAppShell.xaml . Then replace the existing code with the

following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<?xml version="1.0" encoding="UTF-8"?>
<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Notes.Views"
 x:Class="Notes.AppShell">

 <Shell.Resources>
 <!-- Style Shell elements -->
 <Style x:Key="BaseStyle"
 TargetType="Element">
 <Setter Property="Shell.BackgroundColor"
 Value="{StaticResource AppPrimaryColor}" />
 <Setter Property="Shell.ForegroundColor"
 Value="{StaticResource SecondaryColor}" />
 <Setter Property="Shell.TitleColor"
 Value="{StaticResource SecondaryColor}" />
 <Setter Property="Shell.TabBarUnselectedColor"
 Value="#95FFFFFF"/>
 </Style>
 <Style TargetType="TabBar"
 BasedOn="{StaticResource BaseStyle}" />
 </Shell.Resources>

 <!-- Display a bottom tab bar containing two tabs -->
 <TabBar>
 <ShellContent Title="Notes"
 Icon="icon_feed.png"
 ContentTemplate="{DataTemplate views:NotesPage}" />
 <ShellContent Title="About"
 Icon="icon_about.png"
 ContentTemplate="{DataTemplate views:AboutPage}" />
 </TabBar>
</Shell>

This code adds two styles to the Shell resource dictionary, which define a series of Color values used

by the application.

After making the AppShell.xamlAppShell.xaml changes, XAML Hot Reload will update the UI of the running app,

without rebuilding the application. Specifically, the background color of the Shell chrome will change.

5. In the Solution PadSolution Pad, in the NotesNotes project, open NotesPage.xamlNotesPage.xaml in the ViewsViews folder. Then replace the

existing code with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NotesPage"
 Title="Notes">

 <ContentPage.Resources>
 <!-- Define a visual state for the Selected state of the CollectionView -->
 <Style TargetType="StackLayout">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="Selected">
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppPrimaryColor}" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>
 </ContentPage.Resources>

 <!-- Add an item to the toolbar -->
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add"
 Clicked="OnAddClicked" />
 </ContentPage.ToolbarItems>

 <!-- Display notes in a list -->
 <CollectionView x:Name="collectionView"
 Margin="{StaticResource PageMargin}"
 SelectionMode="Single"
 SelectionChanged="OnSelectionChanged">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="10" />
 </CollectionView.ItemsLayout>
 <!-- Define the appearance of each item in the list -->
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Label Text="{Binding Text}"
 FontSize="Medium" />
 <Label Text="{Binding Date}"
 TextColor="{StaticResource TertiaryColor}"
 FontSize="Small" />
 </StackLayout>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</ContentPage>

This code adds an implicit style for the StackLayout that defines the appearance of each selected item in

the CollectionView , to the page-level ResourceDictionary , and sets the CollectionView.Margin and

Label.TextColor property to values defined in the application-level ResourceDictionary . Note that the

StackLayout implicit style was added to the page-level ResourceDictionary , because it is only consumed

by the NotesPage .

After making the NotesPage.xamlNotesPage.xaml changes, XAML Hot Reload will update the UI of the running app,

without rebuilding the application. Specifically, the color of selected items in the CollectionView will

change.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NoteEntryPage"
 Title="Note Entry">
 <ContentPage.Resources>
 <!-- Implicit styles -->
 <Style TargetType="{x:Type Editor}">
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppBackgroundColor}" />
 </Style>
 </ContentPage.Resources>

 <!-- Layout children vertically -->
 <StackLayout Margin="{StaticResource PageMargin}">
 <Editor Placeholder="Enter your note"
 Text="{Binding Text}"
 HeightRequest="100" />
 <!-- Layout children in two columns -->
 <Grid ColumnDefinitions="*,*">
 <Button Text="Save"
 Clicked="OnSaveButtonClicked" />
 <Button Grid.Column="1"
 Text="Delete"
 Clicked="OnDeleteButtonClicked"/>
 </Grid>
 </StackLayout>
</ContentPage>

6. In the Solution PadSolution Pad, in the NotesNotes project, open NoteEntr yPage.xamlNoteEntr yPage.xaml in the ViewsViews folder. Then replace

the existing code with the following code:

This code adds implicit styles for the Editor to the page-level ResourceDictionary , and sets the

StackLayout.Margin property to a value defined in the application-level ResourceDictionary . Note that

the Editor implicit style was added to the page-level ResourceDictionary because it's only consumed by

the NoteEntryPage .

7. In the running application, navigate to the NoteEntryPage .

XAML Hot Reload updated the UI of the application, without rebuilding it. Specifically, the background

color of the Editor changed in the running application, as well as the appearance of the Button objects.

8. In the Solution PadSolution Pad, in the NotesNotes project, open AboutPage.xamlAboutPage.xaml in the ViewsViews folder. Then replace the

existing code with the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

 Next steps

 Related links

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.AboutPage"
 Title="About">
 <!-- Layout children in two rows -->
 <Grid RowDefinitions="Auto,*">
 <Image Source="xamarin_logo.png"
 BackgroundColor="{StaticResource AppPrimaryColor}"
 Opacity="0.85"
 VerticalOptions="Center"
 HeightRequest="64" />
 <!-- Layout children vertically -->
 <StackLayout Grid.Row="1"
 Margin="{StaticResource PageMargin}"
 Spacing="20">
 <Label FontSize="22">
 <Label.FormattedText>
 <FormattedString>
 <FormattedString.Spans>
 <Span Text="Notes"
 FontAttributes="Bold"
 FontSize="22" />

 </FormattedString.Spans>
 </FormattedString>
 </Label.FormattedText>
 </Label>
 <Label Text="This app is written in XAML and C# with the Xamarin Platform." />
 <Button Text="Learn more"
 Clicked="OnButtonClicked" />
 </StackLayout>
 </Grid>
</ContentPage>

This code sets the Image.BackgroundColor and StackLayout.Margin properties to values defined in the

application-level ResourceDictionary .

9. In the running application, navigate to the AboutPage .

XAML Hot Reload updated the UI of the application, without rebuilding it. Specifically, the background

color of the Image changed in the running application.

In this quickstart, you learned how to:

Style a Xamarin.Forms Shell application using XAML styles.

Use XAML Hot Reload to see UI changes without rebuilding your application.

To learn more about the fundamentals of application development using Xamarin.Forms Shell, continue to the

quickstart deep dive.

Next

Notes (sample)

XAML Hot Reload for Xamarin.Forms

Xamarin.Forms Quickstart Deep Dive

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/getstarted-notes-styled/

Xamarin.Forms Quickstart Deep Dive
 7/8/2021 • 18 minutes to read • Edit Online

 Introduction to Visual Studio

 Anatomy of a Xamarin.Forms application

In the Xamarin.Forms Quickstart, the Notes application was built. This article reviews what has been built to gain

an understanding of the fundamentals of how Xamarin.Forms Shell applications work.

Visual Studio organizes code into Solutions and Projects. A solution is a container that can hold one or more

projects. A project can be an application, a supporting library, a test application, and more. The Notes application

consists of one solution containing three projects, as shown in the following screenshot:

The projects are:

Notes – This project is the .NET Standard library project that holds all of the shared code and shared UI.

Notes.Android – This project holds Android-specific code and is the entry point for the Android application.

Notes.iOS – This project holds iOS-specific code and is the entry point for the iOS application.

The following screenshot shows the contents of the Notes .NET Standard library project in Visual Studio:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/get-started/quickstarts/deepdive.md
file:///T:/c1uy/wq21/xamarin/get-started/index.html#body

 Introduction to Visual Studio for Mac

 Anatomy of a Xamarin.Forms application

The project has a DependenciesDependencies node that contains NuGetNuGet and SDKSDK nodes:

NuGetNuGet – the Xamarin.Forms, Xamarin.Essentials, Newtonsoft.Json, and sqlite-net-pcl NuGet packages that

have been added to the project.

SDKSDK – the NETStandard.Library metapackage that references the complete set of NuGet packages that define

.NET Standard.

Visual Studio for Mac follows the Visual Studio practice of organizing code into Solutions and Projects. A

solution is a container that can hold one or more projects. A project can be an application, a supporting library, a

test application, and more. The Notes application consists of one solution containing three projects, as shown in

the following screenshot:

The projects are:

Notes – This project is the .NET Standard library project that holds all of the shared code and shared UI.

Notes.Android – This project holds Android-specific code and is the entry point for Android applications.

Notes.iOS – This project holds iOS specific-code and is the entry point for iOS applications.

The following screenshot shows the contents of the Notes .NET Standard library project in Visual Studio for Mac:

https://docs.microsoft.com/en-us/visualstudio/mac/

The project has a DependenciesDependencies node that contains NuGetNuGet and SDKSDK nodes:

NuGetNuGet – the Xamarin.Forms, Xamarin.Essentials, Newtonsoft.Json, and sqlite-net-pcl NuGet packages that

have been added to the project.

SDKSDK – the NETStandard.Library metapackage that references the complete set of NuGet packages that define

.NET Standard.

The project also consists of multiple files:

Data\NoteDatabase.csData\NoteDatabase.cs – This class contains code to create the database, read data from it, write data to it,

and delete data from it.

Models\Note.csModels\Note.cs – This class defines a Note model whose instances store data about each note in the

application.

Views\AboutPage.xamlViews\AboutPage.xaml – The XAML markup for the AboutPage class, which defines the UI for the about

page.

Views\AboutPage.xaml.csViews\AboutPage.xaml.cs – The code-behind for the AboutPage class, which contains the business logic

that is executed when the user interacts with the page.

Views\NotesPage.xamlViews\NotesPage.xaml – The XAML markup for the NotesPage class, which defines the UI for the page

shown when the application launches.

Views\NotesPage.xaml.csViews\NotesPage.xaml.cs – The code-behind for the NotesPage class, which contains the business logic

that is executed when the user interacts with the page.

Views\NoteEntr yPage.xamlViews\NoteEntr yPage.xaml – The XAML markup for the NoteEntryPage class, which defines the UI for the

page shown when the user enters a note.

Views\NoteEntr yPage.xaml.csViews\NoteEntr yPage.xaml.cs – The code-behind for the NoteEntryPage class, which contains the

business logic that is executed when the user interacts with the page.

App.xamlApp.xaml – The XAML markup for the App class, which defines a resource dictionary for the application.

App.xaml.csApp.xaml.cs – The code-behind for the App class, which is responsible for instantiating the Shell

application, and for handling application lifecycle events.

AppShell.xamlAppShell.xaml – The XAML markup for the AppShell class, which defines the visual hierarchy of the

application.

 Architecture and application fundamentals

using Xamarin.Forms;

namespace Notes
{
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();
 MainPage = new AppShell();
 }
 // ...
 }
}

AppShell.xaml.csAppShell.xaml.cs – The code-behind for the AppShell class, which creates a route for the NoteEntryPage so

that it can be navigated to programmatically.

AssemblyInfo.csAssemblyInfo.cs – This file contains an application attribute about the project, that is applied at the

assembly level.

For more information about the anatomy of a Xamarin.iOS application, see Anatomy of a Xamarin.iOS

Application. For more information about the anatomy of a Xamarin.Android application, see Anatomy of a

Xamarin.Android Application.

A Xamarin.Forms application is architected in the same way as a traditional cross-platform application. Shared

code is typically placed in a .NET Standard library, and platform-specific applications consume the shared code.

The following diagram shows an overview of this relationship for the Notes application:

To maximize the reuse of startup code, Xamarin.Forms applications have a single class named App that is

responsible for instantiating the application on each platform, as shown in the following code example:

This code sets the MainPage property of the App class to the AppShell object. The AppShell class defines the

https://docs.microsoft.com/en-us/xamarin/ios/get-started/hello-ios/hello-ios-deepdive
https://docs.microsoft.com/en-us/xamarin/android/get-started/hello-android/hello-android-deepdive

using Xamarin.Forms.Xaml;

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]

 Launch the application on each platform

 iOSiOS

namespace Notes.iOS
{
 [Register("AppDelegate")]
 public partial class AppDelegate : global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate
 {
 public override bool FinishedLaunching(UIApplication app, NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init();
 LoadApplication(new App());
 return base.FinishedLaunching(app, options);
 }
 }
}

 AndroidAndroid

visual hierarchy of the application. Shell takes this visual hierarchy and produces the user interface for it. For

more information about defining the visual hierarchy of the application, see Application visual hierarchy.

In addition, the AssemblyInfo.csAssemblyInfo.cs file contains a single application attribute, that is applied at the assembly level:

The XamlCompilation attribute turns on the XAML compiler, so that XAML is compiled directly into intermediate

language. For more information, see XAML Compilation.

How the application is launched on each platform is specific to the platform.

To launch the initial Xamarin.Forms page in iOS, the Notes.iOS project defines the AppDelegate class that

inherits from the FormsApplicationDelegate class:

The FinishedLaunching override initializes the Xamarin.Forms framework by calling the Init method. This

causes the iOS-specific implementation of Xamarin.Forms to be loaded in the application before the root view

controller is set by the call to the LoadApplication method.

To launch the initial Xamarin.Forms page in Android, the Notes.Android project includes code that creates an

Activity with the MainLauncher attribute, with the activity inheriting from the FormsAppCompatActivity class:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.xamlcompilationattribute

namespace Notes.Droid
{
 [Activity(Label = "Notes",
 Icon = "@mipmap/icon",
 Theme = "@style/MainTheme",
 MainLauncher = true,
 ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation)]
 public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsAppCompatActivity
 {
 protected override void OnCreate(Bundle savedInstanceState)
 {
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(savedInstanceState);
 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 LoadApplication(new App());
 }
 }
}

 Application visual hierarchy

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Notes.Views"
 x:Class="Notes.AppShell">
 <TabBar>
 <ShellContent Title="Notes"
 Icon="icon_feed.png"
 ContentTemplate="{DataTemplate views:NotesPage}" />
 <ShellContent Title="About"
 Icon="icon_about.png"
 ContentTemplate="{DataTemplate views:AboutPage}" />
 </TabBar>
</Shell>

 User interface

The OnCreate override initializes the Xamarin.Forms framework by calling the Init method. This causes the

Android-specific implementation of Xamarin.Forms to be loaded in the application before the Xamarin.Forms

application is loaded.

Xamarin.Forms Shell applications define the visual hierarchy of the application in a class that subclasses the

Shell class. In the Notes application this is the Appshell class:

This XAML consists of two main objects:

TabBar . The TabBar represents the bottom tab bar, and should be used when the navigation pattern for the

application uses bottom tabs. The TabBar object is a child of the Shell object.

ShellContent , which represents the ContentPage objects for each tab in the TabBar . Each ShellContent

object is a child of the TabBar object.

These objects don't represent any user interface, but rather the organization of the application's visual hierarchy.

Shell will take these objects and produce the navigation user interface for the content. Therefore, the AppShell

class defines defines two pages that are navigable from bottom tabs. The pages are created on demand, in

response to navigation.

For more information about Shell applications, see Xamarin.Forms Shell.

 LayoutLayout

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NoteEntryPage"
 Title="Note Entry">
 ...
 <StackLayout Margin="{StaticResource PageMargin}">
 <Editor Placeholder="Enter your note"
 Text="{Binding Text}"
 HeightRequest="100" />
 <Grid>
 ...
 </Grid>
 </StackLayout>
</ContentPage>

NOTENOTE

 Responding to user interactionResponding to user interaction

There are several control groups used to create the user interface of a Xamarin.Forms application:

1. PagesPages – Xamarin.Forms pages represent cross-platform mobile application screens. The Notes application

uses the ContentPage class to display single screens. For more information about pages, see Xamarin.Forms

Pages.

2. ViewsViews – Xamarin.Forms views are the controls displayed on the user interface, such as labels, buttons, and

text entry boxes. The finished Notes application uses the CollectionView , Editor , and Button views. For

more information about views, see Xamarin.Forms Views.

3. LayoutsLayouts – Xamarin.Forms layouts are containers used to compose views into logical structures. The Notes

application uses the StackLayout class to arrange views in a vertical stack, and the Grid class to arrange

buttons horizontally. For more information about layouts, see Xamarin.Forms Layouts.

At runtime, each control will be mapped to its native equivalent, which is what will be rendered.

The Notes application uses the StackLayout to simplify cross-platform application development by

automatically arranging views on the screen regardless of the screen size. Each child element is positioned one

after the other, either horizontally or vertically in the order they were added. How much space the StackLayout

will use depends on how the HorizontalOptions and VerticalOptions properties are set, but by default the

StackLayout will try to use the entire screen.

The following XAML code shows an example of using a StackLayout to layout the NoteEntryPage :

By default the StackLayout assumes a vertical orientation. However, it can be changed to a horizontal

orientation by setting the StackLayout.Orientation property to the StackOrientation.Horizontal enumeration

member.

The size of views can be set through the HeightRequest and WidthRequest properties.

For more information about the StackLayout class, see Xamarin.Forms StackLayout.

An object defined in XAML can fire an event that is handled in the code-behind file. The following code example

shows the OnSaveButtonClicked method in the code-behind for the NoteEntryPage class, which is executed in

response to the Clicked event firing on the Save button.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.orientation#xamarin_forms_stacklayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stackorientation#xamarin_forms_stackorientation_horizontal
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.clicked

async void OnSaveButtonClicked(object sender, EventArgs e)
{
 var note = (Note)BindingContext;
 note.Date = DateTime.UtcNow;
 if (!string.IsNullOrWhiteSpace(note.Text))
 {
 await App.Database.SaveNoteAsync(note);
 }
 await Shell.Current.GoToAsync("..");
}

NOTENOTE

<Button Text="Save"
 Clicked="OnSaveButtonClicked" />

 ListsLists

<CollectionView x:Name="collectionView"
 Margin="{StaticResource PageMargin}"
 SelectionMode="Single"
 SelectionChanged="OnSelectionChanged">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="10" />
 </CollectionView.ItemsLayout>
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Label Text="{Binding Text}"
 FontSize="Medium" />
 <Label Text="{Binding Date}"
 TextColor="{StaticResource TertiaryColor}"
 FontSize="Small" />
 </StackLayout>
 </DataTemplate>
 </CollectionView.ItemTemplate>
</CollectionView>

The OnSaveButtonClicked method saves the note in the database, and navigates back to the previous page. For

more information about navigation, see Navigation.

The code-behind file for a XAML class can access an object defined in XAML using the name assigned to it with the

x:Name attribute. The value assigned to this attribute has the same rules as C# variables, in that it must begin with a

letter or underscore and contain no embedded spaces.

The wiring of the save button to the OnSaveButtonClicked method occurs in the XAML markup for the

NoteEntryPage class:

The CollectionView is responsible for displaying a collection of items in a list. By default, list items are displayed

vertically and each item is displayed in a single row.

The following code example shows the CollectionView from the NotesPage :

The layout of each row in the CollectionView is defined within the CollectionView.ItemTemplate element, and

uses data binding to display any notes that are retrieved by the application. The CollectionView.ItemsSource

property is set to the data source, in NotesPage.xaml.csNotesPage.xaml.cs :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemtemplate#xamarin_forms_itemsview_1_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemssource#xamarin_forms_itemsview_1_itemssource

protected override async void OnAppearing()
{
 base.OnAppearing();

 collectionView.ItemsSource = await App.Database.GetNotesAsync();
}

async void OnSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 if (e.CurrentSelection != null)
 {
 // ...
 }
}

 Navigation

NOTENOTE

 Register routesRegister routes

This code populates the CollectionView with any notes stored in the database, and is executed when the page

appears.

When an item is selected in the CollectionView , the SelectionChanged event fires. An event handler, named

OnSelectionChanged , is executed when the event fires:

The SelectionChanged event can access the object that was associated with the item through the

e.CurrentSelection property.

For more information about the CollectionView class, see Xamarin.Forms CollectionView.

Navigation is performed in a Shell application by specifying a URI to navigate to. Navigation URIs have three

components:

A route, which defines the path to content that exists as part of the Shell visual hierarchy.

A page. Pages that don't exist in the Shell visual hierarchy can be pushed onto the navigation stack from

anywhere within a Shell application. For example, the NoteEntryPage isn't defined in the Shell visual

hierarchy, but can be pushed onto the navigation stack as required.

One or more query parameters. Query parameters are parameters that can be passed to the destination

page while navigating.

A navigation URI doesn't have to include all three components, but when it does the structure is: //route/page?

queryParameters

Routes can be defined on elements in the Shell visual hierarchy via the Route property. However, if the Route property

isn't set, such as in the Notes application, a route is generated at runtime.

For more information about Shell navigation, see Xamarin.Forms Shell navigation.

To navigate to a page that doesn't exist in the Shell visual hierarchy requires it to first be registered with the

Shell routing system. using the Routing.RegisterRoute method. In the Notes application, this occurs in the

AppShell constructor :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

public partial class AppShell : Shell
{
 public AppShell()
 {
 // ...
 Routing.RegisterRoute(nameof(NoteEntryPage), typeof(NoteEntryPage));
 }
}

 Perform navigationPerform navigation

await Shell.Current.GoToAsync("NoteEntryPage");

IMPORTANTIMPORTANT

async void OnSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 if (e.CurrentSelection != null)
 {
 // Navigate to the NoteEntryPage, passing the ID as a query parameter.
 Note note = (Note)e.CurrentSelection.FirstOrDefault();
 await Shell.Current.GoToAsync($"{nameof(NoteEntryPage)}?{nameof(NoteEntryPage.ItemId)}=
{note.ID.ToString()}");
 }
}

[QueryProperty(nameof(ItemId), nameof(ItemId))]
public partial class NoteEntryPage : ContentPage
{
 public string ItemId
 {
 set
 {
 LoadNote(value);
 }
 }
 // ...
}

In this example, a route named NoteEntryPage is registered against the NoteEntryPage type. This page can then

be navigated to using URI-based navigation, from anywhere in the application.

Navigation is performed by the GoToAsync method, which accepts an argument that represents the route to

navigate to:

In this example, the NoteEntryPage is navigated to.

A navigation stack is created when a page that's not in the Shell visual hierarchy is navigated to.

When navigating to a page, data can be passed to the page as a query parameter :

This example retrieves the currently selected item in the CollectionView and navigates to the NoteEntryPage ,

with the value of ID property of the Note object being passed as a query parameter to the

NoteEntryPage.ItemId property.

To receive the passed data, the NoteEntryPage class is decorated with the QueryPropertyAttribute

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

await Shell.Current.GoToAsync("..");

 Data binding

public NoteEntryPage()
{
 // ...
 BindingContext = new Note();
}

The first argument for the QueryPropertyAttribute specifies that the ItemId property will receive the passed

data, with the second argument specifying the query parameter id. Therefore, the QueryPropertyAttribute in the

above example specifies that the ItemId property will receive the data passed in the ItemId query parameter

from the URI in the GoToAsync method call. The ItemId property then calls the LoadNote method to retrieve

the note from the device.

Backwards navigation is performed by specifying ".." as the argument to the GoToAsync method:

For more information about backwards navigation, see Backwards navigation.

Data binding is used to simplify how a Xamarin.Forms application displays and interacts with its data. It

establishes a connection between the user interface and the underlying application. The BindableObject class

contains much of the infrastructure to support data binding.

Data binding connects two objects, called the source and the target. The source object provides the data. The

target object will consume (and often display) data from the source object. For example, an Editor (target

object) will commonly bind its Text property to a public string property in a source object. The following

diagram illustrates the binding relationship:

The main benefit of data binding is that you no longer have to worry about synchronizing data between your

views and data source. Changes in the source object are automatically pushed to the target object behind-the-

scenes by the binding framework, and changes in the target object can be optionally pushed back to the source

object.

Establishing data binding is a two-step process:

The BindingContext property of the target object must be set to the source.

A binding must be established between the target and the source. In XAML, this is achieved by using the

Binding markup extension.

In the Notes application, the binding target is the Editor that displays a note, while the Note instance set as

the BindingContext of NoteEntryPage is the binding source. Initially, the BindingContext of the NoteEntryPage is

set when the page constructor executes:

In this example, the page's BindingContext is set to a new Note when the NoteEntryPage is created. This

handles the scenario of adding a new note to the application.

In addition, the page's BindingContext can also be set when navigation to the NoteEntryPage occurs, provided

that an existing note was selected on the NotesPage :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext

[QueryProperty(nameof(ItemId), nameof(ItemId))]
public partial class NoteEntryPage : ContentPage
{
 public string ItemId
 {
 set
 {
 LoadNote(value);
 }

 async void LoadNote(string itemId)
 {
 try
 {
 int id = Convert.ToInt32(itemId);
 // Retrieve the note and set it as the BindingContext of the page.
 Note note = await App.Database.GetNoteAsync(id);
 BindingContext = note;
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load note.");
 }
 }
 // ...
 }
}

IMPORTANTIMPORTANT

<Editor Placeholder="Enter your note"
 Text="{Binding Text}" />

 Styling

In this example, when page navigation occurs the page's BindingContext is set to the selected Note object after

it's been retrieved from the database.

While the BindingContext property of each target object can be individually set, this isn’t necessary. BindingContext

is a special property that’s inherited by all its children. Therefore, when the BindingContext on the ContentPage is set

to a Note instance, all of the children of the ContentPage have the same BindingContext , and can bind to public

properties of the Note object.

The Editor in NoteEntryPage then binds to the Text property of the Note object:

A binding between the Editor.Text property and the Text property of the source object is established.

Changes made in the Editor will automatically be propagated to the Note object. Similarly, if changes are

made to the Note.Text property, the Xamarin.Forms binding engine will also update the contents of the Editor

. This is known as a two-way binding.

For more information about data binding, see Xamarin.Forms Data Binding.

Xamarin.Forms applications often contain multiple visual elements that have an identical appearance. Setting

the appearance of each visual element can be repetitive and error prone. Instead, styles can be created that

define the appearance, and then applied to the required visual elements.

The Style class groups a collection of property values into one object that can then be applied to multiple

visual element instances. Styles are stored in a ResourceDictionary , either at the application level, the page level,

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

IMPORTANTIMPORTANT

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Notes.Views.NoteEntryPage"
 Title="Note Entry">
 <ContentPage.Resources>
 <!-- Implicit styles -->
 <Style TargetType="{x:Type Editor}">
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppBackgroundColor}" />
 </Style>
 ...
 </ContentPage.Resources>
 ...
</ContentPage>

NOTENOTE

 Test and deployment

or the view level. Choosing where to define a Style impacts where it can be used:

Style instances defined at the application level can be applied throughout the application.

Style instances defined at the page level can be applied to the page and to its children.

Style instances defined at the view level can be applied to the view and to its children.

Any styles that are used throughout the application are stored in the application's resource dictionary to avoid

duplication. However, XAML that's specific to a page shouldn't be included in the application's resource dictionary, as the

resources will then be parsed at application startup instead of when required by a page. For more information, see Reduce

the application resource dictionary size.

Each Style instance contains a collection of one or more Setter objects, with each Setter having a Property

and a Value . The Property is the name of the bindable property of the element the style is applied to, and the

Value is the value that is applied to the property. The following code example shows a style from

NoteEntryPage :

This style is applied to any Editor instances on the page.

When creating a Style , the TargetType property is always required.

Styling a Xamarin.Forms application is traditionally accomplished by using XAML styles. However, Xamarin.Forms also

supports styling visual elements using Cascading Style Sheets (CSS). For more information, see Styling Xamarin.Forms

apps using Cascading Style Sheets (CSS).

For more information about XAML styles, see Styling Xamarin.Forms Apps using XAML Styles.

Visual Studio for Mac and Visual Studio both provide many options for testing and deploying an application.

Debugging applications is a common part of the application development lifecycle and helps to diagnose code

issues. For more information, see Set a Breakpoint, Step Through Code, and Output Information to the Log

Window.

Simulators are a good place to start deploying and testing an application, and feature useful functionality for

testing applications. However, users will not consume the final application in a simulator, so applications should

be tested on real devices early and often. For more information about iOS device provisioning, see Device

Provisioning. For more information about Android device provisioning, see Set Up Device for Development.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter.property#xamarin_forms_setter_property
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter.value#xamarin_forms_setter_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging/set_a_breakpoint
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging/step_through_code
https://github.com/xamarin/recipes/tree/master/Recipes/cross-platform/ide/debugging/output_information_to_log_window
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/device-provisioning/index
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/set-up-device-for-development

 Next steps

 Related links

 Related video

This deep dive has examined the fundamentals of application development using Xamarin.Forms Shell.

Suggested next steps include reading about the following functionality:

Xamarin.Forms Shell reduces the complexity of mobile application development by providing the

fundamental features that most mobile applications require. For more information, see Xamarin.Forms Shell.

There are several control groups used to create the user interface of a Xamarin.Forms application. For more

information, see Controls Reference.

Data binding is a technique for linking properties of two objects so that changes in one property are

automatically reflected in the other property. For more information, see Data Binding.

Xamarin.Forms provides multiple page navigation experiences, depending upon the page type being used.

For more information, see Navigation.

Styles help to reduce repetitive markup, and allow an applications appearance to be more easily changed. For

more information, see Styling Xamarin.Forms Apps.

Data templates provide the ability to define the presentation of data on supported views. For more

information, see Data Templates.

Effects also allow the native controls on each platform to be customized. Effects are created in platform-

specific projects by subclassing the PlatformEffect class, and are consumed by attaching them to an

appropriate Xamarin.Forms control. For more information, see Effects.

Each page, layout, and view is rendered differently on each platform using a Renderer class that in turn

creates a native control, arranges it on the screen, and adds the behavior specified in the shared code.

Developers can implement their own custom Renderer classes to customize the appearance and/or behavior

of a control. For more information, see Custom Renderers.

Shared code can access native functionality through the DependencyService class. For more information, see

Accessing Native Features with DependencyService.

Xamarin.Forms Shell

eXtensible Application Markup Language (XAML)

Data Binding

Controls Reference

Get Started Samples

Xamarin.Forms Samples

Xamarin.Forms API reference

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformeffect-2
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/index.html#body
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms%252bget%252bstarted
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms
https://channel9.msdn.com/Series/Xamarin-101/Xamarin-Solution-Architecture-4-of-11/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Cross-Platform for Desktop Developers
 7/12/2021 • 2 minutes to read • Edit Online

 App Lifecycle Comparison

 UI Controls Comparison

 Porting Guidance

 Samples

 Learn More

This section contains information to help WPF and Windows Forms developers to learn mobile app

development with Xamarin, by cross-referencing their existing knowledge and experience to mobile idioms, and

providing examples of porting desktop apps to mobile.

Understanding the differences between WPF and Xamarin.Forms app startup and background states.

Quick reference to find equivalent controls in Windows Forms, WPF, and Xamarin.Forms, including additional

guidance on the differences between WPF and Xamarin.Forms.

Using the Portability Analyzer to help migrate desktop application code (excluding the user interface) to

Xamarin.Forms.

Reference samples demonstrating enterprise application architecture and porting code from WPF to

Xamarin.Forms.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/cross-platform/desktop/index.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/desktop/lifecycle
https://docs.microsoft.com/en-us/xamarin/cross-platform/desktop/controls/index
https://docs.microsoft.com/en-us/xamarin/cross-platform/desktop/porting
https://docs.microsoft.com/en-us/xamarin/cross-platform/desktop/samples

Xamarin for Java developers
 11/2/2020 • 24 minutes to read • Edit Online

 Overview

If you are a Java developer, you are well on your way to leveraging your skills and existing code on the Xamarin

platform while reaping the code reuse benefits of C#. You will find that C# syntax is very similar to Java syntax,

and that both languages provide very similar features. In addition, you'll discover features unique to C# that will

make your development life easier.

This article provides an introduction to C# programming for Java developers, focusing primarily on the C#

language features that you will encounter while developing Xamarin.Android applications. Also, this article

explains how these features differ from their Java counterparts, and it introduces important C# features

(relevant to Xamarin.Android) that are not available in Java. Links to additional reference material are included,

so you can use this article as a "jumping off" point for further study of C# and .NET.

If you are familiar with Java, you will feel instantly at home with the syntax of C#. C# syntax is very similar to

Java syntax – C# is a "curly brace" language like Java, C, and C++. In many ways, C# syntax reads like a superset

of Java syntax, but with a few renamed and added keywords.

Many key characteristics of Java can be found in C#:

Class-based object-oriented programming

Strong typing

Support for interfaces

Generics

Garbage collection

Runtime compilation

Both Java and C# are compiled to an intermediate language that is run in a managed execution environment.

Both C# and Java are statically-typed, and both languages treat strings as immutable types. Both languages use

a single-rooted class hierarchy. Like Java, C# supports only single inheritance and does not allow for global

methods. In both languages, objects are created on the heap using the new keyword, and objects are garbage-

collected when they are no longer used. Both languages provide formal exception handling support with try /

catch semantics. Both provide thread management and synchronization support.

However, there are many differences between Java and C#. For example:

Java (as used on Android) does not support implicitly-typed local variables (C# supports the var

keyword).

In Java, you can pass parameters only by value, while in C# you can pass by reference as well as by value.

(C# provides the ref and out keywords for passing parameters by reference; there is no equivalent to

these in Java).

Java does not support preprocessor directives like #define .

Java does not support unsigned integer types, while C# provides unsigned integer types such as ulong ,

uint , ushort and byte .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/get-started/java-developers.md

NOTENOTE

 Going from Java to C# development

Java does not support operator overloading; in C# you can overload operators and conversions.

In a Java switch statement, code can fall through into the next switch section, but in C# the end of every

switch section must terminate the switch (the end of each section must close with a break statement).

In Java, you specify the exceptions thrown by a method with the throws keyword, but C# has no concept

of checked exceptions – the throws keyword is not supported in C#.

C# supports Language-Integrated Query (LINQ), which lets you use the reserved words from , select ,

and where to write queries against collections in a way that is similar to database queries.

Of course, there are many more differences between C# and Java than can be covered in this article. Also, both

Java and C# continue to evolve (for example, Java 8, which is not yet in the Android toolchain, supports C#-style

lambda expressions) so these differences will change over time. Only the most important differences currently

encountered by Java developers new to Xamarin.Android are outlined here.

Going from Java to C# Development provides an introduction to the fundamental differences between C#

and Java.

Object-Oriented Programming Features outlines the most important object-oriented feature differences

between the two languages.

Keyword Differences provides a table of useful keyword equivalents, C#-only keywords, and links to C#

keyword definitions.

C# brings many key features to Xamarin.Android that are not currently readily available to Java developers on

Android. These features can help you to write better code in less time:

Properties – With C#'s property system, you can access member variables safely and directly without

having to write setter and getter methods.

Lambda Expressions – In C# you can use anonymous methods (also called lambdas) to express your

functionality more succinctly and more efficiently. You can avoid the overhead of having to write one-

time-use objects, and you can pass local state to a method without having to add parameters.

Event Handling – C# provides language-level support for event-driven programming, where an object

can register to be notified when an event of interest occurs. The event keyword defines a multicast

broadcast mechanism that a publisher class can use to notify event subscribers.

Asynchronous Programming – The asynchronous programming features of C# (async / await) keep

apps responsive. The language-level support of this feature makes async programming easy to

implement and less error-prone.

Finally, Xamarin allows you to leverage existing Java assets via a technology known as binding. You can call your

existing Java code, frameworks, and libraries from C# by making use of Xamarin's automatic binding generators.

To do this, you simply create a static library in Java and expose it to C# via a binding.

Android programming uses a specific version of the Java language that supports all Java 7 features and a subset of Java

8.

Some features mentioned on this page (such as the var keyword in C#) are available in newer versions of Java (e.g.

var in Java 10), but are still not available to Android developers.

https://developer.android.com/studio/write/java8-support.html
https://developer.oracle.com/java/jdk-10-local-variable-type-inference.html

 Libraries vs. assembliesLibraries vs. assemblies

 Packages vs. namespacesPackages vs. namespaces

namespace WeatherApp
{
 ...

 Importing typesImporting types

import javax.swing.JButton

import javax.swing.*

using System;
using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using System.Net;
using System.IO;
using System.Json;
using System.Threading.Tasks;

 GenericsGenerics

The following sections outline the basic "getting started" differences between C# and Java; a later section

describes the object-oriented differences between these languages.

Java typically packages related classes in .jar.jar files. In C# and .NET, however, reusable bits of precompiled code

are packaged into assemblies, which are typically packaged as .dll files. An assembly is a unit of deployment for

C#/.NET code, and each assembly is typically associated with a C# project. Assemblies contain intermediate code

(IL) that is just-in-time compiled at runtime.

For more information about assemblies, see the Assemblies and the Global Assembly Cache topic.

C# uses the namespace keyword to group related types together ; this is similar to Java's package keyword.

Typically, a Xamarin.Android app will reside in a namespace created for that app. For example, the following C#

code declares the WeatherApp namespace wrapper for a weather-reporting app:

When you make use of types defined in external namespaces, you import these types with a using statement

(which is very similar to the Java import statement). In Java, you might import a single type with a statement

like the following:

You might import an entire Java package with a statement like this:

The C# using statement works in a very similar way, but it allows you to import an entire package without

specifying a wildcard. For example, you will often see a series of using statements at the beginning of

Xamarin.Android source files, as seen in this example:

These statements import functionality from the System , Android.App , Android.Content , etc. namespaces.

Both Java and C# support generics, which are placeholders that let you plug in different types at compile time.

However, generics work slightly differently in C#. In Java, type erasure makes type information available only at

compile time, but not at run time. By contrast, the .NET common language runtime (CLR) provides explicit

support for generic types, which means that C# has access to type information at runtime. In day-to-day

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/assemblies-gac/
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html

TextView label = FindViewById<TextView> (Resource.Id.Label);

 Object-oriented programming features

 Class inheritanceClass inheritance

Xamarin.Android development, the importance of this distinction is not often apparent, but if you are using

reflection, you will depend on this feature to access type information at run time.

In Xamarin.Android, you will often see the generic method FindViewById used to get a reference to a layout

control. This method accepts a generic type parameter that specifies the type of control to look up. For example:

In this code example, FindViewById gets a reference to the TextView control that is defined in the layout as

LabelLabel , then returns it as a TextView type.

For more information about generics, see the Generics topic. Note that there are some limitations in

Xamarin.Android support for generic C# classes; for more information, see Limitations.

Both Java and C# use very similar object-oriented programming idioms:

All classes are ultimately derived from a single root object – all Java objects derive from

java.lang.Object , while all C# objects derive from System.Object .

Instances of classes are reference types.

When you access the properties and methods of an instance, you use the " . " operator.

All class instances are created on the heap via the new operator.

Because both languages use garbage collection, there is no way to explicitly release unused objects (i.e.,

there is not a delete keyword as there is in C++).

You can extend classes through inheritance, and both languages only allow a single base class per type.

You can define interfaces, and a class can inherit from (i.e., implement) multiple interface definitions.

However, there are also some important differences:

Java has two powerful features that C# does not support: anonymous classes and inner classes.

(However, C# does allow nesting of class definitions – C#'s nested classes are like Java's static nested

classes.)

C# supports C-style structure types (struct) while Java does not.

In C#, you can implement a class definition in separate source files by using the partial keyword.

C# interfaces cannot declare fields.

C# uses C++-style destructor syntax to express finalizers. The syntax is different from Java's finalize

method, but the semantics are nearly the same. (Note that in C#, destructors automatically call the base-

class destructor – in contrast to Java where an explicit call to super.finalize is used.)

To extend a class in Java, you use the extends keyword. To extend a class in C#, you use a colon (:) to indicate

derivation. For example, in Xamarin.Android apps, you will often see class derivations that resemble the

following code fragment:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/index
https://docs.microsoft.com/en-us/xamarin/android/internals/limitations

public class MainActivity : Activity
{
 ...

public class SensorsActivity : Activity, ISensorEventListener
{
 ...

 PropertiesProperties

int width = rulerView.MeasuredWidth;
int height = rulerView.MeasuredHeight;
...
rulerView.DrawingCacheEnabled = true;

In this example, MainActivity inherits from the Activity class.

To declare support for an interface in Java, you use the implements keyword. However, in C#, you simply add

interface names to the list of classes to inherit from, as shown in this code fragment:

In this example, SensorsActivity inherits from Activity and implements the functionality declared in the

ISensorEventListener interface. Note that the list of interfaces must come after the base class (or you will get a

compile-time error). By convention, C# interface names are prepended with an upper-case "I"; this makes it

possible to determine which classes are interfaces without requiring an implements keyword.

When you want to prevent a class from being further subclassed in C#, you precede the class name with

sealed – in Java, you precede the class name with final .

For more about C# class definitions, see the Classes and Inheritance topics.

In Java, mutator methods (setters) and inspector methods (getters) are often used to control how changes are

made to class members while hiding and protecting these members from outside code. For example, the

Android TextView class provides getText and setText methods. C# provides a similar but more direct

mechanism known as properties. Users of a C# class can access a property in the same way as they would

access a field, but each access actually results in a method call that is transparent to the caller. This "under the

covers" method can implement side effects such as setting other values, performing conversions, or changing

object state.

Properties are often used for accessing and modifying UI (user interface) object members. For example:

In this example, width and height values are read from the rulerView object by accessing its MeasuredWidth and

MeasuredHeight properties. When these properties are read, values from their associated (but hidden) field

values are fetched behind the scenes and returned to the caller. The rulerView object may store width and

height values in one unit of measurement (say, pixels) and convert these values on-the-fly to a different unit of

measurement (say, millimeters) when the MeasuredWidth and MeasuredHeight properties are accessed.

The rulerView object also has a property called DrawingCacheEnabled – the example code sets this property to

true to enable the drawing cache in rulerView . Behind the scenes, an associated hidden field is updated with

the new value, and possibly other aspects of rulerView state are modified. For example, when

DrawingCacheEnabled is set to false , rulerView may also erase any drawing cache information already

accumulated in the object.

Access to properties can be read/write, read-only, or write-only. Also, you can use different access modifiers for

reading and writing. For example, you can define a property that has public read access but private write access.

For more information about C# properties, see the Properties topic.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties

 Calling base class methodsCalling base class methods

public class PictureLayout : ViewGroup
{
 ...
 public PictureLayout (Context context)
 : base (context)
 {
 ...
 }
 ...
}

public class MainActivity : Activity
{
 ...
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 Access modifiersAccess modifiers

 Virtual and override methodsVirtual and override methods

To call a base-class constructor in C#, you use a colon (:) followed by the base keyword and an initializer list;

this base constructor call is placed immediately after the derived constructor parameter list. The base-class

constructor is called on entry to the derived constructor ; the compiler inserts the call to the base constructor at

the start of the method body. The following code fragment illustrates a base constructor called from a derived

constructor in a Xamarin.Android app:

In this example, the PictureLayout class is derived from the ViewGroup class. The PictureLayout constructor

shown in this example accepts a context argument and passes it to the ViewGroup constructor via the

base(context) call.

To call a base-class method in C#, use the base keyword. For example, Xamarin.Android apps often make calls

to base methods as shown here:

In this case, the OnCreate method defined by the derived class (MainActivity) calls the OnCreate method of the

base class (Activity).

Java and C# both support the public , private , and protected access modifiers. However, C# supports two

additional access modifiers:

internal – The class member is accessible only within the current assembly.

protected internal – The class member is accessible within the defining assembly, the defining class,

and derived classes (derived classes both inside and outside the assembly have access).

For more information about C# access modifiers, see the Access Modifiers topic.

Both Java and C# support polymorphism, the ability to treat related objects in the same manner. In both

languages, you can use a base-class reference to refer to a derived-class object, and the methods of a derived

class can override the methods of its base classes. Both languages have the concept of a virtual method, a

method in a base class that is designed to be replaced by a method in a derived class. Like Java, C# supports

abstract classes and methods.

However, there are some differences between Java and C# in how you declare virtual methods and override

them:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers

 Lambda expressions

(arg1, arg2, ...) => {
 // implementation code
};

button.Click += (sender, args) => {
 clickCount += 1; // access variable in surrounding code
 button.Text = string.Format ("Clicked {0} times.", clickCount);
};

 Event handling

In C#, methods are non-virtual by default. Parent classes must explicitly label which methods are to be

overridden by using the virtual keyword. By contrast, all methods in Java are virtual methods by

default.

To prevent a method from being overridden in C#, you simply leave off the virtual keyword. By

contrast, Java uses the final keyword to mark a method with "override is not allowed."

C# derived classes must use the override keyword to explicitly indicate that a virtual base-class method

is being overridden.

For more information about C#'s support for polymorphism, see the Polymorphism topic.

C# makes it possible to create closures: inline, anonymous methods that can access the state of the method in

which they are enclosed. Using lambda expressions, you can write fewer lines of code to implement the same

functionality that you might have implemented in Java with many more lines of code.

Lambda expressions make it possible for you to skip the extra ceremony involved in creating a one-time-use

class or anonymous class as you would in Java – instead, you can just write the business logic of your method

code inline. Also, because lambdas have access to the variables in the surrounding method, you don't have to

create a long parameter list to pass state to your method code.

In C#, lambda expressions are created with the => operator as shown here:

In Xamarin.Android, lambda expressions are often used for defining event handlers. For example:

In this example, the lambda expression code (the code within the curly braces) increments a click count and

updates the button text to display the click count. This lambda expression is registered with the button object

as a click event handler to be called whenever the button is tapped. (Event handlers are explained in more detail

below.) In this simple example, the sender and args parameters are not used by the lambda expression code,

but they are required in the lambda expression to meet the method signature requirements for event

registration. Under the hood, the C# compiler translates the lambda expression into an anonymous method that

is called whenever button click events take place.

For more information about C# and lambda expressions, see the Lambda Expressions topic.

An event is a way for an object to notify registered subscribers when something interesting happens to that

object. Unlike in Java, where a subscriber typically implements a Listener interface that contains a callback

method, C# provides language-level support for event handling through delegates. A delegate is like an object-

oriented type-safe function pointer – it encapsulates an object reference and a method token. If a client object

wants to subscribe to an event, it creates a delegate and passes the delegate to the notifying object. When the

event occurs, the notifying object invokes the method represented by the delegate object, notifying the

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions

startActivityButton.Click += delegate {
 Intent intent = new Intent (this, typeof (MyActivity));
 StartActivity (intent);
};

startActivityButton.Click += (sender, e) => {
 Intent intent = new Intent (this, typeof (MyActivity));
 StartActivity (intent);
};

 Asynchronous programming

subscribing client object of the event. In C#, event handlers are essentially nothing more than methods that are

invoked through delegates.

For more information about delegates, see the Delegates topic.

In C#, events are multicast; that is, more than one listener can be notified when an event takes place. This

difference is observed when you consider the syntactical differences between Java and C# event registration. In

Java you call SetXXXListener to register for event notifications; in C# you use the += operator to register for

event notifications by "adding" your delegate to the list of event listeners. In Java, you call SetXXXListener to

unregister, while in C# you use the -= to "subtract" your delegate from the list of listeners.

In Xamarin.Android, events are often used for notifying objects when a user does something to a UI control.

Normally, a UI control will have members that are defined using the event keyword; you attach your delegates

to these members to subscribe to events from that UI control.

To subscribe to an event:

1. Create a delegate object that refers to the method that you want to be invoked when the event occurs.

2. Use the += operator to attach your delegate to the event you are subscribing to.

The following example defines a delegate (with an explicit use of the delegate keyword) to subscribe to button

clicks. This button-click handler starts a new activity:

However, you also can use a lambda expression to register for events, skipping the delegate keyword

altogether. For example:

In this example, the startActivityButton object has an event that expects a delegate with a certain method

signature: one that accepts sender and event arguments and returns void. However, because we don't want to go

to the trouble to explicitly define such a delegate or its method, we declare the signature of the method with

(sender, e) and use a lambda expression to implement the body of the event handler. Note that we have to

declare this parameter list even though we aren't using the sender and e parameters.

It is important to remember that you can unsubscribe a delegate (via the -= operator), but you cannot

unsubscribe a lambda expression – attempting to do so can cause memory leaks. Use the lambda form of event

registration only when your handler will not unsubscribe from the event.

Typically, lambda expressions are used to declare event handlers in Xamarin.Android code. This shorthand way

to declare event handlers may seem cryptic at first, but it saves an enormous amount of time when you are

writing and reading code. With increasing familiarity, you become accustomed to recognizing this pattern

(which occurs frequently in Xamarin.Android code), and you spend more time thinking about the business logic

of your application and less time wading through syntactical overhead.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/index

downloadButton.Click += downloadAsync;
...
async void downloadAsync(object sender, System.EventArgs e)
{
 webClient = new WebClient ();
 var url = new Uri ("http://photojournal.jpl.nasa.gov/jpeg/PIA15416.jpg");
 byte[] bytes = null;

 bytes = await webClient.DownloadDataTaskAsync(url);

 // display the downloaded image ...

 Keyword differences

Asynchronous programming is a way to improve the overall responsiveness of your application. Asynchronous

programming features make it possible for the rest of your app code to continue running while some part of

your app is blocked by a lengthy operation. Accessing the web, processing images, and reading/writing files are

examples of operations that can cause an entire app to appear to freeze up if it is not written asynchronously.

C# includes language-level support for asynchronous programming via the async and await keywords. These

language features make it very easy to write code that performs long-running tasks without blocking the main

thread of your application. Briefly, you use the async keyword on a method to indicate that the code in the

method is to run asynchronously and not block the caller's thread. You use the await keyword when you call

methods that are marked with async . The compiler interprets the await as the point where your method

execution is to be moved to a background thread (a task is returned to the caller). When this task completes,

execution of the code resumes on the caller's thread at the await point in your code, returning the results of the

async call. By convention, methods that run asynchronously have Async suffixed to their names.

In Xamarin.Android applications, async and await are typically used to free up the UI thread so that it can

respond to user input (such as the tapping of a CancelCancel button) while a long-running operation takes place in a

background task.

In the following example, a button click event handler causes an asynchronous operation to download an image

from the web:

In this example, when the user clicks the downloadButton control, the downloadAsync event handler creates a

WebClient object and a Uri object to fetch an image from the specifed URL. Next, it calls the WebClient

object's DownloadDataTaskAsync method with this URL to retrieve the image.

Notice that the method declaration of downloadAsync is prefaced by the async keyword to indicate that it will

run asynchronously and return a task. Also note that the call to DownloadDataTaskAsync is preceded by the

await keyword. The app moves the execution of the event handler (starting at the point where await appears)

to a background thread until DownloadDataTaskAsync completes and returns. Meanwhile, the app's UI thread can

still respond to user input and fire event handlers for the other controls. When DownloadDataTaskAsync

completes (which may take several seconds), execution resumes where the bytes variable is set to the result of

the call to DownloadDataTaskAsync , and the remainder of the event handler code displays the downloaded image

on the caller's (UI) thread.

For an introduction to async / await in C#, see the Asynchronous Programming with Async and Await topic. For

more information about Xamarin support of asynchronous programming features, see Async Support

Overview.

Many language keywords used in Java are also used in C#. There are also a number of Java keywords that have

an equivalent but differently-named counterpart in C#, as listed in this table:

https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async

JAVAJAVA C #C # DESC RIP T IO NDESC RIP T IO N

boolean bool Used for declaring the boolean values
true and false.

extends : Precedes the class and interfaces to
inherit from.

implements : Precedes the class and interfaces to
inherit from.

import using Imports types from a namespace, also
used for creating a namespace alias.

final sealed Prevents class derivation; prevents
methods and properties from being
overridden in derived classes.

instanceof is Evaluates whether an object is
compatible with a given type.

native extern Declares a method that is
implemented externally.

package namespace Declares a scope for a related set of
objects.

T... params T Specifies a method parameter that
takes a variable number of arguments.

super base Used to access members of the parent
class from within a derived class.

synchronized lock Wraps a critical section of code with
lock acquisition and release.

C #C # DESC RIP T IO NDESC RIP T IO N

as Performs conversions between compatible reference types or
nullable types.

async Specifies that a method or lambda expression is
asynchronous.

await Suspends the execution of a method until a task completes.

byte Unsigned 8-bit integer type.

delegate Used to encapsulate a method or anonymous method.

enum Declares an enumeration, a set of named constants.

Also, there are many keywords that are unique to C# and have no counterpart in the Java used on Android.

Xamarin.Android code often makes use of the following C# keywords (this table is useful to refer to when you

are reading through Xamarin.Android sample code):

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/namespace
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.android
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/as
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/byte
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/delegate
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum

event Declares an event in a publisher class.

fixed Prevents a variable from being relocated.

get Defines an accessor method that retrieves the value of a
property.

in Enables a parameter to accept a less derived type in a
generic interface.

object An alias for the Object type in the .NET framework.

out Parameter modifier or generic type parameter declaration.

override Extends or modifies the implementation of an inherited
member.

partial Declares a definition to be split into multiple files, or splits a
method definition from its implementation.

readonly Declares that a class member can be assigned only at
declaration time or by the class constructor.

ref Causes an argument to be passed by reference rather than
by value.

set Defines an accessor method that sets the value of a
property.

string Alias for the String type in the .NET framework.

struct A value type that encapsulates a group of related variables.

typeof Obtains the type of an object.

var Declares an implicitly-typed local variable.

value References the value that client code wants to assign to a
property.

virtual Allows a method to be overridden in a derived class.

C #C # DESC RIP T IO NDESC RIP T IO N

 Interoperating with existing java code

If you have existing Java functionality that you do not want to convert to C#, you can reuse your existing Java

libraries in Xamarin.Android applications via two techniques:

Create a Java Bindings L ibrar yCreate a Java Bindings L ibrar y – Using this approach, you use Xamarin tools to generate C#

wrappers around Java types. These wrappers are called bindings. As a result, your Xamarin.Android

application can use your .jar file by calling into these wrappers.

Java Native InterfaceJava Native Interface – The Java Native Interface (JNI) is a framework that makes it possible for C#

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/fixed-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-generic-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/override
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/partial-method
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/readonly
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/set
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/typeof
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual

 Further reading

 Summary

 Related links

apps to call or be called by Java code.

For more information about these techniques, see Java Integration Overview.

The MSDN C# Programming Guide is a great way to get started in learning the C# programming language, and

you can use the C# Reference to look up particular C# language features.

In the same way that Java knowledge is at least as much about familiarity with the Java class libraries as

knowing the Java language, practical knowledge of C# requires some familiarity with the .NET framework.

Microsoft's Moving to C# and the .NET Framework, for Java Developers learning packet is a good way to learn

more about the .NET framework from a Java perspective (while gaining a deeper understanding of C#).

When you are ready to tackle your first Xamarin.Android project in C#, our Hello, Android series can help you

build your first Xamarin.Android application and further advance your understanding of the fundamentals of

Android application development with Xamarin.

This article provided an introduction to the Xamarin.Android C# programming environment from a Java

developer's perspective. It pointed out the similarities between C# and Java while explaining their practical

differences. It introduced assemblies and namespaces, explained how to import external types, and provided an

overview of the differences in access modifiers, generics, class derivation, calling base-class methods, method

overriding, and event handling. It introduced C# features that are not available in Java, such as properties,

async / await asynchronous programming, lambdas, C# delegates, and the C# event handling system. It

included tables of important C# keywords, explained how to interoperate with existing Java libraries, and

provided links to related documentation for further study.

Java Integration Overview

C# Programming Guide

C# Reference

Moving to C# and the .NET Framework, for Java Developers

https://docs.microsoft.com/en-us/xamarin/android/platform/java-integration/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
https://www.microsoft.com/download/details.aspx?id=6073
https://docs.microsoft.com/en-us/xamarin/android/get-started/hello-android/index
https://docs.microsoft.com/en-us/xamarin/android/platform/java-integration/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://www.microsoft.com/download/details.aspx?id=6073

Xamarin for Objective-C Developers
 7/12/2021 • 2 minutes to read • Edit Online

 Transitioning from Objective-C

 Binding Objective-C

 Cross-Platform Development

Xamarin offers a path for developers targeting iOS to move their non-user interface code to platform agnostic

C# so that it can be used anywhere C# is available, including Android via Xamarin.Android and the various

flavors of Windows. However, just because you use C# with Xamarin doesn't mean you can't leverage existing

skills and Objective-C code. In fact, knowing Objective-C makes you a better Xamarin.iOS developer because

Xamarin exposes all the native iOS and OS X platform APIs you know and love, such as UIKit, Core Animation,

Core Foundation and Core Graphics to name a few. At the same time, you get the power of the C# language,

including features like LINQ and Generics, as well as rich .NET base class libraries to use in your native

applications.

Additionally, Xamarin allows you to leverage existing Objective-C assets via a technology know as bindings. You

simply create a static library in Objective-C and expose it to C# via a binding, as illustrated in the following

diagram:

This doesn't need to be limited to non-UI code. Bindings can expose user interface code developed in Objective-

C as well.

You'll find a plethora of information on our documentation site to help ease the transition to Xamarin, showing

how to integrate C# code with what you already know. Some highlights to get you started include:

C# Primer for Objective-C Developers - A short primer for Objective-C developers looking to move to

Xamarin and the C# language.

Walkthrough: Binding an Objective-C Library - A step-by-step walkthrough for reusing existing Objective-C

code in a Xamarin.iOS application.

Once you have a grasp of how C# compares to Objective-C and have worked through the binding walkthrough

above, you'll be in good shape for transitioning to the Xamarin platform. As a follow up, more detailed

information on Xamarin.iOS binding technologies, including a comprehensive binding reference is available in

the Binding Objective-C section.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/ios/get-started/objective-c-developers/index.md
file:///T:/c1uy/wq21/xamarin/ios/get-started/objective-c-developers/images/01-bindings.png#lightbox
https://docs.microsoft.com/en-us/xamarin/ios/get-started/objective-c-developers/primer
https://docs.microsoft.com/en-us/xamarin/ios/platform/binding-objective-c/walkthrough
https://docs.microsoft.com/en-us/xamarin/ios/platform/binding-objective-c/index

Finally, after moving to Xamarin.iOS, you'll want to check out the cross-platform guidance we have, including

case studies of reference applications we have developed, along with best practices for creating reusable, cross-

platform code contained in the Building Cross-Platform Applications section.

https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/index

Xamarin.Forms XAML Basics
 7/30/2021 • 2 minutes to read • Edit Online

 Download the sample

The eXtensible Application Markup Language (XAML) is an XML-based language created by Microsoft as an

alternative to programming code for instantiating and initializing objects, and organizing those objects in

parent-child hierarchies. XAML has been adapted to several technologies within the .NET framework, but it has

found its greatest utility in defining the layout of user interfaces within the Windows Presentation Foundation

(WPF), Silverlight, the Windows Runtime, and the Universal Windows Platform (UWP).

XAML allows developers to define user interfaces in Xamarin.Forms applications using markup rather than code.

XAML is never required in a Xamarin.Forms program, but it is often more succinct and more visually coherent

than equivalent code, and potentially toolable. XAML is well suited for use with the popular MVVM (Model-

View-ViewModel) application architecture: XAML defines the View that is linked to ViewModel code through

XAML-based data bindings.

Within a XAML file, the Xamarin.Forms developer can define user interfaces using all the Xamarin.Forms views,

layouts, and pages, as well as custom classes. The XAML file can be either compiled or embedded in the

executable. Either way, the XAML information is parsed at build time to locate named objects, and again at

runtime to instantiate and initialize objects, and to establish links between these objects and programming code.

XAML has several advantages over equivalent code:

XAML is often more succinct and readable than equivalent code.

The parent-child hierarchy inherent in XML allows XAML to mimic with greater visual clarity the parent-child

hierarchy of user-interface objects.

XAML can be easily hand-written by programmers, but also lends itself to be toolable and generated by

visual design tools.

There are also disadvantages, mostly related to limitations that are intrinsic to markup languages:

XAML cannot contain code. All event handlers must be defined in a code file.

XAML cannot contain loops for repetitive processing. (However, several Xamarin.Forms visual objects—most

notably ListView —can generate multiple children based on the objects in its ItemsSource collection.)

XAML cannot contain conditional processing (However, a data-binding can reference a code-based binding

converter that effectively allows some conditional processing.)

XAML generally cannot instantiate classes that do not define a parameterless constructor. (However, there is

sometimes a way around this restriction.)

XAML generally cannot call methods. (Again, this restriction can sometimes be overcome.)

There is not yet a visual designer for generating XAML in Xamarin.Forms applications. All XAML must be hand-

written, but you can use XAML Hot Reload in Visual Studio 2019 or Visual Studio for Mac to view your screen

designs as you edit them. Even developers with lots of experience in XAML know that experimentation is

rewarding.

XAML is basically XML, but XAML has some unique syntax features. The most important are:

Property elements

Attached properties

Markup extensions

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-basics/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Requirements

 Related links

 Related video

These features are not XML extensions. XAML is entirely legal XML. But these XAML syntax features use XML in

unique ways. They are discussed in detail in the articles below, which conclude with an introduction to using

XAML for implementing MVVM.

This article assumes a working familiarity with Xamarin.Forms. This article also assumes some familiarity with

XML, including understanding the use of XML namespace declarations, and the terms element, tag, and attribute.

When you're familiar with Xamarin.Forms and XML, start reading Part 1. Getting Started with XAML.

XamlSamples

Creating Mobile Apps book

Xamarin.Forms Samples

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://channel9.msdn.com/Series/Xamarin-101/XamarinForms-UI-with-XAML-5-of-11/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Part 1. Getting Started with XAML
 7/8/2021 • 15 minutes to read • Edit Online

 Creating the Solution

 Download the sample

In a Xamarin.Forms application, XAML is mostly used to define the visual contents of a page and works together

with a C# code-behind file.

The code-behind file provides code support for the markup. Together, these two files contribute to a new class

definition that includes child views and property initialization. Within the XAML file, classes and properties are

referenced with XML elements and attributes, and links between the markup and code are established.

To begin editing your first XAML file, use Visual Studio or Visual Studio for Mac to create a new Xamarin.Forms

solution. (Select the tab below corresponding to your environment.)

Visual Studio

Visual Studio for Mac

In Windows, launch Visual Studio 2019, and in the start window click Create a new projectCreate a new project to create a new

project:

In the Create a new projectCreate a new project window, select MobileMobile in the Project typeProject type drop down, select the Mobile AppMobile App

(Xamarin.Forms)(Xamarin.Forms) template, and click the NextNext button:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-basics/get-started-with-xaml.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

In the Configure your new projectConfigure your new project window, set the Project nameProject name to XamlSamplesXamlSamples (or whatever your

prefer), and click the CreateCreate button.

In the New Cross Platform AppNew Cross Platform App dialog, click BlankBlank , and click the OKOK button:

Four projects are created in the solution: the XamlSamplesXamlSamples .NET Standard library, XamlSamples.AndroidXamlSamples.Android,

XamlSamples.iOSXamlSamples.iOS , and the Universal Windows Platform solution, XamlSamples.UWPXamlSamples.UWP.

After creating the XamlSamplesXamlSamples solution, you might want to test your development environment by selecting

the various platform projects as the solution startup project, and building and deploying the simple application

created by the project template on either phone emulators or real devices.

Unless you need to write platform-specific code, the shared XamlSamplesXamlSamples .NET Standard library project is

where you’ll be spending virtually all of your programming time. These articles will not venture outside of that

project.

 Anatomy of a XAML FileAnatomy of a XAML File

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples"
 x:Class="XamlSamples.MainPage">

 <StackLayout>
 <!-- Place new controls here -->
 <Label Text="Welcome to Xamarin Forms!"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 </StackLayout>

</ContentPage>

Within the XamlSamplesXamlSamples .NET Standard library are a pair of files with the following names:

App.xamlApp.xaml , the XAML file; and

App.xaml.csApp.xaml.cs , a C# code-behind file associated with the XAML file.

You'll need to click the arrow next to App.xamlApp.xaml to see the code-behind file.

Both App.xamlApp.xaml and App.xaml.csApp.xaml.cs contribute to a class named App that derives from Application . Most other

classes with XAML files contribute to a class that derives from ContentPage ; those files use XAML to define the

visual contents of an entire page. This is true of the other two files in the XamlSamplesXamlSamples project:

MainPage.xamlMainPage.xaml , the XAML file; and

MainPage.xaml.csMainPage.xaml.cs , the C# code-behind file.

The MainPage.xamlMainPage.xaml file looks like this (although the formatting might be a little different):

The two XML namespace (xmlns) declarations refer to URIs, the first seemingly on Xamarin’s web site and the

second on Microsoft’s. Don’t bother checking what those URIs point to. There’s nothing there. They are simply

URIs owned by Xamarin and Microsoft, and they basically function as version identifiers.

The first XML namespace declaration means that tags defined within the XAML file with no prefix refer to classes

in Xamarin.Forms, for example ContentPage . The second namespace declaration defines a prefix of x . This is

used for several elements and attributes that are intrinsic to XAML itself and which are supported by other

implementations of XAML. However, these elements and attributes are slightly different depending on the year

embedded in the URI. Xamarin.Forms supports the 2009 XAML specification, but not all of it.

The local namespace declaration allows you to access other classes from the .NET Standard library project.

At the end of that first tag, the x prefix is used for an attribute named Class . Because the use of this x prefix

is virtually universal for the XAML namespace, XAML attributes such as Class are almost always referred to as

x:Class .

The x:Class attribute specifies a fully qualified .NET class name: the MainPage class in the XamlSamples

namespace. This means that this XAML file defines a new class named MainPage in the XamlSamples namespace

that derives from ContentPage —the tag in which the x:Class attribute appears.

The x:Class attribute can only appear in the root element of a XAML file to define a derived C# class. This is the

only new class defined in the XAML file. Everything else that appears in the XAML file is instead simply

instantiated from existing classes and initialized.

The MainPage.xaml.csMainPage.xaml.cs file looks like this (aside from unused using directives):

using Xamarin.Forms;

namespace XamlSamples
{
 public partial class MainPage : ContentPage
 {
 public MainPage()
 {
 InitializeComponent();
 }
 }
}

The MainPage class derives from ContentPage , but notice the partial class definition. This suggests that there

should be another partial class definition for MainPage , but where is it? And what is that InitializeComponent

method?

When Visual Studio builds the project, it parses the XAML file to generate a C# code file. If you look in the

XamlSamples\XamlSamples\obj\DebugXamlSamples\XamlSamples\obj\Debug directory, you’ll find a file named

XamlSamples.MainPage.xaml.g.csXamlSamples.MainPage.xaml.g.cs . The ‘g’ stands for generated. This is the other partial class definition of

MainPage that contains the definition of the InitializeComponent method called from the MainPage constructor.

These two partial MainPage class definitions can then be compiled together. Depending on whether the XAML is

compiled or not, either the XAML file or a binary form of the XAML file is embedded in the executable.

At runtime, code in the particular platform project calls a LoadApplication method, passing to it a new instance

of the App class in the .NET Standard library. The App class constructor instantiates MainPage . The constructor

of that class calls InitializeComponent , which then calls the LoadFromXaml method that extracts the XAML file (or

its compiled binary) from the .NET Standard library. LoadFromXaml initializes all the objects defined in the XAML

file, connects them all together in parent-child relationships, attaches event handlers defined in code to events

set in the XAML file, and sets the resultant tree of objects as the content of the page.

Although you normally don’t need to spend much time with generated code files, sometimes runtime

exceptions are raised on code in the generated files, so you should be familiar with them.

When you compile and run this program, the Label element appears in the center of the page as the XAML

suggests:

For more interesting visuals, all you need is more interesting XAML.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/get-started-with-xaml-images/xamlsamples-large.png#lightbox

Adding New XAML Pages

 Setting Page Content

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.HelloXamlPage">
 <ContentPage.Content>

 </ContentPage.Content>
</ContentPage>

Visual Studio

Visual Studio for Mac

To add other XAML-based ContentPage classes to your project, select the XamlSamplesXamlSamples .NET Standard library

project, right-click, and select Add > New Item...Add > New Item.... In the Add New ItemAdd New Item dialog, select Visual C# Items >Visual C# Items >

Xamarin.Forms > Content PageXamarin.Forms > Content Page (not Content Page (C#)Content Page (C#) , which creates a code-only page, or ContentContent

ViewView , which is not a page). Give the page a name, for example, HelloXamlPageHelloXamlPage:

Two files are added to the project, HelloXamlPage.xamlHelloXamlPage.xaml and the code-behind file HelloXamlPage.xaml.csHelloXamlPage.xaml.cs .

Edit the HelloXamlPage.xamlHelloXamlPage.xaml file so that the only tags are those for ContentPage and ContentPage.Content :

The ContentPage.Content tags are part of the unique syntax of XAML. At first, they might appear to be invalid

XML, but they are legal. The period is not a special character in XML.

The ContentPage.Content tags are called property element tags. Content is a property of ContentPage , and is

generally set to a single view or a layout with child views. Normally properties become attributes in XAML, but it

would be hard to set a Content attribute to a complex object. For that reason, the property is expressed as an

XML element consisting of the class name and the property name separated by a period. Now the Content

property can be set between the ContentPage.Content tags, like this:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.HelloXamlPage"
 Title="Hello XAML Page">
 <ContentPage.Content>

 <Label Text="Hello, XAML!"
 VerticalOptions="Center"
 HorizontalTextAlignment="Center"
 Rotation="-15"
 IsVisible="true"
 FontSize="Large"
 FontAttributes="Bold"
 TextColor="Blue" />

 </ContentPage.Content>
</ContentPage>

Also notice that a Title attribute has been set on the root tag.

At this time, the relationship between classes, properties, and XML should be evident: A Xamarin.Forms class

(such as ContentPage or Label) appears in the XAML file as an XML element. Properties of that class—

including Title on ContentPage and seven properties of Label —usually appear as XML attributes.

Many shortcuts exist to set the values of these properties. Some properties are basic data types: For example,

the Title and Text properties are of type String , Rotation is of type Double , and IsVisible (which is

true by default and is set here only for illustration) is of type Boolean .

The HorizontalTextAlignment property is of type TextAlignment , which is an enumeration. For a property of any

enumeration type, all you need to supply is a member name.

For properties of more complex types, however, converters are used for parsing the XAML. These are classes in

Xamarin.Forms that derive from TypeConverter . Many are public classes but some are not. For this particular

XAML file, several of these classes play a role behind the scenes:

LayoutOptionsConverter for the VerticalOptions property

FontSizeConverter for the FontSize property

ColorTypeConverter for the TextColor property

These converters govern the allowable syntax of the property settings.

The ThicknessTypeConverter can handle one, two, or four numbers separated by commas. If one number is

supplied, it applies to all four sides. With two numbers, the first is left and right padding, and the second is top

and bottom. Four numbers are in the order left, top, right, and bottom.

The LayoutOptionsConverter can convert the names of public static fields of the LayoutOptions structure to

values of type LayoutOptions .

The FontSizeConverter can handle a NamedSize member or a numeric font size.

The ColorTypeConverter accepts the names of public static fields of the Color structure or hexadecimal RGB

values, with or without an alpha channel, preceded by a number sign (#). Here’s the syntax without an alpha

channel:

TextColor="#rrggbb"

Each of the little letters is a hexadecimal digit. Here is how an alpha channel is included:

TextColor="#aarrggbb">

 Page Navigation

public App()
{
 InitializeComponent();
 MainPage = new NavigationPage(new MainPage());
}

public MainPage()
{
 InitializeComponent();

 Button button = new Button
 {
 Text = "Navigate!",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 };

 button.Clicked += async (sender, args) =>
 {
 await Navigation.PushAsync(new HelloXamlPage());
 };

 Content = button;
}

For the alpha channel, keep in mind that FF is fully opaque and 00 is fully transparent.

Two other formats allow you to specify only a single hexadecimal digit for each channel:

TextColor="#rgb" TextColor="#argb"

In these cases, the digit is repeated to form the value. For example, #CF3 is the RGB color CC-FF-33.

When you run the XamlSamplesXamlSamples program, the MainPage is displayed. To see the new HelloXamlPage you can

either set that as the new startup page in the App.xaml.csApp.xaml.cs file, or navigate to the new page from MainPage .

To implement navigation, first change code in the App.xaml.csApp.xaml.cs constructor so that a NavigationPage object is

created:

In the MainPage.xaml.csMainPage.xaml.cs constructor, you can create a simple Button and use the event handler to navigate to

HelloXamlPage :

Setting the Content property of the page replaces the setting of the Content property in the XAML file. When

you compile and deploy the new version of this program, a button appears on the screen. Pressing it navigates

to HelloXamlPage . Here’s the resultant page on iPhone, Android, and UWP:

 XAML and Code Interactions

You can navigate back to MainPage using the < Back< Back button on iOS, using the left arrow at the top of the page

or at the bottom of the phone on Android, or using the left arrow at the top of the page on Windows 10.

Feel free to experiment with the XAML for different ways to render the Label . If you need to embed any

Unicode characters into the text, you can use the standard XML syntax. For example, to put the greeting in smart

quotes, use:

<Label Text="“Hello, XAML!”" … />

Here’s what it looks like:

The HelloXamlPageHelloXamlPage sample contains only a single Label on the page, but this is very unusual. Most

ContentPage derivatives set the Content property to a layout of some sort, such as a StackLayout . The

Children property of the StackLayout is defined to be of type IList<View> but it’s actually an object of type

ElementCollection<View> , and that collection can be populated with multiple views or other layouts. In XAML,

these parent-child relationships are established with normal XML hierarchy. Here’s a XAML file for a new page

named XamlPlusCodePageXamlPlusCodePage:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/get-started-with-xaml-images/helloxaml1-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/get-started-with-xaml-images/helloxaml2-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.XamlPlusCodePage"
 Title="XAML + Code Page">
 <StackLayout>
 <Slider VerticalOptions="CenterAndExpand" />

 <Label Text="A simple Label"
 Font="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Button Text="Click Me!"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

This XAML file is syntactically complete, and here’s what it looks like:

However, you are likely to consider this program to be functionally deficient. Perhaps the Slider is supposed to

cause the Label to display the current value, and the Button is probably intended to do something within the

program.

As you’ll see in Part 4. Data Binding Basics, the job of displaying a Slider value using a Label can be handled

entirely in XAML with a data binding. But it is useful to see the code solution first. Even so, handling the Button

click definitely requires code. This means that the code-behind file for XamlPlusCodePage must contain handlers

for the ValueChanged event of the Slider and the Clicked event of the Button . Let’s add them:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/get-started-with-xaml-images/xamlpluscode1-large.png#lightbox

namespace XamlSamples
{
 public partial class XamlPlusCodePage
 {
 public XamlPlusCodePage()
 {
 InitializeComponent();
 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
 {

 }

 void OnButtonClicked(object sender, EventArgs args)
 {

 }
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.XamlPlusCodePage"
 Title="XAML + Code Page">
 <StackLayout>
 <Slider VerticalOptions="CenterAndExpand"
 ValueChanged="OnSliderValueChanged" />

 <Label Text="A simple Label"
 Font="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Button Text="Click Me!"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Clicked="OnButtonClicked" />
 </StackLayout>
</ContentPage>

<Label x:Name="valueLabel"
 Text="A simple Label"
 Font="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

These event handlers do not need to be public.

Back in the XAML file, the Slider and Button tags need to include attributes for the ValueChanged and

Clicked events that reference these handlers:

Notice that assigning a handler to an event has the same syntax as assigning a value to a property.

If the handler for the ValueChanged event of the Slider will be using the Label to display the current value, the

handler needs to reference that object from code. The Label needs a name, which is specified with the x:Name

attribute.

The x prefix of the x:Name attribute indicates that this attribute is intrinsic to XAML.

The name you assign to the x:Name attribute has the same rules as C# variable names. For example, it must

void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
{
 valueLabel.Text = args.NewValue.ToString("F3");
}

void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
{
 valueLabel.Text = ((Slider)sender).Value.ToString("F3");
}

async void OnButtonClicked(object sender, EventArgs args)
{
 Button button = (Button)sender;
 await DisplayAlert("Clicked!",
 "The button labeled '" + button.Text + "' has been clicked",
 "OK");
}

begin with a letter or underscore and contain no embedded spaces.

Now the ValueChanged event handler can set the Label to display the new Slider value. The new value is

available from the event arguments:

Or, the handler could obtain the Slider object that is generating this event from the sender argument and

obtain the Value property from that:

When you first run the program, the Label doesn’t display the Slider value because the ValueChanged event

hasn’t yet fired. But any manipulation of the Slider causes the value to be displayed:

Now for the Button . Let’s simulate a response to a Clicked event by displaying an alert with the Text of the

button. The event handler can safely cast the sender argument to a Button and then access its properties:

The method is defined as async because the DisplayAlert method is asynchronous and should be prefaced

with the await operator, which returns when the method completes. Because this method obtains the Button

firing the event from the sender argument, the same handler could be used for multiple buttons.

You’ve seen that an object defined in XAML can fire an event that is handled in the code-behind file, and that the

code-behind file can access an object defined in XAML using the name assigned to it with the x:Name attribute.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/get-started-with-xaml-images/xamlpluscode2-large.png#lightbox

public partial class XamlPlusCodePage : ContentPage {

 private Label valueLabel;

 private void InitializeComponent() {
 this.LoadFromXaml(typeof(XamlPlusCodePage));
 valueLabel = this.FindByName<Label>("valueLabel");
 }
}

 Summary

 Related Links

These are the two fundamental ways that code and XAML interact.

Some additional insights into how XAML works can be gleaned by examining the newly generated

XamlPlusCode.xaml.g.cs fileXamlPlusCode.xaml.g.cs file, which now includes any name assigned to any x:Name attribute as a private

field. Here's a simplified version of that file:

The declaration of this field allows the variable to be freely used anywhere within the XamlPlusCodePage partial

class file under your jurisdiction. At runtime, the field is assigned after the XAML has been parsed. This means

that the valueLabel field is null when the XamlPlusCodePage constructor begins but valid after

InitializeComponent is called.

After InitializeComponent returns control back to the constructor, the visuals of the page have been constructed

just as if they had been instantiated and initialized in code. The XAML file no longer plays any role in the class.

You can manipulate these objects on the page in any way that you want, for example, by adding views to the

StackLayout , or setting the Content property of the page to something else entirely. You can “walk the tree” by

examining the Content property of the page and the items in the Children collections of layouts. You can set

properties on views accessed in this way, or assign event handlers to them dynamically.

Feel free. It’s your page, and XAML is only a tool to build its content.

With this introduction, you’ve seen how a XAML file and code file contribute to a class definition, and how the

XAML and code files interact. But XAML also has its own unique syntactical features that allow it to be used in a

very flexible manner. You can begin exploring these in Part 2. Essential XAML Syntax.

XamlSamples

Part 2. Essential XAML Syntax

Part 3. XAML Markup Extensions

Part 4. Data Binding Basics

Part 5. From Data Binding to MVVM

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

Part 2. Essential XAML Syntax
 7/8/2021 • 10 minutes to read • Edit Online

 Property Elements

<Label Text="Hello, XAML!"
 VerticalOptions="Center"
 FontAttributes="Bold"
 FontSize="Large"
 TextColor="Aqua" />

<Label Text="Hello, XAML!"
 VerticalOptions="Center"
 FontAttributes="Bold"
 FontSize="Large" />

<Label Text="Hello, XAML!"
 VerticalOptions="Center"
 FontAttributes="Bold"
 FontSize="Large">

</Label>

<Label Text="Hello, XAML!"
 VerticalOptions="Center"
 FontAttributes="Bold"
 FontSize="Large">
 <Label.TextColor>

 </Label.TextColor>
</Label>

 Download the sample

XAML is mostly designed for instantiating and initializing objects. But often, properties must be set to complex

objects that cannot easily be represented as XML strings, and sometimes properties defined by one class must

be set on a child class. These two needs require the essential XAML syntax features of property elements and

attached properties.

In XAML, properties of classes are normally set as XML attributes:

However, there is an alternative way to set a property in XAML. To try this alternative with TextColor , first delete

the existing TextColor setting:

Open up the empty-element Label tag by separating it into start and end tags:

Within these tags, add start and end tags that consist of the class name and a property name separated by a

period:

Set the property value as content of these new tags, like this:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-basics/essential-xaml-syntax.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

<Label Text="Hello, XAML!"
 VerticalOptions="Center"
 FontAttributes="Bold"
 FontSize="Large">
 <Label.TextColor>
 Aqua
 </Label.TextColor>
</Label>

<Label Text="Hello, XAML!"
 VerticalOptions="Center">
 <Label.FontAttributes>
 Bold
 </Label.FontAttributes>
 <Label.FontSize>
 Large
 </Label.FontSize>
 <Label.TextColor>
 Aqua
 </Label.TextColor>
</Label>

These two ways to specify the TextColor property are functionally equivalent, but don't use the two ways for

the same property because that would effectively be setting the property twice, and might be ambiguous.

With this new syntax, some handy terminology can be introduced:

Label is an object element. It is a Xamarin.Forms object expressed as an XML element.

Text , VerticalOptions , FontAttributes and FontSize are property attributes. They are Xamarin.Forms

properties expressed as XML attributes.

In that final snippet, TextColor has become a property element. It is a Xamarin.Forms property but it is now

an XML element.

The definition of property elements might at first seem to be a violation of XML syntax, but it’s not. The period

has no special meaning in XML. To an XML decoder, Label.TextColor is simply a normal child element.

In XAML, however, this syntax is very special. One of the rules for property elements is that nothing else can

appear in the Label.TextColor tag. The value of the property is always defined as content between the

property-element start and end tags.

You can use property-element syntax on more than one property:

Or you can use property-element syntax for all the properties:

<Label>
 <Label.Text>
 Hello, XAML!
 </Label.Text>
 <Label.FontAttributes>
 Bold
 </Label.FontAttributes>
 <Label.FontSize>
 Large
 </Label.FontSize>
 <Label.TextColor>
 Aqua
 </Label.TextColor>
 <Label.VerticalOptions>
 Center
 </Label.VerticalOptions>
</Label>

<Label>
 ...
 <Label.VerticalOptions>
 <LayoutOptions Alignment="Center" />
 </Label.VerticalOptions>
</Label>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.GridDemoPage"
 Title="Grid Demo Page">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="100" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
 ...
 </Grid>
</ContentPage>

At first, property-element syntax might seem like an unnecessary long-winded replacement for something

comparatively quite simple, and in these examples that is certainly the case.

However, property-element syntax becomes essential when the value of a property is too complex to be

expressed as a simple string. Within the property-element tags you can instantiate another object and set its

properties. For example, you can explicitly set a property such as VerticalOptions to a LayoutOptions value

with property settings:

Another example: The Grid has two properties named RowDefinitions and ColumnDefinitions . These two

properties are of type RowDefinitionCollection and ColumnDefinitionCollection , which are collections of

RowDefinition and ColumnDefinition objects. You need to use property element syntax to set these collections.

Here’s the beginning of the XAML file for a GridDemoPage class, showing the property element tags for the

RowDefinitions and ColumnDefinitions collections:

Notice the abbreviated syntax for defining auto-sized cells, cells of pixel widths and heights, and star settings.

 Attached Properties
You've just seen that the Grid requires property elements for the RowDefinitions and ColumnDefinitions

collections to define the rows and columns. However, there must also be some way for the programmer to

indicate the row and column where each child of the Grid resides.

Within the tag for each child of the Grid you specify the row and column of that child using the following

attributes:

Grid.Row

Grid.Column

The default values of these attributes are 0. You can also indicate if a child spans more than one row or column

with these attributes:

Grid.RowSpan

Grid.ColumnSpan

These two attributes have default values of 1.

Here’s the complete GridDemoPage.xaml file:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.GridDemoPage"
 Title="Grid Demo Page">

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="100" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>

 <Label Text="Autosized cell"
 Grid.Row="0" Grid.Column="0"
 TextColor="White"
 BackgroundColor="Blue" />

 <BoxView Color="Silver"
 HeightRequest="0"
 Grid.Row="0" Grid.Column="1" />

 <BoxView Color="Teal"
 Grid.Row="1" Grid.Column="0" />

 <Label Text="Leftover space"
 Grid.Row="1" Grid.Column="1"
 TextColor="Purple"
 BackgroundColor="Aqua"
 HorizontalTextAlignment="Center"
 VerticalTextAlignment="Center" />

 <Label Text="Span two rows (or more if you want)"
 Grid.Row="0" Grid.Column="2" Grid.RowSpan="2"
 TextColor="Yellow"
 BackgroundColor="Blue"
 HorizontalTextAlignment="Center"
 VerticalTextAlignment="Center" />

 <Label Text="Span two columns"
 Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="2"
 TextColor="Blue"
 BackgroundColor="Yellow"
 HorizontalTextAlignment="Center"
 VerticalTextAlignment="Center" />

 <Label Text="Fixed 100x100"
 Grid.Row="2" Grid.Column="2"
 TextColor="Aqua"
 BackgroundColor="Red"
 HorizontalTextAlignment="Center"
 VerticalTextAlignment="Center" />

 </Grid>
</ContentPage>

The Grid.Row and Grid.Column settings of 0 are not required but are generally included for purposes of clarity.

Here’s what it looks like:

Judging solely from the syntax, these Grid.Row , Grid.Column , Grid.RowSpan , and Grid.ColumnSpan attributes

appear to be static fields or properties of Grid , but interestingly enough, Grid does not define anything

named Row , Column , RowSpan , or ColumnSpan .

Instead, Grid defines four bindable properties named RowProperty , ColumnProperty , RowSpanProperty , and

ColumnSpanProperty . These are special types of bindable properties known as attached properties. They are

defined by the Grid class but set on children of the Grid .

When you wish to use these attached properties in code, the Grid class provides static methods named

SetRow , GetColumn , and so forth. But in XAML, these attached properties are set as attributes in the children of

the Grid using simple properties names.

Attached properties are always recognizable in XAML files as attributes containing both a class and a property

name separated by a period. They are called attached properties because they are defined by one class (in this

case, Grid) but attached to other objects (in this case, children of the Grid). During layout, the Grid can

interrogate the values of these attached properties to know where to place each child.

The AbsoluteLayout class defines two attached properties named LayoutBounds and LayoutFlags . Here’s a

checkerboard pattern realized using the proportional positioning and sizing features of AbsoluteLayout :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/essential-xaml-syntax-images/griddemo-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.AbsoluteDemoPage"
 Title="Absolute Demo Page">

 <AbsoluteLayout BackgroundColor="#FF8080">
 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="0.33, 0, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="1, 0, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="0, 0.33, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="0.67, 0.33, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="0.33, 0.67, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="1, 0.67, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="0, 1, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 <BoxView Color="#8080FF"
 AbsoluteLayout.LayoutBounds="0.67, 1, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" />

 </AbsoluteLayout>
</ContentPage>

And here it is:

 Content Properties

For something like this, you might question the wisdom of using XAML. Certainly, the repetition and regularity

of the LayoutBounds rectangle suggests that it might be better realized in code.

That’s certainly a legitimate concern, and there’s no problem with balancing the use of code and markup when

defining your user interfaces. It’s easy to define some of the visuals in XAML and then use the constructor of the

code-behind file to add some more visuals that might be better generated in loops.

In the previous examples, the StackLayout , Grid , and AbsoluteLayout objects are set to the Content property

of the ContentPage , and the children of these layouts are actually items in the Children collection. Yet these

Content and Children properties are nowhere in the XAML file.

You can certainly include the Content and Children properties as property elements, such as in the

XamlPlusCodeXamlPlusCode sample:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/essential-xaml-syntax-images/absolutedemo-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.XamlPlusCodePage"
 Title="XAML + Code Page">
 <ContentPage.Content>
 <StackLayout>
 <StackLayout.Children>
 <Slider VerticalOptions="CenterAndExpand"
 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="valueLabel"
 Text="A simple Label"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Button Text="Click Me!"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Clicked="OnButtonClicked" />
 </StackLayout.Children>
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

[Xamarin.Forms.ContentProperty("Content")]
public class ContentPage : TemplatedPage

[Xamarin.Forms.ContentProperty("Children")]
public abstract class Layout<T> : Layout ...

 Platform Differences with OnPlatform

The real question is: Why are these property elements not required in the XAML file?

Elements defined in Xamarin.Forms for use in XAML are allowed to have one property flagged in the

ContentProperty attribute on the class. If you look up the ContentPage class in the online Xamarin.Forms

documentation, you’ll see this attribute:

This means that the Content property-element tags are not required. Any XML content that appears between

the start and end ContentPage tags is assumed to be assigned to the Content property.

StackLayout , Grid , AbsoluteLayout , and RelativeLayout all derive from Layout<View> , and if you look up

Layout<T> in the Xamarin.Forms documentation, you’ll see another ContentProperty attribute:

That allows content of the layout to be automatically added to the Children collection without explicit Children

property-element tags.

Other classes also have ContentProperty attribute definitions. For example, the content property of Label is

Text . Check the API documentation for others.

In single page applications, it is common to set the Padding property on the page to avoid overwriting the iOS

status bar. In code, you can use the Device.RuntimePlatform property for this purpose:

if (Device.RuntimePlatform == Device.iOS)
{
 Padding = new Thickness(0, 20, 0, 0);
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>

 </ContentPage.Padding>
 ...
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">

 </OnPlatform>
 </ContentPage.Padding>
 ...
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <OnPlatform.Platforms>

 </OnPlatform.Platforms>
 </OnPlatform>
 </ContentPage.Padding>
 ...
</ContentPage>

You can also do something similar in XAML using the OnPlatform and On classes. First include property

elements for the Padding property near the top of the page:

Within these tags, include an OnPlatform tag. OnPlatform is a generic class. You need to specify the generic type

argument, in this case, Thickness , which is the type of Padding property. Fortunately, there’s a XAML attribute

specifically to define generic arguments called x:TypeArguments . This should match the type of the property

you're setting:

OnPlatform has a property named Platforms that is an IList of On objects. Use property element tags for

that property:

Now add On elements. For each one set the Platform property and the Value property to markup for the

Thickness property:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <OnPlatform.Platforms>
 <On Platform="iOS" Value="0, 20, 0, 0" />
 <On Platform="Android" Value="0, 0, 0, 0" />
 <On Platform="UWP" Value="0, 0, 0, 0" />
 </OnPlatform.Platforms>
 </OnPlatform>
 </ContentPage.Padding>
 ...
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0, 20, 0, 0" />
 <On Platform="Android" Value="0, 0, 0, 0" />
 <On Platform="UWP" Value="0, 0, 0, 0" />
 </OnPlatform>
 </ContentPage.Padding>
 ...
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0, 20, 0, 0" />
 <On Platform="Android, UWP" Value="0, 0, 0, 0" />
 </OnPlatform>
 </ContentPage.Padding>
 ...
</ContentPage>

This markup can be simplified. The content property of OnPlatform is Platforms , so those property-element

tags can be removed:

The Platform property of On is of type IList<string> , so you can include multiple platforms if the values are

the same:

Because Android and UWP are set to the default value of Padding , that tag can be removed:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0, 20, 0, 0" />
 </OnPlatform>
 </ContentPage.Padding>
 ...
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="...">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS">
 <On.Value>
 0, 20, 0, 0
 </On.Value>
 </On>
 </OnPlatform>
 </ContentPage.Padding>
 ...
</ContentPage>

NOTENOTE

 Summary

 Related Links

This is the standard way to set a platform-dependent Padding property in XAML. If the Value setting cannot be

represented by a single string, you can define property elements for it:

The OnPlatform markup extension can also be used in XAML to customize UI appearance on a per-platform basis. It

provides the same functionality as the OnPlatform and On classes, but with a more concise representation. For more

information, see OnPlatform Markup Extension.

With property elements and attached properties, much of the basic XAML syntax has been established. However,

sometimes you need to set properties to objects in an indirect manner, for example, from a resource dictionary.

This approach is covered in the next part, Part 3. XAML Markup Extensions.

XamlSamples

Part 1. Getting Started with XAML

Part 3. XAML Markup Extensions

Part 4. Data Binding Basics

Part 5. From Data Binding to MVVM

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

Part 3. XAML Markup Extensions
 7/8/2021 • 11 minutes to read • Edit Online

 XAML Markup Extensions

 Shared Resources

 Download the sample

XAML markup extensions constitute an important feature in XAML that allow properties to be set to objects or

values that are referenced indirectly from other sources. XAML markup extensions are particularly important for

sharing objects, and referencing constants used throughout an application, but they find their greatest utility in

data bindings.

In general, you use XAML to set properties of an object to explicit values, such as a string, a number, an

enumeration member, or a string that is converted to a value behind the scenes.

Sometimes, however, properties must instead reference values defined somewhere else, or which might require

a little processing by code at runtime. For these purposes, XAML markup extensions are available.

These XAML markup extensions are not extensions of XML. XAML is entirely legal XML. They’re called

“extensions” because they are backed by code in classes that implement IMarkupExtension . You can write your

own custom markup extensions.

In many cases, XAML markup extensions are instantly recognizable in XAML files because they appear as

attribute settings delimited by curly braces: { and }, but sometimes markup extensions appear in markup as

conventional elements.

Some XAML pages contain several views with properties set to the same values. For example, many of the

property settings for these Button objects are the same:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-basics/xaml-markup-extensions.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.SharedResourcesPage"
 Title="Shared Resources Page">

 <StackLayout>
 <Button Text="Do this!"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 BorderWidth="3"
 Rotation="-15"
 TextColor="Red"
 FontSize="24" />

 <Button Text="Do that!"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 BorderWidth="3"
 Rotation="-15"
 TextColor="Red"
 FontSize="24" />

 <Button Text="Do the other thing!"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 BorderWidth="3"
 Rotation="-15"
 TextColor="Red"
 FontSize="24" />

 </StackLayout>
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.SharedResourcesPage"
 Title="Shared Resources Page">

 <ContentPage.Resources>

 </ContentPage.Resources>
 ...
</ContentPage>

If one of these properties needs to be changed, you might prefer to make the change just once rather than three

times. If this were code, you’d likely be using constants and static read-only objects to help keep such values

consistent and easy to modify.

In XAML, one popular solution is to store such values or objects in a resource dictionary. The VisualElement

class defines a property named Resources of type ResourceDictionary , which is a dictionary with keys of type

string and values of type object . You can put objects into this dictionary and then reference them from

markup, all in XAML.

To use a resource dictionary on a page, include a pair of Resources property-element tags. It’s most convenient

to put these at the top of the page:

It’s also necessary to explicitly include ResourceDictionary tags:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.SharedResourcesPage"
 Title="Shared Resources Page">

 <ContentPage.Resources>
 <ResourceDictionary>

 </ResourceDictionary>
 </ContentPage.Resources>
 ...
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.SharedResourcesPage"
 Title="Shared Resources Page">

 <ContentPage.Resources>
 <ResourceDictionary>
 <LayoutOptions x:Key="horzOptions"
 Alignment="Center" />

 <LayoutOptions x:Key="vertOptions"
 Alignment="Center"
 Expands="True" />
 </ResourceDictionary>
 </ContentPage.Resources>
 ...
</ContentPage>

<Button Text="Do this!"
 HorizontalOptions="{StaticResource horzOptions}"
 VerticalOptions="{StaticResource vertOptions}"
 BorderWidth="3"
 Rotation="-15"
 TextColor="Red"
 FontSize="24" />

Now objects and values of various types can be added to the resource dictionary. These types must be

instantiable. They can’t be abstract classes, for example. These types must also have a public parameterless

constructor. Each item requires a dictionary key specified with the x:Key attribute. For example:

These two items are values of the structure type LayoutOptions , and each has a unique key and one or two

properties set. In code and markup, it’s much more common to use the static fields of LayoutOptions , but here

it’s more convenient to set the properties.

Now it’s necessary to set the HorizontalOptions and VerticalOptions properties of these buttons to these

resources, and that’s done with the StaticResource XAML markup extension:

The StaticResource markup extension is always delimited with curly braces, and includes the dictionary key.

The name StaticResource distinguishes it from DynamicResource , which Xamarin.Forms also supports.

DynamicResource is for dictionary keys associated with values that might change during runtime, while

StaticResource accesses elements from the dictionary just once when the elements on the page are

constructed.

For the BorderWidth property, it’s necessary to store a double in the dictionary. XAML conveniently defines tags

for common data types like x:Double and x:Int32 :

<ContentPage.Resources>
 <ResourceDictionary>
 <LayoutOptions x:Key="horzOptions"
 Alignment="Center" />

 <LayoutOptions x:Key="vertOptions"
 Alignment="Center"
 Expands="True" />

 <x:Double x:Key="borderWidth">
 3
 </x:Double>
 </ResourceDictionary>
</ContentPage.Resources>

<ContentPage.Resources>
 <ResourceDictionary>
 <LayoutOptions x:Key="horzOptions"
 Alignment="Center" />

 <LayoutOptions x:Key="vertOptions"
 Alignment="Center"
 Expands="True" />

 <x:Double x:Key="borderWidth">
 3
 </x:Double>

 <x:Double x:Key="rotationAngle">-15</x:Double>
 </ResourceDictionary>
</ContentPage.Resources>

<Button Text="Do this!"
 HorizontalOptions="{StaticResource horzOptions}"
 VerticalOptions="{StaticResource vertOptions}"
 BorderWidth="{StaticResource borderWidth}"
 Rotation="{StaticResource rotationAngle}"
 TextColor="Red"
 FontSize="24" />

<Color x:Key="textColor">Red</Color>

<x:Double x:Key="fontSize">24</x:Double>

You don’t need to put it on three lines. This dictionary entry for this rotation angle only takes up one line:

Those two resources can be referenced in the same way as the LayoutOptions values:

For resources of type Color , you can use the same string representations that you use when directly assigning

attributes of these types. The type converters are invoked when the resource is created. Here's a resource of type

Color :

Often, programs set a FontSize property to a member of the NamedSize enumeration such as Large . The

FontSizeConverter class works behind the scenes to convert it into a platform-dependent value using the

Device.GetNamedSized method. However, when defining a font-size resource, it makes more sense to use a

numeric value, shown here as an x:Double type:

<Button Text="Do this!"
 HorizontalOptions="{StaticResource horzOptions}"
 VerticalOptions="{StaticResource vertOptions}"
 BorderWidth="{StaticResource borderWidth}"
 Rotation="{StaticResource rotationAngle}"
 TextColor="{StaticResource textColor}"
 FontSize="{StaticResource fontSize}" />

<OnPlatform x:Key="textColor"
 x:TypeArguments="Color">
 <On Platform="iOS" Value="Red" />
 <On Platform="Android" Value="Aqua" />
 <On Platform="UWP" Value="#80FF80" />
</OnPlatform>

Now all the properties except Text are defined by resource settings:

It's also possible to use OnPlatform within the resource dictionary to define different values for the platforms.

Here’s how an OnPlatform object can be part of the resource dictionary for different text colors:

Notice that OnPlatform gets both an x:Key attribute because it’s an object in the dictionary and an

x:TypeArguments attribute because it’s a generic class. The iOS , Android , and UWP attributes are converted to

Color values when the object is initialized.

Here’s the final complete XAML file with three buttons accessing six shared values:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.SharedResourcesPage"
 Title="Shared Resources Page">

 <ContentPage.Resources>
 <ResourceDictionary>
 <LayoutOptions x:Key="horzOptions"
 Alignment="Center" />

 <LayoutOptions x:Key="vertOptions"
 Alignment="Center"
 Expands="True" />

 <x:Double x:Key="borderWidth">3</x:Double>

 <x:Double x:Key="rotationAngle">-15</x:Double>

 <OnPlatform x:Key="textColor"
 x:TypeArguments="Color">
 <On Platform="iOS" Value="Red" />
 <On Platform="Android" Value="Aqua" />
 <On Platform="UWP" Value="#80FF80" />
 </OnPlatform>

 <x:Double x:Key="fontSize">24</x:Double>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout>
 <Button Text="Do this!"
 HorizontalOptions="{StaticResource horzOptions}"
 VerticalOptions="{StaticResource vertOptions}"
 BorderWidth="{StaticResource borderWidth}"
 Rotation="{StaticResource rotationAngle}"
 TextColor="{StaticResource textColor}"
 FontSize="{StaticResource fontSize}" />

 <Button Text="Do that!"
 HorizontalOptions="{StaticResource horzOptions}"
 VerticalOptions="{StaticResource vertOptions}"
 BorderWidth="{StaticResource borderWidth}"
 Rotation="{StaticResource rotationAngle}"
 TextColor="{StaticResource textColor}"
 FontSize="{StaticResource fontSize}" />

 <Button Text="Do the other thing!"
 HorizontalOptions="{StaticResource horzOptions}"
 VerticalOptions="{StaticResource vertOptions}"
 BorderWidth="{StaticResource borderWidth}"
 Rotation="{StaticResource rotationAngle}"
 TextColor="{StaticResource textColor}"
 FontSize="{StaticResource fontSize}" />

 </StackLayout>
</ContentPage>

The screenshots verify the consistent styling, and the platform-dependent styling:

<StackLayout>
 <StackLayout.Resources>
 <ResourceDictionary>
 <Color x:Key="textColor">Blue</Color>
 </ResourceDictionary>
 </StackLayout.Resources>
 ...
</StackLayout>

 The x:Static Markup Extension

Although it is most common to define the Resources collection at the top of the page, keep in mind that the

Resources property is defined by VisualElement , and you can have Resources collections on other elements on

the page. For example, try adding one to the StackLayout in this example:

You’ll discover that the text color of the buttons is now blue. Basically, whenever the XAML parser encounters a

StaticResource markup extension, it searches up the visual tree and uses the first ResourceDictionary it

encounters containing that key.

One of the most common types of objects stored in resource dictionaries is the Xamarin.Forms Style , which

defines a collection of property settings. Styles are discussed in the article Styles.

Sometimes developers new to XAML wonder if they can put a visual element such as Label or Button in a

ResourceDictionary . While it’s surely possible, it doesn’t make much sense. The purpose of the

ResourceDictionary is to share objects. A visual element cannot be shared. The same instance cannot appear

twice on a single page.

Despite the similarities of their names, x:Static and StaticResource are very different. StaticResource returns

an object from a resource dictionary while x:Static accesses one of the following:

a public static field

a public static property

a public constant field

an enumeration member.

The StaticResource markup extension is supported by XAML implementations that define a resource dictionary,

while x:Static is an intrinsic part of XAML, as the x prefix reveals.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/xaml-markup-extensions-images/sharedresources-large.png#lightbox

<Label Text="Hello, XAML!"
 VerticalOptions="{x:Static LayoutOptions.Start}"
 HorizontalTextAlignment="{x:Static TextAlignment.Center}"
 TextColor="{x:Static Color.Aqua}" />

using System;
using Xamarin.Forms;

namespace XamlSamples
{
 static class AppConstants
 {
 public static readonly Thickness PagePadding;

 public static readonly Font TitleFont;

 public static readonly Color BackgroundColor = Color.Aqua;

 public static readonly Color ForegroundColor = Color.Brown;

 static AppConstants()
 {
 switch (Device.RuntimePlatform)
 {
 case Device.iOS:
 PagePadding = new Thickness(5, 20, 5, 0);
 TitleFont = Font.SystemFontOfSize(35, FontAttributes.Bold);
 break;

 case Device.Android:
 PagePadding = new Thickness(5, 0, 5, 0);
 TitleFont = Font.SystemFontOfSize(40, FontAttributes.Bold);
 break;

 case Device.UWP:
 PagePadding = new Thickness(5, 0, 5, 0);
 TitleFont = Font.SystemFontOfSize(50, FontAttributes.Bold);
 break;
 }
 }
 }
}

xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

Here are a few examples that demonstrate how x:Static can explicitly reference static fields and enumeration

members:

So far, this is not very impressive. But the x:Static markup extension can also reference static fields or

properties from your own code. For example, here’s an AppConstants class that contains some static fields that

you might want to use on multiple pages throughout an application:

To reference the static fields of this class in the XAML file, you’ll need some way to indicate within the XAML file

where this file is located. You do this with an XML namespace declaration.

Recall that the XAML files created as part of the standard Xamarin.Forms XAML template contain two XML

namespace declarations: one for accessing Xamarin.Forms classes and another for referencing tags and

attributes intrinsic to XAML:

You’ll need additional XML namespace declarations to access other classes. Each additional XML namespace

xmlns:local="clr-namespace:XamlSamples"

xmlns:sys="clr-namespace:System;assembly=netstandard"

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples"
 xmlns:sys="clr-namespace:System;assembly=netstandard"
 x:Class="XamlSamples.StaticConstantsPage"
 Title="Static Constants Page"
 Padding="{x:Static local:AppConstants.PagePadding}">

 <StackLayout>
 <Label Text="Hello, XAML!"
 TextColor="{x:Static local:AppConstants.BackgroundColor}"
 BackgroundColor="{x:Static local:AppConstants.ForegroundColor}"
 Font="{x:Static local:AppConstants.TitleFont}"
 HorizontalOptions="Center" />

 <BoxView WidthRequest="{x:Static sys:Math.PI}"
 HeightRequest="{x:Static sys:Math.E}"
 Color="{x:Static local:AppConstants.ForegroundColor}"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Scale="100" />
 </StackLayout>
</ContentPage>

declaration defines a new prefix. To access classes local to the shared application .NET Standard library, such as

AppConstants , XAML programmers often use the prefix local . The namespace declaration must indicate the

CLR (Common Language Runtime) namespace name, also known as the .NET namespace name, which is the

name that appears in a C# namespace definition or in a using directive:

You can also define XML namespace declarations for .NET namespaces in any assembly that the .NET Standard

library references. For example, here’s a sys prefix for the standard .NET System namespace, which is in the

netstandardnetstandard assembly. Because this is another assembly, you must also specify the assembly name, in this case

netstandardnetstandard:

Notice that the keyword clr-namespace is followed by a colon and then the .NET namespace name, followed by

a semicolon, the keyword assembly , an equal sign, and the assembly name.

Yes, a colon follows clr-namespace but equal sign follows assembly . The syntax was defined in this way

deliberately: Most XML namespace declarations reference a URI that begins a URI scheme name such as http ,

which is always followed by a colon. The clr-namespace part of this string is intended to mimic that convention.

Both these namespace declarations are included in the StaticConstantsPageStaticConstantsPage sample. Notice that the BoxView

dimensions are set to Math.PI and Math.E , but scaled by a factor of 100:

The size of the resultant BoxView relative to the screen is platform-dependent:

 Other Standard Markup Extensions

 The ConstraintExpression Markup Extension

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.RelativeLayoutPage"
 Title="RelativeLayout Page">

 <RelativeLayout>

 <!-- Upper left -->
 <BoxView Color="Red"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=Constant,
 Constant=0}"

Several markup extensions are intrinsic to XAML and supported in Xamarin.Forms XAML files. Some of these are

not used very often but are essential when you need them:

If a property has a non- null value by default but you want to set it to null , set it to the {x:Null} markup

extension.

If a property is of type Type , you can assign it to a Type object using the markup extension

{x:Type someClass} .

You can define arrays in XAML using the x:Array markup extension. This markup extension has a required

attribute named Type that indicates the type of the elements in the array.

The Binding markup extension is discussed in Part 4. Data Binding Basics.

The RelativeSource markup extension is discussed in Relative Bindings.

Markup extensions can have properties, but they are not set like XML attributes. In a markup extension, property

settings are separated by commas, and no quotation marks appear within the curly braces.

This can be illustrated with the Xamarin.Forms markup extension named ConstraintExpression , which is used

with the RelativeLayout class. You can specify the location or size of a child view as a constant, or relative to a

parent or other named view. The syntax of the ConstraintExpression allows you set the position or size of a view

using a Factor times a property of another view, plus a Constant . Anything more complex than that requires

code.

Here’s an example:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/xaml-markup-extensions-images/staticconstants-large.png#lightbox

 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=Constant,
 Constant=0}" />
 <!-- Upper right -->
 <BoxView Color="Green"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Width,
 Factor=1,
 Constant=-40}"
 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=Constant,
 Constant=0}" />
 <!-- Lower left -->
 <BoxView Color="Blue"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=Constant,
 Constant=0}"
 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Height,
 Factor=1,
 Constant=-40}" />
 <!-- Lower right -->
 <BoxView Color="Yellow"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Width,
 Factor=1,
 Constant=-40}"
 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Height,
 Factor=1,
 Constant=-40}" />

 <!-- Centered and 1/3 width and height of parent -->
 <BoxView x:Name="oneThird"
 Color="Red"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Width,
 Factor=0.33}"
 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Height,
 Factor=0.33}"
 RelativeLayout.WidthConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Width,
 Factor=0.33}"
 RelativeLayout.HeightConstraint=
 "{ConstraintExpression Type=RelativeToParent,
 Property=Height,
 Factor=0.33}" />

 <!-- 1/3 width and height of previous -->
 <BoxView Color="Blue"
 RelativeLayout.XConstraint=
 "{ConstraintExpression Type=RelativeToView,
 ElementName=oneThird,
 Property=X}"
 RelativeLayout.YConstraint=
 "{ConstraintExpression Type=RelativeToView,
 ElementName=oneThird,
 Property=Y}"
 RelativeLayout.WidthConstraint=
 "{ConstraintExpression Type=RelativeToView,
 ElementName=oneThird,

 Property=Width,
 Factor=0.33}"
 RelativeLayout.HeightConstraint=
 "{ConstraintExpression Type=RelativeToView,
 ElementName=oneThird,
 Property=Height,
 Factor=0.33}" />
 </RelativeLayout>
</ContentPage>

 Summary

 Related Links

Perhaps the most important lesson you should take from this sample is the syntax of the markup extension: No

quotation marks must appear within the curly braces of a markup extension. When typing the markup extension

in a XAML file, it is natural to want to enclose the values of the properties in quotation marks. Resist the

temptation!

Here’s the program running:

The XAML markup extensions shown here provide important support for XAML files. But perhaps the most

valuable XAML markup extension is Binding , which is covered in the next part of this series, Part 4. Data

Binding Basics.

XamlSamples

Part 1. Getting Started with XAML

Part 2. Essential XAML Syntax

Part 4. Data Binding Basics

Part 5. From Data Binding to MVVM

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/xaml-markup-extensions-images/relativelayout-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

Part 4. Data Binding Basics
 7/8/2021 • 11 minutes to read • Edit Online

 Data Bindings

 View-to-View Bindings

 Download the sample

Data bindings allow properties of two objects to be linked so that a change in one causes a change in the other.

This is a very valuable tool, and while data bindings can be defined entirely in code, XAML provides shortcuts

and convenience. Consequently, one of the most important markup extensions in Xamarin.Forms is Binding.

Data bindings connect properties of two objects, called the source and the target. In code, two steps are

required: The BindingContext property of the target object must be set to the source object, and the SetBinding

method (often used in conjunction with the Binding class) must be called on the target object to bind a

property of that object to a property of the source object.

The target property must be a bindable property, which means that the target object must derive from

BindableObject . The online Xamarin.Forms documentation indicates which properties are bindable properties.

A property of Label such as Text is associated with the bindable property TextProperty .

In markup, you must also perform the same two steps that are required in code, except that the Binding

markup extension takes the place of the SetBinding call and the Binding class.

However, when you define data bindings in XAML, there are multiple ways to set the BindingContext of the

target object. Sometimes it’s set from the code-behind file, sometimes using a StaticResource or x:Static

markup extension, and sometimes as the content of BindingContext property-element tags.

Bindings are used most often to connect the visuals of a program with an underlying data model, usually in a

realization of the MVVM (Model-View-ViewModel) application architecture, as discussed in Part 5. From Data

Bindings to MVVM, but other scenarios are possible.

You can define data bindings to link properties of two views on the same page. In this case, you set the

BindingContext of the target object using the x:Reference markup extension.

Here’s a XAML file that contains a Slider and two Label views, one of which is rotated by the Slider value

and another which displays the Slider value:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-basics/data-binding-basics.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.SliderBindingsPage"
 Title="Slider Bindings Page">

 <StackLayout>
 <Label Text="ROTATION"
 BindingContext="{x:Reference Name=slider}"
 Rotation="{Binding Path=Value}"
 FontAttributes="Bold"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Slider x:Name="slider"
 Maximum="360"
 VerticalOptions="CenterAndExpand" />

 <Label BindingContext="{x:Reference slider}"
 Text="{Binding Value, StringFormat='The angle is {0:F0} degrees'}"
 FontAttributes="Bold"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

BindingContext="{x:Reference Name=slider}"
…
BindingContext="{x:Reference slider}"

Rotation="{Binding Path=Value}"
…
Text="{Binding Value, StringFormat='The angle is {0:F0} degrees'}"

Text="{Binding Value,
 StringFormat='The angle is {0:F0} degrees'}"

The Slider contains an x:Name attribute that is referenced by the two Label views using the x:Reference

markup extension.

The x:Reference binding extension defines a property named Name to set to the name of the referenced

element, in this case slider . However, the ReferenceExtension class that defines the x:Reference markup

extension also defines a ContentProperty attribute for Name , which means that it isn’t explicitly required. Just

for variety, the first x:Reference includes “Name=” but the second does not:

The Binding markup extension itself can have several properties, just like the BindingBase and Binding class.

The ContentProperty for Binding is Path , but the “Path=” part of the markup extension can be omitted if the

path is the first item in the Binding markup extension. The first example has “Path=” but the second example

omits it:

The properties can all be on one line or separated into multiple lines:

Do whatever is convenient.

Notice the StringFormat property in the second Binding markup extension. In Xamarin.Forms, bindings do not

perform any implicit type conversions, and if you need to display a non-string object as a string you must

Text="{Binding Value, StringFormat='The angle is {0:F0} degrees'}"

 The Binding Mode

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="XamlSamples.SliderTransformsPage"
 Padding="5"
 Title="Slider Transforms Page">

provide a type converter or use StringFormat . Behind the scenes, the static String.Format method is used to

implement StringFormat . That’s potentially a problem, because .NET formatting specifications involve curly

braces, which are also used to delimit markup extensions. This creates a risk of confusing the XAML parser. To

avoid that, put the entire formatting string in single quotation marks:

Here’s the running program:

A single view can have data bindings on several of its properties. However, each view can have only one

BindingContext , so multiple data bindings on that view must all reference properties of the same object.

The solution to this and other problems involves the Mode property, which is set to a member of the

BindingMode enumeration:

Default

OneWay — values are transferred from the source to the target

OneWayToSource — values are transferred from the target to the source

TwoWay — values are transferred both ways between source and target

OneTime — data goes from source to target, but only when the BindingContext changes

The following program demonstrates one common use of the OneWayToSource and TwoWay binding modes. Four

Slider views are intended to control the Scale , Rotate , RotateX , and RotateY properties of a Label . At

first, it seems as if these four properties of the Label should be data-binding targets because each is being set

by a Slider . However, the BindingContext of Label can be only one object, and there are four different sliders.

For that reason, all the bindings are set in seemingly backwards ways: The BindingContext of each of the four

sliders is set to the Label , and the bindings are set on the Value properties of the sliders. By using the

OneWayToSource and TwoWay modes, these Value properties can set the source properties, which are the Scale

, Rotate , RotateX , and RotateY properties of the Label :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-binding-basics-images/sliderbinding-large.png#lightbox

 Title="Slider Transforms Page">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <!-- Scaled and rotated Label -->
 <Label x:Name="label"
 Text="TEXT"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <!-- Slider and identifying Label for Scale -->
 <Slider x:Name="scaleSlider"
 BindingContext="{x:Reference label}"
 Grid.Row="1" Grid.Column="0"
 Maximum="10"
 Value="{Binding Scale, Mode=TwoWay}" />

 <Label BindingContext="{x:Reference scaleSlider}"
 Text="{Binding Value, StringFormat='Scale = {0:F1}'}"
 Grid.Row="1" Grid.Column="1"
 VerticalTextAlignment="Center" />

 <!-- Slider and identifying Label for Rotation -->
 <Slider x:Name="rotationSlider"
 BindingContext="{x:Reference label}"
 Grid.Row="2" Grid.Column="0"
 Maximum="360"
 Value="{Binding Rotation, Mode=OneWayToSource}" />

 <Label BindingContext="{x:Reference rotationSlider}"
 Text="{Binding Value, StringFormat='Rotation = {0:F0}'}"
 Grid.Row="2" Grid.Column="1"
 VerticalTextAlignment="Center" />

 <!-- Slider and identifying Label for RotationX -->
 <Slider x:Name="rotationXSlider"
 BindingContext="{x:Reference label}"
 Grid.Row="3" Grid.Column="0"
 Maximum="360"
 Value="{Binding RotationX, Mode=OneWayToSource}" />

 <Label BindingContext="{x:Reference rotationXSlider}"
 Text="{Binding Value, StringFormat='RotationX = {0:F0}'}"
 Grid.Row="3" Grid.Column="1"
 VerticalTextAlignment="Center" />

 <!-- Slider and identifying Label for RotationY -->
 <Slider x:Name="rotationYSlider"
 BindingContext="{x:Reference label}"
 Grid.Row="4" Grid.Column="0"
 Maximum="360"
 Value="{Binding RotationY, Mode=OneWayToSource}" />

 <Label BindingContext="{x:Reference rotationYSlider}"
 Text="{Binding Value, StringFormat='RotationY = {0:F0}'}"
 Grid.Row="4" Grid.Column="1"
 VerticalTextAlignment="Center" />
 </Grid>

</ContentPage>

NOTENOTE

 Bindings and Collections

The bindings on three of the Slider views are OneWayToSource , meaning that the Slider value causes a

change in the property of its BindingContext , which is the Label named label . These three Slider views

cause changes to the Rotate , RotateX , and RotateY properties of the Label .

However, the binding for the Scale property is TwoWay . This is because the Scale property has a default value

of 1, and using a TwoWay binding causes the Slider initial value to be set at 1 rather than 0. If that binding were

OneWayToSource , the Scale property would initially be set to 0 from the Slider default value. The Label

would not be visible, and that might cause some confusion to the user.

The VisualElement class also has ScaleX and ScaleY properties, which scale the VisualElement on the x-axis and

y-axis respectively.

Nothing illustrates the power of XAML and data bindings better than a templated ListView .

ListView defines an ItemsSource property of type IEnumerable , and it displays the items in that collection.

These items can be objects of any type. By default, ListView uses the ToString method of each item to display

that item. Sometimes this is just what you want, but in many cases, ToString returns only the fully-qualified

class name of the object.

However, the items in the ListView collection can be displayed any way you want through the use of a

template, which involves a class that derives from Cell . The template is cloned for every item in the ListView ,

and data bindings that have been set on the template are transferred to the individual clones.

Very often, you’ll want to create a custom cell for these items using the ViewCell class. This process is

somewhat messy in code, but in XAML it becomes very straightforward.

Included in the XamlSamples project is a class called NamedColor . Each NamedColor object has Name and

FriendlyName properties of type string , and a Color property of type Color . In addition, NamedColor has 141

static read-only fields of type Color corresponding to the colors defined in the Xamarin.Forms Color class. A

static constructor creates an IEnumerable<NamedColor> collection that contains NamedColor objects

corresponding to these static fields, and assigns it to its public static All property.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-binding-basics-images/slidertransforms-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scalex#xamarin_forms_visualelement_scalex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scaley#xamarin_forms_visualelement_scaley

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples;assembly=XamlSamples"
 x:Class="XamlSamples.ListViewDemoPage"
 Title="ListView Demo Page">

 <ListView ItemsSource="{x:Static local:NamedColor.All}" />

</ContentPage>

<ListView ItemsSource="{x:Static local:NamedColor.All}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.View>
 <Label Text="{Binding FriendlyName}" />
 </ViewCell.View>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

NOTENOTE

Setting the static NamedColor.All property to the ItemsSource of a ListView is easy using the x:Static

markup extension:

The resultant display establishes that the items are truly of type XamlSamples.NamedColor :

It’s not much information, but the ListView is scrollable and selectable.

To define a template for the items, you’ll want to break out the ItemTemplate property as a property element,

and set it to a DataTemplate , which then references a ViewCell . To the View property of the ViewCell you can

define a layout of one or more views to display each item. Here’s a simple example:

The binding source for cells, and children of cells, is the ListView.ItemsSource collection.

The Label element is set to the View property of the ViewCell . (The ViewCell.View tags are not needed

because the View property is the content property of ViewCell .) This markup displays the FriendlyName

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-binding-basics-images/listview1-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples"
 x:Class="XamlSamples.ListViewDemoPage"
 Title="ListView Demo Page">

 <ContentPage.Resources>
 <ResourceDictionary>
 <OnPlatform x:Key="boxSize"
 x:TypeArguments="x:Double">
 <On Platform="iOS, Android, UWP" Value="50" />
 </OnPlatform>

 <OnPlatform x:Key="rowHeight"
 x:TypeArguments="x:Int32">
 <On Platform="iOS, Android, UWP" Value="60" />
 </OnPlatform>

 <local:DoubleToIntConverter x:Key="intConverter" />

 </ResourceDictionary>
 </ContentPage.Resources>

 <ListView ItemsSource="{x:Static local:NamedColor.All}"
 RowHeight="{StaticResource rowHeight}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <StackLayout Padding="5, 5, 0, 5"
 Orientation="Horizontal"
 Spacing="15">

 <BoxView WidthRequest="{StaticResource boxSize}"
 HeightRequest="{StaticResource boxSize}"
 Color="{Binding Color}" />

 <StackLayout Padding="5, 0, 0, 0"
 VerticalOptions="Center">

 <Label Text="{Binding FriendlyName}"
 FontAttributes="Bold"
 FontSize="Medium" />

property of each NamedColor object:

Much better. Now all that’s needed is to spruce up the item template with more information and the actual color.

To support this template, some values and objects have been defined in the page’s resource dictionary:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-binding-basics-images/listview2-large.png#lightbox

 FontSize="Medium" />

 <StackLayout Orientation="Horizontal"
 Spacing="0">
 <Label Text="{Binding Color.R,
 Converter={StaticResource intConverter},
 ConverterParameter=255,
 StringFormat='R={0:X2}'}" />

 <Label Text="{Binding Color.G,
 Converter={StaticResource intConverter},
 ConverterParameter=255,
 StringFormat=', G={0:X2}'}" />

 <Label Text="{Binding Color.B,
 Converter={StaticResource intConverter},
 ConverterParameter=255,
 StringFormat=', B={0:X2}'}" />
 </StackLayout>
 </StackLayout>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</ContentPage>

 Binding Value Converters

Notice the use of OnPlatform to define the size of a BoxView and the height of the ListView rows. Although the

values for all the platforms are the same, the markup could easily be adapted for other values to fine-tune the

display.

The previous L istView DemoListView Demo XAML file displays the individual R , G , and B properties of the Xamarin.Forms

Color structure. These properties are of type double and range from 0 to 1. If you want to display the

hexadecimal values, you can’t simply use StringFormat with an “X2” formatting specification. That only works

for integers and besides, the double values need to be multiplied by 255.

This little problem was solved with a value converter, also called a binding converter. This is a class that

implements the IValueConverter interface, which means it has two methods named Convert and ConvertBack .

The Convert method is called when a value is transferred from source to target; the ConvertBack method is

called for transfers from target to source in OneWayToSource or TwoWay bindings:

using System;
using System.Globalization;
using Xamarin.Forms;

namespace XamlSamples
{
 class DoubleToIntConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 double multiplier;

 if (!Double.TryParse(parameter as string, out multiplier))
 multiplier = 1;

 return (int)Math.Round(multiplier * (double)value);
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 double divider;

 if (!Double.TryParse(parameter as string, out divider))
 divider = 1;

 return ((double)(int)value) / divider;
 }
 }
}

<local:DoubleToIntConverter x:Key="intConverter" />

<Label Text="{Binding Color.R,
 Converter={StaticResource intConverter},
 ConverterParameter=255,
 StringFormat='R={0:X2}'}" />

The ConvertBack method does not play a role in this program because the bindings are only one way from

source to target.

A binding references a binding converter with the Converter property. A binding converter can also accept a

parameter specified with the ConverterParameter property. For some versatility, this is how the multiplier is

specified. The binding converter checks the converter parameter for a valid double value.

The converter is instantiated in the resource dictionary so it can be shared among multiple bindings:

Three data bindings reference this single instance. Notice that the Binding markup extension contains an

embedded StaticResource markup extension:

Here’s the result:

 Summary

 Related Links

The ListView is quite sophisticated in handling changes that might dynamically occur in the underlying data,

but only if you take certain steps. If the collection of items assigned to the ItemsSource property of the

ListView changes during runtime—that is, if items can be added to or removed from the collection—use an

ObservableCollection class for these items. ObservableCollection implements the INotifyCollectionChanged

interface, and ListView will install a handler for the CollectionChanged event.

If properties of the items themselves change during runtime, then the items in the collection should implement

the INotifyPropertyChanged interface and signal changes to property values using the PropertyChanged event.

This is demonstrated in the next part of this series, Part 5. From Data Binding to MVVM.

Data bindings provide a powerful mechanism for linking properties between two objects within a page, or

between visual objects and underlying data. But when the application begins working with data sources, a

popular application architectural pattern begins to emerge as a useful paradigm. This is covered in Part 5. From

Data Bindings to MVVM.

XamlSamples

Part 1. Getting Started with XAML (sample)

Part 2. Essential XAML Syntax (sample)

Part 3. XAML Markup Extensions (sample)

Part 5. From Data Binding to MVVM (sample)

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-binding-basics-images/listview3-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

Part 5. From Data Bindings to MVVM
 7/8/2021 • 13 minutes to read • Edit Online

 A Simple ViewModel

xmlns:sys="clr-namespace:System;assembly=netstandard"

<StackLayout BindingContext="{x:Static sys:DateTime.Now}" …>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:sys="clr-namespace:System;assembly=netstandard"
 x:Class="XamlSamples.OneShotDateTimePage"
 Title="One-Shot DateTime Page">

 <StackLayout BindingContext="{x:Static sys:DateTime.Now}"
 HorizontalOptions="Center"
 VerticalOptions="Center">

 <Label Text="{Binding Year, StringFormat='The year is {0}'}" />
 <Label Text="{Binding StringFormat='The month is {0:MMMM}'}" />
 <Label Text="{Binding Day, StringFormat='The day is {0}'}" />
 <Label Text="{Binding StringFormat='The time is {0:T}'}" />

 </StackLayout>
</ContentPage>

 Download the sample

The Model-View-ViewModel (MVVM) architectural pattern was invented with XAML in mind. The pattern

enforces a separation between three software layers — the XAML user interface, called the View; the underlying

data, called the Model; and an intermediary between the View and the Model, called the ViewModel. The View

and the ViewModel are often connected through data bindings defined in the XAML file. The BindingContext for

the View is usually an instance of the ViewModel.

As an introduction to ViewModels, let’s first look at a program without one. Earlier you saw how to define a new

XML namespace declaration to allow a XAML file to reference classes in other assemblies. Here’s a program that

defines an XML namespace declaration for the System namespace:

The program can use x:Static to obtain the current date and time from the static DateTime.Now property and

set that DateTime value to the BindingContext on a StackLayout :

BindingContext is a special property: When you set the BindingContext on an element, it is inherited by all the

children of that element. This means that all the children of the StackLayout have this same BindingContext ,

and they can contain simple bindings to properties of that object.

In the One-Shot DateTimeOne-Shot DateTime program, two of the children contain bindings to properties of that DateTime

value, but two other children contain bindings that seem to be missing a binding path. This means that the

DateTime value itself is used for the StringFormat :

The problem is that the date and time are set once when the page is first built, and never change:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-basics/data-bindings-to-mvvm.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

A XAML file can display a clock that always shows the current time, but it needs some code to help out. When

thinking in terms of MVVM, the Model and ViewModel are classes written entirely in code. The View is often a

XAML file that references properties defined in the ViewModel through data bindings.

A proper Model is ignorant of the ViewModel, and a proper ViewModel is ignorant of the View. However, often a

programmer tailors the data types exposed by the ViewModel to the data types associated with particular user

interfaces. For example, if a Model accesses a database that contains 8-bit character ASCII strings, the

ViewModel would need to convert between those strings to Unicode strings to accommodate the exclusive use

of Unicode in the user interface.

In simple examples of MVVM (such as those shown here), often there is no Model at all, and the pattern involves

just a View and ViewModel linked with data bindings.

Here’s a ViewModel for a clock with just a single property named DateTime , which updates that DateTime

property every second:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-bindings-to-mvvm-images/oneshotdatetime-large.png#lightbox

using System;
using System.ComponentModel;
using Xamarin.Forms;

namespace XamlSamples
{
 class ClockViewModel : INotifyPropertyChanged
 {
 DateTime dateTime;

 public event PropertyChangedEventHandler PropertyChanged;

 public ClockViewModel()
 {
 this.DateTime = DateTime.Now;

 Device.StartTimer(TimeSpan.FromSeconds(1), () =>
 {
 this.DateTime = DateTime.Now;
 return true;
 });
 }

 public DateTime DateTime
 {
 set
 {
 if (dateTime != value)
 {
 dateTime = value;

 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs("DateTime"));
 }
 }
 }
 get
 {
 return dateTime;
 }
 }
 }
}

ViewModels generally implement the INotifyPropertyChanged interface, which means that the class fires a

PropertyChanged event whenever one of its properties changes. The data binding mechanism in Xamarin.Forms

attaches a handler to this PropertyChanged event so it can be notified when a property changes and keep the

target updated with the new value.

A clock based on this ViewModel can be as simple as this:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples;assembly=XamlSamples"
 x:Class="XamlSamples.ClockPage"
 Title="Clock Page">

 <Label Text="{Binding DateTime, StringFormat='{0:T}'}"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Label.BindingContext>
 <local:ClockViewModel />
 </Label.BindingContext>
 </Label>
</ContentPage>

<Label Text="{Binding DateTime.Second, StringFormat='{0}'}" … >

 Interactive MVVM

using System;
using System.ComponentModel;
using Xamarin.Forms;

namespace XamlSamples

Notice how the ClockViewModel is set to the BindingContext of the Label using property element tags.

Alternatively, you can instantiate the ClockViewModel in a Resources collection and set it to the BindingContext

via a StaticResource markup extension. Or, the code-behind file can instantiate the ViewModel.

The Binding markup extension on the Text property of the Label formats the DateTime property. Here’s the

display:

It’s also possible to access individual properties of the DateTime property of the ViewModel by separating the

properties with periods:

MVVM is often used with two-way data bindings for an interactive view based on an underlying data model.

Here’s a class named HslViewModel that converts a Color value into Hue , Saturation , and Luminosity values,

and vice versa:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-bindings-to-mvvm-images/clock-large.png#lightbox

namespace XamlSamples
{
 public class HslViewModel : INotifyPropertyChanged
 {
 double hue, saturation, luminosity;
 Color color;

 public event PropertyChangedEventHandler PropertyChanged;

 public double Hue
 {
 set
 {
 if (hue != value)
 {
 hue = value;
 OnPropertyChanged("Hue");
 SetNewColor();
 }
 }
 get
 {
 return hue;
 }
 }

 public double Saturation
 {
 set
 {
 if (saturation != value)
 {
 saturation = value;
 OnPropertyChanged("Saturation");
 SetNewColor();
 }
 }
 get
 {
 return saturation;
 }
 }

 public double Luminosity
 {
 set
 {
 if (luminosity != value)
 {
 luminosity = value;
 OnPropertyChanged("Luminosity");
 SetNewColor();
 }
 }
 get
 {
 return luminosity;
 }
 }

 public Color Color
 {
 set
 {
 if (color != value)
 {
 color = value;
 OnPropertyChanged("Color");

 Hue = value.Hue;

 Hue = value.Hue;
 Saturation = value.Saturation;
 Luminosity = value.Luminosity;
 }
 }
 get
 {
 return color;
 }
 }

 void SetNewColor()
 {
 Color = Color.FromHsla(Hue, Saturation, Luminosity);
 }

 protected virtual void OnPropertyChanged(string propertyName)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples;assembly=XamlSamples"
 x:Class="XamlSamples.HslColorScrollPage"
 Title="HSL Color Scroll Page">
 <ContentPage.BindingContext>
 <local:HslViewModel Color="Aqua" />
 </ContentPage.BindingContext>

 <StackLayout Padding="10, 0">
 <BoxView Color="{Binding Color}"
 VerticalOptions="FillAndExpand" />

 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}"
 HorizontalOptions="Center" />

 <Slider Value="{Binding Hue, Mode=TwoWay}" />

 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}"
 HorizontalOptions="Center" />

 <Slider Value="{Binding Saturation, Mode=TwoWay}" />

 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}"
 HorizontalOptions="Center" />

 <Slider Value="{Binding Luminosity, Mode=TwoWay}" />
 </StackLayout>
</ContentPage>

Changes to the Hue , Saturation , and Luminosity properties cause the Color property to change, and

changes to Color causes the other three properties to change. This might seem like an infinite loop, except that

the class doesn't invoke the PropertyChanged event unless the property has changed. This puts an end to the

otherwise uncontrollable feedback loop.

The following XAML file contains a BoxView whose Color property is bound to the Color property of the

ViewModel, and three Slider and three Label views bound to the Hue , Saturation , and Luminosity

properties:

The binding on each Label is the default OneWay . It only needs to display the value. But the binding on each

Slider is TwoWay . This allows the Slider to be initialized from the ViewModel. Notice that the Color property

 Commanding with ViewModels

is set to Aqua when the ViewModel is instantiated. But a change in the Slider also needs to set a new value for

the property in the ViewModel, which then calculates a new color.

In many cases, the MVVM pattern is restricted to the manipulation of data items: User-interface objects in the

View parallel data objects in the ViewModel.

However, sometimes the View needs to contain buttons that trigger various actions in the ViewModel. But the

ViewModel must not contain Clicked handlers for the buttons because that would tie the ViewModel to a

particular user-interface paradigm.

To allow ViewModels to be more independent of particular user interface objects but still allow methods to be

called within the ViewModel, a command interface exists. This command interface is supported by the following

elements in Xamarin.Forms:

Button

MenuItem

ToolbarItem

SearchBar

TextCell (and hence also ImageCell)

ListView

TapGestureRecognizer

With the exception of the SearchBar and ListView element, these elements define two properties:

Command of type System.Windows.Input.ICommand

CommandParameter of type Object

The SearchBar defines SearchCommand and SearchCommandParameter properties, while the ListView defines a

RefreshCommand property of type ICommand .

The ICommand interface defines two methods and one event:

void Execute(object arg)

bool CanExecute(object arg)

event EventHandler CanExecuteChanged

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-bindings-to-mvvm-images/hslcolorscroll-large.png#lightbox

using System;
using System.ComponentModel;
using System.Windows.Input;
using Xamarin.Forms;

namespace XamlSamples
{
 class KeypadViewModel : INotifyPropertyChanged
 {
 string inputString = "";
 string displayText = "";
 char[] specialChars = { '*', '#' };

 public event PropertyChangedEventHandler PropertyChanged;

 // Constructor
 public KeypadViewModel()
 {
 AddCharCommand = new Command<string>((key) =>
 {
 // Add the key to the input string.
 InputString += key;
 });

 DeleteCharCommand = new Command(() =>
 {
 // Strip a character from the input string.
 InputString = InputString.Substring(0, InputString.Length - 1);
 },
 () =>
 {
 // Return true if there's something to delete.
 return InputString.Length > 0;
 });
 }

 // Public properties
 public string InputString
 {
 protected set
 {
 if (inputString != value)
 {
 inputString = value;
 OnPropertyChanged("InputString");

The ViewModel can define properties of type ICommand . You can then bind these properties to the Command

property of each Button or other element, or perhaps a custom view that implements this interface. You can

optionally set the CommandParameter property to identify individual Button objects (or other elements) that are

bound to this ViewModel property. Internally, the Button calls the Execute method whenever the user taps the

Button , passing to the Execute method its CommandParameter .

The CanExecute method and CanExecuteChanged event are used for cases where a Button tap might be

currently invalid, in which case the Button should disable itself. The Button calls CanExecute when the

Command property is first set and whenever the CanExecuteChanged event is fired. If CanExecute returns false ,

the Button disables itself and doesn’t generate Execute calls.

For help with adding commanding to your ViewModels, Xamarin.Forms defines two classes that implement

ICommand : Command and Command<T> where T is the type of the arguments to Execute and CanExecute . These

two classes define several constructors plus a ChangeCanExecute method that the ViewModel can call to force

the Command object to fire the CanExecuteChanged event.

Here is a ViewModel for a simple keypad that is intended for entering telephone numbers. Notice that the

Execute and CanExecute method are defined as lambda functions right in the constructor :

 OnPropertyChanged("InputString");
 DisplayText = FormatText(inputString);

 // Perhaps the delete button must be enabled/disabled.
 ((Command)DeleteCharCommand).ChangeCanExecute();
 }
 }

 get { return inputString; }
 }

 public string DisplayText
 {
 protected set
 {
 if (displayText != value)
 {
 displayText = value;
 OnPropertyChanged("DisplayText");
 }
 }
 get { return displayText; }
 }

 // ICommand implementations
 public ICommand AddCharCommand { protected set; get; }

 public ICommand DeleteCharCommand { protected set; get; }

 string FormatText(string str)
 {
 bool hasNonNumbers = str.IndexOfAny(specialChars) != -1;
 string formatted = str;

 if (hasNonNumbers || str.Length < 4 || str.Length > 10)
 {
 }
 else if (str.Length < 8)
 {
 formatted = String.Format("{0}-{1}",
 str.Substring(0, 3),
 str.Substring(3));
 }
 else
 {
 formatted = String.Format("({0}) {1}-{2}",
 str.Substring(0, 3),
 str.Substring(3, 3),
 str.Substring(6));
 }
 return formatted;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

This ViewModel assumes that the AddCharCommand property is bound to the Command property of several

buttons (or anything else that has a command interface), each of which is identified by the CommandParameter .

These buttons add characters to an InputString property, which is then formatted as a phone number for the

DisplayText property.

There is also a second property of type ICommand named DeleteCharCommand . This is bound to a back-spacing

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples;assembly=XamlSamples"
 x:Class="XamlSamples.KeypadPage"
 Title="Keypad Page">

 <Grid HorizontalOptions="Center"
 VerticalOptions="Center">
 <Grid.BindingContext>
 <local:KeypadViewModel />
 </Grid.BindingContext>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80" />
 <ColumnDefinition Width="80" />
 <ColumnDefinition Width="80" />
 </Grid.ColumnDefinitions>

 <!-- Internal Grid for top row of items -->
 <Grid Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Frame Grid.Column="0"
 OutlineColor="Accent">
 <Label Text="{Binding DisplayText}" />
 </Frame>

 <Button Text="⇦"
 Command="{Binding DeleteCharCommand}"
 Grid.Column="1"
 BorderWidth="0" />
 </Grid>

 <Button Text="1"
 Command="{Binding AddCharCommand}"
 CommandParameter="1"
 Grid.Row="1" Grid.Column="0" />

 <Button Text="2"
 Command="{Binding AddCharCommand}"
 CommandParameter="2"
 Grid.Row="1" Grid.Column="1" />

 <Button Text="3"
 Command="{Binding AddCharCommand}"
 CommandParameter="3"
 Grid.Row="1" Grid.Column="2" />

 <Button Text="4"
 Command="{Binding AddCharCommand}"
 CommandParameter="4"
 Grid.Row="2" Grid.Column="0" />

button, but the button should be disabled if there are no characters to delete.

The following keypad is not as visually sophisticated as it could be. Instead, the markup has been reduced to a

minimum to demonstrate more clearly the use of the command interface:

 Grid.Row="2" Grid.Column="0" />

 <Button Text="5"
 Command="{Binding AddCharCommand}"
 CommandParameter="5"
 Grid.Row="2" Grid.Column="1" />

 <Button Text="6"
 Command="{Binding AddCharCommand}"
 CommandParameter="6"
 Grid.Row="2" Grid.Column="2" />

 <Button Text="7"
 Command="{Binding AddCharCommand}"
 CommandParameter="7"
 Grid.Row="3" Grid.Column="0" />

 <Button Text="8"
 Command="{Binding AddCharCommand}"
 CommandParameter="8"
 Grid.Row="3" Grid.Column="1" />

 <Button Text="9"
 Command="{Binding AddCharCommand}"
 CommandParameter="9"
 Grid.Row="3" Grid.Column="2" />

 <Button Text="*"
 Command="{Binding AddCharCommand}"
 CommandParameter="*"
 Grid.Row="4" Grid.Column="0" />

 <Button Text="0"
 Command="{Binding AddCharCommand}"
 CommandParameter="0"
 Grid.Row="4" Grid.Column="1" />

 <Button Text="#"
 Command="{Binding AddCharCommand}"
 CommandParameter="#"
 Grid.Row="4" Grid.Column="2" />
 </Grid>
</ContentPage>

The Command property of the first Button that appears in this markup is bound to the DeleteCharCommand ; the

rest are bound to the AddCharCommand with a CommandParameter that is the same as the character that appears on

the Button face. Here’s the program in action:

 Invoking Asynchronous MethodsInvoking Asynchronous Methods

DownloadCommand = new Command (async () => await DownloadAsync ());

async Task DownloadAsync ()
{
 await Task.Run (() => Download ());
}

void Download ()
{
 ...
}

 Implementing a Navigation Menu

public class PageDataViewModel
{
 public PageDataViewModel(Type type, string title, string description)
 {
 Type = type;
 Title = title;
 Description = description;
 }

 public Type Type { private set; get; }

 public string Title { private set; get; }

 public string Description { private set; get; }

Commands can also invoke asynchronous methods. This is achieved by using the async and await keywords

when specifying the Execute method:

This indicates that the DownloadAsync method is a Task and should be awaited:

The XamlSamples program that contains all the source code in this series of articles uses a ViewModel for its

home page. This ViewModel is a definition of a short class with three properties named Type , Title , and

Description that contain the type of each of the sample pages, a title, and a short description. In addition, the

ViewModel defines a static property named All that is a collection of all the pages in the program:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-bindings-to-mvvm-images/keypad-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples

 static PageDataViewModel()
 {
 All = new List<PageDataViewModel>
 {
 // Part 1. Getting Started with XAML
 new PageDataViewModel(typeof(HelloXamlPage), "Hello, XAML",
 "Display a Label with many properties set"),

 new PageDataViewModel(typeof(XamlPlusCodePage), "XAML + Code",
 "Interact with a Slider and Button"),

 // Part 2. Essential XAML Syntax
 new PageDataViewModel(typeof(GridDemoPage), "Grid Demo",
 "Explore XAML syntax with the Grid"),

 new PageDataViewModel(typeof(AbsoluteDemoPage), "Absolute Demo",
 "Explore XAML syntax with AbsoluteLayout"),

 // Part 3. XAML Markup Extensions
 new PageDataViewModel(typeof(SharedResourcesPage), "Shared Resources",
 "Using resource dictionaries to share resources"),

 new PageDataViewModel(typeof(StaticConstantsPage), "Static Constants",
 "Using the x:Static markup extensions"),

 new PageDataViewModel(typeof(RelativeLayoutPage), "Relative Layout",
 "Explore XAML markup extensions"),

 // Part 4. Data Binding Basics
 new PageDataViewModel(typeof(SliderBindingsPage), "Slider Bindings",
 "Bind properties of two views on the page"),

 new PageDataViewModel(typeof(SliderTransformsPage), "Slider Transforms",
 "Use Sliders with reverse bindings"),

 new PageDataViewModel(typeof(ListViewDemoPage), "ListView Demo",
 "Use a ListView with data bindings"),

 // Part 5. From Data Bindings to MVVM
 new PageDataViewModel(typeof(OneShotDateTimePage), "One-Shot DateTime",
 "Obtain the current DateTime and display it"),

 new PageDataViewModel(typeof(ClockPage), "Clock",
 "Dynamically display the current time"),

 new PageDataViewModel(typeof(HslColorScrollPage), "HSL Color Scroll",
 "Use a view model to select HSL colors"),

 new PageDataViewModel(typeof(KeypadPage), "Keypad",
 "Use a view model for numeric keypad logic")
 };
 }

 public static IList<PageDataViewModel> All { private set; get; }
}

The XAML file for MainPage defines a ListBox whose ItemsSource property is set to that All property and

which contains a TextCell for displaying the Title and Description properties of each page:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlSamples"
 x:Class="XamlSamples.MainPage"
 Padding="5, 0"
 Title="XAML Samples">

 <ListView ItemsSource="{x:Static local:PageDataViewModel.All}"
 ItemSelected="OnListViewItemSelected">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding Title}"
 Detail="{Binding Description}" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</ContentPage>

private async void OnListViewItemSelected(object sender, SelectedItemChangedEventArgs args)
{
 (sender as ListView).SelectedItem = null;

 if (args.SelectedItem != null)
 {
 PageDataViewModel pageData = args.SelectedItem as PageDataViewModel;
 Page page = (Page)Activator.CreateInstance(pageData.Type);
 await Navigation.PushAsync(page);
 }
}

 Video

The pages are shown in a scrollable list:

The handler in the code-behind file is triggered when the user selects an item. The handler sets the

SelectedItem property of the ListBox back to null and then instantiates the selected page and navigates to it:

Xamarin Evolve 2016: MVVM Made S imple with Xamarin.Forms and Pr ismXamarin Evolve 2016: MVVM Made S imple with Xamarin.Forms and Pr ism

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-basics/data-bindings-to-mvvm-images/mainpage-large.png#lightbox
https://www.youtube-nocookie.com/embed/DYRLcqG2BAY

Summary

 Related Links

 Related Videos

XAML is a powerful tool for defining user interfaces in Xamarin.Forms applications, particularly when data-

binding and MVVM are used. The result is a clean, elegant, and potentially toolable representation of a user

interface with all the background support in code.

XamlSamples

Part 1. Getting Started with XAML

Part 2. Essential XAML Syntax

Part 3. XAML Markup Extensions

Part 4. Data Binding Basics

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples
https://channel9.msdn.com/Series/Xamarin-101/XamarinForms-MVVM-with-XAML-6-of-11/player?nocookie=true
https://channel9.msdn.com/Series/Xamarin-101/XamarinForms-Navigation-with-XAML-7-of-11/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

XAML Controls
 7/8/2021 • 3 minutes to read • Edit Online

 Views for presentation

VIEWVIEW EXA M P L EEXA M P L E

BoxViewBoxView
Displays a rectangle of a particular color.

API / Guide

<BoxView Color="Accent"
 WidthRequest="150"
 HeightRequest="150"
 HorizontalOptions="Center">

EllipseEllipse
Displays an ellipse or circle.

API / Guide

<Ellipse Fill="Red"
 WidthRequest="150"
 HeightRequest="50"
 HorizontalOptions="Center" />

ImageImage
Displays a bitmap.

API / Guide

<Image Source="https://aka.ms/campus.jpg"
 Aspect="AspectFit"
 HorizontalOptions="Center" />

 Download the sample

Views are user-interface objects such as labels, buttons, and sliders that are commonly known as controls or

widgets in other graphical programming environments. The views supported by Xamarin.Forms all derive from

the View class.

All of the views that are defined in Xamarin.Forms can be referenced from XAML files.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-controls.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.ellipse
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

LabelLabel
Displays one or more lines of text.

API / Guide

<Label Text="Hello, Xamarin.Forms!"
 FontSize="Large"
 FontAttributes="Italic"
 HorizontalTextAlignment="Center" />

LineLine
Display a line.

API / Guide

<Line X1="40"
 Y1="0"
 X2="0"
 Y2="120"
 Stroke="Red"
 HorizontalOptions="Center" />

MapMap
Displays a map.

API / Guide

<maps:Map ItemsSource="{Binding Locations}" />

PathPath
Display curves and complex shapes.

API / Guide

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 HeightRequest="100"
 WidthRequest="100"
 Data="M13.9,16.2
 L32,16.2 32,31.9 13.9,30.1Z
 M0,16.2
 L11.9,16.2 11.9,29.9 0,28.6Z
 M11.9,2
 L11.9,14.2 0,14.2 0,3.3Z
 M32,0
 L32,14.2 13.9,14.2 13.9,1.8Z" />

VIEWVIEW EXA M P L EEXA M P L E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.path

PolygonPolygon
Display a polygon.

API / Guide

<Polygon Points="0 48, 0 144, 96 150, 100 0, 192
0, 192 96,
 50 96, 48 192, 150 200 144 48"
 Fill="Blue"
 Stroke="Red"
 StrokeThickness="3"
 HorizontalOptions="Center" />

PolylinePolyline
Display a series of connected straight lines.

API / Guide

<Polyline Points="0,0 10,30, 15,0 18,60 23,30
35,30 40,0
 43,60 48,30 100,30"
 Stroke="Red"
 HorizontalOptions="Center" />

RectangleRectangle
Display a rectangle or square.

API / Guide

<Rectangle Fill="Red"
 WidthRequest="150"
 HeightRequest="50"
 HorizontalOptions="Center" />

WebViewWebView
Displays Web pages or HTML content.

API / Guide

<WebView
Source="https://docs.microsoft.com/xamarin/"
 VerticalOptions="FillAndExpand" />

VIEWVIEW EXA M P L EEXA M P L E

 Views that initiate commands

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polyline
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

VIEWVIEW EXA M P L EEXA M P L E

ButtonButton
Displays text in a rectangular object.

API / Guide

<Button Text="Click Me!"
 Font="Large"
 BorderWidth="1"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Clicked="OnButtonClicked" />

ImageButtonImageButton
Displays an image in a rectangular object.

API / Guide

<ImageButton Source="XamarinLogo.png"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Clicked="OnImageButtonClicked" />

RadioButtonRadioButton
Allows the selection of one option from a set.

Guide

<RadioButton Text="Pineapple"

CheckedChanged="OnRadioButtonCheckedChanged" />

RefreshViewRefreshView
Provides pull-to-refresh functionality for scrollable content.

Guide

<RefreshView IsRefreshing="{Binding
IsRefreshing}"
 Command="{Binding RefreshCommand}" >
 <!-- Scrollable control goes here -->
</RefreshView>

SearchBarSearchBar
Accepts user input that it uses to perform a search.

Guide

<SearchBar Placeholder="Enter search term"

SearchButtonPressed="OnSearchBarButtonPressed" />

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton

SwipeViewSwipeView
Provides context menu items that are revealed by a swipe
gesture.

Guide

<SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Delete"

IconImageSource="delete.png"

BackgroundColor="LightPink"
 Invoked="OnDeleteInvoked"
/>
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
</SwipeView>

VIEWVIEW EXA M P L EEXA M P L E

 Views for setting values

VIEWVIEW EXA M P L EEXA M P L E

CheckBoxCheckBox
Allows the selection of a boolean value.

Guide

<CheckBox IsChecked="true"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

SliderSlider
Allows the selection of a double value from a continuous

range.

API / Guide

<Slider Minimum="0"
 Maximum="100"
 VerticalOptions="CenterAndExpand" />

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider

StepperStepper
Allows the selection of a double value from an incremental

range.

API / Guide

<Stepper Minimum="0"
 Maximum="10"
 Increment="0.1"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

SwitchSwitch
Allows the selection of a boolean value.

API / Guide

<Switch IsToggled="false"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

DatePickerDatePicker
Allows the selection of a date.

API / Guide

<DatePicker Format="D"
 VerticalOptions="CenterAndExpand" />

TimePickerTimePicker
Allows the selection of a time.

API / Guide

<TimePicker Format="T"
 VerticalOptions="CenterAndExpand" />

VIEWVIEW EXA M P L EEXA M P L E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker

VIEWVIEW EXA M P L EEXA M P L E

 Views for editing text

VIEWVIEW EXA M P L EEXA M P L E

EntryEntry
Allows a single line of text to be entered and edited.

API / Guide

<Entry Keyboard="Email"
 Placeholder="Enter email address"
 VerticalOptions="CenterAndExpand" />

EditorEditor
Allows multiple lines of text to be entered and edited.

API / Guide

<Editor VerticalOptions="FillAndExpand" />

 Views to indicate activity

VIEWVIEW EXA M P L EEXA M P L E

ActivityIndicatorActivityIndicator
Displays an animation to show that the application is
engaged in a lengthy activity, without giving any indication
of progress.

API / Guide

<ActivityIndicator IsRunning="True"

VerticalOptions="CenterAndExpand" />

ProgressBarProgressBar
Displays an animation to show that the application is
progressing through a lengthy activity.

API / Guide

<ProgressBar Progress=".5"
 VerticalOptions="CenterAndExpand" />

 Views that display collections

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar

VIEWVIEW EXA M P L EEXA M P L E

CarouselViewCarouselView
Displays a scrollable list of data items.

Guide

<CarouselView ItemsSource="{Binding Monkeys}">
 ItemTemplate="{StaticResource
MonkeyTemplate}" />

CollectionViewCollectionView
Displays a scrollable list of selectable data items, using
different layout specifications.

Guide

<CollectionView ItemsSource="{Binding Monkeys}">
 ItemTemplate="{StaticResource
MonkeyTemplate}"
 ItemsLayout="VerticalGrid, 2" />

IndicatorViewIndicatorView
Displays indicators that represent the number of items in a
CarouselView .

Guide

<IndicatorView x:Name="indicatorView"
 IndicatorColor="LightGray"
 SelectedIndicatorColor="DarkGray"
/>

ListViewListView
Displays a scrollable list of selectable data items.

API / Guide

<ListView ItemsSource="{Binding Monkeys}">
 ItemTemplate="{StaticResource
MonkeyTemplate}" />

PickerPicker
Displays a select item from a list of text strings.

API / Guide

<Picker Title="Select a monkey"
 TitleColor="Red">
 <Picker.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Baboon</x:String>
 <x:String>Capuchin Monkey</x:String>
 <x:String>Blue Monkey</x:String>
 <x:String>Squirrel Monkey</x:String>
 <x:String>Golden Lion Tamarin</x:String>
 <x:String>Howler Monkey</x:String>
 <x:String>Japanese Macaque</x:String>
 </x:Array>
 </Picker.ItemsSource>
</Picker>

TableViewTableView
Displays a list of interactive rows.

API / Guide

<TableView Intent="Settings">
 <TableRoot>
 <TableSection Title="Ring">
 <SwitchCell Text="New Voice Mail" />
 <SwitchCell Text="New Mail" On="true"
/>
 </TableSection>
 </TableRoot>
</TableView>

VIEWVIEW EXA M P L EEXA M P L E

 Related links
Xamarin.Forms FormsGallery sample

Xamarin.Forms Samples

Xamarin.Forms API Documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms?view=xamarin-forms

XAML Compilation in Xamarin.Forms
 3/5/2021 • 2 minutes to read • Edit Online

using Xamarin.Forms.Xaml;
...
[assembly: XamlCompilation (XamlCompilationOptions.Compile)]
namespace PhotoApp
{
 ...
}

NOTENOTE

using Xamarin.Forms.Xaml;
...
[XamlCompilation (XamlCompilationOptions.Compile)]
public class HomePage : ContentPage
{
 ...
}

XAML can be optionally compiled directly into intermediate language (IL) with the XAML compiler (XAMLC).

XAML compilation offers a number of a benefits:

It performs compile-time checking of XAML, notifying the user of any errors.

It removes some of the load and instantiation time for XAML elements.

It helps to reduce the file size of the final assembly by no longer including .xaml files.

XAML compilation is disabled by default in the framework. However, it's enabled in the templates for new

projects. It can be explicitly enabled or disabled (XamlCompilationOptions.Skip) at both the assembly and class

level by adding the XamlCompilation attribute.

The following code example demonstrates enabling XAML compilation at the assembly level:

While the attribute can be placed anywhere, a good place to put it is in AssemblyInfo.csAssemblyInfo.cs .

In this example, compile-time checking of all the XAML contained within the assembly will be performed, with

XAML errors being reported at compile-time rather than run-time. Therefore, the assembly prefix to the

XamlCompilation attribute specifies that the attribute applies to the entire assembly.

The XamlCompilation attribute and the XamlCompilationOptions enumeration reside in the Xamarin.Forms.Xaml

namespace, which must be imported to use them.

The following code example demonstrates enabling XAML compilation at the class level:

In this example, compile-time checking of the XAML for the HomePage class will be performed and errors

reported as part of the compilation process.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xamlc.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.xamlcompilationattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.xamlcompilationattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.xamlcompilationattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.xamlcompilationoptions

NOTENOTE

 Related Links

Compiled bindings can be enabled to improve data binding performance in Xamarin.Forms applications. For more

information, see Compiled Bindings.

XamlCompilation

XamlCompilationOptions

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.xamlcompilationattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.xamlcompilationoptions

XAML Markup Extensions
 7/8/2021 • 2 minutes to read • Edit Online

<BoxView Color="Blue" />

<BoxView Color="#FF0080" />

<BoxView Color="{StaticResource themeColor}" />

 Consuming XAML Markup Extensions

 Creating XAML Markup Extensions

 Related Links

 Download the sample

XAML markup extensions help extend the power and flexibility of XAML by allowing element attributes to be set

from sources other than literal text strings.

For example, normally you set the Color property of BoxView like this:

Or, you can set it to a hexadecimal RGB color value:

In either case, the text string set to the Color attribute is converted to a Color value by the ColorTypeConverter

class.

You might prefer instead to set the Color attribute from a value stored in a resource dictionary, or from the

value of a static property of a class that you've created, or from a property of type Color of another element on

the page, or constructed from separate hue, saturation, and luminosity values.

All these options are possible using XAML markup extensions. But don't let the phrase "markup extensions"

scare you: XAML markup extensions are not extensions to XML. Even with XAML markup extensions, XAML is

always legal XML.

A markup extension is really just a different way to express an attribute of an element. XAML markup extensions

are usually identifiable by an attribute setting that is enclosed in curly braces:

Any attribute setting in curly braces is always a XAML markup extension. However, as you'll see, XAML markup

extensions can also be referenced without the use of curly braces.

This article is divided in two parts:

Use the XAML markup extensions defined in Xamarin.Forms.

Write your own custom XAML markup extensions.

Markup Extensions (sample)

XAML markup extensions chapter from Xamarin.Forms book

Resource Dictionaries

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/markup-extensions/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-markupextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.colortypeconverter
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-markupextensions
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter10

Dynamic Styles

Data Binding

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/dynamic.html

Consuming XAML Markup Extensions
 7/8/2021 • 18 minutes to read • Edit Online

 x:Static markup extension

 Download the sample

XAML markup extensions help enhance the power and flexibility of XAML by allowing element attributes to be

set from a variety of sources. Several XAML markup extensions are part of the XAML 2009 specification. These

appear in XAML files with the customary x namespace prefix, and are commonly referred to with this prefix.

This article discusses the following markup extensions:

x:Static – reference static properties, fields, or enumeration members.

x:Reference – reference named elements on the page.

x:Type – set an attribute to a System.Type object.

x:Array – construct an array of objects of a particular type.

x:Null – set an attribute to a null value.

OnPlatform – customize UI appearance on a per-platform basis.

OnIdiom – customize UI appearance based on the idiom of the device the application is running on.

DataTemplate – converts a type into a DataTemplate .

FontImage – display a font icon in any view that can display an ImageSource .

AppThemeBinding – consume a resource based on the current system theme.

Additional XAML markup extensions have historically been supported by other XAML implementations, and are

also supported by Xamarin.Forms. These are described more fully in other articles:

StaticResource - reference objects from a resource dictionary, as described in the article ResourceResource

DictionariesDictionaries .

DynamicResource - respond to changes in objects in a resource dictionary, as described in the article

Dynamic StylesDynamic Styles .

Binding - establish a link between properties of two objects, as described in the article Data BindingData Binding.

TemplateBinding - performs data binding from a control template, as discussed in the article

Xamarin.Forms control templatesXamarin.Forms control templates .

RelativeSource - sets the binding source relative to the position of the binding target, as discussed in the

article Relative Bindings.

The RelativeLayout layout makes use of the custom markup extension ConstraintExpression . This markup

extension is described in the article RelativeLayoutRelativeLayout.

The x:Static markup extension is supported by the StaticExtension class. The class has a single property

named Member of type string that you set to the name of a public constant, static property, static field, or

enumeration member.

One common way to use x:Static is to first define a class with some constants or static variables, such as this

tiny AppConstants class in the MarkupExtensionsMarkupExtensions program:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/markup-extensions/consuming.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-markupextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/dynamic.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.staticextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.staticextension.member#xamarin_forms_xaml_staticextension_member
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-markupextensions

static class AppConstants
{
 public static double NormalFontSize = 18;
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:sys="clr-namespace:System;assembly=netstandard"
 xmlns:local="clr-namespace:MarkupExtensions"
 x:Class="MarkupExtensions.StaticDemoPage"
 Title="x:Static Demo">
 <StackLayout Margin="10, 0">
 <Label Text="Label No. 1">
 <Label.FontSize>
 <x:StaticExtension Member="local:AppConstants.NormalFontSize" />
 </Label.FontSize>
 </Label>

 ···

 </StackLayout>
</ContentPage>

<Label Text="Label No. 2">
 <Label.FontSize>
 <x:Static Member="local:AppConstants.NormalFontSize" />
 </Label.FontSize>
</Label>

<Label Text="Label No. 3"
 FontSize="{x:StaticExtension Member=local:AppConstants.NormalFontSize}" />

<Label Text="Label No. 4"
 FontSize="{x:Static Member=local:AppConstants.NormalFontSize}" />

The x:Static Demox:Static Demo page demonstrates several ways to use the x:Static markup extension. The most verbose

approach instantiates the StaticExtension class between Label.FontSize property-element tags:

The XAML parser also allows the StaticExtension class to be abbreviated as x:Static :

This can be simplified even further, but the change introduces some new syntax: It consists of putting the

StaticExtension class and the member setting in curly braces. The resulting expression is set directly to the

FontSize attribute:

Notice that there are no quotation marks within the curly braces. The Member property of StaticExtension is no

longer an XML attribute. It is instead part of the expression for the markup extension.

Just as you can abbreviate x:StaticExtension to x:Static when you use it as an object element, you can also

abbreviate it in the expression within curly braces:

The StaticExtension class has a ContentProperty attribute referencing the property Member , which marks this

property as the class's default content property. For XAML markup extensions expressed with curly braces, you

can eliminate the Member= part of the expression:

<Label Text="Label No. 5"
 FontSize="{x:Static local:AppConstants.NormalFontSize}" />

xmlns:sys="clr-namespace:System;assembly=netstandard"

<Label Text="π × E sized text"
 FontSize="{x:Static sys:Math.PI}"
 Scale="{x:Static sys:Math.E}"
 HorizontalOptions="Center" />

<Label HorizontalTextAlignment="Center"
 FontSize="{x:Static local:AppConstants.NormalFontSize}">
 <Label.FormattedText>
 <FormattedString>

 </FormattedString>
 </Label.FormattedText>
</Label>

 x:Reference markup extension

This is the most common form of the x:Static markup extension.

The Static DemoStatic Demo page contains two other examples. The root tag of the XAML file contains an XML namespace

declaration for the .NET System namespace:

This allows the Label font size to be set to the static field Math.PI . That results in rather small text, so the

Scale property is set to Math.E :

The final example displays the Device.RuntimePlatform value. The Environment.NewLine static property is used to

insert a new-line character between the two Span objects:

Here's the sample running:

The x:Reference markup extension is supported by the ReferenceExtension class. The class has a single

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/staticdemo-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.referenceextension

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MarkupExtensions.ReferenceDemoPage"
 x:Name="page"
 Title="x:Reference Demo">

 <StackLayout Margin="10, 0">

 <Label Text="{Binding Source={x:Reference page},
 StringFormat='The type of this page is {0}'}"
 FontSize="18"
 VerticalOptions="CenterAndExpand"
 HorizontalTextAlignment="Center" />

 <Slider x:Name="slider"
 Maximum="360"
 VerticalOptions="Center" />

 <Label BindingContext="{x:Reference slider}"
 Text="{Binding Value, StringFormat='{0:F0}° rotation'}"
 Rotation="{Binding Value}"
 FontSize="24"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 </StackLayout>
</ContentPage>

property named Name of type string that you set to the name of an element on the page that has been given a

name with x:Name . This Name property is the content property of ReferenceExtension , so Name= is not

required when x:Reference appears in curly braces.

The x:Reference markup extension is used exclusively with data bindings, which are described in more detail in

the article Data BindingData Binding.

The x:Reference Demox:Reference Demo page shows two uses of x:Reference with data bindings, the first where it's used to set

the Source property of the Binding object, and the second where it's used to set the BindingContext property

for two data bindings:

Both x:Reference expressions use the abbreviated version of the ReferenceExtension class name and eliminate

the Name= part of the expression. In the first example, the x:Reference markup extension is embedded in the

Binding markup extension. Notice that the Source and StringFormat settings are separated by commas. Here's

the program running:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.referenceextension.name#xamarin_forms_xaml_referenceextension_name

 x:Type markup extension
The x:Type markup extension is the XAML equivalent of the C# typeof keyword. It is supported by the

TypeExtension class, which defines one property named TypeName of type string that is set to a class or

structure name. The x:Type markup extension returns the System.Type object of that class or structure.

TypeName is the content property of TypeExtension , so TypeName= is not required when x:Type appears with

curly braces.

Within Xamarin.Forms, there are several properties that have arguments of type Type . Examples include the

TargetType property of Style , and the x:TypeArguments attribute used to specify arguments in generic classes.

However, the XAML parser performs the typeof operation automatically, and the x:Type markup extension is

not used in these cases.

One place where x:Type is required is with the x:Array markup extension, which is described in the next

section.

The x:Type markup extension is also useful when constructing a menu where each menu item corresponds to

an object of a particular type. You can associate a Type object with each menu item, and then instantiate the

object when the menu item is selected.

This is how the navigation menu in MainPage in the Markup ExtensionsMarkup Extensions program works. The MainPage.xamlMainPage.xaml

file contains a TableView with each TextCell corresponding to a particular page in the program:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/referencedemo-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/typeof/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.typeextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.typeextension.typename#xamarin_forms_xaml_typeextension_typename
https://docs.microsoft.com/en-us/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:MarkupExtensions"
 x:Class="MarkupExtensions.MainPage"
 Title="Markup Extensions"
 Padding="10">
 <TableView Intent="Menu">
 <TableRoot>
 <TableSection>
 <TextCell Text="x:Static Demo"
 Detail="Access constants or statics"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:StaticDemoPage}" />

 <TextCell Text="x:Reference Demo"
 Detail="Reference named elements on the page"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:ReferenceDemoPage}" />

 <TextCell Text="x:Type Demo"
 Detail="Associate a Button with a Type"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:TypeDemoPage}" />

 <TextCell Text="x:Array Demo"
 Detail="Use an array to fill a ListView"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:ArrayDemoPage}" />

 ···

 </TableRoot>
 </TableView>
</ContentPage>

Here's the opening main page in Markup ExtensionsMarkup Extensions :

Each CommandParameter property is set to an x:Type markup extension that references one of the other pages.

The Command property is bound to a property named NavigateCommand . This property is defined in the MainPage

code-behind file:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/mainpage-large.png#lightbox

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();

 NavigateCommand = new Command<Type>(async (Type pageType) =>
 {
 Page page = (Page)Activator.CreateInstance(pageType);
 await Navigation.PushAsync(page);
 });

 BindingContext = this;
 }

 public ICommand NavigateCommand { private set; get; }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MarkupExtensions.TypeDemoPage"
 Title="x:Type Demo">

 <StackLayout x:Name="stackLayout"
 Padding="10, 0">

 <Button Text="Create a Slider"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Command="{Binding CreateCommand}"
 CommandParameter="{x:Type Slider}" />

 <Button Text="Create a Stepper"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Command="{Binding CreateCommand}"
 CommandParameter="{x:Type Stepper}" />

 <Button Text="Create a Switch"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Command="{Binding CreateCommand}"
 CommandParameter="{x:Type Switch}" />
 </StackLayout>
</ContentPage>

The NavigateCommand property is a Command object that implements an execute command with an argument of

type Type — the value of CommandParameter . The method uses Activator.CreateInstance to instantiate the page

and then navigates to it. The constructor concludes by setting the BindingContext of the page to itself, which

enables the Binding on Command to work. See the Data BindingData Binding article and particularly the CommandingCommanding

article for more details about this type of code.

The x:Type Demox:Type Demo page uses a similar technique to instantiate Xamarin.Forms elements and to add them to a

StackLayout . The XAML file initially consists of three Button elements with their Command properties set to a

Binding and the CommandParameter properties set to types of three Xamarin.Forms views:

The code-behind file defines and initializes the CreateCommand property:

public partial class TypeDemoPage : ContentPage
{
 public TypeDemoPage()
 {
 InitializeComponent();

 CreateCommand = new Command<Type>((Type viewType) =>
 {
 View view = (View)Activator.CreateInstance(viewType);
 view.VerticalOptions = LayoutOptions.CenterAndExpand;
 stackLayout.Children.Add(view);
 });

 BindingContext = this;
 }

 public ICommand CreateCommand { private set; get; }
}

 x:Array markup extension

The method that is executed when a Button is pressed creates a new instance of the argument, sets its

VerticalOptions property, and adds it to the StackLayout . The three Button elements then share the page with

dynamically created views:

The x:Array markup extension enables you to define an array in markup. It is supported by the ArrayExtension

class, which defines two properties:

Type of type Type , which indicates the type of the elements in the array.

Items of type IList , which is a collection of the items themselves. This is the content property of

ArrayExtension .

The x:Array markup extension itself never appears in curly braces. Instead, x:Array start and end tags delimit

the list of items. Set the Type property to an x:Type markup extension.

The x:Array Demox:Array Demo page shows how to use x:Array to add items to a ListView by setting the ItemsSource

property to an array:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/typedemo-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.arrayextension

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MarkupExtensions.ArrayDemoPage"
 Title="x:Array Demo Page">
 <ListView Margin="10">
 <ListView.ItemsSource>
 <x:Array Type="{x:Type Color}">
 <Color>Aqua</Color>
 <Color>Black</Color>
 <Color>Blue</Color>
 <Color>Fuchsia</Color>
 <Color>Gray</Color>
 <Color>Green</Color>
 <Color>Lime</Color>
 <Color>Maroon</Color>
 <Color>Navy</Color>
 <Color>Olive</Color>
 <Color>Pink</Color>
 <Color>Purple</Color>
 <Color>Red</Color>
 <Color>Silver</Color>
 <Color>Teal</Color>
 <Color>White</Color>
 <Color>Yellow</Color>
 </x:Array>
 </ListView.ItemsSource>

 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <BoxView Color="{Binding}"
 Margin="3" />
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</ContentPage>

The ViewCell creates a simple BoxView for each color entry:

There are several ways to specify the individual Color items in this array. You can use an x:Static markup

extension:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/arraydemo-large.png#lightbox

<x:Static Member="Color.Blue" />

<StaticResource Key="myColor" />

<local:HslColor H="0.5" S="1.0" L="0.5" />

 x:Null markup extension

Or, you can use StaticResource to retrieve a color from a resource dictionary:

Towards the end of this article, you'll see a custom XAML markup extension that also creates a new color value:

When defining arrays of common types like strings or numbers, use the tags listed in the Passing ConstructorPassing Constructor

ArgumentsArguments article to delimit the values.

The x:Null markup extension is supported by the NullExtension class. It has no properties and is simply the

XAML equivalent of the C# null keyword.

The x:Null markup extension is rarely needed and seldom used, but if you do find a need for it, you'll be glad

that it exists.

The x:Null Demox:Null Demo page illustrates one scenario when x:Null might be convenient. Suppose that you define an

implicit Style for Label that includes a Setter that sets the FontFamily property to a platform-dependent

family name:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.nullextension
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null/

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MarkupExtensions.NullDemoPage"
 Title="x:Null Demo">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Label">
 <Setter Property="FontSize" Value="48" />
 <Setter Property="FontFamily">
 <Setter.Value>
 <OnPlatform x:TypeArguments="x:String">
 <On Platform="iOS" Value="Times New Roman" />
 <On Platform="Android" Value="serif" />
 <On Platform="UWP" Value="Times New Roman" />
 </OnPlatform>
 </Setter.Value>
 </Setter>
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <ContentPage.Content>
 <StackLayout Padding="10, 0">
 <Label Text="Text 1" />
 <Label Text="Text 2" />

 <Label Text="Text 3"
 FontFamily="{x:Null}" />

 <Label Text="Text 4" />
 <Label Text="Text 5" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

Then you discover that for one of the Label elements, you want all the property settings in the implicit Style

except for the FontFamily , which you want to be the default value. You could define another Style for that

purpose but a simpler approach is simply to set the FontFamily property of the particular Label to x:Null , as

demonstrated in the center Label .

Here's the program running:

Notice that four of the Label elements have a serif font, but the center Label has the default sans-serif font.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/nulldemo-large.png#lightbox

 OnPlatform markup extension

NOTENOTE

IMPORTANTIMPORTANT

<BoxView Color="{OnPlatform Yellow, iOS=Red, Android=Green, UWP=Blue}"
 WidthRequest="{OnPlatform 250, iOS=200, Android=300, UWP=400}"
 HeightRequest="{OnPlatform 250, iOS=200, Android=300, UWP=400}"
 HorizontalOptions="Center" />

The OnPlatform markup extension enables you to customize UI appearance on a per-platform basis. It provides

the same functionality as the OnPlatform and On classes, but with a more concise representation.

The OnPlatform markup extension is supported by the OnPlatformExtension class, which defines the following

properties:

Default of type object , that you set to a default value to be applied to the properties that represent

platforms.

Android of type object , that you set to a value to be applied on Android.

GTK of type object , that you set to a value to be applied on GTK platforms.

iOS of type object , that you set to a value to be applied on iOS.

macOS of type object , that you set to a value to be applied on macOS.

Tizen of type object , that you set to a value to be applied on the Tizen platform.

UWP of type object , that you set to a value to be applied on the Universal Windows Platform.

WPF of type object , that you set to a value to be applied on the Windows Presentation Foundation

platform.

Converter of type IValueConverter , that can be set to an IValueConverter implementation.

ConverterParameter of type object , that can be set to a value to pass to the IValueConverter

implementation.

The XAML parser allows the OnPlatformExtension class to be abbreviated as OnPlatform .

The Default property is the content property of OnPlatformExtension . Therefore, for XAML markup expressions

expressed with curly braces, you can eliminate the Default= part of the expression provided that it's the first

argument. If the Default property isn't set, it will default to the BindableProperty.DefaultValue property value,

provided that the markup extension is targeting a BindableProperty .

The XAML parser expects that values of the correct type will be provided to properties consuming the OnPlatform

markup extension. If type conversion is necessary, the OnPlatform markup extension will attempt to perform it using

the default converters provided by Xamarin.Forms. However, there are some type conversions that can't be performed by

the default converters and in these cases the Converter property should be set to an IValueConverter

implementation.

The OnPlatform DemoOnPlatform Demo page shows how to use the OnPlatform markup extension:

In this example, all three OnPlatform expressions use the abbreviated version of the OnPlatformExtension class

name. The three OnPlatform markup extensions set the Color , WidthRequest , and HeightRequest properties of

the BoxView to different values on iOS, Android, and UWP. The markup extensions also provide default values

for these properties on the platforms that aren't specified, while eliminating the Default= part of the

expression. Notice that the markup extension properties that are set are separated by commas.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.onplatformextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.onplatformextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.defaultvalue#xamarin_forms_bindableproperty_defaultvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.color#xamarin_forms_boxview_color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview

 OnIdiom markup extension

NOTENOTE

IMPORTANTIMPORTANT

Here's the program running:

The OnIdiom markup extension enables you to customize UI appearance based on the idiom of the device the

application is running on. It's supported by the OnIdiomExtension class, which defines the following properties:

Default of type object , that you set to a default value to be applied to the properties that represent device

idioms.

Phone of type object , that you set to a value to be applied on phones.

Tablet of type object , that you set to a value to be applied on tablets.

Desktop of type object , that you set to a value to be applied on desktop platforms.

TV of type object , that you set to a value to be applied on TV platforms.

Watch of type object , that you set to a value to be applied on Watch platforms.

Converter of type IValueConverter , that can be set to an IValueConverter implementation.

ConverterParameter of type object , that can be set to a value to pass to the IValueConverter

implementation.

The XAML parser allows the OnIdiomExtension class to be abbreviated as OnIdiom .

The Default property is the content property of OnIdiomExtension . Therefore, for XAML markup expressions

expressed with curly braces, you can eliminate the Default= part of the expression provided that it's the first

argument.

The XAML parser expects that values of the correct type will be provided to properties consuming the OnIdiom markup

extension. If type conversion is necessary, the OnIdiom markup extension will attempt to perform it using the default

converters provided by Xamarin.Forms. However, there are some type conversions that can't be performed by the default

converters and in these cases the Converter property should be set to an IValueConverter implementation.

The OnIdiom DemoOnIdiom Demo page shows how to use the OnIdiom markup extension:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/onplatformdemo-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.onidiomextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.onidiomextension

<BoxView Color="{OnIdiom Yellow, Phone=Red, Tablet=Green, Desktop=Blue}"
 WidthRequest="{OnIdiom 100, Phone=200, Tablet=300, Desktop=400}"
 HeightRequest="{OnIdiom 100, Phone=200, Tablet=300, Desktop=400}"
 HorizontalOptions="Center" />

 DataTemplate markup extension

NOTENOTE

<ShellContent Title="Monkeys"
 Icon="monkey.png"
 ContentTemplate="{DataTemplate views:MonkeysPage}" />

In this example, all three OnIdiom expressions use the abbreviated version of the OnIdiomExtension class name.

The three OnIdiom markup extensions set the Color , WidthRequest , and HeightRequest properties of the

BoxView to different values on the phone, tablet, and desktop idioms. The markup extensions also provide

default values for these properties on the idioms that aren't specified, while eliminating the Default= part of

the expression. Notice that the markup extension properties that are set are separated by commas.

Here's the program running:

The DataTemplate markup extension enables you to convert a type into a DataTemplate . It's supported by the

DataTemplateExtension class, which defines a TypeName property, of type string , that is set to the name of the

type to be converted into a DataTemplate . The TypeName property is the content property of

DataTemplateExtension . Therefore, for XAML markup expressions expressed with curly braces, you can eliminate

the TypeName= part of the expression.

The XAML parser allows the DataTemplateExtension class to be abbreviated as DataTemplate .

A typical usage of this markup extension is in a Shell application, as shown in the following example:

In this example, MonkeysPage is converted from a ContentPage to a DataTemplate , which is set as the value of

the ShellContent.ContentTemplate property. This ensures that MonkeysPage is only created when navigation to

the page occurs, rather than at application startup.

For more information about Shell applications, see Xamarin.Forms Shell.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.color#xamarin_forms_boxview_color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/onidiomdemo-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

FontImage markup extension

NOTENOTE

<Image BackgroundColor="#D1D1D1"
 Source="{FontImage , FontFamily={OnPlatform iOS=Ionicons, Android=ionicons.ttf#}, Size=44}"
/>

 AppThemeBinding markup extension

The FontImage markup extension enables you to display a font icon in any view that can display an ImageSource

. It provides the same functionality as the FontImageSource class, but with a more concise representation.

The FontImage markup extension is supported by the FontImageExtension class, which defines the following

properties:

FontFamily of type string , the font family to which the font icon belongs.

Glyph of type string , the unicode character value of the font icon.

Color of type Color , the color to be used when displaying the font icon.

Size of type double , the size, in device-independent units, of the rendered font icon. The default value is 30.

In addition, this property can be set to a named font size.

The XAML parser allows the FontImageExtension class to be abbreviated as FontImage .

The Glyph property is the content property of FontImageExtension . Therefore, for XAML markup expressions

expressed with curly braces, you can eliminate the Glyph= part of the expression provided that it's the first

argument.

The FontImage DemoFontImage Demo page shows how to use the FontImage markup extension:

In this example, the abbreviated version of the FontImageExtension class name is used to display an XBox icon,

from the Ionicons font family, in an Image . The expression also uses the OnPlatform markup extension to

specify different FontFamily property values on iOS and Android. In addition, the Glyph= part of the expression

is eliminated, and the markup extension properties that are set are separated by commas. Note that while the

unicode character for the icon is \uf30c , it has to be escaped in XAML and so becomes  .

Here's the program running:

For information about displaying font icons by specifying the font icon data in a FontImageSource object, see

Display font icons.

The AppThemeBinding markup extension enables you to specify a resource to be consumed, such as an image or

color, based on the current system theme.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/consuming-images/fontimagedemo-large.png#lightbox

IMPORTANTIMPORTANT

NOTENOTE

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MarkupExtensions.AppThemeBindingDemoPage"
 Title="AppThemeBinding Demo">
 <ContentPage.Resources>

 <Style x:Key="labelStyle"
 TargetType="Label">
 <Setter Property="TextColor"
 Value="{AppThemeBinding Black, Light=Blue, Dark=Teal}" />
 </Style>

 </ContentPage.Resources>
 <StackLayout Margin="20">
 <Label Text="This text is green in light mode, and red in dark mode."
 TextColor="{AppThemeBinding Light=Green, Dark=Red}" />
 <Label Text="This text is black by default, blue in light mode, and teal in dark mode."
 Style="{StaticResource labelStyle}" />
 </StackLayout>
</ContentPage>

The AppThemeBinding markup extension has minimum operating system requirements. For more information, see

Respond to system theme changes in Xamarin.Forms applications.

The AppThemeBinding markup extension is supported by the AppThemeBindingExtension class, which defines the

following properties:

Default , of type object , that you set to the resource to be used by default.

Light , of type object , that you set to the resource to be used when the device is using its light theme.

Dark , of type object , that you set to the resource to be used when the device is using its dark theme.

Value , of type object , that returns the resource that's currently being used by the markup extension.

The XAML parser allows the AppThemeBindingExtension class to be abbreviated as AppBindingTheme .

The Default property is the content property of AppThemeBindingExtension . Therefore, for XAML markup

expressions expressed with curly braces, you can eliminate the Default= part of the expression provided that

it's the first argument.

The AppThemeBinding DemoAppThemeBinding Demo page shows how to use the AppThemeBinding markup extension:

In this example, the text color of the first Label is set to green when the device is using its light theme, and is

set to red when the device is using its dark theme. The second Label has its TextColor property set through a

Style . This Style sets the text color of the Label to black by default, to blue when the device is using its light

theme, and to teal when the device is using its dark theme.

Here's the program running:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style

 Define markup extensions

 Related links

If you've encountered a need for a XAML markup extension that isn't available in Xamarin.Forms, you can create

your own.

Markup Extensions (sample)

XAML markup extensions chapter from Xamarin.Forms book

Resource Dictionaries

Dynamic Styles

Data Binding

Xamarin.Forms Shell

Respond to system theme changes in Xamarin.Forms applications

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-markupextensions
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter10
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/dynamic.html

Creating XAML Markup Extensions
 7/8/2021 • 5 minutes to read • Edit Online

public interface IMarkupExtension
{
 object ProvideValue(IServiceProvider serviceProvider);
}

public interface IMarkupExtension<out T> : IMarkupExtension
{
 new T ProvideValue(IServiceProvider serviceProvider);
}

 A Markup Extension for Specifying Color

 Download the sample

On the programmatic level, a XAML markup extension is a class that implements the IMarkupExtension or

IMarkupExtension<T> interface. You can explore the source code of the standard markup extensions described

below in the MarkupExtensionsMarkupExtensions directory of the Xamarin.Forms GitHub repository.

It's also possible to define your own custom XAML markup extensions by deriving from IMarkupExtension or

IMarkupExtension<T> . Use the generic form if the markup extension obtains a value of a particular type. This is

the case with several of the Xamarin.Forms markup extensions:

TypeExtension derives from IMarkupExtension<Type>

ArrayExtension derives from IMarkupExtension<Array>

DynamicResourceExtension derives from IMarkupExtension<DynamicResource>

BindingExtension derives from IMarkupExtension<BindingBase>

ConstraintExpression derives from IMarkupExtension<Constraint>

The two IMarkupExtension interfaces define only one method each, named ProvideValue :

Since IMarkupExtension<T> derives from IMarkupExtension and includes the new keyword on ProvideValue , it

contains both ProvideValue methods.

Very often, XAML markup extensions define properties that contribute to the return value. (The obvious

exception is NullExtension , in which ProvideValue simply returns null .) The ProvideValue method has a

single argument of type IServiceProvider that will be discussed later in this article.

The following XAML markup extension allows you to construct a Color value using hue, saturation, and

luminosity components. It defines four properties for the four components of the color, including an alpha

component that is initialized to 1. The class derives from IMarkupExtension<Color> to indicate a Color return

value:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/markup-extensions/creating.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-markupextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.imarkupextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.imarkupextension-1
https://github.com/xamarin/Xamarin.Forms/tree/master/Xamarin.Forms.Xaml/MarkupExtensions

public class HslColorExtension : IMarkupExtension<Color>
{
 public double H { set; get; }

 public double S { set; get; }

 public double L { set; get; }

 public double A { set; get; } = 1.0;

 public Color ProvideValue(IServiceProvider serviceProvider)
 {
 return Color.FromHsla(H, S, L, A);
 }

 object IMarkupExtension.ProvideValue(IServiceProvider serviceProvider)
 {
 return (this as IMarkupExtension<Color>).ProvideValue(serviceProvider);
 }
}

Because IMarkupExtension<T> derives from IMarkupExtension , the class must contain two ProvideValue

methods, one that returns Color and another that returns object , but the second method can simply call the

first method.

The HSL Color DemoHSL Color Demo page shows a variety of ways that HslColorExtension can appear in a XAML file to

specify the color for a BoxView :

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:MarkupExtensions"
 x:Class="MarkupExtensions.HslColorDemoPage"
 Title="HSL Color Demo">

 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="BoxView">
 <Setter Property="WidthRequest" Value="80" />
 <Setter Property="HeightRequest" Value="80" />
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout>
 <BoxView>
 <BoxView.Color>
 <local:HslColorExtension H="0" S="1" L="0.5" A="1" />
 </BoxView.Color>
 </BoxView>

 <BoxView>
 <BoxView.Color>
 <local:HslColor H="0.33" S="1" L="0.5" />
 </BoxView.Color>
 </BoxView>

 <BoxView Color="{local:HslColorExtension H=0.67, S=1, L=0.5}" />

 <BoxView Color="{local:HslColor H=0, S=0, L=0.5}" />

 <BoxView Color="{local:HslColor A=0.5}" />
 </StackLayout>
</ContentPage>

Notice that when HslColorExtension is an XML tag, the four properties are set as attributes, but when it appears

between curly braces, the four properties are separated by commas without quotation marks. The default values

for H , S , and L are 0, and the default value of A is 1, so those properties can be omitted if you want them

set to default values. The last example shows an example where the luminosity is 0, which normally results in

black, but the alpha channel is 0.5, so it is half transparent and appears gray against the white background of the

page:

 A Markup Extension for Accessing Bitmaps

[ContentProperty("Source")]
class ImageResourceExtension : IMarkupExtension<ImageSource>
{
 public string Source { set; get; }

 public ImageSource ProvideValue(IServiceProvider serviceProvider)
 {
 if (String.IsNullOrEmpty(Source))
 {
 IXmlLineInfoProvider lineInfoProvider = serviceProvider.GetService(typeof(IXmlLineInfoProvider))
as IXmlLineInfoProvider;
 IXmlLineInfo lineInfo = (lineInfoProvider != null) ? lineInfoProvider.XmlLineInfo : new
XmlLineInfo();
 throw new XamlParseException("ImageResourceExtension requires Source property to be set",
lineInfo);
 }

 string assemblyName = GetType().GetTypeInfo().Assembly.GetName().Name;
 return ImageSource.FromResource(assemblyName + "." + Source,
typeof(ImageResourceExtension).GetTypeInfo().Assembly);
 }

 object IMarkupExtension.ProvideValue(IServiceProvider serviceProvider)
 {
 return (this as IMarkupExtension<ImageSource>).ProvideValue(serviceProvider);
 }
}

The argument to ProvideValue is an object that implements the IServiceProvider interface, which is defined in

the .NET System namespace. This interface has one member, a method named GetService with a Type

argument.

The ImageResourceExtension class shown below shows one possible use of IServiceProvider and GetService to

obtain an IXmlLineInfoProvider object that can provide line and character information indicating where a

particular error was detected. In this case, an exception is raised when the Source property has not been set:

ImageResourceExtension is helpful when a XAML file needs to access an image file stored as an embedded

resource in the .NET Standard library project. It uses the Source property to call the static

ImageSource.FromResource method. This method requires a fully-qualified resource name, which consists of the

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/creating-images/hslcolordemo-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/system.iserviceprovider

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:MarkupExtensions"
 x:Class="MarkupExtensions.ImageResourceDemoPage"
 Title="Image Resource Demo">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Image Source="{local:ImageResource Images.SeatedMonkey.jpg}"
 Grid.Row="0" />

 <Image Source="{local:ImageResource Images.FacePalm.jpg}"
 Grid.Row="1" />

 </Grid>
</ContentPage>

 Service Providers

assembly name, the folder name, and the filename separated by periods. The second argument to the

ImageSource.FromResource method provides the assembly name, and is only required for release builds on UWP.

Regardless, ImageSource.FromResource must be called from the assembly that contains the bitmap, which means

that this XAML resource extension cannot be part of an external library unless the images are also in that library.

(See the Embedded ImagesEmbedded Images article for more information on accessing bitmaps stored as embedded

resources.)

Although ImageResourceExtension requires the Source property to be set, the Source property is indicated in

an attribute as the content property of the class. This means that the Source= part of the expression in curly

braces can be omitted. In the Image Resource DemoImage Resource Demo page, the Image elements fetch two images using the

folder name and the filename separated by periods:

Here's the program running:

By using the IServiceProvider argument to ProvideValue , XAML markup extensions can get access to helpful

information about the XAML file in which they're being used. But to use the IServiceProvider argument

successfully, you need to know what kind of services are available in particular contexts. The best way to get an

understanding of this feature is by studying the source code of existing XAML markup extensions in the

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/markup-extensions/creating-images/imageresourcedemo-large.png#lightbox

 IProvideValueTarget provideValueTarget = serviceProvider.GetService(typeof(IProvideValueTarget)) as
IProvideValueTarget;

 Conclusion

 Related Links

MarkupExtensionsMarkupExtensions folder in the Xamarin.Forms repository on GitHub. Be aware that some types of services

are internal to Xamarin.Forms.

In some XAML markup extensions, this service might be useful:

The IProvideValueTarget interface defines two properties, TargetObject and TargetProperty . When this

information is obtained in the ImageResourceExtension class, TargetObject is the Image and TargetProperty is

a BindableProperty object for the Source property of Image . This is the property on which the XAML markup

extension has been set.

The GetService call with an argument of typeof(IProvideValueTarget) actually returns an object of type

SimpleValueTargetProvider , which is defined in the Xamarin.Forms.Xaml.Internals namespace. If you cast the

return value of GetService to that type, you can also access a ParentObjects property, which is an array that

contains the Image element, the Grid parent, and the ImageResourceDemoPage parent of the Grid .

XAML markup extensions play a vital role in XAML by extending the ability to set attributes from a variety of

sources. Moreover, if the existing XAML markup extensions don't provide exactly what you need, you can also

write your own.

Markup Extensions (sample)

XAML markup extensions chapter from Xamarin.Forms book

https://github.com/xamarin/Xamarin.Forms/tree/master/Xamarin.Forms.Xaml/MarkupExtensions
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-markupextensions
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter10

XAML Hot Reload for Xamarin.Forms
 7/8/2021 • 6 minutes to read • Edit Online

NOTENOTE

 System requirements

IDE/ F RA M EW O RKIDE/ F RA M EW O RK M IN IM UM VERSIO N REQ UIREDM IN IM UM VERSIO N REQ UIRED

Visual Studio 2019 16.9 for changes only mode, 16.4 for full page mode

Visual Studio 2019 for Mac 8.9 for changes only mode, 8.4 for full page mode

Xamarin.Forms 5.0.0.2012 for changes only mode; 4.1 for full page mode

 Enable XAML Hot Reload for Xamarin.Forms

XAML Hot Reload plugs into your existing workflow to increase your productivity and save you time. Without

XAML Hot Reload, you have to build and deploy your app every time you want to see a XAML change. With Hot

Reload, when you save your XAML file the changes are reflected live in your running app. In addition, your

navigation state and data will be maintained, enabling you to quickly iterate on your UI without losing your

place in the app. Therefore, with XAML Hot Reload, you'll spend less time rebuilding and deploying your apps to

validate UI changes.

If you're writing a native UWP or WPF app, not using Xamarin.Forms, see XAML Hot Reload for UWP and WPF.

If you are starting from a template, XAML Hot Reload is on by default and the project is configured to work with

no additional setup. Debug your Android, iOS, or UWP app on an emulator or physical device and change your

XAML to trigger a XAML Hot Reload.

If you're working from an existing Xamarin.Forms solution, no additional installation is required to use XAML

Hot Reload, but you might have to double check your configuration to ensure the best experience. First, enable it

in your IDE settings:

On Windows, check the Enable XAML Hot ReloadEnable XAML Hot Reload checkbox (and the required platforms) at ToolsTools >

OptionsOptions > DebuggingDebugging > Hot ReloadHot Reload.

On Mac, check the Enable Xamarin Hot ReloadEnable Xamarin Hot Reload checkbox at Visual StudioVisual Studio > PreferencesPreferences > Tools forTools for

XamarinXamarin > XAML Hot ReloadXAML Hot Reload.

In earlier versions of Visual Studio 2019, the checkbox is at ToolsTools > OptionsOptions > XamarinXamarin > HotHot

ReloadReload.

In earlier versions of Visual Studio for Mac, the checkbox is at Visual StudioVisual Studio > PreferencesPreferences >

ProjectsProjects > Xamarin Hot ReloadXamarin Hot Reload.

Then, in your Android and iOS build settings, check that the Linker is set to "Don't Link" or "Link None". To use

XAML Hot Reload with a physical iOS device, you also have to check Enable the Mono interpreterEnable the Mono interpreter (Visual

Studio 16.4 and above) or add --interpreter--interpreter to your Additional mtouch argsAdditional mtouch args (Visual Studio 16.3 and below).

You can use the following flowchart to check your existing project's setup for use with XAML Hot Reload:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/hot-reload.md
https://docs.microsoft.com/en-us/visualstudio/debugger/xaml-hot-reload

 Hot Reload modes

NOTENOTE

XAML Hot Reload can work in two different modes - the newer changes only mode and the older full page

mode.

From Visual Studio 16.9 and Visual Studio for Mac 8.9, the default behavior is for changes only mode to be used

for all apps that use Xamarin.Forms 5.0 or newer. For older versions of Xamarin.Forms, full page mode is used.

However, you can force use of full page mode for all apps in the Hot Reload IDE settings (ToolsTools > OptionsOptions >

DebuggingDebugging > Hot ReloadHot Reload on Windows or Visual StudioVisual Studio > PreferencesPreferences > Tools for XamarinTools for Xamarin > XAML HotXAML Hot

ReloadReload on Mac).

Changes only mode parses the XAML to see exactly what changed when you make an edit, and sends just those

changes to the running app. This is the same technology used for WPF and UWP Hot Reload. It preserves UI

state, since it doesn't recreate the UI for the full page, just updating changed properties on controls affected by

edits. Changes only mode also enables use of the Live Visual Tree.

By default, with changes only mode you don't need to save your file to see the changes - updates are applied

immediately, as you type. However, you can change this behavior to update only on file save. This can be

accomplished by checking the Apply XAML Hot Reload on document saveApply XAML Hot Reload on document save checkbox (currently only

available on Windows) in the Hot Reload IDE settings. Only updating on document save can sometimes be

useful if you make bigger XAML updates and don't wish them to be displayed until they are complete.

Full page mode sends the full XAML file to the running app after you makes edits and save. The running app

then reloads the page, recreating its controls - you'll see the UI refresh.

Changes only mode is the future of Hot Reload and we recommend using it whenever possible. It's fast,

preserves UI state, and supports Live Visual Tree. Full page mode is still provided for apps that haven't yet been

updated to Xamarin.Forms 5.0.

You'll need to restart the debug session when switching modes.

XAML errors

 Reload on multiple platforms at once

 Known limitations

 Troubleshooting

Changes only mode: If you make a change the Hot Reload XAML parser sees as invalid, it will show the error

underlined in the editor and include it in the errors window. These Hot Reload errors have an error code starting

with "XHR" (for XAML Hot Reload). If there are any such errors on the page, Hot Reload won't apply changes,

even if made on other parts of the page. Fix all the errors for Hot Reload to start working again for the page.

Full page mode: If you make a change that XAML Hot Reload can't reload, it will show the error underlined in the

editor and include it in the errors window. These changes, known as rude edits, include mistyping your XAML or

wiring a control to an event handler that doesn't exist. Even with a rude edit, you can continue to reload without

restarting the app - make another change elsewhere in the XAML file and hit save. The rude edit won't be

reloaded, but your other changes will continue to be applied.

XAML Hot Reload supports simultaneous debugging in Visual Studio and Visual Studio for Mac. You can deploy

an Android and an iOS target at the same time to see your changes reflected on both platforms at once. To

debug on multiple platforms, see:

WindowsWindows How To: Set multiple startup projects

MacMac Set multiple startup projects

Xamarin.Forms targets beyond Android, iOS, and UWP (for example, macOS) aren't currently supported.

Use of [XamlCompilation(XamlCompilationOptions.Skip)], disabling XAML compilation, isn't supported and

can cause issues with the Live Visual Tree.

You can't add, remove, or rename files or NuGet packages during a XAML Hot Reload session. If you add or

remove a file or NuGet package, rebuild and redeploy your app to continue using XAML Hot Reload.

Set your linker to Don't L inkDon't L ink or L ink NoneLink None for the best experience. The L ink SDK onlyLink SDK only setting works most

of the time, but it may fail in certain cases. Linker settings can be found in your Android and iOS build

options.

Debugging on a physical iPhone requires the interpreter to use XAML Hot Reload. To do this, open the project

settings, select the iOS Build tab, and ensure Enable the Mono interpreterEnable the Mono interpreter setting is enabled. You may

need to change the PlatformPlatform option at the top of the property page to iPhoneiPhone.

XAML Hot Reload can't reload C# code, including event handlers, custom controls, page code-behind, and

additional classes.

Bring up the XAML Hot Reload output to see status messages, which can help in troubleshooting:

If XAML Hot Reload fails to initialize:

If nothing happens upon saving your XAML file, ensure that XAML Hot Reload is enabled in the IDE.

If you're debugging on a physical iPhone and your app becomes unresponsive, check that the interpreter is

enabled. To turn it on, check Enable the Mono interpreterEnable the Mono interpreter (Visual Studio 16.4/8.4 and up) or add ----

interpreterinterpreter to the Additional mtouch argumentsAdditional mtouch arguments field (Visual Studio 16.3/8.3 and prior) in your iOS

WindowsWindows : bring up Output with ViewView > OutputOutput and select Xamarin Hot ReloadXamarin Hot Reload under ShowShow

output from:output from: at the top

MacMac: hover over XAML Hot ReloadXAML Hot Reload in the status bar to show that pad

Update your Xamarin.Forms version.

Ensure you are on the latest version of the IDE.

Set your Android or iOS Linker settings to Don't L inkDon't L ink in the project's build settings.

https://docs.microsoft.com/en-us/visualstudio/ide/how-to-set-multiple-startup-projects?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/mac/set-startup-projects?view=vsmac-2019

 Related links

Build settings.

To report a bug, use HelpHelp > Send FeedbackSend Feedback > Repor t a ProblemRepor t a Problem on Windows, and HelpHelp > Repor t aRepor t a

ProblemProblem on Mac.

Live Visual Tree

Tips and Tricks for XAML Hot Reload

XAML Hot Reload for Xamarin.Forms In-Depth: The Xamarin Show

https://devblogs.microsoft.com/xamarin/tips-tricks-xaml-hot-reload/
https://www.youtube.com/watch?v=crhjjPjzknk

Xamarin.Forms live visual tree
 3/5/2021 • 2 minutes to read • Edit Online

 Requirements

 Usage

 Live visual tree toolbar

NOTENOTE

You can receive a real-time view of your running XAML code with the L ive Visual TreeLive Visual Tree. It shows a tree view of

the UI elements of your running Xamarin.Forms application.

Use Xamarin.Forms 5.0 or newer.

Have changes only Hot Reload enabled (it's enabled by default).

With the requirements met, debug your app and Live Visual Tree window will show the runtime UI hierarchy of

your app.

WindowsWindows : By default, it appears on the IDE's left. If you don't see it, use Debug > Windows > L ive VisualDebug > Windows > L ive Visual

TreeTree to show it.

MacMac: By default, it appears on the IDE's right. If you don't see it, use View > Debug Windows > L iveView > Debug Windows > L ive

Visual TreeVisual Tree to show it.

Use the tree view to inspect the runtime UI hierarchy for your app, expanding/collapsing nodes to focus on

particular parts of the UI.

The view of XAML elements is simplified by default using the Just My XAMLJust My XAML feature. Toggle the Show JustShow Just

My XAMLMy XAML button, rightmost on the Live Visual Tree toolbar, to show all UI elements. If you wish you can disable

this setting in options to always show all XAML elements.

Visual Studio for Mac doesn't currently support the Just My XAMLJust My XAML feature.

The structure of the XAML has a lot of elements that you're probably not directly interested in, and if you don't

know the code well you might have a hard time navigating the tree to find what you're looking for. Therefore,

the L ive Visual TreeLive Visual Tree has multiple approaches that let you use the application's UI to help you find the element

you want to examine.

Select element in the running applicationSelect element in the running application (currently only supported for UWP apps). You can enable this

mode when you select the leftmost button on the L ive Visual TreeLive Visual Tree toolbar. With this mode on, you can select a

UI element in the application, and the L ive Visual TreeLive Visual Tree automatically updates to show the node in the tree

corresponding to that element, and its properties.

Display layout adorners in the running applicationDisplay layout adorners in the running application (currently only supported for UWP apps). You can

enable this mode when you select the button that is immediately to the right of the Enable selection button.

When Display layout adornersDisplay layout adorners is on, it causes the application window to show horizontal and vertical lines

along the bounds of the selected object so you can see what it aligns to, as well as rectangles showing the

margins.

Preview SelectionPreview Selection. You can enable this mode by selecting the third button from the left on the Live Visual Tree

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/live-visual-tree.md
https://docs.microsoft.com/en-us/visualstudio/debugger/general-debugging-options-dialog-box.md

 Related links

toolbar. This mode shows the XAML where the element was declared, if you have access to the source code of

the application.

Write and debug running XAML code with XAML Hot Reload

Xamarin.Forms XAML Toolbox
 7/8/2021 • 2 minutes to read • Edit Online

Visual Studio 2017 version 15.8 and Visual Studio for Mac 7.6 now have a Toolbox available while editing

Xamarin.Forms XAML files. The toolbox contains all the built-in Xamarin.Forms controls and layouts, which can

be dragged into the XAML editor.

Visual Studio

Visual Studio for Mac

In Visual Studio 2017, open a Xamarin.Forms XAML file for editing. The toolbox can be shown by pressing Ctr lCtr l

+ W, X+ W, X on the keyboard, or choosing the View > ToolboxView > Toolbox menu item.

The toolbox can be hidden and docked like other panes in Visual Studio 2017, using the icons in the top-right or

the context menu. The Xamarin.Forms XAML toolbox has custom view options that can be changed by right-

clicking on each section. Toggle the L ist ViewList View option to switch between the list and compact views:

When a Xamarin.Forms XAML file is opened for editing, drag any control or layout from the toolbox into the file,

then take advantage of Intellisense to customize the user interface.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/toolbox.md
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/toolbox-images/win-full-display.png#lightbox

XAML Previewer for Xamarin.Forms
 7/8/2021 • 3 minutes to read • Edit Online

WARNINGWARNING

 Overview

 Getting started
 Visual Studio 2019Visual Studio 2019

 XAML preview controlsXAML preview controls

See your Xamarin.Forms layouts rendered as you type

The XAML Previewer has been deprecated in Visual Studio 2019 version 16.8 and Visual Studio for Mac version 8.8, and

replaced by the XAML Hot Reload feature in Visual Studio 2019 version 16.9 and Visual Studio for Mac version 8.9. Learn

more about XAML Hot Reload in the documentation.

The XAML Previewer shows you how your Xamarin.Forms XAML page will look on iOS and Android. When you

make changes to your XAML, you'll see them previewed immediately alongside your code. The XAML Previewer

is available in Visual Studio and Visual Studio for Mac.

You can open the XAML Previewer by clicking the arrows on the split view pane. If you want to change the

default split view behavior, use the Tools > Options > Xamarin > Xamarin.Forms XAML PreviewerTools > Options > Xamarin > Xamarin.Forms XAML Previewer dialog.

In this dialog, you can select the default document view and the split orientation.

When you open a XAML file, the editor will open either full-sized or next to the previewer, based on the settings

selected in the Tools > Options > Xamarin > Xamarin.Forms XAML PreviewerTools > Options > Xamarin > Xamarin.Forms XAML Previewer dialog. However, the split

can be changed for each file in the editor window.

Choose whether you want to see your code, the XAML Previewer, or both by selecting these buttons on the split

view pane. The middle button swaps what side the Previewer and your code are on:

You can change whether the screen is split vertically or horizontally, or collapse one pane altogether :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-previewer/index.md
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/xamlp-options-vs-lg.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/xamlp-controls-splitview-vs-lg.png#lightbox

 Enable or disable the XAML PreviewerEnable or disable the XAML Previewer

 Visual Studio for MacVisual Studio for Mac

NOTENOTE

 Enable or Disable the XAML PreviewerEnable or Disable the XAML Previewer

 XAML previewer options

You can turn the XAML Previewer off in the Tools > Options > Xamarin > Xamarin.Forms XAMLTools > Options > Xamarin > Xamarin.Forms XAML

PreviewerPreviewer dialog by selecting Default XML EditorDefault XML Editor as your Default XAML EditorDefault XAML Editor . This also turns off the

Document Outline, Property Panel, and XAML Toolbox. To turn the XAML Previewer and those tools back on,

change your Default XAML EditorDefault XAML Editor to Xamarin.Forms PreviewerXamarin.Forms Previewer .

The PreviewPreview button is displayed on the editor when you open a XAML page. Show or hide the Previewer by

pressing the PreviewPreview or SplitSplit buttons in the bottom-left of any XAML document window:

In older versions of Visual Studio for Mac, the PreviewPreview button was located in the top-right of the window.

You can turn the XAML Previewer off in the Visual Studio > Preferences > Text Editor > XAMLVisual Studio > Preferences > Text Editor > XAML dialog by

selecting Default XML EditorDefault XML Editor as your Default XAML EditorDefault XAML Editor . This also turns off the Document Outline,

Property Panel, and XAML Toolbox. To turn the XAML Previewer and those tools back on, change your DefaultDefault

XAML EditorXAML Editor to Xamarin.Forms PreviewerXamarin.Forms Previewer .

The options along the top of the preview pane are:

AndroidAndroid – show the Android version of the screen

iOSiOS – show the iOS version of the screen (Note: If you're using Visual Studio on Windows, you must be

paired to a Mac to use this mode)

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/xamlp-controls-orientation-vs-lg.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/xamlp-list.png#lightbox
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/index

 Detect design mode

if (DesignMode.IsDesignModeEnabled)
{
 // Previewer only code
}

if (!DesignMode.IsDesignModeEnabled)
{
 // Don't run in the Previewer
}

 Troubleshooting

 XAML Previewer isn't showing or shows an errorXAML Previewer isn't showing or shows an error

 Custom controls aren't renderingCustom controls aren't rendering

DeviceDevice - Drop-down list of Android or iOS devices including resolution and screen size

Por trait (icon)Por trait (icon) – uses portrait orientation for the preview

Landscape (icon)Landscape (icon) – uses landscape orientation for the preview

The static DesignMode.IsDesignModeEnabled property tells you if the application is running in the previewer. Using

it, you can specify code that will only execute when the application is or isn't running in the previewer:

This property is useful if you initialize a library in your page constructor that fails to run at design time.

Check the issues below and the Xamarin Forums, if the Previewer isn't working.

It can take some time for the Previewer to start up - you'll see "Initializing Render" until it's ready.

Try closing and reopening the XAML file.

Ensure that your App class has a parameterless constructor.

Check your Xamarin.Forms version - it has to be at least Xamarin.Forms 3.6. You can update to the latest

Xamarin.Forms version through NuGet.

Check your JDK installation - previewing Android requires at least JDK 8.

Try wrapping any initialized classes in the page's C# code behind in if (!DesignMode.IsDesignModeEnabled) .

Try building your project. The previewer shows the control's base class if it fails to render the control, or if the

control's creator opted-out of design time rendering. For more information, see Render Custom Controls in the

XAML Previewer.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.designmode.isdesignmodeenabled#xamarin_forms_designmode_isdesignmodeenabled
https://forums.xamarin.com/categories/xamarin-forms
https://www.oracle.com/technetwork/java/javase/downloads/index.html

Use Design Time Data with the XAML Previewer
 7/8/2021 • 3 minutes to read • Edit Online

WARNINGWARNING

NOTENOTE

 Design time data basics

xmlns:d="http://xamarin.com/schemas/2014/forms/design"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"

<Label Text="{Binding Name}" d:Text="Name!" />

Some layouts are hard to visualize without data. Use these tips to make the most out of previewing your data-

heavy pages in the XAML Previewer.

The XAML Previewer has been deprecated in Visual Studio 2019 version 16.8 and Visual Studio for Mac version 8.8, and

replaced by the XAML Hot Reload feature in Visual Studio 2019 version 16.9 and Visual Studio for Mac version 8.9. Learn

more about XAML Hot Reload in the documentation.

If you are using Windows Presentation Foundation (WPF) or UWP, see Use Design Time Data with the XAML Designer for

desktop applications

Design time data is fake data you set to make your controls easier to visualize in the XAML Previewer. To get

started, add the following lines of code to the header of your XAML page:

After adding the namespaces, you can put d: in front of any attribute or control to show it in the XAML

Previewer. Elements with d: aren't shown at runtime.

For example, you can add text to a label that usually has data bound to it.

In this example, without d:Text , the XAML Previewer would show nothing for the label. Instead, it shows

"Name!" where the label will have real data at runtime.

You can use d: with any attribute for a Xamarin.Forms control, like colors, font sizes, and spacing. You can even

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-previewer/design-time-data.md
https://docs.microsoft.com/en-us/visualstudio/xaml-tools/xaml-designtime-data
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/designtimedata-label-lg.png#lightbox

<d:Button Text="Design Time Button" />

 Preview images at design time

<Image Source={Binding ProfilePicture} d:Source="DesignTimePicture.jpg" />

add it to the control itself:

In this example, the button only appears at design time. Use this method to put a placeholder in for a custom

control not supported by the XAML Previewer.

You can set a design time Source for images that are bound to the page or loaded in dynamically. In your

Android project, add the image you want to show in the XAML Previewer to the Resources > DrawableResources > Drawable folder.

In your iOS project, add the image to the ResourcesResources folder. You can then show that image in the XAML

Previewer at design time:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/designtimedata-controls-lg.png#lightbox

 Design time data for ListViews

<StackLayout>
 <ListView ItemsSource="{Binding Items}">
 <d:ListView.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Item One</x:String>
 <x:String>Item Two</x:String>
 <x:String>Item Three</x:String>
 </x:Array>
 </d:ListView.ItemsSource>
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding ItemName}"
 d:Text="{Binding .}" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</StackLayout>

ListViews are a popular way to display data in a mobile app. However, they're difficult to visualize without real

data. To use design time data with them, you have to create a design time array to use as an ItemsSource. The

XAML Previewer displays what is in that array in your ListView at design time.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/designtimedata-image-lg.png#lightbox

namespace Monkeys.Models
{
 public class Monkey
 {
 public string Name { get; set; }
 public string Location { get; set; }
 }
}

xmlns:models="clr-namespace:Monkeys.Models"

<StackLayout>
 <ListView ItemsSource="{Binding Items}">
 <d:ListView.ItemsSource>
 <x:Array Type="{x:Type models:Monkey}">
 <models:Monkey Name="Baboon" Location="Africa and Asia"/>
 <models:Monkey Name="Capuchin Monkey" Location="Central and South America"/>
 <models:Monkey Name="Blue Monkey" Location="Central and East Africa"/>
 </x:Array>
 </d:ListView.ItemsSource>
 <ListView.ItemTemplate>
 <DataTemplate x:DataType="models:Monkey">
 <TextCell Text="{Binding Name}"
 Detail="{Binding Location}" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</StackLayout>

 Alternative: Hardcode a static ViewModel

This example will show a ListView of three TextCells in the XAML Previewer. You can change x:String to an

existing data model in your project.

You can also create an array of data objects. For example, public properties of a Monkey data object can be

constructed as design time data:

To use the class in XAML you will need to import the namespace in the root node:

The benefit here is that you can bind to the actual model that you plan to use.

If you don't want to add design time data to individual controls, you can set up a mock data store to bind to your

page. Refer to James Montemagno's blog post on adding design-time data to see how to bind to a static

ViewModel in XAML.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/xaml-previewer/xaml-previewer-images/designtimedata-itemssource-lg.png#lightbox
https://montemagno.com/xamarin-forms-design-time-data-tips-best-practices/

 Troubleshooting
 RequirementsRequirements

 IntelliSense shows squiggly lines under my design time dataIntelliSense shows squiggly lines under my design time data

 The XAML Previewer stopped workingThe XAML Previewer stopped working

Design time data requires a minimum version of Xamarin.Forms 3.6.

This is a known issue and will be fixed in an upcoming version of Visual Studio. The project will still build

without errors.

Try closing and reopening the XAML file, and cleaning and rebuilding your project.

Render Custom Controls in the XAML Previewer
 3/10/2021 • 2 minutes to read • Edit Online

WARNINGWARNING

 Basic Preview mode

 Enable design time rendering for custom controls

namespace MyProject
{
 [DesignTimeVisible(true)]
 public class MyControl : BaseControl
 {
 // Your control's code here
 }

}

 SkiaSharp controls

 Troubleshooting
 Check your Xamarin.Forms versionCheck your Xamarin.Forms version

 Even with Even with [DesignTimeVisible(true)] , my custom control isn't rendering properly., my custom control isn't rendering properly.

Custom controls sometimes don't work as expected in the XAML Previewer. Use the guidance in this article to

understand the limitations of previewing your custom controls.

The XAML Previewer has been deprecated in Visual Studio 2019 version 16.8 and Visual Studio for Mac version 8.8, and

replaced by the XAML Hot Reload feature in Visual Studio 2019 version 16.9 and Visual Studio for Mac version 8.9. Learn

more about XAML Hot Reload in the documentation.

Even if you haven't built your project, the XAML Previewer will render your pages. Until you build, any control

that relies on code-behind will show its base Xamarin.Forms type. When your project is built, the XAML

Previewer will try to show custom controls with design time rendering enabled. If the render fails, it will show

the base Xamarin.Forms type.

If you make your own custom controls, or use controls from a third-party library, the Previewer might display

them incorrectly. Custom controls must opt in to design time rendering to appear in the previewer, whether you

wrote the control or imported it from a library. With controls you've created, add the [DesignTimeVisible(true)]

to your control's class to show it in the Previewer:

Use James Montemagno's ImageCirclePlugin's base class as an example.

Currently, SkiaSharp controls are only supported when you're previewing on iOS. They won't render on the

Android preview.

Make sure you have at least Xamarin.Forms 3.6 installed. You can update your Xamarin.Forms version on NuGet.

Custom controls that rely heavily on code-behind or backend data don't always work in the XAML Previewer.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/xaml-previewer/render-custom-controls.md
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.designtimevisibleattribute
https://github.com/jamesmontemagno/ImageCirclePlugin/blob/master/src/ImageCircle/CircleImage.shared.cs

 The XAML Previewer shows the error "Custom Controls aren't rendering properly"The XAML Previewer shows the error "Custom Controls aren't rendering properly"

You can try:

Moving the control so it doesn't initialize if design mode is enabled

Setting up design time data to show fake data from the backend

Try cleaning and rebuilding your project, or closing and reopening the XAML file.

XAML Namespaces in Xamarin.Forms
 11/2/2020 • 3 minutes to read • Edit Online

 Overview

xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

C O N ST RUC TC O N ST RUC T DESC RIP T IO NDESC RIP T IO N

x:Arguments Specifies constructor arguments for a non-default
constructor, or for a factory method object declaration.

x:Class Specifies the namespace and class name for a class defined in
XAML. The class name must match the class name of the
code-behind file. Note that this construct can only appear in
the root element of a XAML file.

x:DataType Specifies the type of the object that the XAML element, and
it's children, will bind to.

x:FactoryMethod Specifies a factory method that can be used to initialize an
object.

x:FieldModifier Specifies the access level for generated fields for named
XAML elements.

x:Key Specifies a unique user-defined key for each resource in a
ResourceDictionary . The key's value is used to retrieve

the XAML resource, and is typically used as the argument for
the StaticResource markup extension.

XAML uses the xmlns XML attribute for namespace declarations. This article introduces the XAML namespace

syntax, and demonstrates how to declare a XAML namespace to access a type.

There are two XAML namespace declarations that are always within the root element of a XAML file. The first

defines the default namespace, as shown in the following XAML code example:

The default namespace specifies that elements defined within the XAML file with no prefix refer to

Xamarin.Forms classes, such as ContentPage .

The second namespace declaration uses the x prefix, as shown in the following XAML code example:

XAML uses prefixes to declare non-default namespaces, with the prefix being used when referencing types

within the namespace. The x namespace declaration specifies that elements defined within the XAML with a

prefix of x are used for elements and attributes that are intrinsic to XAML (specifically the 2009 XAML

specification).

The following table outlines the x namespace attributes supported by Xamarin.Forms:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/namespaces.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

x:Name Specifies a runtime object name for the XAML element.
Setting x:Name is similar to declaring a variable in code.

x:TypeArguments Specifies the generic type arguments to the constructor of a
generic type.

C O N ST RUC TC O N ST RUC T DESC RIP T IO NDESC RIP T IO N

NOTENOTE

 Declaring Namespaces for Types

<ContentPage ... xmlns:local="clr-namespace:HelloWorld" ...>
 ...
</ContentPage>

<ContentPage ... xmlns:local="using:HelloWorld" ...>
 ...
</ContentPage>

For more information about the x:DataType attribute, see Compiled Bindings. For more information about the

x:FieldModifier attribute, see Field Modifiers. For more information about the x:Arguments and

x:FactoryMethod attributes, see Passing Arguments in XAML. For more information about the x:TypeArguments

attribute, see Generics in XAML with Xamarin.Forms.

In addition to the namespace attributes listed above, Xamarin.Forms also includes markup extensions that can be

consumed through the x namespace prefix. For more information, see Consuming XAML Markup Extensions.

In XAML, namespace declarations inherit from parent element to child element. Therefore, when defining a

namespace in the root element of a XAML file, all elements within that file inherit the namespace declaration.

Types can be referenced in XAML by declaring a XAML namespace with a prefix, with the namespace declaration

specifying the Common Language Runtime (CLR) namespace name, and optionally an assembly name. This is

achieved by defining values for the following keywords within the namespace declaration:

clr-namespace:clr-namespace: or using:using: – the CLR namespace declared within the assembly that contains the types to

expose as XAML elements. This keyword is required.

assembly=assembly= – the assembly that contains the referenced CLR namespace. This value is the name of the

assembly, without the file extension. The path to the assembly should be established as a reference in the

project file that contains the XAML file that will reference the assembly. This keyword can be omitted if the

clr-namespaceclr-namespace value is within the same assembly as the application code that's referencing the types.

Note that the character separating the clr-namespace or using token from its value is a colon, whereas the

character separating the assembly token from its value is an equal sign. The character to use between the two

tokens is a semicolon.

The following code example shows a XAML namespace declaration:

Alternatively, this can be written as:

The local prefix is a convention used to indicate that the types within the namespace are local to the

application. Alternatively, if the types are in a different assembly, the assembly name should also be defined in

the namespace declaration, as demonstrated in the following XAML code example:

<ContentPage ... xmlns:behaviors="clr-namespace:Behaviors;assembly=BehaviorsLibrary" ...>
 ...
</ContentPage>

<ListView ...>
 <ListView.Behaviors>
 <behaviors:EventToCommandBehavior EventName="ItemSelected" ... />
 </ListView.Behaviors>
</ListView>

 Summary

 Related Links

The namespace prefix is then specified when declaring an instance of a type from an imported namespace, as

demonstrated in the following XAML code example:

For information about defining a custom namespace schema, see XAML Custom Namespace Schemas.

This article introduced the XAML namespace syntax, and demonstrated how to declare a XAML namespace to

access a type. XAML uses the xmlns XML attribute for namespace declarations, and types can be referenced in

XAML by declaring a XAML namespace with a prefix.

Passing Arguments in XAML

Generics in XAML with Xamarin.Forms

XAML Custom Namespace Schemas in
Xamarin.Forms

 7/8/2021 • 3 minutes to read • Edit Online

<ContentPage ...
 xmlns:controls="clr-namespace:MyCompany.Controls;assembly=MyCompany.Controls">
 ...
</ContentPage>

 Defining a custom namespace schema

using Xamarin.Forms;

namespace MyCompany.Controls
{
 public class CircleButton : Button
 {
 ...
 }
}

 Download the sample

Types in a library can be referenced in XAML by declaring a XAML namespace for the library, with the

namespace declaration specifying the Common Language Runtime (CLR) namespace name and an assembly

name:

However, specifying a CLR namespace and assembly name in a xmlns definition can be awkward and error

prone. In addition, multiple XAML namespace declarations may be required if the library contains types in

multiple namespaces.

An alternative approach is to define a custom namespace schema, such as

http://mycompany.com/schemas/controls , that maps to one or more CLR namespaces. This enables a single XAML

namespace declaration to reference all the types in an assembly, even if they are in different namespaces. It also

enables a single XAML namespace declaration to reference types in multiple assemblies.

For more information about XAML namespaces, see XAML Namespaces in Xamarin.Forms.

The sample application contains a library that exposes some simple controls, such as CircleButton :

All the controls in the library reside in the MyCompany.Controls namespace. These controls can be exposed to a

calling assembly through a custom namespace schema.

A custom namespace schema is defined with the XmlnsDefinitionAttribute class, which specifies the mapping

between a XAML namespace and one or more CLR namespaces. The XmlnsDefinitionAttribute takes two

arguments: the XAML namespace name, and the CLR namespace name. The XAML namespace name is stored in

the XmlnsDefinitionAttribute.XmlNamespace property, and the CLR namespace name is stored in the

XmlnsDefinitionAttribute.ClrNamespace property.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/custom-namespace-schemas.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-customnamespaceschemas

NOTENOTE

using Xamarin.Forms;
using MyCompany.Controls;

[assembly: Preserve]
[assembly: XmlnsDefinition("http://mycompany.com/schemas/controls", "MyCompany.Controls")]

IMPORTANTIMPORTANT

 Consuming a custom namespace schema

namespace MyCompany.Controls
{
 public static class Controls
 {
 public static void Init()
 {
 }
 }
}

The XmlnsDefinitionAttribute class also has a property named AssemblyName , which can be optionally set to the

name of the assembly. This is only required when a CLR namespace referenced from a XmlnsDefinitionAttribute is in a

external assembly.

The XmlnsDefinitionAttribute should be defined at the assembly level in the project that contains the CLR

namespaces that will be mapped in the custom namespace schema. The following example shows the

AssemblyInfo.csAssemblyInfo.cs file from the sample application:

This code creates a custom namespace schema that maps the http://mycompany.com/schemas/controls URL to the

MyCompany.Controls CLR namespace. In addition, the Preserve attribute is specified on the assembly, to ensure

that the linker preserves all the types in the assembly.

The Preserve attribute should be applied to classes in the assembly that are mapped through the custom namespace

schema, or applied to the entire assembly.

The custom namespace schema can then be used for type resolution in XAML files.

To consume types from the custom namespace schema, the XAML compiler requires that there's a code

reference from the assembly that consumes the types, to the assembly that defines the types. This can be

accomplished by adding a class containing an Init method to the assembly that defines the types that will be

consumed through XAML:

The Init method can then be called from the assembly that consumes types from the custom namespace

schema:

using Xamarin.Forms;
using MyCompany.Controls;

namespace CustomNamespaceSchemaDemo
{
 public partial class MainPage : ContentPage
 {
 public MainPage()
 {
 Controls.Init();
 InitializeComponent();
 }
 }
}

WARNINGWARNING

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="http://mycompany.com/schemas/controls"
 x:Class="CustomNamespaceSchemaDemo.MainPage">
 <StackLayout Margin="20,35,20,20">
 ...
 <controls:CircleButton Text="+"
 BackgroundColor="Fuchsia"
 BorderColor="Black"
 CircleDiameter="100" />
 <controls:CircleButton Text="-"
 BackgroundColor="Teal"
 BorderColor="Silver"
 CircleDiameter="70" />
 ...
 </StackLayout>
</ContentPage>

Failure to include such a code reference will result in the XAML compiler being unable to locate the assembly containing

the custom namespace schema types.

To consume the CircleButton control, a XAML namespace is declared, with the namespace declaration

specifying the custom namespace schema URL:

CircleButton instances can then be added to the ContentPage by declaring them with the controls namespace

prefix.

To find the custom namespace schema types, Xamarin.Forms will search referenced assemblies for

XmlnsDefinitionAttribute instances. If the xmlns attribute for an element in a XAML file matches the

XmlNamespace property value in a XmlnsDefinitionAttribute , Xamarin.Forms will attempt to use the

XmlnsDefinitionAttribute.ClrNamespace property value for resolution of the type. If type resolution fails,

Xamarin.Forms will continue to attempt type resolution based on any additional matching

XmlnsDefinitionAttribute instances.

The result is that two CircleButton instances are displayed:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

 Related links
Custom Namespace Schemas (sample)

XAML Namespace Recommended Prefixes

XAML Namespaces in Xamarin.Forms

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-customnamespaceschemas

XAML Namespace Recommended Prefixes in
Xamarin.Forms

 11/2/2020 • 2 minutes to read • Edit Online

[assembly: XmlnsPrefix("http://xamarin.com/schemas/2014/forms", "xf")]

NOTENOTE

 Related links

The XmlnsPrefixAttribute class can be used by control authors to specify a recommended prefix to associate

with a XAML namespace, for XAML usage. The prefix is useful when supporting object tree serialization to XAML,

or when interacting with a design environment that has XAML editing features. For example:

XAML text editors could use the XmlnsPrefixAttribute as a hint for an initial XAML namespace xmlns

mapping.

XAML design environments could use the XmlnsPrefixAttribute to add mappings to the XAML when

dragging objects out of a toolbox and onto a visual design surface.

Recommended namespace prefixes should be defined at the assembly level with the XmlnsPrefixAttribute

constructor, which takes two arguments: a string that specifies the identifier of a XAML namespace, and a string

that specifies a recommended prefix:

Prefixes should use short strings, because the prefix is typically applied to all serialized elements that come from

the XAML namespace. Therefore, the prefix string length can have a noticeable effect on the size of the serialized

XAML output.

More than one XmlnsPrefixAttribute can be applied to an assembly. For example, if you have an assembly that defines

types for more than one XAML namespace, you could define different prefix values for each XAML namespace.

XAML Custom Namespace Schemas

XAML Namespaces in Xamarin.Forms

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/custom-prefix.md

Xamarin.Forms Bindable Properties
 7/8/2021 • 8 minutes to read • Edit Online

 Create a bindable property

 Create a propertyCreate a property

 Download the sample

Bindable properties extend CLR property functionality by backing a property with a BindableProperty type,

instead of backing a property with a field. The purpose of bindable properties is to provide a property system

that supports data binding, styles, templates, and values set through parent-child relationships. In addition,

bindable properties can provide default values, validation of property values, and callbacks that monitor

property changes.

Properties should be implemented as bindable properties to support one or more of the following features:

Acting as a valid target property for data binding.

Setting the property through a style.

Providing a default property value that's different from the default for the type of the property.

Validating the value of the property.

Monitoring property changes.

Examples of Xamarin.Forms bindable properties include Label.Text , Button.BorderRadius , and

StackLayout.Orientation . Each bindable property has a corresponding public static readonly field of type

BindableProperty that is exposed on the same class and that is the identifier of the bindable property. For

example, the corresponding bindable property identifier for the Label.Text property is Label.TextProperty .

The process for creating a bindable property is as follows:

1. Create a BindableProperty instance with one of the BindableProperty.Create method overloads.

2. Define property accessors for the BindableProperty instance.

All BindableProperty instances must be created on the UI thread. This means that only code that runs on the UI

thread can get or set the value of a bindable property. However, BindableProperty instances can be accessed

from other threads by marshaling to the UI thread with the Device.BeginInvokeOnMainThread method.

To create a BindableProperty instance, the containing class must derive from the BindableObject class.

However, the BindableObject class is high in the class hierarchy, so the majority of classes used for user

interface functionality support bindable properties.

A bindable property can be created by declaring a public static readonly property of type BindableProperty .

The bindable property should be set to the returned value of one of the BindableProperty.Create method

overloads. The declaration should be within the body of BindableObject derived class, but outside of any

member definitions.

At a minimum, an identifier must be specified when creating a BindableProperty , along with the following

parameters:

The name of the BindableProperty .

The type of the property.

The type of the owning object.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/bindable-properties.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-eventtocommandbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.borderradius#xamarin_forms_button_borderradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.orientation#xamarin_forms_stacklayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.create
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.begininvokeonmainthread#xamarin_forms_device_begininvokeonmainthread_system_action_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.create#xamarin_forms_bindableproperty_create_system_string_system_type_system_type_system_object_xamarin_forms_bindingmode_xamarin_forms_bindableproperty_validatevaluedelegate_xamarin_forms_bindableproperty_bindingpropertychangeddelegate_xamarin_forms_bindableproperty_bindingpropertychangingdelegate_xamarin_forms_bindableproperty_coercevaluedelegate_xamarin_forms_bindableproperty_createdefaultvaluedelegate_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

IMPORTANTIMPORTANT

public static readonly BindableProperty EventNameProperty =
 BindableProperty.Create ("EventName", typeof(string), typeof(EventToCommandBehavior), null);

 Create accessorsCreate accessors

public string EventName
{
 get { return (string)GetValue (EventNameProperty); }
 set { SetValue (EventNameProperty, value); }
}

 Consume a bindable property

The default value for the property. This ensures that the property always returns a particular default value

when it is unset, and it can be different from the default value for the type of the property. The default value

will be restored when the ClearValue method is called on the bindable property.

The naming convention for bindable properties is that the bindable property identifier must match the property name

specified in the Create method, with "Property" appended to it.

The following code shows an example of a bindable property, with an identifier and values for the four required

parameters:

This creates a BindableProperty instance named EventNameProperty , of type string . The property is owned by

the EventToCommandBehavior class, and has a default value of null .

Optionally, when creating a BindableProperty instance, the following parameters can be specified:

The binding mode. This is used to specify the direction in which property value changes will propagate. In the

default binding mode, changes will propagate from the source to the target.

A validation delegate that will be invoked when the property value is set. For more information, see

Validation callbacks.

A property changed delegate that will be invoked when the property value has changed. For more

information, see Detect property changes.

A property changing delegate that will be invoked when the property value will change. This delegate has the

same signature as the property changed delegate.

A coerce value delegate that will be invoked when the property value has changed. For more information,

see Coerce value callbacks.

A Func that's used to initialize a default property value. For more information, see Create a default value

with a Func.

Property accessors are required to use property syntax to access a bindable property. The Get accessor should

return the value that's contained in the corresponding bindable property. This can be achieved by calling the

GetValue method, passing in the bindable property identifier on which to get the value, and then casting the

result to the required type. The Set accessor should set the value of the corresponding bindable property. This

can be achieved by calling the SetValue method, passing in the bindable property identifier on which to set the

value, and the value to set.

The following code example shows accessors for the EventName bindable property:

Once a bindable property has been created, it can be consumed from XAML or code. In XAML, this is achieved

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.clearvalue#xamarin_forms_bindableobject_clearvalue_xamarin_forms_bindableproperty_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.getvalue#xamarin_forms_bindableobject_getvalue_xamarin_forms_bindableproperty_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setvalue#xamarin_forms_bindableobject_setvalue_xamarin_forms_bindableproperty_system_object_

<ContentPage ... xmlns:local="clr-namespace:EventToCommandBehavior" ...>
 ...
</ContentPage>

<ListView ...>
 <ListView.Behaviors>
 <local:EventToCommandBehavior EventName="ItemSelected" ... />
 </ListView.Behaviors>
</ListView>

var listView = new ListView ();
listView.Behaviors.Add (new EventToCommandBehavior
{
 EventName = "ItemSelected",
 ...
});

 Advanced scenarios

 Detect property changesDetect property changes

public static readonly BindableProperty EventNameProperty =
 BindableProperty.Create (
 "EventName", typeof(string), typeof(EventToCommandBehavior), null, propertyChanged: OnEventNameChanged);
...

static void OnEventNameChanged (BindableObject bindable, object oldValue, object newValue)
{
 // Property changed implementation goes here
}

 Validation callbacksValidation callbacks

by declaring a namespace with a prefix, with the namespace declaration indicating the CLR namespace name,

and optionally, an assembly name. For more information, see XAML Namespaces.

The following code example demonstrates a XAML namespace for a custom type that contains a bindable

property, which is defined within the same assembly as the application code that's referencing the custom type:

The namespace declaration is used when setting the EventName bindable property, as demonstrated in the

following XAML code example:

The equivalent C# code is shown in the following code example:

When creating a BindableProperty instance, there are a number of optional parameters that can be set to

enable advanced bindable property scenarios. This section explores these scenarios.

A static property-changed callback method can be registered with a bindable property by specifying the

propertyChanged parameter for the BindableProperty.Create method. The specified callback method will be

invoked when the value of the bindable property changes.

The following code example shows how the EventName bindable property registers the OnEventNameChanged

method as a property-changed callback method:

In the property-changed callback method, the BindableObject parameter is used to denote which instance of

the owning class has reported a change, and the values of the two object parameters represent the old and

new values of the bindable property.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.create#xamarin_forms_bindableproperty_create_system_string_system_type_system_type_system_object_xamarin_forms_bindingmode_xamarin_forms_bindableproperty_validatevaluedelegate_xamarin_forms_bindableproperty_bindingpropertychangeddelegate_xamarin_forms_bindableproperty_bindingpropertychangingdelegate_xamarin_forms_bindableproperty_coercevaluedelegate_xamarin_forms_bindableproperty_createdefaultvaluedelegate_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject

public static readonly BindableProperty AngleProperty =
 BindableProperty.Create ("Angle", typeof(double), typeof(HomePage), 0.0, validateValue: IsValidValue);
...

static bool IsValidValue (BindableObject view, object value)
{
 double result;
 bool isDouble = double.TryParse (value.ToString (), out result);
 return (result >= 0 && result <= 360);
}

 Coerce value callbacksCoerce value callbacks

IMPORTANTIMPORTANT

A static validation callback method can be registered with a bindable property by specifying the

validateValue parameter for the BindableProperty.Create method. The specified callback method will be

invoked when the value of the bindable property is set.

The following code example shows how the Angle bindable property registers the IsValidValue method as a

validation callback method:

Validation callbacks are provided with a value, and should return true if the value is valid for the property,

otherwise false . An exception will be raised if a validation callback returns false , which should be handled by

the developer. A typical use of a validation callback method is constraining the values of integers or doubles

when the bindable property is set. For example, the IsValidValue method checks that the property value is a

double within the range 0 to 360.

A static coerce value callback method can be registered with a bindable property by specifying the

coerceValue parameter for the BindableProperty.Create method. The specified callback method will be invoked

when the value of the bindable property changes.

The BindableObject type has a CoerceValue method that can be called to force a reevaluation of the value of its

BindableProperty argument, by invoking its coerce value callback.

Coerce value callbacks are used to force a reevaluation of a bindable property when the value of the property

changes. For example, a coerce value callback can be used to ensure that the value of one bindable property is

not greater than the value of another bindable property.

The following code example shows how the Angle bindable property registers the CoerceAngle method as a

coerce value callback method:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.create#xamarin_forms_bindableproperty_create_system_string_system_type_system_type_system_object_xamarin_forms_bindingmode_xamarin_forms_bindableproperty_validatevaluedelegate_xamarin_forms_bindableproperty_bindingpropertychangeddelegate_xamarin_forms_bindableproperty_bindingpropertychangingdelegate_xamarin_forms_bindableproperty_coercevaluedelegate_xamarin_forms_bindableproperty_createdefaultvaluedelegate_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.create#xamarin_forms_bindableproperty_create_system_string_system_type_system_type_system_object_xamarin_forms_bindingmode_xamarin_forms_bindableproperty_validatevaluedelegate_xamarin_forms_bindableproperty_bindingpropertychangeddelegate_xamarin_forms_bindableproperty_bindingpropertychangingdelegate_xamarin_forms_bindableproperty_coercevaluedelegate_xamarin_forms_bindableproperty_createdefaultvaluedelegate_

public static readonly BindableProperty AngleProperty = BindableProperty.Create (
 "Angle", typeof(double), typeof(HomePage), 0.0, coerceValue: CoerceAngle);
public static readonly BindableProperty MaximumAngleProperty = BindableProperty.Create (
 "MaximumAngle", typeof(double), typeof(HomePage), 360.0, propertyChanged: ForceCoerceValue);
...

static object CoerceAngle (BindableObject bindable, object value)
{
 var homePage = bindable as HomePage;
 double input = (double)value;

 if (input > homePage.MaximumAngle)
 {
 input = homePage.MaximumAngle;
 }
 return input;
}

static void ForceCoerceValue(BindableObject bindable, object oldValue, object newValue)
{
 bindable.CoerceValue(AngleProperty);
}

 Create a default value with a FuncCreate a default value with a Func

public static readonly BindableProperty SizeProperty =
 BindableProperty.Create ("Size", typeof(double), typeof(HomePage), 0.0,
 defaultValueCreator: bindable => Device.GetNamedSize (NamedSize.Large, (Label)bindable));

 Related links

The CoerceAngle method checks the value of the MaximumAngle property, and if the Angle property value is

greater than it, it coerces the value to the MaximumAngle property value. In addition, when the MaximumAngle

property changes the coerce value callback is invoked on the Angle property by calling the CoerceValue

method.

A Func can be used to initialize the default value of a bindable property, as demonstrated in the following code

example:

The defaultValueCreator parameter is set to a Func that invokes the Device.GetNamedSize method to return a

double that represents the named size for the font that is used on a Label on the native platform.

XAML Namespaces

Event To Command Behavior (sample)

Validation Callback (sample)

Coerce Value Callback (sample)

BindableProperty API

BindableObject API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.getnamedsize#xamarin_forms_device_getnamedsize_xamarin_forms_namedsize_system_type_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-eventtocommandbehavior
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-validationcallback
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-coercevaluecallback
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject

Attached Properties
 7/8/2021 • 4 minutes to read • Edit Online

 Create an attached property

 Create a propertyCreate a property

IMPORTANTIMPORTANT

public static readonly BindableProperty HasShadowProperty =
 BindableProperty.CreateAttached ("HasShadow", typeof(bool), typeof(ShadowEffect), false);

 Download the sample

Attached properties enable an object to assign a value for a property that its own class doesn't define. For

example, child elements can use attached properties to inform their parent element of how they are to be

presented in the user interface. The Grid control allows the row and column of a child to be specified by setting

the Grid.Row and Grid.Column attached properties. Grid.Row and Grid.Column are attached properties

because they are set on elements that are children of a Grid , rather than on the Grid itself.

Bindable properties should be implemented as attached properties in the following scenarios:

When there's a need to have a property setting mechanism available for classes other than the defining class.

When the class represents a service that needs to be easily integrated with other classes.

For more information about bindable properties, see Bindable Properties.

The process for creating an attached property is as follows:

1. Create a BindableProperty instance with one of the CreateAttached method overloads.

2. Provide static Get PropertyName and Set PropertyName methods as accessors for the attached

property.

When creating an attached property for use on other types, the class where the property is created does not

have to derive from BindableObject . However, the target property for accessors should be of, or derive from,

BindableObject .

An attached property can be created by declaring a public static readonly property of type BindableProperty .

The bindable property should be set to the returned value of one of the BindableProperty.CreateAttached

method overloads. The declaration should be within the body of the owning class, but outside of any member

definitions.

The naming convention for attached properties is that the attached property identifier must match the property name

specified in the CreateAttached method, with "Property" appended to it.

The following code shows an example of an attached property:

This creates an attached property named HasShadowProperty , of type bool . The property is owned by the

ShadowEffect class, and has a default value of false .

For more information about creating bindable properties, including parameters that can be specified during

creation, see Create a bindable property.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/attached-properties.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-shadoweffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.createattached
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.createattached#xamarin_forms_bindableproperty_createattached_system_string_system_type_system_type_system_object_xamarin_forms_bindingmode_xamarin_forms_bindableproperty_validatevaluedelegate_xamarin_forms_bindableproperty_bindingpropertychangeddelegate_xamarin_forms_bindableproperty_bindingpropertychangingdelegate_xamarin_forms_bindableproperty_coercevaluedelegate_xamarin_forms_bindableproperty_createdefaultvaluedelegate_

 Create accessorsCreate accessors

public static valueType GetPropertyName(BindableObject target)

public static void SetPropertyName(BindableObject target, valueType value)

public static bool GetHasShadow (BindableObject view)
{
 return (bool)view.GetValue (HasShadowProperty);
}

public static void SetHasShadow (BindableObject view, bool value)
{
 view.SetValue (HasShadowProperty, value);
}

 Consume an attached propertyConsume an attached property

<ContentPage ... xmlns:local="clr-namespace:EffectsDemo" ...>
 ...
</ContentPage>

<Label Text="Label Shadow Effect" local:ShadowEffect.HasShadow="true" />

Static Get PropertyName and Set PropertyName methods are required as accessors for the attached property,

otherwise the property system will be unable to use the attached property. The Get PropertyName accessor

should conform to the following signature:

The Get PropertyName accessor should return the value that's contained in the corresponding

BindableProperty field for the attached property. This can be achieved by calling the GetValue method, passing

in the bindable property identifier on which to get the value, and then casting the resulting value to the required

type.

The Set PropertyName accessor should conform to the following signature:

The Set PropertyName accessor should set the value of the corresponding BindableProperty field for the

attached property. This can be achieved by calling the SetValue method, passing in the bindable property

identifier on which to set the value, and the value to set.

For both accessors, the target object should be of, or derive from, BindableObject .

The following code example shows accessors for the HasShadow attached property:

Once an attached property has been created, it can be consumed from XAML or code. In XAML, this is achieved

by declaring a namespace with a prefix, with the namespace declaration indicating the Common Language

Runtime (CLR) namespace name, and optionally an assembly name. For more information, see XAML

Namespaces.

The following code example demonstrates a XAML namespace for a custom type that contains an attached

property, which is defined within the same assembly as the application code that's referencing the custom type:

The namespace declaration is then used when setting the attached property on a specific control, as

demonstrated in the following XAML code example:

The equivalent C# code is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.getvalue#xamarin_forms_bindableobject_getvalue_xamarin_forms_bindableproperty_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setvalue#xamarin_forms_bindableobject_setvalue_xamarin_forms_bindableproperty_system_object_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject

var label = new Label { Text = "Label Shadow Effect" };
ShadowEffect.SetHasShadow (label, true);

 Consume an attached property with a styleConsume an attached property with a style

<Style x:Key="ShadowEffectStyle" TargetType="Label">
 <Style.Setters>
 <Setter Property="local:ShadowEffect.HasShadow" Value="true" />
 </Style.Setters>
</Style>

<Label Text="Label Shadow Effect" Style="{StaticResource ShadowEffectStyle}" />

 Advanced scenarios

 Related links

Attached properties can also be added to a control by a style. The following XAML code example shows an

explicit style that uses the HasShadow attached property, that can be applied to Label controls:

The Style can be applied to a Label by setting its Style property to the Style instance using the

StaticResource markup extension, as demonstrated in the following code example:

For more information about styles, see Styles.

When creating an attached property, there are a number of optional parameters that can be set to enable

advanced attached property scenarios. This includes detecting property changes, validating property values, and

coercing property values. For more information, see Advanced scenarios.

Bindable Properties

XAML Namespaces

Shadow Effect (sample)

BindableProperty API

BindableObject API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-shadoweffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject

Xamarin.Forms resource dictionaries
 7/8/2021 • 8 minutes to read • Edit Online

 Create resources in XAML

 Download the sample

A ResourceDictionary is a repository for resources that are used by a Xamarin.Forms application. Typical

resources that are stored in a ResourceDictionary include styles, control templates, data templates, colors, and

converters.

In XAML, resources that are stored in a ResourceDictionary can be referenced and applied to elements by using

the StaticResource or DynamicResource markup extension. In C#, resources can also be defined in a

ResourceDictionary and then referenced and applied to elements by using a string-based indexer. However,

there's little advantage to using a ResourceDictionary in C#, as shared objects can be stored as fields or

properties, and accessed directly without having to first retrieve them from a dictionary.

Every VisualElement derived object has a Resources property, which is a ResourceDictionary that can contain

resources. Similarly, an Application derived object has a Resources property, which is a ResourceDictionary

that can contain resources.

A Xamarin.Forms application contains only class that derives from Application , but often makes use of many

classes that derive from VisualElement , including pages, layouts, and controls. Any of these objects can have its

Resources property set to a ResourceDictionary containing resources. Choosing where to put a particular

ResourceDictionary impacts where the resources can be used:

Resources in a ResourceDictionary that is attached to a view such as Button or Label can only be applied

to that particular object.

Resources in a ResourceDictionary attached to a layout such as StackLayout or Grid can be applied to the

layout and all the children of that layout.

Resources in a ResourceDictionary defined at the page level can be applied to the page and to all its children.

Resources in a ResourceDictionary defined at the application level can be applied throughout the application.

With the exception of implicit styles, each resource in resource dictionary must have a unique string key that's

defined with the x:Key attribute.

The following XAML shows resources defined in an application level ResourceDictionary in the App.xamlApp.xaml file:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/resource-dictionaries.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-resourcedictionaries
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ResourceDictionaryDemo.App">
 <Application.Resources>

 <Thickness x:Key="PageMargin">20</Thickness>

 <!-- Colors -->
 <Color x:Key="AppBackgroundColor">AliceBlue</Color>
 <Color x:Key="NavigationBarColor">#1976D2</Color>
 <Color x:Key="NavigationBarTextColor">White</Color>
 <Color x:Key="NormalTextColor">Black</Color>

 <!-- Implicit styles -->
 <Style TargetType="{x:Type NavigationPage}">
 <Setter Property="BarBackgroundColor"
 Value="{StaticResource NavigationBarColor}" />
 <Setter Property="BarTextColor"
 Value="{StaticResource NavigationBarTextColor}" />
 </Style>

 <Style TargetType="{x:Type ContentPage}"
 ApplyToDerivedTypes="True">
 <Setter Property="BackgroundColor"
 Value="{StaticResource AppBackgroundColor}" />
 </Style>

 </Application.Resources>
</Application>

NOTENOTE

 Consume resources in XAML

In this example, the resource dictionary defines a Thickness resource, multiple Color resources, and two

implicit Style resources. For more information about the App class, see Xamarin.Forms App Class.

It's also valid to place all resources between explicit ResourceDictionary tags. However, since Xamarin.Forms 3.0 the

ResourceDictionary tags are not required. Instead, the ResourceDictionary object is created automatically, and you

can insert the resources directly between the Resources property-element tags.

Each resource has a key that is specified using the x:Key attribute, which becomes its dictionary key in the

ResourceDictionary . The key is used to reference a resource from the ResourceDictionary with the

StaticResource or DynamicResource markup extension.

The StaticResource markup extension is similar to the DynamicResource markup extension in that both use a

dictionary key to reference a value from a resource dictionary. However, while the StaticResource markup

extension performs a single dictionary lookup, the DynamicResource markup extension maintains a link to the

dictionary key. Therefore, if the dictionary entry associated with the key is replaced, the change is applied to the

visual element. This enables runtime resource changes to be made in an application. For more information

about markup extensions, see XAML Markup Extensions.

The following XAML example shows how to consume resources, and also defines additional resources in a

StackLayout :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.staticresourceextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.dynamicresourceextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ResourceDictionaryDemo.HomePage"
 Title="Home Page">
 <StackLayout Margin="{StaticResource PageMargin}">
 <StackLayout.Resources>
 <!-- Implicit style -->
 <Style TargetType="Button">
 <Setter Property="FontSize" Value="Medium" />
 <Setter Property="BackgroundColor" Value="#1976D2" />
 <Setter Property="TextColor" Value="White" />
 <Setter Property="CornerRadius" Value="5" />
 </Style>
 </StackLayout.Resources>

 <Label Text="This app demonstrates consuming resources that have been defined in resource
dictionaries." />
 <Button Text="Navigate"
 Clicked="OnNavigateButtonClicked" />
 </StackLayout>
</ContentPage>

IMPORTANTIMPORTANT

 Resource lookup behavior

In this example, the ContentPage object consumes the implicit style defined in the application level resource

dictionary. The StackLayout object consumes the PageMargin resource defined in the application level resource

dictionary, while the Button object consumes the implicit style defined in the StackLayout resource dictionary.

This results in the appearance shown in the following screenshots:

Resources that are specific to a single page shouldn't be included in an application level resource dictionary, as such

resources will then be parsed at application startup instead of when required by a page. For more information, see Reduce

the Application Resource Dictionary Size.

The following lookup process occurs when a resource is referenced with the StaticResource or

DynamicResource markup extension:

The requested key is checked for in the resource dictionary, if it exists, for the element that sets the property.

If the requested key is found, its value is returned and the lookup process terminates.

If a match isn't found, the lookup process searches the visual tree upwards, checking the resource dictionary

of each parent element. If the requested key is found, its value is returned and the lookup process terminates.

Otherwise the process continues upwards until the root element is reached.

If a match isn't found at the root element, the application level resource dictionary is examined.

If a match still isn't found, a XamlParseException is thrown.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/resource-dictionaries-images/consuming-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.staticresourceextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.dynamicresourceextension

 Override resources

 Stand-alone resource dictionaries

<ResourceDictionary xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">
 <DataTemplate x:Key="PersonDataTemplate">
 <ViewCell>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.3*" />
 </Grid.ColumnDefinitions>
 <Label Text="{Binding Name}"
 TextColor="{StaticResource NormalTextColor}"
 FontAttributes="Bold" />
 <Label Grid.Column="1"
 Text="{Binding Age}"
 TextColor="{StaticResource NormalTextColor}" />
 <Label Grid.Column="2"
 Text="{Binding Location}"
 TextColor="{StaticResource NormalTextColor}"
 HorizontalTextAlignment="End" />
 </Grid>
 </ViewCell>
 </DataTemplate>
</ResourceDictionary>

Therefore, when the XAML parser encounters a StaticResource or DynamicResource markup extension, it

searches for a matching key by traveling up through the visual tree, using the first match it finds. If this search

ends at the page and the key still hasn't been found, the XAML parser searches the ResourceDictionary attached

to the App object. If the key is still not found, an exception is thrown.

When resources share keys, resources defined lower in the visual tree will take precedence over those defined

higher up. For example, setting an AppBackgroundColor resource to AliceBlue at the application level will be

overridden by a page level AppBackgroundColor resource set to Teal . Similarly, a page level AppBackgroundColor

resource will be overridden by a control level AppBackgroundColor resource.

A class derived from ResourceDictionary can also be in a stand-alone XAML file. The XAML file can then be

shared among applications.

To create such a file, add a new Content ViewContent View or Content PageContent Page item to the project (but not a Content ViewContent View

or Content PageContent Page with only a C# file). Delete the code-behind file, and in the XAML file change the name of the

base class from ContentView or ContentPage to ResourceDictionary . In addition, remove the x:Class attribute

from the root tag of the file.

The following XAML example shows a ResourceDictionary named MyResourceDictionar y.xamlMyResourceDictionar y.xaml :

In this example, the ResourceDictionary contains a single resource, which is an object of type DataTemplate .

MyResourceDictionar y.xamlMyResourceDictionar y.xaml can be consumed by merging it into another resource dictionary.

By default, the linker will remove stand-alone XAML files from release builds when the linker behavior is set to

link all assemblies. To ensure that stand-alone XAML files remain in a release build:

1. Add a custom Preserve attribute to the assembly containing the stand-alone XAML files. For more

information, see Preserving code.

2. Set the Preserve attribute at the assembly level:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/linker

 Merged resource dictionaries

 Merge local resource dictionariesMerge local resource dictionaries

<ContentPage ...>
 <ContentPage.Resources>
 <!-- Add more resources here -->
 <ResourceDictionary Source="MyResourceDictionary.xaml" />
 <!-- Add more resources here -->
 </ContentPage.Resources>
 ...
</ContentPage>

IMPORTANTIMPORTANT

 Merge resource dictionaries from other assembliesMerge resource dictionaries from other assemblies

WARNINGWARNING

[assembly:Preserve(AllMembers = true)]

For more information about linking, see Linking Xamarin.iOS apps and Linking on Android.

Merged resource dictionaries combine one or more ResourceDictionary objects into another

ResourceDictionary .

A local ResourceDictionary file can be merged into another ResourceDictionary by creating a

ResourceDictionary object whose Source property is set to the filename of the XAML file with the resources:

This syntax does not instantiate the MyResourceDictionary class. Instead, it references the XAML file. For that

reason, when setting the Source property, a code-behind file isn't required, and the x:Class attribute can be

removed from the root tag of the MyResourceDictionar y.xamlMyResourceDictionar y.xaml file.

The Source property can only be set from XAML.

A ResourceDictionary can also be merged into another ResourceDictionary by adding it into the

MergedDictionaries property of the ResourceDictionary . This technique allows resource dictionaries to be

merged, regardless of the assembly in which they reside. Merging resource dictionaries from external

assemblies requires the ResourceDictionary to have a build action set to EmbeddedResourceEmbeddedResource, to have a code-

behind file, and to define the x:Class attribute in the root tag of the file.

The ResourceDictionary class also defines a MergedWith property. However, this property has been deprecated and

should no longer be used.

The following code example shows two resource dictionaries being added to the MergedDictionaries collection

of a page level ResourceDictionary :

https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/linker
https://docs.microsoft.com/en-us/xamarin/android/deploy-test/linker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.source#xamarin_forms_resourcedictionary_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.source#xamarin_forms_resourcedictionary_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.source#xamarin_forms_resourcedictionary_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.mergeddictionaries#xamarin_forms_resourcedictionary_mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.mergedwith#xamarin_forms_resourcedictionary_mergedwith
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.mergeddictionaries#xamarin_forms_resourcedictionary_mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<ContentPage ...
 xmlns:local="clr-namespace:ResourceDictionaryDemo"
 xmlns:theme="clr-namespace:MyThemes;assembly=MyThemes">
 <ContentPage.Resources>
 <ResourceDictionary>
 <!-- Add more resources here -->
 <ResourceDictionary.MergedDictionaries>
 <!-- Add more resource dictionaries here -->
 <local:MyResourceDictionary />
 <theme:LightTheme />
 <!-- Add more resource dictionaries here -->
 </ResourceDictionary.MergedDictionaries>
 <!-- Add more resources here -->
 </ResourceDictionary>
 </ContentPage.Resources>
 ...
</ContentPage>

IMPORTANTIMPORTANT

NOTENOTE

 Related links

 Related video

In this example, a resource dictionary from the same assembly, and a resource dictionary from an external

assembly, are merged into the page level resource dictionary. In addition, you can also add other

ResourceDictionary objects within the MergedDictionaries property-element tags, and other resources outside

of those tags.

There can be only one MergedDictionaries property-element tag in a ResourceDictionary , but you can put as many

ResourceDictionary objects in there as required.

When merged ResourceDictionary resources share identical x:Key attribute values, Xamarin.Forms uses the

following resource precedence:

1. The resources local to the resource dictionary.

2. The resources contained in the resource dictionaries that were merged via the MergedDictionaries collection,

in the reverse order they are listed in the MergedDictionaries property.

Searching resource dictionaries can be a computationally intensive task if an application contains multiple, large resource

dictionaries. Therefore, to avoid unnecessary searching, you should ensure that each page in an application only uses

resource dictionaries that are appropriate to the page.

Resource Dictionaries (sample)

XAML Markup Extensions

Xamarin.Forms Styles

Linking Xamarin.iOS apps

Linking on Android

ResourceDictionary API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.mergeddictionaries#xamarin_forms_resourcedictionary_mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-resourcedictionaries
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/linker
https://docs.microsoft.com/en-us/xamarin/android/deploy-test/linker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://channel9.msdn.com/Shows/XamarinShow/XamarinForms-101-Application-Resources/player?nocookie=true

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Passing Arguments in XAML
 7/8/2021 • 3 minutes to read • Edit Online

 Overview

 Passing Constructor Arguments

 Download the sample

This article demonstrates using the XAML attributes that can be used to pass arguments to non-default

constructors, to call factory methods, and to specify the type of a generic argument.

It's often necessary to instantiate objects with constructors that require arguments, or by calling a static creation

method. This can be achieved in XAML by using the x:Arguments and x:FactoryMethod attributes:

The x:Arguments attribute is used to specify constructor arguments for a non-default constructor, or for a

factory method object declaration. For more information, see Passing Constructor Arguments.

The x:FactoryMethod attribute is used to specify a factory method that can be used to initialize an object. For

more information, see Calling Factory Methods.

In addition, the x:TypeArguments attribute can be used to specify the generic type arguments to the constructor

of a generic type. For more information, see Specifying a Generic Type Argument.

Arguments can be passed to a non-default constructor using the x:Arguments attribute. Each constructor

argument must be delimited within an XML element that represents the type of the argument. Xamarin.Forms

supports the following elements for basic types:

x:Array

x:Boolean

x:Byte

x:Char

x:DateTime

x:Decimal

x:Double

x:Int16

x:Int32

x:Int64

x:Object

x:Single

x:String

x:TimeSpan

The following code example demonstrates using the x:Arguments attribute with three Color constructors:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/passing-arguments.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-passingconstructorarguments
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

<BoxView HeightRequest="150" WidthRequest="150" HorizontalOptions="Center">
 <BoxView.Color>
 <Color>
 <x:Arguments>
 <x:Double>0.9</x:Double>
 </x:Arguments>
 </Color>
 </BoxView.Color>
</BoxView>
<BoxView HeightRequest="150" WidthRequest="150" HorizontalOptions="Center">
 <BoxView.Color>
 <Color>
 <x:Arguments>
 <x:Double>0.25</x:Double>
 <x:Double>0.5</x:Double>
 <x:Double>0.75</x:Double>
 </x:Arguments>
 </Color>
 </BoxView.Color>
</BoxView>
<BoxView HeightRequest="150" WidthRequest="150" HorizontalOptions="Center">
 <BoxView.Color>
 <Color>
 <x:Arguments>
 <x:Double>0.8</x:Double>
 <x:Double>0.5</x:Double>
 <x:Double>0.2</x:Double>
 <x:Double>0.5</x:Double>
 </x:Arguments>
 </Color>
 </BoxView.Color>
</BoxView>

The number of elements within the x:Arguments tag, and the types of these elements, must match one of the

Color constructors. The Color constructor with a single parameter requires a grayscale value from 0 (black) to

1 (white). The Color constructor with three parameters requires a red, green, and blue value ranging from 0 to

1. The Color constructor with four parameters adds an alpha channel as the fourth parameter.

The following screenshots show the result of calling each Color constructor with the specified argument values:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.-ctor#xamarin_forms_color__ctor_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.-ctor#xamarin_forms_color__ctor_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.-ctor#xamarin_forms_color__ctor_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

 Calling Factory Methods
Factory methods can be called in XAML by specifying the method's name using the x:FactoryMethod attribute,

and its arguments using the x:Arguments attribute. A factory method is a public static method that returns

objects or values of the same type as the class or structure that defines the methods.

The Color structure defines a number of factory methods, and the following code example demonstrates

calling three of them:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

<BoxView HeightRequest="150" WidthRequest="150" HorizontalOptions="Center">
 <BoxView.Color>
 <Color x:FactoryMethod="FromRgba">
 <x:Arguments>
 <x:Int32>192</x:Int32>
 <x:Int32>75</x:Int32>
 <x:Int32>150</x:Int32>
 <x:Int32>128</x:Int32>
 </x:Arguments>
 </Color>
 </BoxView.Color>
</BoxView>
<BoxView HeightRequest="150" WidthRequest="150" HorizontalOptions="Center">
 <BoxView.Color>
 <Color x:FactoryMethod="FromHsla">
 <x:Arguments>
 <x:Double>0.23</x:Double>
 <x:Double>0.42</x:Double>
 <x:Double>0.69</x:Double>
 <x:Double>0.7</x:Double>
 </x:Arguments>
 </Color>
 </BoxView.Color>
</BoxView>
<BoxView HeightRequest="150" WidthRequest="150" HorizontalOptions="Center">
 <BoxView.Color>
 <Color x:FactoryMethod="FromHex">
 <x:Arguments>
 <x:String>#FF048B9A</x:String>
 </x:Arguments>
 </Color>
 </BoxView.Color>
</BoxView>

The number of elements within the x:Arguments tag, and the types of these elements, must match the

arguments of the factory method being called. The FromRgba factory method requires four Int32 parameters,

which represent the red, green, blue, and alpha values, ranging from 0 to 255 respectively. The FromHsla factory

method requires four Double parameters, which represent the hue, saturation, luminosity, and alpha values,

ranging from 0 to 1 respectively. The FromHex factory method requires a String that represents the

hexadecimal (A)RGB color.

The following screenshots show the result of calling each Color factory method with the specified argument

values:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromrgba#xamarin_forms_color_fromrgba_system_int32_system_int32_system_int32_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/system.int32
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhsla#xamarin_forms_color_fromhsla_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/system.double
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhex#xamarin_forms_color_fromhex_system_string_
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

 Specifying a Generic Type Argument

<ContentPage ...>
 <StackLayout>
 <StackLayout.Margin>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0,20,0,0" />
 <On Platform="Android" Value="5, 10" />
 <On Platform="UWP" Value="10" />
 </OnPlatform>
 </StackLayout.Margin>
 </StackLayout>
</ContentPage>

 Related Links

Generic type arguments for the constructor of a generic type can be specified using the x:TypeArguments

attribute, as demonstrated in the following code example:

The OnPlatform class is a generic class and must be instantiated with an x:TypeArguments attribute that matches

the target type. In the On class, the Platform attribute can accept a single string value, or multiple comma-

delimited string values. In this example, the StackLayout.Margin property is set to a platform-specific

Thickness .

For more information about generic type arguments, see Generics in Xamarin.Forms XAML.

Passing Constructor Arguments (sample)

Calling Factory Methods (sample)

XAML Namespaces

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on.platform#xamarin_forms_on_platform
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-passingconstructorarguments
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-callingfactorymethods

Generics in Xamarin.Forms XAML

Generics in Xamarin.Forms XAML
 7/8/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

 Single primitive type argument

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:scg="clr-namespace:System.Collections.Generic;assembly=netstandard"
 ...>
 <CollectionView>
 <CollectionView.ItemsSource>
 <scg:List x:TypeArguments="x:String">
 <x:String>Baboon</x:String>
 <x:String>Capuchin Monkey</x:String>
 <x:String>Blue Monkey</x:String>
 <x:String>Squirrel Monkey</x:String>
 <x:String>Golden Lion Tamarin</x:String>
 <x:String>Howler Monkey</x:String>
 <x:String>Japanese Macaque</x:String>
 </scg:List>
 </CollectionView.ItemsSource>
 </CollectionView>
</ContentPage>

 Download the sample

Xamarin.Forms XAML provides support for consuming generic CLR types by specifying the generic constraints

as type arguments. This support is provided by the x:TypeArguments directive, which passes the constraining

type arguments of a generic to the constructor of the generic type.

Defining generic classes in Xamarin.Forms XAML, with the x:TypeArguments directive, is unsupported.

Type arguments are specified as a string, and are typically prefixed, such as sys:String and sys:Int32 .

Prefixing is required because the typical types of CLR generic constraints come from libraries that are not

mapped to the default Xamarin.Forms namespace. However, the XAML 2009 built-in types such as x:String

and x:Int32 , can also be specified as type arguments, where x is the XAML language namespace for XAML

2009. For more information about the XAML 2009 built-in types, see XAML 2009 Language Primitives.

Multiple type arguments can be specified by using a comma delimiter. In addition, if a generic constraint uses

generic types, the nested constraint type arguments should be contained in parentheses.

The x:Type markup extension supplies a CLR type reference for a generic type, and has a similar function to the

typeof operator in C#. For more information, see x:Type markup extension.

A single primitive type argument can be specified as a prefixed string argument using the x:TypeArguments

directive:

In this example, System.Collections.Generic is defined as the scg XAML namespace. The

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/generics.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-generics/
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/xaml-services/types-for-primitives#xaml-2009-language-primitives

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:scg="clr-namespace:System.Collections.Generic;assembly=netstandard"
 xmlns:sys="clr-namespace:System;assembly=netstandard"
 ...>
 <CollectionView>
 <CollectionView.ItemsSource>
 <scg:List x:TypeArguments="sys:String">
 <sys:String>Baboon</sys:String>
 <sys:String>Capuchin Monkey</sys:String>
 <sys:String>Blue Monkey</sys:String>
 <sys:String>Squirrel Monkey</sys:String>
 <sys:String>Golden Lion Tamarin</sys:String>
 <sys:String>Howler Monkey</sys:String>
 <sys:String>Japanese Macaque</sys:String>
 </scg:List>
 </CollectionView.ItemsSource>
 </CollectionView>
</ContentPage>

 Single object type argument

CollectionView.ItemsSource property is set to a List<T> that's instantiated with a string type argument, using

the XAML 2009 built-in x:String type. The List<string> collection is initialized with multiple string items.

Alternatively, but equivalently, the List<T> collection can be instantiated with the CLR String type:

A single object type argument can be specified as a prefixed string argument using the x:TypeArguments

directive:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:models="clr-namespace:GenericsDemo.Models"
 xmlns:scg="clr-namespace:System.Collections.Generic;assembly=netstandard"
 ...>
 <CollectionView>
 <CollectionView.ItemsSource>
 <scg:List x:TypeArguments="models:Monkey">
 <models:Monkey Name="Baboon"
 Location="Africa and Asia"

ImageUrl="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Papio_anubis_%28Serengeti%2C_2009%29.jpg
/200px-Papio_anubis_%28Serengeti%2C_2009%29.jpg" />
 <models:Monkey Name="Capuchin Monkey"
 Location="Central and South America"

ImageUrl="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Capuchin_Costa_Rica.jpg/200px-
Capuchin_Costa_Rica.jpg" />
 <models:Monkey Name="Blue Monkey"
 Location="Central and East Africa"

ImageUrl="https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/BlueMonkey.jpg/220px-BlueMonkey.jpg" />
 </scg:List>
 </CollectionView.ItemsSource>
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2"
 Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</ContentPage>

 Multiple type arguments

In this example, GenericsDemo.Models is defined as the models XAML namespace, and

System.Collections.Generic is defined as the scg XAML namespace. The CollectionView.ItemsSource property

is set to a List<T> that's instantiated with a Monkey type argument. The List<Monkey> collection is initialized

with multiple Monkey items, and a DataTemplate that defines the appearance of each Monkey object is set as the

ItemTemplate of the CollectionView .

Multiple type arguments can be specified as prefixed string arguments, delimited by a comma, using the

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

x:TypeArguments directive. When a generic constraint uses generic types, the nested constraint type arguments

are contained in parentheses:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:models="clr-namespace:GenericsDemo.Models"
 xmlns:scg="clr-namespace:System.Collections.Generic;assembly=netstandard"
 ...>
 <CollectionView>
 <CollectionView.ItemsSource>
 <scg:List x:TypeArguments="scg:KeyValuePair(x:String,models:Monkey)">
 <scg:KeyValuePair x:TypeArguments="x:String,models:Monkey">
 <x:Arguments>
 <x:String>Baboon</x:String>
 <models:Monkey Location="Africa and Asia"

ImageUrl="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Papio_anubis_%28Serengeti%2C_2009%29.jpg
/200px-Papio_anubis_%28Serengeti%2C_2009%29.jpg" />
 </x:Arguments>
 </scg:KeyValuePair>
 <scg:KeyValuePair x:TypeArguments="x:String,models:Monkey">
 <x:Arguments>
 <x:String>Capuchin Monkey</x:String>
 <models:Monkey Location="Central and South America"

ImageUrl="https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Capuchin_Costa_Rica.jpg/200px-
Capuchin_Costa_Rica.jpg" />
 </x:Arguments>
 </scg:KeyValuePair>
 <scg:KeyValuePair x:TypeArguments="x:String,models:Monkey">
 <x:Arguments>
 <x:String>Blue Monkey</x:String>
 <models:Monkey Location="Central and East Africa"

ImageUrl="https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/BlueMonkey.jpg/220px-BlueMonkey.jpg" />
 </x:Arguments>
 </scg:KeyValuePair>
 </scg:List>
 </CollectionView.ItemsSource>
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2"
 Source="{Binding Value.ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Key}"
 FontAttributes="Bold" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Value.Location}"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</ContentPage

 Related links

In this example, GenericsDemo.Models is defined as the models XAML namespace, and

System.Collections.Generic is defined as the scg XAML namespace. The CollectionView.ItemsSource property

is set to a List<T> that's instantiated with a KeyValuePair<TKey, TValue> constraint, with the inner constraint

type arguments string and Monkey . The List<KeyValuePair<string,Monkey>> collection is initialized with

multiple KeyValuePair items, using the non-default KeyValuePair constructor, and a DataTemplate that defines

the appearance of each Monkey object is set as the ItemTemplate of the CollectionView . For information on

passing arguments to a non-default constructor, see Passing constructor arguments.

Generics in XAML (sample)

XAML 2009 Language Primitives

x:Type markup extension

Passing constructor arguments

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-generics/
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/xaml-services/types-for-primitives#xaml-2009-language-primitives

XAML Field Modifiers in Xamarin.Forms
 11/2/2020 • 2 minutes to read • Edit Online

NOTENOTE

<Label x:Name="privateLabel" />
<Label x:Name="internalLabel" x:FieldModifier="internal" />
<Label x:Name="publicLabel" x:FieldModifier="public" />

IMPORTANTIMPORTANT

The x:FieldModifier namespace attribute specifies the access level for generated fields for named XAML

elements. Valid values of the attribute are:

private – specifies that the generated field for the XAML element is accessible only within the body of the

class in which it is declared.

public – specifies that the generated field for the XAML element has no access restrictions.

protected – specifies that the generated field for the XAML element is accessible within its class and by

derived class instances.

internal – specifies that the generated field for the XAML element is accessible only within types in the

same assembly.

notpublic – specifies that the generated field for the XAML element is accessible only within types in the

same assembly.

By default, if the value of the attribute isn't set, the generated field for the element will be private .

The value of the attribute can use any casing, as it will be converted to lowercase by Xamarin.Forms.

The following conditions must be met for an x:FieldModifier attribute to be processed:

The top-level XAML element must be a valid x:Class .

The current XAML element has an x:Name specified.

The following XAML shows examples of setting the attribute:

The x:FieldModifier attribute cannot be used to specify the access level of a XAML class.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/field-modifiers.md

Loading XAML at Runtime in Xamarin.Forms
 7/8/2021 • 2 minutes to read • Edit Online

 Background

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();
 }
}

private void InitializeComponent()
{
 global::Xamarin.Forms.Xaml.Extensions.LoadFromXaml(this, typeof(MainPage));
 ...
}

 Loading XAML at runtime

WARNINGWARNING

 Download the sample

The Xamarin.Forms.Xaml namespace includes two LoadFromXaml extension methods that can be used to load,

and parse XAML at runtime.

When a Xamarin.Forms XAML class is constructed, the LoadFromXaml method is indirectly called. This occurs

because the code-behind file for a XAML class calls the InitializeComponent method from its constructor :

When Visual Studio builds a project containing a XAML file, it parses the XAML file to generate a C# code file (for

example, MainPage.xaml.g.csMainPage.xaml.g.cs) that contains the definition of the InitializeComponent method:

The InitializeComponent method calls the LoadFromXaml method to extract the XAML file (or its compiled

binary) from the .NET Standard library. After extraction, it initializes all of the objects defined in the XAML file,

connects them all together in parent-child relationships, attaches event handlers defined in code to events set in

the XAML file, and sets the resultant tree of objects as the content of the page.

The LoadFromXaml methods are public , and therefore can be called from Xamarin.Forms applications to load,

and parse XAML at runtime. This permits scenarios such as an application downloading XAML from a web

service, creating the required view from the XAML, and displaying it in the application.

Loading XAML at runtime has a significant performance cost, and generally should be avoided.

The following code example shows a simple usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/xaml/runtime-load.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-loadruntimexaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.extensions.loadfromxaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.extensions.loadfromxaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.extensions.loadfromxaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.extensions.loadfromxaml

using Xamarin.Forms.Xaml;
...

string navigationButtonXAML = "<Button Text=\"Navigate\" />";
Button navigationButton = new Button().LoadFromXaml(navigationButtonXAML);
...
_stackLayout.Children.Add(navigationButton);

NOTENOTE

using Xamarin.Forms.Xaml;
...

// See the sample for the full XAML string
string pageXAML = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n<ContentPage
xmlns=\"http://xamarin.com/schemas/2014/forms\"\nxmlns:x=\"http://schemas.microsoft.com/winfx/2009/xaml\"\nx
:Class=\"LoadRuntimeXAML.CatalogItemsPage\"\nTitle=\"Catalog Items\">\n</ContentPage>";

ContentPage page = new ContentPage().LoadFromXaml(pageXAML);
await Navigation.PushAsync(page);

 Accessing elements

// See the sample for the full XAML string
string pageXAML = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n<ContentPage
xmlns=\"http://xamarin.com/schemas/2014/forms\"\nxmlns:x=\"http://schemas.microsoft.com/winfx/2009/xaml\"\nx
:Class=\"LoadRuntimeXAML.CatalogItemsPage\"\nTitle=\"Catalog Items\">\n<StackLayout>\n<Label
x:Name=\"monkeyName\"\n />\n</StackLayout>\n</ContentPage>";
ContentPage page = new ContentPage().LoadFromXaml(pageXAML);

Label monkeyLabel = page.FindByName<Label>("monkeyName");
monkeyLabel.Text = "Seated Monkey";
...

 Related links

In this example, a Button instance is created, with its Text property value being set from the XAML defined in

the string . The Button is then added to a StackLayout that has been defined in the XAML for the page.

The LoadFromXaml extension methods allow a generic type argument to be specified. However, it's rarely necessary to

specify the type argument, as it will be inferred from the type of the instance its operating on.

The LoadFromXaml method can be used to inflate any XAML, with the following example inflating a ContentPage

and then navigating to it:

Loading XAML at runtime with the LoadFromXaml method does not permit strongly-typed access to the XAML

elements that have specified runtime object names (using x:Name). However, these XAML elements can be

retrieved using the FindByName method, and then accessed as required:

In this example, the XAML for a ContentPage is inflated. This XAML includes a Label named monkeyName , which

is retrieved using the FindByName method, before its Text property is set.

LoadRuntimeXAML (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.text#xamarin_forms_button_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.extensions.loadfromxaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.extensions.loadfromxaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.extensions.loadfromxaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.namescopeextensions.findbyname
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.namescopeextensions.findbyname
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xaml-loadruntimexaml

Xamarin.Forms Accessibility
 11/2/2020 • 2 minutes to read • Edit Online

 Testing Accessibility

 Related Links

 Related Video

Building an accessible application ensures that the application is usable by people who approach the user

interface with a range of needs and experiences.

Making a Xamarin.Forms application accessible means thinking about the layout and design of many user

interface elements. For guidelines on issues to consider, see the Accessibility Checklist. Many accessibility

concerns such as large fonts, and suitable color and contrast settings can already be addressed by

Xamarin.Forms APIs.

The Android accessibility and iOS accessibility guides contain details of the native APIs exposed by Xamarin, and

the UWP accessibility guide on MSDN explains the native approach on that platform. These APIs are used to

fully implement accessible applications on each platform.

Xamarin.Forms does not currently have built-in support for all of the accessibility APIs available on each of the

underlying platforms. However, it does support setting automation properties on user interface elements to

support screen reader and navigation assistance tools, which is one of the most important parts of building

accessible applications. For more information, see Automation Properties.

Xamarin.Forms applications can also have the tab order of controls specified, to improve usability and

accessibility. For more information, see Keyboard Accessibility.

Other accessibility APIs (such as PostNotification on iOS) may be better suited to a DependencyService or

Custom Renderer implementation. These are not covered in this guide.

Xamarin.Forms applications typically target multiple platforms, which means testing the accessibility features

according to the platform. Follow these links to learn how to test accessibility on each platform:

iOS TestingiOS Testing

Android TestingAndroid Testing

Windows AccScope (MSDN)Windows AccScope (MSDN)

Cross-platform Accessibility

Automation Properties

Keyboard Accessibility

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/accessibility/index.md
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/windows/uwp/design/accessibility/basic-accessibility-information
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/accscope
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/accessibility
https://channel9.msdn.com/Shows/XamarinShow/Making-Mobile-Apps-Accessible/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Automation Properties in Xamarin.Forms
 7/8/2021 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Download the sample

Xamarin.Forms allows accessibility values to be set on user interface elements by using attached properties

from the AutomationProperties class, which in turn set native accessibility values. This article explains how to

use the AutomationProperties class, so that a screen reader can speak about the elements on the page.

Xamarin.Forms allows automation properties to be set on user interface elements via the following attached

properties:

AutomationProperties.IsInAccessibleTree – indicates whether the element is available to an accessible

application. For more information, see AutomationProperties.IsInAccessibleTree.

AutomationProperties.Name – a short description of the element that serves as a speakable identifier for the

element. For more information, see AutomationProperties.Name.

AutomationProperties.HelpText – a longer description of the element, which can be thought of as tooltip text

associated with the element. For more information, see AutomationProperties.HelpText.

AutomationProperties.LabeledBy – allows another element to define accessibility information for the current

element. For more information, see AutomationProperties.LabeledBy.

These attached properties set native accessibility values so that a screen reader can speak about the element.

For more information about attached properties, see Attached Properties.

Using the AutomationProperties attached properties may impact UI Test execution on Android. The AutomationId ,

AutomationProperties.Name and AutomationProperties.HelpText properties will both set the native

ContentDescription property, with the AutomationProperties.Name and AutomationProperties.HelpText

property values taking precedence over the AutomationId value (if both AutomationProperties.Name and

AutomationProperties.HelpText are set, the values will be concatenated). This means that any tests looking for

AutomationId will fail if AutomationProperties.Name or AutomationProperties.HelpText are also set on the

element. In this scenario, UI Tests should be altered to look for the value of AutomationProperties.Name or

AutomationProperties.HelpText , or a concatenation of both.

Each platform has a different screen reader to narrate the accessibility values:

iOS has VoiceOver. For more information, see Test Accessibility on Your Device with VoiceOver on

developer.apple.com.

Android has TalkBack. For more information, see Testing Your App's Accessibility on developer.android.com.

Windows has Narrator. For more information, see Verify main app scenarios by using Narrator.

However, the exact behavior of a screen reader depends on the software and on the user's configuration of it.

For example, most screen readers read the text associated with a control when it receives focus, enabling users

to orient themselves as they move among the controls on the page. Some screen readers also read the entire

application user interface when a page appears, which enables the user to receive all of the page's available

informational content before attempting to navigate it.

Screen readers also read different accessibility values. In the sample application:

VoiceOver will read the Placeholder value of the Entry , followed by instructions for using the control.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/accessibility/automation-properties.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-accessibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.automationid#xamarin_forms_element_automationid
https://developer.apple.com/library/content/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityonYourDevicewithVoiceOver/TestAccessibilityonYourDevicewithVoiceOver.html
https://developer.android.com/training/accessibility/testing.html#talkback
https://docs.microsoft.com/en-us/windows/uwp/accessibility/accessibility-testing#verify-main-app-scenarios-by-using-narrator

 AutomationProperties.IsInAccessibleTree

<Entry AutomationProperties.IsInAccessibleTree="true" />

var entry = new Entry();
AutomationProperties.SetIsInAccessibleTree(entry, true);

NOTENOTE

 AutomationProperties.Name

<ActivityIndicator AutomationProperties.IsInAccessibleTree="true"
 AutomationProperties.Name="Progress indicator" />

var activityIndicator = new ActivityIndicator();
AutomationProperties.SetIsInAccessibleTree(activityIndicator, true);
AutomationProperties.SetName(activityIndicator, "Progress indicator");

NOTENOTE

TalkBack will read the Placeholder value of the Entry , followed by the AutomationProperties.HelpText value,

followed by instructions for using the control.

Narrator will read the AutomationProperties.LabeledBy value of the Entry , followed by instructions on using

the control.

In addition, Narrator will prioritize AutomationProperties.Name , AutomationProperties.LabeledBy , and then

AutomationProperties.HelpText . On Android, TalkBack may combine the AutomationProperties.Name and

AutomationProperties.HelpText values. Therefore, it's recommended that thorough accessibility testing is carried

out on each platform to ensure an optimal experience.

The AutomationProperties.IsInAccessibleTree attached property is a boolean that determines if the element is

accessible, and hence visible, to screen readers. It must be set to true to use the other accessibility attached

properties. This can be accomplished in XAML as follows:

Alternatively, it can be set in C# as follows:

Note that the SetValue method can also be used to set the AutomationProperties.IsInAccessibleTree attached

property – entry.SetValue(AutomationProperties.IsInAccessibleTreeProperty, true);

The AutomationProperties.Name attached property value should be a short, descriptive text string that a screen

reader uses to announce an element. This property should be set for elements that have a meaning that is

important for understanding the content or interacting with the user interface. This can be accomplished in

XAML as follows:

Alternatively, it can be set in C# as follows:

Note that the SetValue method can also be used to set the AutomationProperties.Name attached property –

activityIndicator.SetValue(AutomationProperties.NameProperty, "Progress indicator");

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setvalue#xamarin_forms_bindableobject_setvalue_xamarin_forms_bindableproperty_system_object_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setvalue#xamarin_forms_bindableobject_setvalue_xamarin_forms_bindableproperty_system_object_

AutomationProperties.HelpText

<Button Text="Toggle ActivityIndicator"
 AutomationProperties.IsInAccessibleTree="true"
 AutomationProperties.HelpText="Tap to toggle the activity indicator" />

var button = new Button { Text = "Toggle ActivityIndicator" };
AutomationProperties.SetIsInAccessibleTree(button, true);
AutomationProperties.SetHelpText(button, "Tap to toggle the activity indicator");

NOTENOTE

 AutomationProperties.LabeledBy

<Label x:Name="label" Text="Enter your name: " />
<Entry AutomationProperties.IsInAccessibleTree="true"
 AutomationProperties.LabeledBy="{x:Reference label}" />

var nameLabel = new Label { Text = "Enter your name: " };
var entry = new Entry();
AutomationProperties.SetIsInAccessibleTree(entry, true);
AutomationProperties.SetLabeledBy(entry, nameLabel);

IMPORTANTIMPORTANT

NOTENOTE

The AutomationProperties.HelpText attached property should be set to text that describes the user interface

element, and can be thought of as tooltip text associated with the element. This can be accomplished in XAML as

follows:

Alternatively, it can be set in C# as follows:

Note that the SetValue method can also be used to set the AutomationProperties.HelpText attached property –

button.SetValue(AutomationProperties.HelpTextProperty, "Tap to toggle the activity indicator");

On some platforms, for edit controls such as an Entry , the HelpText property can sometimes be omitted and

replaced with placeholder text. For example, "Enter your name here" is a good candidate for the

Entry.Placeholder property that places the text in the control prior to the user's actual input.

The AutomationProperties.LabeledBy attached property allows another element to define accessibility

information for the current element. For example, a Label next to an Entry can be used to describe what the

Entry represents. This can be accomplished in XAML as follows:

Alternatively, it can be set in C# as follows:

The AutomationProperties.LabeledByProperty is not yet supported on iOS.

Note that the SetValue method can also be used to set the AutomationProperties.IsInAccessibleTree attached

property – entry.SetValue(AutomationProperties.LabeledByProperty, nameLabel);

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setvalue#xamarin_forms_bindableobject_setvalue_xamarin_forms_bindableproperty_system_object_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.placeholder#xamarin_forms_inputview_placeholder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setvalue#xamarin_forms_bindableobject_setvalue_xamarin_forms_bindableproperty_system_object_

 Accessibility intricacies

 NavigationPageNavigationPage

 FlyoutPageFlyoutPage

<resources>
 <string name="app_name">Xamarin Forms Control Gallery</string>
 <string name="btnMDPAutomationID_open">Open Side Menu message</string>
 <string name="btnMDPAutomationID_close">Close Side Menu message</string>
</resources>

var flyout = new ContentPage { ... };
flyout.IconImageSource.AutomationId = "btnMDPAutomationID";

 ToolbarItemToolbarItem

 Related Links

The following sections describe the intricacies of setting accessibility values on certain controls.

On Android, to set the text that screen readers will read for the back arrow in the action bar in a NavigationPage ,

set the AutomationProperties.Name and AutomationProperties.HelpText properties on a Page . However, note

that this will not have an effect on OS back buttons.

On iOS and the Universal Windows Platform (UWP), to set the text that screen readers will read for the toggle

button on a FlyoutPage , either set the AutomationProperties.Name , and AutomationProperties.HelpText

properties on the FlyoutPage , or on the IconImageSource property of the Flyout page.

On Android, to set the text that screen readers will read for the toggle button on a FlyoutPage , add string

resources to the Android project:

Then set the AutomationId property of the IconImageSource property of the Flyout page to the appropriate

string:

On iOS, Android, and UWP, screen readers will read the Text property value of ToolbarItem instances,

provided that AutomationProperties.Name or AutomationProperties.HelpText values aren't defined.

On iOS and UWP the AutomationProperties.Name property value will replace the Text property value that is

read by the screen reader.

On Android, the AutomationProperties.Name and/or AutomationProperties.HelpText property values will

completely replace the Text property value that is both visible and read by the screen reader. Note that this is a

limitation of APIs less than 26.

Attached Properties

Accessibility (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-accessibility

Keyboard Accessibility in Xamarin.Forms
 7/8/2021 • 3 minutes to read • Edit Online

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="0.5*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Label Text="You"
 HorizontalOptions="Center" />
 <Label Grid.Column="1"
 Text="Manager"
 HorizontalOptions="Center" />
 <Entry Grid.Row="1"
 Placeholder="Enter forename" />
 <Entry Grid.Column="1"
 Grid.Row="1"
 Placeholder="Enter forename" />
 <Entry Grid.Row="2"
 Placeholder="Enter surname" />
 <Entry Grid.Column="1"
 Grid.Row="2"
 Placeholder="Enter surname" />
</Grid>

 Download the sample

Users who use screen readers, or have mobility issues, can have difficulty using applications that don't provide

appropriate keyboard access. Xamarin.Forms applications can have an expected tab order specified to improve

their usability and accessibility. Specifying a tab order for controls enables keyboard navigation, prepares

application pages to receive input in a particular order, and permits screen readers to read focusable elements to

the user.

By default, the tab order of controls is the same order in which they are listed in XAML, or programmatically

added to a child collection. This order is the order in which the controls will be navigated through with a

keyboard and read by screen readers, and often this default order is the best order. However, the default order is

not always the same as the expected order, as shown in the following XAML code example:

The following screenshot shows the default tab order for this code example:

The tab order here is row-based, and is the order the controls are listed in the XAML. Therefore, pressing the Tab

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/accessibility/keyboard.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-accessibility

NOTENOTE

 Setting the tab order

WARNINGWARNING

key navigates through forename Entry instances, followed by surname Entry instances. However, a more

intuitive experience would be to use a column-first tab navigation, so that pressing the Tab key navigates

through forename-surname pairs. This can be achieved by specifying the tab order of the input controls.

On the Universal Windows Platform, keyboard shortcuts can be defined that provide an intuitive way for users to quickly

navigate and interact with the application's visible UI through a keyboard instead of via touch or a mouse. For more

information, see Setting VisualElement Access Keys.

The VisualElement.TabIndex property is used to indicate the order in which VisualElement instances receive

focus when the user navigates through controls by pressing the Tab key. The default value of the property is 0,

and it can be set to any int value.

The following rules apply when using the default tab order, or setting the TabIndex property:

VisualElement instances with a TabIndex equal to 0 are added to the tab order based on their declaration

order in XAML or child collections.

VisualElement instances with a TabIndex greater than 0 are added to the tab order based on their TabIndex

value.

VisualElement instances with a TabIndex less than 0 are added to the tab order and appear before any zero

value.

Conflicts on a TabIndex are resolved by declaration order.

After defining a tab order, pressing the Tab key will cycle the focus through controls in ascending TabIndex

order, wrapping around to the beginning once the final control is reached.

On the Universal Windows Platform, the TabIndex property of each control must be set to int.MaxValue for the tab

order to be identical to the control declaration order.

The following XAML example shows the TabIndex property set on input controls to enable column-first tab

navigation:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="0.5*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Label Text="You"
 HorizontalOptions="Center" />
 <Label Grid.Column="1"
 Text="Manager"
 HorizontalOptions="Center" />
 <Entry Grid.Row="1"
 Placeholder="Enter forename"
 TabIndex="1" />
 <Entry Grid.Column="1"
 Grid.Row="1"
 Placeholder="Enter forename"
 TabIndex="3" />
 <Entry Grid.Row="2"
 Placeholder="Enter surname"
 TabIndex="2" />
 <Entry Grid.Column="1"
 Grid.Row="2"
 Placeholder="Enter surname"
 TabIndex="4" />
</Grid>

IMPORTANTIMPORTANT

 Excluding controls from the tab order

The following screenshot shows the tab order for this code example:

The tab order here is column-based. Therefore, pressing the Tab key navigates through forename-surname

Entry pairs.

Screen readers on iOS and Android will respect the TabIndex of a VisualElement when reading the accessible

elements on the screen.

In addition to setting the tab order of controls, it may be necessary to exclude controls from the tab order. One

way of achieving this is by setting the IsEnabled property of controls to false , because disabled controls are

excluded from the tab order.

However, it may be necessary to exclude controls from the tab order even when they aren't disabled. This can be

achieved with the VisualElement.IsTabStop property, which indicates whether a VisualElement is included in

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

 Supported controls

NOTENOTE

 Related Links

tab navigation. Its default value is true , and when its value is false the control is ignored by the tab-

navigation infrastructure, irrespective if a TabIndex is set.

The TabIndex and IsTabStop properties are supported on the following controls, which accept keyboard input

on one or more platforms:

Button

DatePicker

Editor

Entry

NavigationPage

Picker

ProgressBar

SearchBar

Slider

Stepper

Switch

TabbedPage

TimePicker

Each of these controls isn't tab focusable on every platform.

Accessibility (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-accessibility

Xamarin.Forms App Class
 11/2/2020 • 4 minutes to read • Edit Online

<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Photos.App">

</Application>

public partial class App : Application
{
 public App ()
 {
 InitializeComponent ();
 MainPage = new HomePage ();
 }
 ...
}

 MainPage property

The Application base class offers the following features, which are exposed in your projects default App

subclass:

A MainPage property, which is where to set the initial page for the app.

A persistent Properties dictionary to store simple values across lifecycle state changes.

A static Current property that contains a reference to the current application object.

It also exposes Lifecycle methods such as OnStart , OnSleep , and OnResume as well as modal navigation events.

Depending on which template you chose, the App class could be defined in one of two ways:

C#C#, or

XAML & C#XAML & C#

To create an AppApp class using XAML, the default AppApp class must be replaced with a XAML AppApp class and

associated code-behind, as shown in the following code example:

The following code example shows the associated code-behind:

As well as setting the MainPage property, the code-behind must also call the InitializeComponent method to

load and parse the associated XAML.

The MainPage property on the Application class sets the root page of the application.

For example, you can create logic in your App class to display a different page depending on whether the user

is logged in or not.

The MainPage property should be set in the App constructor,

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/application-class.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.mainpage#xamarin_forms_application_mainpage

public class App : Xamarin.Forms.Application
{
 public App ()
 {
 MainPage = new ContentPage { Title = "App Lifecycle Sample" }; // your page here
 }
}

 Properties dictionary

Application.Current.Properties ["id"] = someClass.ID;

if (Application.Current.Properties.ContainsKey("id"))
{
 var id = Application.Current.Properties ["id"] as int;
 // do something with id
}

NOTENOTE

 PersistencePersistence

 The Application class

The Application subclass has a static Properties dictionary which can be used to store data, in particular for

use in the OnStart , OnSleep , and OnResume methods. This can be accessed from anywhere in your

Xamarin.Forms code using Application.Current.Properties .

The Properties dictionary uses a string key and stores an object value.

For example, you could set a persistent "id" property anywhere in your code (when an item is selected, in a

page's OnDisappearing method, or in the OnSleep method) like this:

In the OnStart or OnResume methods you can then use this value to recreate the user's experience in some way.

The Properties dictionary stores object s so you need to cast its value before using it.

Always check for the presence of the key before accessing it to prevent unexpected errors.

The Properties dictionary can only serialize primitive types for storage. Attempting to store other types (such as

List<string>) can fail silently.

The Properties dictionary is saved to the device automatically. Data added to the dictionary will be available

when the application returns from the background or even after it is restarted.

Xamarin.Forms 1.4 introduced an additional method on the Application class - SavePropertiesAsync() - which

can be called to proactively persist the Properties dictionary. This is to allow you to save properties after

important updates rather than risk them not getting serialized out due to a crash or being killed by the OS.

You can find references to using the Properties dictionary in the Creating Mobile Apps withCreating Mobile Apps with

Xamarin.FormsXamarin.Forms book chapters 6, 15, and 20, and in the associated samples.

A complete Application class implementation is shown below for reference:

https://developer.xamarin.com/r/xamarin-forms/book/chapter06.pdf
https://developer.xamarin.com/r/xamarin-forms/book/chapter15.pdf
https://developer.xamarin.com/r/xamarin-forms/book/chapter20.pdf
https://github.com/xamarin/xamarin-forms-book-preview-2

public class App : Xamarin.Forms.Application
{
 public App ()
 {
 MainPage = new ContentPage { Title = "App Lifecycle Sample" }; // your page here
 }

 protected override void OnStart()
 {
 // Handle when your app starts
 Debug.WriteLine ("OnStart");
 }

 protected override void OnSleep()
 {
 // Handle when your app sleeps
 Debug.WriteLine ("OnSleep");
 }

 protected override void OnResume()
 {
 // Handle when your app resumes
 Debug.WriteLine ("OnResume");
 }
}

 iOS projectiOS project

[Register ("AppDelegate")]
public partial class AppDelegate :
 global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate // superclass new in 1.3
{
 public override bool FinishedLaunching (UIApplication app, NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init ();

 LoadApplication (new App ()); // method is new in 1.3

 return base.FinishedLaunching (app, options);
 }
}

 Android projectAndroid project

This class is then instantiated in each platform-specific project and passed to the LoadApplication method

which is where the MainPage is loaded and displayed to the user. The code for each platform is shown in the

following sections. The latest Xamarin.Forms solution templates already contain all this code, preconfigured for

your app.

The iOS AppDelegate class inherits from FormsApplicationDelegate . It should:

Call LoadApplication with an instance of the App class.

Always return base.FinishedLaunching (app, options); .

The Android MainActivity inherits from FormsAppCompatActivity . In the OnCreate override the

LoadApplication method is called with an instance of the App class.

[Activity (Label = "App Lifecycle Sample", Icon = "@drawable/icon", Theme = "@style/MainTheme", MainLauncher
= true,
 ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation)]
public class MainActivity : FormsAppCompatActivity
{
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 global::Xamarin.Forms.Forms.Init (this, bundle);

 LoadApplication (new App ()); // method is new in 1.3
 }
}

 Universal Windows project (UWP) for Windows 10Universal Windows project (UWP) for Windows 10

<forms:WindowsPage
 ...
 xmlns:forms="using:Xamarin.Forms.Platform.UWP"
 ...>
</forms:WindowsPage>

public sealed partial class MainPage
{
 public MainPage()
 {
 InitializeComponent();

 LoadApplication(new YOUR_NAMESPACE.App());
 }
 }

 Related video

The main page in the UWP project should inherit from WindowsPage :

The C# code behind construction must call LoadApplication to create an instance of your Xamarin.Forms App .

Note that it is good practice to explicitly use the application namespace to qualify the App because UWP

applications also have their own App class unrelated to Xamarin.Forms.

Note that Forms.Init() must be called from App.xaml.csApp.xaml.cs in the UWP project.

For more information, see Setup Windows Projects, which includes steps to add a UWP project to an existing

Xamarin.Forms solution that doesn't target UWP.

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Series/Xamarin-101/Xamarin-Solution-Architecture-4-of-11/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Forms App Lifecycle
 11/2/2020 • 2 minutes to read • Edit Online

 Lifecycle methods

NOTENOTE

protected override void OnStart()
{
 Debug.WriteLine ("OnStart");
}
protected override void OnSleep()
{
 Debug.WriteLine ("OnSleep");
}
protected override void OnResume()
{
 Debug.WriteLine ("OnResume");
}

IMPORTANTIMPORTANT

 Page navigation events

The Application base class provides the following features:

Lifecycle methods OnStart , OnSleep , and OnResume .

Page navigation events PageAppearing , PageDisappearing .

Modal navigation events ModalPushing , ModalPushed , ModalPopping , and ModalPopped .

The Application class contains three virtual methods that can be overridden to respond to lifecycle changes:

OnStart - called when the application starts.

OnSleep - called each time the application goes to the background.

OnResume - called when the application is resumed, after being sent to the background.

There is no method for application termination. Under normal circumstances (i.e. not a crash) application termination will

happen from the OnSleep state, without any additional notifications to your code.

To observe when these methods are called, implement a WriteLine call in each (as shown below) and test on

each platform.

On Android, the OnStart method will be called on rotation as well as when the application first starts, if the main

activity lacks ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation in the

[Activity()] attribute.

There are two events on the Application class that provide notification of pages appearing and disappearing:

PageAppearing - raised when a page is about to appear on the screen.

PageDisappearing - raised when a page is about to disappear from the screen.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/app-lifecycle.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.pageappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.pagedisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.pageappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.pagedisappearing

NOTENOTE

 Modal navigation events

NOTENOTE

These events can be used in scenarios where you want to track pages as they appear on screen.

The PageAppearing and PageDisappearing events are raised from the Page base class immediately after the

Page.Appearing and Page.Disappearing events, respectively.

There are four events on the Application class, each with their own event arguments, that let you respond to

modal pages being shown and dismissed:

ModalPushing - raised when a page is modally pushed.

ModalPushed - raised after a page has been pushed modally.

ModalPopping - raised when a page is modally popped.

ModalPopped - raised after a page has been popped modally.

The ModalPopping event arguments, of type ModalPoppingEventArgs , contain a Cancel property. When Cancel is

set to true the modal pop is cancelled.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.pageappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.pagedisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.disappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application

Application Indexing and Deep Linking
 7/8/2021 • 8 minutes to read • Edit Online

NOTENOTE

 Download the sample

Xamarin.Forms application indexing and deep linking provide an API for publishing metadata for application

indexing as users navigate through applications. Indexed content can then be searched for in Spotlight Search, in

Google Search, or in a web search. Tapping on a search result that contains a deep link will fire an event that can

be handled by an application, and is typically used to navigate to the page referenced from the deep link.

The sample application demonstrates a Todo list application where the data is stored in a local SQLite database,

as shown in the following screenshots:

Each TodoItem instance created by the user is indexed. Platform-specific search can then be used to locate

indexed data from the application. When the user taps on a search result item for the application, the application

is launched, the TodoItemPage is navigated to, and the TodoItem referenced from the deep link is displayed.

For more information about using an SQLite database, see Xamarin.Forms Local Databases.

Xamarin.Forms application indexing and deep linking functionality is only available on the iOS and Android platforms, and

requires a minimum of iOS 9 and API 23 respectively.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/deep-linking.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/deeplinking

Setup

 iOSiOS

 AndroidAndroid

FirebaseApp.InitializeApp(this);
AndroidAppLinks.Init(this);

The following sections provide any additional setup instructions for using this feature on the iOS and Android

platforms.

On the iOS platform, ensure that your iOS platform project sets the Entitlements.plistEntitlements.plist file as the custom

entitlements file for signing the bundle.

To use iOS Universal Links:

1. Add an Associated Domains entitlement to your app, with the applinks key, including all the domains your

app will support.

2. Add an Apple App Site Association file to your website.

3. Add the applinks key to the Apple App Site Association file.

For more information, see Allowing Apps and Websites to Link to Your Content on developer.apple.com.

On the Android platform, there are a number of prerequisites that must be met to use application indexing and

deep linking functionality:

1. A version of your application must be live on Google Play.

2. A companion website must be registered against the application in Google's Developer Console. Once the

application is associated with a website, URLs can be indexed that work for both the website and the

application, which can then be served in Search results. For more information, see App Indexing on Google

Search on Google's website.

3. Your application must support HTTP URL intents on the MainActivity class, which tell application indexing

what types of URL data schemes the application can respond to. For more information, see Configuring the

Intent Filter.

Once these prerequisites are met, the following additional setup is required to use Xamarin.Forms application

indexing and deep linking on the Android platform:

1. Install the Xamarin.Forms.AppLinks NuGet package into the Android application project.

2. In the MainActivity.csMainActivity.cs file, add a declaration to use the Xamarin.Forms.Platform.Android.AppLinks

namespace.

3. In the MainActivity.csMainActivity.cs file, add a declaration to use the Firebase namespace.

4. In a web browser, create a new project via the Firebase Console.

5. In the Firebase Console, add Firebase to your Android app, and enter the required data.

6. Download the resulting google-ser vices.jsongoogle-ser vices.json file.

7. Add the google-ser vices.jsongoogle-ser vices.json file to the root directory of the Android project, and set its Build ActionBuild Action to

GoogleSer vicesJsonGoogleSer vicesJson.

8. In the MainActivity.OnCreate override, add the following line of code underneath Forms.Init(this, bundle) :

When google-ser vices.jsongoogle-ser vices.json is added to the project (and the GoogleServicesJson* build action is set), the build

process extracts the client ID and API key and then adds these credentials to the generated manifest file.

https://developer.apple.com/documentation/uikit/core_app/allowing_apps_and_websites_to_link_to_your_content
https://support.google.com/googleplay/android-developer/answer/6041489
https://docs.microsoft.com/en-us/xamarin/android/platform/app-linking
https://www.nuget.org/packages/Xamarin.Forms.AppLinks/
https://console.firebase.google.com/

NOTENOTE

 Indexing a Page

AppLinkEntry GetAppLink(TodoItem item)
{
 var pageType = GetType().ToString();
 var pageLink = new AppLinkEntry
 {
 Title = item.Name,
 Description = item.Notes,
 AppLinkUri = new Uri($"http://{App.AppName}/{pageType}?id={item.ID}", UriKind.RelativeOrAbsolute),
 IsLinkActive = true,
 Thumbnail = ImageSource.FromFile("monkey.png")
 };

 pageLink.KeyValues.Add("contentType", "TodoItemPage");
 pageLink.KeyValues.Add("appName", App.AppName);
 pageLink.KeyValues.Add("companyName", "Xamarin");

 return pageLink;
}

http://deeplinking/DeepLinking.TodoItemPage?id=2

 Registering Content for Indexing

In this article, the terms application links and deep links are often used interchangeably. However, on Android these terms

have separate meanings. On Android, a deep link is an intent filter that allows users to directly enter a specific activity in

the app. Clicking on a deep link might open a disambiguation dialog, which allows the user to select one of multiple apps

that can handle the URL. An Android app link is a deep link based on your website URL, which has been verified to belong

to your website. Clicking on an app link opens your app if it's installed, without opening a disambiguation dialog.

For more information, see Deep Link Content with Xamarin.Forms URL Navigation on the Xamarin blog.

The process for indexing a page and exposing it to Google and Spotlight search is as follows:

1. Create an AppLinkEntry that contains the metadata required to index the page, along with a deep link to

return to the page when the user selects the indexed content in search results.

2. Register the AppLinkEntry instance to index it for searching.

The following code example demonstrates how to create an AppLinkEntry instance:

The AppLinkEntry instance contains a number of properties whose values are required to index the page and

create a deep link. The Title , Description , and Thumbnail properties are used to identify the indexed content

when it appears in search results. The IsLinkActive property is set to true to indicate that the indexed content

is currently being viewed. The AppLinkUri property is a Uri that contains the information required to return to

the current page and display the current TodoItem . The following example shows an example Uri for the

sample application:

This Uri contains all the information required to launch the deeplinking app, navigate to the

DeepLinking.TodoItemPage , and display the TodoItem that has an ID of 2.

Once an AppLinkEntry instance has been created, it must be registered for indexing to appear in search results.

This is accomplished with the RegisterLink method, as demonstrated in the following code example:

https://blog.xamarin.com/deep-link-content-with-xamarin-forms-url-navigation/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.title#xamarin_forms_iapplinkentry_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.description#xamarin_forms_iapplinkentry_description
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.thumbnail#xamarin_forms_iapplinkentry_thumbnail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.islinkactive#xamarin_forms_iapplinkentry_islinkactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.applinkuri#xamarin_forms_iapplinkentry_applinkuri
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinks.registerlink#xamarin_forms_iapplinks_registerlink_xamarin_forms_iapplinkentry_

Application.Current.AppLinks.RegisterLink (appLink);

NOTENOTE

 De-registering Indexed Content

Application.Current.AppLinks.DeregisterLink (appLink);

NOTENOTE

 Responding to a Deep Link

This adds the AppLinkEntry instance to the application's AppLinks collection.

The RegisterLink method can also be used to update the content that's been indexed for a page.

Once an AppLinkEntry instance has been registered for indexing, it can appear in search results. The following

screenshot shows indexed content appearing in search results on the iOS platform:

The DeregisterLink method is used to remove indexed content from search results, as demonstrated in the

following code example:

This removes the AppLinkEntry instance from the application's AppLinks collection.

On Android it's not possible to remove indexed content from search results.

When indexed content appears in search results and is selected by a user, the App class for the application will

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.applinks#xamarin_forms_application_applinks
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinks.deregisterlink#xamarin_forms_iapplinks_deregisterlink_xamarin_forms_iapplinkentry_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.applinks#xamarin_forms_application_applinks

public class App : Application
{
 ...
 protected override async void OnAppLinkRequestReceived(Uri uri)
 {
 string appDomain = "http://" + App.AppName.ToLowerInvariant() + "/";
 if (!uri.ToString().ToLowerInvariant().StartsWith(appDomain, StringComparison.Ordinal))
 return;

 string pageUrl = uri.ToString().Replace(appDomain, string.Empty).Trim();
 var parts = pageUrl.Split('?');
 string page = parts[0];
 string pageParameter = parts[1].Replace("id=", string.Empty);

 var formsPage = Activator.CreateInstance(Type.GetType(page));
 var todoItemPage = formsPage as TodoItemPage;
 if (todoItemPage != null)
 {
 var todoItem = await App.Database.GetItemAsync(int.Parse(pageParameter));
 todoItemPage.BindingContext = todoItem;
 await MainPage.Navigation.PushAsync(formsPage as Page);
 }
 base.OnAppLinkRequestReceived(uri);
 }
}

 Making Content Available for Search Indexing

protected override void OnAppearing()
{
 appLink = GetAppLink(BindingContext as TodoItem);
 if (appLink != null)
 {
 appLink.IsLinkActive = true;
 }
}

receive a request to handle the Uri contained in the indexed content. This request can be processed in the

OnAppLinkRequestReceived override, as demonstrated in the following code example:

The OnAppLinkRequestReceived method checks that the received Uri is intended for the application, before

parsing the Uri into the page to be navigated to and the parameter to be passed to the page. An instance of the

page to be navigated to is created, and the TodoItem represented by the page parameter is retrieved. The

BindingContext of the page to be navigated to is then set to the TodoItem . This ensures that when the

TodoItemPage is displayed by the PushAsync method, it will be showing the TodoItem whose ID is contained in

the deep link.

Each time the page represented by a deep link is displayed, the AppLinkEntry.IsLinkActive property can be set

to true . On iOS and Android this makes the AppLinkEntry instance available for search indexing, and on iOS

only, it also makes the AppLinkEntry instance available for Handoff. For more information about Handoff, see

Introduction to Handoff.

The following code example demonstrates setting the AppLinkEntry.IsLinkActive property to true in the

Page.OnAppearing override:

Similarly, when the page represented by a deep link is navigated away from, the AppLinkEntry.IsLinkActive

property can be set to false . On iOS and Android, this stops the AppLinkEntry instance being advertised for

search indexing, and on iOS only, it also stops advertising the AppLinkEntry instance for Handoff. This can be

accomplished in the Page.OnDisappearing override, as demonstrated in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.onapplinkrequestreceived#xamarin_forms_application_onapplinkrequestreceived_system_uri_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.onapplinkrequestreceived#xamarin_forms_application_onapplinkrequestreceived_system_uri_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.pushasync#xamarin_forms_inavigation_pushasync_xamarin_forms_page_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.islinkactive#xamarin_forms_iapplinkentry_islinkactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/xamarin/ios/platform/handoff
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.islinkactive#xamarin_forms_iapplinkentry_islinkactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.islinkactive#xamarin_forms_iapplinkentry_islinkactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing

protected override void OnDisappearing()
{
 if (appLink != null)
 {
 appLink.IsLinkActive = false;
 }
}

 Providing Data to Handoff

var pageLink = new AppLinkEntry
{
 ...
};
pageLink.KeyValues.Add("appName", App.AppName);
pageLink.KeyValues.Add("companyName", "Xamarin");

NOTENOTE

 Related Links

On iOS, application-specific data can be stored when indexing the page. This is achieved by adding data to the

KeyValues collection, which is a Dictionary<string, string> for storing key-value pairs that are used in

Handoff. Handoff is a way for the user to start an activity on one of their devices and continue that activity on

another of their devices (as identified by the user's iCloud account). The following code shows an example of

storing application-specific key-value pairs:

Values stored in the KeyValues collection will be stored in the metadata for the indexed page, and will be

restored when the user taps on a search result that contains a deep link (or when Handoff is used to view the

content on another signed-in device).

In addition, values for the following keys can be specified:

contentType – a string that specifies the uniform type identifier of the indexed content. The recommended

convention to use for this value is the type name of the page containing the indexed content.

associatedWebPage – a string that represents the web page to visit if the indexed content can also be

viewed on the web, or if the application supports Safari's deep links.

shouldAddToPublicIndex – a string of either true or false that controls whether or not to add the

indexed content to Apple's public cloud index, which can then be presented to users who haven't installed the

application on their iOS device. However, just because content has been set for public indexing, it doesn't

mean that it will be automatically added to Apple's public cloud index. For more information, see Public

Search Indexing. Note that this key should be set to false when adding personal data to the KeyValues

collection.

The KeyValues collection isn't used on the Android platform.

For more information about Handoff, see Introduction to Handoff.

Deep Linking (sample)

iOS Search APIs

App-Linking in Android 6.0

AppLinkEntry

IAppLinkEntry

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.keyvalues#xamarin_forms_iapplinkentry_keyvalues
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.keyvalues#xamarin_forms_iapplinkentry_keyvalues
https://docs.microsoft.com/en-us/xamarin/ios/platform/search/nsuseractivity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry.keyvalues#xamarin_forms_iapplinkentry_keyvalues
https://docs.microsoft.com/en-us/xamarin/ios/platform/handoff
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/deeplinking
https://docs.microsoft.com/en-us/xamarin/ios/platform/search/index
https://docs.microsoft.com/en-us/xamarin/android/platform/app-linking
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.applinkentry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinkentry

IAppLinks

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iapplinks

Xamarin.Forms Behaviors
 11/2/2020 • 2 minutes to read • Edit Online

 Introduction to Behaviors

 Attached Behaviors

 Xamarin.Forms Behaviors

 Reusable EffectBehavior

Behaviors lets you add functionality to user interface controls without having to subclass them. Behaviors are

written in code and added to controls in XAML or code.

Behaviors enable you to implement code that you would normally have to write as code-behind, because it

directly interacts with the API of the control in such a way that it can be concisely attached to the control. This

article provides an introduction to behaviors.

Attached behaviors are static classes with one or more attached properties. This article demonstrates how to

create and consume attached behaviors.

Xamarin.Forms behaviors are created by deriving from the Behavior or Behavior<T> class. This article

demonstrates how to create and consume Xamarin.Forms behaviors.

Behaviors are a useful approach for adding an effect to a control, removing boiler-plate effect handling code

from code-behind files. This article demonstrates creating and consuming a Xamarin.Forms behavior to add an

effect to a control.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/behaviors/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1

Introduction to Behaviors
 11/2/2020 • 2 minutes to read • Edit Online

 Related Links

Behaviors let you add functionality to user interface controls without having to subclass them. Instead, the

functionality is implemented in a behavior class and attached to the control as if it was part of the control itself.

This article provides an introduction to behaviors.

Behaviors enable you to implement code that you would normally have to write as code-behind, because it

directly interacts with the API of the control in such a way that it can be concisely attached to the control and

packaged for reuse across more than one application. They can be used to provide a full range of functionality to

controls, such as:

Adding an email validator to an Entry .

Creating a rating control using a tap gesture recognizer.

Controlling an animation.

Adding an effect to a control.

Behaviors also enable more advanced scenarios. In the context of commanding, behaviors are a useful approach

for connecting a control to a command. In addition, they can be used to associate commands with controls that

were not designed to interact with commands. For example, they can be used to invoke a command in response

to an event firing.

Xamarin.Forms supports two different styles of behaviors:

Xamarin.Forms behaviorsXamarin.Forms behaviors – classes that derive from the Behavior or Behavior<T> class, where T is the

type of the control to which the behavior should apply. For more information about Xamarin.Forms

behaviors, see Xamarin.Forms Behaviors.

Attached behaviorsAttached behaviors – static classes with one or more attached properties. For more information about

attached behaviors, see Attached Behaviors.

This guide focuses on Xamarin.Forms behaviors because they are the preferred approach to behavior

construction.

Behavior

Behavior<T>

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/behaviors/introduction.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1

Attached Behaviors
 7/8/2021 • 3 minutes to read • Edit Online

 Overview

 Creating an Attached Behavior

 Download the sample

Attached behaviors are static classes with one or more attached properties. This article demonstrates how to

create and consume attached behaviors.

An attached property is a special type of bindable property. They are defined in one class but attached to other

objects, and they are recognizable in XAML as attributes that contain a class and a property name separated by a

period.

An attached property can define a propertyChanged delegate that will be executed when the value of the

property changes, such as when the property is set on a control. When the propertyChanged delegate executes,

it's passed a reference to the control on which it is being attached, and parameters that contain the old and new

values for the property. This delegate can be used to add new functionality to the control that the property is

attached to by manipulating the reference that is passed in, as follows:

1. The propertyChanged delegate casts the control reference, which is received as a BindableObject , to the

control type that the behavior is designed to enhance.

2. The propertyChanged delegate modifies properties of the control, calls methods of the control, or registers

event handlers for events exposed by the control, to implement the core behavior functionality.

An issue with attached behaviors is that they are defined in a static class, with static properties and

methods. This makes it difficult to create attached behaviors that have state. In addition, Xamarin.Forms

behaviors have replaced attached behaviors as the preferred approach to behavior construction. For more

information about Xamarin.Forms behaviors, see Xamarin.Forms Behaviors.

The sample application demonstrates a NumericValidationBehavior , which highlights the value entered by the

user into an Entry control in red, if it's not a double . The behavior is shown in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/behaviors/attached.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-attachednumericvalidationbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

public static class NumericValidationBehavior
{
 public static readonly BindableProperty AttachBehaviorProperty =
 BindableProperty.CreateAttached (
 "AttachBehavior",
 typeof(bool),
 typeof(NumericValidationBehavior),
 false,
 propertyChanged:OnAttachBehaviorChanged);

 public static bool GetAttachBehavior (BindableObject view)
 {
 return (bool)view.GetValue (AttachBehaviorProperty);
 }

 public static void SetAttachBehavior (BindableObject view, bool value)
 {
 view.SetValue (AttachBehaviorProperty, value);
 }

 static void OnAttachBehaviorChanged (BindableObject view, object oldValue, object newValue)
 {
 var entry = view as Entry;
 if (entry == null) {
 return;
 }

 bool attachBehavior = (bool)newValue;
 if (attachBehavior) {
 entry.TextChanged += OnEntryTextChanged;
 } else {
 entry.TextChanged -= OnEntryTextChanged;
 }
 }

 static void OnEntryTextChanged (object sender, TextChangedEventArgs args)
 {
 double result;
 bool isValid = double.TryParse (args.NewTextValue, out result);
 ((Entry)sender).TextColor = isValid ? Color.Default : Color.Red;
 }
}

 Consuming an Attached Behavior

<ContentPage ... xmlns:local="clr-namespace:WorkingWithBehaviors;assembly=WorkingWithBehaviors" ...>
 ...
 <Entry Placeholder="Enter a System.Double" local:NumericValidationBehavior.AttachBehavior="true" />
 ...
</ContentPage>

The NumericValidationBehavior class contains an attached property named AttachBehavior with a static

getter and setter, which controls the addition or removal of the behavior to the control to which it will be

attached. This attached property registers the OnAttachBehaviorChanged method that will be executed when the

value of the property changes. This method registers or de-registers an event handler for the TextChanged

event, based on the value of the AttachBehavior attached property. The core functionality of the behavior is

provided by the OnEntryTextChanged method, which parses the value entered into the Entry by the user, and

sets the TextColor property to red if the value isn't a double .

The NumericValidationBehavior class can be consumed by adding the AttachBehavior attached property to an

Entry control, as demonstrated in the following XAML code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

var entry = new Entry { Placeholder = "Enter a System.Double" };
NumericValidationBehavior.SetAttachBehavior (entry, true);

NOTENOTE

 Removing an Attached Behavior from a ControlRemoving an Attached Behavior from a Control

<Entry Placeholder="Enter a System.Double" local:NumericValidationBehavior.AttachBehavior="false" />

var entry = new Entry { Placeholder = "Enter a System.Double" };
NumericValidationBehavior.SetAttachBehavior (entry, false);

 Summary

The equivalent Entry in C# is shown in the following code example:

At runtime, the behavior will respond to interaction with the control, according to the behavior implementation.

The following screenshots demonstrate the attached behavior responding to invalid input:

Attached behaviors are written for a specific control type (or a superclass that can apply to many controls), and they

should only be added to a compatible control. Attempting to attach a behavior to an incompatible control will result in

unknown behavior, and depends on the behavior implementation.

The NumericValidationBehavior class can be removed from a control by setting the AttachBehavior attached

property to false , as demonstrated in the following XAML code example:

The equivalent Entry in C# is shown in the following code example:

At runtime, the OnAttachBehaviorChanged method will be executed when the value of the AttachBehavior

attached property is set to false . The OnAttachBehaviorChanged method will then de-register the event handler

for the TextChanged event, ensuring that the behavior isn't executed as the user interacts with the control.

This article demonstrated how to create and consume attached behaviors. Attached behaviors are static

classes with one or more attached properties.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/behaviors/attached-images/screenshots.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged

Related Links
Attached Behaviors (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-attachednumericvalidationbehavior

Create Xamarin.Forms behaviors
 7/8/2021 • 5 minutes to read • Edit Online

 Overview

public class CustomBehavior : Behavior<View>
{
 protected override void OnAttachedTo (View bindable)
 {
 base.OnAttachedTo (bindable);
 // Perform setup
 }

 protected override void OnDetachingFrom (View bindable)
 {
 base.OnDetachingFrom (bindable);
 // Perform clean up
 }

 // Behavior implementation
}

 Creating a Xamarin.Forms Behavior

 Download the sample

Xamarin.Forms behaviors are created by deriving from the Behavior or Behavior<T> class. This article

demonstrates how to create and consume Xamarin.Forms behaviors.

The process for creating a Xamarin.Forms behavior is as follows:

1. Create a class that inherits from the Behavior or Behavior<T> class, where T is the type of the control to

which the behavior should apply.

2. Override the OnAttachedTo method to perform any required setup.

3. Override the OnDetachingFrom method to perform any required cleanup.

4. Implement the core functionality of the behavior.

This results in the structure shown in the following code example:

The OnAttachedTo method is fired immediately after the behavior is attached to a control. This method receives

a reference to the control to which it is attached, and can be used to register event handlers or perform other

setup that's required to support the behavior functionality. For example, you could subscribe to an event on a

control. The behavior functionality would then be implemented in the event handler for the event.

The OnDetachingFrom method is fired when the behavior is removed from the control. This method receives a

reference to the control to which it is attached, and is used to perform any required cleanup. For example, you

could unsubscribe from an event on a control to prevent memory leaks.

The behavior can then be consumed by attaching it to the Behaviors collection of the appropriate control.

The sample application demonstrates a NumericValidationBehavior , which highlights the value entered by the

user into an Entry control in red, if it's not a double . The behavior is shown in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/behaviors/creating.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-numericvalidationbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.onattachedto#xamarin_forms_behavior_1_onattachedto_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.ondetachingfrom#xamarin_forms_behavior_1_ondetachingfrom_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.onattachedto#xamarin_forms_behavior_1_onattachedto_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.ondetachingfrom#xamarin_forms_behavior_1_ondetachingfrom_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.behaviors#xamarin_forms_visualelement_behaviors
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

public class NumericValidationBehavior : Behavior<Entry>
{
 protected override void OnAttachedTo(Entry entry)
 {
 entry.TextChanged += OnEntryTextChanged;
 base.OnAttachedTo(entry);
 }

 protected override void OnDetachingFrom(Entry entry)
 {
 entry.TextChanged -= OnEntryTextChanged;
 base.OnDetachingFrom(entry);
 }

 void OnEntryTextChanged(object sender, TextChangedEventArgs args)
 {
 double result;
 bool isValid = double.TryParse (args.NewTextValue, out result);
 ((Entry)sender).TextColor = isValid ? Color.Default : Color.Red;
 }
}

NOTENOTE

 Consuming a Xamarin.Forms Behavior

<Entry Placeholder="Enter a System.Double">
 <Entry.Behaviors>
 <local:NumericValidationBehavior />
 </Entry.Behaviors>
</Entry>

var entry = new Entry { Placeholder = "Enter a System.Double" };
entry.Behaviors.Add (new NumericValidationBehavior ());

The NumericValidationBehavior derives from the Behavior<T> class, where T is an Entry . The OnAttachedTo

method registers an event handler for the TextChanged event, with the OnDetachingFrom method de-registering

the TextChanged event to prevent memory leaks. The core functionality of the behavior is provided by the

OnEntryTextChanged method, which parses the value entered by the user into the Entry , and sets the TextColor

property to red if the value isn't a double .

Xamarin.Forms does not set the BindingContext of a behavior, because behaviors can be shared and applied to multiple

controls through styles.

Every Xamarin.Forms control has a Behaviors collection, to which one or more behaviors can be added, as

demonstrated in the following XAML code example:

The equivalent Entry in C# is shown in the following code example:

At runtime the behavior will respond to interaction with the control, according to the behavior implementation.

The following screenshots demonstrate the behavior responding to invalid input:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.onattachedto#xamarin_forms_behavior_1_onattachedto_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.ondetachingfrom#xamarin_forms_behavior_1_ondetachingfrom_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textcolor#xamarin_forms_inputview_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.behaviors#xamarin_forms_visualelement_behaviors
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

NOTENOTE

 Consuming a Xamarin.Forms Behavior with a StyleConsuming a Xamarin.Forms Behavior with a Style

Behaviors are written for a specific control type (or a superclass that can apply to many controls), and they should only be

added to a compatible control. Attempting to attach a behavior to an incompatible control will result in an exception

being thrown.

Behaviors can also be consumed by an explicit or implicit style. However, creating a style that sets the Behaviors

property of a control is not possible because the property is read-only. The solution is to add an attached

property to the behavior class that controls adding and removing the behavior. The process is as follows:

1. Add an attached property to the behavior class that will be used to control the addition or removal of the

behavior to the control to which the behavior will attached. Ensure that the attached property registers a

propertyChanged delegate that will be executed when the value of the property changes.

2. Create a static getter and setter for the attached property.

3. Implement logic in the propertyChanged delegate to add and remove the behavior.

The following code example shows an attached property that controls adding and removing the

NumericValidationBehavior :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/behaviors/creating-images/screenshots.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.behaviors#xamarin_forms_visualelement_behaviors

public class NumericValidationBehavior : Behavior<Entry>
{
 public static readonly BindableProperty AttachBehaviorProperty =
 BindableProperty.CreateAttached ("AttachBehavior", typeof(bool), typeof(NumericValidationBehavior),
false, propertyChanged: OnAttachBehaviorChanged);

 public static bool GetAttachBehavior (BindableObject view)
 {
 return (bool)view.GetValue (AttachBehaviorProperty);
 }

 public static void SetAttachBehavior (BindableObject view, bool value)
 {
 view.SetValue (AttachBehaviorProperty, value);
 }

 static void OnAttachBehaviorChanged (BindableObject view, object oldValue, object newValue)
 {
 var entry = view as Entry;
 if (entry == null) {
 return;
 }

 bool attachBehavior = (bool)newValue;
 if (attachBehavior) {
 entry.Behaviors.Add (new NumericValidationBehavior ());
 } else {
 var toRemove = entry.Behaviors.FirstOrDefault (b => b is NumericValidationBehavior);
 if (toRemove != null) {
 entry.Behaviors.Remove (toRemove);
 }
 }
 }
 ...
}

<Style x:Key="NumericValidationStyle" TargetType="Entry">
 <Style.Setters>
 <Setter Property="local:NumericValidationBehavior.AttachBehavior" Value="true" />
 </Style.Setters>
</Style>

<Entry Placeholder="Enter a System.Double" Style="{StaticResource NumericValidationStyle}">

The NumericValidationBehavior class contains an attached property named AttachBehavior with a static

getter and setter, which controls the addition or removal of the behavior to the control to which it will be

attached. This attached property registers the OnAttachBehaviorChanged method that will be executed when the

value of the property changes. This method adds or removes the behavior to the control, based on the value of

the AttachBehavior attached property.

The following code example shows an explicit style for the NumericValidationBehavior that uses the

AttachBehavior attached property, and which can be applied to Entry controls:

The Style can be applied to an Entry control by setting its Style property to the Style instance using the

StaticResource markup extension, as demonstrated in the following code example:

For more information about styles, see Styles.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style

NOTENOTE

 Removing a Behavior from a ControlRemoving a Behavior from a Control

var toRemove = entry.Behaviors.FirstOrDefault (b => b is NumericValidationBehavior);
if (toRemove != null) {
 entry.Behaviors.Remove (toRemove);
}

entry.Behaviors.Clear();

 Summary

 Related Links

While you can add bindable properties to a behavior that is set or queried in XAML, if you do create behaviors that have

state they should not be shared between controls in a Style in a ResourceDictionary .

The OnDetachingFrom method is fired when a behavior is removed from a control, and is used to perform any

required cleanup such as unsubscribing from an event to prevent a memory leak. However, behaviors are not

implicitly removed from controls unless the control's Behaviors collection is modified by a Remove or Clear

method. The following code example demonstrates removing a specific behavior from a control's Behaviors

collection:

Alternatively, the control's Behaviors collection can be cleared, as demonstrated in the following code example:

In addition, note that behaviors are not implicitly removed from controls when pages are popped from the

navigation stack. Instead, they must be explicitly removed prior to pages going out of scope.

This article demonstrated how to create and consume Xamarin.Forms behaviors. Xamarin.Forms behaviors are

created by deriving from the Behavior or Behavior<T> class.

Xamarin.Forms Behavior (sample)

Xamarin.Forms Behavior applied with a Style (sample)

Behavior

Behavior<T>

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.ondetachingfrom#xamarin_forms_behavior_1_ondetachingfrom_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.behaviors#xamarin_forms_visualelement_behaviors
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.behaviors#xamarin_forms_visualelement_behaviors
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-numericvalidationbehavior
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-numericvalidationbehaviorstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1

Reusable EffectBehavior
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

NOTENOTE

 Creating the Behavior

 Implementing Bindable PropertiesImplementing Bindable Properties

 Download the sample

Behaviors are a useful approach for adding an effect to a control, removing boiler-plate effect handling code

from code-behind files. This article demonstrates creating and consuming a Xamarin.Forms behavior to add an

effect to a control.

The EffectBehavior class is a reusable Xamarin.Forms custom behavior that adds an Effect instance to a

control when the behavior is attached to the control, and removes the Effect instance when the behavior is

detached from the control.

The following behavior properties must be set to use the behavior :

GroupGroup – the value of the ResolutionGroupName attribute for the effect class.

NameName – the value of the ExportEffect attribute for the effect class.

For more information about effects, see Effects.

The EffectBehavior is a custom class that can be located in the Effect Behavior sample, and is not part of

Xamarin.Forms.

The EffectBehavior class derives from the Behavior<T> class, where T is a View . This means that the

EffectBehavior class can be attached to any Xamarin.Forms control.

The EffectBehavior class defines two BindableProperty instances, which are used to add an Effect to a

control when the behavior is attached to the control. These properties are shown in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/behaviors/effect-behavior.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-effectbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resolutiongroupnameattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.exporteffectattribute
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-effectbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect

public class EffectBehavior : Behavior<View>
{
 public static readonly BindableProperty GroupProperty =
 BindableProperty.Create ("Group", typeof(string), typeof(EffectBehavior), null);
 public static readonly BindableProperty NameProperty =
 BindableProperty.Create ("Name", typeof(string), typeof(EffectBehavior), null);

 public string Group {
 get { return (string)GetValue (GroupProperty); }
 set { SetValue (GroupProperty, value); }
 }

 public string Name {
 get { return(string)GetValue (NameProperty); }
 set { SetValue (NameProperty, value); }
 }
 ...
}

 Implementing the OverridesImplementing the Overrides

public class EffectBehavior : Behavior<View>
{
 ...
 protected override void OnAttachedTo (BindableObject bindable)
 {
 base.OnAttachedTo (bindable);
 AddEffect (bindable as View);
 }

 protected override void OnDetachingFrom (BindableObject bindable)
 {
 RemoveEffect (bindable as View);
 base.OnDetachingFrom (bindable);
 }
 ...
}

 Implementing the Behavior FunctionalityImplementing the Behavior Functionality

When the EffectBehavior is consumed, the Group property should be set to the value of the

ResolutionGroupName attribute for the effect. In addition, the Name property should be set to the value of the

ExportEffect attribute for the effect class.

The EffectBehavior class overrides the OnAttachedTo and OnDetachingFrom methods of the Behavior<T> class,

as shown in the following code example:

The OnAttachedTo method performs setup by calling the AddEffect method, passing in the attached control as

a parameter. The OnDetachingFrom method performs cleanup by calling the RemoveEffect method, passing in

the attached control as a parameter.

The purpose of the behavior is to add the Effect defined in the Group and Name properties to a control when

the behavior is attached to the control, and remove the Effect when the behavior is detached from the control.

The core behavior functionality is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resolutiongroupnameattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.exporteffectattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.onattachedto#xamarin_forms_behavior_1_onattachedto_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.ondetachingfrom#xamarin_forms_behavior_1_ondetachingfrom_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.onattachedto#xamarin_forms_behavior_1_onattachedto_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1.ondetachingfrom#xamarin_forms_behavior_1_ondetachingfrom_xamarin_forms_bindableobject_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect

public class EffectBehavior : Behavior<View>
{
 ...
 void AddEffect (View view)
 {
 var effect = GetEffect ();
 if (effect != null) {
 view.Effects.Add (GetEffect ());
 }
 }

 void RemoveEffect (View view)
 {
 var effect = GetEffect ();
 if (effect != null) {
 view.Effects.Remove (GetEffect ());
 }
 }

 Effect GetEffect ()
 {
 if (!string.IsNullOrWhiteSpace (Group) && !string.IsNullOrWhiteSpace (Name)) {
 return Effect.Resolve (string.Format ("{0}.{1}", Group, Name));
 }
 return null;
 }
}

 Consuming the Behavior

<Label Text="Label Shadow Effect" ...>
 <Label.Behaviors>
 <local:EffectBehavior Group="Xamarin" Name="LabelShadowEffect" />
 </Label.Behaviors>
</Label>

var label = new Label {
 Text = "Label Shadow Effect",
 ...
};
label.Behaviors.Add (new EffectBehavior {
 Group = "Xamarin",
 Name = "LabelShadowEffect"
});

The AddEffect method is executed in response to the EffectBehavior being attached to a control, and it

receives the attached control as a parameter. The method then adds the retrieved effect to the control's Effects

collection. The RemoveEffect method is executed in response to the EffectBehavior being detached from a

control, and it receives the attached control as a parameter. The method then removes the effect from the

control's Effects collection.

The GetEffect method uses the Effect.Resolve method to retrieve the Effect . The effect is located through a

concatenation of the Group and Name property values. If a platform doesn't provide the effect, the

Effect.Resolve method will return a non- null value.

The EffectBehavior class can be attached to the Behaviors collection of a control, as demonstrated in the

following XAML code example:

The equivalent C# code is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect.resolve#xamarin_forms_effect_resolve_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.behaviors#xamarin_forms_visualelement_behaviors

 Summary

 Related Links

The Group and Name properties of the behavior are set to the values of the ResolutionGroupName and

ExportEffect attributes for the effect class in each platform-specific project.

At runtime, when the behavior is attached to the Label control, the Xamarin.LabelShadowEffect will be added to

the control's Effects collection. This results in a shadow being added to the text displayed by the Label

control, as shown in the following screenshots:

The advantage of using this behavior to add and remove effects from controls is that boiler-plate effect-handling

code can be removed from code-behind files.

This article demonstrated using a behavior to add an effect to a control. The EffectBehavior class is a reusable

Xamarin.Forms custom behavior that adds an Effect instance to a control when the behavior is attached to the

control, and removes the Effect instance when the behavior is detached from the control.

Effects

Effect Behavior (sample)

Behavior

Behavior<T>

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resolutiongroupnameattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.exporteffectattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/behaviors-effectbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.behavior-1

Xamarin.Forms Custom Renderers
 3/5/2021 • 2 minutes to read • Edit Online

 Introduction to custom renderers

 Renderer base classes and native controls

 Customizing an Entry

 Customizing a ContentPage

 Customizing a Map Pin

 Customizing a ListView

 Customizing a ViewCell

Xamarin.Forms user interfaces are rendered using the native controls of the target platform, allowing

Xamarin.Forms applications to retain the appropriate look and feel for each platform. Custom Renderers let

developers override this process to customize the appearance and behavior of Xamarin.Forms controls on each

platform.

Custom renderers provide a powerful approach for customizing the appearance and behavior of Xamarin.Forms

controls. They can be used for small styling changes or sophisticated platform-specific layout and behavior

customization. This article provides an introduction to custom renderers, and outlines the process for creating a

custom renderer.

Every Xamarin.Forms control has an accompanying renderer for each platform that creates an instance of a

native control. This article lists the renderer and native control classes that implement each Xamarin.Forms page,

layout, view, and cell.

The Xamarin.Forms Entry control allows a single line of text to be edited. This article demonstrates how to

create a custom renderer for the Entry control, enabling developers to override the default native rendering

with their own platform-specific customization.

A ContentPage is a visual element that displays a single view and occupies most of the screen. This article

demonstrates how to create a custom renderer for the ContentPage page, enabling developers to override the

default native rendering with their own platform-specific customization.

Xamarin.Forms.Maps provides a cross-platform abstraction for displaying maps that use the native map APIs on

each platform, to provide a fast and familiar map experience for users. This topic demonstrates how to a create

custom renderer for the Map control, enabling developers to override the default native rendering with their

own platform-specific customization.

A Xamarin.Forms ListView is a view that displays a collection of data as a vertical list. This article demonstrates

how to create a custom renderer that encapsulates platform-specific list controls and native cell layouts,

allowing more control over native list control performance.

A Xamarin.Forms ViewCell is a cell that can be added to a ListView or TableView , which contains a developer-

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview

 Customizing a WebView

 Implementing a View

defined view. This article demonstrates how to create a custom renderer for a ViewCell that's hosted inside a

Xamarin.Forms ListView control. This stops the Xamarin.Forms layout calculations from being repeatedly called

during ListView scrolling.

A Xamarin.Forms WebView is a view that displays web and HTML content in your app. This article explains how

to create a custom renderer that extends the WebView to allow C# code to be invoked from JavaScript.

Xamarin.Forms custom user interfaces controls should derive from the View class, which is used to place

layouts and controls on the screen. This article demonstrates how to create a custom renderer for a

Xamarin.Forms custom control that's used to display a preview video stream from the device's camera.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

Introduction to Custom Renderers
 7/8/2021 • 4 minutes to read • Edit Online

 Examining Why Custom Renderers are Necessary

public class MyEntry : Entry
{
 public MyEntry ()
 {
 BackgroundColor = Color.Gray;
 }
}

<ContentPage
 ...
 xmlns:local="clr-namespace:CustomRenderer;assembly=CustomRenderer"
 ...>
 ...
 <local:MyEntry Text="In Shared Code" />
 ...
</ContentPage>

Custom renderers provide a powerful approach for customizing the appearance and behavior of Xamarin.Forms

controls. They can be used for small styling changes or sophisticated platform-specific layout and behavior

customization. This article provides an introduction to custom renderers, and outlines the process for creating a

custom renderer.

Xamarin.Forms Pages, Layouts and Controls present a common API to describe cross-platform mobile user

interfaces. Each page, layout, and control is rendered differently on each platform, using a Renderer class that in

turn creates a native control (corresponding to the Xamarin.Forms representation), arranges it on the screen,

and adds the behavior specified in the shared code.

Developers can implement their own custom Renderer classes to customize the appearance and/or behavior of

a control. Custom renderers for a given type can be added to one application project to customize the control in

one place while allowing the default behavior on other platforms; or different custom renderers can be added to

each application project to create a different look and feel on iOS, Android, and the Universal Windows Platform

(UWP). However, implementing a custom renderer class to perform a simple control customization is often a

heavy-weight response. Effects simplify this process, and are typically used for small styling changes. For more

information, see Effects.

Changing the appearance of a Xamarin.Forms control, without using a custom renderer, is a two-step process

that involves creating a custom control through subclassing, and then consuming the custom control in place of

the original control. The following code example shows an example of subclassing the Entry control:

The MyEntry control is an Entry control where the BackgroundColor is set to gray, and can be referenced in

Xaml by declaring a namespace for its location and using the namespace prefix on the control element. The

following code example shows how the MyEntry custom control can be consumed by a ContentPage :

The local namespace prefix can be anything. However, the namespace and assembly values must match the

details of the custom control. Once the namespace is declared, the prefix is used to reference the custom control.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/introduction.md

NOTENOTE

 Creating a Custom Renderer Class

NOTENOTE

 Troubleshooting

Defining the xmlns is much simpler in .NET Standard library projects than Shared Projects. A .NET Standard library is

compiled into an assembly so it's easy to determine what the assembly=CustomRenderer value should be. When using

Shared Projects, all the shared assets (including the XAML) are compiled into each of the referencing projects, which

means that if the iOS, Android, and UWP projects have their own assembly names it is impossible to write the xmlns

declaration because the value needs to be different for each application. Custom controls in XAML for Shared Projects will

require every application project to be configured with the same assembly name.

The MyEntry custom control is then rendered on each platform, with a gray background, as shown in the

following screenshots:

Changing the background color of the control on each platform has been accomplished purely through

subclassing the control. However, this technique is limited in what it can achieve as it is not possible to take

advantage of platform-specific enhancements and customizations. When they are required, custom renderers

must be implemented.

The process for creating a custom renderer class is as follows:

1. Create a subclass of the renderer class that renders the native control.

2. Override the method that renders the native control and write logic to customize the control. Often, the

OnElementChanged method is used to render the native control, which is called when the corresponding

Xamarin.Forms control is created.

3. Add an ExportRenderer attribute to the custom renderer class to specify that it will be used to render the

Xamarin.Forms control. This attribute is used to register the custom renderer with Xamarin.Forms.

For most Xamarin.Forms elements, it is optional to provide a custom renderer in each platform project. If a custom

renderer isn't registered, then the default renderer for the control's base class will be used. However, custom renderers are

required in each platform project when rendering a View or ViewCell element.

The topics in this series will provide demonstrations and explanations of this process for different

Xamarin.Forms elements.

If a custom control is contained in a .NET Standard library project that's been added to the solution (i.e. not the

.NET Standard library created by the Visual Studio for Mac/Visual Studio Xamarin.Forms App project template),

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

var temp = new ClassInPCL(); // in AppDelegate, but temp not used anywhere

[assembly: Preserve (typeof (ClassInPCL))]

 Summary

 Related Links

an exception may occur in iOS when attempting to access the custom control. If this issue occurs it can be

resolved by creating a reference to the custom control from the AppDelegate class:

This forces the compiler to recognize the ClassInPCL type by resolving it. Alternatively, the Preserve attribute

can be added to the AppDelegate class to achieve the same result:

This creates a reference to the ClassInPCL type, indicating that it's required at runtime. For more information,

see Preserving Code.

This article has provided an introduction to custom renderers, and has outlined the process for creating a

custom renderer. Custom renderers provide a powerful approach for customizing the appearance and behavior

of Xamarin.Forms controls. They can be used for small styling changes or sophisticated platform-specific layout

and behavior customization.

Effects

https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/linker

Renderer Base Classes and Native Controls
 3/5/2021 • 3 minutes to read • Edit Online

NOTENOTE

 Pages

PA GEPA GE REN DERERREN DERER IO SIO S A N DRO IDA N DRO ID
A N DRO IDA N DRO ID
(A P P C O M PAT)(A P P C O M PAT) UW PUW P

ContentPage PageRenderer UIViewController ViewGroup FrameworkEleme
nt

FlyoutPage PhoneFlyoutPag
eRenderer (iOS –
Phone),
TabletFlyoutPage
Renderer (iOS –
Tablet),
MasterDetailRen
derer (Android),
FlyoutPageRende
rer (Android
AppCompat),
FlyoutPageRende
rer (UWP)

UIViewController
(Phone),
UISplitViewContr
oller (Tablet)

DrawerLayout
(v4)

DrawerLayout
(v4)

FrameworkEleme
nt (Custom
Control)

Every Xamarin.Forms control has an accompanying renderer for each platform that creates an instance of a

native control. This article lists the renderer and native control classes that implement each Xamarin.Forms page,

layout, view, and cell.

With the exception of the MapRenderer class, the platform-specific renderers can be found in the following

namespaces:

iOSiOS – Xamarin.Forms.Platform.iOS

AndroidAndroid – Xamarin.Forms.Platform.Android

Android (AppCompat)Android (AppCompat) – Xamarin.Forms.Platform.Android.AppCompat

Android (FastRenderers)Android (FastRenderers) - Xamarin.Forms.Platform.Android.FastRenderers

Universal Windows Platform (UWP)Universal Windows Platform (UWP) – Xamarin.Forms.Platform.UWP

For more information about fast renderers, see Xamarin.Forms Fast Renderers.

The MapRenderer class can be found in the following namespaces:

iOSiOS – Xamarin.Forms.Maps.iOS

AndroidAndroid – Xamarin.Forms.Maps.Android

Universal Windows Platform (UWP)Universal Windows Platform (UWP) – Xamarin.Forms.Maps.UWP

For information about creating custom renderers for Shell applications, see Xamarin.Forms Shell Custom Renderers.

The following table lists the renderer and native control classes that implement each Xamarin.Forms Page type:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/renderers.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

NavigationPage NavigationRende
rer (iOS and
Android),
NavigationPageR
enderer (Android
AppCompat),
NavigationPageR
enderer (UWP)

UIToolbar ViewGroup ViewGroup FrameworkEleme
nt (Custom
Control)

TabbedPage TabbedRenderer
(iOS and
Android),
TabbedPageRend
erer (Android
AppCompat),
TabbedPageRend
erer (UWP)

UIView ViewPager ViewPager FrameworkEleme
nt (Pivot)

TemplatedPage PageRenderer UIViewController ViewGroup FrameworkEleme
nt

CarouselPage CarouselPageRen
derer

UIScrollView ViewPager ViewPager FrameworkEleme
nt (FlipView)

PA GEPA GE REN DERERREN DERER IO SIO S A N DRO IDA N DRO ID
A N DRO IDA N DRO ID
(A P P C O M PAT)(A P P C O M PAT) UW PUW P

 Layouts

L AY O UTL AY O UT REN DERERREN DERER IO SIO S A N DRO IDA N DRO ID
A N DRO IDA N DRO ID
(A P P C O M PAT)(A P P C O M PAT) UW PUW P

ContentPresenter ViewRenderer UIView View View FrameworkEleme
nt

ContentView ViewRenderer UIView View View FrameworkEleme
nt

FlexLayout ViewRenderer UIView View View FrameworkEleme
nt

Frame FrameRenderer UIView ViewGroup CardView Border

ScrollView ScrollViewRender
er

UIScrollView ScrollView ScrollView ScrollViewer

TemplatedView ViewRenderer UIView View View FrameworkEleme
nt

AbsoluteLayout ViewRenderer UIView View View FrameworkEleme
nt

Grid ViewRenderer UIView View View FrameworkEleme
nt

The following table lists the renderer and native control classes that implement each Xamarin.Forms Layout

type:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

RelativeLayout ViewRenderer UIView View View FrameworkEleme
nt

StackLayout ViewRenderer UIView View View FrameworkEleme
nt

L AY O UTL AY O UT REN DERERREN DERER IO SIO S A N DRO IDA N DRO ID
A N DRO IDA N DRO ID
(A P P C O M PAT)(A P P C O M PAT) UW PUW P

 Views

VIEW SVIEW S REN DERERREN DERER IO SIO S A N DRO IDA N DRO ID
A N DRO IDA N DRO ID
(A P P C O M PAT)(A P P C O M PAT) UW PUW P

ActivityIndicator ActivityIndicator
Renderer

UIActivityIndicat
or

ProgressBar ProgressBar

BoxView BoxRenderer (iOS
and Android),
BoxViewRenderer
(UWP)

UIView ViewGroup Rectangle

Button ButtonRenderer UIButton Button AppCompatButt
on

Button

CarouselView CarouselViewRen
derer

UICollectionView RecyclerView ListViewBase

CheckBox CheckBoxRender
er

UIButton AppCompatChec
kBox

CheckBox

CollectionView CollectionViewRe
nderer

UICollectionView RecyclerView ListViewBase

DatePicker DatePickerRende
rer

UITextField EditText DatePicker

Editor EditorRenderer UITextView EditText TextBox

Ellipse EllipseRenderer CALayer View Ellipse

Entry EntryRenderer UITextField EditText TextBox

Image ImageRenderer UIImageView ImageView Image

ImageButton ImageButtonRen
derer

UIButton AppCompatImag
eButton

Button

IndicatorView IndicatorViewRen
derer

UIPageControl LinearLayout

Label LabelRenderer UILabel TextView TextBlock

The following table lists the renderer and native control classes that implement each Xamarin.Forms View type:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.ellipse
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

Line LineRenderer CALayer View Line

ListView ListViewRenderer UITableView ListView ListView

Map MapRenderer MKMapView MapView MapControl

Path PathRenderer CALayer View Path

Picker PickerRenderer UITextField EditText EditText ComboBox

Polygon PolygonRenderer CALayer View Polygon

Polyline PolylineRenderer CALayer View Polyline

ProgressBar ProgressBarRend
erer

UIProgressView ProgressBar ProgressBar

RadioButton RadioButtonRen
derer

UIButton AppCompatRadi
oButton

RadioButton

Rectangle RectangleRender
er

CALayer View Rectangle

RefreshView RefreshViewRend
erer

UIView SwipeRefreshLay
out

RefreshContainer

SearchBar SearchBarRender
er

UISearchBar SearchView AutoSuggestBox

Slider SliderRenderer UISlider SeekBar Slider

Stepper StepperRenderer UIStepper LinearLayout Control

SwipeView SwipeViewRende
rer

UIView View SwipeControl

Switch SwitchRenderer UISwitch Switch SwitchCompat ToggleSwitch

TableView TableViewRender
er

UITableView ListView ListView

TimePicker TimePickerRende
rer

UITextField EditText TimePicker

WebView WkWebViewRen
derer (iOS),
WebViewRender
er (Android and
UWP)

WkWebView WebView WebView

VIEW SVIEW S REN DERERREN DERER IO SIO S A N DRO IDA N DRO ID
A N DRO IDA N DRO ID
(A P P C O M PAT)(A P P C O M PAT) UW PUW P

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.path
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polyline
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.refreshview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipeview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

Cells

C EL L SC EL L S REN DERERREN DERER IO SIO S A N DRO IDA N DRO ID UW PUW P

EntryCell EntryCellRenderer UITableViewCell with
a UITextField

LinearLayout with a
TextView and EditText

DataTemplate with a
TextBox

SwitchCell SwitchCellRenderer UITableViewCell with
a UISwitch

Switch DataTemplate with a
Grid containing a
TextBlock and
ToggleSwitch

TextCell TextCellRenderer UITableViewCell LinearLayout with
two TextViews

DataTemplate with a
StackPanel containing
two TextBlocks

ImageCell ImageCellRenderer UITableViewCell with
a UIImage

LinearLayout with
two TextViews and an
ImageView

DataTemplate with a
Grid containing an
Image and two
TextBlocks

ViewCell ViewCellRenderer UITableViewCell View DataTemplate with a
ContentPresenter

 Related links

The following table lists the renderer and native control classes that implement each Xamarin.Forms Cell type:

Xamarin.Forms Fast Renderers

Xamarin.Forms Shell Custom Renderers

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagecell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

Customizing an Entry
 7/8/2021 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Creating the Custom Entry Control

 Download the sample

The Xamarin.Forms Entry control allows a single line of text to be edited. This article demonstrates how to create

a custom renderer for the Entry control, enabling developers to override the default native rendering with their

own platform-specific customization.

Every Xamarin.Forms control has an accompanying renderer for each platform that creates an instance of a

native control. When an Entry control is rendered by a Xamarin.Forms application, in iOS the EntryRenderer

class is instantiated, which in turns instantiates a native UITextField control. On the Android platform, the

EntryRenderer class instantiates an EditText control. On the Universal Windows Platform (UWP), the

EntryRenderer class instantiates a TextBox control. For more information about the renderer and native control

classes that Xamarin.Forms controls map to, see Renderer Base Classes and Native Controls.

The following diagram illustrates the relationship between the Entry control and the corresponding native

controls that implement it:

The rendering process can be taken advantage of to implement platform-specific customizations by creating a

custom renderer for the Entry control on each platform. The process for doing this is as follows:

1. Create a Xamarin.Forms custom control.

2. Consume the custom control from Xamarin.Forms.

3. Create the custom renderer for the control on each platform.

Each item will now be discussed in turn, to implement an Entry control that has a different background color

on each platform.

This article explains how to create a simple custom renderer. However, it's not necessary to create a custom renderer to

implement an Entry that has a different background color on each platform. This can be more easily accomplished by

using the Device class, or the OnPlatform markup extension, to provide platform-specific values. For more

information, see Providing Platform-Specific Values and OnPlatform Markup Extension.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/entry.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device

public class MyEntry : Entry
{
}

 Consuming the Custom Control

<ContentPage ...
 xmlns:local="clr-namespace:CustomRenderer;assembly=CustomRenderer"
 ...>
 ...
 <local:MyEntry Text="In Shared Code" />
 ...
</ContentPage>

public class MainPage : ContentPage
{
 public MainPage ()
 {
 Content = new StackLayout {
 Children = {
 new Label {
 Text = "Hello, Custom Renderer !",
 },
 new MyEntry {
 Text = "In Shared Code",
 }
 },
 VerticalOptions = LayoutOptions.CenterAndExpand,
 HorizontalOptions = LayoutOptions.CenterAndExpand,
 };
 }
}

 Creating the Custom Renderer on each Platform

A custom Entry control can be created by subclassing the Entry control, as shown in the following code

example:

The MyEntry control is created in the .NET Standard library project and is simply an Entry control.

Customization of the control will be carried out in the custom renderer, so no additional implementation is

required in the MyEntry control.

The MyEntry control can be referenced in XAML in the .NET Standard library project by declaring a namespace

for its location and using the namespace prefix on the control element. The following code example shows how

the MyEntry control can be consumed by a XAML page:

The local namespace prefix can be named anything. However, the clr-namespace and assembly values must

match the details of the custom control. Once the namespace is declared the prefix is used to reference the

custom control.

The following code example shows how the MyEntry control can be consumed by a C# page:

This code instantiates a new ContentPage object that will display a Label and MyEntry control centered both

vertically and horizontally on the page.

A custom renderer can now be added to each application project to customize the control's appearance on each

platform.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

NOTENOTE

The process for creating the custom renderer class is as follows:

1. Create a subclass of the EntryRenderer class that renders the native control.

2. Override the OnElementChanged method that renders the native control and write logic to customize the

control. This method is called when the corresponding Xamarin.Forms control is created.

3. Add an ExportRenderer attribute to the custom renderer class to specify that it will be used to render the

Xamarin.Forms control. This attribute is used to register the custom renderer with Xamarin.Forms.

It is optional to provide a custom renderer in each platform project. If a custom renderer isn't registered, then the default

renderer for the control's base class will be used.

The following diagram illustrates the responsibilities of each project in the sample application, along with the

relationships between them:

The MyEntry control is rendered by platform-specific MyEntryRenderer classes, which all derive from the

EntryRenderer class for each platform. This results in each MyEntry control being rendered with a platform-

specific background color, as shown in the following screenshots:

The EntryRenderer class exposes the OnElementChanged method, which is called when the Xamarin.Forms

control is created to render the corresponding native control. This method takes an ElementChangedEventArgs

parameter that contains OldElement and NewElement properties. These properties represent the Xamarin.Forms

element that the renderer was attached to, and the Xamarin.Forms element that the renderer is attached to,

respectively. In the sample application the OldElement property will be null and the NewElement property will

contain a reference to the MyEntry control.

An overridden version of the OnElementChanged method in the MyEntryRenderer class is the place to perform the

native control customization. A typed reference to the native control being used on the platform can be accessed

through the Control property. In addition, a reference to the Xamarin.Forms control that's being rendered can

be obtained through the Element property, although it's not used in the sample application.

Each custom renderer class is decorated with an ExportRenderer attribute that registers the renderer with

 Creating the Custom Renderer on iOSCreating the Custom Renderer on iOS

using Xamarin.Forms.Platform.iOS;

[assembly: ExportRenderer (typeof(MyEntry), typeof(MyEntryRenderer))]
namespace CustomRenderer.iOS
{
 public class MyEntryRenderer : EntryRenderer
 {
 protected override void OnElementChanged (ElementChangedEventArgs<Entry> e)
 {
 base.OnElementChanged (e);

 if (Control != null) {
 // do whatever you want to the UITextField here!
 Control.BackgroundColor = UIColor.FromRGB (204, 153, 255);
 Control.BorderStyle = UITextBorderStyle.Line;
 }
 }
 }
}

 Creating the Custom Renderer on AndroidCreating the Custom Renderer on Android

using Xamarin.Forms.Platform.Android;

[assembly: ExportRenderer(typeof(MyEntry), typeof(MyEntryRenderer))]
namespace CustomRenderer.Android
{
 class MyEntryRenderer : EntryRenderer
 {
 public MyEntryRenderer(Context context) : base(context)
 {
 }

 protected override void OnElementChanged(ElementChangedEventArgs<Entry> e)
 {
 base.OnElementChanged(e);

 if (Control != null)
 {
 Control.SetBackgroundColor(global::Android.Graphics.Color.LightGreen);
 }
 }
 }
}

Xamarin.Forms. The attribute takes two parameters – the type name of the Xamarin.Forms control being

rendered, and the type name of the custom renderer. The assembly prefix to the attribute specifies that the

attribute applies to the entire assembly.

The following sections discuss the implementation of each platform-specific MyEntryRenderer custom renderer

class.

The following code example shows the custom renderer for the iOS platform:

The call to the base class's OnElementChanged method instantiates an iOS UITextField control, with a reference

to the control being assigned to the renderer's Control property. The background color is then set to light

purple with the UIColor.FromRGB method.

The following code example shows the custom renderer for the Android platform:

The call to the base class's OnElementChanged method instantiates an Android EditText control, with a reference

 Creating the Custom Renderer on UWPCreating the Custom Renderer on UWP

[assembly: ExportRenderer(typeof(MyEntry), typeof(MyEntryRenderer))]
namespace CustomRenderer.UWP
{
 public class MyEntryRenderer : EntryRenderer
 {
 protected override void OnElementChanged(ElementChangedEventArgs<Entry> e)
 {
 base.OnElementChanged(e);

 if (Control != null)
 {
 Control.Background = new SolidColorBrush(Colors.Cyan);
 }
 }
 }
}

 Summary

 Related Links

to the control being assigned to the renderer's Control property. The background color is then set to light

green with the Control.SetBackgroundColor method.

The following code example shows the custom renderer for UWP:

The call to the base class's OnElementChanged method instantiates a TextBox control, with a reference to the

control being assigned to the renderer's Control property. The background color is then set to cyan by creating

a SolidColorBrush instance.

This article has demonstrated how to create a custom control renderer for the Xamarin.Forms Entry control,

enabling developers to override the default native rendering with their own platform-specific rendering. Custom

renderers provide a powerful approach to customizing the appearance of Xamarin.Forms controls. They can be

used for small styling changes or sophisticated platform-specific layout and behavior customization.

CustomRendererEntry (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-entry

Customizing a ContentPage
 7/8/2021 • 7 minutes to read • Edit Online

 Creating the Xamarin.Forms Page

 Download the sample

A ContentPage is a visual element that displays a single view and occupies most of the screen. This article

demonstrates how to create a custom renderer for the ContentPage page, enabling developers to override the

default native rendering with their own platform-specific customization.

Every Xamarin.Forms control has an accompanying renderer for each platform that creates an instance of a

native control. When a ContentPage is rendered by a Xamarin.Forms application, in iOS the PageRenderer class

is instantiated, which in turn instantiates a native UIViewController control. On the Android platform, the

PageRenderer class instantiates a ViewGroup control. On the Universal Windows Platform (UWP), the

PageRenderer class instantiates a FrameworkElement control. For more information about the renderer and

native control classes that Xamarin.Forms controls map to, see Renderer Base Classes and Native Controls.

The following diagram illustrates the relationship between the ContentPage and the corresponding native

controls that implement it:

The rendering process can be taken advantage of to implement platform-specific customizations by creating a

custom renderer for a ContentPage on each platform. The process for doing this is as follows:

1. Create a Xamarin.Forms page.

2. Consume the page from Xamarin.Forms.

3. Create the custom renderer for the page on each platform.

Each item will now be discussed in turn, to implement a CameraPage that provides a live camera feed and the

ability to capture a photo.

An unaltered ContentPage can be added to the shared Xamarin.Forms project, as shown in the following XAML

code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/contentpage.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="CustomRenderer.CameraPage">
 <ContentPage.Content>
 </ContentPage.Content>
</ContentPage>

public partial class CameraPage : ContentPage
{
 public CameraPage ()
 {
 // A custom renderer is used to display the camera UI
 InitializeComponent ();
 }
}

public class CameraPageCS : ContentPage
{
 public CameraPageCS ()
 {
 }
}

 Consuming the Xamarin.Forms Page

async void OnTakePhotoButtonClicked (object sender, EventArgs e)
{
 await Navigation.PushAsync (new CameraPage ());
}

 Creating the Page Renderer on each Platform

Similarly, the code-behind file for the ContentPage should also remain unaltered, as shown in the following code

example:

The following code example shows how the page can be created in C#:

An instance of the CameraPage will be used to display the live camera feed on each platform. Customization of

the control will be carried out in the custom renderer, so no additional implementation is required in the

CameraPage class.

The empty CameraPage must be displayed by the Xamarin.Forms application. This occurs when a button on the

MainPage instance is tapped, which in turn executes the OnTakePhotoButtonClicked method, as shown in the

following code example:

This code simply navigates to the CameraPage , on which custom renderers will customize the page's appearance

on each platform.

The process for creating the custom renderer class is as follows:

1. Create a subclass of the PageRenderer class.

2. Override the OnElementChanged method that renders the native page and write logic to customize the page.

The OnElementChanged method is called when the corresponding Xamarin.Forms control is created.

3. Add an ExportRenderer attribute to the page renderer class to specify that it will be used to render the

Xamarin.Forms page. This attribute is used to register the custom renderer with Xamarin.Forms.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

NOTENOTE
It is optional to provide a page renderer in each platform project. If a page renderer isn't registered, then the default

renderer for the page will be used.

The following diagram illustrates the responsibilities of each project in the sample application, along with the

relationship between them:

The CameraPage instance is rendered by platform-specific CameraPageRenderer classes, which all derive from the

PageRenderer class for that platform. This results in each CameraPage instance being rendered with a live

camera feed, as shown in the following screenshots:

The PageRenderer class exposes the OnElementChanged method, which is called when the Xamarin.Forms page is

created to render the corresponding native control. This method takes an ElementChangedEventArgs parameter

that contains OldElement and NewElement properties. These properties represent the Xamarin.Forms element

that the renderer was attached to, and the Xamarin.Forms element that the renderer is attached to, respectively.

In the sample application the OldElement property will be null and the NewElement property will contain a

reference to the CameraPage instance.

An overridden version of the OnElementChanged method in the CameraPageRenderer class is the place to perform

the native page customization. A reference to the Xamarin.Forms page instance that's being rendered can be

obtained through the Element property.

Each custom renderer class is decorated with an ExportRenderer attribute that registers the renderer with

Xamarin.Forms. The attribute takes two parameters – the type name of the Xamarin.Forms page being rendered,

and the type name of the custom renderer. The assembly prefix to the attribute specifies that the attribute

applies to the entire assembly.

 Creating the Page Renderer on iOSCreating the Page Renderer on iOS

[assembly:ExportRenderer (typeof(CameraPage), typeof(CameraPageRenderer))]
namespace CustomRenderer.iOS
{
 public class CameraPageRenderer : PageRenderer
 {
 ...

 protected override void OnElementChanged (VisualElementChangedEventArgs e)
 {
 base.OnElementChanged (e);

 if (e.OldElement != null || Element == null) {
 return;
 }

 try {
 SetupUserInterface ();
 SetupEventHandlers ();
 SetupLiveCameraStream ();
 AuthorizeCameraUse ();
 } catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine (@" ERROR: ", ex.Message);
 }
 }
 ...
 }
}

 Creating the Page Renderer on AndroidCreating the Page Renderer on Android

The following sections discuss the implementation of the CameraPageRenderer custom renderer for each

platform.

The following code example shows the page renderer for the iOS platform:

The call to the base class's OnElementChanged method instantiates an iOS UIViewController control. The live

camera stream is only rendered provided that the renderer isn't already attached to an existing Xamarin.Forms

element, and provided that a page instance exists that is being rendered by the custom renderer.

The page is then customized by a series of methods that use the AVCapture APIs to provide the live stream from

the camera and the ability to capture a photo.

The following code example shows the page renderer for the Android platform:

[assembly: ExportRenderer(typeof(CameraPage), typeof(CameraPageRenderer))]
namespace CustomRenderer.Droid
{
 public class CameraPageRenderer : PageRenderer, TextureView.ISurfaceTextureListener
 {
 ...
 public CameraPageRenderer(Context context) : base(context)
 {
 }

 protected override void OnElementChanged(ElementChangedEventArgs<Page> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null || Element == null)
 {
 return;
 }

 try
 {
 SetupUserInterface();
 SetupEventHandlers();
 AddView(view);
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(@" ERROR: ", ex.Message);
 }
 }
 ...
 }
}

 Creating the Page Renderer on UWPCreating the Page Renderer on UWP

The call to the base class's OnElementChanged method instantiates an Android ViewGroup control, which is a

group of views. The live camera stream is only rendered provided that the renderer isn't already attached to an

existing Xamarin.Forms element, and provided that a page instance exists that is being rendered by the custom

renderer.

The page is then customized by invoking a series of methods that use the Camera API to provide the live stream

from the camera and the ability to capture a photo, before the AddView method is invoked to add the live

camera stream UI to the ViewGroup . Note that on Android it's also necessary to override the OnLayout method

to perform measure and layout operations on the view. For more information, see the ContentPage renderer

sample.

The following code example shows the page renderer for UWP:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-contentpage

[assembly: ExportRenderer(typeof(CameraPage), typeof(CameraPageRenderer))]
namespace CustomRenderer.UWP
{
 public class CameraPageRenderer : PageRenderer
 {
 ...
 protected override void OnElementChanged(ElementChangedEventArgs<Xamarin.Forms.Page> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null || Element == null)
 {
 return;
 }

 try
 {
 ...
 SetupUserInterface();
 SetupBasedOnStateAsync();

 this.Children.Add(page);
 }
 ...
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 page.Arrange(new Windows.Foundation.Rect(0, 0, finalSize.Width, finalSize.Height));
 return finalSize;
 }
 ...
 }
}

NOTENOTE

 Summary

The call to the base class's OnElementChanged method instantiates a FrameworkElement control, on which the page

is rendered. The live camera stream is only rendered provided that the renderer isn't already attached to an

existing Xamarin.Forms element, and provided that a page instance exists that is being rendered by the custom

renderer. The page is then customized by invoking a series of methods that use the MediaCapture API to provide

the live stream from the camera and the ability to capture a photo before the customized page is added to the

Children collection for display.

When implementing a custom renderer that derives from PageRenderer on UWP, the ArrangeOverride method

should also be implemented to arrange the page controls, because the base renderer doesn't know what to do

with them. Otherwise, a blank page results. Therefore, in this example the ArrangeOverride method calls the

Arrange method on the Page instance.

It's important to stop and dispose of the objects that provide access to the camera in a UWP application. Failure to do so

can interfere with other applications that attempt to access the device's camera. For more information, see Display the

camera preview.

This article has demonstrated how to create a custom renderer for the ContentPage page, enabling developers

to override the default native rendering with their own platform-specific customization. A ContentPage is a

visual element that displays a single view and occupies most of the screen.

https://docs.microsoft.com/en-us/windows/uwp/audio-video-camera/simple-camera-preview-access
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

 Related Links
CustomRendererContentPage (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-contentpage

Customizing a Map Pin
 7/8/2021 • 20 minutes to read • Edit Online

NOTENOTE

 Creating the Custom Map

 Download the sample

This article demonstrates how to create a custom renderer for the Map control, which displays a native map

with a customized pin and a customized view of the pin data on each platform.

Every Xamarin.Forms view has an accompanying renderer for each platform that creates an instance of a native

control. When a Map is rendered by a Xamarin.Forms application in iOS, the MapRenderer class is instantiated,

which in turn instantiates a native MKMapView control. On the Android platform, the MapRenderer class

instantiates a native MapView control. On the Universal Windows Platform (UWP), the MapRenderer class

instantiates a native MapControl . For more information about the renderer and native control classes that

Xamarin.Forms controls map to, see Renderer Base Classes and Native Controls.

The following diagram illustrates the relationship between the Map and the corresponding native controls that

implement it:

The rendering process can be used to implement platform-specific customizations by creating a custom

renderer for a Map on each platform. The process for doing this is as follows:

1. Create a Xamarin.Forms custom map.

2. Consume the custom map from Xamarin.Forms.

3. Create the custom renderer for the map on each platform.

Each item will now be discussed in turn, to implement a CustomMap renderer that displays a native map with a

customized pin and a customized view of the pin data on each platform.

Xamarin.Forms.Maps must be initialized and configured before use. For more information, see Maps Control .

A custom map control can be created by subclassing the Map class, as shown in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/map-pin.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-map-pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map

public class CustomMap : Map
{
 public List<CustomPin> CustomPins { get; set; }
}

public class CustomPin : Pin
{
 public string Name { get; set; }
 public string Url { get; set; }
}

 Consuming the Custom Map

<ContentPage ...
 xmlns:local="clr-namespace:CustomRenderer;assembly=CustomRenderer">
 <local:CustomMap x:Name="customMap"
 MapType="Street" />
</ContentPage>

public class MapPageCS : ContentPage
{
 public MapPageCS()
 {
 CustomMap customMap = new CustomMap
 {
 MapType = MapType.Street
 };
 // ...
 Content = customMap;
 }
}

The CustomMap control is created in the .NET Standard library project and defines the API for the custom map.

The custom map exposes the CustomPins property that represents the collection of CustomPin objects that will

be rendered by the native map control on each platform. The CustomPin class is shown in the following code

example:

This class defines a CustomPin as inheriting the properties of the Pin class, and adding Name and Url

properties.

The CustomMap control can be referenced in XAML in the .NET Standard library project by declaring a namespace

for its location and using the namespace prefix on the custom map control. The following code example shows

how the CustomMap control can be consumed by a XAML page:

The local namespace prefix can be named anything. However, the clr-namespace and assembly values must

match the details of the custom map. Once the namespace is declared, the prefix is used to reference the custom

map.

The following code example shows how the CustomMap control can be consumed by a C# page:

The CustomMap instance will be used to display the native map on each platform. It's MapType property sets the

display style of the Map , with the possible values being defined in the MapType enumeration.

The location of the map, and the pins it contains, are initialized as shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.maptype

public MapPage()
{
 // ...
 CustomPin pin = new CustomPin
 {
 Type = PinType.Place,
 Position = new Position(37.79752, -122.40183),
 Label = "Xamarin San Francisco Office",
 Address = "394 Pacific Ave, San Francisco CA",
 Name = "Xamarin",
 Url = "http://xamarin.com/about/"
 };
 customMap.CustomPins = new List<CustomPin> { pin };
 customMap.Pins.Add(pin);
 customMap.MoveToRegion(MapSpan.FromCenterAndRadius(new Position(37.79752, -122.40183),
Distance.FromMiles(1.0)));
}

 Creating the Custom Renderer on each Platform

NOTENOTE

This initialization adds a custom pin and positions the map's view with the MoveToRegion method, which

changes the position and zoom level of the map by creating a MapSpan from a Position and a Distance .

A custom renderer can now be added to each application project to customize the native map controls.

The process for creating the custom renderer class is as follows:

1. Create a subclass of the MapRenderer class that renders the custom map.

2. Override the OnElementChanged method that renders the custom map and write logic to customize it. This

method is called when the corresponding Xamarin.Forms custom map is created.

3. Add an ExportRenderer attribute to the custom renderer class to specify that it will be used to render the

Xamarin.Forms custom map. This attribute is used to register the custom renderer with Xamarin.Forms.

It is optional to provide a custom renderer in each platform project. If a custom renderer isn't registered, then the default

renderer for the control's base class will be used.

The following diagram illustrates the responsibilities of each project in the sample application, along with the

relationships between them:

The CustomMap control is rendered by platform-specific renderer classes, which derive from the MapRenderer

class for each platform. This results in each CustomMap control being rendered with platform-specific controls, as

shown in the following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.movetoregion
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance

protected override void OnElementChanged (ElementChangedEventArgs<Xamarin.Forms.View> e)
{
 base.OnElementChanged (e);

 if (e.OldElement != null)
 {
 // Unsubscribe from event handlers
 }

 if (e.NewElement != null)
 {
 // Configure the native control and subscribe to event handlers
 }
}

 Creating the Custom Renderer on iOSCreating the Custom Renderer on iOS

The MapRenderer class exposes the OnElementChanged method, which is called when the Xamarin.Forms custom

map is created to render the corresponding native control. This method takes an ElementChangedEventArgs

parameter that contains OldElement and NewElement properties. These properties represent the Xamarin.Forms

element that the renderer was attached to, and the Xamarin.Forms element that the renderer is attached to,

respectively. In the sample application the OldElement property will be null and the NewElement property will

contain a reference to the CustomMap instance.

An overridden version of the OnElementChanged method, in each platform-specific renderer class, is the place to

perform the native control customization. A typed reference to the native control being used on the platform can

be accessed through the Control property. In addition, a reference to the Xamarin.Forms control that's being

rendered can be obtained through the Element property.

Care must be taken when subscribing to event handlers in the OnElementChanged method, as demonstrated in

the following code example:

The native control should be configured and event handlers subscribed to only when the custom renderer is

attached to a new Xamarin.Forms element. Similarly, any event handlers that were subscribed to should be

unsubscribed from only when the element that the renderer is attached to changes. Adopting this approach will

help to create a custom renderer that doesn't suffer from memory leaks.

Each custom renderer class is decorated with an ExportRenderer attribute that registers the renderer with

Xamarin.Forms. The attribute takes two parameters – the type name of the Xamarin.Forms custom control being

rendered, and the type name of the custom renderer. The assembly prefix to the attribute specifies that the

attribute applies to the entire assembly.

The following sections discuss the implementation of each platform-specific custom renderer class.

The following screenshots show the map, before and after customization:

[assembly: ExportRenderer(typeof(CustomMap), typeof(CustomMapRenderer))]
namespace CustomRenderer.iOS
{
 public class CustomMapRenderer : MapRenderer
 {
 UIView customPinView;
 List<CustomPin> customPins;

 protected override void OnElementChanged(ElementChangedEventArgs<View> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 var nativeMap = Control as MKMapView;
 if (nativeMap != null)
 {
 nativeMap.RemoveAnnotations(nativeMap.Annotations);
 nativeMap.GetViewForAnnotation = null;
 nativeMap.CalloutAccessoryControlTapped -= OnCalloutAccessoryControlTapped;
 nativeMap.DidSelectAnnotationView -= OnDidSelectAnnotationView;
 nativeMap.DidDeselectAnnotationView -= OnDidDeselectAnnotationView;
 }
 }

 if (e.NewElement != null)
 {
 var formsMap = (CustomMap)e.NewElement;
 var nativeMap = Control as MKMapView;
 customPins = formsMap.CustomPins;

 nativeMap.GetViewForAnnotation = GetViewForAnnotation;
 nativeMap.CalloutAccessoryControlTapped += OnCalloutAccessoryControlTapped;
 nativeMap.DidSelectAnnotationView += OnDidSelectAnnotationView;
 nativeMap.DidDeselectAnnotationView += OnDidDeselectAnnotationView;
 }
 }
 // ...
 }
}

On iOS the pin is called an annotation, and can be either a custom image or a system-defined pin of various

colors. Annotations can optionally show a callout, which is displayed in response to the user selecting the

annotation. The callout displays the Label and Address properties of the Pin instance, with optional left and

right accessory views. In the screenshot above, the left accessory view is the image of a monkey, with the right

accessory view being the Information button.

The following code example shows the custom renderer for the iOS platform:

The OnElementChanged method performs the following configuration of the MKMapView instance, provided that

https://docs.microsoft.com/en-us/dotnet/api/mapkit.mkmapview

 Displaying the AnnotationDisplaying the Annotation

protected override MKAnnotationView GetViewForAnnotation(MKMapView mapView, IMKAnnotation annotation)
{
 MKAnnotationView annotationView = null;

 if (annotation is MKUserLocation)
 return null;

 var customPin = GetCustomPin(annotation as MKPointAnnotation);
 if (customPin == null)
 {
 throw new Exception("Custom pin not found");
 }

 annotationView = mapView.DequeueReusableAnnotation(customPin.Name);
 if (annotationView == null)
 {
 annotationView = new CustomMKAnnotationView(annotation, customPin.Name);
 annotationView.Image = UIImage.FromFile("pin.png");
 annotationView.CalloutOffset = new CGPoint(0, 0);
 annotationView.LeftCalloutAccessoryView = new UIImageView(UIImage.FromFile("monkey.png"));
 annotationView.RightCalloutAccessoryView = UIButton.FromType(UIButtonType.DetailDisclosure);
 ((CustomMKAnnotationView)annotationView).Name = customPin.Name;
 ((CustomMKAnnotationView)annotationView).Url = customPin.Url;
 }
 annotationView.CanShowCallout = true;

 return annotationView;
}

the custom renderer is attached to a new Xamarin.Forms element:

The GetViewForAnnotation property is set to the GetViewForAnnotation method. This method is called when

the location of the annotation becomes visible on the map, and is used to customize the annotation prior to

display.

Event handlers for the CalloutAccessoryControlTapped , DidSelectAnnotationView , and

DidDeselectAnnotationView events are registered. These events fire when the user taps the right accessory in

the callout, and when the user selects and deselects the annotation, respectively. The events are unsubscribed

from only when the element the renderer is attached to changes.

The GetViewForAnnotation method is called when the location of the annotation becomes visible on the map,

and is used to customize the annotation prior to display. An annotation has two parts:

MkAnnotation – includes the title, subtitle, and location of the annotation.

MkAnnotationView – contains the image to represent the annotation, and optionally, a callout that is shown

when the user taps the annotation.

The GetViewForAnnotation method accepts an IMKAnnotation that contains the annotation's data and returns an

MKAnnotationView for display on the map, and is shown in the following code example:

This method ensures that the annotation will be displayed as a custom image, rather than as system-defined pin,

and that when the annotation is tapped a callout will be displayed that includes additional content to the left and

right of the annotation title and address. This is accomplished as follows:

1. The GetCustomPin method is called to return the custom pin data for the annotation.

2. To conserve memory, the annotation's view is pooled for reuse with the call to DequeueReusableAnnotation .

3. The CustomMKAnnotationView class extends the MKAnnotationView class with Name and Url properties that

correspond to identical properties in the CustomPin instance. A new instance of the CustomMKAnnotationView

is created, provided that the annotation is null :

https://docs.microsoft.com/en-us/dotnet/api/mapkit.mkmapview.getviewforannotation
https://docs.microsoft.com/en-us/dotnet/api/mapkit.mkmapview.dequeuereusableannotation

 Selecting the AnnotationSelecting the Annotation

void OnDidSelectAnnotationView(object sender, MKAnnotationViewEventArgs e)
{
 CustomMKAnnotationView customView = e.View as CustomMKAnnotationView;
 customPinView = new UIView();

 if (customView.Name.Equals("Xamarin"))
 {
 customPinView.Frame = new CGRect(0, 0, 200, 84);
 var image = new UIImageView(new CGRect(0, 0, 200, 84));
 image.Image = UIImage.FromFile("xamarin.png");
 customPinView.AddSubview(image);
 customPinView.Center = new CGPoint(0, -(e.View.Frame.Height + 75));
 e.View.AddSubview(customPinView);
 }
}

 Tapping on the Right Callout Accessory ViewTapping on the Right Callout Accessory View

void OnCalloutAccessoryControlTapped(object sender, MKMapViewAccessoryTappedEventArgs e)
{
 CustomMKAnnotationView customView = e.View as CustomMKAnnotationView;
 if (!string.IsNullOrWhiteSpace(customView.Url))
 {
 UIApplication.SharedApplication.OpenUrl(new Foundation.NSUrl(customView.Url));
 }
}

4. The MKAnnotationView.CanShowCallout property is set to true so that the callout is displayed when the

annotation is tapped.

5. The annotation is returned for display on the map.

The CustomMKAnnotationView.Image property is set to the image that will represent the annotation on

the map.

The CustomMKAnnotationView.CalloutOffset property is set to a CGPoint that specifies that the callout

will be centered above the annotation.

The CustomMKAnnotationView.LeftCalloutAccessoryView property is set to an image of a monkey that

will appear to the left of the annotation title and address.

The CustomMKAnnotationView.RightCalloutAccessoryView property is set to an Information button that

will appear to the right of the annotation title and address.

The CustomMKAnnotationView.Name property is set to the CustomPin.Name property returned by the

GetCustomPin method. This enables the annotation to be identified so that it's callout can be further

customized, if desired.

The CustomMKAnnotationView.Url property is set to the CustomPin.Url property returned by the

GetCustomPin method. The URL will be navigated to when the user taps the button displayed in the

right callout accessory view.

When the user taps on the annotation, the DidSelectAnnotationView event fires, which in turn executes the

OnDidSelectAnnotationView method:

This method extends the existing callout (that contains left and right accessory views) by adding a UIView

instance to it that contains an image of the Xamarin logo, provided that the selected annotation has its Name

property set to Xamarin . This allows for scenarios where different callouts can be displayed for different

annotations. The UIView instance will be displayed centered above the existing callout.

When the user taps on the Information button in the right callout accessory view, the

CalloutAccessoryControlTapped event fires, which in turn executes the OnCalloutAccessoryControlTapped method:

https://docs.microsoft.com/en-us/dotnet/api/mapkit.mkannotationview.canshowcallout

 Deselecting the AnnotationDeselecting the Annotation

void OnDidDeselectAnnotationView(object sender, MKAnnotationViewEventArgs e)
{
 if (!e.View.Selected)
 {
 customPinView.RemoveFromSuperview();
 customPinView.Dispose();
 customPinView = null;
 }
}

 Creating the Custom Renderer on AndroidCreating the Custom Renderer on Android

This method opens a web browser and navigates to the address stored in the CustomMKAnnotationView.Url

property. Note that the address was defined when creating the CustomPin collection in the .NET Standard library

project.

When the annotation is displayed and the user taps on the map, the DidDeselectAnnotationView event fires,

which in turn executes the OnDidDeselectAnnotationView method:

This method ensures that when the existing callout is not selected, the extended part of the callout (the image of

the Xamarin logo) will also stop being displayed, and its resources will be released.

For more information about customizing a MKMapView instance, see iOS Maps.

The following screenshots show the map, before and after customization:

On Android the pin is called a marker, and can either be a custom image or a system-defined marker of various

colors. Markers can show an info window, which is displayed in response to the user tapping on the marker. The

info window displays the Label and Address properties of the Pin instance, and can be customized to include

other content. However, only one info window can be shown at once.

The following code example shows the custom renderer for the Android platform:

https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/ios-maps/index

[assembly: ExportRenderer(typeof(CustomMap), typeof(CustomMapRenderer))]
namespace CustomRenderer.Droid
{
 public class CustomMapRenderer : MapRenderer, GoogleMap.IInfoWindowAdapter
 {
 List<CustomPin> customPins;

 public CustomMapRenderer(Context context) : base(context)
 {
 }

 protected override void OnElementChanged(Xamarin.Forms.Platform.Android.ElementChangedEventArgs<Map>
e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 NativeMap.InfoWindowClick -= OnInfoWindowClick;
 }

 if (e.NewElement != null)
 {
 var formsMap = (CustomMap)e.NewElement;
 customPins = formsMap.CustomPins;
 }
 }

 protected override void OnMapReady(GoogleMap map)
 {
 base.OnMapReady(map);

 NativeMap.InfoWindowClick += OnInfoWindowClick;
 NativeMap.SetInfoWindowAdapter(this);
 }
 ...
 }
}

 Customizing the MarkerCustomizing the Marker

Provided that the custom renderer is attached to a new Xamarin.Forms element, the OnElementChanged method

retrieves the list of custom pins from the control. Once the GoogleMap instance is available, the OnMapReady

override will be invoked. This method registers an event handler for the InfoWindowClick event, which fires

when the info window is clicked, and is unsubscribed from only when the element the renderer is attached to

changes. The OnMapReady override also calls the SetInfoWindowAdapter method to specify that the

CustomMapRenderer class instance will provide the methods to customize the info window.

The CustomMapRenderer class implements the GoogleMap.IInfoWindowAdapter interface to customize the info

window. This interface specifies that the following methods must be implemented:

public Android.Views.View GetInfoWindow(Marker marker) – This method is called to return a custom info

window for a marker. If it returns null , then the default window rendering will be used. If it returns a View ,

then that View will be placed inside the info window frame.

public Android.Views.View GetInfoContents(Marker marker) – This method is called to return a View

containing the content of the info window, and will only be called if the GetInfoWindow method returns null .

If it returns null , then the default rendering of the info window content will be used.

In the sample application, only the info window content is customized, and so the GetInfoWindow method

returns null to enable this.

The icon used to represent a marker can be customized by calling the MarkerOptions.SetIcon method. This can

protected override MarkerOptions CreateMarker(Pin pin)
{
 var marker = new MarkerOptions();
 marker.SetPosition(new LatLng(pin.Position.Latitude, pin.Position.Longitude));
 marker.SetTitle(pin.Label);
 marker.SetSnippet(pin.Address);
 marker.SetIcon(BitmapDescriptorFactory.FromResource(Resource.Drawable.pin));
 return marker;
}

NOTENOTE

 Customizing the Info WindowCustomizing the Info Window

be accomplished by overriding the CreateMarker method, which is invoked for each Pin that's added to the

map:

This method creates a new MarkerOption instance for each Pin instance. After setting the position, label, and

address of the marker, its icon is set with the SetIcon method. This method takes a BitmapDescriptor object

containing the data necessary to render the icon, with the BitmapDescriptorFactory class providing helper

methods to simplify the creation of the BitmapDescriptor . For more information about using the

BitmapDescriptorFactory class to customize a marker, see Customizing a Marker.

If required, the GetMarkerForPin method can be invoked in your map renderer to retrieve a Marker from a Pin .

When a user taps on the marker, the GetInfoContents method is executed, provided that the GetInfoWindow

method returns null . The following code example shows the GetInfoContents method:

https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/maps-api

public Android.Views.View GetInfoContents(Marker marker)
{
 var inflater = Android.App.Application.Context.GetSystemService(Context.LayoutInflaterService) as
Android.Views.LayoutInflater;
 if (inflater != null)
 {
 Android.Views.View view;

 var customPin = GetCustomPin(marker);
 if (customPin == null)
 {
 throw new Exception("Custom pin not found");
 }

 if (customPin.Name.Equals("Xamarin"))
 {
 view = inflater.Inflate(Resource.Layout.XamarinMapInfoWindow, null);
 }
 else
 {
 view = inflater.Inflate(Resource.Layout.MapInfoWindow, null);
 }

 var infoTitle = view.FindViewById<TextView>(Resource.Id.InfoWindowTitle);
 var infoSubtitle = view.FindViewById<TextView>(Resource.Id.InfoWindowSubtitle);

 if (infoTitle != null)
 {
 infoTitle.Text = marker.Title;
 }
 if (infoSubtitle != null)
 {
 infoSubtitle.Text = marker.Snippet;
 }

 return view;
 }
 return null;
}

NOTENOTE

 Clicking on the Info WindowClicking on the Info Window

This method returns a View containing the contents of the info window. This is accomplished as follows:

A LayoutInflater instance is retrieved. This is used to instantiate a layout XML file into its corresponding

View .

The GetCustomPin method is called to return the custom pin data for the info window.

The XamarinMapInfoWindow layout is inflated if the CustomPin.Name property is equal to Xamarin . Otherwise,

the MapInfoWindow layout is inflated. This allows for scenarios where different info window layouts can be

displayed for different markers.

The InfoWindowTitle and InfoWindowSubtitle resources are retrieved from the inflated layout, and their

Text properties are set to the corresponding data from the Marker instance, provided that the resources

are not null .

The View instance is returned for display on the map.

An info window is not a live View . Instead, Android will convert the View to a static bitmap and display that as an

image. This means that while an info window can respond to a click event, it cannot respond to any touch events or

gestures, and the individual controls in the info window cannot respond to their own click events.

void OnInfoWindowClick(object sender, GoogleMap.InfoWindowClickEventArgs e)
{
 var customPin = GetCustomPin(e.Marker);
 if (customPin == null)
 {
 throw new Exception("Custom pin not found");
 }

 if (!string.IsNullOrWhiteSpace(customPin.Url))
 {
 var url = Android.Net.Uri.Parse(customPin.Url);
 var intent = new Intent(Intent.ActionView, url);
 intent.AddFlags(ActivityFlags.NewTask);
 Android.App.Application.Context.StartActivity(intent);
 }
}

 Creating the Custom Renderer on the Universal Windows PlatformCreating the Custom Renderer on the Universal Windows Platform

When the user clicks on the info window, the InfoWindowClick event fires, which in turn executes the

OnInfoWindowClick method:

This method opens a web browser and navigates to the address stored in the Url property of the retrieved

CustomPin instance for the Marker . Note that the address was defined when creating the CustomPin collection

in the .NET Standard library project.

For more information about customizing a MapView instance, see Maps API.

The following screenshots show the map, before and after customization:

On UWP the pin is called a map icon, and can either be a custom image or the system-defined default image. A

map icon can show a UserControl , which is displayed in response to the user tapping on the map icon. The

UserControl can display any content, including the Label and Address properties of the Pin instance.

The following code example shows the UWP custom renderer :

https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/maps-api

[assembly: ExportRenderer(typeof(CustomMap), typeof(CustomMapRenderer))]
namespace CustomRenderer.UWP
{
 public class CustomMapRenderer : MapRenderer
 {
 MapControl nativeMap;
 List<CustomPin> customPins;
 XamarinMapOverlay mapOverlay;
 bool xamarinOverlayShown = false;

 protected override void OnElementChanged(ElementChangedEventArgs<Map> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 nativeMap.MapElementClick -= OnMapElementClick;
 nativeMap.Children.Clear();
 mapOverlay = null;
 nativeMap = null;
 }

 if (e.NewElement != null)
 {
 var formsMap = (CustomMap)e.NewElement;
 nativeMap = Control as MapControl;
 customPins = formsMap.CustomPins;

 nativeMap.Children.Clear();
 nativeMap.MapElementClick += OnMapElementClick;

 foreach (var pin in customPins)
 {
 var snPosition = new BasicGeoposition { Latitude = pin.Pin.Position.Latitude, Longitude
= pin.Pin.Position.Longitude };
 var snPoint = new Geopoint(snPosition);

 var mapIcon = new MapIcon();
 mapIcon.Image = RandomAccessStreamReference.CreateFromUri(new Uri("ms-
appx:///pin.png"));
 mapIcon.CollisionBehaviorDesired = MapElementCollisionBehavior.RemainVisible;
 mapIcon.Location = snPoint;
 mapIcon.NormalizedAnchorPoint = new Windows.Foundation.Point(0.5, 1.0);

 nativeMap.MapElements.Add(mapIcon);
 }
 }
 }
 ...
 }
}

The OnElementChanged method performs the following operations, provided that the custom renderer is attached

to a new Xamarin.Forms element:

It clears the MapControl.Children collection to remove any existing user interface elements from the map,

before registering an event handler for the MapElementClick event. This event fires when the user taps or

clicks on a MapElement on the MapControl , and is unsubscribed from only when the element the renderer is

attached to changes.

Each pin in the customPins collection is displayed at the correct geographic location on the map as follows:

The location for the pin is created as a Geopoint instance.

A MapIcon instance is created to represent the pin.

The image used to represent the MapIcon is specified by setting the MapIcon.Image property.

NOTENOTE

 Displaying the UserControlDisplaying the UserControl

private void OnMapElementClick(MapControl sender, MapElementClickEventArgs args)
{
 var mapIcon = args.MapElements.FirstOrDefault(x => x is MapIcon) as MapIcon;
 if (mapIcon != null)
 {
 if (!xamarinOverlayShown)
 {
 var customPin = GetCustomPin(mapIcon.Location.Position);
 if (customPin == null)
 {
 throw new Exception("Custom pin not found");
 }

 if (customPin.Name.Equals("Xamarin"))
 {
 if (mapOverlay == null)
 {
 mapOverlay = new XamarinMapOverlay(customPin);
 }

 var snPosition = new BasicGeoposition { Latitude = customPin.Position.Latitude, Longitude =
customPin.Position.Longitude };
 var snPoint = new Geopoint(snPosition);

 nativeMap.Children.Add(mapOverlay);
 MapControl.SetLocation(mapOverlay, snPoint);
 MapControl.SetNormalizedAnchorPoint(mapOverlay, new Windows.Foundation.Point(0.5, 1.0));
 xamarinOverlayShown = true;
 }
 }
 else
 {
 nativeMap.Children.Remove(mapOverlay);
 xamarinOverlayShown = false;
 }
 }
}

However, the map icon's image is not always guaranteed to be shown, as it may be obscured by other

elements on the map. Therefore, the map icon's CollisionBehaviorDesired property is set to

MapElementCollisionBehavior.RemainVisible , to ensure that it remains visible.

The location of the MapIcon is specified by setting the MapIcon.Location property.

The MapIcon.NormalizedAnchorPoint property is set to the approximate location of the pointer on the

image. If this property retains its default value of (0,0), which represents the upper left corner of the

image, changes in the zoom level of the map may result in the image pointing to a different location.

The MapIcon instance is added to the MapControl.MapElements collection. This results in the map icon

being displayed on the MapControl .

When using the same image for multiple map icons, the RandomAccessStreamReference instance should be declared at

the page or application level for best performance.

When a user taps on the map icon, the OnMapElementClick method is executed. The following code example

shows this method:

This method creates a UserControl instance that displays information about the pin. This is accomplished as

follows:

 Tapping on the Information ButtonTapping on the Information Button

private async void OnInfoButtonTapped(object sender, TappedRoutedEventArgs e)
{
 await Launcher.LaunchUriAsync(new Uri(customPin.Url));
}

 Related Links

The MapIcon instance is retrieved.

The GetCustomPin method is called to return the custom pin data that will be displayed.

A XamarinMapOverlay instance is created to display the custom pin data. This class is a user control.

The geographic location at which to display the XamarinMapOverlay instance on the MapControl is created as

a Geopoint instance.

The XamarinMapOverlay instance is added to the MapControl.Children collection. This collection contains

XAML user interface elements that will be displayed on the map.

The geographic location of the XamarinMapOverlay instance on the map is set by calling the SetLocation

method.

The relative location on the XamarinMapOverlay instance, that corresponds to the specified location, is set by

calling the SetNormalizedAnchorPoint method. This ensures that changes in the zoom level of the map result

in the XamarinMapOverlay instance always being displayed at the correct location.

Alternatively, if information about the pin is already being displayed on the map, tapping on the map removes

the XamarinMapOverlay instance from the MapControl.Children collection.

When the user taps on the Information button in the XamarinMapOverlay user control, the Tapped event fires,

which in turn executes the OnInfoButtonTapped method:

This method opens a web browser and navigates to the address stored in the Url property of the CustomPin

instance. Note that the address was defined when creating the CustomPin collection in the .NET Standard library

project.

For more information about customizing a MapControl instance, see Maps and Location Overview on MSDN.

Maps Control

iOS Maps

Maps API

Customized Pin (sample)

https://docs.microsoft.com/en-us/windows/uwp/maps-and-location/
https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/ios-maps/index
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/maps-api
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-map-pin

Customizing a ListView
 7/8/2021 • 16 minutes to read • Edit Online

 Creating the Custom ListView Control

 Download the sample

A Xamarin.Forms ListView is a view that displays a collection of data as a vertical list. This article demonstrates

how to create a custom renderer that encapsulates platform-specific list controls and native cell layouts,

allowing more control over native list control performance.

Every Xamarin.Forms view has an accompanying renderer for each platform that creates an instance of a native

control. When a ListView is rendered by a Xamarin.Forms application, in iOS the ListViewRenderer class is

instantiated, which in turn instantiates a native UITableView control. On the Android platform, the

ListViewRenderer class instantiates a native ListView control. On the Universal Windows Platform (UWP), the

ListViewRenderer class instantiates a native ListView control. For more information about the renderer and

native control classes that Xamarin.Forms controls map to, see Renderer Base Classes and Native Controls.

The following diagram illustrates the relationship between the ListView control and the corresponding native

controls that implement it:

The rendering process can be taken advantage of to implement platform-specific customizations by creating a

custom renderer for a ListView on each platform. The process for doing this is as follows:

1. Create a Xamarin.Forms custom control.

2. Consume the custom control from Xamarin.Forms.

3. Create the custom renderer for the control on each platform.

Each item will now be discussed in turn, to implement a NativeListView renderer that takes advantage of

platform-specific list controls and native cell layouts. This scenario is useful when porting an existing native app

that contains list and cell code that can be re-used. In addition, it allows detailed customization of list control

features that can affect performance, such as data virtualization.

A custom ListView control can be created by subclassing the ListView class, as shown in the following code

example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/listview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

public class NativeListView : ListView
{
 public static readonly BindableProperty ItemsProperty =
 BindableProperty.Create ("Items", typeof(IEnumerable<DataSource>), typeof(NativeListView), new
List<DataSource> ());

 public IEnumerable<DataSource> Items {
 get { return (IEnumerable<DataSource>)GetValue (ItemsProperty); }
 set { SetValue (ItemsProperty, value); }
 }

 public event EventHandler<SelectedItemChangedEventArgs> ItemSelected;

 public void NotifyItemSelected (object item)
 {
 if (ItemSelected != null) {
 ItemSelected (this, new SelectedItemChangedEventArgs (item));
 }
 }
}

 Consuming the Custom Control

<ContentPage ...
 xmlns:local="clr-namespace:CustomRenderer;assembly=CustomRenderer"
 ...>
 ...
 <ContentPage.Content>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Label Text="{x:Static local:App.Description}" HorizontalTextAlignment="Center" />
 <local:NativeListView Grid.Row="1" x:Name="nativeListView" ItemSelected="OnItemSelected"
VerticalOptions="FillAndExpand" />
 </Grid>
 </ContentPage.Content>
</ContentPage>

The NativeListView is created in the .NET Standard library project and defines the API for the custom control.

This control exposes an Items property that is used for populating the ListView with data, and which can be

data bound to for display purposes. It also exposes an ItemSelected event that will be fired whenever an item is

selected in a platform-specific native list control. For more information about data binding, see Data Binding

Basics.

The NativeListView custom control can be referenced in Xaml in the .NET Standard library project by declaring

a namespace for its location and using the namespace prefix on the control. The following code example shows

how the NativeListView custom control can be consumed by a XAML page:

The local namespace prefix can be named anything. However, the clr-namespace and assembly values must

match the details of the custom control. Once the namespace is declared, the prefix is used to reference the

custom control.

The following code example shows how the NativeListView custom control can be consumed by a C# page:

public class MainPageCS : ContentPage
{
 NativeListView nativeListView;

 public MainPageCS()
 {
 nativeListView = new NativeListView
 {
 Items = DataSource.GetList(),
 VerticalOptions = LayoutOptions.FillAndExpand
 };

 switch (Device.RuntimePlatform)
 {
 case Device.iOS:
 Padding = new Thickness(0, 20, 0, 0);
 break;
 case Device.Android:
 case Device.UWP:
 Padding = new Thickness(0);
 break;
 }

 Content = new Grid
 {
 RowDefinitions = {
 new RowDefinition { Height = GridLength.Auto },
 new RowDefinition { Height = new GridLength (1, GridUnitType.Star) }
 },
 Children = {
 new Label { Text = App.Description, HorizontalTextAlignment = TextAlignment.Center },
 nativeListView
 }
 };
 nativeListView.ItemSelected += OnItemSelected;
 }
 ...
}

NOTENOTE

 Creating the Custom Renderer on each Platform

The NativeListView custom control uses platform-specific custom renderers to display a list of data, which is

populated through the Items property. Each row in the list contains three items of data – a name, a category,

and an image filename. The layout of each row in the list is defined by the platform-specific custom renderer.

Because the NativeListView custom control will be rendered using platform-specific list controls that include scrolling

ability, the custom control should not be hosted in scrollable layout controls such as the ScrollView .

A custom renderer can now be added to each application project to create platform-specific list controls and

native cell layouts.

The process for creating the custom renderer class is as follows:

1. Create a subclass of the ListViewRenderer class that renders the custom control.

2. Override the OnElementChanged method that renders the custom control and write logic to customize it. This

method is called when the corresponding Xamarin.Forms ListView is created.

3. Add an ExportRenderer attribute to the custom renderer class to specify that it will be used to render the

Xamarin.Forms custom control. This attribute is used to register the custom renderer with Xamarin.Forms.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

NOTENOTE
It is optional to provide a custom renderer in each platform project. If a custom renderer isn't registered, then the default

renderer for the cell's base class will be used.

The following diagram illustrates the responsibilities of each project in the sample application, along with the

relationships between them:

The NativeListView custom control is rendered by platform-specific renderer classes, which all derive from the

ListViewRenderer class for each platform. This results in each NativeListView custom control being rendered

with platform-specific list controls and native cell layouts, as shown in the following screenshots:

The ListViewRenderer class exposes the OnElementChanged method, which is called when the Xamarin.Forms

custom control is created to render the corresponding native control. This method takes an

ElementChangedEventArgs parameter, that contains OldElement and NewElement properties. These properties

represent the Xamarin.Forms element that the renderer was attached to, and the Xamarin.Forms element that

the renderer is attached to, respectively. In the sample application, the OldElement property will be null and

the NewElement property will contain a reference to the NativeListView instance.

An overridden version of the OnElementChanged method, in each platform-specific renderer class, is the place to

perform the native control customization. A typed reference to the native control being used on the platform can

be accessed through the Control property. In addition, a reference to the Xamarin.Forms control that's being

rendered can be obtained through the Element property.

Care must be taken when subscribing to event handlers in the OnElementChanged method, as demonstrated in

the following code example:

protected override void OnElementChanged (ElementChangedEventArgs<Xamarin.Forms.ListView> e)
{
 base.OnElementChanged (e);

 if (e.OldElement != null) {
 // Unsubscribe from event handlers and cleanup any resources
 }

 if (e.NewElement != null) {
 // Configure the native control and subscribe to event handlers
 }
}

 Creating the Custom Renderer on iOSCreating the Custom Renderer on iOS

[assembly: ExportRenderer (typeof(NativeListView), typeof(NativeiOSListViewRenderer))]
namespace CustomRenderer.iOS
{
 public class NativeiOSListViewRenderer : ListViewRenderer
 {
 protected override void OnElementChanged (ElementChangedEventArgs<Xamarin.Forms.ListView> e)
 {
 base.OnElementChanged (e);

 if (e.OldElement != null) {
 // Unsubscribe
 }

 if (e.NewElement != null) {
 Control.Source = new NativeiOSListViewSource (e.NewElement as NativeListView);
 }
 }
 }
}

The native control should only be configured and event handlers subscribed to when the custom renderer is

attached to a new Xamarin.Forms element. Similarly, any event handlers that were subscribed to should be

unsubscribed from only when the element the renderer is attached to changes. Adopting this approach will help

to create a custom renderer that doesn't suffer from memory leaks.

An overridden version of the OnElementPropertyChanged method, in each platform-specific renderer class, is the

place to respond to bindable property changes on the Xamarin.Forms custom control. A check for the property

that's changed should always be made, as this override can be called many times.

Each custom renderer class is decorated with an ExportRenderer attribute that registers the renderer with

Xamarin.Forms. The attribute takes two parameters – the type name of the Xamarin.Forms custom control being

rendered, and the type name of the custom renderer. The assembly prefix to the attribute specifies that the

attribute applies to the entire assembly.

The following sections discuss the implementation of each platform-specific custom renderer class.

The following code example shows the custom renderer for the iOS platform:

The UITableView control is configured by creating an instance of the NativeiOSListViewSource class, provided

that the custom renderer is attached to a new Xamarin.Forms element. This class provides data to the

UITableView control by overriding the RowsInSection and GetCell methods from the UITableViewSource class,

and by exposing an Items property that contains the list of data to be displayed. The class also provides a

RowSelected method override that invokes the ItemSelected event provided by the NativeListView custom

control. For more information about the method overrides, see Subclassing UITableViewSource. The GetCell

method returns a UITableCellView that's populated with data for each row in the list, and is shown in the

https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/tables/populating-a-table-with-data

public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)
{
 // request a recycled cell to save memory
 NativeiOSListViewCell cell = tableView.DequeueReusableCell (cellIdentifier) as NativeiOSListViewCell;

 // if there are no cells to reuse, create a new one
 if (cell == null) {
 cell = new NativeiOSListViewCell (cellIdentifier);
 }

 if (String.IsNullOrWhiteSpace (tableItems [indexPath.Row].ImageFilename)) {
 cell.UpdateCell (tableItems [indexPath.Row].Name
 , tableItems [indexPath.Row].Category
 , null);
 } else {
 cell.UpdateCell (tableItems [indexPath.Row].Name
 , tableItems [indexPath.Row].Category
 , UIImage.FromFile ("Images/" + tableItems [indexPath.Row].ImageFilename + ".jpg"));
 }

 return cell;
}

following code example:

This method creates a NativeiOSListViewCell instance for each row of data that will be displayed on the screen.

The NativeiOSCell instance defines the layout of each cell and the cell's data. When a cell disappears from the

screen due to scrolling, the cell will be made available for reuse. This avoids wasting memory by ensuring that

there are only NativeiOSCell instances for the data being displayed on the screen, rather than all of the data in

the list. For more information about cell reuse, see Cell Reuse. The GetCell method also reads the

ImageFilename property of each row of data, provided that it exists, and reads the image and stores it as a

UIImage instance, before updating the NativeiOSListViewCell instance with the data (name, category, and

image) for the row.

The NativeiOSListViewCell class defines the layout for each cell, and is shown in the following code example:

https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/tables/populating-a-table-with-data

public class NativeiOSListViewCell : UITableViewCell
{
 UILabel headingLabel, subheadingLabel;
 UIImageView imageView;

 public NativeiOSListViewCell (NSString cellId) : base (UITableViewCellStyle.Default, cellId)
 {
 SelectionStyle = UITableViewCellSelectionStyle.Gray;

 ContentView.BackgroundColor = UIColor.FromRGB (218, 255, 127);

 imageView = new UIImageView ();

 headingLabel = new UILabel () {
 Font = UIFont.FromName ("Cochin-BoldItalic", 22f),
 TextColor = UIColor.FromRGB (127, 51, 0),
 BackgroundColor = UIColor.Clear
 };

 subheadingLabel = new UILabel () {
 Font = UIFont.FromName ("AmericanTypewriter", 12f),
 TextColor = UIColor.FromRGB (38, 127, 0),
 TextAlignment = UITextAlignment.Center,
 BackgroundColor = UIColor.Clear
 };

 ContentView.Add (headingLabel);
 ContentView.Add (subheadingLabel);
 ContentView.Add (imageView);
 }

 public void UpdateCell (string caption, string subtitle, UIImage image)
 {
 headingLabel.Text = caption;
 subheadingLabel.Text = subtitle;
 imageView.Image = image;
 }

 public override void LayoutSubviews ()
 {
 base.LayoutSubviews ();

 headingLabel.Frame = new CoreGraphics.CGRect (5, 4, ContentView.Bounds.Width - 63, 25);
 subheadingLabel.Frame = new CoreGraphics.CGRect (100, 18, 100, 20);
 imageView.Frame = new CoreGraphics.CGRect (ContentView.Bounds.Width - 63, 5, 33, 33);
 }
}

 Responding to a Property Change on the Custom ControlResponding to a Property Change on the Custom Control

This class defines the controls used to render the cell's contents, and their layout. The NativeiOSListViewCell

constructor creates instances of UILabel and UIImageView controls, and initializes their appearance. These

controls are used to display each row's data, with the UpdateCell method being used to set this data on the

UILabel and UIImageView instances. The location of these instances is set by the overridden LayoutSubviews

method, by specifying their coordinates within the cell.

If the NativeListView.Items property changes, due to items being added to or removed from the list, the custom

renderer needs to respond by displaying the changes. This can be accomplished by overriding the

OnElementPropertyChanged method, which is shown in the following code example:

protected override void OnElementPropertyChanged (object sender,
System.ComponentModel.PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged (sender, e);

 if (e.PropertyName == NativeListView.ItemsProperty.PropertyName) {
 Control.Source = new NativeiOSListViewSource (Element as NativeListView);
 }
}

 Creating the Custom Renderer on AndroidCreating the Custom Renderer on Android

[assembly: ExportRenderer(typeof(NativeListView), typeof(NativeAndroidListViewRenderer))]
namespace CustomRenderer.Droid
{
 public class NativeAndroidListViewRenderer : ListViewRenderer
 {
 Context _context;

 public NativeAndroidListViewRenderer(Context context) : base(context)
 {
 _context = context;
 }

 protected override void OnElementChanged(ElementChangedEventArgs<Xamarin.Forms.ListView> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 // unsubscribe
 Control.ItemClick -= OnItemClick;
 }

 if (e.NewElement != null)
 {
 // subscribe
 Control.Adapter = new NativeAndroidListViewAdapter(_context as Android.App.Activity,
e.NewElement as NativeListView);
 Control.ItemClick += OnItemClick;
 }
 }
 ...

 void OnItemClick(object sender, Android.Widget.AdapterView.ItemClickEventArgs e)
 {
 ((NativeListView)Element).NotifyItemSelected(((NativeListView)Element).Items.ToList()[e.Position
- 1]);
 }
 }
}

The method creates a new instance of the NativeiOSListViewSource class that provides data to the UITableView

control, provided that the bindable NativeListView.Items property has changed.

The following code example shows the custom renderer for the Android platform:

The native ListView control is configured provided that the custom renderer is attached to a new

Xamarin.Forms element. This configuration involves creating an instance of the NativeAndroidListViewAdapter

class that provides data to the native ListView control, and registering an event handler to process the

ItemClick event. In turn, this handler will invoke the ItemSelected event provided by the NativeListView

custom control. The ItemClick event is unsubscribed from if the Xamarin.Forms element the renderer is

attached to changes.

public override View GetView (int position, View convertView, ViewGroup parent)
{
 var item = tableItems [position];

 var view = convertView;
 if (view == null) {
 // no view to re-use, create new
 view = context.LayoutInflater.Inflate (Resource.Layout.NativeAndroidListViewCell, null);
 }
 view.FindViewById<TextView> (Resource.Id.Text1).Text = item.Name;
 view.FindViewById<TextView> (Resource.Id.Text2).Text = item.Category;

 // grab the old image and dispose of it
 if (view.FindViewById<ImageView> (Resource.Id.Image).Drawable != null) {
 using (var image = view.FindViewById<ImageView> (Resource.Id.Image).Drawable as BitmapDrawable) {
 if (image != null) {
 if (image.Bitmap != null) {
 //image.Bitmap.Recycle ();
 image.Bitmap.Dispose ();
 }
 }
 }
 }

 // If a new image is required, display it
 if (!String.IsNullOrWhiteSpace (item.ImageFilename)) {
 context.Resources.GetBitmapAsync (item.ImageFilename).ContinueWith ((t) => {
 var bitmap = t.Result;
 if (bitmap != null) {
 view.FindViewById<ImageView> (Resource.Id.Image).SetImageBitmap (bitmap);
 bitmap.Dispose ();
 }
 }, TaskScheduler.FromCurrentSynchronizationContext ());
 } else {
 // clear the image
 view.FindViewById<ImageView> (Resource.Id.Image).SetImageBitmap (null);
 }

 return view;
}

The NativeAndroidListViewAdapter derives from the BaseAdapter class and exposes an Items property that

contains the list of data to be displayed, as well as overriding the Count , GetView , GetItemId , and this[int]

methods. For more information about these method overrides, see Implementing a ListAdapter. The GetView

method returns a view for each row, populated with data, and is shown in the following code example:

The GetView method is called to return the cell to be rendered, as a View , for each row of data in the list. It

creates a View instance for each row of data that will be displayed on the screen, with the appearance of the

View instance being defined in a layout file. When a cell disappears from the screen due to scrolling, the cell will

be made available for reuse. This avoids wasting memory by ensuring that there are only View instances for

the data being displayed on the screen, rather than all of the data in the list. For more information about view

reuse, see Row View Re-use.

The GetView method also populates the View instance with data, including reading the image data from the

filename specified in the ImageFilename property.

The layout of each cell dispayed by the native ListView is defined in the NativeAndroidListViewCell.axml layout

file, which is inflated by the LayoutInflater.Inflate method. The following code example shows the layout

definition:

https://docs.microsoft.com/en-us/xamarin/android/user-interface/layouts/list-view/populating
https://docs.microsoft.com/en-us/xamarin/android/user-interface/layouts/list-view/populating

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="8dp"
 android:background="@drawable/CustomSelector">
 <LinearLayout
 android:id="@+id/Text"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="10dip">
 <TextView
 android:id="@+id/Text1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#FF7F3300"
 android:textSize="20dip"
 android:textStyle="italic" />
 <TextView
 android:id="@+id/Text2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14dip"
 android:textColor="#FF267F00"
 android:paddingLeft="100dip" />
 </LinearLayout>
 <ImageView
 android:id="@+id/Image"
 android:layout_width="48dp"
 android:layout_height="48dp"
 android:padding="5dp"
 android:src="@drawable/icon"
 android:layout_alignParentRight="true" />
</RelativeLayout>

 Responding to a Property Change on the Custom ControlResponding to a Property Change on the Custom Control

protected override void OnElementPropertyChanged (object sender,
System.ComponentModel.PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged (sender, e);

 if (e.PropertyName == NativeListView.ItemsProperty.PropertyName) {
 Control.Adapter = new NativeAndroidListViewAdapter (_context as Android.App.Activity, Element as
NativeListView);
 }
}

 Creating the Custom Renderer on UWPCreating the Custom Renderer on UWP

This layout specifies that two TextView controls and an ImageView control are used to display the cell's content.

The two TextView controls are vertically oriented within a LinearLayout control, with all the controls being

contained within a RelativeLayout .

If the NativeListView.Items property changes, due to items being added to or removed from the list, the custom

renderer needs to respond by displaying the changes. This can be accomplished by overriding the

OnElementPropertyChanged method, which is shown in the following code example:

The method creates a new instance of the NativeAndroidListViewAdapter class that provides data to the native

ListView control, provided that the bindable NativeListView.Items property has changed.

The following code example shows the custom renderer for UWP:

[assembly: ExportRenderer(typeof(NativeListView), typeof(NativeUWPListViewRenderer))]
namespace CustomRenderer.UWP
{
 public class NativeUWPListViewRenderer : ListViewRenderer
 {
 ListView listView;

 protected override void OnElementChanged(ElementChangedEventArgs<Xamarin.Forms.ListView> e)
 {
 base.OnElementChanged(e);

 listView = Control as ListView;

 if (e.OldElement != null)
 {
 // Unsubscribe
 listView.SelectionChanged -= OnSelectedItemChanged;
 }

 if (e.NewElement != null)
 {
 listView.SelectionMode = ListViewSelectionMode.Single;
 listView.IsItemClickEnabled = false;
 listView.ItemsSource = ((NativeListView)e.NewElement).Items;
 listView.ItemTemplate = App.Current.Resources["ListViewItemTemplate"] as
Windows.UI.Xaml.DataTemplate;
 // Subscribe
 listView.SelectionChanged += OnSelectedItemChanged;
 }
 }

 void OnSelectedItemChanged(object sender, SelectionChangedEventArgs e)
 {
 ((NativeListView)Element).NotifyItemSelected(listView.SelectedItem);
 }
 }
}

The native ListView control is configured provided that the custom renderer is attached to a new

Xamarin.Forms element. This configuration involves setting how the native ListView control will respond to

items being selected, populating the data displayed by the control, defining the appearance and contents of each

cell, and registering an event handler to process the SelectionChanged event. In turn, this handler will invoke the

ItemSelected event provided by the NativeListView custom control. The SelectionChanged event is

unsubscribed from if the Xamarin.Forms element the renderer is attached to changes.

The appearance and contents of each native ListView cell are defined by a DataTemplate named

ListViewItemTemplate . This DataTemplate is stored in the application-level resource dictionary, and is shown in

the following code example:

<DataTemplate x:Key="ListViewItemTemplate">
 <Grid Background="#DAFF7F">
 <Grid.Resources>
 <local:ConcatImageExtensionConverter x:Name="ConcatImageExtensionConverter" />
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.40*" />
 <ColumnDefinition Width="0.40*"/>
 <ColumnDefinition Width="0.20*" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.ColumnSpan="2" Foreground="#7F3300" FontStyle="Italic" FontSize="22"
VerticalAlignment="Top" Text="{Binding Name}" />
 <TextBlock Grid.RowSpan="2" Grid.Column="1" Foreground="#267F00" FontWeight="Bold" FontSize="12"
VerticalAlignment="Bottom" Text="{Binding Category}" />
 <Image Grid.RowSpan="2" Grid.Column="2" HorizontalAlignment="Left" VerticalAlignment="Center"
Source="{Binding ImageFilename, Converter={StaticResource ConcatImageExtensionConverter}}" Width="50"
Height="50" />
 <Line Grid.Row="1" Grid.ColumnSpan="3" X1="0" X2="1" Margin="30,20,0,0" StrokeThickness="1"
Stroke="LightGray" Stretch="Fill" VerticalAlignment="Bottom" />
 </Grid>
</DataTemplate>

 Responding to a Property Change on the Custom ControlResponding to a Property Change on the Custom Control

protected override void OnElementPropertyChanged(object sender,
System.ComponentModel.PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged(sender, e);

 if (e.PropertyName == NativeListView.ItemsProperty.PropertyName)
 {
 listView.ItemsSource = ((NativeListView)Element).Items;
 }
}

 Summary

 Related Links

The DataTemplate specifies the controls used to display the contents of the cell, and their layout and appearance.

Two TextBlock controls and an Image control are used to display the cell's content through data binding. In

addition, an instance of the ConcatImageExtensionConverter is used to concatenate the .jpg file extension to

each image file name. This ensures that the Image control can load and render the image when it's Source

property is set.

If the NativeListView.Items property changes, due to items being added to or removed from the list, the custom

renderer needs to respond by displaying the changes. This can be accomplished by overriding the

OnElementPropertyChanged method, which is shown in the following code example:

The method re-populates the native ListView control with the changed data, provided that the bindable

NativeListView.Items property has changed.

This article has demonstrated how to create a custom renderer that encapsulates platform-specific list controls

and native cell layouts, allowing more control over native list control performance.

CustomRendererListView (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-listview

Customizing a ViewCell
 7/8/2021 • 14 minutes to read • Edit Online

 Creating the Custom Cell

 Download the sample

A Xamarin.Forms ViewCell is a cell that can be added to a ListView or TableView, which contains a developer-

defined view. This article demonstrates how to create a custom renderer for a ViewCell that's hosted inside a

Xamarin.Forms ListView control. This stops the Xamarin.Forms layout calculations from being repeatedly called

during ListView scrolling.

Every Xamarin.Forms cell has an accompanying renderer for each platform that creates an instance of a native

control. When a ViewCell is rendered by a Xamarin.Forms application, in iOS the ViewCellRenderer class is

instantiated, which in turn instantiates a native UITableViewCell control. On the Android platform, the

ViewCellRenderer class instantiates a native View control. On the Universal Windows Platform (UWP), the

ViewCellRenderer class instantiates a native DataTemplate . For more information about the renderer and native

control classes that Xamarin.Forms controls map to, see Renderer Base Classes and Native Controls.

The following diagram illustrates the relationship between the ViewCell and the corresponding native controls

that implement it:

The rendering process can be taken advantage of to implement platform-specific customizations by creating a

custom renderer for a ViewCell on each platform. The process for doing this is as follows:

1. Create a Xamarin.Forms custom cell.

2. Consume the custom cell from Xamarin.Forms.

3. Create the custom renderer for the cell on each platform.

Each item will now be discussed in turn, to implement a NativeCell renderer that takes advantage of a

platform-specific layout for each cell hosted inside a Xamarin.Forms ListView control. This stops the

Xamarin.Forms layout calculations from being repeatedly called during ListView scrolling.

A custom cell control can be created by subclassing the ViewCell class, as shown in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/viewcell.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

public class NativeCell : ViewCell
{
 public static readonly BindableProperty NameProperty =
 BindableProperty.Create ("Name", typeof(string), typeof(NativeCell), "");

 public string Name {
 get { return (string)GetValue (NameProperty); }
 set { SetValue (NameProperty, value); }
 }

 public static readonly BindableProperty CategoryProperty =
 BindableProperty.Create ("Category", typeof(string), typeof(NativeCell), "");

 public string Category {
 get { return (string)GetValue (CategoryProperty); }
 set { SetValue (CategoryProperty, value); }
 }

 public static readonly BindableProperty ImageFilenameProperty =
 BindableProperty.Create ("ImageFilename", typeof(string), typeof(NativeCell), "");

 public string ImageFilename {
 get { return (string)GetValue (ImageFilenameProperty); }
 set { SetValue (ImageFilenameProperty, value); }
 }
}

 Consuming the Custom Cell

<ContentPage ...
 xmlns:local="clr-namespace:CustomRenderer;assembly=CustomRenderer"
 ...>
 ...
 <ContentPage.Content>
 <StackLayout>
 <Label Text="Xamarin.Forms native cell" HorizontalTextAlignment="Center" />
 <ListView x:Name="listView" CachingStrategy="RecycleElement" ItemSelected="OnItemSelected">
 <ListView.ItemTemplate>
 <DataTemplate>
 <local:NativeCell Name="{Binding Name}" Category="{Binding Category}"
ImageFilename="{Binding ImageFilename}" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

The NativeCell class is created in the .NET Standard library project and defines the API for the custom cell. The

custom cell exposes Name , Category , and ImageFilename properties that can be displayed through data

binding. For more information about data binding, see Data Binding Basics.

The NativeCell custom cell can be referenced in Xaml in the .NET Standard library project by declaring a

namespace for its location and using the namespace prefix on the custom cell element. The following code

example shows how the NativeCell custom cell can be consumed by a XAML page:

The local namespace prefix can be named anything. However, the clr-namespace and assembly values must

match the details of the custom control. Once the namespace is declared, the prefix is used to reference the

custom cell.

The following code example shows how the NativeCell custom cell can be consumed by a C# page:

public class NativeCellPageCS : ContentPage
{
 ListView listView;

 public NativeCellPageCS()
 {
 listView = new ListView(ListViewCachingStrategy.RecycleElement)
 {
 ItemsSource = DataSource.GetList(),
 ItemTemplate = new DataTemplate(() =>
 {
 var nativeCell = new NativeCell();
 nativeCell.SetBinding(NativeCell.NameProperty, "Name");
 nativeCell.SetBinding(NativeCell.CategoryProperty, "Category");
 nativeCell.SetBinding(NativeCell.ImageFilenameProperty, "ImageFilename");

 return nativeCell;
 })
 };

 switch (Device.RuntimePlatform)
 {
 case Device.iOS:
 Padding = new Thickness(0, 20, 0, 0);
 break;
 case Device.Android:
 case Device.UWP:
 Padding = new Thickness(0);
 break;
 }

 Content = new StackLayout
 {
 Children = {
 new Label { Text = "Xamarin.Forms native cell", HorizontalTextAlignment =
TextAlignment.Center },
 listView
 }
 };
 listView.ItemSelected += OnItemSelected;
 }
 ...
}

 Creating the Custom Renderer on each Platform

A Xamarin.Forms ListView control is used to display a list of data, which is populated through the ItemSource

property. The RecycleElement caching strategy attempts to minimize the ListView memory footprint and

execution speed by recycling list cells. For more information, see Caching Strategy.

Each row in the list contains three items of data – a name, a category, and an image filename. The layout of each

row in the list is defined by the DataTemplate that's referenced through the ListView.ItemTemplate bindable

property. The DataTemplate defines that each row of data in the list will be a NativeCell that displays its Name ,

Category , and ImageFilename properties through data binding. For more information about the ListView

control, see ListView.

A custom renderer can now be added to each application project to customize the platform-specific layout for

each cell.

The process for creating the custom renderer class is as follows:

1. Create a subclass of the ViewCellRenderer class that renders the custom cell.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemssource#xamarin_forms_itemsview_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemtemplate#xamarin_forms_itemsview_1_itemtemplate

NOTENOTE

2. Override the platform-specific method that renders the custom cell and write logic to customize it.

3. Add an ExportRenderer attribute to the custom renderer class to specify that it will be used to render the

Xamarin.Forms custom cell. This attribute is used to register the custom renderer with Xamarin.Forms.

For most Xamarin.Forms elements, it is optional to provide a custom renderer in each platform project. If a custom

renderer isn't registered, then the default renderer for the control's base class will be used. However, custom renderers are

required in each platform project when rendering a ViewCell element.

The following diagram illustrates the responsibilities of each project in the sample application, along with the

relationships between them:

The NativeCell custom cell is rendered by platform-specific renderer classes, which all derive from the

ViewCellRenderer class for each platform. This results in each NativeCell custom cell being rendered with

platform-specific layout, as shown in the following screenshots:

The ViewCellRenderer class exposes platform-specific methods for rendering the custom cell. This is the

GetCell method on the iOS platform, the GetCellCore method on the Android platform, and the GetTemplate

method on UWP.

Each custom renderer class is decorated with an ExportRenderer attribute that registers the renderer with

Xamarin.Forms. The attribute takes two parameters – the type name of the Xamarin.Forms cell being rendered,

and the type name of the custom renderer. The assembly prefix to the attribute specifies that the attribute

applies to the entire assembly.

The following sections discuss the implementation of each platform-specific custom renderer class.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

 Creating the Custom Renderer on iOSCreating the Custom Renderer on iOS

[assembly: ExportRenderer(typeof(NativeCell), typeof(NativeiOSCellRenderer))]
namespace CustomRenderer.iOS
{
 public class NativeiOSCellRenderer : ViewCellRenderer
 {
 NativeiOSCell cell;

 public override UITableViewCell GetCell(Cell item, UITableViewCell reusableCell, UITableView tv)
 {
 var nativeCell = (NativeCell)item;

 cell = reusableCell as NativeiOSCell;
 if (cell == null)
 cell = new NativeiOSCell(item.GetType().FullName, nativeCell);
 else
 cell.NativeCell.PropertyChanged -= OnNativeCellPropertyChanged;

 nativeCell.PropertyChanged += OnNativeCellPropertyChanged;
 cell.UpdateCell(nativeCell);
 return cell;
 }
 ...
 }
}

The following code example shows the custom renderer for the iOS platform:

The GetCell method is called to build each cell to be displayed. Each cell is a NativeiOSCell instance, which

defines the layout of the cell and its data. The operation of the GetCell method is dependent upon the

ListView caching strategy:

NOTENOTE

NOTENOTE

When the ListView caching strategy is RetainElement , the GetCell method will be invoked for each cell.

A NativeiOSCell instance will be created for each NativeCell instance that's initially displayed on the

screen. As the user scrolls through the ListView , NativeiOSCell instances will be re-used. For more

information about iOS cell re-use, see Cell Reuse.

This custom renderer code will perform some cell re-use even when the ListView is set to retain cells.

The data displayed by each NativeiOSCell instance, whether newly created or re-used, will be updated

with the data from each NativeCell instance by the UpdateCell method.

The OnNativeCellPropertyChanged method will never be invoked when the ListView caching strategy is set

to retain cells.

When the ListView caching strategy is RecycleElement , the GetCell method will be invoked for each

cell that's initially displayed on the screen. A NativeiOSCell instance will be created for each NativeCell

instance that's initially displayed on the screen. The data displayed by each NativeiOSCell instance will

be updated with the data from the NativeCell instance by the UpdateCell method. However, the

GetCell method won't be invoked as the user scrolls through the ListView . Instead, the NativeiOSCell

instances will be re-used. PropertyChanged events will be raised on the NativeCell instance when its

data changes, and the OnNativeCellPropertyChanged event handler will update the data in each re-used

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_retainelement
https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/tables/populating-a-table-with-data
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement

namespace CustomRenderer.iOS
{
 public class NativeiOSCellRenderer : ViewCellRenderer
 {
 ...

 void OnNativeCellPropertyChanged(object sender, PropertyChangedEventArgs e)
 {
 var nativeCell = (NativeCell)sender;
 if (e.PropertyName == NativeCell.NameProperty.PropertyName)
 {
 cell.HeadingLabel.Text = nativeCell.Name;
 }
 else if (e.PropertyName == NativeCell.CategoryProperty.PropertyName)
 {
 cell.SubheadingLabel.Text = nativeCell.Category;
 }
 else if (e.PropertyName == NativeCell.ImageFilenameProperty.PropertyName)
 {
 cell.CellImageView.Image = cell.GetImage(nativeCell.ImageFilename);
 }
 }
 }
}

NativeiOSCell instance.

The following code example shows the OnNativeCellPropertyChanged method that's invoked when a

PropertyChanged event is raised:

This method updates the data being displayed by re-used NativeiOSCell instances. A check for the property

that's changed is made, as the method can be called multiple times.

The NativeiOSCell class defines the layout for each cell, and is shown in the following code example:

internal class NativeiOSCell : UITableViewCell, INativeElementView
{
 public UILabel HeadingLabel { get; set; }
 public UILabel SubheadingLabel { get; set; }
 public UIImageView CellImageView { get; set; }

 public NativeCell NativeCell { get; private set; }
 public Element Element => NativeCell;

 public NativeiOSCell(string cellId, NativeCell cell) : base(UITableViewCellStyle.Default, cellId)
 {
 NativeCell = cell;

 SelectionStyle = UITableViewCellSelectionStyle.Gray;
 ContentView.BackgroundColor = UIColor.FromRGB(255, 255, 224);
 CellImageView = new UIImageView();

 HeadingLabel = new UILabel()
 {
 Font = UIFont.FromName("Cochin-BoldItalic", 22f),
 TextColor = UIColor.FromRGB(127, 51, 0),
 BackgroundColor = UIColor.Clear
 };

 SubheadingLabel = new UILabel()
 {
 Font = UIFont.FromName("AmericanTypewriter", 12f),
 TextColor = UIColor.FromRGB(38, 127, 0),
 TextAlignment = UITextAlignment.Center,
 BackgroundColor = UIColor.Clear
 };

 ContentView.Add(HeadingLabel);
 ContentView.Add(SubheadingLabel);
 ContentView.Add(CellImageView);
 }

 public void UpdateCell(NativeCell cell)
 {
 HeadingLabel.Text = cell.Name;
 SubheadingLabel.Text = cell.Category;
 CellImageView.Image = GetImage(cell.ImageFilename);
 }

 public UIImage GetImage(string filename)
 {
 return (!string.IsNullOrWhiteSpace(filename)) ? UIImage.FromFile("Images/" + filename + ".jpg") : null;
 }

 public override void LayoutSubviews()
 {
 base.LayoutSubviews();

 HeadingLabel.Frame = new CGRect(5, 4, ContentView.Bounds.Width - 63, 25);
 SubheadingLabel.Frame = new CGRect(100, 18, 100, 20);
 CellImageView.Frame = new CGRect(ContentView.Bounds.Width - 63, 5, 33, 33);
 }
}

This class defines the controls used to render the cell's contents, and their layout. The class implements the

INativeElementView interface, which is required when the ListView uses the RecycleElement caching strategy.

This interface specifies that the class must implement the Element property, which should return the custom

cell data for recycled cells.

The NativeiOSCell constructor initializes the appearance of the HeadingLabel , SubheadingLabel , and

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inativeelementview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inativeelementview.element#xamarin_forms_inativeelementview_element

 Creating the Custom Renderer on AndroidCreating the Custom Renderer on Android

[assembly: ExportRenderer(typeof(NativeCell), typeof(NativeAndroidCellRenderer))]
namespace CustomRenderer.Droid
{
 public class NativeAndroidCellRenderer : ViewCellRenderer
 {
 NativeAndroidCell cell;

 protected override Android.Views.View GetCellCore(Cell item, Android.Views.View convertView,
ViewGroup parent, Context context)
 {
 var nativeCell = (NativeCell)item;
 Console.WriteLine("\t\t" + nativeCell.Name);

 cell = convertView as NativeAndroidCell;
 if (cell == null)
 {
 cell = new NativeAndroidCell(context, nativeCell);
 }
 else
 {
 cell.NativeCell.PropertyChanged -= OnNativeCellPropertyChanged;
 }

 nativeCell.PropertyChanged += OnNativeCellPropertyChanged;

 cell.UpdateCell(nativeCell);
 return cell;
 }
 ...
 }
}

CellImageView properties. These properties are used to display the data stored in the NativeCell instance, with

the UpdateCell method being called to set the value of each property. In addition, when the ListView uses the

RecycleElement caching strategy, the data displayed by the HeadingLabel , SubheadingLabel , and CellImageView

properties can be updated by the OnNativeCellPropertyChanged method in the custom renderer.

Cell layout is performed by the LayoutSubviews override, which sets the coordinates of HeadingLabel ,

SubheadingLabel , and CellImageView within the cell.

The following code example shows the custom renderer for the Android platform:

The GetCellCore method is called to build each cell to be displayed. Each cell is a NativeAndroidCell instance,

which defines the layout of the cell and its data. The operation of the GetCellCore method is dependent upon

the ListView caching strategy:

NOTENOTE

When the ListView caching strategy is RetainElement , the GetCellCore method will be invoked for each

cell. A NativeAndroidCell will be created for each NativeCell instance that's initially displayed on the

screen. As the user scrolls through the ListView , NativeAndroidCell instances will be re-used. For more

information about Android cell re-use, see Row View Re-use.

Note that this custom renderer code will perform some cell re-use even when the ListView is set to retain cells.

The data displayed by each NativeAndroidCell instance, whether newly created or re-used, will be

updated with the data from each NativeCell instance by the UpdateCell method.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_retainelement
https://docs.microsoft.com/en-us/xamarin/android/user-interface/layouts/list-view/populating
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

namespace CustomRenderer.Droid
{
 public class NativeAndroidCellRenderer : ViewCellRenderer
 {
 ...

 void OnNativeCellPropertyChanged(object sender, PropertyChangedEventArgs e)
 {
 var nativeCell = (NativeCell)sender;
 if (e.PropertyName == NativeCell.NameProperty.PropertyName)
 {
 cell.HeadingTextView.Text = nativeCell.Name;
 }
 else if (e.PropertyName == NativeCell.CategoryProperty.PropertyName)
 {
 cell.SubheadingTextView.Text = nativeCell.Category;
 }
 else if (e.PropertyName == NativeCell.ImageFilenameProperty.PropertyName)
 {
 cell.SetImage(nativeCell.ImageFilename);
 }
 }
 }
}

NOTENOTE
Note that while the OnNativeCellPropertyChanged method will be invoked when the ListView is set to retain

cells, it will not update the NativeAndroidCell property values.

When the ListView caching strategy is RecycleElement , the GetCellCore method will be invoked for

each cell that's initially displayed on the screen. A NativeAndroidCell instance will be created for each

NativeCell instance that's initially displayed on the screen. The data displayed by each

NativeAndroidCell instance will be updated with the data from the NativeCell instance by the

UpdateCell method. However, the GetCellCore method won't be invoked as the user scrolls through the

ListView . Instead, the NativeAndroidCell instances will be re-used. PropertyChanged events will be

raised on the NativeCell instance when its data changes, and the OnNativeCellPropertyChanged event

handler will update the data in each re-used NativeAndroidCell instance.

The following code example shows the OnNativeCellPropertyChanged method that's invoked when a

PropertyChanged event is raised:

This method updates the data being displayed by re-used NativeAndroidCell instances. A check for the property

that's changed is made, as the method can be called multiple times.

The NativeAndroidCell class defines the layout for each cell, and is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement

internal class NativeAndroidCell : LinearLayout, INativeElementView
{
 public TextView HeadingTextView { get; set; }
 public TextView SubheadingTextView { get; set; }
 public ImageView ImageView { get; set; }

 public NativeCell NativeCell { get; private set; }
 public Element Element => NativeCell;

 public NativeAndroidCell(Context context, NativeCell cell) : base(context)
 {
 NativeCell = cell;

 var view = (context as Activity).LayoutInflater.Inflate(Resource.Layout.NativeAndroidCell, null);
 HeadingTextView = view.FindViewById<TextView>(Resource.Id.HeadingText);
 SubheadingTextView = view.FindViewById<TextView>(Resource.Id.SubheadingText);
 ImageView = view.FindViewById<ImageView>(Resource.Id.Image);

 AddView(view);
 }

 public void UpdateCell(NativeCell cell)
 {
 HeadingTextView.Text = cell.Name;
 SubheadingTextView.Text = cell.Category;

 // Dispose of the old image
 if (ImageView.Drawable != null)
 {
 using (var image = ImageView.Drawable as BitmapDrawable)
 {
 if (image != null)
 {
 if (image.Bitmap != null)
 {
 image.Bitmap.Dispose();
 }
 }
 }
 }

 SetImage(cell.ImageFilename);
 }

 public void SetImage(string filename)
 {
 if (!string.IsNullOrWhiteSpace(filename))
 {
 // Display new image
 Context.Resources.GetBitmapAsync(filename).ContinueWith((t) =>
 {
 var bitmap = t.Result;
 if (bitmap != null)
 {
 ImageView.SetImageBitmap(bitmap);
 bitmap.Dispose();
 }
 }, TaskScheduler.FromCurrentSynchronizationContext());
 }
 else
 {
 // Clear the image
 ImageView.SetImageBitmap(null);
 }
 }
}

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="8dp"
 android:background="@drawable/CustomSelector">
 <LinearLayout
 android:id="@+id/Text"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="10dip">
 <TextView
 android:id="@+id/HeadingText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#FF7F3300"
 android:textSize="20dip"
 android:textStyle="italic" />
 <TextView
 android:id="@+id/SubheadingText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14dip"
 android:textColor="#FF267F00"
 android:paddingLeft="100dip" />
 </LinearLayout>
 <ImageView
 android:id="@+id/Image"
 android:layout_width="48dp"
 android:layout_height="48dp"
 android:padding="5dp"
 android:src="@drawable/icon"
 android:layout_alignParentRight="true" />
</RelativeLayout>

 Creating the Custom Renderer on UWPCreating the Custom Renderer on UWP

This class defines the controls used to render the cell's contents, and their layout. The class implements the

INativeElementView interface, which is required when the ListView uses the RecycleElement caching strategy.

This interface specifies that the class must implement the Element property, which should return the custom

cell data for recycled cells.

The NativeAndroidCell constructor inflates the NativeAndroidCell layout, and initializes the HeadingTextView ,

SubheadingTextView , and ImageView properties to the controls in the inflated layout. These properties are used

to display the data stored in the NativeCell instance, with the UpdateCell method being called to set the value

of each property. In addition, when the ListView uses the RecycleElement caching strategy, the data displayed

by the HeadingTextView , SubheadingTextView , and ImageView properties can be updated by the

OnNativeCellPropertyChanged method in the custom renderer.

The following code example shows the layout definition for the NativeAndroidCell.axml layout file:

This layout specifies that two TextView controls and an ImageView control are used to display the cell's content.

The two TextView controls are vertically oriented within a LinearLayout control, with all the controls being

contained within a RelativeLayout .

The following code example shows the custom renderer for UWP:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inativeelementview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inativeelementview.element#xamarin_forms_inativeelementview_element
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement

[assembly: ExportRenderer(typeof(NativeCell), typeof(NativeUWPCellRenderer))]
namespace CustomRenderer.UWP
{
 public class NativeUWPCellRenderer : ViewCellRenderer
 {
 public override Windows.UI.Xaml.DataTemplate GetTemplate(Cell cell)
 {
 return App.Current.Resources["ListViewItemTemplate"] as Windows.UI.Xaml.DataTemplate;
 }
 }
}

<DataTemplate x:Key="ListViewItemTemplate">
 <Grid Background="LightYellow">
 <Grid.Resources>
 <local:ConcatImageExtensionConverter x:Name="ConcatImageExtensionConverter" />
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.40*" />
 <ColumnDefinition Width="0.40*"/>
 <ColumnDefinition Width="0.20*" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.ColumnSpan="2" Foreground="#7F3300" FontStyle="Italic" FontSize="22"
VerticalAlignment="Top" Text="{Binding Name}" />
 <TextBlock Grid.RowSpan="2" Grid.Column="1" Foreground="#267F00" FontWeight="Bold" FontSize="12"
VerticalAlignment="Bottom" Text="{Binding Category}" />
 <Image Grid.RowSpan="2" Grid.Column="2" HorizontalAlignment="Left" VerticalAlignment="Center"
Source="{Binding ImageFilename, Converter={StaticResource ConcatImageExtensionConverter}}" Width="50"
Height="50" />
 <Line Grid.Row="1" Grid.ColumnSpan="3" X1="0" X2="1" Margin="30,20,0,0" StrokeThickness="1"
Stroke="LightGray" Stretch="Fill" VerticalAlignment="Bottom" />
 </Grid>
</DataTemplate>

 Summary

 Related Links

The GetTemplate method is called to return the cell to be rendered for each row of data in the list. It creates a

DataTemplate for each NativeCell instance that will be displayed on the screen, with the DataTemplate defining

the appearance and contents of the cell.

The DataTemplate is stored in the application-level resource dictionary, and is shown in the following code

example:

The DataTemplate specifies the controls used to display the contents of the cell, and their layout and appearance.

Two TextBlock controls and an Image control are used to display the cell's content through data binding. In

addition, an instance of the ConcatImageExtensionConverter is used to concatenate the .jpg file extension to

each image file name. This ensures that the Image control can load and render the image when it's Source

property is set.

This article has demonstrated how to create a custom renderer for a ViewCell that's hosted inside a

Xamarin.Forms ListView control. This stops the Xamarin.Forms layout calculations from being repeatedly called

during ListView scrolling.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

ListView Performance

CustomRendererViewCell (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-viewcell

Customizing a WebView
 7/8/2021 • 14 minutes to read • Edit Online

NOTENOTE

 Download the sample

A Xamarin.Forms WebView is a view that displays web and HTML content in your app. This article explains how

to create a custom renderer that extends the WebView to allow C# code to be invoked from JavaScript.

Every Xamarin.Forms view has an accompanying renderer for each platform that creates an instance of a native

control. When a WebView is rendered by a Xamarin.Forms application on iOS, the WkWebViewRenderer class is

instantiated, which in turn instantiates a native WkWebView control. On the Android platform, the

WebViewRenderer class instantiates a native WebView control. On the Universal Windows Platform (UWP), the

WebViewRenderer class instantiates a native WebView control. For more information about the renderer and

native control classes that Xamarin.Forms controls map to, see Renderer Base Classes and Native Controls.

The following diagram illustrates the relationship between the View and the corresponding native controls that

implement it:

The rendering process can be used to implement platform customizations by creating a custom renderer for a

WebView on each platform. The process for doing this is as follows:

1. Create the HybridWebView custom control.

2. Consume the HybridWebView from Xamarin.Forms.

3. Create the custom renderer for the HybridWebView on each platform.

Each item will now be discussed in turn to implement a HybridWebView renderer that enhances the

Xamarin.Forms WebView to allow C# code to be invoked from JavaScript. The HybridWebView instance will be

used to display an HTML page that asks the user to enter their name. Then, when the user clicks an HTML

button, a JavaScript function will invoke a C# Action that displays a pop-up containing the users name.

For more information about the process for invoking C# from JavaScript, see Invoke C# from JavaScript. For

more information about the HTML page, see Create the Web Page.

A WebView can invoke a JavaScript function from C#, and return any result to the calling C# code. For more information,

see Invoking JavaScript.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/hybridwebview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-hybridwebview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

Create the HybridWebView

public class HybridWebView : WebView
{
 Action<string> action;

 public static readonly BindableProperty UriProperty = BindableProperty.Create(
 propertyName: "Uri",
 returnType: typeof(string),
 declaringType: typeof(HybridWebView),
 defaultValue: default(string));

 public string Uri
 {
 get { return (string)GetValue(UriProperty); }
 set { SetValue(UriProperty, value); }
 }

 public void RegisterAction(Action<string> callback)
 {
 action = callback;
 }

 public void Cleanup()
 {
 action = null;
 }

 public void InvokeAction(string data)
 {
 if (action == null || data == null)
 {
 return;
 }
 action.Invoke(data);
 }
}

 Consume the HybridWebView

The HybridWebView custom control can be created by subclassing the WebView class:

The HybridWebView custom control is created in the .NET Standard library project and defines the following API

for the control:

A Uri property that specifies the address of the web page to be loaded.

A RegisterAction method that registers an Action with the control. The registered action will be invoked

from JavaScript contained in the HTML file referenced through the Uri property.

A CleanUp method that removes the reference to the registered Action .

An InvokeAction method that invokes the registered Action . This method will be called from a custom

renderer in each platform project.

The HybridWebView custom control can be referenced in XAML in the .NET Standard library project by declaring

a namespace for its location and using the namespace prefix on the custom control. The following code example

shows how the HybridWebView custom control can be consumed by a XAML page:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

<ContentPage ...
 xmlns:local="clr-namespace:CustomRenderer;assembly=CustomRenderer"
 x:Class="CustomRenderer.HybridWebViewPage"
 Padding="0,40,0,0">
 <local:HybridWebView x:Name="hybridWebView"
 Uri="index.html" />
</ContentPage>

public HybridWebViewPageCS()
{
 var hybridWebView = new HybridWebView
 {
 Uri = "index.html"
 };
 // ...
 Padding = new Thickness(0, 40, 0, 0);
 Content = hybridWebView;
}

public partial class HybridWebViewPage : ContentPage
{
 public HybridWebViewPage()
 {
 // ...
 hybridWebView.RegisterAction(data => DisplayAlert("Alert", "Hello " + data, "OK"));
 }
}

 Create the custom renderer on each platform

The local namespace prefix can be named anything. However, the clr-namespace and assembly values must

match the details of the custom control. Once the namespace is declared, the prefix is used to reference the

custom control.

The following code example shows how the HybridWebView custom control can be consumed by a C# page:

The HybridWebView instance will be used to display a native web control on each platform. It's Uri property is

set to an HTML file that is stored in each platform project, and which will be displayed by the native web control.

The rendered HTML asks the user to enter their name, with a JavaScript function invoking a C# Action in

response to an HTML button click.

The HybridWebViewPage registers the action to be invoked from JavaScript, as shown in the following code

example:

This action calls the DisplayAlert method to display a modal pop-up that presents the name entered in the

HTML page displayed by the HybridWebView instance.

A custom renderer can now be added to each application project to enhance the platform web controls by

allowing C# code to be invoked from JavaScript.

The process for creating the custom renderer class is as follows:

1. Create a subclass of the WkWebViewRenderer class on iOS, and the WebViewRenderer class on Android and

UWP, that renders the custom control.

2. Override the OnElementChanged method that renders the WebView and write logic to customize it. This

method is called when a HybridWebView object is created.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayalert#xamarin_forms_page_displayalert_system_string_system_string_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

NOTENOTE

3. Add an ExportRenderer attribute to the custom renderer class or AssemblyInfo.cs, to specify that it will be

used to render the Xamarin.Forms custom control. This attribute is used to register the custom renderer with

Xamarin.Forms.

For most Xamarin.Forms elements, it is optional to provide a custom renderer in each platform project. If a custom

renderer isn't registered, then the default renderer for the control's base class will be used. However, custom renderers are

required in each platform project when rendering a View element.

The following diagram illustrates the responsibilities of each project in the sample application, along with the

relationships between them:

The HybridWebView custom control is rendered by platform renderer classes, which derive from the

WkWebViewRenderer class on iOS, and from the WebViewRenderer class on Android and UWP. This results in each

HybridWebView custom control being rendered with native web controls, as shown in the following screenshots:

The WkWebViewRenderer and WebViewRenderer classes expose the OnElementChanged method, which is called

when the Xamarin.Forms custom control is created to render the corresponding native web control. This method

takes a VisualElementChangedEventArgs parameter that contains OldElement and NewElement properties. These

properties represent the Xamarin.Forms element that the renderer was attached to, and the Xamarin.Forms

element that the renderer is attached to, respectively. In the sample application the OldElement property will be

null and the NewElement property will contain a reference to the HybridWebView instance.

An overridden version of the OnElementChanged method, in each platform renderer class, is the place to perform

the native web control customization. A reference to the Xamarin.Forms control that's being rendered can be

obtained through the Element property.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

 Create the web pageCreate the web page

<html>
<body>
 <script src="http://code.jquery.com/jquery-2.1.4.min.js"></script>
 <h1>HybridWebView Test</h1>

 Enter name: <input type="text" id="name">

 <button type="button" onclick="javascript: invokeCSCode($('#name').val());">Invoke C# Code</button>

 <p id="result">Result:</p>
 <script type="text/javascript">function log(str) {
 $('#result').text($('#result').text() + " " + str);
 }

 function invokeCSCode(data) {
 try {
 log("Sending Data:" + data);
 invokeCSharpAction(data);
 }
 catch (err) {
 log(err);
 }
 }</script>
</body>
</html>

 Invoke C# from JavaScriptInvoke C# from JavaScript

Each custom renderer class is decorated with an ExportRenderer attribute that registers the renderer with

Xamarin.Forms. The attribute takes two parameters – the type name of the Xamarin.Forms custom control being

rendered, and the type name of the custom renderer. The assembly prefix to the attribute specifies that the

attribute applies to the entire assembly.

The following sections discuss the structure of the web page loaded by each native web control, the process for

invoking C# from JavaScript, and the implementation of this in each platform custom renderer class.

The following code example shows the web page that will be displayed by the HybridWebView custom control:

The web page allows a user to enter their name in an input element, and provides a button element that will

invoke C# code when clicked. The process for achieving this is as follows:

When the user clicks on the button element, the invokeCSCode JavaScript function is called, with the value of

the input element being passed to the function.

The invokeCSCode function calls the log function to display the data it is sending to the C# Action . It then

calls the invokeCSharpAction method to invoke the C# Action , passing the parameter received from the

input element.

The invokeCSharpAction JavaScript function is not defined in the web page, and will be injected into it by each

custom renderer.

On iOS, this HTML file resides in the Content folder of the platform project, with a build action of

BundleResourceBundleResource. On Android, this HTML file resides in the Assets/Content folder of the platform project, with a

build action of AndroidAssetAndroidAsset.

The process for invoking C# from JavaScript is identical on each platform:

The custom renderer creates a native web control and loads the HTML file specified by the

HybridWebView.Uri property.

 Create the custom renderer on iOSCreate the custom renderer on iOS

Once the web page is loaded, the custom renderer injects the invokeCSharpAction JavaScript function into

the web page.

When the user enters their name and clicks on the HTML button element, the invokeCSCode function is

invoked, which in turn invokes the invokeCSharpAction function.

The invokeCSharpAction function invokes a method in the custom renderer, which in turn invokes the

HybridWebView.InvokeAction method.

The HybridWebView.InvokeAction method invokes the registered Action .

The following sections will discuss how this process is implemented on each platform.

The following code example shows the custom renderer for the iOS platform:

[assembly: ExportRenderer(typeof(HybridWebView), typeof(HybridWebViewRenderer))]
namespace CustomRenderer.iOS
{
 public class HybridWebViewRenderer : WkWebViewRenderer, IWKScriptMessageHandler
 {
 const string JavaScriptFunction = "function invokeCSharpAction(data)
{window.webkit.messageHandlers.invokeAction.postMessage(data);}";
 WKUserContentController userController;

 public HybridWebViewRenderer() : this(new WKWebViewConfiguration())
 {
 }

 public HybridWebViewRenderer(WKWebViewConfiguration config) : base(config)
 {
 userController = config.UserContentController;
 var script = new WKUserScript(new NSString(JavaScriptFunction),
WKUserScriptInjectionTime.AtDocumentEnd, false);
 userController.AddUserScript(script);
 userController.AddScriptMessageHandler(this, "invokeAction");
 }

 protected override void OnElementChanged(VisualElementChangedEventArgs e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 userController.RemoveAllUserScripts();
 userController.RemoveScriptMessageHandler("invokeAction");
 HybridWebView hybridWebView = e.OldElement as HybridWebView;
 hybridWebView.Cleanup();
 }

 if (e.NewElement != null)
 {
 string filename = Path.Combine(NSBundle.MainBundle.BundlePath,
$"Content/{((HybridWebView)Element).Uri}");
 LoadRequest(new NSUrlRequest(new NSUrl(filename, false)));
 }
 }

 public void DidReceiveScriptMessage(WKUserContentController userContentController, WKScriptMessage
message)
 {
 ((HybridWebView)Element).InvokeAction(message.Body.ToString());
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 ((HybridWebView)Element).Cleanup();
 }
 base.Dispose(disposing);
 }
 }
}

The HybridWebViewRenderer class loads the web page specified in the HybridWebView.Uri property into a native

WKWebView control, and the invokeCSharpAction JavaScript function is injected into the web page. Once the user

enters their name and clicks the HTML button element, the invokeCSharpAction JavaScript function is executed,

with the DidReceiveScriptMessage method being called after a message is received from the web page. In turn,

this method invokes the HybridWebView.InvokeAction method, which will invoke the registered action to display

the pop-up.

https://docs.microsoft.com/en-us/dotnet/api/webkit.wkwebview

NOTENOTE

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>

 Create the custom renderer on androidCreate the custom renderer on android

This functionality is achieved as follows:

The renderer constructor creates a WkWebViewConfiguration object, and retrieves its WKUserContentController

object. The WkUserContentController object allows posting messages and injecting user scripts into a web

page.

The renderer constructor creates a WKUserScript object, which injects the invokeCSharpAction JavaScript

function into the web page after the web page is loaded.

The renderer constructor calls the WKUserContentController.AddUserScript method to add the WKUserScript

object to the content controller.

The renderer constructor calls the WKUserContentController.AddScriptMessageHandler method to add a script

message handler named invokeAction to the WKUserContentController object, which will cause the

JavaScript function window.webkit.messageHandlers.invokeAction.postMessage(data) to be defined in all frames

in all WebView instances that use the WKUserContentController object.

Provided that the custom renderer is attached to a new Xamarin.Forms element:

Resources are released when the element the renderer is attached to changes.

The Xamarin.Forms element is cleaned up when the renderer is disposed of.

The WKWebView.LoadRequest method loads the HTML file that's specified by the HybridWebView.Uri

property. The code specifies that the file is stored in the Content folder of the project. Once the web

page is displayed, the invokeCSharpAction JavaScript function will be injected into the web page.

The WKWebView class is only supported in iOS 8 and later.

In addition, Info.plistInfo.plist must be updated to include the following values:

The following code example shows the custom renderer for the Android platform:

https://docs.microsoft.com/en-us/dotnet/api/webkit.wkusercontentcontroller
https://docs.microsoft.com/en-us/dotnet/api/webkit.wkuserscript
https://docs.microsoft.com/en-us/dotnet/api/webkit.wkusercontentcontroller.adduserscript#webkit_wkusercontentcontroller_adduserscript_webkit_wkuserscript_
https://docs.microsoft.com/en-us/dotnet/api/webkit.wkuserscript
https://docs.microsoft.com/en-us/dotnet/api/webkit.wkusercontentcontroller.addscriptmessagehandler#webkit_wkusercontentcontroller_addscriptmessagehandler_webkit_iwkscriptmessagehandler_system_string_
https://docs.microsoft.com/en-us/dotnet/api/webkit.wkusercontentcontroller
https://docs.microsoft.com/en-us/dotnet/api/webkit.wkwebview.loadrequest#webkit_wkwebview_loadrequest_foundation_nsurlrequest_

[assembly: ExportRenderer(typeof(HybridWebView), typeof(HybridWebViewRenderer))]
namespace CustomRenderer.Droid
{
 public class HybridWebViewRenderer : WebViewRenderer
 {
 const string JavascriptFunction = "function invokeCSharpAction(data){jsBridge.invokeAction(data);}";
 Context _context;

 public HybridWebViewRenderer(Context context) : base(context)
 {
 _context = context;
 }

 protected override void OnElementChanged(ElementChangedEventArgs<WebView> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 Control.RemoveJavascriptInterface("jsBridge");
 ((HybridWebView)Element).Cleanup();
 }
 if (e.NewElement != null)
 {
 Control.SetWebViewClient(new JavascriptWebViewClient(this, $"javascript:
{JavascriptFunction}"));
 Control.AddJavascriptInterface(new JSBridge(this), "jsBridge");
 Control.LoadUrl($"file:///android_asset/Content/{((HybridWebView)Element).Uri}");
 }
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 ((HybridWebView)Element).Cleanup();
 }
 base.Dispose(disposing);
 }
 }
}

public class JavascriptWebViewClient : FormsWebViewClient
{
 string _javascript;

 public JavascriptWebViewClient(HybridWebViewRenderer renderer, string javascript) : base(renderer)
 {
 _javascript = javascript;
 }

 public override void OnPageFinished(WebView view, string url)
 {
 base.OnPageFinished(view, url);
 view.EvaluateJavascript(_javascript, null);
 }
}

The HybridWebViewRenderer class loads the web page specified in the HybridWebView.Uri property into a native

WebView control, and the invokeCSharpAction JavaScript function is injected into the web page, after the web

page has finished loading, with the OnPageFinished override in the JavascriptWebViewClient class:

Once the user enters their name and clicks the HTML button element, the invokeCSharpAction JavaScript

https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview

public class JSBridge : Java.Lang.Object
{
 readonly WeakReference<HybridWebViewRenderer> hybridWebViewRenderer;

 public JSBridge(HybridWebViewRenderer hybridRenderer)
 {
 hybridWebViewRenderer = new WeakReference<HybridWebViewRenderer>(hybridRenderer);
 }

 [JavascriptInterface]
 [Export("invokeAction")]
 public void InvokeAction(string data)
 {
 HybridWebViewRenderer hybridRenderer;

 if (hybridWebViewRenderer != null && hybridWebViewRenderer.TryGetTarget(out hybridRenderer))
 {
 ((HybridWebView)hybridRenderer.Element).InvokeAction(data);
 }
 }
}

IMPORTANTIMPORTANT

 Create the custom renderer on UWPCreate the custom renderer on UWP

function is executed. This functionality is achieved as follows:

Provided that the custom renderer is attached to a new Xamarin.Forms element:

Resources are released when the element the renderer is attached to changes.

The Xamarin.Forms element is cleaned up when the renderer is disposed of.

The SetWebViewClient method sets a new JavascriptWebViewClient object as the implementation of

WebViewClient .

The WebView.AddJavascriptInterface method injects a new JSBridge instance into the main frame of

the WebView's JavaScript context, naming it jsBridge . This allows methods in the JSBridge class to

be accessed from JavaScript.

The WebView.LoadUrl method loads the HTML file that's specified by the HybridWebView.Uri property.

The code specifies that the file is stored in the Content folder of the project.

In the JavascriptWebViewClient class, the invokeCSharpAction JavaScript function is injected into the

web page once the page has finished loading.

When the invokeCSharpAction JavaScript function is executed, it in turn invokes the JSBridge.InvokeAction

method, which is shown in the following code example:

The class must derive from Java.Lang.Object , and methods that are exposed to JavaScript must be decorated

with the [JavascriptInterface] and [Export] attributes. Therefore, when the invokeCSharpAction JavaScript

function is injected into the web page and is executed, it will call the JSBridge.InvokeAction method due to

being decorated with the [JavascriptInterface] and [Export("invokeAction")] attributes. In turn, the

InvokeAction method invokes the HybridWebView.InvokeAction method, which will invoke the registered action

to display the pop-up.

Android projects that use the [Export] attribute must include a reference to Mono.Android.Export , or a compiler

error will result.

Note that the JSBridge class maintains a WeakReference to the HybridWebViewRenderer class. This is to avoid

creating a circular reference between the two classes. For more information see Weak References.

https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview.addjavascriptinterface
https://docs.microsoft.com/en-us/dotnet/api/android.webkit.webview.loadurl
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/weak-references

[assembly: ExportRenderer(typeof(HybridWebView), typeof(HybridWebViewRenderer))]
namespace CustomRenderer.UWP
{
 public class HybridWebViewRenderer : WebViewRenderer
 {
 const string JavaScriptFunction = "function invokeCSharpAction(data)
{window.external.notify(data);}";

 protected override void OnElementChanged(ElementChangedEventArgs<Xamarin.Forms.WebView> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 Control.NavigationCompleted -= OnWebViewNavigationCompleted;
 Control.ScriptNotify -= OnWebViewScriptNotify;
 }
 if (e.NewElement != null)
 {
 Control.NavigationCompleted += OnWebViewNavigationCompleted;
 Control.ScriptNotify += OnWebViewScriptNotify;
 Control.Source = new Uri($"ms-appx-web:///Content//{((HybridWebView)Element).Uri}");
 }
 }

 async void OnWebViewNavigationCompleted(Windows.UI.Xaml.Controls.WebView sender,
WebViewNavigationCompletedEventArgs args)
 {
 if (args.IsSuccess)
 {
 // Inject JS script
 await Control.InvokeScriptAsync("eval", new[] { JavaScriptFunction });
 }
 }

 void OnWebViewScriptNotify(object sender, NotifyEventArgs e)
 {
 ((HybridWebView)Element).InvokeAction(e.Value);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 ((HybridWebView)Element).Cleanup();
 }
 base.Dispose(disposing);
 }
 }
}

The following code example shows the custom renderer for UWP:

The HybridWebViewRenderer class loads the web page specified in the HybridWebView.Uri property into a native

WebView control, and the invokeCSharpAction JavaScript function is injected into the web page, after the web

page has loaded, with the WebView.InvokeScriptAsync method. Once the user enters their name and clicks the

HTML button element, the invokeCSharpAction JavaScript function is executed, with the OnWebViewScriptNotify

method being called after a notification is received from the web page. In turn, this method invokes the

HybridWebView.InvokeAction method, which will invoke the registered action to display the pop-up.

This functionality is achieved as follows:

Provided that the custom renderer is attached to a new Xamarin.Forms element:

Event handlers for the NavigationCompleted and ScriptNotify events are registered. The

 Related links

Event are unsubscribed from when the element the renderer is attached to changes.

The Xamarin.Forms element is cleaned up when the renderer is disposed of.

NavigationCompleted event fires when either the native WebView control has finished loading the

current content or if navigation has failed. The ScriptNotify event fires when the content in the native

WebView control uses JavaScript to pass a string to the application. The web page fires the

ScriptNotify event by calling window.external.notify while passing a string parameter.

The WebView.Source property is set to the URI of the HTML file that's specified by the

HybridWebView.Uri property. The code assumes that the file is stored in the Content folder of the

project. Once the web page is displayed, the NavigationCompleted event will fire and the

OnWebViewNavigationCompleted method will be invoked. The invokeCSharpAction JavaScript function

will then be injected into the web page with the WebView.InvokeScriptAsync method, provided that the

navigation completed successfully.

HybridWebView (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-hybridwebview

Implementing a View
 7/8/2021 • 10 minutes to read • Edit Online

NOTENOTE

 Creating the Custom Control

 Download the sample

Xamarin.Forms custom user interface controls should derive from the View class, which is used to place layouts

and controls on the screen. This article demonstrates how to create a custom renderer for a Xamarin.Forms

custom control that's used to display a preview video stream from the device's camera.

Every Xamarin.Forms view has an accompanying renderer for each platform that creates an instance of a native

control. When a View is rendered by a Xamarin.Forms application in iOS, the ViewRenderer class is instantiated,

which in turn instantiates a native UIView control. On the Android platform, the ViewRenderer class instantiates

a native View control. On the Universal Windows Platform (UWP), the ViewRenderer class instantiates a native

FrameworkElement control. For more information about the renderer and native control classes that

Xamarin.Forms controls map to, see Renderer Base Classes and Native Controls.

Some controls on Android use fast renderers, which don't consume the ViewRenderer class. For more information about

fast renderers, see Xamarin.Forms Fast Renderers.

The following diagram illustrates the relationship between the View and the corresponding native controls that

implement it:

The rendering process can be used to implement platform-specific customizations by creating a custom

renderer for a View on each platform. The process for doing this is as follows:

1. Create a Xamarin.Forms custom control.

2. Consume the custom control from Xamarin.Forms.

3. Create the custom renderer for the control on each platform.

Each item will now be discussed in turn, to implement a CameraPreview renderer that displays a preview video

stream from the device's camera. Tapping on the video stream will stop and start it.

A custom control can be created by subclassing the View class, as shown in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/custom-renderer/view.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

public class CameraPreview : View
{
 public static readonly BindableProperty CameraProperty = BindableProperty.Create (
 propertyName: "Camera",
 returnType: typeof(CameraOptions),
 declaringType: typeof(CameraPreview),
 defaultValue: CameraOptions.Rear);

 public CameraOptions Camera
 {
 get { return (CameraOptions)GetValue (CameraProperty); }
 set { SetValue (CameraProperty, value); }
 }
}

 Consuming the Custom Control

<ContentPage ...
 xmlns:local="clr-namespace:CustomRenderer;assembly=CustomRenderer"
 ...>
 <StackLayout>
 <Label Text="Camera Preview:" />
 <local:CameraPreview Camera="Rear"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 </StackLayout>
</ContentPage>

The CameraPreview custom control is created in the .NET Standard library project and defines the API for the

control. The custom control exposes a Camera property that's used for controlling whether the video stream

should be displayed from the front or rear camera on the device. If a value isn't specified for the Camera

property when the control is created, it defaults to specifying the rear camera.

The CameraPreview custom control can be referenced in XAML in the .NET Standard library project by declaring

a namespace for its location and using the namespace prefix on the custom control element. The following code

example shows how the CameraPreview custom control can be consumed by a XAML page:

The local namespace prefix can be named anything. However, the clr-namespace and assembly values must

match the details of the custom control. Once the namespace is declared, the prefix is used to reference the

custom control.

The following code example shows how the CameraPreview custom control can be consumed by a C# page:

public class MainPageCS : ContentPage
{
 public MainPageCS ()
 {
 ...
 Content = new StackLayout
 {
 Children =
 {
 new Label { Text = "Camera Preview:" },
 new CameraPreview
 {
 Camera = CameraOptions.Rear,
 HorizontalOptions = LayoutOptions.FillAndExpand,
 VerticalOptions = LayoutOptions.FillAndExpand
 }
 }
 };
 }
}

 Creating the Custom Renderer on each Platform

NOTENOTE

An instance of the CameraPreview custom control will be used to display the preview video stream from the

device's camera. Aside from optionally specifying a value for the Camera property, customization of the control

will be carried out in the custom renderer.

A custom renderer can now be added to each application project to create platform-specific camera preview

controls.

The process for creating the custom renderer class on iOS and UWP is as follows:

1. Create a subclass of the ViewRenderer<T1,T2> class that renders the custom control. The first type argument

should be the custom control the renderer is for, in this case CameraPreview . The second type argument

should be the native control that will implement the custom control.

2. Override the OnElementChanged method that renders the custom control and write logic to customize it. This

method is called when the corresponding Xamarin.Forms control is created.

3. Add an ExportRenderer attribute to the custom renderer class to specify that it will be used to render the

Xamarin.Forms custom control. This attribute is used to register the custom renderer with Xamarin.Forms.

The process for creating the custom renderer class on Android, as a fast renderer, is as follows:

1. Create a subclass of the Android control that renders the custom control. In addition, specify that the subclass

will implement the IVisualElementRenderer and IViewRenderer interfaces.

2. Implement the IVisualElementRenderer and IViewRenderer interfaces in the fast renderer class.

3. Add an ExportRenderer attribute to the custom renderer class to specify that it will be used to render the

Xamarin.Forms custom control. This attribute is used to register the custom renderer with Xamarin.Forms.

For most Xamarin.Forms elements, it is optional to provide a custom renderer in each platform project. If a custom

renderer isn't registered, then the default renderer for the control's base class will be used. However, custom renderers are

required in each platform project when rendering a View element.

The following diagram illustrates the responsibilities of each project in the sample application, along with the

relationships between them:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

The CameraPreview custom control is rendered by platform-specific renderer classes, which derive from the

ViewRenderer class on iOS and UWP, and from the FrameLayout class on Android. This results in each

CameraPreview custom control being rendered with platform-specific controls, as shown in the following

screenshots:

The ViewRenderer class exposes the OnElementChanged method, which is called when the Xamarin.Forms custom

control is created to render the corresponding native control. This method takes an ElementChangedEventArgs

parameter that contains OldElement and NewElement properties. These properties represent the Xamarin.Forms

element that the renderer was attached to, and the Xamarin.Forms element that the renderer is attached to,

respectively. In the sample application, the OldElement property will be null and the NewElement property will

contain a reference to the CameraPreview instance.

An overridden version of the OnElementChanged method, in each platform-specific renderer class, is the place to

perform the native control instantiation and customization. The SetNativeControl method should be used to

instantiate the native control, and this method will also assign the control reference to the Control property. In

addition, a reference to the Xamarin.Forms control that's being rendered can be obtained through the Element

property.

In some circumstances, the OnElementChanged method can be called multiple times. Therefore, to prevent

memory leaks, care must be taken when instantiating a new native control. The approach to use when

instantiating a new native control in a custom renderer is shown in the following code example:

protected override void OnElementChanged (ElementChangedEventArgs<NativeListView> e)
{
 base.OnElementChanged (e);

 if (e.OldElement != null)
 {
 // Unsubscribe from event handlers and cleanup any resources
 }

 if (e.NewElement != null)
 {
 if (Control == null)
 {
 // Instantiate the native control and assign it to the Control property with
 // the SetNativeControl method
 }
 // Configure the control and subscribe to event handlers
 }
}

IMPORTANTIMPORTANT

 Creating the Custom Renderer on iOSCreating the Custom Renderer on iOS

A new native control should only be instantiated once, when the Control property is null . In addition, the

control should only be created, configured, and event handlers subscribed to when the custom renderer is

attached to a new Xamarin.Forms element. Similarly, any event handlers that were subscribed to should only be

unsubscribed from when the element that the renderer is attached to changes. Adopting this approach will help

to create a performant custom renderer that doesn't suffer from memory leaks.

The SetNativeControl method should only be called if e.NewElement is not null .

Each custom renderer class is decorated with an ExportRenderer attribute that registers the renderer with

Xamarin.Forms. The attribute takes two parameters – the type name of the Xamarin.Forms custom control being

rendered, and the type name of the custom renderer. The assembly prefix to the attribute specifies that the

attribute applies to the entire assembly.

The following sections discuss the implementation of each platform-specific custom renderer class.

The following code example shows the custom renderer for the iOS platform:

[assembly: ExportRenderer (typeof(CameraPreview), typeof(CameraPreviewRenderer))]
namespace CustomRenderer.iOS
{
 public class CameraPreviewRenderer : ViewRenderer<CameraPreview, UICameraPreview>
 {
 UICameraPreview uiCameraPreview;

 protected override void OnElementChanged (ElementChangedEventArgs<CameraPreview> e)
 {
 base.OnElementChanged (e);

 if (e.OldElement != null) {
 // Unsubscribe
 uiCameraPreview.Tapped -= OnCameraPreviewTapped;
 }
 if (e.NewElement != null) {
 if (Control == null) {
 uiCameraPreview = new UICameraPreview (e.NewElement.Camera);
 SetNativeControl (uiCameraPreview);
 }
 // Subscribe
 uiCameraPreview.Tapped += OnCameraPreviewTapped;
 }
 }

 void OnCameraPreviewTapped (object sender, EventArgs e)
 {
 if (uiCameraPreview.IsPreviewing) {
 uiCameraPreview.CaptureSession.StopRunning ();
 uiCameraPreview.IsPreviewing = false;
 } else {
 uiCameraPreview.CaptureSession.StartRunning ();
 uiCameraPreview.IsPreviewing = true;
 }
 }
 ...
 }
}

 Creating the Custom Renderer on AndroidCreating the Custom Renderer on Android

[assembly: ExportRenderer(typeof(CustomRenderer.CameraPreview), typeof(CameraPreviewRenderer))]
namespace CustomRenderer.Droid
{
 public class CameraPreviewRenderer : FrameLayout, IVisualElementRenderer, IViewRenderer
 {
 // ...
 CameraPreview element;
 VisualElementTracker visualElementTracker;
 VisualElementRenderer visualElementRenderer;
 FragmentManager fragmentManager;
 CameraFragment cameraFragment;

 FragmentManager FragmentManager => fragmentManager ??= Context.GetFragmentManager();

Provided that the Control property is null , the SetNativeControl method is called to instantiate a new

UICameraPreview control and to assign a reference to it to the Control property. The UICameraPreview control is

a platform-specific custom control that uses the AVCapture APIs to provide the preview stream from the

camera. It exposes a Tapped event that's handled by the OnCameraPreviewTapped method to stop and start the

video preview when it's tapped. The Tapped event is subscribed to when the custom renderer is attached to a

new Xamarin.Forms element, and unsubscribed from only when the element the renderer is attached to

changes.

The following code example shows the fast renderer for the Android platform:

 public event EventHandler<VisualElementChangedEventArgs> ElementChanged;
 public event EventHandler<PropertyChangedEventArgs> ElementPropertyChanged;

 CameraPreview Element
 {
 get => element;
 set
 {
 if (element == value)
 {
 return;
 }

 var oldElement = element;
 element = value;
 OnElementChanged(new ElementChangedEventArgs<CameraPreview>(oldElement, element));
 }
 }

 public CameraPreviewRenderer(Context context) : base(context)
 {
 visualElementRenderer = new VisualElementRenderer(this);
 }

 void OnElementChanged(ElementChangedEventArgs<CameraPreview> e)
 {
 CameraFragment newFragment = null;

 if (e.OldElement != null)
 {
 e.OldElement.PropertyChanged -= OnElementPropertyChanged;
 cameraFragment.Dispose();
 }
 if (e.NewElement != null)
 {
 this.EnsureId();

 e.NewElement.PropertyChanged += OnElementPropertyChanged;

 ElevationHelper.SetElevation(this, e.NewElement);
 newFragment = new CameraFragment { Element = element };
 }

 FragmentManager.BeginTransaction()
 .Replace(Id, cameraFragment = newFragment, "camera")
 .Commit();
 ElementChanged?.Invoke(this, new VisualElementChangedEventArgs(e.OldElement, e.NewElement));
 }

 async void OnElementPropertyChanged(object sender, PropertyChangedEventArgs e)
 {
 ElementPropertyChanged?.Invoke(this, e);

 switch (e.PropertyName)
 {
 case "Width":
 await cameraFragment.RetrieveCameraDevice();
 break;
 }
 }
 // ...
 }
}

In this example, the OnElementChanged method creates a CameraFragment object, provided that the custom

renderer is attached to a new Xamarin.Forms element. The CameraFragment type is a custom class that uses the

 Creating the Custom Renderer on UWPCreating the Custom Renderer on UWP

[assembly: ExportRenderer(typeof(CameraPreview), typeof(CameraPreviewRenderer))]
namespace CustomRenderer.UWP
{
 public class CameraPreviewRenderer : ViewRenderer<CameraPreview,
Windows.UI.Xaml.Controls.CaptureElement>
 {
 ...
 CaptureElement _captureElement;
 bool _isPreviewing;

 protected override void OnElementChanged(ElementChangedEventArgs<CameraPreview> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 // Unsubscribe
 Tapped -= OnCameraPreviewTapped;
 ...
 }
 if (e.NewElement != null)
 {
 if (Control == null)
 {
 ...
 _captureElement = new CaptureElement();
 _captureElement.Stretch = Stretch.UniformToFill;

 SetupCamera();
 SetNativeControl(_captureElement);
 }
 // Subscribe
 Tapped += OnCameraPreviewTapped;
 }
 }

 async void OnCameraPreviewTapped(object sender, TappedRoutedEventArgs e)
 {
 if (_isPreviewing)
 {
 await StopPreviewAsync();
 }
 else
 {
 await StartPreviewAsync();
 }
 }
 ...
 }
}

Camera2 API to provide the preview stream from the camera. The CameraFragment object is disposed of when

the Xamarin.Forms element the renderer is attached to changes.

The following code example shows the custom renderer for UWP:

Provided that the Control property is null , a new CaptureElement is instantiated and the SetupCamera

method is called, which uses the MediaCapture API to provide the preview stream from the camera. The

SetNativeControl method is then called to assign a reference to the CaptureElement instance to the Control

property. The CaptureElement control exposes a Tapped event that's handled by the OnCameraPreviewTapped

method to stop and start the video preview when it's tapped. The Tapped event is subscribed to when the

custom renderer is attached to a new Xamarin.Forms element, and unsubscribed from only when the element

NOTENOTE

 Summary

 Related Links

the renderer is attached to changes.

It's important to stop and dispose of the objects that provide access to the camera in a UWP application. Failure to do so

can interfere with other applications that attempt to access the device's camera. For more information, see Display the

camera preview.

This article has demonstrated how to create a custom renderer for a Xamarin.Forms custom control that's used

to display a preview video stream from the device's camera. Xamarin.Forms custom user interface controls

should derive from the View class, which is used to place layouts and controls on the screen.

CustomRendererView (sample)

https://docs.microsoft.com/en-us/windows/uwp/audio-video-camera/simple-camera-preview-access/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-view

Xamarin.Forms Data Binding
 7/8/2021 • 2 minutes to read • Edit Online

 The Data Linking Problem

 The Data Binding Solution

 Basic Bindings

 Binding Mode

 Download the sample

Data binding is the technique of linking properties of two objects so that changes in one property are

automatically reflected in the other property. Data binding is an integral part of the Model-View-ViewModel

(MVVM) application architecture.

A Xamarin.Forms application consists of one or more pages, each of which generally contains multiple user-

interface objects called views. One of the primary tasks of the program is to keep these views synchronized, and

to keep track of the various values or selections that they represent. Often the views represent values from an

underlying data source, and the user manipulates these views to change that data. When the view changes, the

underlying data must reflect that change, and similarly, when the underlying data changes, that change must be

reflected in the view.

To handle this job successfully, the program must be notified of changes in these views or the underlying data.

The common solution is to define events that signal when a change occurs. An event handler can then be

installed that is notified of these changes. It responds by transferring data from one object to another. However,

when there are many views, there must also be many event handlers, and a lot of code gets involved.

Data binding automates this job, and renders the event handlers unnecessary. Data bindings can be

implemented either in code or in XAML, but they are much more common in XAML where they help to reduce

the size of the code-behind file. By replacing procedural code in event handlers with declarative code or markup,

the application is simplified and clarified.

One of the two objects involved in a data binding is almost always an element that derives from View and

forms part of the visual interface of a page. The other object is either :

Another View derivative, usually on the same page.

An object in a code file.

In demonstration programs such as those in the DataBindingDemosDataBindingDemos sample, data bindings between two

View derivatives are often shown for purposes of clarity and simplicity. However, the same principles can be

applied to data bindings between a View and other objects. When an application is built using the Model-View-

ViewModel (MVVM) architecture, the class with underlying data is often called a viewmodel.

Data bindings are explored in the following series of articles:

Learn the difference between the data binding target and source, and see simple data bindings in code and

XAML.

Discover how the binding mode can control the flow of data between the two objects.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

 String Formatting

 Binding Path

 Binding Value Converters

 Relative Bindings

 Binding Fallbacks

 Multi-Bindings

 The Command Interface

 Compiled Bindings

 Related links

Use a data binding to format and display objects as strings.

Dive deeper into the Path property of the data binding to access sub-properties and collection members.

Use binding value converters to alter values within the data binding.

Use relative bindings to set the binding source relative to the position of the binding target.

Make data bindings more robust by defining fallback values to use if the binding process fails.

Attach a collection of Binding objects to a single binding target property.

Implement the Command property with data bindings.

Use compiled bindings to improve data binding performance.

Data Binding Demos (sample)

Data binding chapter from Xamarin.Forms book

XAML Markup Extensions

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter16

Xamarin.Forms Basic Bindings
 7/8/2021 • 9 minutes to read • Edit Online

 Bindings with a Binding Context

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DataBindingDemos.BasicCodeBindingPage"
 Title="Basic Code Binding">
 <StackLayout Padding="10, 0">
 <Label x:Name="label"
 Text="TEXT"
 FontSize="48"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Slider x:Name="slider"
 Maximum="360"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

 Download the sample

A Xamarin.Forms data binding links a pair of properties between two objects, at least one of which is usually a

user-interface object. These two objects are called the target and the source:

The target is the object (and property) on which the data binding is set.

The source is the object (and property) referenced by the data binding.

This distinction can sometimes be a little confusing: In the simplest case, data flows from the source to the

target, which means that the value of the target property is set from the value of the source property. However,

in some cases, data can alternatively flow from the target to the source, or in both directions. To avoid confusion,

keep in mind that the target is always the object on which the data binding is set even if it's providing data

rather than receiving data.

Although data bindings are usually specified entirely in XAML, it's instructive to see data bindings in code. The

Basic Code BindingBasic Code Binding page contains a XAML file with a Label and a Slider :

The Slider is set for a range of 0 to 360. The intent of this program is to rotate the Label by manipulating the

Slider .

Without data bindings, you would set the ValueChanged event of the Slider to an event handler that accesses

the Value property of the Slider and sets that value to the Rotation property of the Label . The data binding

automates that job; the event handler and the code within it are no longer necessary.

You can set a binding on an instance of any class that derives from BindableObject , which includes Element ,

VisualElement , View , and View derivatives. The binding is always set on the target object. The binding

references the source object. To set the data binding, use the following two members of the target class:

The BindingContext property specifies the source object.

The SetBinding method specifies the target property and source property.

In this example, the Label is the binding target, and the Slider is the binding source. Changes in the Slider

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/basic-bindings.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setbinding#xamarin_forms_bindableobject_setbinding_xamarin_forms_bindableproperty_xamarin_forms_bindingbase_

public partial class BasicCodeBindingPage : ContentPage
{
 public BasicCodeBindingPage()
 {
 InitializeComponent();

 label.BindingContext = slider;
 label.SetBinding(Label.RotationProperty, "Value");
 }
}

label.SetBinding(RotationProperty, "Value");

source affect the rotation of the Label target. Data flows from the source to the target.

The SetBinding method defined by BindableObject has an argument of type BindingBase from which the

Binding class derives, but there are other SetBinding methods defined by the BindableObjectExtensions class.

The code-behind file in the Basic Code BindingBasic Code Binding sample uses a simpler SetBinding extension method from

this class.

The Label object is the binding target so that's the object on which this property is set and on which the

method is called. The BindingContext property indicates the binding source, which is the Slider .

The SetBinding method is called on the binding target but specifies both the target property and the source

property. The target property is specified as a BindableProperty object: Label.RotationProperty . The source

property is specified as a string and indicates the Value property of Slider .

The SetBinding method reveals one of the most important rules of data bindings:

The target property must be backed by a bindable property.

This rule implies that the target object must be an instance of a class that derives from BindableObject . See the

Bindable Proper tiesBindable Proper ties article for an overview of bindable objects and bindable properties.

There is no such rule for the source property, which is specified as a string. Internally, reflection is used to access

the actual property. In this particular case, however, the Value property is also backed by a bindable property.

The code can be simplified somewhat: The RotationProperty bindable property is defined by VisualElement ,

and inherited by Label and ContentPage as well, so the class name isn't required in the SetBinding call:

However, including the class name is a good reminder of the target object.

As you manipulate the Slider , the Label rotates accordingly:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobjectextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobjectextensions.setbinding

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DataBindingDemos.BasicXamlBindingPage"
 Title="Basic XAML Binding">
 <StackLayout Padding="10, 0">
 <Label Text="TEXT"
 FontSize="80"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 BindingContext="{x:Reference Name=slider}"
 Rotation="{Binding Path=Value}" />

 <Slider x:Name="slider"
 Maximum="360"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

BindingContext="slider"

The Basic Xaml BindingBasic Xaml Binding page is identical to Basic Code BindingBasic Code Binding except that it defines the entire data binding

in XAML:

Just as in code, the data binding is set on the target object, which is the Label . Two XAML markup extensions

are involved. These are instantly recognizable by the curly brace delimiters:

The x:Reference markup extension is required to reference the source object, which is the Slider named

slider .

The Binding markup extension links the Rotation property of the Label to the Value property of the

Slider .

See the article XAML Markup Extensions for more information about XAML markup extensions. The

x:Reference markup extension is supported by the ReferenceExtension class; Binding is supported by the

BindingExtension class. As the XML namespace prefixes indicate, x:Reference is part of the XAML 2009

specification, while Binding is part of Xamarin.Forms. Notice that no quotation marks appear within the curly

braces.

It's easy to forget the x:Reference markup extension when setting the BindingContext . It's common to

mistakenly set the property directly to the name of the binding source like this:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/basic-bindings-images/basiccodebinding-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.referenceextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension

<Label Text="TEXT"
 FontSize="80"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 BindingContext="{x:Reference slider}"
 Rotation="{Binding Value}" />

 Bindings without a Binding Context

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DataBindingDemos.AlternativeCodeBindingPage"
 Title="Alternative Code Binding">
 <StackLayout Padding="10, 0">
 <Label x:Name="label"
 Text="TEXT"
 FontSize="40"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Slider x:Name="slider"
 Minimum="-2"
 Maximum="2"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

public partial class AlternativeCodeBindingPage : ContentPage
{
 public AlternativeCodeBindingPage()
 {
 InitializeComponent();

 label.SetBinding(Label.ScaleProperty, new Binding("Value", source: slider));
 }
}

But that's not right. That markup sets the BindingContext property to a string object whose characters spell

"slider"!

Notice that the source property is specified with the Path property of BindingExtension , which corresponds

with the Path property of the Binding class.

The markup shown on the Basic XAML BindingBasic XAML Binding page can be simplified: XAML markup extensions such as

x:Reference and Binding can have content property attributes defined, which for XAML markup extensions

means that the property name doesn't need to appear. The Name property is the content property of

x:Reference , and the Path property is the content property of Binding , which means that they can be

eliminated from the expressions:

The BindingContext property is an important component of data bindings, but it is not always necessary. The

source object can instead be specified in the SetBinding call or the Binding markup extension.

This is demonstrated in the Alternative Code BindingAlternative Code Binding sample. The XAML file is similar to the Basic CodeBasic Code

BindingBinding sample except that the Slider is defined to control the Scale property of the Label . For that reason,

the Slider is set for a range of –2 to 2:

The code-behind file sets the binding with the SetBinding method defined by BindableObject . The argument is

a constructor for the Binding class:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension.path#xamarin_forms_xaml_bindingextension_path
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding.path#xamarin_forms_binding_path
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.setbinding#xamarin_forms_bindableobject_setbinding_xamarin_forms_bindableproperty_xamarin_forms_bindingbase_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding.-ctor#xamarin_forms_binding__ctor_system_string_xamarin_forms_bindingmode_xamarin_forms_ivalueconverter_system_object_system_string_system_object_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding

NOTENOTE

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DataBindingDemos.AlternativeXamlBindingPage"
 Title="Alternative XAML Binding">
 <StackLayout Padding="10, 0">
 <Label Text="TEXT"
 FontSize="40"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Scale="{Binding Source={x:Reference slider},
 Path=Value}" />

 <Slider x:Name="slider"
 Minimum="-2"
 Maximum="2"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

The Binding constructor has 6 parameters, so the source parameter is specified with a named argument. The

argument is the slider object.

Running this program might be a little surprising:

The iOS screen on the left shows how the screen looks when the page first appears. Where is the Label ?

The problem is that the Slider has an initial value of 0. This causes the Scale property of the Label to be also

set to 0, overriding its default value of 1. This results in the Label being initially invisible. As the Android

screenshot demonstrates, you can manipulate the Slider to make the Label appear again, but its initial

disappearance is disconcerting.

You'll discover in the next article how to avoid this problem by initializing the Slider from the default value of

the Scale property.

The VisualElement class also defines ScaleX and ScaleY properties, which can scale the VisualElement differently

in the horizontal and vertical directions.

The Alternative XAML BindingAlternative XAML Binding page shows the equivalent binding entirely in XAML:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/basic-bindings-images/alternativecodebinding-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scalex#xamarin_forms_visualelement_scalex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scaley#xamarin_forms_visualelement_scaley

Scale="{Binding Source={x:Reference slider}, Path=Value}" />

Scale="{Binding Value, Source={x:Reference slider}}" />

<Label Text="TEXT"
 FontSize="40"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <Label.Scale>
 <Binding Source="{x:Reference slider}"
 Path="Value" />
 </Label.Scale>
</Label>

<Label Text="TEXT"
 FontSize="40"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <Label.Scale>
 <Binding Path="Value">
 <Binding.Source>
 <x:Reference Name="slider" />
 </Binding.Source>
 </Binding>
 </Label.Scale>
</Label>

Now the Binding markup extension has two properties set, Source and Path , separated by a comma. They

can appear on the same line if you prefer :

The Source property is set to an embedded x:Reference markup extension that otherwise has the same syntax

as setting the BindingContext . Notice that no quotation marks appear within the curly braces, and that the two

properties must be separated by a comma.

The content property of the Binding markup extension is Path , but the Path= part of the markup extension

can only be eliminated if it is the first property in the expression. To eliminate the Path= part, you need to swap

the two properties:

Although XAML markup extensions are usually delimited by curly braces, they can also be expressed as object

elements:

Now the Source and Path properties are regular XAML attributes: The values appear within quotation marks

and the attributes are not separated by a comma. The x:Reference markup extension can also become an object

element:

This syntax isn't common, but sometimes it's necessary when complex objects are involved.

The examples shown so far set the BindingContext property and the Source property of Binding to an

x:Reference markup extension to reference another view on the page. These two properties are of type Object

, and they can be set to any object that includes properties that are suitable for binding sources.

In the articles ahead, you'll discover that you can set the BindingContext or Source property to an x:Static

markup extension to reference the value of a static property or field, or a StaticResource markup extension to

reference an object stored in a resource dictionary, or directly to an object, which is generally (but not always) an

instance of a ViewModel.

 Binding Context Inheritance

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DataBindingDemos.BindingContextInheritancePage"
 Title="BindingContext Inheritance">
 <StackLayout Padding="10">

 <StackLayout VerticalOptions="FillAndExpand"
 BindingContext="{x:Reference slider}">

 <Label Text="TEXT"
 FontSize="80"
 HorizontalOptions="Center"
 VerticalOptions="EndAndExpand"
 Rotation="{Binding Value}" />

 <BoxView Color="#800000FF"
 WidthRequest="180"
 HeightRequest="40"
 HorizontalOptions="Center"
 VerticalOptions="StartAndExpand"
 Rotation="{Binding Value}" />
 </StackLayout>

 <Slider x:Name="slider"
 Maximum="360" />

 </StackLayout>
</ContentPage>

The BindingContext property can also be set to a Binding object so that the Source and Path properties of

Binding define the binding context.

In this article, you've seen that you can specify the source object using the BindingContext property or the

Source property of the Binding object. If both are set, the Source property of the Binding takes precedence

over the BindingContext .

The BindingContext property has an extremely important characteristic:

The setting of the BindingContext property is inherited through the visual tree.

As you'll see, this can be very handy for simplifying binding expressions, and in some cases — particularly in

Model-View-ViewModel (MVVM) scenarios — it is essential.

The Binding Context InheritanceBinding Context Inheritance sample is a simple demonstration of the inheritance of the binding context:

The BindingContext property of the StackLayout is set to the slider object. This binding context is inherited

by both the Label and the BoxView , both of which have their Rotation properties set to the Value property

of the Slider :

 Related Links

 Related Video

In the next article, you'll see how the binding mode can change the flow of data between target and source

objects.

Data Binding Demos (sample)

Data binding chapter from Xamarin.Forms book

Find more Xamarin videos on Channel 9 and YouTube.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/basic-bindings-images/bindingcontextinheritance-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter16
https://channel9.msdn.com/Shows/XamarinShow/XamarinForms-101-Data-Binding/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Forms Binding Mode
 7/8/2021 • 15 minutes to read • Edit Online

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DataBindingDemos.ReverseBindingPage"
 Title="Reverse Binding">
 <StackLayout Padding="10, 0">

 <Label x:Name="label"
 Text="TEXT"
 FontSize="80"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Slider x:Name="slider"
 VerticalOptions="CenterAndExpand"
 Value="{Binding Source={x:Reference label},
 Path=Opacity}" />
 </StackLayout>
</ContentPage>

 Download the sample

In the previous article, the Alternative Code BindingAlternative Code Binding and Alternative XAML BindingAlternative XAML Binding pages featured a

Label with its Scale property bound to the Value property of a Slider . Because the Slider initial value is 0,

this caused the Scale property of the Label to be set to 0 rather than 1, and the Label disappeared.

In the DataBindingDemosDataBindingDemos sample, the Reverse BindingReverse Binding page is similar to the programs in the previous

article, except that the data binding is defined on the Slider rather than on the Label :

At first, this might seem backwards: Now the Label is the data-binding source, and the Slider is the target.

The binding references the Opacity property of the Label , which has a default value of 1.

As you might expect, the Slider is initialized to the value 1 from the initial Opacity value of Label . This is

shown in the iOS screenshot on the left:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/binding-mode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/binding-mode-images/reversebinding-large.png#lightbox

 The Default Binding Mode

 Two-Way BindingsTwo-Way Bindings

But you might be surprised that the Slider continues to work, as the Android screenshot demonstrates. This

seems to suggest that the data binding works better when the Slider is the binding target rather than the

Label because the initialization works like we might expect.

The difference between the Reverse BindingReverse Binding sample and the earlier samples involves the binding mode.

The binding mode is specified with a member of the BindingMode enumeration:

Default

TwoWay – data goes both ways between source and target

OneWay – data goes from source to target

OneWayToSource – data goes from target to source

OneTime – data goes from source to target, but only when the BindingContext changes (new with

Xamarin.Forms 3.0)

Every bindable property has a default binding mode that is set when the bindable property is created, and

which is available from the DefaultBindingMode property of the BindableProperty object. This default binding

mode indicates the mode in effect when that property is a data-binding target.

The default binding mode for most properties such as Rotation , Scale , and Opacity is OneWay . When these

properties are data-binding targets, then the target property is set from the source.

However, the default binding mode for the Value property of Slider is TwoWay . This means that when the

Value property is a data-binding target, then the target is set from the source (as usual) but the source is also

set from the target. This is what allows the Slider to be set from the initial Opacity value.

This two-way binding might seem to create an infinite loop, but that doesn't happen. Bindable properties do not

signal a property change unless the property actually changes. This prevents an infinite loop.

Most bindable properties have a default binding mode of OneWay but the following properties have a default

binding mode of TwoWay :

Date property of DatePicker

Text property of Editor , Entry , SearchBar , and EntryCell

IsRefreshing property of ListView

SelectedItem property of MultiPage

SelectedIndex and SelectedItem properties of Picker

Value property of Slider and Stepper

IsToggled property of Switch

On property of SwitchCell

Time property of TimePicker

These particular properties are defined as TwoWay for a very good reason:

When data bindings are used with the Model-View-ViewModel (MVVM) application architecture, the ViewModel

class is the data-binding source, and the View, which consists of views such as Slider , are data-binding targets.

MVVM bindings resemble the Reverse BindingReverse Binding sample more than the bindings in the previous samples. It is

very likely that you want each view on the page to be initialized with the value of the corresponding property in

the ViewModel, but changes in the view should also affect the ViewModel property.

The properties with default binding modes of TwoWay are those properties most likely to be used in MVVM

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_oneway
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_onewaytosource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_onewaytosource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.defaultbindingmode#xamarin_forms_bindableproperty_defaultbindingmode

 One-Way-to-Source BindingsOne-Way-to-Source Bindings

 One-Time BindingsOne-Time Bindings

 ViewModels and Property-Change Notifications

public class HslColorViewModel : INotifyPropertyChanged
{
 Color color;
 string name;

 public event PropertyChangedEventHandler PropertyChanged;

 public double Hue
 {
 set
 {
 if (color.Hue != value)
 {
 Color = Color.FromHsla(value, color.Saturation, color.Luminosity);
 }
 }
 get
 {
 return color.Hue;
 }
 }

 public double Saturation
 {

scenarios.

Read-only bindable properties have a default binding mode of OneWayToSource . There is only one read/write

bindable property that has a default binding mode of OneWayToSource :

SelectedItem property of ListView

The rationale is that a binding on the SelectedItem property should result in setting the binding source. An

example later in this article overrides that behavior.

Several properties have a default binding mode of OneTime , including the IsTextPredictionEnabled property of

Entry .

Target properties with a binding mode of OneTime are updated only when the binding context changes. For

bindings on these target properties, this simplifies the binding infrastructure because it is not necessary to

monitor changes in the source properties.

The S imple Color SelectorSimple Color Selector page demonstrates the use of a simple ViewModel. Data bindings allow the user to

select a color using three Slider elements for the hue, saturation, and luminosity.

The ViewModel is the data-binding source. The ViewModel does not define bindable properties, but it does

implement a notification mechanism that allows the binding infrastructure to be notified when the value of a

property changes. This notification mechanism is the INotifyPropertyChanged interface, which defines a single

event named PropertyChanged . A class that implements this interface generally fires the event when one of its

public properties changes value. The event does not need to be fired if the property never changes. (The

INotifyPropertyChanged interface is also implemented by BindableObject and a PropertyChanged event is fired

whenever a bindable property changes value.)

The HslColorViewModel class defines five properties: The Hue , Saturation , Luminosity , and Color properties

are interrelated. When any one of the three color components changes value, the Color property is

recalculated, and PropertyChanged events are fired for all four properties:

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged.propertychanged

 set
 {
 if (color.Saturation != value)
 {
 Color = Color.FromHsla(color.Hue, value, color.Luminosity);
 }
 }
 get
 {
 return color.Saturation;
 }
 }

 public double Luminosity
 {
 set
 {
 if (color.Luminosity != value)
 {
 Color = Color.FromHsla(color.Hue, color.Saturation, value);
 }
 }
 get
 {
 return color.Luminosity;
 }
 }

 public Color Color
 {
 set
 {
 if (color != value)
 {
 color = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Hue"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Saturation"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Luminosity"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Color"));

 Name = NamedColor.GetNearestColorName(color);
 }
 }
 get
 {
 return color;
 }
 }

 public string Name
 {
 private set
 {
 if (name != value)
 {
 name = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Name"));
 }
 }
 get
 {
 return name;
 }
 }
}

When the Color property changes, the static GetNearestColorName method in the NamedColor class (also

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.SimpleColorSelectorPage">

 <ContentPage.Resources>
 <ResourceDictionary>
 <local:HslColorViewModel x:Key="viewModel"
 Color="MediumTurquoise" />

 <Style TargetType="Slider">
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <Grid BindingContext="{StaticResource viewModel}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <BoxView Color="{Binding Color}"
 Grid.Row="0" />

 <StackLayout Grid.Row="1"
 Margin="10, 0">

 <Label Text="{Binding Name}"
 HorizontalTextAlignment="Center" />

 <Slider Value="{Binding Hue}" />

 <Slider Value="{Binding Saturation}" />

 <Slider Value="{Binding Luminosity}" />
 </StackLayout>
 </Grid>
</ContentPage>

included in the DataBindingDemosDataBindingDemos solution) obtains the closest named color and sets the Name property. This

Name property has a private set accessor, so it cannot be set from outside the class.

When a ViewModel is set as a binding source, the binding infrastructure attaches a handler to the

PropertyChanged event. In this way, the binding can be notified of changes to the properties, and can then set

the target properties from the changed values.

However, when a target property (or the Binding definition on a target property) has a BindingMode of

OneTime , it is not necessary for the binding infrastructure to attach a handler on the PropertyChanged event. The

target property is updated only when the BindingContext changes and not when the source property itself

changes.

The S imple Color SelectorSimple Color Selector XAML file instantiates the HslColorViewModel in the page's resource dictionary and

initializes the Color property. The BindingContext property of the Grid is set to a StaticResource binding

extension to reference that resource:

The BoxView , Label , and three Slider views inherit the binding context from the Grid . These views are all

binding targets that reference source properties in the ViewModel. For the Color property of the BoxView , and

the Text property of the Label , the data bindings are OneWay : The properties in the view are set from the

properties in the ViewModel.

The Value property of the Slider , however, is TwoWay . This allows each Slider to be set from the ViewModel,

<Grid>
 <Grid.BindingContext>
 <local:HslColorViewModel Color="MediumTurquoise" />
 </Grid.BindingContext>

 ···

</Grid>

 Overriding the Binding Mode

and also for the ViewModel to be set from each Slider .

When the program is first run, the BoxView , Label , and three Slider elements are all set from the ViewModel

based on the initial Color property set when the ViewModel was instantiated. This is shown in the iOS

screenshot at the left:

As you manipulate the sliders, the BoxView and Label are updated accordingly, as illustrated by the Android

screenshot.

Instantiating the ViewModel in the resource dictionary is one common approach. It's also possible to instantiate

the ViewModel within property element tags for the BindingContext property. In the S imple Color SelectorSimple Color Selector

XAML file, try removing the HslColorViewModel from the resource dictionary and set it to the BindingContext

property of the Grid like this:

The binding context can be set in a variety of ways. Sometimes, the code-behind file instantiates the ViewModel

and sets it to the BindingContext property of the page. These are all valid approaches.

If the default binding mode on the target property is not suitable for a particular data binding, it's possible to

override it by setting the Mode property of Binding (or the Mode property of the Binding markup extension)

to one of the members of the BindingMode enumeration.

However, setting the Mode property to TwoWay doesn't always work as you might expect. For example, try

modifying the Alternative XAML BindingAlternative XAML Binding XAML file to include TwoWay in the binding definition:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/binding-mode-images/simplecolorselector-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.mode#xamarin_forms_bindingbase_mode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension.mode#xamarin_forms_xaml_bindingextension_mode

<Label Text="TEXT"
 FontSize="40"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Scale="{Binding Source={x:Reference slider},
 Path=Value,
 Mode=TwoWay}" />

<Label Text="TEXT"
 FontSize="40"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Scale="{Binding Source={x:Reference slider},
 Path=Value,
 Mode=OneWayToSource}" />

NOTENOTE

public class SampleSettingsViewModel : INotifyPropertyChanged
{
 string name;
 DateTime birthDate;
 bool codesInCSharp;
 double numberOfCopies;
 NamedColor backgroundNamedColor;

 public event PropertyChangedEventHandler PropertyChanged;

 public SampleSettingsViewModel(IDictionary<string, object> dictionary)
 {
 Name = GetDictionaryEntry<string>(dictionary, "Name");
 BirthDate = GetDictionaryEntry(dictionary, "BirthDate", new DateTime(1980, 1, 1));
 CodesInCSharp = GetDictionaryEntry<bool>(dictionary, "CodesInCSharp");
 NumberOfCopies = GetDictionaryEntry(dictionary, "NumberOfCopies", 1.0);
 BackgroundNamedColor = NamedColor.Find(GetDictionaryEntry(dictionary, "BackgroundNamedColor",
"White"));
 }

It might be expected that the Slider would be initialized to the initial value of the Scale property, which is 1,

but that doesn't happen. When a TwoWay binding is initialized, the target is set from the source first, which

means that the Scale property is set to the Slider default value of 0. When the TwoWay binding is set on the

Slider , then the Slider is initially set from the source.

You can set the binding mode to OneWayToSource in the Alternative XAML BindingAlternative XAML Binding sample:

Now the Slider is initialized to 1 (the default value of Scale) but manipulating the Slider doesn't affect the

Scale property, so this is not very useful.

The VisualElement class also defines ScaleX and ScaleY properties, which can scale the VisualElement differently

in the horizontal and vertical directions.

A very useful application of overriding the default binding mode with TwoWay involves the SelectedItem

property of ListView . The default binding mode is OneWayToSource . When a data binding is set on the

SelectedItem property to reference a source property in a ViewModel, then that source property is set from the

ListView selection. However, in some circumstances, you might also want the ListView to be initialized from

the ViewModel.

The Sample SettingsSample Settings page demonstrates this technique. This page represents a simple implementation of

application settings, which are very often defined in a ViewModel, such as this SampleSettingsViewModel file:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scalex#xamarin_forms_visualelement_scalex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scaley#xamarin_forms_visualelement_scaley

 }

 public string Name
 {
 set { SetProperty(ref name, value); }
 get { return name; }
 }

 public DateTime BirthDate
 {
 set { SetProperty(ref birthDate, value); }
 get { return birthDate; }
 }

 public bool CodesInCSharp
 {
 set { SetProperty(ref codesInCSharp, value); }
 get { return codesInCSharp; }
 }

 public double NumberOfCopies
 {
 set { SetProperty(ref numberOfCopies, value); }
 get { return numberOfCopies; }
 }

 public NamedColor BackgroundNamedColor
 {
 set
 {
 if (SetProperty(ref backgroundNamedColor, value))
 {
 OnPropertyChanged("BackgroundColor");
 }
 }
 get { return backgroundNamedColor; }
 }

 public Color BackgroundColor
 {
 get { return BackgroundNamedColor?.Color ?? Color.White; }
 }

 public void SaveState(IDictionary<string, object> dictionary)
 {
 dictionary["Name"] = Name;
 dictionary["BirthDate"] = BirthDate;
 dictionary["CodesInCSharp"] = CodesInCSharp;
 dictionary["NumberOfCopies"] = NumberOfCopies;
 dictionary["BackgroundNamedColor"] = BackgroundNamedColor.Name;
 }

 T GetDictionaryEntry<T>(IDictionary<string, object> dictionary, string key, T defaultValue = default(T))
 {
 return dictionary.ContainsKey(key) ? (T)dictionary[key] : defaultValue;
 }

 bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {

 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

public class NamedColor : IEquatable<NamedColor>, IComparable<NamedColor>
{
 // Instance members
 private NamedColor()
 {
 }

 public string Name { private set; get; }

 public string FriendlyName { private set; get; }

 public Color Color { private set; get; }

 public string RgbDisplay { private set; get; }

 public bool Equals(NamedColor other)
 {
 return Name.Equals(other.Name);
 }

 public int CompareTo(NamedColor other)
 {
 return Name.CompareTo(other.Name);
 }

 // Static members
 static NamedColor()
 {
 List<NamedColor> all = new List<NamedColor>();
 StringBuilder stringBuilder = new StringBuilder();

 // Loop through the public static fields of the Color structure.
 foreach (FieldInfo fieldInfo in typeof(Color).GetRuntimeFields())
 {
 if (fieldInfo.IsPublic &&
 fieldInfo.IsStatic &&
 fieldInfo.FieldType == typeof(Color))
 {
 // Convert the name to a friendly name.
 string name = fieldInfo.Name;
 stringBuilder.Clear();
 int index = 0;

 foreach (char ch in name)

Each application setting is a property that is saved to the Xamarin.Forms properties dictionary in a method

named SaveState and loaded from that dictionary in the constructor. Towards the bottom of the class are two

methods that help streamline ViewModels and make them less prone to errors. The OnPropertyChanged method

at the bottom has an optional parameter that is set to the calling property. This avoids spelling errors when

specifying the name of the property as a string.

The SetProperty method in the class does even more: It compares the value that is being set to the property

with the value stored as a field, and only calls OnPropertyChanged when the two values are not equal.

The SampleSettingsViewModel class defines two properties for the background color : The BackgroundNamedColor

property is of type NamedColor , which is a class also included in the DataBindingDemosDataBindingDemos solution. The

BackgroundColor property is of type Color , and is obtained from the Color property of the NamedColor object.

The NamedColor class uses .NET reflection to enumerate all the static public fields in the Xamarin.Forms Color

structure, and to store them with their names in a collection accessible from the static All property:

 {
 if (index != 0 && Char.IsUpper(ch))
 {
 stringBuilder.Append(' ');
 }
 stringBuilder.Append(ch);
 index++;
 }

 // Instantiate a NamedColor object.
 Color color = (Color)fieldInfo.GetValue(null);

 NamedColor namedColor = new NamedColor
 {
 Name = name,
 FriendlyName = stringBuilder.ToString(),
 Color = color,
 RgbDisplay = String.Format("{0:X2}-{1:X2}-{2:X2}",
 (int)(255 * color.R),
 (int)(255 * color.G),
 (int)(255 * color.B))
 };

 // Add it to the collection.
 all.Add(namedColor);
 }
 }
 all.TrimExcess();
 all.Sort();
 All = all;
 }

 public static IList<NamedColor> All { private set; get; }

 public static NamedColor Find(string name)
 {
 return ((List<NamedColor>)All).Find(nc => nc.Name == name);
 }

 public static string GetNearestColorName(Color color)
 {
 double shortestDistance = 1000;
 NamedColor closestColor = null;

 foreach (NamedColor namedColor in NamedColor.All)
 {
 double distance = Math.Sqrt(Math.Pow(color.R - namedColor.Color.R, 2) +
 Math.Pow(color.G - namedColor.Color.G, 2) +
 Math.Pow(color.B - namedColor.Color.B, 2));

 if (distance < shortestDistance)
 {
 shortestDistance = distance;
 closestColor = namedColor;
 }
 }
 return closestColor.Name;
 }
}

The App class in the DataBindingDemosDataBindingDemos project defines a property named Settings of type

SampleSettingsViewModel . This property is initialized when the App class is instantiated, and the SaveState

method is called when the OnSleep method is called:

public partial class App : Application
{
 public App()
 {
 InitializeComponent();

 Settings = new SampleSettingsViewModel(Current.Properties);

 MainPage = new NavigationPage(new MainPage());
 }

 public SampleSettingsViewModel Settings { private set; get; }

 protected override void OnStart()
 {
 // Handle when your app starts
 }

 protected override void OnSleep()
 {
 // Handle when your app sleeps
 Settings.SaveState(Current.Properties);
 }

 protected override void OnResume()
 {
 // Handle when your app resumes
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.SampleSettingsPage"
 Title="Sample Settings"
 BindingContext="{Binding Source={x:Static Application.Current},
 Path=Settings}">

 <StackLayout BackgroundColor="{Binding BackgroundColor}"
 Padding="10"
 Spacing="10">

 <StackLayout Orientation="Horizontal">
 <Label Text="Name: "
 VerticalOptions="Center" />

 <Entry Text="{Binding Name}"
 Placeholder="your name"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="Center" />
 </StackLayout>

 <StackLayout Orientation="Horizontal">
 <Label Text="Birth Date: "
 VerticalOptions="Center" />

 <DatePicker Date="{Binding BirthDate}"
 HorizontalOptions="FillAndExpand"

For more information on the application lifecycle methods, see the article App L ifecycleApp L ifecycle.

Almost everything else is handled in the SampleSettingsPage.xamlSampleSettingsPage.xaml file. The BindingContext of the page is set

using a Binding markup extension: The binding source is the static Application.Current property, which is the

instance of the App class in the project, and the Path is set to the Settings property, which is the

SampleSettingsViewModel object:

 HorizontalOptions="FillAndExpand"
 VerticalOptions="Center" />
 </StackLayout>

 <StackLayout Orientation="Horizontal">
 <Label Text="Do you code in C#? "
 VerticalOptions="Center" />

 <Switch IsToggled="{Binding CodesInCSharp}"
 VerticalOptions="Center" />
 </StackLayout>

 <StackLayout Orientation="Horizontal">
 <Label Text="Number of Copies: "
 VerticalOptions="Center" />

 <Stepper Value="{Binding NumberOfCopies}"
 VerticalOptions="Center" />

 <Label Text="{Binding NumberOfCopies}"
 VerticalOptions="Center" />
 </StackLayout>

 <Label Text="Background Color:" />

 <ListView x:Name="colorListView"
 ItemsSource="{x:Static local:NamedColor.All}"
 SelectedItem="{Binding BackgroundNamedColor, Mode=TwoWay}"
 VerticalOptions="FillAndExpand"
 RowHeight="40">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <StackLayout Orientation="Horizontal">
 <BoxView Color="{Binding Color}"
 HeightRequest="32"
 WidthRequest="32"
 VerticalOptions="Center" />

 <Label Text="{Binding FriendlyName}"
 FontSize="24"
 VerticalOptions="Center" />
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
</ContentPage>

SelectedItem="{Binding BackgroundNamedColor, Mode=TwoWay}"

All the children of the page inherit the binding context. Most of the other bindings on this page are to properties

in SampleSettingsViewModel . The BackgroundColor property is used to set the BackgroundColor property of the

StackLayout , and the Entry , DatePicker , Switch , and Stepper properties are all bound to other properties in

the ViewModel.

The ItemsSource property of the ListView is set to the static NamedColor.All property. This fills the ListView

with all the NamedColor instances. For each item in the ListView , the binding context for the item is set to a

NamedColor object. The BoxView and Label in the ViewCell are bound to properties in NamedColor .

The SelectedItem property of the ListView is of type NamedColor , and is bound to the BackgroundNamedColor

property of SampleSettingsViewModel :

public partial class SampleSettingsPage : ContentPage
{
 public SampleSettingsPage()
 {
 InitializeComponent();

 if (colorListView.SelectedItem != null)
 {
 colorListView.ScrollTo(colorListView.SelectedItem,
 ScrollToPosition.MakeVisible,
 false);
 }
 }
}

 Related Links

The default binding mode for SelectedItem is OneWayToSource , which sets the ViewModel property from the

selected item. The TwoWay mode allows the SelectedItem to be initialized from the ViewModel.

However, when the SelectedItem is set in this way, the ListView does not automatically scroll to show the

selected item. A little code in the code-behind file is necessary:

The iOS screenshot at the left shows the program when it's first run. The constructor in SampleSettingsViewModel

initializes the background color to white, and that's what's selected in the ListView :

The other screenshot shows altered settings. When experimenting with this page, remember to put the program

to sleep or to terminate it on the device or emulator that it's running. Terminating the program from the Visual

Studio debugger will not cause the OnSleep override in the App class to be called.

In the next article you'll see how to specify Str ing FormattingStr ing Formatting of data bindings that are set on the Text

property of Label .

Data Binding Demos (sample)

Data binding chapter from Xamarin.Forms book

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/binding-mode-images/samplesettings-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter16

Xamarin.Forms String Formatting
 7/8/2021 • 4 minutes to read • Edit Online

 The StringFormat Property

<Slider x:Name="slider" />
<Label Text="{Binding Source={x:Reference slider},
 Path=Value,
 StringFormat='The slider value is {0:F2}'}" />

 Download the sample

Sometimes it's convenient to use data bindings to display the string representation of an object or value. For

example, you might want to use a Label to display the current value of a Slider . In this data binding, the

Slider is the source, and the target is the Text property of the Label .

When displaying strings in code, the most powerful tool is the static String.Format method. The formatting

string includes formatting codes specific to various types of objects, and you can include other text along with

the values being formatted. See the Formatting Types in .NET article for more information on string formatting.

This facility is carried over into data bindings: You set the StringFormat property of Binding (or the

StringFormat property of the Binding markup extension) to a standard .NET formatting string with one

placeholder :

Notice that the formatting string is delimited by single-quote (apostrophe) characters to help the XAML parser

avoid treating the curly braces as another XAML markup extension. Otherwise, that string without the single-

quote character is the same string you'd use to display a floating-point value in a call to String.Format . A

formatting specification of F2 causes the value to be displayed with two decimal places.

The StringFormat property only makes sense when the target property is of type string , and the binding

mode is OneWay or TwoWay . For two-way bindings, the StringFormat is only applicable for values passing from

the source to the target.

As you'll see in the next article on the Binding Path, data bindings can become quite complex and convoluted.

When debugging these data bindings, you can add a Label into the XAML file with a StringFormat to display

some intermediate results. Even if you use it only to display an object's type, that can be helpful.

The Str ing FormattingStr ing Formatting page illustrates several uses of the StringFormat property:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/string-formatting.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/system.string.format#system_string_format_system_string_system_object_
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.stringformat#xamarin_forms_bindingbase_stringformat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension.stringformat#xamarin_forms_xaml_bindingextension_stringformat

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:sys="clr-namespace:System;assembly=netstandard"
 x:Class="DataBindingDemos.StringFormattingPage"
 Title="String Formatting">

 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Label">
 <Setter Property="HorizontalTextAlignment" Value="Center" />
 </Style>

 <Style TargetType="BoxView">
 <Setter Property="Color" Value="Blue" />
 <Setter Property="HeightRequest" Value="2" />
 <Setter Property="Margin" Value="0, 5" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout Margin="10">
 <Slider x:Name="slider" />
 <Label Text="{Binding Source={x:Reference slider},
 Path=Value,
 StringFormat='The slider value is {0:F2}'}" />

 <BoxView />

 <TimePicker x:Name="timePicker" />
 <Label Text="{Binding Source={x:Reference timePicker},
 Path=Time,
 StringFormat='The TimeSpan is {0:c}'}" />

 <BoxView />

 <Entry x:Name="entry" />
 <Label Text="{Binding Source={x:Reference entry},
 Path=Text,
 StringFormat='The Entry text is "{0}"'}" />

 <BoxView />

 <StackLayout BindingContext="{x:Static sys:DateTime.Now}">
 <Label Text="{Binding}" />
 <Label Text="{Binding Path=Ticks,
 StringFormat='{0:N0} ticks since 1/1/1'}" />
 <Label Text="{Binding StringFormat='The {{0:MMMM}} specifier produces {0:MMMM}'}" />
 <Label Text="{Binding StringFormat='The long date is {0:D}'}" />
 </StackLayout>

 <BoxView />

 <StackLayout BindingContext="{x:Static sys:Math.PI}">
 <Label Text="{Binding}" />
 <Label Text="{Binding StringFormat='PI to 4 decimal points = {0:F4}'}" />
 <Label Text="{Binding StringFormat='PI in scientific notation = {0:E7}'}" />
 </StackLayout>
 </StackLayout>
</ContentPage>

The bindings on the Slider and TimePicker show the use of format specifications particular to double and

TimeSpan data types. The StringFormat that displays the text from the Entry view demonstrates how to specify

double quotation marks in the formatting string with the use of the " HTML entity.

The next section in the XAML file is a StackLayout with a BindingContext set to an x:Static markup extension

<Label Text="{Binding}" />

<Label Text="{Binding StringFormat='The {{0:MMMM}} specifier produces {0:MMMM}'}" />

 ViewModels and String Formatting

that references the static DateTime.Now property. The first binding has no properties:

This simply displays the DateTime value of the BindingContext with default formatting. The second binding

displays the Ticks property of DateTime , while the other two bindings display the DateTime itself with specific

formatting. Notice this StringFormat :

If you need to display left or right curly braces in your formatting string, simply use a pair of them.

The last section sets the BindingContext to the value of Math.PI and displays it with default formatting and two

different types of numeric formatting.

Here's the program running:

When you're using Label and StringFormat to display the value of a view that is also the target of a

ViewModel, you can either define the binding from the view to the Label or from the ViewModel to the Label .

In general, the second approach is best because it verifies that the bindings between the View and ViewModel

are working.

This approach is shown in the Better Color SelectorBetter Color Selector sample, which uses the same ViewModel as the S impleSimple

Color SelectorColor Selector program shown in the Binding ModeBinding Mode article:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/string-formatting-images/stringformatting-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.BetterColorSelectorPage"
 Title="Better Color Selector">

 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Slider">
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 </Style>

 <Style TargetType="Label">
 <Setter Property="HorizontalTextAlignment" Value="Center" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout>
 <StackLayout.BindingContext>
 <local:HslColorViewModel Color="Sienna" />
 </StackLayout.BindingContext>

 <BoxView Color="{Binding Color}"
 VerticalOptions="FillAndExpand" />

 <StackLayout Margin="10, 0">
 <Label Text="{Binding Name}" />

 <Slider Value="{Binding Hue}" />
 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />

 <Slider Value="{Binding Saturation}" />
 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />

 <Slider Value="{Binding Luminosity}" />
 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />
 </StackLayout>
 </StackLayout>
</ContentPage>

There are now three pairs of Slider and Label elements that are bound to the same source property in the

HslColorViewModel object. The only difference is that Label has a StringFormat property to display each

Slider value.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/string-formatting-images/bettercolorselector-large.png#lightbox

 Related Links

You might be wondering how you could display RGB (red, green, blue) values in traditional two-digit

hexadecimal format. Those integer values aren't directly available from the Color structure. One solution would

be to calculate integer values of the color components within the ViewModel and expose them as properties.

You could then format them using the X2 formatting specification.

Another approach is more general: You can write a binding value converter as discussed in the later article,

Binding Value Conver tersBinding Value Conver ters .

The next article, however, explores the Binding PathBinding Path in more detail, and show how you can use it to reference

sub-properties and items in collections.

Data Binding Demos (sample)

Data binding chapter from Xamarin.Forms book

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter16

Xamarin.Forms Binding Path
 7/8/2021 • 3 minutes to read • Edit Online

<TimePicker x:Name="timePicker">

{Binding Source={x:Reference timePicker},
 Path=Time.TotalSeconds}

 Download the sample

In all the previous data-binding examples, the Path property of the Binding class (or the Path property of the

Binding markup extension) has been set to a single property. It's actually possible to set Path to a sub-

property (a property of a property), or to a member of a collection.

For example, suppose your page contains a TimePicker :

The Time property of TimePicker is of type TimeSpan , but perhaps you want to create a data binding that

references the TotalSeconds property of that TimeSpan value. Here's the data binding:

The Time property is of type TimeSpan , which has a TotalSeconds property. The Time and TotalSeconds

properties are simply connected with a period. The items in the Path string always refer to properties and not

to the types of these properties.

That example and several others are shown in the Path VariationsPath Variations page:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/binding-path.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding.path#xamarin_forms_binding_path
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension.path#xamarin_forms_xaml_bindingextension_path

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:globe="clr-namespace:System.Globalization;assembly=netstandard"
 x:Class="DataBindingDemos.PathVariationsPage"
 Title="Path Variations"
 x:Name="page">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Label">
 <Setter Property="FontSize" Value="Large" />
 <Setter Property="HorizontalTextAlignment" Value="Center" />
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout Margin="10, 0">
 <TimePicker x:Name="timePicker" />

 <Label Text="{Binding Source={x:Reference timePicker},
 Path=Time.TotalSeconds,
 StringFormat='{0} total seconds'}" />

 <Label Text="{Binding Source={x:Reference page},
 Path=Content.Children.Count,
 StringFormat='There are {0} children in this StackLayout'}" />

 <Label Text="{Binding Source={x:Static globe:CultureInfo.CurrentCulture},
 Path=DateTimeFormat.DayNames[3],
 StringFormat='The middle day of the week is {0}'}" />

 <Label>
 <Label.Text>
 <Binding Path="DateTimeFormat.DayNames[3]"
 StringFormat="The middle day of the week in France is {0}">
 <Binding.Source>
 <globe:CultureInfo>
 <x:Arguments>
 <x:String>fr-FR</x:String>
 </x:Arguments>
 </globe:CultureInfo>
 </Binding.Source>
 </Binding>
 </Label.Text>
 </Label>

 <Label Text="{Binding Source={x:Reference page},
 Path=Content.Children[1].Text.Length,
 StringFormat='The second Label has {0} characters'}" />
 </StackLayout>
</ContentPage>

 Paths with Indexers

<Label Text="{Binding Source={x:Static globe:CultureInfo.CurrentCulture},
 Path=DateTimeFormat.DayNames[3],
 StringFormat='The middle day of the week is {0}'}" />

In the second Label , the binding source is the page itself. The Content property is of type StackLayout , which

has a Children property of type IList<View> , which has a Count property indicating the number of children.

The binding in the third Label in the Path VariationsPath Variations pages references the CultureInfo class in the

System.Globalization namespace:

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo

<Label>
 <Label.Text>
 <Binding Path="DateTimeFormat.DayNames[3]"
 StringFormat="The middle day of the week in France is {0}">
 <Binding.Source>
 <globe:CultureInfo>
 <x:Arguments>
 <x:String>fr-FR</x:String>
 </x:Arguments>
 </globe:CultureInfo>
 </Binding.Source>
 </Binding>
 </Label.Text>
</Label>

<Label Text="{Binding Source={x:Reference page},
 Path=Content.Children[1].Text.Length,
 StringFormat='The first Label has {0} characters'}" />

 Debugging Complex Paths

The source is set to the static CultureInfo.CurrentCulture property, which is an object of type CultureInfo . That

class defines a property named DateTimeFormat of type DateTimeFormatInfo that contains a DayNames collection.

The index selects the fourth item.

The fourth Label does something similar but for the culture associated with France. The Source property of

the binding is set to CultureInfo object with a constructor :

See Passing Constructor Arguments for more details on specifying constructor arguments in XAML.

Finally, the last example is similar to the second, except that it references one of the children of the StackLayout :

That child is a Label , which has a Text property of type String , which has a Length property. The first

Label reports the TimeSpan set in the TimePicker , so when that text changes, the final Label changes as well.

Here's the program running:

Complex path definitions can be difficult to construct: You need to know the type of each sub-property or the

type of items in the collection to correctly add the next sub-property, but the types themselves do not appear in

the path. One good technique is to build up the path incrementally and look at the intermediate results. For that

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.datetimeformatinfo
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/binding-path-images/pathvariations-large.png#lightbox

<Label Text="{Binding Source={x:Reference page},
 StringFormat='{0}'}" />

<Label Text="{Binding Source={x:Reference page},
 Path=Content,
 StringFormat='{0}'}" />

 Related Links

last example, you could start with no Path definition at all:

That displays the type of the binding source, or DataBindingDemos.PathVariationsPage . You know

PathVariationsPage derives from ContentPage , so it has a Content property:

The type of the Content property is now revealed to be Xamarin.Forms.StackLayout . Add the Children property

to the Path and the type is Xamarin.Forms.ElementCollection'1[Xamarin.Forms.View] , which is a class internal to

Xamarin.Forms, but obviously a collection type. Add an index to that and the type is Xamarin.Forms.Label .

Continue in this way.

As Xamarin.Forms processes the binding path, it installs a PropertyChanged handler on any object in the path

that implements the INotifyPropertyChanged interface. For example, the final binding reacts to a change in the

first Label because the Text property changes.

If a property in the binding path does not implement INotifyPropertyChanged , any changes to that property will

be ignored. Some changes could entirely invalidate the binding path, so you should use this technique only

when the string of properties and sub-properties never become invalid.

Data Binding Demos (sample)

Data binding chapter from Xamarin.Forms book

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter16

Xamarin.Forms Binding Value Converters
 7/8/2021 • 10 minutes to read • Edit Online

 The IValueConverter Interface

public class IntToBoolConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
 {
 return (int)value != 0;
 }

 public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
 {
 return (bool)value ? 1 : 0;
 }
}

 Download the sample

Data bindings usually transfer data from a source property to a target property, and in some cases from the

target property to the source property. This transfer is straightforward when the source and target properties

are of the same type, or when one type can be converted to the other type through an implicit conversion. When

that is not the case, a type conversion must take place.

In the Str ing FormattingStr ing Formatting article, you saw how you can use the StringFormat property of a data binding to

convert any type into a string. For other types of conversions, you need to write some specialized code in a class

that implements the IValueConverter interface. (The Universal Windows Platform contains a similar class

named IValueConverter in the Windows.UI.Xaml.Data namespace, but this IValueConverter is in the

Xamarin.Forms namespace.) Classes that implement IValueConverter are called value converters, but they are

also often referred to as binding converters or binding value converters.

Suppose you want to define a data binding where the source property is of type int but the target property is

a bool . You want this data binding to produce a false value when the integer source is equal to 0, and true

otherwise.

You can do this with a class that implements the IValueConverter interface:

You set an instance of this class to the Converter property of the Binding class or to the Converter property of

the Binding markup extension. This class becomes part of the data binding.

The Convert method is called when data moves from the source to the target in OneWay or TwoWay bindings.

The value parameter is the object or value from the data-binding source. The method must return a value of

the type of the data-binding target. The method shown here casts the value parameter to an int and then

compares it with 0 for a bool return value.

The ConvertBack method is called when data moves from the target to the source in TwoWay or OneWayToSource

bindings. ConvertBack performs the opposite conversion: It assumes the value parameter is a bool from the

target, and converts it to an int return value for the source.

If the data binding also includes a StringFormat setting, the value converter is invoked before the result is

formatted as a string.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/converters.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.ivalueconverter
https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.data.ivalueconverter/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding.converter#xamarin_forms_binding_converter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension.converter#xamarin_forms_xaml_bindingextension_converter

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.EnableButtonsPage"
 Title="Enable Buttons">
 <ContentPage.Resources>
 <ResourceDictionary>
 <local:IntToBoolConverter x:Key="intToBool" />
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout Padding="10, 0">
 <Entry x:Name="entry1"
 Text=""
 Placeholder="enter search term"
 VerticalOptions="CenterAndExpand" />

 <Button Text="Search"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 IsEnabled="{Binding Source={x:Reference entry1},
 Path=Text.Length,
 Converter={StaticResource intToBool}}" />

 <Entry x:Name="entry2"
 Text=""
 Placeholder="enter destination"
 VerticalOptions="CenterAndExpand" />

 <Button Text="Submit"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 IsEnabled="{Binding Source={x:Reference entry2},
 Path=Text.Length,
 Converter={StaticResource intToBool}}" />
 </StackLayout>
</ContentPage>

The Enable ButtonsEnable Buttons page in the Data Binding DemosData Binding Demos sample demonstrates how to use this value converter

in a data binding. The IntToBoolConverter is instantiated in the page's resource dictionary. It is then referenced

with a StaticResource markup extension to set the Converter property in two data bindings. It is very common

to share data converters among multiple data bindings on the page:

If a value converter is used in multiple pages of your application, you can instantiate it in the resource dictionary

in the App.xamlApp.xaml file.

The Enable ButtonsEnable Buttons page demonstrates a common need when a Button performs an operation based on text

that the user types into an Entry view. If nothing has been typed into the Entry , the Button should be

disabled. Each Button contains a data binding on its IsEnabled property. The data-binding source is the

Length property of the Text property of the corresponding Entry . If that Length property is not 0, the value

converter returns true and the Button is enabled:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

 Binding Converter Properties

Notice that the Text property in each Entry is initialized to an empty string. The Text property is null by

default, and the data binding will not work in that case.

Some value converters are written specifically for particular applications, while others are generalized. If you

know that a value converter will only be used in OneWay bindings, then the ConvertBack method can simply

return null .

The Convert method shown above implicitly assumes that the value argument is of type int and the return

value must be of type bool . Similarly, the ConvertBack method assumes that the value argument is of type

bool and the return value is int . If that is not the case, a runtime exception will occur.

You can write value converters to be more generalized and to accept several different types of data. The

Convert and ConvertBack methods can use the as or is operators with the value parameter, or can call

GetType on that parameter to determine its type, and then do something appropriate. The expected type of each

method's return value is given by the targetType parameter. Sometimes, value converters are used with data

bindings of different target types; the value converter can use the targetType argument to perform a

conversion for the correct type.

If the conversion being performed is different for different cultures, use the culture parameter for this purpose.

The parameter argument to Convert and ConvertBack is discussed later in this article.

Value converter classes can have properties and generic parameters. This particular value converter converts a

bool from the source to an object of type T for the target:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/converters-images/enablebuttons-large.png#lightbox

public class BoolToObjectConverter<T> : IValueConverter
{
 public T TrueObject { set; get; }

 public T FalseObject { set; get; }

 public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
 {
 return (bool)value ? TrueObject : FalseObject;
 }

 public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
 {
 return ((T)value).Equals(TrueObject);
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.SwitchIndicatorsPage"
 Title="Switch Indicators">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Label">
 <Setter Property="FontSize" Value="18" />
 <Setter Property="VerticalOptions" Value="Center" />
 </Style>

 <Style TargetType="Switch">
 <Setter Property="VerticalOptions" Value="Center" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout Padding="10, 0">
 <StackLayout Orientation="Horizontal"
 VerticalOptions="CenterAndExpand">
 <Label Text="Subscribe?" />
 <Switch x:Name="switch1" />
 <Label>
 <Label.Text>
 <Binding Source="{x:Reference switch1}"
 Path="IsToggled">
 <Binding.Converter>
 <local:BoolToObjectConverter x:TypeArguments="x:String"
 TrueObject="Of course!"
 FalseObject="No way!" />
 </Binding.Converter>
 </Binding>
 </Label.Text>
 </Label>
 </StackLayout>

 <StackLayout Orientation="Horizontal"
 VerticalOptions="CenterAndExpand">
 <Label Text="Allow popups?" />
 <Switch x:Name="switch2" />
 <Label>

The Switch IndicatorsSwitch Indicators page demonstrates how it can be used to display the value of a Switch view. Although

it's common to instantiate value converters as resources in a resource dictionary, this page demonstrates an

alternative: Each value converter is instantiated between Binding.Converter property-element tags. The

x:TypeArguments indicates the generic argument, and TrueObject and FalseObject are both set to objects of

that type:

 <Label>
 <Label.Text>
 <Binding Source="{x:Reference switch2}"
 Path="IsToggled">
 <Binding.Converter>
 <local:BoolToObjectConverter x:TypeArguments="x:String"
 TrueObject="Yes"
 FalseObject="No" />
 </Binding.Converter>
 </Binding>
 </Label.Text>
 <Label.TextColor>
 <Binding Source="{x:Reference switch2}"
 Path="IsToggled">
 <Binding.Converter>
 <local:BoolToObjectConverter x:TypeArguments="Color"
 TrueObject="Green"
 FalseObject="Red" />
 </Binding.Converter>
 </Binding>
 </Label.TextColor>
 </Label>
 </StackLayout>

 <StackLayout Orientation="Horizontal"
 VerticalOptions="CenterAndExpand">
 <Label Text="Learn more?" />
 <Switch x:Name="switch3" />
 <Label FontSize="18"
 VerticalOptions="Center">
 <Label.Style>
 <Binding Source="{x:Reference switch3}"
 Path="IsToggled">
 <Binding.Converter>
 <local:BoolToObjectConverter x:TypeArguments="Style">
 <local:BoolToObjectConverter.TrueObject>
 <Style TargetType="Label">
 <Setter Property="Text" Value="Indubitably!" />
 <Setter Property="FontAttributes" Value="Italic, Bold" />
 <Setter Property="TextColor" Value="Green" />
 </Style>
 </local:BoolToObjectConverter.TrueObject>

 <local:BoolToObjectConverter.FalseObject>
 <Style TargetType="Label">
 <Setter Property="Text" Value="Maybe later" />
 <Setter Property="FontAttributes" Value="None" />
 <Setter Property="TextColor" Value="Red" />
 </Style>
 </local:BoolToObjectConverter.FalseObject>
 </local:BoolToObjectConverter>
 </Binding.Converter>
 </Binding>
 </Label.Style>
 </Label>
 </StackLayout>
 </StackLayout>
</ContentPage>

In the last of the three Switch and Label pairs, the generic argument is set to Style , and entire Style objects

are provided for the values of TrueObject and FalseObject . These override the implicit style for Label set in

the resource dictionary, so the properties in that style are explicitly assigned to the Label . Toggling the Switch

causes the corresponding Label to reflect the change:

 Binding Converter Parameters

public class RgbColorViewModel : INotifyPropertyChanged
{
 Color color;
 string name;

 public event PropertyChangedEventHandler PropertyChanged;

 public double Red
 {
 set
 {
 if (color.R != value)
 {
 Color = new Color(value, color.G, color.B);
 }
 }
 get
 {
 return color.R;
 }
 }

 public double Green
 {
 set
 {
 if (color.G != value)
 {
 Color = new Color(color.R, value, color.B);
 }
 }

It's also possible to use Triggers to implement similar changes in the user-interface based on other views.

The Binding class defines a ConverterParameter property, and the Binding markup extension also defines a

ConverterParameter property. If this property is set, then the value is passed to the Convert and ConvertBack

methods as the parameter argument. Even if the instance of the value converter is shared among several data

bindings, the ConverterParameter can be different to perform somewhat different conversions.

The use of ConverterParameter is demonstrated with a color-selection program. In this case, the

RgbColorViewModel has three properties of type double named Red , Green , and Blue that it uses to construct

a Color value:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/converters-images/switchindicators-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding.converterparameter#xamarin_forms_binding_converterparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension.converterparameter#xamarin_forms_xaml_bindingextension_converterparameter

 }
 get
 {
 return color.G;
 }
 }

 public double Blue
 {
 set
 {
 if (color.B != value)
 {
 Color = new Color(color.R, color.G, value);
 }
 }
 get
 {
 return color.B;
 }
 }

 public Color Color
 {
 set
 {
 if (color != value)
 {
 color = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Red"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Green"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Blue"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Color"));

 Name = NamedColor.GetNearestColorName(color);
 }
 }
 get
 {
 return color;
 }
 }

 public string Name
 {
 private set
 {
 if (name != value)
 {
 name = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Name"));
 }
 }
 get
 {
 return name;
 }
 }
}

The Red , Green , and Blue properties range between 0 and 1. However, you might prefer that the components

be displayed as two-digit hexadecimal values.

To display these as hexadecimal values in XAML, they must be multiplied by 255, converted to an integer, and

then formatted with a specification of "X2" in the StringFormat property. The first two tasks (multiplying by 255

and converting to an integer) can be handled by the value converter. To make the value converter as generalized

public class DoubleToIntConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
 {
 return (int)Math.Round((double)value * GetParameter(parameter));
 }

 public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
 {
 return (int)value / GetParameter(parameter);
 }

 double GetParameter(object parameter)
 {
 if (parameter is double)
 return (double)parameter;

 else if (parameter is int)
 return (int)parameter;

 else if (parameter is string)
 return double.Parse((string)parameter);

 return 1;
 }
}

binding.ConverterParameter = 255;

<Label Text="{Binding Red,
 Converter={StaticResource doubleToInt},
 ConverterParameter=255,
 StringFormat='Red = {0:X2}'}" />

as possible, the multiplication factor can be specified with the ConverterParameter property, which means that it

enters the Convert and ConvertBack methods as the parameter argument:

The Convert converts from a double to int while multiplying by the parameter value; the ConvertBack

divides the integer value argument by parameter and returns a double result. (In the program shown below,

the value converter is used only in connection with string formatting, so ConvertBack is not used.)

The type of the parameter argument is likely to be different depending on whether the data binding is defined

in code or XAML. If the ConverterParameter property of Binding is set in code, it's likely to be set to a numeric

value:

The ConverterParameter property is of type Object , so the C# compiler interprets the literal 255 as an integer,

and sets the property to that value.

In XAML, however, the ConverterParameter is likely to be set like this:

The 255 looks like a number, but because ConverterParameter is of type Object , the XAML parser treats the 255

as a string.

For that reason, the value converter shown above includes a separate GetParameter method that handles cases

for parameter being of type double , int , or string .

The RGB Color SelectorRGB Color Selector page instantiates DoubleToIntConverter in its resource dictionary following the

definition of two implicit styles:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.RgbColorSelectorPage"
 Title="RGB Color Selector">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Slider">
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 </Style>

 <Style TargetType="Label">
 <Setter Property="HorizontalTextAlignment" Value="Center" />
 </Style>

 <local:DoubleToIntConverter x:Key="doubleToInt" />
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout>
 <StackLayout.BindingContext>
 <local:RgbColorViewModel Color="Gray" />
 </StackLayout.BindingContext>

 <BoxView Color="{Binding Color}"
 VerticalOptions="FillAndExpand" />

 <StackLayout Margin="10, 0">
 <Label Text="{Binding Name}" />

 <Slider Value="{Binding Red}" />
 <Label Text="{Binding Red,
 Converter={StaticResource doubleToInt},
 ConverterParameter=255,
 StringFormat='Red = {0:X2}'}" />

 <Slider Value="{Binding Green}" />
 <Label Text="{Binding Green,
 Converter={StaticResource doubleToInt},
 ConverterParameter=255,
 StringFormat='Green = {0:X2}'}" />

 <Slider Value="{Binding Blue}" />
 <Label>
 <Label.Text>
 <Binding Path="Blue"
 StringFormat="Blue = {0:X2}"
 Converter="{StaticResource doubleToInt}">
 <Binding.ConverterParameter>
 <x:Double>255</x:Double>
 </Binding.ConverterParameter>
 </Binding>
 </Label.Text>
 </Label>
 </StackLayout>
 </StackLayout>
</ContentPage>

The values of the Red and Green properties are displayed with a Binding markup extension. The Blue

property, however, instantiates the Binding class to demonstrate how an explicit double value can be set to

ConverterParameter property.

Here's the result:

 Related Links
Data Binding Demos (sample)

Data binding chapter from Xamarin.Forms book

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/converters-images/rgbcolorselector-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter16

Xamarin.Forms Relative Bindings
 7/8/2021 • 5 minutes to read • Edit Online

NOTENOTE

 Bind to self

<BoxView Color="Red"
 WidthRequest="200"
 HeightRequest="{Binding Source={RelativeSource Self}, Path=WidthRequest}"
 HorizontalOptions="Center" />

 Download the sample

Relative bindings provide the ability to set the binding source relative to the position of the binding target. They

are created with the RelativeSource markup extension, and set as the Source property of a binding expression.

The RelativeSource markup extension is supported by the RelativeSourceExtension class, which defines the

following properties:

Mode , of type RelativeBindingSourceMode , describes the location of the binding source relative to the position

of the binding target.

AncestorLevel , of type int , an optional ancestor level to look for, when the Mode property is FindAncestor .

An AncestorLevel of n skips n-1 instances of the AncestorType .

AncestorType , of type Type , the type of ancestor to look for, when the Mode property is FindAncestor .

The XAML parser allows the RelativeSourceExtension class to be abbreviated as RelativeSource .

The Mode property should be set to one of the RelativeBindingSourceMode enumeration members:

TemplatedParent indicates the element to which the template, in which the bound element exists, is applied.

For more information, see Bind to a templated parent.

Self indicates the element on which the binding is being set, allowing you to bind one property of that

element to another property on the same element. For more information, see Bind to self.

FindAncestor indicates the ancestor in the visual tree of the bound element. This mode should be used to

bind to an ancestor control represented by the AncestorType property. For more information, see Bind to an

ancestor.

FindAncestorBindingContext indicates the BindingContext of the ancestor in the visual tree of the bound

element. This mode should be used to bind to the BindingContext of an ancestor represented by the

AncestorType property. For more information, see Bind to an ancestor.

The Mode property is the content property of the RelativeSourceExtension class. Therefore, for XAML markup

expressions expressed with curly braces, you can eliminate the Mode= part of the expression.

For more information about Xamarin.Forms markup extensions, see XAML Markup Extensions.

The Self relative binding mode is used bind a property of an element to another property on the same

element:

In this example, the BoxView sets its WidthRequest property to a fixed size, and the HeightRequest property

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/relative-bindings.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview

IMPORTANTIMPORTANT

<ContentPage ...
 BindingContext="{Binding Source={RelativeSource Self}, Path=DefaultViewModel}">
 <StackLayout>
 <ListView ItemsSource="{Binding Employees}">
 ...
 </ListView>
 </StackLayout>
</ContentPage>

 Bind to an ancestor

WARNINGWARNING

NOTENOTE

binds to the WidthRequest property. Therefore, both properties are equal and so a square is drawn:

When binding a property of an element to another property on the same element, the properties must be the same type.

Alternatively, you can specify a converter on the binding to convert the value.

A common use of this binding mode is set an object's BindingContext to a property on itself. The following code

shows an example of this:

In this example, the BindingContext of the page is set to the DefaultViewModel property of itself. This property is

defined in the code-behind file for the page, and provides a viewmodel instance. The ListView binds to the

Employees property of the viewmodel.

The FindAncestor and FindAncestorBindingContext relative binding modes are used to bind to parent elements,

of a certain type, in the visual tree. The FindAncestor mode is used to bind to a parent element, which derives

from the Element type. The FindAncestorBindingContext mode is used to bind to the BindingContext of a parent

element.

The AncestorType property must be set to a Type when using the FindAncestor and

FindAncestorBindingContext relative binding modes, otherwise a XamlParseException is thrown.

If the Mode property isn't explicitly set, setting the AncestorType property to a type that derives from Element

will implicitly set the Mode property to FindAncestor . Similarly, setting the AncestorType property to a type that

does not derive from Element will implicitly set the Mode property to FindAncestorBindingContext .

Relative bindings that use the FindAncestorBindingContext mode will be reapplied when the BindingContext of any

ancestors change.

The following XAML shows an example where the Mode property will be implicitly set to

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/relative-bindings-images/self-relative-binding-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element

<ContentPage ...
 BindingContext="{Binding Source={RelativeSource Self}, Path=DefaultViewModel}">
 <StackLayout>
 <ListView ItemsSource="{Binding Employees}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <StackLayout Orientation="Horizontal">
 <Label Text="{Binding Fullname}"
 VerticalOptions="Center" />
 <Button Text="Delete"
 Command="{Binding Source={RelativeSource AncestorType={x:Type
local:PeopleViewModel}}, Path=DeleteEmployeeCommand}"
 CommandParameter="{Binding}"
 HorizontalOptions="EndAndExpand" />
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
</ContentPage>

<Label Text="{Binding Source={RelativeSource AncestorType={x:Type Entry}, AncestorLevel=2}, Path=Text}" />

NOTENOTE

 Bind to a templated parent

FindAncestorBindingContext :

In this example, the BindingContext of the page is set to the DefaultViewModel property of itself. This property is

defined in the code-behind file for the page, and provides a viewmodel instance. The ListView binds to the

Employees property of the viewmodel. The DataTemplate , which defines the appearance of each item in the

ListView , contains a Button . The button's Command property is bound to the DeleteEmployeeCommand in its

parent's viewmodel. Tapping a Button deletes an employee:

In addition, the optional AncestorLevel property can help disambiguate ancestor lookup in scenarios where

there is possibly more than one ancestor of that type in the visual tree:

In this example, the Label.Text property binds to the Text property of the second Entry that's encountered

on the upward path, starting at the target element of the binding.

The AncestorLevel property should be set to 1 to find the ancestor nearest to the binding target element.

The TemplatedParent relative binding mode is used to bind from within a control template to the runtime object

instance to which the template is applied (known as the templated parent). This mode is only applicable if the

relative binding is within a control template, and is similar to setting a TemplateBinding .

The following XAML shows an example of the TemplatedParent relative binding mode:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/relative-bindings-images/findancestor-relative-binding-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

<ContentPage ...>
 <ContentPage.Resources>
 <ControlTemplate x:Key="CardViewControlTemplate">
 <Frame BindingContext="{Binding Source={RelativeSource TemplatedParent}}"
 BackgroundColor="{Binding CardColor}"
 BorderColor="{Binding BorderColor}"
 ...>
 <Grid>
 ...
 <Label Text="{Binding CardTitle}"
 ... />
 <BoxView BackgroundColor="{Binding BorderColor}"
 ... />
 <Label Text="{Binding CardDescription}"
 ... />
 </Grid>
 </Frame>
 </ControlTemplate>
 </ContentPage.Resources>
 <StackLayout>
 <controls:CardView BorderColor="DarkGray"
 CardTitle="John Doe"
 CardDescription="Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
elit dolor, convallis non interdum."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewControlTemplate}" />
 <controls:CardView BorderColor="DarkGray"
 CardTitle="Jane Doe"
 CardDescription="Phasellus eu convallis mi. In tempus augue eu dignissim
fermentum. Morbi ut lacus vitae eros lacinia."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewControlTemplate}" />
 <controls:CardView BorderColor="DarkGray"
 CardTitle="Xamarin Monkey"
 CardDescription="Aliquam sagittis, odio lacinia fermentum dictum, mi erat
scelerisque erat, quis aliquet arcu."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewControlTemplate}" />
 </StackLayout>
</ContentPage>

In this example, the Frame , which is the root element of the ControlTemplate , has its BindingContext set to the

runtime object instance to which the template is applied. Therefore, the Frame and its children resolve their

binding expressions against the properties of each CardView object:

For more information about control templates, see Xamarin.Forms Control Templates.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/relative-bindings-images/templatedparent-relative-binding-large.png#lightbox

 Related links
Data Binding Demos (sample)

XAML Markup Extensions

Xamarin.Forms Control Templates

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

Xamarin.Forms Binding Fallbacks
 7/8/2021 • 3 minutes to read • Edit Online

NOTENOTE

 Defining a fallback value

<Label Text="{Binding Population, FallbackValue='Population size unknown'}"
 ... />

<Label Text="{Binding Population, FallbackValue={StaticResource populationUnknown}}"
 ... />

NOTENOTE

 Download the sample

Sometimes data bindings fail, because the binding source can't be resolved, or because the binding succeeds but

returns a null value. While these scenarios can be handled with value converters, or other additional code,

data bindings can be made more robust by defining fallback values to use if the binding process fails. This can

be accomplished by defining the FallbackValue and TargetNullValue properties in a binding expression.

Because these properties reside in the BindingBase class, they can be used with bindings, multi-bindings,

compiled bindings, and with the Binding markup extension.

Use of the FallbackValue and TargetNullValue properties in a binding expression is optional.

The FallbackValue property allows a fallback value to be defined that will be used when the binding source

can't be resolved. A common scenario for setting this property is when binding to source properties that might

not exist on all objects in a bound collection of heterogeneous types.

The MonkeyDetailMonkeyDetail page illustrates setting the FallbackValue property:

The binding on the Label defines a FallbackValue value that will be set on the target if the binding source can't

be resolved. Therefore, the value defined by the FallbackValue property will be displayed if the Population

property doesn't exist on the bound object. Notice that here the FallbackValue property value is delimited by

single-quote (apostrophe) characters.

Rather than defining FallbackValue property values inline, it's recommended to define them as resources in a

ResourceDictionary . The advantage of this approach is that such values are defined once in a single location,

and are more easily localizable. The resources can then be retrieved using the StaticResource markup

extension:

It's not possible to set the FallbackValue property with a binding expression.

Here's the program running:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/binding-fallbacks.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

IMPORTANTIMPORTANT

 Defining a null replacement value

<ListView ItemsSource="{Binding Monkeys}"
 ...>
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid>
 ...
 <Image Source="{Binding ImageUrl,
TargetNullValue='https://upload.wikimedia.org/wikipedia/commons/2/20/Point_d_interrogation.jpg'}"
 ... />
 ...
 <Label Text="{Binding Location, TargetNullValue='Location unknown'}"
 ... />
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

When the FallbackValue property isn't set in a binding expression and the binding path or part of the path isn't

resolved, BindableProperty.DefaultValue is set on the target. However, when the FallbackValue property is set

and the binding path or part of the path isn't resolved, the value of the FallbackValue value property is set on

the target. Therefore, on the MonkeyDetailMonkeyDetail page the Label displays "Population size unknown" because the

bound object lacks a Population property.

A defined value converter is not executed in a binding expression when the FallbackValue property is set.

The TargetNullValue property allows a replacement value to be defined that will be used when the binding

source is resolved, but the value is null . A common scenario for setting this property is when binding to

source properties that might be null in a bound collection.

The MonkeysMonkeys page illustrates setting the TargetNullValue property:

The bindings on the Image and Label both define TargetNullValue values that will be applied if the binding

path returns null . Therefore, the values defined by the TargetNullValue properties will be displayed for any

objects in the collection where the ImageUrl and Location properties are not defined. Notice that here the

TargetNullValue property values are delimited by single-quote (apostrophe) characters.

Rather than defining TargetNullValue property values inline, it's recommended to define them as resources in a

ResourceDictionary . The advantage of this approach is that such values are defined once in a single location,

and are more easily localizable. The resources can then be retrieved using the StaticResource markup

extension:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty.defaultvalue#xamarin_forms_bindableproperty_defaultvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<Image Source="{Binding ImageUrl, TargetNullValue={StaticResource fallbackImageUrl}}"
 ... />
<Label Text="{Binding Location, TargetNullValue={StaticResource locationUnknown}}"
 ... />

NOTENOTE

IMPORTANTIMPORTANT

 Related Links

It's not possible to set the TargetNullValue property with a binding expression.

Here's the program running:

When the TargetNullValue property isn't set in a binding expression, a source value of null will be converted

if a value converter is defined, formatted if a StringFormat is defined, and the result is then set on the target.

However, when the TargetNullValue property is set, a source value of null will be converted if a value

converter is defined, and if it's still null after the conversion, the value of the TargetNullValue property is set

on the target.

String formatting is not applied in a binding expression when the TargetNullValue property is set.

Data Binding Demos (sample)

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/binding-fallbacks-images/bindingunavailable-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

Xamarin.Forms Multi-Bindings
 7/8/2021 • 8 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Define a IMultiValueConverter

 Download the sample

Multi-bindings provide the ability to attach a collection of Binding objects to a single binding target property.

They are created with the MultiBinding class, which evaluates all of its Binding objects, and returns a single

value through a IMultiValueConverter instance provided by your application. In addition, MultiBinding

reevaluates all of its Binding objects when any of the bound data changes.

The MultiBinding class defines the following properties:

Bindings , of type IList<BindingBase> , which represents the collection of Binding objects within the

MultiBinding instance.

Converter , of type IMultiValueConverter , which represents the converter to use to convert the source values

to or from the target value.

ConverterParameter , of type object , which represents an optional parameter to pass to the Converter .

The Bindings property is the content property of the MultiBinding class, and therefore does not need to be

explicitly set from XAML.

In addition, the MultiBinding class inherits the following properties from the BindingBase class:

FallbackValue , of type object , which represents the value to use when the multi-binding is unable to return

a value.

Mode , of type BindingMode , which indicates the direction of the data flow of the multi-binding.

StringFormat , of type string , which specifies how to format the multi-binding result if it's displayed as a

string.

TargetNullValue , of type object , which represents the value that is used in the target wen the value of the

source is null .

A MultiBinding must use a IMultiValueConverter to produce a value for the binding target, based on the value

of the bindings in the Bindings collection. For example, a Color might be computed from red, blue, and green

values, which can be values from the same or different binding source objects. When a value moves from the

target to the sources, the target property value is translated to a set of values that are fed back into the bindings.

Individual bindings in the Bindings collection can have their own value converters.

The value of the Mode property determines the functionality of the MultiBinding , and is used as the binding

mode for all the bindings in the collection unless an individual binding overrides the property. For example, if

the Mode property on a MultiBinding object is set to TwoWay , then all the bindings in the collection are

considered TwoWay unless you explicitly set a different Mode value on one of the bindings.

The IMultiValueConverter interface enables custom logic to be applied to a MultiBinding . To associate a

converter with a MultiBinding , create a class that implements the IMultiValueConverter interface, and then

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/multibinding.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway

public class AllTrueMultiConverter : IMultiValueConverter
{
 public object Convert(object[] values, Type targetType, object parameter, CultureInfo culture)
 {
 if (values == null || !targetType.IsAssignableFrom(typeof(bool)))
 {
 return false;
 // Alternatively, return BindableProperty.UnsetValue to use the binding FallbackValue
 }

 foreach (var value in values)
 {
 if (!(value is bool b))
 {
 return false;
 // Alternatively, return BindableProperty.UnsetValue to use the binding FallbackValue
 }
 else if (!b)
 {
 return false;
 }
 }
 return true;
 }

 public object[] ConvertBack(object value, Type[] targetTypes, object parameter, CultureInfo culture)
 {
 if (!(value is bool b) || targetTypes.Any(t => !t.IsAssignableFrom(typeof(bool))))
 {
 // Return null to indicate conversion back is not possible
 return null;
 }

 if (b)
 {
 return targetTypes.Select(t => (object)true).ToArray();
 }
 else
 {
 // Can't convert back from false because of ambiguity
 return null;
 }
 }
}

implement the Convert and ConvertBack methods:

The Convert method converts source values to a value for the binding target. Xamarin.Forms calls this method

when it propagates values from source bindings to the binding target. This method accepts four arguments:

values , of type object[] , is an array of values that the source bindings in the MultiBinding produces.

targetType , of type Type , is the type of the binding target property.

parameter , of type object , is the converter parameter to use.

culture , of type CultureInfo , is the culture to use in the converter.

The Convert method returns an object that represents a converted value. This method should return:

BindableProperty.UnsetValue to indicate that the converter did not produce a value, and that the binding will

use the FallbackValue .

Binding.DoNothing to instruct Xamarin.Forms not to perform any action. For example, to instruct

Xamarin.Forms not to transfer a value to the binding target, or not to use the FallbackValue .

null to indicate that the converter cannot perform the conversion, and that the binding will use the

IMPORTANTIMPORTANT

 Consume a IMultiValueConverter

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.MultiBindingConverterPage"
 Title="MultiBinding Converter demo">

 <ContentPage.Resources>
 <local:AllTrueMultiConverter x:Key="AllTrueConverter" />
 <local:InverterConverter x:Key="InverterConverter" />
 </ContentPage.Resources>

 <CheckBox>
 <CheckBox.IsChecked>
 <MultiBinding Converter="{StaticResource AllTrueConverter}">
 <Binding Path="Employee.IsOver16" />
 <Binding Path="Employee.HasPassedTest" />
 <Binding Path="Employee.IsSuspended"
 Converter="{StaticResource InverterConverter}" />
 </MultiBinding>
 </CheckBox.IsChecked>
 </CheckBox>
</ContentPage>

TargetNullValue .

A MultiBinding that receives BindableProperty.UnsetValue from a Convert method must define its

FallbackValue property. Similarly, a MultiBinding that receives null from a Convert method must define its

TargetNullValue propety.

The ConvertBack method converts a binding target to the source binding values. This method accepts four

arguments:

value , of type object , is the value that the binding target produces.

targetTypes , of type Type[] , is the array of types to convert to. The array length indicates the number and

types of values that are suggested for the method to return.

parameter , of type object , is the converter parameter to use.

culture , of type CultureInfo , is the culture to use in the converter.

The ConvertBack method returns an array of values, of type object[] , that have been converted from the

target value back to the source values. This method should return:

BindableProperty.UnsetValue at position i to indicate that the converter is unable to provide a value for the

source binding at index i , and that no value is to be set on it.

Binding.DoNothing at position i to indicate that no value is to be set on the source binding at index i .

null to indicate that the converter cannot perform the conversion or that it does not support conversion in

this direction.

A IMultiValueConverter is consumed by instantiating it in a resource dictionary, and then referencing it using

the StaticResource markup extension to set the MultiBinding.Converter property:

In this example, the MultiBinding object uses the AllTrueMultiConverter instance to set the CheckBox.IsChecked

property to true , provided that the three Binding objects evaluate to true . Otherwise, the

CheckBox.IsChecked property is set to false .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox.ischecked#xamarin_forms_checkbox_ischecked
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding

public class MultiBindingConverterCodePage : ContentPage
{
 public MultiBindingConverterCodePage()
 {
 BindingContext = new GroupViewModel();

 CheckBox checkBox = new CheckBox();
 checkBox.SetBinding(CheckBox.IsCheckedProperty, new MultiBinding
 {
 Bindings = new Collection<BindingBase>
 {
 new Binding("Employee1.IsOver16"),
 new Binding("Employee1.HasPassedTest"),
 new Binding("Employee1.IsSuspended", converter: new InverterConverter())
 },
 Converter = new AllTrueMultiConverter()
 });

 Title = "MultiBinding converter demo";
 Content = checkBox;
 }
}

 Format strings

<Label>
 <Label.Text>
 <MultiBinding StringFormat="{}{0} {1} {2}">
 <Binding Path="Employee1.Forename" />
 <Binding Path="Employee1.MiddleName" />
 <Binding Path="Employee1.Surname" />
 </MultiBinding>
 </Label.Text>
</Label>

By default, the CheckBox.IsChecked property uses a TwoWay binding. Therefore, the ConvertBack method of the

AllTrueMultiConverter instance is executed when the CheckBox is unchecked by the user, which sets the source

binding values to the value of the CheckBox.IsChecked property.

The equivalent C# code is shown below:

A MultiBinding can format any multi-binding result that's displayed as a string, with the StringFormat

property. This property can be set to a standard .NET formatting string, with placeholders, that specifies how to

format the multi-binding result:

In this example, the StringFormat property combines the three bound values into a single string that's displayed

by the Label .

The equivalent C# code is shown below:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox.ischecked#xamarin_forms_checkbox_ischecked
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

Label label = new Label();
label.SetBinding(Label.TextProperty, new MultiBinding
{
 Bindings = new Collection<BindingBase>
 {
 new Binding("Employee1.Forename"),
 new Binding("Employee1.MiddleName"),
 new Binding("Employee1.Surname")
 },
 StringFormat = "{0} {1} {2}"
});

IMPORTANTIMPORTANT

 Provide fallback values

 Nest MultiBinding objects

The number of parameters in a composite string format can't exceed the number of child Binding objects in the

MultiBinding .

When setting the Converter and StringFormat properties, the converter is applied to the data value first, and

then the StringFormat is applied.

For more information about string formatting in Xamarin.Forms, see Xamarin.Forms String Formatting.

Data bindings can be made more robust by defining fallback values to use if the binding process fails. This can

be accomplished by optionally defining the FallbackValue and TargetNullValue properties on a MultiBinding

object.

A MultiBinding will use its FallbackValue when the Convert method of an IMultiValueConverter instance

returns BindableProperty.UnsetValue , which indicates that the converter did not produce a value. A

MultiBinding will use its TargetNullValue when the Convert method of an IMultiValueConverter instance

returns null , which indicates that the converter cannot perform the conversion.

For more information about binding fallbacks, see Xamarin.Forms Binding Fallbacks.

MultiBinding objects can be nested so that multiple MultiBinding objects are evaluated to return a value

through an IMultiValueConverter instance:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.fallbackvalue#xamarin_forms_bindingbase_fallbackvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingbase.targetnullvalue#xamarin_forms_bindingbase_targetnullvalue

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.NestedMultiBindingPage"
 Title="Nested MultiBinding demo">

 <ContentPage.Resources>
 <local:AllTrueMultiConverter x:Key="AllTrueConverter" />
 <local:AnyTrueMultiConverter x:Key="AnyTrueConverter" />
 <local:InverterConverter x:Key="InverterConverter" />
 </ContentPage.Resources>

 <CheckBox>
 <CheckBox.IsChecked>
 <MultiBinding Converter="{StaticResource AnyTrueConverter}">
 <MultiBinding Converter="{StaticResource AllTrueConverter}">
 <Binding Path="Employee.IsOver16" />
 <Binding Path="Employee.HasPassedTest" />
 <Binding Path="Employee.IsSuspended" Converter="{StaticResource InverterConverter}" />
 </MultiBinding>
 <Binding Path="Employee.IsMonarch" />
 </MultiBinding>
 </CheckBox.IsChecked>
 </CheckBox>
</ContentPage>

 Use a RelativeSource binding in a MultiBinding

In this example, the MultiBinding object uses its AnyTrueMultiConverter instance to set the CheckBox.IsChecked

property to true , provided that all of the Binding objects in the inner MultiBinding object evaluate to true ,

or provided that the Binding object in the outer MultiBinding object evaluates to true . Otherwise, the

CheckBox.IsChecked property is set to false .

MultiBinding objects support relative bindings, which provide the ability to set the binding source relative to

the position of the binding target:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox.ischecked#xamarin_forms_checkbox_ischecked
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding

<ContentPage ...
 xmlns:local="clr-namespace:DataBindingDemos"
 xmlns:xct="clr-namespace:Xamarin.CommunityToolkit.UI.Views;assembly=Xamarin.CommunityToolkit">
 <ContentPage.Resources>
 <local:AllTrueMultiConverter x:Key="AllTrueConverter" />

 <ControlTemplate x:Key="CardViewExpanderControlTemplate">
 <xct:Expander BindingContext="{Binding Source={RelativeSource TemplatedParent}}"
 IsExpanded="{Binding IsExpanded, Source={RelativeSource TemplatedParent}}"
 BackgroundColor="{Binding CardColor}">
 <xct:Expander.IsVisible>
 <MultiBinding Converter="{StaticResource AllTrueConverter}">
 <Binding Path="IsExpanded" />
 <Binding Path="IsEnabled" />
 </MultiBinding>
 </xct:Expander.IsVisible>
 <xct:Expander.Header>
 <Grid>
 <!-- XAML that defines Expander header goes here -->
 </Grid>
 </xct:Expander.Header>
 <Grid>
 <!-- XAML that defines Expander content goes here -->
 </Grid>
 </xct:Expander>
 </ControlTemplate>
 </ContentPage.Resources>

 <StackLayout>
 <controls:CardViewExpander BorderColor="DarkGray"
 CardTitle="John Doe"
 CardDescription="Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nulla elit dolor, convallis non interdum."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewExpanderControlTemplate}"
 IsEnabled="True"
 IsExpanded="True" />
 </StackLayout>
</ContentPage>

NOTENOTE

 Related links

The Expander control is now part of the Xamarin Community Toolkit.

In this example, the TemplatedParent relative binding mode is used to bind from within a control template to the

runtime object instance to which the template is applied. The Expander , which is the root element of the

ControlTemplate , has its BindingContext set to the runtime object instance to which the template is applied.

Therefore, the Expander and its children resolve their binding expressions, and Binding objects, against the

properties of the CardViewExpander object. The MultiBinding uses the AllTrueMultiConverter instance to set the

Expander.IsVisible property to true provided that the two Binding objects evaluate to true . Otherwise, the

Expander.IsVisible property is set to false .

For more information about relative bindings, see Xamarin.Forms Relative Bindings. For more information about

control templates, see Xamarin.Forms Control Templates.

Data Binding Demos (sample)

Xamarin.Forms String Formatting

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

Xamarin.Forms Binding Fallbacks

Xamarin.Forms Relative Bindings

Xamarin.Forms Control Templates

The Xamarin.Forms Command Interface
 7/8/2021 • 17 minutes to read • Edit Online

 The ICommand Interface

 Download the sample

In the Model-View-ViewModel (MVVM) architecture, data bindings are defined between properties in the

ViewModel, which is generally a class that derives from INotifyPropertyChanged , and properties in the View,

which is generally the XAML file. Sometimes an application has needs that go beyond these property bindings

by requiring the user to initiate commands that affect something in the ViewModel. These commands are

generally signaled by button clicks or finger taps, and traditionally they are processed in the code-behind file in

a handler for the Clicked event of the Button or the Tapped event of a TapGestureRecognizer .

The commanding interface provides an alternative approach to implementing commands that is much better

suited to the MVVM architecture. The ViewModel itself can contain commands, which are methods that are

executed in reaction to a specific activity in the View such as a Button click. Data bindings are defined between

these commands and the Button .

To allow a data binding between a Button and a ViewModel, the Button defines two properties:

Command of type System.Windows.Input.ICommand

CommandParameter of type Object

To use the command interface, you define a data binding that targets the Command property of the Button

where the source is a property in the ViewModel of type ICommand . The ViewModel contains code associated

with that ICommand property that is executed when the button is clicked. You can set CommandParameter to

arbitrary data to distinguish between multiple buttons if they are all bound to the same ICommand property in

the ViewModel.

The Command and CommandParameter properties are also defined by the following classes:

MenuItem and hence, ToolbarItem , which derives from MenuItem

TextCell and hence, ImageCell , which derives from TextCell

TapGestureRecognizer

SearchBar defines a SearchCommand property of type ICommand and a SearchCommandParameter property. The

RefreshCommand property of ListView is also of type ICommand .

All these commands can be handled within a ViewModel in a manner that doesn't depend on the particular

user-interface object in the View.

The System.Windows.Input.ICommand interface is not part of Xamarin.Forms. It is defined instead in the

System.Windows.Input namespace, and consists of two methods and one event:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/commanding.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.command#xamarin_forms_button_command
https://docs.microsoft.com/en-us/dotnet/api/system.windows.input.icommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.commandparameter#xamarin_forms_button_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagecell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.searchcommand#xamarin_forms_searchbar_searchcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.searchcommandparameter#xamarin_forms_searchbar_searchcommandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.refreshcommand#xamarin_forms_listview_refreshcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.input.icommand
https://docs.microsoft.com/en-us/dotnet/api/system.windows.input

public interface ICommand
{
 public void Execute (Object parameter);

 public bool CanExecute (Object parameter);

 public event EventHandler CanExecuteChanged;
}

public ICommand MyCommand { private set; get; }

<Button Text="Execute command"
 Command="{Binding MyCommand}" />

IMPORTANTIMPORTANT

 The Command Class

To use the command interface, your ViewModel contains properties of type ICommand :

The ViewModel must also reference a class that implements the ICommand interface. This class will be described

shortly. In the View, the Command property of a Button is bound to that property:

When the user presses the Button , the Button calls the Execute method in the ICommand object bound to its

Command property. That's the simplest part of the commanding interface.

The CanExecute method is more complex. When the binding is first defined on the Command property of the

Button , and when the data binding changes in some way, the Button calls the CanExecute method in the

ICommand object. If CanExecute returns false , then the Button disables itself. This indicates that the particular

command is currently unavailable or invalid.

The Button also attaches a handler on the CanExecuteChanged event of ICommand . The event is fired from within

the ViewModel. When that event is fired, the Button calls CanExecute again. The Button enables itself if

CanExecute returns true and disables itself if CanExecute returns false .

Do not use the IsEnabled property of Button if you're using the command interface.

When your ViewModel defines a property of type ICommand , the ViewModel must also contain or reference a

class that implements the ICommand interface. This class must contain or reference the Execute and CanExecute

methods, and fire the CanExecuteChanged event whenever the CanExecute method might return a different

value.

You can write such a class yourself, or you can use a class that someone else has written. Because ICommand is

part of Microsoft Windows, it has been used for years with Windows MVVM applications. Using a Windows

class that implements ICommand allows you to share your ViewModels between Windows applications and

Xamarin.Forms applications.

If sharing ViewModels between Windows and Xamarin.Forms is not a concern, then you can use the Command or

Command<T> class included in Xamarin.Forms to implement the ICommand interface. These classes allow you to

specify the bodies of the Execute and CanExecute methods in class constructors. Use Command<T> when you

use the CommandParameter property to distinguish between multiple views bound to the same ICommand

property, and the simpler Command class when that isn't a requirement.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command-1

Basic Commanding

public class PersonViewModel : INotifyPropertyChanged
{
 string name;
 double age;
 string skills;

 public event PropertyChangedEventHandler PropertyChanged;

 public string Name
 {
 set { SetProperty(ref name, value); }
 get { return name; }
 }

 public double Age
 {
 set { SetProperty(ref age, value); }
 get { return age; }
 }

 public string Skills
 {
 set { SetProperty(ref skills, value); }
 get { return skills; }
 }

 public override string ToString()
 {
 return Name + ", age " + Age;
 }

 bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)
 {
 if (Object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

The Person Entr yPerson Entr y page in the Data Binding DemosData Binding Demos program demonstrates some simple commands

implemented in a ViewModel.

The PersonViewModel defines three properties named Name , Age , and Skills that define a person. This class

does not contain any ICommand properties:

The PersonCollectionViewModel shown below creates new objects of type PersonViewModel and allows the user

to fill in the data. For that purpose, the class defines properties IsEditing of type bool and PersonEdit of type

PersonViewModel . In addition, the class defines three properties of type ICommand and a property named

Persons of type IList<PersonViewModel> :

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

public class PersonCollectionViewModel : INotifyPropertyChanged
{
 PersonViewModel personEdit;
 bool isEditing;

 public event PropertyChangedEventHandler PropertyChanged;

 ···

 public bool IsEditing
 {
 private set { SetProperty(ref isEditing, value); }
 get { return isEditing; }
 }

 public PersonViewModel PersonEdit
 {
 set { SetProperty(ref personEdit, value); }
 get { return personEdit; }
 }

 public ICommand NewCommand { private set; get; }

 public ICommand SubmitCommand { private set; get; }

 public ICommand CancelCommand { private set; get; }

 public IList<PersonViewModel> Persons { get; } = new ObservableCollection<PersonViewModel>();

 bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)
 {
 if (Object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.PersonEntryPage"
 Title="Person Entry">
 <Grid Margin="10">

This abbreviated listing does not include the class's constructor, which is where the three properties of type

ICommand are defined, which will be shown shortly. Notice that changes to the three properties of type

ICommand and the Persons property do not result in PropertyChanged events being fired. These properties are

all set when the class is first created and do not change thereafter.

Before examining the constructor of the PersonCollectionViewModel class, let's look at the XAML file for the

Person Entr yPerson Entr y program. This contains a Grid with its BindingContext property set to the

PersonCollectionViewModel . The Grid contains a Button with the text NewNew with its Command property bound to

the NewCommand property in the ViewModel, an entry form with properties bound to the IsEditing property, as

well as properties of PersonViewModel , and two more buttons bound to the SubmitCommand and CancelCommand

properties of the ViewModel. The final ListView displays the collection of persons already entered:

 <Grid.BindingContext>
 <local:PersonCollectionViewModel />
 </Grid.BindingContext>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <!-- New Button -->
 <Button Text="New"
 Grid.Row="0"
 Command="{Binding NewCommand}"
 HorizontalOptions="Start" />

 <!-- Entry Form -->
 <Grid Grid.Row="1"
 IsEnabled="{Binding IsEditing}">

 <Grid BindingContext="{Binding PersonEdit}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Label Text="Name: " Grid.Row="0" Grid.Column="0" />
 <Entry Text="{Binding Name}"
 Grid.Row="0" Grid.Column="1" />

 <Label Text="Age: " Grid.Row="1" Grid.Column="0" />
 <StackLayout Orientation="Horizontal"
 Grid.Row="1" Grid.Column="1">
 <Stepper Value="{Binding Age}"
 Maximum="100" />
 <Label Text="{Binding Age, StringFormat='{0} years old'}"
 VerticalOptions="Center" />
 </StackLayout>

 <Label Text="Skills: " Grid.Row="2" Grid.Column="0" />
 <Entry Text="{Binding Skills}"
 Grid.Row="2" Grid.Column="1" />

 </Grid>
 </Grid>

 <!-- Submit and Cancel Buttons -->
 <Grid Grid.Row="2">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Text="Submit"
 Grid.Column="0"
 Command="{Binding SubmitCommand}"
 VerticalOptions="CenterAndExpand" />

 <Button Text="Cancel"
 Grid.Column="1"
 Command="{Binding CancelCommand}"
 VerticalOptions="CenterAndExpand" />

 VerticalOptions="CenterAndExpand" />
 </Grid>

 <!-- List of Persons -->
 <ListView Grid.Row="3"
 ItemsSource="{Binding Persons}" />
 </Grid>
</ContentPage>

Here's how it works: The user first presses the NewNew button. This enables the entry form but disables the NewNew

button. The user then enters a name, age, and skills. At any time during the editing, the user can press the

CancelCancel button to start over. Only when a name and a valid age have been entered is the SubmitSubmit button

enabled. Pressing this SubmitSubmit button transfers the person to the collection displayed by the ListView . After

either the CancelCancel or SubmitSubmit button is pressed, the entry form is cleared and the NewNew button is enabled again.

The iOS screen at the left shows the layout before a valid age is entered. The Android screen shows the SubmitSubmit

button enabled after an age has been set:

The program does not have any facility for editing existing entries, and does not save the entries when you

navigate away from the page.

All the logic for the NewNew , SubmitSubmit, and CancelCancel buttons is handled in PersonCollectionViewModel through

definitions of the NewCommand , SubmitCommand , and CancelCommand properties. The constructor of the

PersonCollectionViewModel sets these three properties to objects of type Command .

A constructor of the Command class allows you to pass arguments of type Action and Func<bool>

corresponding to the Execute and CanExecute methods. It's easiest to define these actions and functions as

lambda functions right in the Command constructor. Here is the definition of the Command object for the

NewCommand property:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/commanding-images/personentry-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command.-ctor#xamarin_forms_command__ctor_system_action_system_func_system_boolean__

public class PersonCollectionViewModel : INotifyPropertyChanged
{

 ···

 public PersonCollectionViewModel()
 {
 NewCommand = new Command(
 execute: () =>
 {
 PersonEdit = new PersonViewModel();
 PersonEdit.PropertyChanged += OnPersonEditPropertyChanged;
 IsEditing = true;
 RefreshCanExecutes();
 },
 canExecute: () =>
 {
 return !IsEditing;
 });

 ···

 }

 void OnPersonEditPropertyChanged(object sender, PropertyChangedEventArgs args)
 {
 (SubmitCommand as Command).ChangeCanExecute();
 }

 void RefreshCanExecutes()
 {
 (NewCommand as Command).ChangeCanExecute();
 (SubmitCommand as Command).ChangeCanExecute();
 (CancelCommand as Command).ChangeCanExecute();
 }

 ···

}

When the user clicks the NewNew button, the execute function passed to the Command constructor is executed. This

creates a new PersonViewModel object, sets a handler on that object's PropertyChanged event, sets IsEditing to

true , and calls the RefreshCanExecutes method defined after the constructor.

Besides implementing the ICommand interface, the Command class also defines a method named

ChangeCanExecute . Your ViewModel should call ChangeCanExecute for an ICommand property whenever anything

happens that might change the return value of the CanExecute method. A call to ChangeCanExecute causes the

Command class to fire the CanExecuteChanged method. The Button has attached a handler for that event and

responds by calling CanExecute again, and then enabling itself based on the return value of that method.

When the execute method of NewCommand calls RefreshCanExecutes , the NewCommand property gets a call to

ChangeCanExecute , and the Button calls the canExecute method, which now returns false because the

IsEditing property is now true .

The PropertyChanged handler for the new PersonViewModel object calls the ChangeCanExecute method of

SubmitCommand . Here's how that command property is implemented:

public class PersonCollectionViewModel : INotifyPropertyChanged
{

 ···

 public PersonCollectionViewModel()
 {

 ···

 SubmitCommand = new Command(
 execute: () =>
 {
 Persons.Add(PersonEdit);
 PersonEdit.PropertyChanged -= OnPersonEditPropertyChanged;
 PersonEdit = null;
 IsEditing = false;
 RefreshCanExecutes();
 },
 canExecute: () =>
 {
 return PersonEdit != null &&
 PersonEdit.Name != null &&
 PersonEdit.Name.Length > 1 &&
 PersonEdit.Age > 0;
 });

 ···
 }

 ···

}

The canExecute function for SubmitCommand is called every time there's a property changed in the

PersonViewModel object being edited. It returns true only when the Name property is at least one character

long, and Age is greater than 0. At that time, the SubmitSubmit button becomes enabled.

The execute function for SubmitSubmit removes the property-changed handler from the PersonViewModel , adds the

object to the Persons collection, and returns everything to initial conditions.

The execute function for the CancelCancel button does everything that the SubmitSubmit button does except add the

object to the collection:

public class PersonCollectionViewModel : INotifyPropertyChanged
{

 ···

 public PersonCollectionViewModel()
 {

 ···

 CancelCommand = new Command(
 execute: () =>
 {
 PersonEdit.PropertyChanged -= OnPersonEditPropertyChanged;
 PersonEdit = null;
 IsEditing = false;
 RefreshCanExecutes();
 },
 canExecute: () =>
 {
 return IsEditing;
 });
 }

 ···

}

 Using Command Parameters

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"

The canExecute method returns true at any time a PersonViewModel is being edited.

These techniques could be adapted to more complex scenarios: A property in PersonCollectionViewModel could

be bound to the SelectedItem property of the ListView for editing existing items, and a DeleteDelete button could

be added to delete those items.

It isn't necessary to define the execute and canExecute methods as lambda functions. You can write them as

regular private methods in the ViewModel and reference them in the Command constructors. However, this

approach does tend to result in a lot of methods that are referenced only once in the ViewModel.

It is sometimes convenient for one or more buttons (or other user-interface objects) to share the same

ICommand property in the ViewModel. In this case, you use the CommandParameter property to distinguish

between the buttons.

You can continue to use the Command class for these shared ICommand properties. The class defines an

alternative constructor that accepts execute and canExecute methods with parameters of type Object . This is

how the CommandParameter is passed to these methods.

However, when using CommandParameter , it's easiest to use the generic Command<T> class to specify the type of

the object set to CommandParameter . The execute and canExecute methods that you specify have parameters of

that type.

The Decimal KeyboardDecimal Keyboard page illustrates this technique by showing how to implement a keypad for entering

decimal numbers. The BindingContext for the Grid is a DecimalKeypadViewModel . The Entry property of this

ViewModel is bound to the Text property of a Label . All the Button objects are bound to various commands

in the ViewModel: ClearCommand , BackspaceCommand , and DigitCommand :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command.-ctor#xamarin_forms_command__ctor_system_action_system_object__system_func_system_object_system_boolean__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command-1

 x:Class="DataBindingDemos.DecimalKeypadPage"
 Title="Decimal Keyboard">

 <Grid WidthRequest="240"
 HeightRequest="480"
 ColumnSpacing="2"
 RowSpacing="2"
 HorizontalOptions="Center"
 VerticalOptions="Center">

 <Grid.BindingContext>
 <local:DecimalKeypadViewModel />
 </Grid.BindingContext>

 <Grid.Resources>
 <ResourceDictionary>
 <Style TargetType="Button">
 <Setter Property="FontSize" Value="32" />
 <Setter Property="BorderWidth" Value="1" />
 <Setter Property="BorderColor" Value="Black" />
 </Style>
 </ResourceDictionary>
 </Grid.Resources>

 <Label Text="{Binding Entry}"
 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3"
 FontSize="32"
 LineBreakMode="HeadTruncation"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="End" />

 <Button Text="CLEAR"
 Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2"
 Command="{Binding ClearCommand}" />

 <Button Text="⇦"
 Grid.Row="1" Grid.Column="2"
 Command="{Binding BackspaceCommand}" />

 <Button Text="7"
 Grid.Row="2" Grid.Column="0"
 Command="{Binding DigitCommand}"
 CommandParameter="7" />

 <Button Text="8"
 Grid.Row="2" Grid.Column="1"
 Command="{Binding DigitCommand}"
 CommandParameter="8" />

 <Button Text="9"
 Grid.Row="2" Grid.Column="2"
 Command="{Binding DigitCommand}"
 CommandParameter="9" />

 <Button Text="4"
 Grid.Row="3" Grid.Column="0"
 Command="{Binding DigitCommand}"
 CommandParameter="4" />

 <Button Text="5"
 Grid.Row="3" Grid.Column="1"
 Command="{Binding DigitCommand}"
 CommandParameter="5" />

 <Button Text="6"
 Grid.Row="3" Grid.Column="2"
 Command="{Binding DigitCommand}"
 CommandParameter="6" />

 <Button Text="1"
 Grid.Row="4" Grid.Column="0"
 Command="{Binding DigitCommand}"
 CommandParameter="1" />

 <Button Text="2"
 Grid.Row="4" Grid.Column="1"
 Command="{Binding DigitCommand}"
 CommandParameter="2" />

 <Button Text="3"
 Grid.Row="4" Grid.Column="2"
 Command="{Binding DigitCommand}"
 CommandParameter="3" />

 <Button Text="0"
 Grid.Row="5" Grid.Column="0" Grid.ColumnSpan="2"
 Command="{Binding DigitCommand}"
 CommandParameter="0" />

 <Button Text="·"
 Grid.Row="5" Grid.Column="2"
 Command="{Binding DigitCommand}"
 CommandParameter="." />
 </Grid>
</ContentPage>

The 11 buttons for the 10 digits and the decimal point share a binding to DigitCommand . The CommandParameter

distinguishes between these buttons. The value set to CommandParameter is generally the same as the text

displayed by the button except for the decimal point, which for purposes of clarity is displayed with a middle dot

character.

Here's the program in action:

Notice that the button for the decimal point in all three screenshots is disabled because the entered number

already contains a decimal point.

The DecimalKeypadViewModel defines an Entry property of type string (which is the only property that triggers

a PropertyChanged event) and three properties of type ICommand :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/commanding-images/decimalkeyboard-large.png#lightbox

public class DecimalKeypadViewModel : INotifyPropertyChanged
{
 string entry = "0";

 public event PropertyChangedEventHandler PropertyChanged;

 ···

 public string Entry
 {
 private set
 {
 if (entry != value)
 {
 entry = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Entry"));
 }
 }
 get
 {
 return entry;
 }
 }

 public ICommand ClearCommand { private set; get; }

 public ICommand BackspaceCommand { private set; get; }

 public ICommand DigitCommand { private set; get; }
}

public class DecimalKeypadViewModel : INotifyPropertyChanged
{

 ···

 public DecimalKeypadViewModel()
 {
 ClearCommand = new Command(
 execute: () =>
 {
 Entry = "0";
 RefreshCanExecutes();
 });

 ···

 }

 void RefreshCanExecutes()
 {
 ((Command)BackspaceCommand).ChangeCanExecute();
 ((Command)DigitCommand).ChangeCanExecute();
 }

 ···

}

The button corresponding to the ClearCommand is always enabled and simply sets the entry back to "0":

Because the button is always enabled, it is not necessary to specify a canExecute argument in the Command

constructor.

public class DecimalKeypadViewModel : INotifyPropertyChanged
{

 ···

 public DecimalKeypadViewModel()
 {

 ···

 BackspaceCommand = new Command(
 execute: () =>
 {
 Entry = Entry.Substring(0, Entry.Length - 1);
 if (Entry == "")
 {
 Entry = "0";
 }
 RefreshCanExecutes();
 },
 canExecute: () =>
 {
 return Entry.Length > 1 || Entry != "0";
 });

 ···

 }

 ···

}

The logic for entering numbers and backspacing is a little tricky because if no digits have been entered, then the

Entry property is the string "0". If the user types more zeroes, then the Entry still contains just one zero. If the

user types any other digit, that digit replaces the zero. But if the user types a decimal point before any other

digit, then Entry is the string "0.".

The BackspaceBackspace button is enabled only when the length of the entry is greater than 1, or if Entry is not equal to

the string "0":

The logic for the execute function for the BackspaceBackspace button ensures that the Entry is at least a string of "0".

The DigitCommand property is bound to 11 buttons, each of which identifies itself with the CommandParameter

property. The DigitCommand could be set to an instance of the regular Command class, but it's easier to use the

Command<T> generic class. When using the commanding interface with XAML, the CommandParameter properties

are usually strings, and that's the type of the generic argument. The execute and canExecute functions then

have arguments of type string :

public class DecimalKeypadViewModel : INotifyPropertyChanged
{

 ···

 public DecimalKeypadViewModel()
 {

 ···

 DigitCommand = new Command<string>(
 execute: (string arg) =>
 {
 Entry += arg;
 if (Entry.StartsWith("0") && !Entry.StartsWith("0."))
 {
 Entry = Entry.Substring(1);
 }
 RefreshCanExecutes();
 },
 canExecute: (string arg) =>
 {
 return !(arg == "." && Entry.Contains("."));
 });
 }

 ···

}

 Asynchronous Commanding for Navigation Menus

The execute method appends the string argument to the Entry property. However, if the result begins with a

zero (but not a zero and a decimal point) then that initial zero must be removed using the Substring function.

The canExecute method returns false only if the argument is the decimal point (indicating that the decimal

point is being pressed) and Entry already contains a decimal point.

All the execute methods call RefreshCanExecutes , which then calls ChangeCanExecute for both DigitCommand

and ClearCommand . This ensures that the decimal point and backspace buttons are enabled or disabled based on

the current sequence of entered digits.

Commanding is convenient for implementing navigation menus, such as that in the Data Binding DemosData Binding Demos

program itself. Here's part of MainPage.xamlMainPage.xaml :

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.MainPage"
 Title="Data Binding Demos"
 Padding="10">
 <TableView Intent="Menu">
 <TableRoot>
 <TableSection Title="Basic Bindings">

 <TextCell Text="Basic Code Binding"
 Detail="Define a data-binding in code"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:BasicCodeBindingPage}" />

 <TextCell Text="Basic XAML Binding"
 Detail="Define a data-binding in XAML"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:BasicXamlBindingPage}" />

 <TextCell Text="Alternative Code Binding"
 Detail="Define a data-binding in code without a BindingContext"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:AlternativeCodeBindingPage}" />

 ···

 </TableSection>
 </TableRoot>
 </TableView>
</ContentPage>

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();

 NavigateCommand = new Command<Type>(
 async (Type pageType) =>
 {
 Page page = (Page)Activator.CreateInstance(pageType);
 await Navigation.PushAsync(page);
 });

 BindingContext = this;
 }

 public ICommand NavigateCommand { private set; get; }
}

When using commanding with XAML, CommandParameter properties are usually set to strings. In this case,

however, a XAML markup extension is used so that the CommandParameter is of type System.Type .

Each Command property is bound to a property named NavigateCommand . That property is defined in the code-

behind file, MainPage.xaml.csMainPage.xaml.cs :

The constructor sets the NavigateCommand property to an execute method that instantiates the System.Type

parameter and then navigates to it. Because the PushAsync call requires an await operator, the execute

method must be flagged as asynchronous. This is accomplished with the async keyword before the parameter

list.

 Related Links

The constructor also sets the BindingContext of the page to itself so that the bindings reference the

NavigateCommand in this class.

The order of the code in this constructor makes a difference: The InitializeComponent call causes the XAML to

be parsed, but at that time the binding to a property named NavigateCommand cannot be resolved because

BindingContext is set to null . If the BindingContext is set in the constructor before NavigateCommand is set,

then the binding can be resolved when BindingContext is set, but at that time, NavigateCommand is still null .

Setting NavigateCommand after BindingContext will have no effect on the binding because a change to

NavigateCommand doesn't fire a PropertyChanged event, and the binding doesn't know that NavigateCommand is

now valid.

Setting both NavigateCommand and BindingContext (in any order) prior to the call to InitializeComponent will

work because both components of the binding are set when the XAML parser encounters the binding definition.

Data bindings can sometimes be tricky, but as you've seen in this series of articles, they are powerful and

versatile, and help greatly to organize your code by separating underlying logic from the user interface.

Data Binding Demos (sample)

Data binding chapter from Xamarin.Forms book

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter18

Xamarin.Forms Compiled Bindings
 7/8/2021 • 7 minutes to read • Edit Online

NOTENOTE

IMPORTANTIMPORTANT

 Use compiled bindings

 Download the sample

Compiled bindings are resolved more quickly than classic bindings, therefore improving data binding

performance in Xamarin.Forms applications.

Data bindings have two main problems:

1. There's no compile-time validation of binding expressions. Instead, bindings are resolved at runtime.

Therefore, any invalid bindings aren't detected until runtime when the application doesn't behave as expected

or error messages appear.

2. They aren't cost efficient. Bindings are resolved at runtime using general-purpose object inspection

(reflection), and the overhead of doing this varies from platform to platform.

Compiled bindings improve data binding performance in Xamarin.Forms applications by resolving binding

expressions at compile-time rather than runtime. In addition, this compile-time validation of binding expressions

enables a better developer troubleshooting experience because invalid bindings are reported as build errors.

The process for using compiled bindings is to:

1. Enable XAML compilation. For more information about XAML compilation, see XAML Compilation.

2. Set an x:DataType attribute on a VisualElement to the type of the object that the VisualElement and its

children will bind to.

It's recommended to set the x:DataType attribute at the same level in the view hierarchy as the BindingContext is set.

However, this attribute can be re-defined at any location in a view hierarchy.

To use compiled bindings, the x:DataType attribute must be set to a string literal, or a type using the x:Type

markup extension. At XAML compile time, any invalid binding expressions will be reported as build errors.

However, the XAML compiler will only report a build error for the first invalid binding expression that it

encounters. Any valid binding expressions that are defined on the VisualElement or its children will be

compiled, regardless of whether the BindingContext is set in XAML or code. Compiling a binding expression

generates compiled code that will get a value from a property on the source, and set it on the property on the

target that's specified in the markup. In addition, depending on the binding expression, the generated code may

observe changes in the value of the source property and refresh the target property, and may push changes

from the target back to the source.

Compiled bindings are currently disabled for any binding expressions that define the Source property. This is because

the Source property is always set using the x:Reference markup extension, which can't be resolved at compile time.

The Compiled Color SelectorCompiled Color Selector page demonstrates using compiled bindings between Xamarin.Forms views

and viewmodel properties:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/data-binding/compiled-bindings.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding.source#xamarin_forms_binding_source

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.CompiledColorSelectorPage"
 Title="Compiled Color Selector">
 ...
 <StackLayout x:DataType="local:HslColorViewModel">
 <StackLayout.BindingContext>
 <local:HslColorViewModel Color="Sienna" />
 </StackLayout.BindingContext>
 <BoxView Color="{Binding Color}"
 ... />
 <StackLayout Margin="10, 0">
 <Label Text="{Binding Name}" />
 <Slider Value="{Binding Hue}" />
 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />
 <Slider Value="{Binding Saturation}" />
 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />
 <Slider Value="{Binding Luminosity}" />
 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />
 </StackLayout>
 </StackLayout>
</ContentPage>

IMPORTANTIMPORTANT

The root StackLayout instantiates the HslColorViewModel and initializes the Color property within property

element tags for the BindingContext property. This root StackLayout also defines the x:DataType attribute as

the viewmodel type, indicating that any binding expressions in the root StackLayout view hierarchy will be

compiled. This can be verified by changing any of the binding expressions to bind to a non-existent viewmodel

property, which will result in a build error. While this example sets the x:DataType attribute to a string literal, it

can also be set to a type with the x:Type markup extension. For more information about the x:Type markup

extension, see x:Type Markup Extension.

The x:DataType attribute can be re-defined at any point in a view hierarchy.

The BoxView , Label elements, and Slider views inherit the binding context from the StackLayout . These

views are all binding targets that reference source properties in the viewmodel. For the BoxView.Color property,

and the Label.Text property, the data bindings are OneWay – the properties in the view are set from the

properties in the viewmodel. However, the Slider.Value property uses a TwoWay binding. This allows each

Slider to be set from the viewmodel, and also for the viewmodel to be set from each Slider .

When the application is first run, the BoxView , Label elements, and Slider elements are all set from the

viewmodel based on the initial Color property set when the viewmodel was instantiated. This is shown in the

following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.color#xamarin_forms_boxview_color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.value#xamarin_forms_slider_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider

 Use compiled bindings in a DataTemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataBindingDemos"
 x:Class="DataBindingDemos.CompiledColorListPage"
 Title="Compiled Color List">
 <Grid>
 ...
 <ListView x:Name="colorListView"
 ItemsSource="{x:Static local:NamedColor.All}"
 ... >
 <ListView.ItemTemplate>
 <DataTemplate x:DataType="local:NamedColor">
 <ViewCell>
 <StackLayout Orientation="Horizontal">
 <BoxView Color="{Binding Color}"
 ... />
 <Label Text="{Binding FriendlyName}"
 ... />
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 <!-- The BoxView doesn't use compiled bindings -->
 <BoxView Color="{Binding Source={x:Reference colorListView}, Path=SelectedItem.Color}"
 ... />
 </Grid>
</ContentPage>

As the sliders are manipulated, the BoxView and Label elements are updated accordingly.

For more information about this color selector, see ViewModels and Property-Change Notifications.

Bindings in a DataTemplate are interpreted in the context of the object being templated. Therefore, when using

compiled bindings in a DataTemplate , the DataTemplate needs to declare the type of its data object using the

x:DataType attribute.

The Compiled Color L istCompiled Color L ist page demonstrates using compiled bindings in a DataTemplate :

The ListView.ItemsSource property is set to the static NamedColor.All property. The NamedColor class uses .NET

reflection to enumerate all the static public fields in the Color structure, and to store them with their names in a

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/compiled-bindings-images/compiledcolorselector-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

 Combine compiled bindings with classic bindings

collection that is accessible from the static All property. Therefore, the ListView is filled with all of the

NamedColor instances. For each item in the ListView , the binding context for the item is set to a NamedColor

object. The BoxView and Label elements in the ViewCell are bound to NamedColor properties.

Note that the DataTemplate defines the x:DataType attribute to be the NamedColor type, indicating that any

binding expressions in the DataTemplate view hierarchy will be compiled. This can be verified by changing any

of the binding expressions to bind to a non-existent NamedColor property, which will result in a build error.

While this example sets the x:DataType attribute to a string literal, it can also be set to a type with the x:Type

markup extension. For more information about the x:Type markup extension, see x:Type Markup Extension.

When the application is first run, the ListView is populated with NamedColor instances. When an item in the

ListView is selected, the BoxView.Color property is set to the color of the selected item in the ListView :

Selecting other items in the ListView updates the color of the BoxView .

Binding expressions are only compiled for the view hierarchy that the x:DataType attribute is defined on.

Conversely, any views in a hierarchy on which the x:DataType attribute is not defined will use classic bindings.

It's therefore possible to combine compiled bindings and classic bindings on a page. For example, in the

previous section the views within the DataTemplate use compiled bindings, while the BoxView that's set to the

color selected in the ListView does not.

Careful structuring of x:DataType attributes can therefore lead to a page using compiled and classic bindings.

Alternatively, the x:DataType attribute can be re-defined at any point in a view hierarchy to null using the

x:Null markup extension. Doing this indicates that any binding expressions within the view hierarchy will use

classic bindings. The Mixed Bindings page demonstrates this approach:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.color#xamarin_forms_boxview_color
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/data-binding/compiled-bindings-images/compiledcolorlist-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

<StackLayout x:DataType="local:HslColorViewModel">
 <StackLayout.BindingContext>
 <local:HslColorViewModel Color="Sienna" />
 </StackLayout.BindingContext>
 <BoxView Color="{Binding Color}"
 VerticalOptions="FillAndExpand" />
 <StackLayout x:DataType="{x:Null}"
 Margin="10, 0">
 <Label Text="{Binding Name}" />
 <Slider Value="{Binding Hue}" />
 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />
 <Slider Value="{Binding Saturation}" />
 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />
 <Slider Value="{Binding Luminosity}" />
 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />
 </StackLayout>
</StackLayout>

 Performance

 Related links

The root StackLayout sets the x:DataType attribute to be the HslColorViewModel type, indicating that any

binding expression in the root StackLayout view hierarchy will be compiled. However, the inner StackLayout

redefines the x:DataType attribute to null with the x:Null markup expression. Therefore, the binding

expressions within the inner StackLayout use classic bindings. Only the BoxView , within the root StackLayout

view hierarchy, uses compiled bindings.

For more information about the x:Null markup expression, see x:Null Markup Extension.

Compiled bindings improve data binding performance, with the performance benefit varying. Unit testing

reveals that:

A compiled binding that uses property-change notification (i.e. a OneWay , OneWayToSource , or TwoWay

binding) is resolved approximately 8 times quicker than a classic binding.

A compiled binding that doesn't use property-change notification (i.e. a OneTime binding) is resolved

approximately 20 times quicker than a classic binding.

Setting the BindingContext on a compiled binding that uses property change notification (i.e. a OneWay ,

OneWayToSource , or TwoWay binding) is approximately 5 times quicker than setting the BindingContext on a

classic binding.

Setting the BindingContext on a compiled binding that doesn't use property change notification (i.e. a

OneTime binding) is approximately 7 times quicker than setting the BindingContext on a classic binding.

These performance differences can be magnified on mobile devices, dependent upon the platform being used,

the version of the operating system being used, and the device on which the application is running.

Data Binding Demos (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/databindingdemos

Xamarin.Forms DependencyService
 11/2/2020 • 2 minutes to read • Edit Online

 Introduction

 Registration and Resolution

 Picking a Photo from the Library

The DependencyService class is a service locator that enables Xamarin.Forms applications to invoke native

platform functionality from shared code.

Platform implementations must be registered with the DependencyService , and then resolved from shared code

to invoke them.

This article explains how to use the Xamarin.Forms DependencyService class to pick a photo from the phone's

picture library.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dependency-service/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice

Xamarin.Forms DependencyService Introduction
 7/8/2021 • 2 minutes to read • Edit Online

 Create an interface

public interface IDeviceOrientationService
{
 DeviceOrientation GetOrientation();
}

 Implement the interface on each platform

 Download the sample

The DependencyService class is a service locator that enables Xamarin.Forms applications to invoke native

platform functionality from shared code.

The process for using the DependencyService to invoke native platform functionality is to:

1. Create an interface for the native platform functionality, in shared code. For more information, see Create an

interface.

2. Implement the interface in the required platform projects. For more information, see Implement the interface

on each platform.

3. Register the platform implementations with the DependencyService . This enables Xamarin.Forms to locate the

platform implementations at runtime. For more information, see Register the platform implementations.

4. Resolve the platform implementations from shared code, and invoke them. For more information, see

Resolve the platform implementations.

The following diagram shows how native platform functionality is invoked in a Xamarin.Forms application:

The first step in being able to invoke native platform functionality from shared code, is to create an interface that

defines the API for interacting with the native platform functionality. This interface should be placed in your

shared code project.

The following example shows an interface for an API that can be used to retrieve the orientation of a device:

After creating the interface that defines the API for interacting with the native platform functionality, the

interface must be implemented in each platform project.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dependency-service/introduction.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/dependencyservice/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice

iOSiOS

namespace DependencyServiceDemos.iOS
{
 public class DeviceOrientationService : IDeviceOrientationService
 {
 public DeviceOrientation GetOrientation()
 {
 UIInterfaceOrientation orientation = UIApplication.SharedApplication.StatusBarOrientation;

 bool isPortrait = orientation == UIInterfaceOrientation.Portrait ||
 orientation == UIInterfaceOrientation.PortraitUpsideDown;
 return isPortrait ? DeviceOrientation.Portrait : DeviceOrientation.Landscape;
 }
 }
}

 AndroidAndroid

namespace DependencyServiceDemos.Droid
{
 public class DeviceOrientationService : IDeviceOrientationService
 {
 public DeviceOrientation GetOrientation()
 {
 IWindowManager windowManager =
Android.App.Application.Context.GetSystemService(Context.WindowService).JavaCast<IWindowManager>();

 SurfaceOrientation orientation = windowManager.DefaultDisplay.Rotation;
 bool isLandscape = orientation == SurfaceOrientation.Rotation90 ||
 orientation == SurfaceOrientation.Rotation270;
 return isLandscape ? DeviceOrientation.Landscape : DeviceOrientation.Portrait;
 }
 }
}

 Universal Windows PlatformUniversal Windows Platform

namespace DependencyServiceDemos.UWP
{
 public class DeviceOrientationService : IDeviceOrientationService
 {
 public DeviceOrientation GetOrientation()
 {
 ApplicationViewOrientation orientation = ApplicationView.GetForCurrentView().Orientation;
 return orientation == ApplicationViewOrientation.Landscape ? DeviceOrientation.Landscape :
DeviceOrientation.Portrait;
 }
 }
}

 Register the platform implementations

The following code example shows the implementation of the IDeviceOrientationService interface on iOS:

The following code example shows the implementation of the IDeviceOrientationService interface on Android:

The following code example shows the implementation of the IDeviceOrientationService interface on the

Universal Windows Platform (UWP):

After implementing the interface in each platform project, the platform implementations must be registered

with the DependencyService , so that Xamarin.Forms can locate them at runtime. This is typically performed with

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice

using Xamarin.Forms;

[assembly: Dependency(typeof(DependencyServiceDemos.iOS.DeviceOrientationService))]
namespace DependencyServiceDemos.iOS
{
 public class DeviceOrientationService : IDeviceOrientationService
 {
 public DeviceOrientation GetOrientation()
 {
 ...
 }
 }
}

 Resolve the platform implementations

IDeviceOrientationService service = DependencyService.Get<IDeviceOrientationService>();
DeviceOrientation orientation = service.GetOrientation();

DeviceOrientation orientation = DependencyService.Get<IDeviceOrientationService>().GetOrientation();

 Related links

the DependencyAttribute , which indicates that the specified type provides an implementation of the interface.

The following example shows using the DependencyAttribute to register the iOS implementation of the

IDeviceOrientationService interface:

In this example, the DependencyAttribute registers the DeviceOrientationService with the DependencyService .

Similarly, the implementations of the IDeviceOrientationService interface on other platforms should be

registered with the DependencyAttribute .

For more information about registering platform implementations with the DependencyService , see

Xamarin.Forms DependencyService Registration and Resolution.

Following registration of platform implementations with the DependencyService , the implementations must be

resolved before being invoked. This is typically performed in shared code using the DependencyService.Get<T>

method.

The following code shows an example of calling the Get<T> method to resolve the IDeviceOrientationService

interface, and then invoking its GetOrientation method:

Alternatively, this code can be condensed into a single line:

For more information about resolving platform implementations with the DependencyService , see

Xamarin.Forms DependencyService Registration and Resolution.

DependencyService Demos (sample)

Xamarin.Forms DependencyService Registration and Resolution

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/dependencyservice/

Xamarin.Forms DependencyService Registration
and Resolution

 7/8/2021 • 5 minutes to read • Edit Online

 Register platform implementations

IMPORTANTIMPORTANT

 Registration by attributeRegistration by attribute

using Xamarin.Forms;

[assembly: Dependency(typeof(DeviceOrientationService))]
namespace DependencyServiceDemos.iOS
{
 public class DeviceOrientationService : IDeviceOrientationService
 {
 public DeviceOrientation GetOrientation()
 {
 ...
 }
 }
}

 Download the sample

When using the Xamarin.Forms DependencyService to invoke native platform functionality, platform

implementations must be registered with the DependencyService , and then resolved from shared code to invoke

them.

Platform implementations must be registered with the DependencyService so that Xamarin.Forms can locate

them at runtime.

Registration can be performed with the DependencyAttribute , or with the Register and RegisterSingleton

methods.

Release builds of UWP projects that use .NET native compilation should register platform implementations with the

Register methods.

The DependencyAttribute can be used to register a platform implementation with the DependencyService . The

attribute indicates that the specified type provides a concrete implementation of the interface.

The following example uses the DependencyAttribute to register the iOS implementation of the

IDeviceOrientationService interface:

In this example, the DependencyAttribute registers the DeviceOrientationService with the DependencyService .

This results in the concrete type being registered against the interface it implements.

Similarly, the implementations of the IDeviceOrientationService interface on other platforms should be

registered with the DependencyAttribute .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dependency-service/registration-and-resolution.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/dependencyservice/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute

NOTENOTE

 Registration by methodRegistration by method

[Register("AppDelegate")]
public partial class AppDelegate : global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate
{
 public override bool FinishedLaunching(UIApplication app, NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init();
 LoadApplication(new App());
 DependencyService.Register<IDeviceOrientationService, DeviceOrientationService>();
 return base.FinishedLaunching(app, options);
 }
}

DependencyService.Register<DeviceOrientationService>();

var service = new DeviceOrientationService();
DependencyService.RegisterSingleton<IDeviceOrientationService>(service);

IMPORTANTIMPORTANT

 Resolve the platform implementations

Registration with the DependencyAttribute is performed at the namespace level.

The DependencyService.Register methods, and the RegisterSingleton method, can be used to register a

platform implementation with the DependencyService .

The following example uses the Register method to register the iOS implementation of the

IDeviceOrientationService interface:

In this example, the Register method registers the concrete type, DeviceOrientationService , against the

IDeviceOrientationService interface. Alternatively, an overload of the Register method can be used to register

a platform implementation with the DependencyService :

In this example, the Register method registers the DeviceOrientationService with the DependencyService . This

results in the concrete type being registered against the interface it implements.

Alternatively, an existing object instance can be registered as a singleton with the RegisterSingleton method:

In this example, the RegisterSingleton method registers the DeviceOrientationService object instance against

the IDeviceOrientationService interface, as a singleton.

Similarly, the implementations of the IDeviceOrientationService interface on other platforms can be registered

with the Register methods, or the RegisterSingleton method.

Registration with the Register and RegisterSingleton methods must be performed in platform projects, before the

functionality provided by the platform implementation is invoked from shared code.

Platform implementations must be resolved before being invoked. This is typically performed in shared code

using the DependencyService.Get<T> method. However, it can also be accomplished with the

DependencyService.Resolve<T> method.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.register
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve

IMPORTANTIMPORTANT

 Resolve using the Get<T> methodResolve using the Get<T> method

IDeviceOrientationService service = DependencyService.Get<IDeviceOrientationService>();
DeviceOrientation orientation = service.GetOrientation();

DeviceOrientation orientation = DependencyService.Get<IDeviceOrientationService>().GetOrientation();

NOTENOTE

 Resolve using the Resolve<T> methodResolve using the Resolve<T> method

IDeviceOrientationService service = DependencyService.Resolve<IDeviceOrientationService>();
DeviceOrientation orientation = service.GetOrientation();

By default, the DependencyService will only resolve platform implementations that have parameterless

constructors. However, a dependency resolution method can be injected into Xamarin.Forms that uses a

dependency injection container or factory methods to resolve platform implementations. This approach can be

used to resolve platform implementations that have constructors with parameters. For more information, see

Dependency resolution in Xamarin.Forms.

Invoking a platform implementation that hasn't been registered with the DependencyService will result in a

NullReferenceException being thrown.

The Get<T> method retrieves the platform implementation of interface T at runtime, and either :

Creates an instance of it as a singleton.

Returns an existing instance as a singleton, that was registered with the DependencyService by the

RegisterSingleton method.

In both cases, the instance will live for the lifetime of the application, and any subsequent calls to resolve the

same platform implementation will retrieve the same instance.

The following code shows an example of calling the Get<T> method to resolve the IDeviceOrientationService

interface, and then invoking its GetOrientation method:

Alternatively, this code can be condensed into a single line:

The Get<T> method returns an instance of the platform implementation of interface T as a singleton, by default.

However, this behavior can be changed. For more information, see Manage the lifetime of resolved objects.

The Resolve<T> method retrieves the platform implementation of interface T at runtime, using a dependency

resolution method that's been injected into Xamarin.Forms with the DependencyResolver class. If a dependency

resolution method hasn't been injected into Xamarin.Forms, the Resolve<T> method will fallback to calling the

Get<T> method to retrieve the platform implementation. For more information about injecting a dependency

resolution method into Xamarin.Forms, see Dependency resolution in Xamarin.Forms.

The following code shows an example of calling the Resolve<T> method to resolve the

IDeviceOrientationService interface, and then invoking its GetOrientation method:

Alternatively, this code can be condensed into a single line:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.internals.dependencyresolver
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve

DeviceOrientation orientation = DependencyService.Resolve<IDeviceOrientationService>().GetOrientation();

NOTENOTE

 Manage the lifetime of resolved objects

ITextToSpeechService service = DependencyService.Get<ITextToSpeechService>
(DependencyFetchTarget.NewInstance);

ITextToSpeechService service = DependencyService.Get<ITextToSpeechService>
(DependencyFetchTarget.NewInstance);
using (service as IDisposable)
{
 await service.SpeakAsync("Hello world");
}

When the Resolve<T> method falls back to calling the Get<T> method, it returns an instance of the platform

implementation of interface T as a singleton, by default. However, this behavior can be changed. For more information,

see Manage the lifetime of resolved objects.

The default behavior of the DependencyService class is to resolve platform implementations as singletons.

Therefore, platform implementations will live for the lifetime of an application.

This behavior is specified with the DependencyFetchTarget optional argument on the Get<T> and Resolve<T>

methods. The DependencyFetchTarget enumeration defines two members:

GlobalInstance , which returns the platform implementation as a singleton.

NewInstance , which returns a new instance of the platform implementation. The application is then

responsible for managing the lifetime of the platform implementation instance.

The Get<T> and Resolve<T> methods both set their optional arguments to

DependencyFetchTarget.GlobalInstance , and so platform implementations are always resolved as singletons. This

behavior can be changed, so that new instances of platform implementations are created, by specifying

DependencyFetchTarget.NewInstance as arguments to the Get<T> and Resolve<T> methods:

In this example, the DependencyService creates a new instance of the platform implementation for the

ITextToSpeechService interface. Any subsequent calls to resolve the ITextToSpeechService will also create new

instances.

The consequence of always creating a new instance of a platform implementation is that the application

becomes responsible for managing the instances' lifetime. This means that if you subscribe to an event defined

in a platform implementation, you should unsubscribe from the event when the platform implementation is no

longer required. In addition, it means that it may be necessary for platform implementations to implement

IDisposable , and cleanup their resources in Dispose methods. The sample application demonstrates this

scenario in its TextToSpeechService platform implementations.

When an application finishes using a platform implementation that implements IDisposable , it should call the

object's Dispose implementation. One way of accomplishing this is with a using statement:

In this example, after the SpeakAsync method is invoked, the using statement automatically disposes of the

platform implementation object. This results in the object's Dispose method being invoked, which performs the

required cleanup.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyfetchtarget
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyfetchtarget
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.get
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyfetchtarget
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyfetchtarget
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice

 Related links

For more information about calling an object's Dispose method, see Using objects that implement IDisposable.

DependencyService Demos (sample)

Dependency resolution in Xamarin.Forms

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/using-objects
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/dependencyservice/

Picking a Photo from the Picture Library
 7/8/2021 • 6 minutes to read • Edit Online

 Creating the interface

namespace DependencyServiceDemos
{
 public interface IPhotoPickerService
 {
 Task<Stream> GetImageStreamAsync();
 }
}

 iOS implementation

 Download the sample

This article walks through the creation of an application that allows the user to pick a photo from the phone's

picture library. Because Xamarin.Forms does not include this functionality, it is necessary to use

DependencyService to access native APIs on each platform.

First, create an interface in shared code that expresses the desired functionality. In the case of a photo-picking

application, just one method is required. This is defined in the IPhotoPickerService interface in the .NET

Standard library of the sample code:

The GetImageStreamAsync method is defined as asynchronous because the method must return quickly, but it

can't return a Stream object for the selected photo until the user has browsed the picture library and selected

one.

This interface is implemented in all the platforms using platform-specific code.

The iOS implementation of the IPhotoPickerService interface uses the UIImagePickerController as described in

the Choose a Photo from the Galler yChoose a Photo from the Galler y recipe and sample code.

The iOS implementation is contained in the PhotoPickerService class in the iOS project of the sample code. To

make this class visible to the DependencyService manager, the class must be identified with an [assembly]

attribute of type Dependency , and the class must be public and explicitly implement the IPhotoPickerService

interface:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dependency-service/photo-picker.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/dependencyservice/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://github.com/xamarin/xamarin-forms-samples/blob/master/DependencyService/DependencyServiceDemos/Services/IPhotoPickerService.cs
https://docs.microsoft.com/en-us/dotnet/api/uikit.uiimagepickercontroller
https://github.com/xamarin/recipes/tree/master/Recipes/ios/media/video_and_photos/choose_a_photo_from_the_gallery
https://github.com/xamarin/recipes/tree/master/Recipes/ios/media/video_and_photos/choose_a_photo_from_the_gallery
https://github.com/xamarin/xamarin-forms-samples/blob/master/DependencyService/DependencyServiceDemos.iOS/Services/PhotoPickerService.cs

[assembly: Dependency (typeof (PhotoPickerService))]
namespace DependencyServiceDemos.iOS
{
 public class PhotoPickerService : IPhotoPickerService
 {
 TaskCompletionSource<Stream> taskCompletionSource;
 UIImagePickerController imagePicker;

 public Task<Stream> GetImageStreamAsync()
 {
 // Create and define UIImagePickerController
 imagePicker = new UIImagePickerController
 {
 SourceType = UIImagePickerControllerSourceType.PhotoLibrary,
 MediaTypes =
UIImagePickerController.AvailableMediaTypes(UIImagePickerControllerSourceType.PhotoLibrary)
 };

 // Set event handlers
 imagePicker.FinishedPickingMedia += OnImagePickerFinishedPickingMedia;
 imagePicker.Canceled += OnImagePickerCancelled;

 // Present UIImagePickerController;
 UIWindow window = UIApplication.SharedApplication.KeyWindow;
 var viewController = window.RootViewController;
 viewController.PresentViewController(imagePicker, true, null);

 // Return Task object
 taskCompletionSource = new TaskCompletionSource<Stream>();
 return taskCompletionSource.Task;
 }
 ...
 }
}

The GetImageStreamAsync method creates a UIImagePickerController and initializes it to select images from the

photo library. Two event handlers are required: One for when the user selects a photo and the other for when

the user cancels the display of the photo library. The PresentViewController method then displays the photo

library to the user.

At this point, the GetImageStreamAsync method must return a Task<Stream> object to the code that's calling it.

This task is completed only when the user has finished interacting with the photo library and one of the event

handlers is called. For situations like this, the TaskCompletionSource class is essential. The class provides a Task

object of the proper generic type to return from the GetImageStreamAsync method, and the class can later be

signaled when the task is completed.

The FinishedPickingMedia event handler is called when the user has selected a picture. However, the handler

provides a UIImage object and the Task must return a .NET Stream object. This is done in two steps: The

UIImage object is first converted to an in memory PNG or JPEG file stored in an NSData object, and then the

NSData object is converted to a .NET Stream object. A call to the SetResult method of the

TaskCompletionSource object completes the task by providing the Stream object:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1

namespace DependencyServiceDemos.iOS
{
 public class PhotoPickerService : IPhotoPickerService
 {
 TaskCompletionSource<Stream> taskCompletionSource;
 UIImagePickerController imagePicker;
 ...
 void OnImagePickerFinishedPickingMedia(object sender, UIImagePickerMediaPickedEventArgs args)
 {
 UIImage image = args.EditedImage ?? args.OriginalImage;

 if (image != null)
 {
 // Convert UIImage to .NET Stream object
 NSData data;
 if (args.ReferenceUrl.PathExtension.Equals("PNG") ||
args.ReferenceUrl.PathExtension.Equals("png"))
 {
 data = image.AsPNG();
 }
 else
 {
 data = image.AsJPEG(1);
 }
 Stream stream = data.AsStream();

 UnregisterEventHandlers();

 // Set the Stream as the completion of the Task
 taskCompletionSource.SetResult(stream);
 }
 else
 {
 UnregisterEventHandlers();
 taskCompletionSource.SetResult(null);
 }
 imagePicker.DismissModalViewController(true);
 }

 void OnImagePickerCancelled(object sender, EventArgs args)
 {
 UnregisterEventHandlers();
 taskCompletionSource.SetResult(null);
 imagePicker.DismissModalViewController(true);
 }

 void UnregisterEventHandlers()
 {
 imagePicker.FinishedPickingMedia -= OnImagePickerFinishedPickingMedia;
 imagePicker.Canceled -= OnImagePickerCancelled;
 }
 }
}

<key>NSPhotoLibraryUsageDescription</key>
<string>Picture Picker uses photo library</string>

 Android implementation

An iOS application requires permission from the user to access the phone's photo library. Add the following to

the dict section of the Info.plist file:

The Android implementation uses the technique described in the Select an ImageSelect an Image recipe and the sample code.

https://github.com/xamarin/recipes/tree/master/Recipes/android/other_ux/pick_image
https://github.com/xamarin/recipes/tree/master/Recipes/android/other_ux/pick_image

public class MainActivity : FormsAppCompatActivity
{
 internal static MainActivity Instance { get; private set; }

 protected override void OnCreate(Bundle savedInstanceState)
 {
 // ...
 Instance = this;
 }
 // ...
 // Field, property, and method for Picture Picker
 public static readonly int PickImageId = 1000;

 public TaskCompletionSource<Stream> PickImageTaskCompletionSource { set; get; }

 protected override void OnActivityResult(int requestCode, Result resultCode, Intent intent)
 {
 base.OnActivityResult(requestCode, resultCode, intent);

 if (requestCode == PickImageId)
 {
 if ((resultCode == Result.Ok) && (intent != null))
 {
 Android.Net.Uri uri = intent.Data;
 Stream stream = ContentResolver.OpenInputStream(uri);

 // Set the Stream as the completion of the Task
 PickImageTaskCompletionSource.SetResult(stream);
 }
 else
 {
 PickImageTaskCompletionSource.SetResult(null);
 }
 }
 }
}

However, the method that is called when the user has selected an image from the picture library is an

OnActivityResult override in a class that derives from Activity . For this reason, the normal MainActivity

class in the Android project has been supplemented with a field, a property, and an override of the

OnActivityResult method:

The OnActivityResult override indicates the selected picture file with an Android Uri object, but this can be

converted into a .NET Stream object by calling the OpenInputStream method of the ContentResolver object that

was obtained from the activity's ContentResolver property.

Like the iOS implementation, the Android implementation uses a TaskCompletionSource to signal when the task

has been completed. This TaskCompletionSource object is defined as a public property in the MainActivity class.

This allows the property to be referenced in the PhotoPickerService class in the Android project. This is the class

with the GetImageStreamAsync method:

https://github.com/xamarin/xamarin-forms-samples/blob/master/DependencyService/DependencyServiceDemos.Android/MainActivity.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/DependencyService/DependencyServiceDemos.Android/Services/PhotoPickerService.cs

[assembly: Dependency(typeof(PhotoPickerService))]
namespace DependencyServiceDemos.Droid
{
 public class PhotoPickerService : IPhotoPickerService
 {
 public Task<Stream> GetImageStreamAsync()
 {
 // Define the Intent for getting images
 Intent intent = new Intent();
 intent.SetType("image/*");
 intent.SetAction(Intent.ActionGetContent);

 // Start the picture-picker activity (resumes in MainActivity.cs)
 MainActivity.Instance.StartActivityForResult(
 Intent.CreateChooser(intent, "Select Picture"),
 MainActivity.PickImageId);

 // Save the TaskCompletionSource object as a MainActivity property
 MainActivity.Instance.PickImageTaskCompletionSource = new TaskCompletionSource<Stream>();

 // Return Task object
 return MainActivity.Instance.PickImageTaskCompletionSource.Task;
 }
 }
}

 UWP implementation

This method accesses the MainActivity class for several purposes: for the Instance property, for the

PickImageId field, for the TaskCompletionSource property, and to call StartActivityForResult . This method is

defined by the FormsAppCompatActivity class, which is the base class of MainActivity .

Unlike the iOS and Android implementations, the implementation of the photo picker for the Universal

Windows Platform does not require the TaskCompletionSource class. The PhotoPickerService class uses the

FileOpenPicker class to get access to the photo library. Because the PickSingleFileAsync method of

FileOpenPicker is itself asynchronous, the GetImageStreamAsync method can simply use await with that

method (and other asynchronous methods) and return a Stream object:

https://github.com/xamarin/xamarin-forms-samples/blob/master/DependencyService/DependencyServiceDemos.UWP/Services/PhotoPickerService.cs
https://docs.microsoft.com/en-us/uwp/api/windows.storage.pickers.fileopenpicker/

[assembly: Dependency(typeof(PhotoPickerService))]
namespace DependencyServiceDemos.UWP
{
 public class PhotoPickerService : IPhotoPickerService
 {
 public async Task<Stream> GetImageStreamAsync()
 {
 // Create and initialize the FileOpenPicker
 FileOpenPicker openPicker = new FileOpenPicker
 {
 ViewMode = PickerViewMode.Thumbnail,
 SuggestedStartLocation = PickerLocationId.PicturesLibrary,
 };

 openPicker.FileTypeFilter.Add(".jpg");
 openPicker.FileTypeFilter.Add(".jpeg");
 openPicker.FileTypeFilter.Add(".png");

 // Get a file and return a Stream
 StorageFile storageFile = await openPicker.PickSingleFileAsync();

 if (storageFile == null)
 {
 return null;
 }

 IRandomAccessStreamWithContentType raStream = await storageFile.OpenReadAsync();
 return raStream.AsStreamForRead();
 }
 }
}

 Implementing in shared code

<Button Text="Pick Photo"
 Clicked="OnPickPhotoButtonClicked" />

async void OnPickPhotoButtonClicked(object sender, EventArgs e)
{
 (sender as Button).IsEnabled = false;

 Stream stream = await DependencyService.Get<IPhotoPickerService>().GetImageStreamAsync();
 if (stream != null)
 {
 image.Source = ImageSource.FromStream(() => stream);
 }

 (sender as Button).IsEnabled = true;
}

Now that the interface has been implemented for each platform, the shared code in the .NET Standard library

can take advantage of it.

The UI includes a Button that can be clicked to choose a photo:

The Clicked event handler uses the DependencyService class to call GetImageStreamAsync . This results in a call to

the platform project. If the method returns a Stream object, then the handler sets the Source property of the

image object to the Stream data:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

Related links
DependencyService (sample)

Choose a Photo from the Gallery (iOS)

Select an Image (Android)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/dependencyservice/
https://github.com/xamarin/recipes/tree/master/Recipes/ios/media/video_and_photos/choose_a_photo_from_the_gallery
https://github.com/xamarin/recipes/tree/master/Recipes/android/other_ux/pick_image

Xamarin.Forms dual-screen
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Troubleshooting

 Next steps

Dual-screen devices like the Microsoft Surface Duo facilitate new user-experience possibilities for your

applications. Xamarin.Forms includes TwoPaneView and DualScreenInfo classes so you can develop apps for

dual-screen devices.

Follow these steps to add dual-screen capabilities to a Xamarin.Forms app:

Xamarin.Forms.DualScreen.DualScreenService.Init(this);

ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation
 | ConfigChanges.ScreenLayout | ConfigChanges.SmallestScreenSize | ConfigChanges.UiMode

1. Open the NuGet Package ManagerNuGet Package Manager dialog for your solution.

2. Under the BrowseBrowse tab, search for Xamarin.Forms.DualScreen .

3. Install the Xamarin.Forms.DualScreen package to your solution.

4. Add the following initialization method call to the Android project's MainActivity class, in the OnCreate

event:

This method is required for the app to be able to detect changes in the app's state, such as being spanned

across two screens.

5. Update the Activity attribute on the Android project's MainActivity class, so that it includes all these

ConfigurationChanges options:

These values are required so that configuration changes and span state can be more reliably reported. By

default only two are added to Xamarin.Forms projects, so remember to add the rest for reliable dual-

screen support.

If the DualScreenInfo class or TwoPaneView layout aren't working as expected, double-check the set-up

instructions on this page. Omitting or misconfiguring the Init method or the ConfigurationChanges attribute

values are common causes of errors.

Review the Xamarin.Forms dual-screen samples for additional guidance and reference implementation.

Once you've added the NuGet, add dual-screen features to your app with the following guidance:

Dual-screen design patterns - When considering how to best utilize multiple screens on a dual-screen device,

refer to this pattern guidance to find the best fit for your application interface.

TwoPaneView layout - The Xamarin.Forms TwoPaneView class, inspired by the UWP control of the same name,

is a cross-platform layout optimized for dual-screen devices.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dual-screen/index.md
https://docs.microsoft.com/en-us/dual-screen/xamarin/samples

DualScreenInfo helper class - The DualScreenInfo class enables you to determine which pane your view is

on, how big it is, what posture the device is in, the angle of the hinge, and more.

Dual-screen triggers - The Xamarin.Forms.DualScreen namespace includes two state triggers that trigger a

VisualState change when the view mode of the attached layout, or window, changes.

Visit the dual-screen developer docs for more information.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dual-screen/

Xamarin.Forms dual-screen design patterns
 7/8/2021 • 2 minutes to read • Edit Online

 Extended canvas pattern

 Download the sample

This guide introduces our recommended design patterns for dual-screen devices with code and samples to

assist you in creating interfaces that provide engaging and useful user experiences.

The extended canvas pattern treats both screens as one large canvas for displaying a map, image, spreadsheet,

or other such content that benefits from spreading to consume the maximum space:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dual-screen/design-patterns.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-dualscreendemos/

<ContentPage xmlns:local="clr-namespace:Xamarin.Duo.Forms.Samples"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:d="http://xamarin.com/schemas/2014/forms/design"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 x:Class="Xamarin.Duo.Forms.Samples.ExtendCanvas">
 <Grid>
 <WebView x:Name="webView"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 <SearchBar x:Name="searchBar"
 Placeholder="Find a place..."
 BackgroundColor="DarkGray"
 Opacity="0.8"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="Start" />
 </Grid>
</ContentPage>

 Master-detail pattern

In this example. the Grid and inner content will expand to consume all of the screen available, whether

displayed on a single screen, or spanned across two screens.

The master-detail pattern is for when the master view, typically a list on the left, provides content from which a

user selects to view details about that item on the right:

<ContentPage xmlns:local="clr-namespace:Xamarin.Duo.Forms.Samples"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:dualScreen="clr-namespace:Xamarin.Forms.DualScreen;assembly=Xamarin.Forms.DualScreen"
 x:Class="Xamarin.Duo.Forms.Samples.MasterDetail">
 <dualScreen:TwoPaneView MinWideModeWidth="4000"
 MinTallModeHeight="4000">
 <dualScreen:TwoPaneView.Pane1>
 <local:Master x:Name="masterPage" />
 </dualScreen:TwoPaneView.Pane1>
 <dualScreen:TwoPaneView.Pane2>
 <local:Details x:Name="detailsPage" />
 </dualScreen:TwoPaneView.Pane2>
 </dualScreen:TwoPaneView>
</ContentPage>

 Two page pattern

In this example, you can make use of TwoPaneView to set a list on one pane, and a detail view on the other.

The two page pattern is ideal for content that lends itself to a two-up layout, such as a document reader, notes,

or an art-board:

<Grid x:Name="layout">
 <CollectionView x:Name="cv"
 BackgroundColor="LightGray">
 <CollectionView.ItemsLayout>
 <GridItemsLayout SnapPointsAlignment="Start"
 SnapPointsType="MandatorySingle"
 Orientation="Horizontal"
 HorizontalItemSpacing="{Binding Source={x:Reference mainPage},
Path=HingeWidth}" />
 </CollectionView.ItemsLayout>
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Frame BackgroundColor="LightGray"
 Padding="0"
 Margin="0"
 WidthRequest="{Binding Source={x:Reference mainPage}, Path=ContentWidth}"
 HeightRequest="{Binding Source={x:Reference mainPage}, Path=ContentHeight}">
 <Frame Margin="20"
 BackgroundColor="White">
 <Label FontSize="Large"
 Text="{Binding .}"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="Center"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 </Frame>
 </Frame>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</Grid>

 Dual view pattern

The CollectionView , with a grid layout that splits on the hinge width, makes for an ideal approach to deliver this

dual-screen experience.

The dual view pattern may look just like the "Two page" view, but the distinction is in the content and user

scenario. In this pattern, you are comparing content side by side, perhaps to edit a document or photo, to

compare different restaurant menus, or to diff a merge conflict for code files:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<ContentPage xmlns:local="clr-namespace:Xamarin.Duo.Forms.Samples"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:dualScreen="clr-namespace:Xamarin.Forms.DualScreen;assembly=Xamarin.Forms.DualScreen"
 x:Class="Xamarin.Duo.Forms.Samples.DualViewListPage">
 <dualScreen:TwoPaneView>
 <dualScreen:TwoPaneView.Pane1>
 <CollectionView x:Name="mapList"
 SelectionMode="Single">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10,5,10,5">
 <Frame Visual="Material"
 BorderColor="LightGray">
 <StackLayout Padding="5">
 <Label FontSize="Title"
 Text="{Binding Title}" />
 </StackLayout>
 </Frame>
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </dualScreen:TwoPaneView.Pane1>
 <dualScreen:TwoPaneView.Pane2>
 <local:DualViewMap x:Name="mapPage" />
 </dualScreen:TwoPaneView.Pane2>
 </dualScreen:TwoPaneView>
</ContentPage>

 Companion pattern
The companion pattern demonstrates how you might use the second screen to provide a second level of content

related to the primary view, like in the case of a drawing app, a game, or media editing:

<ContentPage xmlns:local="clr-namespace:Xamarin.Duo.Forms.Samples"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:dualscreen="clr-namespace:Xamarin.Forms.DualScreen;assembly=Xamarin.Forms.DualScreen"
 x:Name="mainPage"
 x:Class="Xamarin.Duo.Forms.Samples.CompanionPane"
 BackgroundColor="LightGray"
 Visual="Material">
 <dualscreen:TwoPaneView x:Name="twoPaneView"
 MinWideModeWidth="4000"
 MinTallModeHeight="4000">
 <dualscreen:TwoPaneView.Pane1>
 <CarouselView x:Name="cv"
 BackgroundColor="LightGray"
 IsScrollAnimated="False" >
 <CarouselView.ItemTemplate>
 <DataTemplate>
 <Frame BackgroundColor="LightGray"
 Padding="0"
 Margin="0"
 WidthRequest="{Binding Source={x:Reference twoPaneView}, Path=Pane1.Width}"
 HeightRequest="{Binding Source={x:Reference twoPaneView},
Path=Pane1.Height}">
 <Frame Margin="20"
 BackgroundColor="White">
 <Label FontSize="Large"
 Text="{Binding ., StringFormat='Slide Content {0}'}"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="Center"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 </Frame>
 </Frame>
 </DataTemplate>
 </CarouselView.ItemTemplate>
 </CarouselView>
 </dualscreen:TwoPaneView.Pane1>
 <dualscreen:TwoPaneView.Pane2>
 <CollectionView x:Name="indicators"
 SelectionMode="Single"
 Margin="20, 20, 20, 20"
 BackgroundColor="LightGray"

 BackgroundColor="LightGray"
 WidthRequest="{Binding Source={x:Reference twoPaneView}, Path=Pane2.Width}"
 ItemsSource="{Binding Source={x:Reference cv}, Path=ItemsSource}">
 <CollectionView.Resources>
 <ResourceDictionary>
 <Style TargetType="Frame">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="Padding"
 Value="0" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Selected">
 <VisualState.Setters>
 <Setter Property="BorderColor"
 Value="Green" />
 <Setter Property="Padding"
 Value="1" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>
 </ResourceDictionary>
 </CollectionView.Resources>
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="10" />
 </CollectionView.ItemsLayout>
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Frame WidthRequest="{Binding Source={x:Reference twoPaneView}, Path=Pane2.Width}"
 CornerRadius="10"
 HeightRequest="60"
 BackgroundColor="White"
 Margin="0">
 <StackLayout HorizontalOptions="Fill"
 VerticalOptions="Fill"
 Orientation="Horizontal">
 <Label FontSize="Micro"
 Padding="20,0,20,0"
 VerticalTextAlignment="Center"
 WidthRequest="140" Text="{Binding ., StringFormat='Slide Content
{0}'}" />
 <Label FontSize="Small"
 Padding="20,0,20,0"
 VerticalTextAlignment="Center"
 HorizontalOptions="FillAndExpand"
 BackgroundColor="DarkGray"
 Grid.Column="1"
 Text="{Binding ., StringFormat='Slide {0}'}" />
 </StackLayout>
 </Frame>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </dualscreen:TwoPaneView.Pane2>
 </dualscreen:TwoPaneView>
</ContentPage>

 Related links
DualScreen (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-dualscreendemos/

Create apps for dual screen devices

Xamarin.Forms TwoPaneView layout
 7/8/2021 • 2 minutes to read • Edit Online

 Set up TwoPaneView

TIPTIP

 Understand TwoPaneView modes

 Control TwoPaneView when it's only on one screen

 Download the sample

The TwoPaneView class represents a container with two views that size and position content in the available

space, either side-by-side or top-to-bottom. TwoPaneView inherits from Grid so the easiest way to think about

these properties is as if they are being applied to a grid.

Follow these instructions to create a dual-screen layout in your app:

<ContentPage
 xmlns:dualScreen="clr-namespace:Xamarin.Forms.DualScreen;assembly=Xamarin.Forms.DualScreen">
 <dualScreen:TwoPaneView>
 <dualScreen:TwoPaneView.Pane1>
 <StackLayout>
 <Label Text="Pane1 Content" />
 </StackLayout>
 </dualScreen:TwoPaneView.Pane1>
 <dualScreen:TwoPaneView.Pane2>
 <StackLayout>
 <Label Text="Pane2 Content" />
 </StackLayout>
 </dualScreen:TwoPaneView.Pane2>
 </dualScreen:TwoPaneView>
</ContentPage>

1. Follow the get started instructions to add the NuGet and configure the Android MainActivity class.

2. Start with a basic TwoPaneView using the following XAML:

The above XAML omits many common attributes from the ContentPage element. When adding a TwoPaneView to

your app, remember to declare the xmlns:dualScreen namespace as shown.

Only one of these modes can be active:

SinglePane only one pane is currently visible.

Wide the two panes are laid out horizontally. One pane is on the left and the other is on the right. When on

two screens this is the mode when the device is portrait.

Tall the two panes are laid out vertically. One pane is on top and the other is on bottom. When on two

screens this is the mode when the device is landscape.

The following properties apply when the TwoPaneView is occupying a single screen:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dual-screen/twopaneview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-dualscreendemos/

IMPORTANTIMPORTANT

 Properties that apply when on one screen or two

 Related links

MinTallModeHeight indicates the minimum height the control must be to enter tall mode.

MinWideModeWidth indicates the minimum width the control must be to enter wide mode.

Pane1Length sets the width of Pane1 in Wide mode, the height of Pane1 in Tall mode, and has no effect in

SinglePane mode.

Pane2Length sets the width of Pane2 in Wide mode, the height of Pane2 in Tall mode, and has no effect in

SinglePane mode.

If the TwoPaneView is spanned across two screens these properties have no effect.

The following properties apply when the TwoPaneView is occupying a single screen or two screens:

TallModeConfiguration indicates, when in tall mode, the Top/Bottom arrangement or if you only want a

single pane visible as defined by the TwoPaneViewPriority.

WideModeConfiguration indicates, when in wide mode, the Left/Right arrangement or if you only want a

single pane visible as defined by the TwoPaneViewPriority.

PanePriority determines whether to show Pane1 or Pane2 if in SinglePane mode.

DualScreen (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-dualscreendemos/

Xamarin.Forms DualScreenInfo helper class
 7/8/2021 • 3 minutes to read • Edit Online

 Configure DualScreenInfo

 Properties

 Poll hinge angle on Android and UWP

 Download the sample

The DualScreenInfo class enables you to determine which pane your view is on, how big it is, what posture the

device is in, the angle of the hinge, and more.

Follow these instructions to create a dual-screen layout in your app:

1. Follow the get started instructions to add the NuGet and configure the Android MainActivity class.

2. Add using Xamarin.Forms.DualScreen; to your class file.

3. Use the DualScreenInfo.Current class in your app.

SpanningBounds returns, when spanned across two screens, two rectangles indicating the bounds of each

visible area. If the window isn't spanned this will return an empty array.

HingeBounds indicates the position of the hinge on the screen.

IsLandscape indicates if the device is landscape. This is useful because native orientation APIs don't report

orientation correctly when an application is spanned.

SpanMode indicates if the layout is in tall, wide, or single pane mode.

In addition, the PropertyChanged event fires when any properties change, and the HingeAngleChanged event fires

when the hinge angle changes.

The following method is available when accessing DualScreenInfo from Android and UWP platform projects:

GetHingeAngleAsync retrieves the current angle of the device hinge. When using the simulator the

HingeAngle can be set by modifying the Pressure sensor.

This method can be invoked from custom renderers on Android and UWP. The following code shows an Android

custom renderer example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dual-screen/dual-screen-info.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-dualscreendemos/

public class HingeAngleLabelRenderer : Xamarin.Forms.Platform.Android.FastRenderers.LabelRenderer
{
 System.Timers.Timer _hingeTimer;
 public HingeAngleLabelRenderer(Context context) : base(context)
 {
 }

 async void OnTimerElapsed(object sender, System.Timers.ElapsedEventArgs e)
 {
 if (_hingeTimer == null)
 return;

 _hingeTimer.Stop();
 var hingeAngle = await DualScreenInfo.Current.GetHingeAngleAsync();

 Device.BeginInvokeOnMainThread(() =>
 {
 if (_hingeTimer != null)
 Element.Text = hingeAngle.ToString();
 });

 if (_hingeTimer != null)
 _hingeTimer.Start();
 }

 protected override void OnElementChanged(ElementChangedEventArgs<Label> e)
 {
 base.OnElementChanged(e);

 if (_hingeTimer == null)
 {
 _hingeTimer = new System.Timers.Timer(100);
 _hingeTimer.Elapsed += OnTimerElapsed;
 _hingeTimer.Start();
 }
 }

 protected override void Dispose(bool disposing)
 {
 if (_hingeTimer != null)
 {
 _hingeTimer.Elapsed -= OnTimerElapsed;
 _hingeTimer.Stop();
 _hingeTimer = null;
 }

 base.Dispose(disposing);
 }
}

 Access DualScreenInfo in your application window
The following code shows how to access DualScreenInfo for your application window:

DualScreenInfo currentWindow = DualScreenInfo.Current;

// Retrieve absolute position of the hinge on the screen
var hingeBounds = currentWindow.HingeBounds;

// check if app window is spanned across two screens
if(currentWindow.SpanMode == TwoPaneViewMode.SinglePane)
{
 // window is only on one screen
}
else if(currentWindow.SpanMode == TwoPaneViewMode.Tall)
{
 // window is spanned across two screens and oriented top-bottom
}
else if(currentWindow.SpanMode == TwoPaneViewMode.Wide)
{
 // window is spanned across two screens and oriented side-by-side
}

// Detect if any of the properties on DualScreenInfo change.
// This is useful to detect if the app window gets spanned
// across two screens or put on only one
currentWindow.PropertyChanged += OnDualScreenInfoChanged;

 Apply DualScreenInfo to layouts

<Grid x:Name="grid" ColumnSpacing="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="{Binding Column1Width}" />
 <ColumnDefinition Width="{Binding Column2Width}" />
 <ColumnDefinition Width="{Binding Column3Width}" />
 </Grid.ColumnDefinitions>
 <Label FontSize="Large"
 VerticalOptions="Center"
 HorizontalOptions="End"
 Text="I should be on the left side of the hinge" />
 <Label FontSize="Large"
 VerticalOptions="Center"
 HorizontalOptions="Start"
 Grid.Column="2"
 Text="I should be on the right side of the hinge" />
</Grid>

The DualScreenInfo class has a constructor that can take a layout and will give you information about the layout

relative to the devices two screens:

public partial class GridUsingDualScreenInfo : ContentPage
{
 public DualScreenInfo DualScreenInfo { get; }
 public double Column1Width { get; set; }
 public double Column2Width { get; set; }
 public double Column3Width { get; set; }

 public GridUsingDualScreenInfo()
 {
 InitializeComponent();
 DualScreenInfo = new DualScreenInfo(grid);
 BindingContext = this;
 }

 protected override void OnAppearing()
 {
 base.OnAppearing();
 DualScreenInfo.PropertyChanged += OnInfoPropertyChanged;
 UpdateColumns();
 }

 protected override void OnDisappearing()
 {
 base.OnDisappearing();
 DualScreenInfo.PropertyChanged -= OnInfoPropertyChanged;
 }

 void UpdateColumns()
 {
 // Check if grid is on two screens
 if (DualScreenInfo.SpanningBounds.Length > 0)
 {
 // set the width of the first column to the width of the layout
 // that's on the left screen
 Column1Width = DualScreenInfo.SpanningBounds[0].Width;

 // set the middle column to the width of the hinge
 Column2Width = DualScreenInfo.HingeBounds.Width;

 // set the width of the third column to the width of the layout
 // that's on the right screen
 Column3Width = DualScreenInfo.SpanningBounds[1].Width;
 }
 else
 {
 Column1Width = 100;
 Column2Width = 0;
 Column3Width = 100;
 }

 OnPropertyChanged(nameof(Column1Width));
 OnPropertyChanged(nameof(Column2Width));
 OnPropertyChanged(nameof(Column3Width));

 }

 void OnInfoPropertyChanged(object sender, System.ComponentModel.PropertyChangedEventArgs e)
 {
 UpdateColumns();
 }
}

The following screenshot shows the resulting layout:

 Related links
DualScreen (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-dualscreendemos/

Xamarin.Forms dual-screen triggers
 11/2/2020 • 2 minutes to read • Edit Online

 Span mode state trigger

NOTENOTE

The Xamarin.Forms.DualScreen namespace includes two state triggers:

SpanModeStateTrigger triggers a VisualState change when the view mode of the attached layout changes.

WindowSpanModeStateTrigger triggers a VisualState change when the view mode of the window changes.

For more information about state triggers, see State triggers.

A SpanModeStateTrigger triggers a VisualState change when the span mode of the attached layout changes.

This trigger has a single bindable property:

SpanMode , of type TwoPaneViewMode , which indicates the span mode to which the VisualState should be

applied.

The SpanModeStateTrigger derives from the StateTriggerBase class and can therefore attach an event handler to the

IsActiveChanged event.

The following XAML example shows a Grid that includes SpanModeStateTrigger objects:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/dual-screen/triggers.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen.spanmodestatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen.spanmodestatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen.spanmodestatetrigger.spanmode#xamarin_forms_dualscreen_spanmodestatetrigger_spanmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen.spanmodestatetrigger.spanmode#xamarin_forms_dualscreen_spanmodestatetrigger_spanmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen.spanmodestatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="GridSingle">
 <VisualState.StateTriggers>
 <dualScreen:SpanModeStateTrigger SpanMode="SinglePane"/>
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Green" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="GridWide">
 <VisualState.StateTriggers>
 <dualScreen:SpanModeStateTrigger SpanMode="Wide" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Red" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="GridTall">
 <VisualState.StateTriggers>
 <dualScreen:SpanModeStateTrigger SpanMode="Tall" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Purple" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 ...
</Grid>

 Window span mode state trigger

NOTENOTE

In this example, visual states are set on a Grid object. The background color of the Grid is green when only

one pane is shown, is red when panes are shown side by side, and is purple when panes are shown top-bottom.

A WindowSpanModeStateTrigger triggers a VisualState change when the span mode of the window changes. This

trigger has a single bindable property:

SpanMode , of type TwoPaneViewMode , which indicates the span mode to which the VisualState should be

applied.

The WindowSpanModeStateTrigger derives from the StateTriggerBase class and can therefore attach an event handler

to the IsActiveChanged event.

The following XAML example shows a Grid that includes WindowSpanModeStateTrigger objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen.spanmodestatetrigger.spanmode#xamarin_forms_dualscreen_spanmodestatetrigger_spanmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dualscreen.spanmodestatetrigger.spanmode#xamarin_forms_dualscreen_spanmodestatetrigger_spanmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="NotSpanned">
 <VisualState.StateTriggers>
 <dualScreen:WindowSpanModeStateTrigger SpanMode="SinglePane"/>
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Red" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Spanned">
 <VisualState.StateTriggers>
 <dualScreen:WindowSpanModeStateTrigger SpanMode="Wide" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Green" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Tall">
 <VisualState.StateTriggers>
 <dualScreen:WindowSpanModeStateTrigger SpanMode="Tall" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Yellow" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 ...
</Grid>

 Related links

In this example, visual states are set on a Grid object. The background color of the Grid is red when only one

pane is shown, is green when panes are shown side by side, and is yellow when panes are shown top-bottom.

Xamarin.Forms Triggers

Xamarin.Forms Visual State Manager

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

Xamarin.Forms Effects
 11/2/2020 • 2 minutes to read • Edit Online

 Introduction to Effects

 Creating an Effect

 Passing Parameters to an Effect

 Invoking Events from an Effect

 Reusable RoundEffect

Xamarin.Forms user interfaces are rendered using the native controls of the target platform, allowing

Xamarin.Forms applications to retain the appropriate look and feel for each platform. Effects allow the native

controls on each platform to be customized without having to resort to a custom renderer implementation.

Effects allow the native controls on each platform to be customized, and are typically used for small styling

changes. This article provides an introduction to effects, outlines the boundary between effects and custom

renderers, and describes the PlatformEffect class.

Effects simplify the customization of a control. This article demonstrates how to create an effect that changes the

background color of the Entry control when the control gains focus.

Creating an effect that's configured through parameters enables the effect to be reused. These articles

demonstrate using properties to pass parameters to an effect, and changing a parameter at runtime.

Effects can invoke events. This article shows how to create an event that implements low-level multi-touch

finger tracking and signals an application for touch presses, moves, and releases.

RoundEffect is a reusable effect that can be applied to any control deriving from VisualElement to render the

control as a circle. This effect can be used to create circular images, circular buttons, or other circular controls.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

Introduction to Effects
 11/2/2020 • 3 minutes to read • Edit Online

 Why Use an Effect over a Custom Renderer?

 Subclassing the PlatformEffect Class

P L AT F O RMP L AT F O RM N A M ESPA C EN A M ESPA C E C O N TA IN ERC O N TA IN ER C O N T RO LC O N T RO L

iOS Xamarin.Forms.Platform.iOS UIView UIView

Android Xamarin.Forms.Platform.An
droid

ViewGroup View

Universal Windows Platform
(UWP)

Xamarin.Forms.Platform.UW
P

FrameworkElement FrameworkElement

Effects allow the native controls on each platform to be customized, and are typically used for small styling

changes. This article provides an introduction to effects, outlines the boundary between effects and custom

renderers, and describes the PlatformEffect class.

Xamarin.Forms Pages, Layouts and Controls presents a common API to describe cross-platform mobile user

interfaces. Each page, layout, and control is rendered differently on each platform using a Renderer class that in

turn creates a native control (corresponding to the Xamarin.Forms representation), arranges it on the screen,

and adds the behavior specified in the shared code.

Developers can implement their own custom Renderer classes to customize the appearance and/or behavior of

a control. However, implementing a custom renderer class to perform a simple control customization is often a

heavy-weight response. Effects simplify this process, allowing the native controls on each platform to be more

easily customized.

Effects are created in platform-specific projects by subclassing the PlatformEffect control, and then the effects

are consumed by attaching them to an appropriate control in a Xamarin.Forms .NET Standard library or Shared

Library project.

Effects simplify the customization of a control, are reusable, and can be parameterized to further increase reuse.

Anything that can be achieved with an effect can also be achieved with a custom renderer. However, custom

renderers offer more flexibility and customization than effects. The following guidelines list the circumstances in

which to choose an effect over a custom renderer :

An effect is recommended when changing the properties of a platform-specific control will achieve the

desired result.

A custom renderer is required when there's a need to override methods of a platform-specific control.

A custom renderer is required when there's a need to replace the platform-specific control that implements a

Xamarin.Forms control.

The following table lists the namespace for the PlatformEffect class on each platform, and the types of its

properties:

Each platform-specific PlatformEffect class exposes the following properties:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/introduction.md

 Related Links

Container – references the platform-specific control being used to implement the layout.

Control – references the platform-specific control being used to implement the Xamarin.Forms control.

Element – references the Xamarin.Forms control that's being rendered.

Effects do not have type information about the container, control, or element they are attached to because they

can be attached to any element. Therefore, when an effect is attached to an element that it doesn't support it

should degrade gracefully or throw an exception. However, the Container , Control , and Element properties

can be cast to their implementing type. For more information about these types see Renderer Base Classes and

Native Controls.

Each platform-specific PlatformEffect class exposes the following methods, which must be overridden to

implement an effect:

OnAttached – called when an effect is attached to a Xamarin.Forms control. An overridden version of this

method, in each platform-specific effect class, is the place to perform customization of the control, along with

exception handling in case the effect cannot be applied to the specified Xamarin.Forms control.

OnDetached – called when an effect is detached from a Xamarin.Forms control. An overridden version of this

method, in each platform-specific effect class, is the place to perform any effect cleanup such as de-

registering an event handler.

In addition, the PlatformEffect exposes the OnElementPropertyChanged method, which can also be overridden.

This method is called when a property of the element has changed. An overridden version of this method, in

each platform-specific effect class, is the place to respond to bindable property changes on the Xamarin.Forms

control. A check for the property that's changed should always be made, as this override can be called many

times.

Custom Renderers

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect.onattached#xamarin_forms_effect_onattached
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect.ondetached#xamarin_forms_effect_ondetached
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformeffect-2.onelementpropertychanged#xamarin_forms_platformeffect_2_onelementpropertychanged_system_componentmodel_propertychangedeventargs_

Creating an Effect
 7/8/2021 • 6 minutes to read • Edit Online

NOTENOTE

 Download the sample

Effects simplify the customization of a control. This article demonstrates how to create an effect that changes the

background color of the Entry control when the control gains focus.

The process for creating an effect in each platform-specific project is as follows:

1. Create a subclass of the PlatformEffect class.

2. Override the OnAttached method and write logic to customize the control.

3. Override the OnDetached method and write logic to clean up the control customization, if required.

4. Add a ResolutionGroupName attribute to the effect class. This attribute sets a company wide namespace for

effects, preventing collisions with other effects with the same name. Note that this attribute can only be

applied once per project.

5. Add an ExportEffect attribute to the effect class. This attribute registers the effect with a unique ID that's

used by Xamarin.Forms, along with the group name, to locate the effect prior to applying it to a control. The

attribute takes two parameters – the type name of the effect, and a unique string that will be used to locate

the effect prior to applying it to a control.

The effect can then be consumed by attaching it to the appropriate control.

It's optional to provide an effect in each platform project. Attempting to use an effect when one isn't registered will return

a non-null value that does nothing.

The sample application demonstrates a FocusEffect that changes the background color of a control when it

gains focus. The following diagram illustrates the responsibilities of each project in the sample application, along

with the relationships between them:

An Entry control on the HomePage is customized by the FocusEffect class in each platform-specific project.

Each FocusEffect class derives from the PlatformEffect class for each platform. This results in the Entry

control being rendered with a platform-specific background color, which changes when the control gains focus,

as shown in the following screenshots:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/creating.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-focuseffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resolutiongroupnameattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.exporteffectattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

 Creating the Effect on Each Platform

 iOS Project

The following sections discuss the platform-specific implementation of the FocusEffect class.

The following code example shows the FocusEffect implementation for the iOS project:

using Xamarin.Forms;
using Xamarin.Forms.Platform.iOS;

[assembly:ResolutionGroupName ("MyCompany")]
[assembly:ExportEffect (typeof(EffectsDemo.iOS.FocusEffect), nameof(EffectsDemo.iOS.FocusEffect))]
namespace EffectsDemo.iOS
{
 public class FocusEffect : PlatformEffect
 {
 UIColor backgroundColor;

 protected override void OnAttached ()
 {
 try {
 Control.BackgroundColor = backgroundColor = UIColor.FromRGB (204, 153, 255);
 } catch (Exception ex) {
 Console.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }

 protected override void OnElementPropertyChanged (PropertyChangedEventArgs args)
 {
 base.OnElementPropertyChanged (args);

 try {
 if (args.PropertyName == "IsFocused") {
 if (Control.BackgroundColor == backgroundColor) {
 Control.BackgroundColor = UIColor.White;
 } else {
 Control.BackgroundColor = backgroundColor;
 }
 }
 } catch (Exception ex) {
 Console.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }
 }
}

 Android Project

The OnAttached method sets the BackgroundColor property of the control to light purple with the

UIColor.FromRGB method, and also stores this color in a field. This functionality is wrapped in a try / catch

block in case the control the effect is attached to does not have a BackgroundColor property. No implementation

is provided by the OnDetached method because no cleanup is necessary.

The OnElementPropertyChanged override responds to bindable property changes on the Xamarin.Forms control.

When the IsFocused property changes, the BackgroundColor property of the control is changed to white if the

control has focus, otherwise it's changed to light purple. This functionality is wrapped in a try / catch block in

case the control the effect is attached to does not have a BackgroundColor property.

The following code example shows the FocusEffect implementation for the Android project:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isfocused#xamarin_forms_visualelement_isfocused

using System;
using Xamarin.Forms;
using Xamarin.Forms.Platform.Android;

[assembly: ResolutionGroupName("MyCompany")]
[assembly: ExportEffect(typeof(EffectsDemo.Droid.FocusEffect), nameof(EffectsDemo.Droid.FocusEffect))]
namespace EffectsDemo.Droid
{
 public class FocusEffect : PlatformEffect
 {
 Android.Graphics.Color originalBackgroundColor = new Android.Graphics.Color(0, 0, 0, 0);
 Android.Graphics.Color backgroundColor;

 protected override void OnAttached()
 {
 try
 {
 backgroundColor = Android.Graphics.Color.LightGreen;
 Control.SetBackgroundColor(backgroundColor);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached()
 {
 }

 protected override void OnElementPropertyChanged(System.ComponentModel.PropertyChangedEventArgs
args)
 {
 base.OnElementPropertyChanged(args);
 try
 {
 if (args.PropertyName == "IsFocused")
 {
 if (((Android.Graphics.Drawables.ColorDrawable)Control.Background).Color ==
backgroundColor)
 {
 Control.SetBackgroundColor(originalBackgroundColor);
 }
 else
 {
 Control.SetBackgroundColor(backgroundColor);
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control. Error: ", ex.Message);
 }
 }
 }
}

The OnAttached method calls the SetBackgroundColor method to set the background color of the control to light

green, and also stores this color in a field. This functionality is wrapped in a try / catch block in case the

control the effect is attached to does not have a SetBackgroundColor property. No implementation is provided

by the OnDetached method because no cleanup is necessary.

The OnElementPropertyChanged override responds to bindable property changes on the Xamarin.Forms control.

When the IsFocused property changes, the background color of the control is changed to white if the control

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isfocused#xamarin_forms_visualelement_isfocused

 Universal Windows Platform Projects

using Xamarin.Forms;
using Xamarin.Forms.Platform.UWP;

[assembly: ResolutionGroupName("MyCompany")]
[assembly: ExportEffect(typeof(EffectsDemo.UWP.FocusEffect), nameof(EffectsDemo.UWP.FocusEffect))]
namespace EffectsDemo.UWP
{
 public class FocusEffect : PlatformEffect
 {
 protected override void OnAttached()
 {
 try
 {
 (Control as Windows.UI.Xaml.Controls.Control).Background = new SolidColorBrush(Colors.Cyan);
 (Control as FormsTextBox).BackgroundFocusBrush = new SolidColorBrush(Colors.White);
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached()
 {
 }
 }
}

 Consuming the Effect

NOTENOTE

 Consuming the Effect in XAML

has focus, otherwise it's changed to light green. This functionality is wrapped in a try / catch block in case the

control the effect is attached to does not have a BackgroundColor property.

The following code example shows the FocusEffect implementation for Universal Windows Platform (UWP)

projects:

The OnAttached method sets the Background property of the control to cyan, and sets the BackgroundFocusBrush

property to white. This functionality is wrapped in a try / catch block in case the control the effect is attached

to lacks these properties. No implementation is provided by the OnDetached method because no cleanup is

necessary.

The process for consuming an effect from a Xamarin.Forms .NET Standard library or Shared Library project is as

follows:

1. Declare a control that will be customized by the effect.

2. Attach the effect to the control by adding it to the control's Effects collection.

An effect instance can only be attached to a single control. Therefore, an effect must be resolved twice to use it on two

controls.

The following XAML code example shows an Entry control to which the FocusEffect is attached:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

<Entry Text="Effect attached to an Entry" ...>
 <Entry.Effects>
 <local:FocusEffect />
 </Entry.Effects>
 ...
</Entry>

public class FocusEffect : RoutingEffect
{
 public FocusEffect () : base ($"MyCompany.{nameof(FocusEffect)}")
 {
 }
}

 Consuming the Effect in C#

var entry = new Entry {
 Text = "Effect attached to an Entry",
 ...
};

public HomePageCS ()
{
 ...
 entry.Effects.Add (Effect.Resolve ($"MyCompany.{nameof(FocusEffect)}"));
 ...
}

 Summary

The FocusEffect class in the .NET Standard library supports effect consumption in XAML, and is shown in the

following code example:

The FocusEffect class subclasses the RoutingEffect class, which represents a platform-independent effect that

wraps an inner effect that is usually platform-specific. The FocusEffect class calls the base class constructor,

passing in a parameter consisting of a concatenation of the resolution group name (specified using the

ResolutionGroupName attribute on the effect class), and the unique ID that was specified using the ExportEffect

attribute on the effect class. Therefore, when the Entry is initialized at runtime, a new instance of the

MyCompany.FocusEffect is added to the control's Effects collection.

Effects can also be attached to controls by using a behavior, or by using attached properties. For more

information about attaching an effect to a control by using a behavior, see Reusable EffectBehavior. For more

information about attaching an effect to a control by using attached properties, see Passing Parameters to an

Effect.

The equivalent Entry in C# is shown in the following code example:

The FocusEffect is attached to the Entry instance by adding the effect to the control's Effects collection, as

demonstrated in the following code example:

The Effect.Resolve returns an Effect for the specified name, which is a concatenation of the resolution group

name (specified using the ResolutionGroupName attribute on the effect class), and the unique ID that was

specified using the ExportEffect attribute on the effect class. If a platform doesn't provide the effect, the

Effect.Resolve method will return a non- null value.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routingeffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resolutiongroupnameattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.exporteffectattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect.resolve#xamarin_forms_effect_resolve_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resolutiongroupnameattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.exporteffectattribute

 Related Links

This article demonstrated how to create an effect that changes the background color of the Entry control when

the control gains focus.

Custom Renderers

Effect

PlatformEffect

Background Color Effect (sample)

Focus Effect (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformeffect-2
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-backgroundcoloreffect
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-focuseffect

Passing Parameters to an Effect
 11/2/2020 • 2 minutes to read • Edit Online

 Passing Effect Parameters as Common Language Runtime Properties

 Passing Effect Parameters as Attached Properties

Effect parameters can be defined by properties, enabling the effect to be reused. Parameters can then be passed

to the effect by specifying values for each property when instantiating the effect.

Common Language Runtime (CLR) properties can be used to define effect parameters that don't respond to

runtime property changes. This article demonstrates using CLR properties to pass parameters to an effect.

Attached properties can be used to define effect parameters that respond to runtime property changes. This

article demonstrates using attached properties to pass parameters to an effect, and changing a parameter at

runtime.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/passing-parameters/index.md

Passing Effect Parameters as Common Language
Runtime Properties

 7/8/2021 • 5 minutes to read • Edit Online

 Creating Effect Parameters

 Download the sample

Common Language Runtime (CLR) properties can be used to define effect parameters that don't respond to

runtime property changes. This article demonstrates using CLR properties to pass parameters to an effect.

The process for creating effect parameters that don't respond to runtime property changes is as follows:

1. Create a public class that subclasses the RoutingEffect class. The RoutingEffect class represents a

platform-independent effect that wraps an inner effect that is usually platform-specific.

2. Create a constructor that calls the base class constructor, passing in a concatenation of the resolution group

name, and the unique ID that was specified on each platform-specific effect class.

3. Add properties to the class for each parameter to be passed to the effect.

Parameters can then be passed to the effect by specifying values for each property when instantiating the effect.

The sample application demonstrates a ShadowEffect that adds a shadow to the text displayed by a Label

control. The following diagram illustrates the responsibilities of each project in the sample application, along

with the relationships between them:

A Label control on the HomePage is customized by the LabelShadowEffect in each platform-specific project.

Parameters are passed to each LabelShadowEffect through properties in the ShadowEffect class. Each

LabelShadowEffect class derives from the PlatformEffect class for each platform. This results in a shadow

being added to the text displayed by the Label control, as shown in the following screenshots:

A public class that subclasses the RoutingEffect class should be created to represent effect parameters, as

demonstrated in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/passing-parameters/clr-properties.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-shadoweffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routingeffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routingeffect

public class ShadowEffect : RoutingEffect
{
 public float Radius { get; set; }

 public Color Color { get; set; }

 public float DistanceX { get; set; }

 public float DistanceY { get; set; }

 public ShadowEffect () : base ("MyCompany.LabelShadowEffect")
 {
 }
}

 Consuming the Effect

<Label Text="Label Shadow Effect" ...>
 <Label.Effects>
 <local:ShadowEffect Radius="5" DistanceX="5" DistanceY="5">
 <local:ShadowEffect.Color>
 <OnPlatform x:TypeArguments="Color">
 <On Platform="iOS" Value="Black" />
 <On Platform="Android" Value="White" />
 <On Platform="UWP" Value="Red" />
 </OnPlatform>
 </local:ShadowEffect.Color>
 </local:ShadowEffect>
 </Label.Effects>
</Label>

The ShadowEffect contains four properties that represent parameters to be passed to each platform-specific

LabelShadowEffect . The class constructor calls the base class constructor, passing in a parameter consisting of a

concatenation of the resolution group name, and the unique ID that was specified on each platform-specific

effect class. Therefore, a new instance of the MyCompany.LabelShadowEffect will be added to a control's Effects

collection when a ShadowEffect is instantiated.

The following XAML code example shows a Label control to which the ShadowEffect is attached:

The equivalent Label in C# is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

var label = new Label {
 Text = "Label Shadow Effect",
 ...
};

Color color = Color.Default;
switch (Device.RuntimePlatform)
{
 case Device.iOS:
 color = Color.Black;
 break;
 case Device.Android:
 color = Color.White;
 break;
 case Device.UWP:
 color = Color.Red;
 break;
}

label.Effects.Add (new ShadowEffect {
 Radius = 5,
 Color = color,
 DistanceX = 5,
 DistanceY = 5
});

 Creating the Effect on each Platform

 iOS ProjectiOS Project

In both code examples, an instance of the ShadowEffect class is instantiated with values being specified for each

property, before being added to the control's Effects collection. Note that the ShadowEffect.Color property

uses platform-specific color values. For more information, see Device Class.

The following sections discuss the platform-specific implementation of the LabelShadowEffect class.

The following code example shows the LabelShadowEffect implementation for the iOS project:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects

[assembly:ResolutionGroupName ("MyCompany")]
[assembly:ExportEffect (typeof(LabelShadowEffect), "LabelShadowEffect")]
namespace EffectsDemo.iOS
{
 public class LabelShadowEffect : PlatformEffect
 {
 protected override void OnAttached ()
 {
 try {
 var effect = (ShadowEffect)Element.Effects.FirstOrDefault (e => e is ShadowEffect);
 if (effect != null) {
 Control.Layer.ShadowRadius = effect.Radius;
 Control.Layer.ShadowColor = effect.Color.ToCGColor ();
 Control.Layer.ShadowOffset = new CGSize (effect.DistanceX, effect.DistanceY);
 Control.Layer.ShadowOpacity = 1.0f;
 }
 } catch (Exception ex) {
 Console.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
 }
}

 Android ProjectAndroid Project

[assembly:ResolutionGroupName ("MyCompany")]
[assembly:ExportEffect (typeof(LabelShadowEffect), "LabelShadowEffect")]
namespace EffectsDemo.Droid
{
 public class LabelShadowEffect : PlatformEffect
 {
 protected override void OnAttached ()
 {
 try {
 var control = Control as Android.Widget.TextView;
 var effect = (ShadowEffect)Element.Effects.FirstOrDefault (e => e is ShadowEffect);
 if (effect != null) {
 float radius = effect.Radius;
 float distanceX = effect.DistanceX;
 float distanceY = effect.DistanceY;
 Android.Graphics.Color color = effect.Color.ToAndroid ();
 control.SetShadowLayer (radius, distanceX, distanceY, color);
 }
 } catch (Exception ex) {
 Console.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
 }
}

The OnAttached method retrieves the ShadowEffect instance, and sets Control.Layer properties to the

specified property values to create the shadow. This functionality is wrapped in a try / catch block in case the

control that the effect is attached to does not have the Control.Layer properties. No implementation is

provided by the OnDetached method because no cleanup is necessary.

The following code example shows the LabelShadowEffect implementation for the Android project:

 Universal Windows Platform ProjectUniversal Windows Platform Project

[assembly: ResolutionGroupName ("Xamarin")]
[assembly: ExportEffect (typeof(LabelShadowEffect), "LabelShadowEffect")]
namespace EffectsDemo.UWP
{
 public class LabelShadowEffect : PlatformEffect
 {
 bool shadowAdded = false;

 protected override void OnAttached ()
 {
 try {
 if (!shadowAdded) {
 var effect = (ShadowEffect)Element.Effects.FirstOrDefault (e => e is ShadowEffect);
 if (effect != null) {
 var textBlock = Control as Windows.UI.Xaml.Controls.TextBlock;
 var shadowLabel = new Label ();
 shadowLabel.Text = textBlock.Text;
 shadowLabel.FontAttributes = FontAttributes.Bold;
 shadowLabel.HorizontalOptions = LayoutOptions.Center;
 shadowLabel.VerticalOptions = LayoutOptions.CenterAndExpand;
 shadowLabel.TextColor = effect.Color;
 shadowLabel.TranslationX = effect.DistanceX;
 shadowLabel.TranslationY = effect.DistanceY;

 ((Grid)Element.Parent).Children.Insert (0, shadowLabel);
 shadowAdded = true;
 }
 }
 } catch (Exception ex) {
 Debug.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
 }
}

 Summary

The OnAttached method retrieves the ShadowEffect instance, and calls the TextView.SetShadowLayer method to

create a shadow using the specified property values. This functionality is wrapped in a try / catch block in case

the control that the effect is attached to does not have the Control.Layer properties. No implementation is

provided by the OnDetached method because no cleanup is necessary.

The following code example shows the LabelShadowEffect implementation for the Universal Windows Platform

(UWP) project:

The Universal Windows Platform doesn't provide a shadow effect, and so the LabelShadowEffect

implementation on both platforms simulates one by adding a second offset Label behind the primary Label .

The OnAttached method retrieves the ShadowEffect instance, creates the new Label , and sets some layout

properties on the Label . It then creates the shadow by setting the TextColor , TranslationX , and TranslationY

properties to control the color and location of the Label . The shadowLabel is then inserted offset behind the

primary Label . This functionality is wrapped in a try / catch block in case the control that the effect is

attached to does not have the Control.Layer properties. No implementation is provided by the OnDetached

method because no cleanup is necessary.

This article has demonstrated using CLR properties to pass parameters to an effect. CLR properties can be used

https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview.setshadowlayer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy

 Related Links

to define effect parameters that don't respond to runtime property changes.

Custom Renderers

Effect

PlatformEffect

RoutingEffect

Shadow Effect (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformeffect-2
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routingeffect
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-shadoweffect

Passing Effect Parameters as Attached Properties
 7/8/2021 • 10 minutes to read • Edit Online

NOTENOTE

 Download the sample

Attached properties can be used to define effect parameters that respond to runtime property changes. This

article demonstrates using attached properties to pass parameters to an effect, and changing a parameter at

runtime.

The process for creating effect parameters that respond to runtime property changes is as follows:

1. Create a static class that contains an attached property for each parameter to be passed to the effect.

2. Add an additional attached property to the class that will be used to control the addition or removal of the

effect to the control that the class will be attached to. Ensure that this attached property registers a

propertyChanged delegate that will be executed when the value of the property changes.

3. Create static getters and setters for each attached property.

4. Implement logic in the propertyChanged delegate to add and remove the effect.

5. Implement a nested class inside the static class, named after the effect, which subclasses the

RoutingEffect class. For the constructor, call the base class constructor, passing in a concatenation of the

resolution group name, and the unique ID that was specified on each platform-specific effect class.

Parameters can then be passed to the effect by adding the attached properties, and property values, to the

appropriate control. In addition, parameters can be changed at runtime by specifying a new attached property

value.

An attached property is a special type of bindable property, defined in one class but attached to other objects, and

recognizable in XAML as attributes that contain a class and a property name separated by a period. For more information,

see Attached Properties.

The sample application demonstrates a ShadowEffect that adds a shadow to the text displayed by a Label

control. In addition, the color of the shadow can be changed at runtime. The following diagram illustrates the

responsibilities of each project in the sample application, along with the relationships between them:

A Label control on the HomePage is customized by the LabelShadowEffect in each platform-specific project.

Parameters are passed to each LabelShadowEffect through attached properties in the ShadowEffect class. Each

LabelShadowEffect class derives from the PlatformEffect class for each platform. This results in a shadow

being added to the text displayed by the Label control, as shown in the following screenshots:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/passing-parameters/attached-properties.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-shadoweffectruntimechange
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

 Creating Effect Parameters

public static class ShadowEffect
{
 public static readonly BindableProperty HasShadowProperty =
 BindableProperty.CreateAttached ("HasShadow", typeof(bool), typeof(ShadowEffect), false,
propertyChanged: OnHasShadowChanged);
 public static readonly BindableProperty ColorProperty =
 BindableProperty.CreateAttached ("Color", typeof(Color), typeof(ShadowEffect), Color.Default);
 public static readonly BindableProperty RadiusProperty =
 BindableProperty.CreateAttached ("Radius", typeof(double), typeof(ShadowEffect), 1.0);
 public static readonly BindableProperty DistanceXProperty =
 BindableProperty.CreateAttached ("DistanceX", typeof(double), typeof(ShadowEffect), 0.0);
 public static readonly BindableProperty DistanceYProperty =
 BindableProperty.CreateAttached ("DistanceY", typeof(double), typeof(ShadowEffect), 0.0);

 public static bool GetHasShadow (BindableObject view)
 {
 return (bool)view.GetValue (HasShadowProperty);
 }

 public static void SetHasShadow (BindableObject view, bool value)
 {
 view.SetValue (HasShadowProperty, value);
 }
 ...

 static void OnHasShadowChanged (BindableObject bindable, object oldValue, object newValue)
 {
 var view = bindable as View;
 if (view == null) {
 return;
 }

 bool hasShadow = (bool)newValue;
 if (hasShadow) {
 view.Effects.Add (new LabelShadowEffect ());
 } else {
 var toRemove = view.Effects.FirstOrDefault (e => e is LabelShadowEffect);
 if (toRemove != null) {
 view.Effects.Remove (toRemove);
 }
 }
 }

 class LabelShadowEffect : RoutingEffect
 {
 public LabelShadowEffect () : base ("MyCompany.LabelShadowEffect")
 {
 }
 }
}

A static class should be created to represent effect parameters, as demonstrated in the following code

example:

 Consuming the Effect

<Label Text="Label Shadow Effect" ...
 local:ShadowEffect.HasShadow="true" local:ShadowEffect.Radius="5"
 local:ShadowEffect.DistanceX="5" local:ShadowEffect.DistanceY="5">
 <local:ShadowEffect.Color>
 <OnPlatform x:TypeArguments="Color">
 <On Platform="iOS" Value="Black" />
 <On Platform="Android" Value="White" />
 <On Platform="UWP" Value="Red" />
 </OnPlatform>
 </local:ShadowEffect.Color>
</Label>

The ShadowEffect contains five attached properties, with static getters and setters for each attached property.

Four of these properties represent parameters to be passed to each platform-specific LabelShadowEffect . The

ShadowEffect class also defines a HasShadow attached property that is used to control the addition or removal

of the effect to the control that the ShadowEffect class is attached to. This attached property registers the

OnHasShadowChanged method that will be executed when the value of the property changes. This method adds or

removes the effect based on the value of the HasShadow attached property.

The nested LabelShadowEffect class, which subclasses the RoutingEffect class, supports effect addition and

removal. The RoutingEffect class represents a platform-independent effect that wraps an inner effect that is

usually platform-specific. This simplifies the effect removal process, since there is no compile-time access to the

type information for a platform-specific effect. The LabelShadowEffect constructor calls the base class

constructor, passing in a parameter consisting of a concatenation of the resolution group name, and the unique

ID that was specified on each platform-specific effect class. This enables effect addition and removal in the

OnHasShadowChanged method, as follows:

Effect additionEffect addition – a new instance of the LabelShadowEffect is added to the control's Effects collection. This

replaces using the Effect.Resolve method to add the effect.

Effect removalEffect removal – the first instance of the LabelShadowEffect in the control's Effects collection is retrieved

and removed.

Each platform-specific LabelShadowEffect can be consumed by adding the attached properties to a Label

control, as demonstrated in the following XAML code example:

The equivalent Label in C# is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routingeffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect.resolve#xamarin_forms_effect_resolve_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

var label = new Label {
 Text = "Label Shadow Effect",
 ...
};

Color color = Color.Default;
switch (Device.RuntimePlatform)
{
 case Device.iOS:
 color = Color.Black;
 break;
 case Device.Android:
 color = Color.White;
 break;
 case Device.UWP:
 color = Color.Red;
 break;
}

ShadowEffect.SetHasShadow (label, true);
ShadowEffect.SetRadius (label, 5);
ShadowEffect.SetDistanceX (label, 5);
ShadowEffect.SetDistanceY (label, 5);
ShadowEffect.SetColor (label, color));

ShadowEffect.SetColor (label, Color.Teal);

 Consuming the Effect with a StyleConsuming the Effect with a Style

<Style x:Key="ShadowEffectStyle" TargetType="Label">
 <Style.Setters>
 <Setter Property="local:ShadowEffect.HasShadow" Value="True" />
 <Setter Property="local:ShadowEffect.Radius" Value="5" />
 <Setter Property="local:ShadowEffect.DistanceX" Value="5" />
 <Setter Property="local:ShadowEffect.DistanceY" Value="5" />
 </Style.Setters>
</Style>

<Label Text="Label Shadow Effect" ... Style="{StaticResource ShadowEffectStyle}" />

Setting the ShadowEffect.HasShadow attached property to true executes the ShadowEffect.OnHasShadowChanged

method that adds or removes the LabelShadowEffect to the Label control. In both code examples, the

ShadowEffect.Color attached property provides platform-specific color values. For more information, see Device

Class.

In addition, a Button allows the shadow color to be changed at runtime. When the Button is clicked, the

following code changes the shadow color by setting the ShadowEffect.Color attached property:

Effects that can be consumed by adding attached properties to a control can also be consumed by a style. The

following XAML code example shows an explicit style for the shadow effect, that can be applied to Label

controls:

The Style can be applied to a Label by setting its Style property to the Style instance using the

StaticResource markup extension, as demonstrated in the following code example:

For more information about styles, see Styles.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style

Creating the Effect on each Platform

 iOS ProjectiOS Project

[assembly:ResolutionGroupName ("MyCompany")]
[assembly:ExportEffect (typeof(LabelShadowEffect), "LabelShadowEffect")]
namespace EffectsDemo.iOS
{
 public class LabelShadowEffect : PlatformEffect
 {
 protected override void OnAttached ()
 {
 try {
 UpdateRadius ();
 UpdateColor ();
 UpdateOffset ();
 Control.Layer.ShadowOpacity = 1.0f;
 } catch (Exception ex) {
 Console.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
 ...

 void UpdateRadius ()
 {
 Control.Layer.ShadowRadius = (nfloat)ShadowEffect.GetRadius (Element);
 }

 void UpdateColor ()
 {
 Control.Layer.ShadowColor = ShadowEffect.GetColor (Element).ToCGColor ();
 }

 void UpdateOffset ()
 {
 Control.Layer.ShadowOffset = new CGSize (
 (double)ShadowEffect.GetDistanceX (Element),
 (double)ShadowEffect.GetDistanceY (Element));
 }
 }

 Responding to Property ChangesResponding to Property Changes

The following sections discuss the platform-specific implementation of the LabelShadowEffect class.

The following code example shows the LabelShadowEffect implementation for the iOS project:

The OnAttached method calls methods that retrieve the attached property values using the ShadowEffect

getters, and which set Control.Layer properties to the property values to create the shadow. This functionality

is wrapped in a try / catch block in case the control that the effect is attached to does not have the

Control.Layer properties. No implementation is provided by the OnDetached method because no cleanup is

necessary.

If any of the ShadowEffect attached property values change at runtime, the effect needs to respond by

displaying the changes. An overridden version of the OnElementPropertyChanged method, in the platform-specific

effect class, is the place to respond to bindable property changes, as demonstrated in the following code

example:

public class LabelShadowEffect : PlatformEffect
{
 ...
 protected override void OnElementPropertyChanged (PropertyChangedEventArgs args)
 {
 if (args.PropertyName == ShadowEffect.RadiusProperty.PropertyName) {
 UpdateRadius ();
 } else if (args.PropertyName == ShadowEffect.ColorProperty.PropertyName) {
 UpdateColor ();
 } else if (args.PropertyName == ShadowEffect.DistanceXProperty.PropertyName ||
 args.PropertyName == ShadowEffect.DistanceYProperty.PropertyName) {
 UpdateOffset ();
 }
 }
 ...
}

 Android ProjectAndroid Project

The OnElementPropertyChanged method updates the radius, color, or offset of the shadow, provided that the

appropriate ShadowEffect attached property value has changed. A check for the property that's changed should

always be made, as this override can be called many times.

The following code example shows the LabelShadowEffect implementation for the Android project:

[assembly:ResolutionGroupName ("MyCompany")]
[assembly:ExportEffect (typeof(LabelShadowEffect), "LabelShadowEffect")]
namespace EffectsDemo.Droid
{
 public class LabelShadowEffect : PlatformEffect
 {
 Android.Widget.TextView control;
 Android.Graphics.Color color;
 float radius, distanceX, distanceY;

 protected override void OnAttached ()
 {
 try {
 control = Control as Android.Widget.TextView;
 UpdateRadius ();
 UpdateColor ();
 UpdateOffset ();
 UpdateControl ();
 } catch (Exception ex) {
 Console.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
 ...

 void UpdateControl ()
 {
 if (control != null) {
 control.SetShadowLayer (radius, distanceX, distanceY, color);
 }
 }

 void UpdateRadius ()
 {
 radius = (float)ShadowEffect.GetRadius (Element);
 }

 void UpdateColor ()
 {
 color = ShadowEffect.GetColor (Element).ToAndroid ();
 }

 void UpdateOffset ()
 {
 distanceX = (float)ShadowEffect.GetDistanceX (Element);
 distanceY = (float)ShadowEffect.GetDistanceY (Element);
 }
 }

 Responding to Property ChangesResponding to Property Changes

The OnAttached method calls methods that retrieve the attached property values using the ShadowEffect

getters, and calls a method that calls the TextView.SetShadowLayer method to create a shadow using the

property values. This functionality is wrapped in a try / catch block in case the control that the effect is

attached to does not have the Control.Layer properties. No implementation is provided by the OnDetached

method because no cleanup is necessary.

If any of the ShadowEffect attached property values change at runtime, the effect needs to respond by

displaying the changes. An overridden version of the OnElementPropertyChanged method, in the platform-specific

effect class, is the place to respond to bindable property changes, as demonstrated in the following code

example:

https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview.setshadowlayer

public class LabelShadowEffect : PlatformEffect
{
 ...
 protected override void OnElementPropertyChanged (PropertyChangedEventArgs args)
 {
 if (args.PropertyName == ShadowEffect.RadiusProperty.PropertyName) {
 UpdateRadius ();
 UpdateControl ();
 } else if (args.PropertyName == ShadowEffect.ColorProperty.PropertyName) {
 UpdateColor ();
 UpdateControl ();
 } else if (args.PropertyName == ShadowEffect.DistanceXProperty.PropertyName ||
 args.PropertyName == ShadowEffect.DistanceYProperty.PropertyName) {
 UpdateOffset ();
 UpdateControl ();
 }
 }
 ...
}

 Universal Windows Platform ProjectUniversal Windows Platform Project

The OnElementPropertyChanged method updates the radius, color, or offset of the shadow, provided that the

appropriate ShadowEffect attached property value has changed. A check for the property that's changed should

always be made, as this override can be called many times.

The following code example shows the LabelShadowEffect implementation for the Universal Windows Platform

(UWP) project:

[assembly: ResolutionGroupName ("MyCompany")]
[assembly: ExportEffect (typeof(LabelShadowEffect), "LabelShadowEffect")]
namespace EffectsDemo.UWP
{
 public class LabelShadowEffect : PlatformEffect
 {
 Label shadowLabel;
 bool shadowAdded = false;

 protected override void OnAttached ()
 {
 try {
 if (!shadowAdded) {
 var textBlock = Control as Windows.UI.Xaml.Controls.TextBlock;

 shadowLabel = new Label ();
 shadowLabel.Text = textBlock.Text;
 shadowLabel.FontAttributes = FontAttributes.Bold;
 shadowLabel.HorizontalOptions = LayoutOptions.Center;
 shadowLabel.VerticalOptions = LayoutOptions.CenterAndExpand;

 UpdateColor ();
 UpdateOffset ();

 ((Grid)Element.Parent).Children.Insert (0, shadowLabel);
 shadowAdded = true;
 }
 } catch (Exception ex) {
 Debug.WriteLine ("Cannot set property on attached control. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
 ...

 void UpdateColor ()
 {
 shadowLabel.TextColor = ShadowEffect.GetColor (Element);
 }

 void UpdateOffset ()
 {
 shadowLabel.TranslationX = ShadowEffect.GetDistanceX (Element);
 shadowLabel.TranslationY = ShadowEffect.GetDistanceY (Element);
 }
 }
}

 Responding to Property ChangesResponding to Property Changes

The Universal Windows Platform doesn't provide a shadow effect, and so the LabelShadowEffect

implementation on both platforms simulates one by adding a second offset Label behind the primary Label .

The OnAttached method creates the new Label and sets some layout properties on the Label . It then calls

methods that retrieve the attached property values using the ShadowEffect getters, and creates the shadow by

setting the TextColor , TranslationX , and TranslationY properties to control the color and location of the

Label . The shadowLabel is then inserted offset behind the primary Label . This functionality is wrapped in a

try / catch block in case the control that the effect is attached to does not have the Control.Layer properties.

No implementation is provided by the OnDetached method because no cleanup is necessary.

If any of the ShadowEffect attached property values change at runtime, the effect needs to respond by

displaying the changes. An overridden version of the OnElementPropertyChanged method, in the platform-specific

effect class, is the place to respond to bindable property changes, as demonstrated in the following code

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy

public class LabelShadowEffect : PlatformEffect
{
 ...
 protected override void OnElementPropertyChanged (PropertyChangedEventArgs args)
 {
 if (args.PropertyName == ShadowEffect.ColorProperty.PropertyName) {
 UpdateColor ();
 } else if (args.PropertyName == ShadowEffect.DistanceXProperty.PropertyName ||
 args.PropertyName == ShadowEffect.DistanceYProperty.PropertyName) {
 UpdateOffset ();
 }
 }
 ...
}

 Summary

 Related Links

example:

The OnElementPropertyChanged method updates the color or offset of the shadow, provided that the appropriate

ShadowEffect attached property value has changed. A check for the property that's changed should always be

made, as this override can be called many times.

This article has demonstrated using attached properties to pass parameters to an effect, and changing a

parameter at runtime. Attached properties can be used to define effect parameters that respond to runtime

property changes.

Custom Renderers

Effect

PlatformEffect

RoutingEffect

Shadow Effect (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformeffect-2
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routingeffect
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-shadoweffectruntimechange

Invoking Events from Effects
 7/8/2021 • 21 minutes to read • Edit Online

 Platform Touch Events

 Download the sample

An effect can define and invoke an event, signaling changes in the underlying native view. This article shows

how to implement low-level multi-touch finger tracking, and how to generate events that signal touch activity.

The effect described in this article provides access to low-level touch events. These low-level events are not

available through the existing GestureRecognizer classes, but they are vital to some types of applications. For

example, a finger-paint application needs to track individual fingers as they move on the screen. A music

keyboard needs to detect taps and releases on the individual keys, as well as a finger gliding from one key to

another in a glissando.

An effect is ideal for multi-touch finger tracking because it can be attached to any Xamarin.Forms element.

The iOS, Android, and Universal Windows Platform all include a low-level API that allows applications to detect

touch activity. These platforms all distinguish between three basic types of touch events:

Pressed, when a finger touches the screen

Moved, when a finger touching the screen moves

Released, when the finger is released from the screen

In a multi-touch environment, multiple fingers can touch the screen at the same time. The various platforms

include an identification (ID) number that applications can use to distinguish between multiple fingers.

In iOS, the UIView class defines three overridable methods, TouchesBegan , TouchesMoved , and TouchesEnded

corresponding to these three basic events. The article Multi-Touch Finger Tracking describes how to use these

methods. However, an iOS program does not need to override a class that derives from UIView to use these

methods. The iOS UIGestureRecognizer also defines these same three methods, and you can attach an instance

of a class that derives from UIGestureRecognizer to any UIView object.

In Android, the View class defines an overridable method named OnTouchEvent to process all the touch activity.

The type of the touch activity is defined by enumeration members Down , PointerDown , Move , Up , and

PointerUp as described in the article Multi-Touch Finger Tracking. The Android View also defines an event

named Touch that allows an event handler to be attached to any View object.

In the Universal Windows Platform (UWP), the UIElement class defines events named PointerPressed ,

PointerMoved , and PointerReleased . These are described in the article Handle Pointer Input article on MSDN

and the API documentation for the UIElement class.

The Pointer API in the Universal Windows Platform is intended to unify mouse, touch, and pen input. For that

reason, the PointerMoved event is invoked when the mouse moves across an element even when a mouse

button is not pressed. The PointerRoutedEventArgs object that accompanies these events has a property named

Pointer that has a property named IsInContact which indicates if a mouse button is pressed or a finger is in

contact with the screen.

In addition, the UWP defines two more events named PointerEntered and PointerExited . These indicate when

a mouse or finger moves from one element to another. For example, consider two adjacent elements named A

and B. Both elements have installed handlers for the pointer events. When a finger presses on A, the

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/touch-tracking.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-touchtrackingeffect/
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/touch/touch-tracking
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/touch/touch-tracking
https://docs.microsoft.com/en-us/windows/uwp/input-and-devices/handle-pointer-input/
https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.uielement/

 The Touch-Tracking Effect API

public enum TouchActionType
{
 Entered,
 Pressed,
 Moved,
 Released,
 Exited,
 Cancelled
}

public class TouchEffect : RoutingEffect
{
 public event TouchActionEventHandler TouchAction;

 public TouchEffect() : base("XamarinDocs.TouchEffect")
 {
 }

 public bool Capture { set; get; }

 public void OnTouchAction(Element element, TouchActionEventArgs args)
 {
 TouchAction?.Invoke(element, args);
 }
}

PointerPressed event is invoked. As the finger moves, A invokes PointerMoved events. If the finger moves from

A to B, A invokes a PointerExited event and B invokes a PointerEntered event. If the finger is then released, B

invokes a PointerReleased event.

The iOS and Android platforms are different from the UWP: The view that first gets the call to TouchesBegan or

OnTouchEvent when a finger touches the view continues to get all the touch activity even if the finger moves to

different views. The UWP can behave similarly if the application captures the pointer : In the PointerEntered

event handler, the element calls CapturePointer and then gets all touch activity from that finger.

The UWP approach proves to be very useful for some types of applications, for example, a music keyboard. Each

key can handle the touch events for that key and detect when a finger has slid from one key to another using the

PointerEntered and PointerExited events.

For that reason, the touch-tracking effect described in this article implements the UWP approach.

The Touch Tracking Effect DemosTouch Tracking Effect Demos sample contains the classes (and an enumeration) that implement the low-

level touch-tracking. These types belong to the namespace TouchTracking and begin with the word Touch . The

TouchTrackingEffectDemosTouchTrackingEffectDemos .NET Standard library project includes the TouchActionType enumeration for the

type of touch events:

All the platforms also include an event that indicates that the touch event has been cancelled.

The TouchEffect class in the .NET Standard library derives from RoutingEffect and defines an event named

TouchAction and a method named OnTouchAction that invokes the TouchAction event:

Also notice the Capture property. To capture touch events, an application must set this property to true prior

to a Pressed event. Otherwise, the touch events behave like those in the Universal Windows Platform.

The TouchActionEventArgs class in the .NET Standard library contains all the information that accompanies each

event:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-touchtrackingeffect/

public class TouchActionEventArgs : EventArgs
{
 public TouchActionEventArgs(long id, TouchActionType type, Point location, bool isInContact)
 {
 Id = id;
 Type = type;
 Location = location;
 IsInContact = isInContact;
 }

 public long Id { private set; get; }

 public TouchActionType Type { private set; get; }

 public Point Location { private set; get; }

 public bool IsInContact { private set; get; }
}

 The Touch-Tracking Effect Implementations

 The UWP ImplementationThe UWP Implementation

[assembly: ResolutionGroupName("XamarinDocs")]
[assembly: ExportEffect(typeof(TouchTracking.UWP.TouchEffect), "TouchEffect")]

namespace TouchTracking.UWP
{
 public class TouchEffect : PlatformEffect
 {
 ...
 }
}

An application can use the Id property for tracking individual fingers. Notice the IsInContact property. This

property is always true for Pressed events and false for Released events. It's also always true for Moved

events on iOS and Android. The IsInContact property might be false for Moved events on the Universal

Windows Platform when the program is running on the desktop and the mouse pointer moves without a button

pressed.

You can use the TouchEffect class in your own applications by including the file in the solution's .NET Standard

library project, and by adding an instance to the Effects collection of any Xamarin.Forms element. Attach a

handler to the TouchAction event to obtain the touch events.

To use TouchEffect in your own application, you'll also need the platform implementations included in

TouchTrackingEffectDemosTouchTrackingEffectDemos solution.

The iOS, Android, and UWP implementations of the TouchEffect are described below beginning with the

simplest implementation (UWP) and ending with the iOS implementation because it is more structurally

complex than the others.

The UWP implementation of TouchEffect is the simplest. As usual, the class derives from PlatformEffect and

includes two assembly attributes:

The OnAttached override saves some information as fields and attaches handlers to all the pointer events:

public class TouchEffect : PlatformEffect
{
 FrameworkElement frameworkElement;
 TouchTracking.TouchEffect effect;
 Action<Element, TouchActionEventArgs> onTouchAction;

 protected override void OnAttached()
 {
 // Get the Windows FrameworkElement corresponding to the Element that the effect is attached to
 frameworkElement = Control == null ? Container : Control;

 // Get access to the TouchEffect class in the .NET Standard library
 effect = (TouchTracking.TouchEffect)Element.Effects.
 FirstOrDefault(e => e is TouchTracking.TouchEffect);

 if (effect != null && frameworkElement != null)
 {
 // Save the method to call on touch events
 onTouchAction = effect.OnTouchAction;

 // Set event handlers on FrameworkElement
 frameworkElement.PointerEntered += OnPointerEntered;
 frameworkElement.PointerPressed += OnPointerPressed;
 frameworkElement.PointerMoved += OnPointerMoved;
 frameworkElement.PointerReleased += OnPointerReleased;
 frameworkElement.PointerExited += OnPointerExited;
 frameworkElement.PointerCanceled += OnPointerCancelled;
 }
 }
 ...
}

public class TouchEffect : PlatformEffect
{
 ...
 void OnPointerPressed(object sender, PointerRoutedEventArgs args)
 {
 CommonHandler(sender, TouchActionType.Pressed, args);

 // Check setting of Capture property
 if (effect.Capture)
 {
 (sender as FrameworkElement).CapturePointer(args.Pointer);
 }
 }
 ...
 void CommonHandler(object sender, TouchActionType touchActionType, PointerRoutedEventArgs args)
 {
 PointerPoint pointerPoint = args.GetCurrentPoint(sender as UIElement);
 Windows.Foundation.Point windowsPoint = pointerPoint.Position;

 onTouchAction(Element, new TouchActionEventArgs(args.Pointer.PointerId,
 touchActionType,
 new Point(windowsPoint.X, windowsPoint.Y),
 args.Pointer.IsInContact));
 }
}

The OnPointerPressed handler invokes the effect event by calling the onTouchAction field in the CommonHandler

method:

OnPointerPressed also checks the value of the Capture property in the effect class in the .NET Standard library

and calls CapturePointer if it is true .

public class TouchEffect : PlatformEffect
{
 ...
 void OnPointerEntered(object sender, PointerRoutedEventArgs args)
 {
 CommonHandler(sender, TouchActionType.Entered, args);
 }
 ...
}

 The Android ImplementationThe Android Implementation

view = Control == null ? Container : Control;
...
view.Touch += OnTouch;

public class TouchEffect : PlatformEffect
{
 ...
 static Dictionary<Android.Views.View, TouchEffect> viewDictionary =
 new Dictionary<Android.Views.View, TouchEffect>();

 static Dictionary<int, TouchEffect> idToEffectDictionary =
 new Dictionary<int, TouchEffect>();
 ...

viewDictionary.Add(view, this);

The other UWP event handlers are even simpler :

The Android and iOS implementations are necessarily more complex because they must implement the Exited

and Entered events when a finger moves from one element to another. Both implementations are structured

similarly.

The Android TouchEffect class installs a handler for the Touch event:

The class also defines two static dictionaries:

The viewDictionary gets a new entry every time the OnAttached override is called:

The entry is removed from the dictionary in OnDetached . Every instance of TouchEffect is associated with a

particular view that the effect is attached to. The static dictionary allows any TouchEffect instance to enumerate

through all the other views and their corresponding TouchEffect instances. This is necessary to allow for

transferring the events from one view to another.

Android assigns an ID code to touch events that allows an application to track individual fingers. The

idToEffectDictionary associates this ID code with a TouchEffect instance. An item is added to this dictionary

when the Touch handler is called for a finger press:

void OnTouch(object sender, Android.Views.View.TouchEventArgs args)
{
 ...
 switch (args.Event.ActionMasked)
 {
 case MotionEventActions.Down:
 case MotionEventActions.PointerDown:
 FireEvent(this, id, TouchActionType.Pressed, screenPointerCoords, true);

 idToEffectDictionary.Add(id, this);

 capture = libTouchEffect.Capture;
 break;

void FireEvent(TouchEffect touchEffect, int id, TouchActionType actionType, Point pointerLocation, bool
isInContact)
{
 // Get the method to call for firing events
 Action<Element, TouchActionEventArgs> onTouchAction = touchEffect.libTouchEffect.OnTouchAction;

 // Get the location of the pointer within the view
 touchEffect.view.GetLocationOnScreen(twoIntArray);
 double x = pointerLocation.X - twoIntArray[0];
 double y = pointerLocation.Y - twoIntArray[1];
 Point point = new Point(fromPixels(x), fromPixels(y));

 // Call the method
 onTouchAction(touchEffect.formsElement,
 new TouchActionEventArgs(id, actionType, point, isInContact));
}

The item is removed from the idToEffectDictionary when the finger is released from the screen. The FireEvent

method simply accumulates all the information necessary to call the OnTouchAction method:

All the other touch types are processed in two different ways: If the Capture property is true , the touch event

is a fairly simple translation to the TouchEffect information. It gets more complicated when Capture is false

because the touch events might need to be moved from one view to another. This is the responsibility of the

CheckForBoundaryHop method, which is called during move events. This method makes use of both static

dictionaries. It enumerates through the viewDictionary to determine the view that the finger is currently

touching, and it uses idToEffectDictionary to store the current TouchEffect instance (and hence, the current

view) associated with a particular ID:

void CheckForBoundaryHop(int id, Point pointerLocation)
{
 TouchEffect touchEffectHit = null;

 foreach (Android.Views.View view in viewDictionary.Keys)
 {
 // Get the view rectangle
 try
 {
 view.GetLocationOnScreen(twoIntArray);
 }
 catch // System.ObjectDisposedException: Cannot access a disposed object.
 {
 continue;
 }
 Rectangle viewRect = new Rectangle(twoIntArray[0], twoIntArray[1], view.Width, view.Height);

 if (viewRect.Contains(pointerLocation))
 {
 touchEffectHit = viewDictionary[view];
 }
 }

 if (touchEffectHit != idToEffectDictionary[id])
 {
 if (idToEffectDictionary[id] != null)
 {
 FireEvent(idToEffectDictionary[id], id, TouchActionType.Exited, pointerLocation, true);
 }
 if (touchEffectHit != null)
 {
 FireEvent(touchEffectHit, id, TouchActionType.Entered, pointerLocation, true);
 }
 idToEffectDictionary[id] = touchEffectHit;
 }
}

 The iOS ImplementationThe iOS Implementation

static Dictionary<UIView, TouchRecognizer> viewDictionary =
 new Dictionary<UIView, TouchRecognizer>();

static Dictionary<long, TouchRecognizer> idToTouchDictionary =
 new Dictionary<long, TouchRecognizer>();

If there's been a change in the idToEffectDictionary , the method potentially calls FireEvent for Exited and

Entered to transfer from one view to another. However, the finger might have been moved to an area occupied

by a view without an attached TouchEffect , or from that area to a view with the effect attached.

Notice the try and catch block when the view is accessed. In a page that is navigated to that then navigates

back to the home page, the OnDetached method is not called and items remain in the viewDictionary but

Android considers them disposed.

The iOS implementation is similar to the Android implementation except that the iOS TouchEffect class must

instantiate a derivative of UIGestureRecognizer . This is a class in the iOS project named TouchRecognizer . This

class maintains two static dictionaries that store TouchRecognizer instances:

Much of the structure of this TouchRecognizer class is similar to the Android TouchEffect class.

IMPORTANTIMPORTANT

 Putting the Touch Effect to Work

void AddBoxViewToLayout()
{
 BoxView boxView = new BoxView
 {
 WidthRequest = 100,
 HeightRequest = 100,
 Color = new Color(random.NextDouble(),
 random.NextDouble(),
 random.NextDouble())
 };

 TouchEffect touchEffect = new TouchEffect();
 touchEffect.TouchAction += OnTouchEffectAction;
 boxView.Effects.Add(touchEffect);
 absoluteLayout.Children.Add(boxView);
}

class DragInfo
{
 public DragInfo(long id, Point pressPoint)
 {
 Id = id;
 PressPoint = pressPoint;
 }

 public long Id { private set; get; }

 public Point PressPoint { private set; get; }
}

Dictionary<BoxView, DragInfo> dragDictionary = new Dictionary<BoxView, DragInfo>();

Many of the views in UIKit do not have touch enabled by default. Touch can be enabled by adding

view.UserInteractionEnabled = true; to the OnAttached override in the TouchEffect class in the iOS project. This

should occur after the UIView is obtained that corresponds to the element the effect is attached to.

The TouchTrackingEffectDemosTouchTrackingEffectDemos program contains five pages that test the touch-tracking effect for common

tasks.

The BoxView DraggingBoxView Dragging page allows you to add BoxView elements to an AbsoluteLayout and then drag them

around the screen. The XAML file instantiates two Button views for adding BoxView elements to the

AbsoluteLayout and clearing the AbsoluteLayout .

The method in the code-behind file that adds a new BoxView to the AbsoluteLayout also adds a TouchEffect

object to the BoxView and attaches an event handler to the effect:

The TouchAction event handler processes all the touch events for all the BoxView elements, but it needs to

exercise some caution: It can't allow two fingers on a single BoxView because the program only implements

dragging, and the two fingers would interfere with each other. For this reason, the page defines an embedded

class for each finger currently being tracked:

The dragDictionary contains an entry for every BoxView currently being dragged.

The Pressed touch action adds an item to this dictionary, and the Released action removes it. The Pressed

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-touchtrackingeffect/
https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/BoxViewDraggingPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/BoxViewDraggingPage.xaml.cs

void OnTouchEffectAction(object sender, TouchActionEventArgs args)
{
 BoxView boxView = sender as BoxView;

 switch (args.Type)
 {
 case TouchActionType.Pressed:
 // Don't allow a second touch on an already touched BoxView
 if (!dragDictionary.ContainsKey(boxView))
 {
 dragDictionary.Add(boxView, new DragInfo(args.Id, args.Location));

 // Set Capture property to true
 TouchEffect touchEffect = (TouchEffect)boxView.Effects.FirstOrDefault(e => e is
TouchEffect);
 touchEffect.Capture = true;
 }
 break;

 case TouchActionType.Moved:
 if (dragDictionary.ContainsKey(boxView) && dragDictionary[boxView].Id == args.Id)
 {
 Rectangle rect = AbsoluteLayout.GetLayoutBounds(boxView);
 Point initialLocation = dragDictionary[boxView].PressPoint;
 rect.X += args.Location.X - initialLocation.X;
 rect.Y += args.Location.Y - initialLocation.Y;
 AbsoluteLayout.SetLayoutBounds(boxView, rect);
 }
 break;

 case TouchActionType.Released:
 if (dragDictionary.ContainsKey(boxView) && dragDictionary[boxView].Id == args.Id)
 {
 dragDictionary.Remove(boxView);
 }
 break;
 }
}

logic must check if there's already an item in the dictionary for that BoxView . If so, the BoxView is already being

dragged and the new event is a second finger on that same BoxView . For the Moved and Released actions, the

event handler must check if the dictionary has an entry for that BoxView and that the touch Id property for

that dragged BoxView matches the one in the dictionary entry:

The Pressed logic sets the Capture property of the TouchEffect object to true . This has the effect of

delivering all subsequent events for that finger to the same event handler.

The Moved logic moves the BoxView by altering the LayoutBounds attached property. The Location property of

the event arguments is always relative to the BoxView being dragged, and if the BoxView is being dragged at a

constant rate, the Location properties of the consecutive events will be approximately the same. For example, if

a finger presses the BoxView in its center, the Pressed action stores a PressPoint property of (50, 50), which

remains the same for subsequent events. If the BoxView is dragged diagonally at a constant rate, the

subsequent Location properties during the Moved action might be values of (55, 55), in which case the Moved

logic adds 5 to the horizontal and vertical position of the BoxView . This moves the BoxView so that its center is

again directly under the finger.

You can move multiple BoxView elements simultaneously using different fingers.

 Subclassing the ViewSubclassing the View
Often, it's easier for a Xamarin.Forms element to handle its own touch events. The Draggable BoxViewDraggable BoxView

DraggingDragging page functions the same as the BoxView DraggingBoxView Dragging page, but the elements that the user drags are

instances of a DraggableBoxView class that derives from BoxView :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/effects/touch-tracking-images/boxviewdragging-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/DraggableBoxView.cs

class DraggableBoxView : BoxView
{
 bool isBeingDragged;
 long touchId;
 Point pressPoint;

 public DraggableBoxView()
 {
 TouchEffect touchEffect = new TouchEffect
 {
 Capture = true
 };
 touchEffect.TouchAction += OnTouchEffectAction;
 Effects.Add(touchEffect);
 }

 void OnTouchEffectAction(object sender, TouchActionEventArgs args)
 {
 switch (args.Type)
 {
 case TouchActionType.Pressed:
 if (!isBeingDragged)
 {
 isBeingDragged = true;
 touchId = args.Id;
 pressPoint = args.Location;
 }
 break;

 case TouchActionType.Moved:
 if (isBeingDragged && touchId == args.Id)
 {
 TranslationX += args.Location.X - pressPoint.X;
 TranslationY += args.Location.Y - pressPoint.Y;
 }
 break;

 case TouchActionType.Released:
 if (isBeingDragged && touchId == args.Id)
 {
 isBeingDragged = false;
 }
 break;
 }
 }
}

 Integrating with SkiaSharpIntegrating with SkiaSharp

The constructor creates and attaches the TouchEffect , and sets the Capture property when that object is first

instantiated. No dictionary is required because the class itself stores isBeingDragged , pressPoint , and touchId

values associated with each finger. The Moved handling alters the TranslationX and TranslationY properties so

the logic will work even if the parent of the DraggableBoxView is not an AbsoluteLayout .

The next two demonstrations require graphics, and they use SkiaSharp for this purpose. You might want to learn

about Using SkiaSharp in Xamarin.Forms before you study these examples. The first two articles ("SkiaSharp

Drawing Basics" and "SkiaSharp Lines and Paths") cover everything that you'll need here.

The Ellipse DrawingEllipse Drawing page allows you to draw an ellipse by swiping your finger on the screen. Depending how

you move your finger, you can draw the ellipse from the upper-left to the lower-right, or from any other corner

to the opposite corner. The ellipse is drawn with a random color and opacity.

<Grid x:Name="canvasViewGrid"
 Grid.Row="1"
 BackgroundColor="White">

 <skia:SKCanvasView x:Name="canvasView"
 PaintSurface="OnCanvasViewPaintSurface" />
 <Grid.Effects>
 <tt:TouchEffect Capture="True"
 TouchAction="OnTouchEffectAction" />
 </Grid.Effects>
</Grid>

If you then touch one of the ellipses, you can drag it to another location. This requires a technique known as "hit-

testing," which involves searching for the graphical object at a particular point. The SkiaSharp ellipses are not

Xamarin.Forms elements, so they cannot perform their own TouchEffect processing. The TouchEffect must

apply to the entire SKCanvasView object.

The EllipseDrawPage.xaml file instantiates the SKCanvasView in a single-cell Grid . The TouchEffect object is

attached to that Grid :

In Android and the Universal Windows Platform, the TouchEffect can be attached directly to the SKCanvasView ,

but on iOS that doesn't work. Notice that the Capture property is set to true .

Each ellipse that SkiaSharp renders is represented by an object of type EllipseDrawingFigure :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/effects/touch-tracking-images/ellipsedrawing-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/EllipseDrawingPage.xaml

class EllipseDrawingFigure
{
 SKPoint pt1, pt2;

 public EllipseDrawingFigure()
 {
 }

 public SKColor Color { set; get; }

 public SKPoint StartPoint
 {
 set
 {
 pt1 = value;
 MakeRectangle();
 }
 }

 public SKPoint EndPoint
 {
 set
 {
 pt2 = value;
 MakeRectangle();
 }
 }

 void MakeRectangle()
 {
 Rectangle = new SKRect(pt1.X, pt1.Y, pt2.X, pt2.Y).Standardized;
 }

 public SKRect Rectangle { set; get; }

 // For dragging operations
 public Point LastFingerLocation { set; get; }

 // For the dragging hit-test
 public bool IsInEllipse(SKPoint pt)
 {
 SKRect rect = Rectangle;

 return (Math.Pow(pt.X - rect.MidX, 2) / Math.Pow(rect.Width / 2, 2) +
 Math.Pow(pt.Y - rect.MidY, 2) / Math.Pow(rect.Height / 2, 2)) < 1;
 }
}

Dictionary<long, EllipseDrawingFigure> inProgressFigures = new Dictionary<long, EllipseDrawingFigure>();
List<EllipseDrawingFigure> completedFigures = new List<EllipseDrawingFigure>();
Dictionary<long, EllipseDrawingFigure> draggingFigures = new Dictionary<long, EllipseDrawingFigure>();

The StartPoint and EndPoint properties are used when the program is processing touch input; the Rectangle

property is used for drawing the ellipse. The LastFingerLocation property comes into play when the ellipse is

being dragged, and the IsInEllipse method aids in hit-testing. The method returns true if the point is inside

the ellipse.

The code-behind file maintains three collections:

The draggingFigure dictionary contains a subset of the completedFigures collection. The SkiaSharp

PaintSurface event handler simply renders the objects in these the completedFigures and inProgressFigures

collections:

https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/EllipseDrawingPage.xaml.cs

SKPaint paint = new SKPaint
{
 Style = SKPaintStyle.Fill
};
...
void OnCanvasViewPaintSurface(object sender, SKPaintSurfaceEventArgs args)
{
 SKCanvas canvas = args.Surface.Canvas;
 canvas.Clear();

 foreach (EllipseDrawingFigure figure in completedFigures)
 {
 paint.Color = figure.Color;
 canvas.DrawOval(figure.Rectangle, paint);
 }
 foreach (EllipseDrawingFigure figure in inProgressFigures.Values)
 {
 paint.Color = figure.Color;
 canvas.DrawOval(figure.Rectangle, paint);
 }
}

The trickiest part of the touch processing is the Pressed handling. This is where the hit-testing is performed, but

if the code detects an ellipse under the user's finger, that ellipse can only be dragged if it's not currently being

dragged by another finger. If there is no ellipse under the user's finger, then the code begins the process of

drawing a new ellipse:

case TouchActionType.Pressed:
 bool isDragOperation = false;

 // Loop through the completed figures
 foreach (EllipseDrawingFigure fig in completedFigures.Reverse<EllipseDrawingFigure>())
 {
 // Check if the finger is touching one of the ellipses
 if (fig.IsInEllipse(ConvertToPixel(args.Location)))
 {
 // Tentatively assume this is a dragging operation
 isDragOperation = true;

 // Loop through all the figures currently being dragged
 foreach (EllipseDrawingFigure draggedFigure in draggingFigures.Values)
 {
 // If there's a match, we'll need to dig deeper
 if (fig == draggedFigure)
 {
 isDragOperation = false;
 break;
 }
 }

 if (isDragOperation)
 {
 fig.LastFingerLocation = args.Location;
 draggingFigures.Add(args.Id, fig);
 break;
 }
 }
 }

 if (isDragOperation)
 {
 // Move the dragged ellipse to the end of completedFigures so it's drawn on top
 EllipseDrawingFigure fig = draggingFigures[args.Id];
 completedFigures.Remove(fig);
 completedFigures.Add(fig);
 }
 else // start making a new ellipse
 {
 // Random bytes for random color
 byte[] buffer = new byte[4];
 random.NextBytes(buffer);

 EllipseDrawingFigure figure = new EllipseDrawingFigure
 {
 Color = new SKColor(buffer[0], buffer[1], buffer[2], buffer[3]),
 StartPoint = ConvertToPixel(args.Location),
 EndPoint = ConvertToPixel(args.Location)
 };
 inProgressFigures.Add(args.Id, figure);
 }
 canvasView.InvalidateSurface();
 break;

The other SkiaSharp example is the Finger PaintFinger Paint page. You can select a stroke color and stroke width from two

Picker views and then draw with one or more fingers:

class FingerPaintPolyline
{
 public FingerPaintPolyline()
 {
 Path = new SKPath();
 }

 public SKPath Path { set; get; }

 public Color StrokeColor { set; get; }

 public float StrokeWidth { set; get; }
}

Dictionary<long, FingerPaintPolyline> inProgressPolylines = new Dictionary<long, FingerPaintPolyline>();
List<FingerPaintPolyline> completedPolylines = new List<FingerPaintPolyline>();

This example also requires a separate class to represent each line painted on the screen:

An SKPath object is used to render each line. The FingerPaint.xaml.cs file maintains two collections of these

objects, one for those polylines currently being drawn and another for the completed polylines:

The Pressed processing creates a new FingerPaintPolyline , calls MoveTo on the path object to store the initial

point, and adds that object to the inProgressPolylines dictionary. The Moved processing calls LineTo on the

path object with the new finger position, and the Released processing transfers the completed polyline from

inProgressPolylines to completedPolylines . Once again, the actual SkiaSharp drawing code is relatively simple:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/effects/touch-tracking-images/fingerpaint-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/FingerPaintPage.xaml.cs

SKPaint paint = new SKPaint
{
 Style = SKPaintStyle.Stroke,
 StrokeCap = SKStrokeCap.Round,
 StrokeJoin = SKStrokeJoin.Round
};
...
void OnCanvasViewPaintSurface(object sender, SKPaintSurfaceEventArgs args)
{
 SKCanvas canvas = args.Surface.Canvas;
 canvas.Clear();

 foreach (FingerPaintPolyline polyline in completedPolylines)
 {
 paint.Color = polyline.StrokeColor.ToSKColor();
 paint.StrokeWidth = polyline.StrokeWidth;
 canvas.DrawPath(polyline.Path, paint);
 }

 foreach (FingerPaintPolyline polyline in inProgressPolylines.Values)
 {
 paint.Color = polyline.StrokeColor.ToSKColor();
 paint.StrokeWidth = polyline.StrokeWidth;
 canvas.DrawPath(polyline.Path, paint);
 }
}

 Tracking View-to-View TouchTracking View-to-View Touch

List<long> ids = new List<long>();

All the previous examples have set the Capture property of the TouchEffect to true , either when the

TouchEffect was created or when the Pressed event occurred. This ensures that the same element receives all

the events associated with the finger that first pressed the view. The final sample does not set Capture to true .

This causes different behavior when a finger in contact with the screen moves from one element to another. The

element that the finger moves from receives an event with a Type property set to TouchActionType.Exited and

the second element receives an event with a Type setting of TouchActionType.Entered .

This type of touch processing is very useful for a music keyboard. A key should be able to detect when it's

pressed, but also when a finger slides from one key to another.

The S ilent KeyboardSilent Keyboard page defines small WhiteKey and BlackKey classes that derive from Key , which derives

from BoxView .

The Key class is ready to be used in an actual music program. It defines public properties named IsPressed

and KeyNumber , which is intended to be set to the key code established by the MIDI standard. The Key class also

defines an event named StatusChanged , which is invoked when the IsPressed property changes.

Multiple fingers are allowed on each key. For this reason, the Key class maintains a List of the touch ID

numbers of all the fingers currently touching that key:

The TouchAction event handler adds an ID to the ids list for both a Pressed event type and an Entered type,

but only when the IsInContact property is true for the Entered event. The ID is removed from the List for a

Released or Exited event:

https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/WhiteKey.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/BlackKey.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/Key.cs

void OnTouchEffectAction(object sender, TouchActionEventArgs args)
{
 switch (args.Type)
 {
 case TouchActionType.Pressed:
 AddToList(args.Id);
 break;

 case TouchActionType.Entered:
 if (args.IsInContact)
 {
 AddToList(args.Id);
 }
 break;

 case TouchActionType.Moved:
 break;

 case TouchActionType.Released:
 case TouchActionType.Exited:
 RemoveFromList(args.Id);
 break;
 }
}

 Summary

 Related Links

The AddToList and RemoveFromList methods both check if the List has changed between empty and non-

empty, and if so, invokes the StatusChanged event.

The various WhiteKey and BlackKey elements are arranged in the page's XAML file, which looks best when the

phone is held in a landscape mode:

If you sweep your finger across the keys, you'll see by the slight changes in color that the touch events are

transferred from one key to another.

This article has demonstrated how to invoke events in an effect, and how to write and use an effect that

implements low-level multi-touch processing.

https://github.com/xamarin/xamarin-forms-samples/blob/master/Effects/TouchTrackingEffect/TouchTrackingEffect/TouchTrackingEffect/SilentKeyboardPage.xaml
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/effects/touch-tracking-images/silentkeyboard-large.png#lightbox

Multi-Touch Finger Tracking in iOS

Multi-Touch Finger Tracking in Android

Touch Tracking Effect (sample)

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/touch/touch-tracking
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/touch/touch-tracking
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-touchtrackingeffect/

Xamarin.Forms Reusable RoundEffect
 7/8/2021 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Create a shared RoutingEffect

public class RoundEffect : RoutingEffect
{
 public RoundEffect() : base($"Xamarin.{nameof(RoundEffect)}")
 {
 }
}

 Implement the Android effect

 Download the sample

It's no longer necessary to use a RoundEffect to render a control as a circle. The latest recommended approach is to clip

the control using an EllipseGeometry . For more information, see Clip with a Geometry.

The RoundEffect simplifies rendering any control that derives from VisualElement as a circle. This effect can be

used to create circular images, buttons, and other controls:

An effect class must be created in the shared project to create a cross-platform effect. The sample application

creates an empty RoundEffect class that derives from the RoutingEffect class:

This class allows the shared project to resolve the references to the effect in code or XAML but does not provide

any functionality. The effect must have implementations for each platform.

The Android platform project defines a RoundEffect class that derives from PlatformEffect . This class is tagged

with assembly attributes that allow Xamarin.Forms to resolve the effect class:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/effects/reusable-roundeffect.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-roundeffect/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/effects/example-roundeffect-images/round-effect.png#lightbox

[assembly: ResolutionGroupName("Xamarin")]
[assembly: ExportEffect(typeof(RoundEffectDemo.Droid.RoundEffect),
nameof(RoundEffectDemo.Droid.RoundEffect))]
namespace RoundEffectDemo.Droid
{
 public class RoundEffect : PlatformEffect
 {
 // ...
 }
}

class CornerRadiusOutlineProvider : ViewOutlineProvider
{
 Element element;

 public CornerRadiusOutlineProvider(Element formsElement)
 {
 element = formsElement;
 }

 public override void GetOutline(Android.Views.View view, Outline outline)
 {
 float scale = view.Resources.DisplayMetrics.Density;
 double width = (double)element.GetValue(VisualElement.WidthProperty) * scale;
 double height = (double)element.GetValue(VisualElement.HeightProperty) * scale;
 float minDimension = (float)Math.Min(height, width);
 float radius = minDimension / 2f;
 Rect rect = new Rect(0, 0, (int)width, (int)height);
 outline.SetRoundRect(rect, radius);
 }
}

The Android platform uses the concept of an OutlineProvider to define the edges of a control. The sample

project includes a CornerRadiusProvider class that derives from the ViewOutlineProvider class:

This class uses the Width and Height properties of the Xamarin.Forms Element instance to calculate a radius

that is half of the shortest dimension.

Once an outline provider is defined the RoundEffect class can consume it to implement the effect:

public class RoundEffect : PlatformEffect
{
 ViewOutlineProvider originalProvider;
 Android.Views.View effectTarget;

 protected override void OnAttached()
 {
 try
 {
 effectTarget = Control ?? Container;
 originalProvider = effectTarget.OutlineProvider;
 effectTarget.OutlineProvider = new CornerRadiusOutlineProvider(Element);
 effectTarget.ClipToOutline = true;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Failed to set corner radius: {ex.Message}");
 }
 }

 protected override void OnDetached()
 {
 if(effectTarget != null)
 {
 effectTarget.OutlineProvider = originalProvider;
 effectTarget.ClipToOutline = false;
 }
 }
}

NOTENOTE

 Implement the iOS effect

[assembly: ResolutionGroupName("Xamarin")]
[assembly: ExportEffect(typeof(RoundEffectDemo.iOS.RoundEffect), nameof(RoundEffectDemo.iOS.RoundEffect))]
namespace RoundEffectDemo.iOS
{
 public class RoundEffect : PlatformEffect
 {
 // ...
 }

The OnAttached method is called when the effect is attached to an element. The existing OutlineProvider object

is saved so it can be restored when the effect is detached. A new instance of the CornerRadiusOutlineProvider is

used as the OutlineProvider and ClipToOutline is set to true to clip overflowing elements to the outline

borders.

The OnDetatched method is called when the effect is removed from an element and restores the original

OutlineProvider value.

Depending on the element type, the Control property may or may not be null. If the Control property is not null, the

rounded corners can be applied directly to the control. However, if it is null the rounded corners must be applied to the

Container object. The effectTarget field allows the effect to be applied to the appropriate object.

The iOS platform project defines a RoundEffect class that derives from PlatformEffect . This class is tagged

with assembly attributes that allow Xamarin.Forms to resolve the effect class:

On iOS, controls have a Layer property, which has a CornerRadius property. The RoundEffect class

public class RoundEffect : PlatformEffect
{
 nfloat originalRadius;
 UIKit.UIView effectTarget;

 protected override void OnAttached()
 {
 try
 {
 effectTarget = Control ?? Container;
 originalRadius = effectTarget.Layer.CornerRadius;
 effectTarget.ClipsToBounds = true;
 effectTarget.Layer.CornerRadius = CalculateRadius();
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Failed to set corner radius: {ex.Message}");
 }
 }

 protected override void OnDetached()
 {
 if (effectTarget != null)
 {
 effectTarget.ClipsToBounds = false;
 if (effectTarget.Layer != null)
 {
 effectTarget.Layer.CornerRadius = originalRadius;
 }
 }
 }

 float CalculateRadius()
 {
 double width = (double)Element.GetValue(VisualElement.WidthRequestProperty);
 double height = (double)Element.GetValue(VisualElement.HeightRequestProperty);
 float minDimension = (float)Math.Min(height, width);
 float radius = minDimension / 2f;

 return radius;
 }
}

NOTENOTE

 Consume the effect

implementation on iOS calculates the appropriate corner radius and updates the layer's CornerRadius property:

The CalculateRadius method calculates a radius based on the minimum dimension of the Xamarin.Forms

Element . The OnAttached method is called when the effect is attached to a control, and updates the layer's

CornerRadius property. It sets the ClipToBounds property to true so overflowing elements are clipped to the

borders of the control. The OnDetatched method is called when the effect is removed from a control and

reverses these changes, restoring the original corner radius.

Depending on the element type, the Control property may or may not be null. If the Control property is not null, the

rounded corners can be applied directly to the control. However, if it is null the rounded corners must be applied to the

Container object. The effectTarget field allows the effect to be applied to the appropriate object.

Once the effect is implemented across platforms, it can be consumed by Xamarin.Forms controls. A common

application of the RoundEffect is making an Image object circular. The following XAML shows the effect being

<Image Source=outdoors"
 HeightRequest="100"
 WidthRequest="100">
 <Image.Effects>
 <local:RoundEffect />
 </Image.Effects>
</Image>

var image = new Image
{
 Source = ImageSource.FromFile("outdoors"),
 HeightRequest = 100,
 WidthRequest = 100
};
image.Effects.Add(new RoundEffect());

NOTENOTE

 Related links

applied to an Image instance:

The effect can also be applied in code:

The RoundEffect class can be applied to any control that derives from VisualElement .

For the effect to calculate the correct radius, the control it's applied to must have explicit sizing. Therefore, the

HeightRequest and WidthRequest properties should be defined. If the affected control appears in a StackLayout , its

HorizontalOptions property should not use one of the ExpandExpand values such as LayoutOptions.CenterAndExpand or it

will not have accurate dimensions.

RoundEffect sample application

Introduction to Effects

Creating an Effect

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/effects-roundeffect/

Xamarin.Forms gestures
 11/2/2020 • 2 minutes to read • Edit Online

 Add a tap gesture recognizer

 Add a pinch gesture recognizer

 Add a pan gesture recognizer

 Add a swipe gesture recognizer

 Add a drag and drop gesture recognizer

Gesture recognizers can be used to detect user interaction with views in a Xamarin.Forms application.

The Xamarin.Forms GestureRecognizer class supports tap, pinch, pan, swipe, and drag and drop gestures on

View instances.

A tap gesture is used for tap detection and is recognized with the TapGestureRecognizer class.

A pinch gesture is used for performing interactive zoom and is recognized with the PinchGestureRecognizer

class.

A pan gesture is used for detecting the movement of fingers around the screen and applying that movement to

content, and is recognized with the PanGestureRecognizer class.

A swipe gesture occurs when a finger is moved across the screen in a horizontal or vertical direction, and is

often used to initiate navigation through content. Swipe gestures are recognized with the

SwipeGestureRecognizer class.

A drag and drop gesture enables items, and their associated data packages, to be dragged from one onscreen

location to another location using a continuous gesture. Drag gestures are recognized with the

DragGestureRecognizer class, and drop gestures are recognized with the DropGestureRecognizer class.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/gestures/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer

Add a tap gesture recognizer
 7/8/2021 • 2 minutes to read • Edit Online

var tapGestureRecognizer = new TapGestureRecognizer();
tapGestureRecognizer.Tapped += (s, e) => {
 // handle the tap
};
image.GestureRecognizers.Add(tapGestureRecognizer);

tapGestureRecognizer.NumberOfTapsRequired = 2; // double-tap

 Using Xaml

<Image Source="tapped.jpg">
 <Image.GestureRecognizers>
 <TapGestureRecognizer
 Tapped="OnTapGestureRecognizerTapped"
 NumberOfTapsRequired="2" />
 </Image.GestureRecognizers>
</Image>

 Download the sample

The tap gesture is used for tap detection and is implemented with the TapGestureRecognizer class.

To make a user interface element clickable with the tap gesture, create a TapGestureRecognizer instance, handle

the Tapped event and add the new gesture recognizer to the GestureRecognizers collection on the user

interface element. The following code example shows a TapGestureRecognizer attached to an Image element:

By default the image will respond to single taps. Set the NumberOfTapsRequired property to wait for a double-tap

(or more taps if required).

When NumberOfTapsRequired is set above one, the event handler will only be executed if the taps occur within a

set period of time (this period is not configurable). If the second (or subsequent) taps do not occur within that

period they are effectively ignored and the 'tap count' restarts.

A gesture recognizer can be added to a control in Xaml using attached properties. The syntax to add a

TapGestureRecognizer to an image is shown below (in this case defining a double tap event):

The code for the event handler (in the sample) increments a counter and changes the image from color to black

& white.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/gestures/tap.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-tapgesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.tapped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.gesturerecognizers#xamarin_forms_view_gesturerecognizers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.numberoftapsrequired#xamarin_forms_tapgesturerecognizer_numberoftapsrequired
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.numberoftapsrequired#xamarin_forms_tapgesturerecognizer_numberoftapsrequired
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer

void OnTapGestureRecognizerTapped(object sender, EventArgs args)
{
 tapCount++;
 var imageSender = (Image)sender;
 // watch the monkey go from color to black&white!
 if (tapCount % 2 == 0) {
 imageSender.Source = "tapped.jpg";
 } else {
 imageSender.Source = "tapped_bw.jpg";
 }
}

 Using ICommand

var tapGestureRecognizer = new TapGestureRecognizer();
tapGestureRecognizer.SetBinding (TapGestureRecognizer.CommandProperty, "TapCommand");
image.GestureRecognizers.Add(tapGestureRecognizer);

<Image Source="tapped.jpg">
 <Image.GestureRecognizers>
 <TapGestureRecognizer
 Command="{Binding TapCommand}"
 CommandParameter="Image1" />
 </Image.GestureRecognizers>
</Image>

public class TapViewModel : INotifyPropertyChanged
{
 int taps = 0;
 ICommand tapCommand;
 public TapViewModel () {
 // configure the TapCommand with a method
 tapCommand = new Command (OnTapped);
 }
 public ICommand TapCommand {
 get { return tapCommand; }
 }
 void OnTapped (object s) {
 taps++;
 Debug.WriteLine ("parameter: " + s);
 }
 //region INotifyPropertyChanged code omitted
}

 Related Links

Applications that use the Model-View-ViewModel (MVVM) pattern typically use ICommand rather than wiring up

event handlers directly. The TapGestureRecognizer can easily support ICommand either by setting the binding in

code:

or using Xaml:

The complete code for this view model can be found in the sample. The relevant Command implementation

details are shown below:

TapGesture (sample)

GestureRecognizer

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-tapgesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gesturerecognizer

TapGestureRecognizer

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer

Add a pinch gesture recognizer
 7/8/2021 • 3 minutes to read • Edit Online

var pinchGesture = new PinchGestureRecognizer();
pinchGesture.PinchUpdated += (s, e) => {
 // Handle the pinch
};
image.GestureRecognizers.Add(pinchGesture);

<Image Source="waterfront.jpg">
 <Image.GestureRecognizers>
 <PinchGestureRecognizer PinchUpdated="OnPinchUpdated" />
 </Image.GestureRecognizers>
</Image>

void OnPinchUpdated (object sender, PinchGestureUpdatedEventArgs e)
{
 // Handle the pinch
}

 Creating a PinchToZoom container

 Download the sample

The pinch gesture is used for performing interactive zoom and is implemented with the PinchGestureRecognizer

class. A common scenario for the pinch gesture is to perform interactive zoom of an image at the pinch location.

This is accomplished by scaling the content of the viewport, and is demonstrated in this article.

To make a user interface element zoomable with the pinch gesture, create a PinchGestureRecognizer instance,

handle the PinchUpdated event, and add the new gesture recognizer to the GestureRecognizers collection on the

user interface element. The following code example shows a PinchGestureRecognizer attached to an Image

element:

This can also be achieved in XAML, as shown in the following code example:

The code for the OnPinchUpdated event handler is then added to the code-behind file:

Handling the pinch gesture to perform a zoom operation requires some math to transform the user interface.

This section contains a generalized helper class to perform the math, which can be used to interactively zoom

any user interface element. The following code example shows the PinchToZoomContainer class:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/gestures/pinch.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-pinchgesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgesturerecognizer.pinchupdated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.gesturerecognizers#xamarin_forms_view_gesturerecognizers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

public class PinchToZoomContainer : ContentView
{
 ...

 public PinchToZoomContainer ()
 {
 var pinchGesture = new PinchGestureRecognizer ();
 pinchGesture.PinchUpdated += OnPinchUpdated;
 GestureRecognizers.Add (pinchGesture);
 }

 void OnPinchUpdated (object sender, PinchGestureUpdatedEventArgs e)
 {
 ...
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:PinchGesture;assembly=PinchGesture"
 x:Class="PinchGesture.HomePage">
 <ContentPage.Content>
 <Grid Padding="20">
 <local:PinchToZoomContainer>
 <local:PinchToZoomContainer.Content>
 <Image Source="waterfront.jpg" />
 </local:PinchToZoomContainer.Content>
 </local:PinchToZoomContainer>
 </Grid>
 </ContentPage.Content>
</ContentPage>

public class HomePageCS : ContentPage
{
 public HomePageCS ()
 {
 Content = new Grid {
 Padding = new Thickness (20),
 Children = {
 new PinchToZoomContainer {
 Content = new Image { Source = ImageSource.FromFile ("waterfront.jpg") }
 }
 }
 };
 }
}

This class can be wrapped around a user interface element so that the pinch gesture will zoom the wrapped user

interface element. The following XAML code example shows the PinchToZoomContainer wrapping an Image

element:

The following code example shows how the PinchToZoomContainer wraps an Image element in a C# page:

When the Image element receives a pinch gesture, the displayed image will be zoomed-in or out. The zoom is

performed by the PinchZoomContainer.OnPinchUpdated method, which is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

void OnPinchUpdated (object sender, PinchGestureUpdatedEventArgs e)
{
 if (e.Status == GestureStatus.Started) {
 // Store the current scale factor applied to the wrapped user interface element,
 // and zero the components for the center point of the translate transform.
 startScale = Content.Scale;
 Content.AnchorX = 0;
 Content.AnchorY = 0;
 }
 if (e.Status == GestureStatus.Running) {
 // Calculate the scale factor to be applied.
 currentScale += (e.Scale - 1) * startScale;
 currentScale = Math.Max (1, currentScale);

 // The ScaleOrigin is in relative coordinates to the wrapped user interface element,
 // so get the X pixel coordinate.
 double renderedX = Content.X + xOffset;
 double deltaX = renderedX / Width;
 double deltaWidth = Width / (Content.Width * startScale);
 double originX = (e.ScaleOrigin.X - deltaX) * deltaWidth;

 // The ScaleOrigin is in relative coordinates to the wrapped user interface element,
 // so get the Y pixel coordinate.
 double renderedY = Content.Y + yOffset;
 double deltaY = renderedY / Height;
 double deltaHeight = Height / (Content.Height * startScale);
 double originY = (e.ScaleOrigin.Y - deltaY) * deltaHeight;

 // Calculate the transformed element pixel coordinates.
 double targetX = xOffset - (originX * Content.Width) * (currentScale - startScale);
 double targetY = yOffset - (originY * Content.Height) * (currentScale - startScale);

 // Apply translation based on the change in origin.
 Content.TranslationX = targetX.Clamp (-Content.Width * (currentScale - 1), 0);
 Content.TranslationY = targetY.Clamp (-Content.Height * (currentScale - 1), 0);

 // Apply scale factor.
 Content.Scale = currentScale;
 }
 if (e.Status == GestureStatus.Completed) {
 // Store the translation delta's of the wrapped user interface element.
 xOffset = Content.TranslationX;
 yOffset = Content.TranslationY;
 }
}

 Related Links

This method updates the zoom level of the wrapped user interface element based on the user's pinch gesture.

This is achieved by using the values of the Scale , ScaleOrigin and Status properties of the

PinchGestureUpdatedEventArgs instance to calculate the scale factor to be applied at the origin of the pinch

gesture. The wrapped user element is then zoomed at the origin of the pinch gesture by setting its TranslationX

, TranslationY , and Scale properties to the calculated values.

PinchGesture (sample)

GestureRecognizer

PinchGestureRecognizer

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgestureupdatedeventargs.scale#xamarin_forms_pinchgestureupdatedeventargs_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgestureupdatedeventargs.scaleorigin#xamarin_forms_pinchgestureupdatedeventargs_scaleorigin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgestureupdatedeventargs.status#xamarin_forms_pinchgestureupdatedeventargs_status
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgestureupdatedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-pinchgesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pinchgesturerecognizer

Add a pan gesture recognizer
 7/8/2021 • 3 minutes to read • Edit Online

var panGesture = new PanGestureRecognizer();
panGesture.PanUpdated += (s, e) => {
 // Handle the pan
};
image.GestureRecognizers.Add(panGesture);

<Image Source="MonoMonkey.jpg">
 <Image.GestureRecognizers>
 <PanGestureRecognizer PanUpdated="OnPanUpdated" />
 </Image.GestureRecognizers>
</Image>

void OnPanUpdated (object sender, PanUpdatedEventArgs e)
{
 // Handle the pan
}

 Creating a pan container

 Download the sample

The pan gesture is used for detecting the movement of fingers around the screen and applying that movement

to content, and is implemented with the PanGestureRecognizer class. A common scenario for the pan gesture is

to horizontally and vertically pan an image, so that all of the image content can be viewed when it's being

displayed in a viewport smaller than the image dimensions. This is accomplished by moving the image within

the viewport, and is demonstrated in this article.

To make a user interface element moveable with the pan gesture, create a PanGestureRecognizer instance,

handle the PanUpdated event, and add the new gesture recognizer to the GestureRecognizers collection on the

user interface element. The following code example shows a PanGestureRecognizer attached to an Image

element:

This can also be achieved in XAML, as shown in the following code example:

The code for the OnPanUpdated event handler is then added to the code-behind file:

This section contains a generalized helper class that performs freeform panning, which is typically suited to

navigating within images or maps. Handling the pan gesture to perform this operation requires some math to

transform the user interface. This math is used to pan only within the bounds of the wrapped user interface

element. The following code example shows the PanContainer class:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/gestures/pan.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-pangesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer.panupdated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.gesturerecognizers#xamarin_forms_view_gesturerecognizers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

public class PanContainer : ContentView
{
 double x, y;

 public PanContainer ()
 {
 // Set PanGestureRecognizer.TouchPoints to control the
 // number of touch points needed to pan
 var panGesture = new PanGestureRecognizer ();
 panGesture.PanUpdated += OnPanUpdated;
 GestureRecognizers.Add (panGesture);
 }

 void OnPanUpdated (object sender, PanUpdatedEventArgs e)
 {
 ...
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:PanGesture"
 x:Class="PanGesture.HomePage">
 <ContentPage.Content>
 <AbsoluteLayout>
 <local:PanContainer>
 <Image Source="MonoMonkey.jpg" WidthRequest="1024" HeightRequest="768" />
 </local:PanContainer>
 </AbsoluteLayout>
 </ContentPage.Content>
</ContentPage>

public class HomePageCS : ContentPage
{
 public HomePageCS ()
 {
 Content = new AbsoluteLayout {
 Padding = new Thickness (20),
 Children = {
 new PanContainer {
 Content = new Image {
 Source = ImageSource.FromFile ("MonoMonkey.jpg"),
 WidthRequest = 1024,
 HeightRequest = 768
 }
 }
 }
 };
 }
}

This class can be wrapped around a user interface element so that the gesture will pan the wrapped user

interface element. The following XAML code example shows the PanContainer wrapping an Image element:

The following code example shows how the PanContainer wraps an Image element in a C# page:

In both examples, the WidthRequest and HeightRequest properties are set to the width and height values of the

image being displayed.

When the Image element receives a pan gesture, the displayed image will be panned. The pan is performed by

the PanContainer.OnPanUpdated method, which is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

void OnPanUpdated (object sender, PanUpdatedEventArgs e)
{
 switch (e.StatusType) {
 case GestureStatus.Running:
 // Translate and ensure we don't pan beyond the wrapped user interface element bounds.
 Content.TranslationX =
 Math.Max (Math.Min (0, x + e.TotalX), -Math.Abs (Content.Width - App.ScreenWidth));
 Content.TranslationY =
 Math.Max (Math.Min (0, y + e.TotalY), -Math.Abs (Content.Height - App.ScreenHeight));
 break;

 case GestureStatus.Completed:
 // Store the translation applied during the pan
 x = Content.TranslationX;
 y = Content.TranslationY;
 break;
 }
}

NOTENOTE

 Related Links

This method updates the viewable content of the wrapped user interface element, based on the user's pan

gesture. This is achieved by using the values of the TotalX and TotalY properties of the PanUpdatedEventArgs

instance to calculate the direction and distance of the pan. The App.ScreenWidth and App.ScreenHeight

properties provide the height and width of the viewport, and are set to the screen width and screen height

values of the device by the respective platform-specific projects. The wrapped user element is then panned by

setting its TranslationX and TranslationY properties to the calculated values.

When panning content in an element that does not occupy the full screen, the height and width of the viewport

can be obtained from the element's Height and Width properties.

Displaying high-resolution images can greatly increase an app's memory footprint. Therefore, they should only be created

when required and should be released as soon as the app no longer requires them. For more information, see Optimize

Image Resources.

PanGesture (sample)

GestureRecognizer

PanGestureRecognizer

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.panupdatedeventargs.totalx#xamarin_forms_panupdatedeventargs_totalx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.panupdatedeventargs.totaly#xamarin_forms_panupdatedeventargs_totaly
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.panupdatedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.height#xamarin_forms_visualelement_height
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.width#xamarin_forms_visualelement_width
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-pangesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer

Add a swipe gesture recognizer
 7/8/2021 • 5 minutes to read • Edit Online

<BoxView Color="Teal" ...>
 <BoxView.GestureRecognizers>
 <SwipeGestureRecognizer Direction="Left" Swiped="OnSwiped"/>
 </BoxView.GestureRecognizers>
</BoxView>

var boxView = new BoxView { Color = Color.Teal, ... };
var leftSwipeGesture = new SwipeGestureRecognizer { Direction = SwipeDirection.Left };
leftSwipeGesture.Swiped += OnSwiped;

boxView.GestureRecognizers.Add(leftSwipeGesture);

 Recognizing the swipe direction

<SwipeGestureRecognizer Direction="Left,Right" Swiped="OnSwiped"/>

var swipeGesture = new SwipeGestureRecognizer { Direction = SwipeDirection.Up | SwipeDirection.Down };

 Download the sample

A swipe gesture occurs when a finger is moved across the screen in a horizontal or vertical direction, and is

often used to initiate navigation through content. The code examples in this article are taken from the Swipe

Gesture sample.

To make a View recognize a swipe gesture, create a SwipeGestureRecognizer instance, set the Direction

property to a SwipeDirection enumeration value (Left , Right , Up , or Down), optionally set the Threshold

property, handle the Swiped event, and add the new gesture recognizer to the GestureRecognizers collection on

the view. The following code example shows a SwipeGestureRecognizer attached to a BoxView :

Here is the equivalent C# code:

The SwipeGestureRecognizer class also includes a Threshold property, that can be optionally set to a uint value

that represents the minimum swipe distance that must be achieved for a swipe to be recognized, in device-

independent units. The default value of this property is 100, meaning that any swipes that are less than 100

device-independent units will be ignored.

In the examples above, the Direction property is set to single a value from the SwipeDirection enumeration.

However, it's also possible to set this property to multiple values from the SwipeDirection enumeration, so that

the Swiped event is fired in response to a swipe in more than one direction. However, the constraint is that a

single SwipeGestureRecognizer can only recognize swipes that occur on the same axis. Therefore, swipes that

occur on the horizontal axis can be recognized by setting the Direction property to Left and Right :

Similarly, swipes that occur on the vertical axis can be recognized by setting the Direction property to Up and

Down :

Alternatively, a SwipeGestureRecognizer for each swipe direction can be created to recognize swipes in every

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/gestures/swipe.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-swipegesture
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-swipegesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.direction#xamarin_forms_swipegesturerecognizer_direction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.threshold#xamarin_forms_swipegesturerecognizer_threshold
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.swiped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.gesturerecognizers#xamarin_forms_view_gesturerecognizers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.threshold#xamarin_forms_swipegesturerecognizer_threshold
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedeventargs.direction#xamarin_forms_swipedeventargs_direction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.swiped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedeventargs.direction#xamarin_forms_swipedeventargs_direction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer

<BoxView Color="Teal" ...>
 <BoxView.GestureRecognizers>
 <SwipeGestureRecognizer Direction="Left" Swiped="OnSwiped"/>
 <SwipeGestureRecognizer Direction="Right" Swiped="OnSwiped"/>
 <SwipeGestureRecognizer Direction="Up" Swiped="OnSwiped"/>
 <SwipeGestureRecognizer Direction="Down" Swiped="OnSwiped"/>
 </BoxView.GestureRecognizers>
</BoxView>

var boxView = new BoxView { Color = Color.Teal, ... };
var leftSwipeGesture = new SwipeGestureRecognizer { Direction = SwipeDirection.Left };
leftSwipeGesture.Swiped += OnSwiped;
var rightSwipeGesture = new SwipeGestureRecognizer { Direction = SwipeDirection.Right };
rightSwipeGesture.Swiped += OnSwiped;
var upSwipeGesture = new SwipeGestureRecognizer { Direction = SwipeDirection.Up };
upSwipeGesture.Swiped += OnSwiped;
var downSwipeGesture = new SwipeGestureRecognizer { Direction = SwipeDirection.Down };
downSwipeGesture.Swiped += OnSwiped;

boxView.GestureRecognizers.Add(leftSwipeGesture);
boxView.GestureRecognizers.Add(rightSwipeGesture);
boxView.GestureRecognizers.Add(upSwipeGesture);
boxView.GestureRecognizers.Add(downSwipeGesture);

NOTENOTE

 Responding to the swipe

void OnSwiped(object sender, SwipedEventArgs e)
{
 switch (e.Direction)
 {
 case SwipeDirection.Left:
 // Handle the swipe
 break;
 case SwipeDirection.Right:
 // Handle the swipe
 break;
 case SwipeDirection.Up:
 // Handle the swipe
 break;
 case SwipeDirection.Down:
 // Handle the swipe
 break;
 }
}

direction:

Here is the equivalent C# code:

In the above examples, the same event handler responds to the Swiped event firing. However, each

SwipeGestureRecognizer instance can use a different event handler if required.

An event handler for the Swiped event is shown in the following example:

The SwipedEventArgs can be examined to determine the direction of the swipe, with custom logic responding to

the swipe as required. The direction of the swipe can be obtained from the Direction property of the event

arguments, which will be set to one of the values of the SwipeDirection enumeration. In addition, the event

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.swiped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.swiped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedeventargs.direction#xamarin_forms_swipedeventargs_direction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedirection

 Using commands

var boxView = new BoxView { Color = Color.Teal, ... };
var leftSwipeGesture = new SwipeGestureRecognizer { Direction = SwipeDirection.Left, CommandParameter =
"Left" };
leftSwipeGesture.SetBinding(SwipeGestureRecognizer.CommandProperty, "SwipeCommand");
boxView.GestureRecognizers.Add(leftSwipeGesture);

<BoxView Color="Teal" ...>
 <BoxView.GestureRecognizers>
 <SwipeGestureRecognizer Direction="Left" Command="{Binding SwipeCommand}" CommandParameter="Left" />
 </BoxView.GestureRecognizers>
</BoxView>

 Creating a swipe container

public class SwipeContainer : ContentView
{
 public event EventHandler<SwipedEventArgs> Swipe;

 public SwipeContainer()
 {
 GestureRecognizers.Add(GetSwipeGestureRecognizer(SwipeDirection.Left));
 GestureRecognizers.Add(GetSwipeGestureRecognizer(SwipeDirection.Right));
 GestureRecognizers.Add(GetSwipeGestureRecognizer(SwipeDirection.Up));
 GestureRecognizers.Add(GetSwipeGestureRecognizer(SwipeDirection.Down));
 }

 SwipeGestureRecognizer GetSwipeGestureRecognizer(SwipeDirection direction)
 {
 var swipe = new SwipeGestureRecognizer { Direction = direction };
 swipe.Swiped += (sender, e) => Swipe?.Invoke(this, e);
 return swipe;
 }
}

arguments also have a Parameter property that will be set to the value of the CommandParameter property, if

defined.

The SwipeGestureRecognizer class also includes Command and CommandParameter properties. These properties are

typically used in applications that use the Model-View-ViewModel (MVVM) pattern. The Command property

defines the ICommand to be invoked when a swipe gesture is recognized, with the CommandParameter property

defining an object to be passed to the ICommand. The following code example shows how to bind the Command

property to an ICommand defined in the view model whose instance is set as the page BindingContext :

The equivalent XAML code is:

SwipeCommand is a property of type ICommand defined in the view model instance that is set as the page

BindingContext . When a swipe gesture is recognized, the Execute method of the SwipeCommand object will be

executed. The argument to the Execute method is the value of the CommandParameter property. For more

information about commands, see The Command Interface.

The SwipeContainer class, which is shown in the following code example, is a generalized swipe recognition

class that be wrapped around a View to perform swipe gesture recognition:

The SwipeContainer class creates SwipeGestureRecognizer objects for all four swipe directions, and attaches

Swipe event handlers. These event handlers invoke the Swipe event defined by the SwipeContainer .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedeventargs.parameter#xamarin_forms_swipedeventargs_parameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.commandparameter#xamarin_forms_swipegesturerecognizer_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.command#xamarin_forms_swipegesturerecognizer_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.commandparameter#xamarin_forms_swipegesturerecognizer_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.commandparameter#xamarin_forms_swipegesturerecognizer_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer

<ContentPage ...>
 <StackLayout>
 <local:SwipeContainer Swipe="OnSwiped" ...>
 <BoxView Color="Teal" ... />
 </local:SwipeContainer>
 </StackLayout>
</ContentPage>

public class SwipeContainerPageCS : ContentPage
{
 public SwipeContainerPageCS()
 {
 var boxView = new BoxView { Color = Color.Teal, ... };
 var swipeContainer = new SwipeContainer { Content = boxView, ... };
 swipeContainer.Swipe += (sender, e) =>
 {
 // Handle the swipe
 };

 Content = new StackLayout
 {
 Children = { swipeContainer }
 };
 }
}

 Related links

The following XAML code example shows the SwipeContainer class wrapping a BoxView :

The following code example shows how the SwipeContainer wraps a BoxView in a C# page:

When the BoxView receives a swipe gesture, the Swiped event in the SwipeGestureRecognizer is fired. This is

handled by the SwipeContainer class, which fires its own Swipe event. This Swipe event is handled on the page.

The SwipedEventArgs can then be examined to determine the direction of the swipe, with custom logic

responding to the swipe as required.

Swipe Gesture (sample)

GestureRecognizer

SwipeGestureRecognizer

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer.swiped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipedeventargs
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-swipegesture
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipegesturerecognizer

Add drag and drop gesture recognizers
 7/8/2021 • 11 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

 Enable drag

 Download the sample

A drag and drop gesture enables items, and their associated data packages, to be dragged from one onscreen

location to another location using a continuous gesture. Drag and drop can take place in a single application, or

it can start in one application and end in another.

Recognition of drag and drop gestures is supported on iOS, Android, and the Universal Windows Platform (UWP).

However, on iOS a minimum platform of iOS 11 is required.

The drag source, which is the element on which the drag gesture is initiated, can provide data to be transferred

by populating a data package object. When the drag source is released, drop occurs. The drop target, which is

the element under the drag source, then processes the data package.

The process for enabling drag and drop in an application is as follows:

1. Enable drag on an element by adding a DragGestureRecognizer object to its GestureRecognizers collection.

For more information, see Enable drag.

2. [optional] Build a data package. Xamarin.Forms automatically populates the data package for image and text

controls, but for other content you'll need to construct your own data package. For more information, see

Build a data package.

3. Enable drop on an element by adding a DropGestureRecognizer object its GestureRecognizers collection. For

more information, see Enable drop.

4. [optional] Handle the DropGestureRecognizer.DragOver event to indicate the type of operation allowed by the

drop target. For more information, see Handle the DragOver event.

5. [optional] Process the data package to receive the dropped content. Xamarin.Forms will automatically

retrieve image and text data from the data package, but for other content you'll need to process the data

package. For more information, see Process the data package.

Dragging items to and from a CollectionView is currently unsupported.

In Xamarin.Forms, drag gesture recognition is provided by the DragGestureRecognizer class. This class defines

the following properties:

CanDrag , of type bool , which indicates whether the element the gesture recognizer is attached to can be a

drag source. The default value of this property is true .

DragStartingCommand , of type ICommand , which is executed when a drag gesture is first recognized.

DragStartingCommandParameter , of type object , which is the parameter that's passed to the

DragStartingCommand .

DropCompletedCommand , of type ICommand , which is executed when the drag source is dropped.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/gestures/drag-and-drop.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-draganddropgesture/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<Image Source="monkeyface.png">
 <Image.GestureRecognizers>
 <DragGestureRecognizer />
 </Image.GestureRecognizers>
</Image>

TIPTIP

 Build a data package

C O N T RO LC O N T RO L P RO P ERT YP RO P ERT Y C O N VERSIO NC O N VERSIO N

CheckBox IsChecked bool converted to a string .

DatePicker Date DateTime converted to a string .

Editor Text

DropCompletedCommandParameter , of type object , which is the parameter that's passed to the

DropCompletedCommand .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The DragGestureRecognizer class also defines DragStarting and DropCompleted events that fire provided that

the CanDrag property is true . When a DragGestureRecognizer object detects a drag gesture, it executes the

DragStartingCommand and invokes the DragStarting event. Then, when the DragGestureRecognizer object detects

the completion of a drop gesture, it executes the DropCompletedCommand and invokes the DropCompleted event.

The DragStartingEventArgs object that accompanies the DragStarting event defines the following properties:

Handled , of type bool , indicates whether the event handler has handled the event or whether

Xamarin.Forms should continue its own processing.

Cancel , of type bool , indicates whether the event should be canceled.

Data , of type DataPackage , indicates the data package that accompanies the drag source. This is a read-only

property.

The following XAML example shows a DragGestureRecognizer attached to an Image :

In this example, a drag gesture can be initiated on the Image .

On iOS, Android, and UWP, a drag gesture is initiated with a long-press followed by a drag.

For an example of using DragGestureRecognizer commands, see the sample.

Xamarin.Forms will automatically build a data package for you, when a drag is initiated, for the following

controls:

Text controls. Text values can be dragged from CheckBox , DatePicker , Editor , Entry , Label , RadioButton ,

Switch , and TimePicker objects.

Image controls. Images can be dragged from Button , Image , and ImageButton controls.

The following table shows the properties that are read, and any conversion that's attempted, when a drag is

initiated on a text control:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-draganddropgesture/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton

Entry Text

Label Text

RadioButton IsChecked bool converted to a string .

Switch IsToggled bool converted to a string .

TimePicker Time TimeSpan converted to a string .

C O N T RO LC O N T RO L P RO P ERT YP RO P ERT Y C O N VERSIO NC O N VERSIO N

 Store image or text dataStore image or text data

<Path Stroke="Black"
 StrokeThickness="4">
 <Path.GestureRecognizers>
 <DragGestureRecognizer DragStarting="OnDragStarting" />
 </Path.GestureRecognizers>
 <Path.Data>
 <!-- PathGeometry goes here -->
 </Path.Data>
</Path>

void OnDragStarting(object sender, DragStartingEventArgs e)
{
 e.Data.Text = "My text data goes here";
}

 Store data in the property bagStore data in the property bag

For content other than text and images, you'll need to build a data package yourself.

Data packages are represented by the DataPackage class, which defines the following properties:

Properties , of type DataPackagePropertySet , which is a collection of properties that comprise the data

contained in the DataPackage . This property is a read-only property.

Image , of type ImageSource , which is the image contained in the DataPackage .

Text , of type string , which is the text contained in the DataPackage .

View , of type DataPackageView , which is a read-only version of the DataPackage .

The DataPackagePropertySet class represents a property bag stored as a Dictionary<string,object> . For

information about the DataPackageView class, see Process the data package.

Image or text data can be associated with a drag source by storing the data in the DataPackage.Image or

DataPackage.Text property. This can be accomplished in the handler for the DragStarting event.

The following XAML example shows a DragGestureRecognizer that registers a handler for the DragStarting

event:

In this example, the DragGestureRecognizer is attached to a Path object. The DragStarting event is fired when a

drag gesture is detected on the Path , which executes the OnDragStarting event handler :

The DragStartingEventArgs object that accompanies the DragStarting event has a Data property, of type

DataPackage . In this example, the Text property of the DataPackage object is set to a string . The DataPackage

can then be accessed on drop, to retrieve the string .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource

<Rectangle Stroke="Red"
 Fill="DarkBlue"
 StrokeThickness="4"
 HeightRequest="200"
 WidthRequest="200">
 <Rectangle.GestureRecognizers>
 <DragGestureRecognizer DragStarting="OnDragStarting" />
 </Rectangle.GestureRecognizers>
</Rectangle>

void OnDragStarting(object sender, DragStartingEventArgs e)
{
 Shape shape = (sender as Element).Parent as Shape;
 e.Data.Properties.Add("Square", new Square(shape.Width, shape.Height));
}

 Enable drop

Any data, including images and text, can be associated with a drag source by storing the data in the

DataPackage.Properties collection. This can be accomplished in the handler for the DragStarting event.

The following XAML example shows a DragGestureRecognizer that registers a handler for the DragStarting

event:

In this example, the DragGestureRecognizer is attached to a Rectangle object. The DragStarting event is fired

when a drag gesture is detected on the Rectangle , which executes the OnDragStarting event handler :

The DragStartingEventArgs object that accompanies the DragStarting event has a Data property, of type

DataPackage . The Properties collection of the DataPackage object, which is a Dictionary<string, object>

collection, can be modified to store any required data. In this example, the Properties dictionary is modified to

store a Square object, that represents the size of the Rectangle , against a "Square" key.

In Xamarin.Forms, drop gesture recognition is provided by the DropGestureRecognizer class. This class defines

the following properties:

AllowDrop , of type bool , which indicates whether the element the gesture recognizer is attached to can be a

drop target. The default value of this property is true .

DragOverCommand , of type ICommand , which is executed when the drag source is dragged over the drop target.

DragOverCommandParameter , of type object , which is the parameter that's passed to the DragOverCommand .

DragLeaveCommand , of type ICommand , which is executed when the drag source is dragged off the drop target.

DragLeaveCommandParameter , of type object , which is the parameter that's passed to the DragLeaveCommand .

DropCommand , of type ICommand , which is executed when the drag source is dropped over the drop target.

DropCommandParameter , of type object , which is the parameter that's passed to the DropCommand .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The DropGestureRecognizer class also defines DragOver , DragLeave , and Drop events that fire provided that the

AllowDrop property is true . When a DropGestureRecognizer recognizes a drag source over the drop target, it

executes the DragOverCommand and invokes the DragOver event. Then, if the drag source is dragged off the drop

target, the DropGestureRecognizer executes the DragLeaveCommand and invokes the DragLeave event. Finally,

when the DropGestureRecognizer recognizes a drop gesture over the drop target, it executes the DropCommand

and invokes the Drop event.

The DragEventArgs class, that accompanies the DragOver and DragLeave events, defines the following

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Image BackgroundColor="Silver"
 HeightRequest="300"
 WidthRequest="250">
 <Image.GestureRecognizers>
 <DropGestureRecognizer />
 </Image.GestureRecognizers>
</Image>

 Handle the DragOver event

IMPORTANTIMPORTANT

<Image BackgroundColor="Silver"
 HeightRequest="300"
 WidthRequest="250">
 <Image.GestureRecognizers>
 <DropGestureRecognizer DragOver="OnDragOver" />
 </Image.GestureRecognizers>
</Image>

properties:

Data , of type DataPackage , which contains the data associated with the drag source. This property is read-

only.

AcceptedOperation , of type DataPackageOperation , which specifies which operations are allowed by the drop

target.

For information about the DataPackageOperation enumeration, see Handle the DragOver event.

The DropEventArgs class that accompanies the Drop event defines the following properties:

Data , of type DataPackageView , which is a read-only version of the data package.

Handled , of type bool , indicates whether the event handler has handled the event or whether

Xamarin.Forms should continue its own processing.

The following XAML example shows a DropGestureRecognizer attached to an Image :

In this example, when a drag source is dropped on the Image drop target, the drag source will be copied to the

drop target, provided that the drag source is an ImageSource . This occurs because Xamarin.Forms automatically

copies dragged images, and text, to compatible drop targets.

For an example of using DropGestureRecognizer commands, see the sample.

The DropGestureRecognizer.DragOver event can be optionally handled to indicate which type of operations are

allowed by the drop target. This can be accomplished by setting the AcceptedOperation property, of type

DataPackageOperation , of the DragEventArgs object that accompanies the DragOver event.

The DataPackageOperation enumeration defines the following members:

None , indicates that no action will be performed.

Copy , indicates that the drag source content will be copied to the drop target.

When a DragEventArgs object is created, the AcceptedOperation property defaults to DataPackageOperation.Copy .

The following XAML example shows a DropGestureRecognizer that registers a handler for the DragOver event:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-draganddropgesture/

void OnDragOver(object sender, DragEventArgs e)
{
 e.AcceptedOperation = DataPackageOperation.None;
}

 Process the data package

C O N T RO LC O N T RO L P RO P ERT YP RO P ERT Y C O N VERSIO NC O N VERSIO N

CheckBox IsChecked string is converted to a bool .

DatePicker Date string is converted to a DateTime .

Editor Text

Entry Text

Label Text

RadioButton IsChecked string is converted to a bool .

Switch IsToggled string is converted to a bool .

TimePicker Time string is converted to a TimeSpan .

 Retrieve image or text dataRetrieve image or text data

In this example, the DropGestureRecognizer is attached to an Image object. The DragOver event is fired when a

drag source is dragged over the drop target, but hasn't been dropped, which executes the OnDragOver event

handler :

In this example, the AcceptedOperation property of the DragEventArgs object is set to

DataPackageOperation.None . This ensures that no action is taken when a drag source is dropped over the drop

target.

The Drop event is fired when a drag source is released over a drop target. When this occurs, Xamarin.Forms will

automatically attempt to retrieve data from the data package, when a drag source is dropped onto the following

controls:

Text controls. Text values can be dropped onto CheckBox , DatePicker , Editor , Entry , Label , RadioButton ,

Switch , and TimePicker objects.

Image controls. Images can be dropped onto Button , Image , and ImageButton controls.

The following table shows the properties that are set, and any conversion that's attempted, when a text-based

drag source is dropped on a text control:

For content other than text and images, you'll need to process the data package yourself.

The DropEventArgs class that accompanies the Drop event defines a Data property, of type DataPackageView .

This property represents a read-only version of the data package.

Image or text data can be retrieved from a data package in the handler for the Drop event, using methods

defined in the DataPackageView class.

The DataPackageView class includes GetImageAsync and GetTextAsync methods. The GetImageAsync method

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton

async void OnDrop(object sender, DropEventArgs e)
{
 string text = await e.Data.GetTextAsync();

 // Perform logic to take action based on the text value.
}

 Retrieve data from the property bagRetrieve data from the property bag

void OnDrop(object sender, DropEventArgs e)
{
 Square square = (Square)e.Data.Properties["Square"];

 // Perform logic to take action based on retrieved value.
}

 Related links

retrieves an image from the data package, that was stored in the DataPackage.Image property, and returns

Task<ImageSource> . Similarly, the GetTextAsync method retrieves text from the data package, that was stored in

the DataPackage.Text property, and returns Task<string> .

The following example shows a Drop event handler that retrieves text from the data package for a Path :

In this example, text data is retrieved from the data package using the GetTextAsync method. An action based on

the text value can then be taken.

Any data can be retrieved from a data package in the handler for the Drop event, by accessing the Properties

collection of the data package.

The DataPackageView class defines a Properties property, of type DataPackagePropertySetView . The

DataPackagePropertySetView class represents a read-only property bag stored as a Dictionary<string, object> .

The following example shows a Drop event handler that retrieves data from the property bag of a data package

for a Rectangle :

In this example, the Square object is retrieved from the property bag of the data package, by specifying the

"Square" dictionary key. An action based on the retrieved value can then be taken.

Drag and drop gesture (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithgestures-draganddropgesture/

Local notifications in Xamarin.Forms
 7/8/2021 • 9 minutes to read • Edit Online

 Create a cross-platform interface

public interface INotificationManager
{
 event EventHandler NotificationReceived;
 void Initialize();
 void SendNotification(string title, string message, DateTime? notifyTime = null);
 void ReceiveNotification(string title, string message);
}

 Consume the interface in Xamarin.Forms

 Download the sample

Local notifications are alerts sent by applications installed on a mobile device. Local notifications are often used

for features such as:

Calendar events

Reminders

Location-based triggers

Each platform handles the creation, display, and consumption of local notifications differently. This article

explains how to create a cross-platform abstraction to send, schedule, and receive local notifications with

Xamarin.Forms.

The Xamarin.Forms application should create and consume notifications without concern for the underlying

platform implementations. The following INotificationManager interface is implemented in the shared code

library, and defines a cross-platform API that the application can use to interact with notifications:

This interface will be implemented in each platform project. The NotificationReceived event allows the

application to handle incoming notifications. The Initialize method should perform any native platform logic

needed to prepare the notification system. The SendNotification method should send a notification, at an

optional DateTime . The ReceiveNotification method should be called by the underlying platform when a

message is received.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/local-notifications.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/local-notifications
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/local-notifications-images/local-notifications-msg.png#lightbox

<StackLayout Margin="0,35,0,0"
 x:Name="stackLayout">
 <Label Text="Click the button below to create a local notification."
 TextColor="Red"
 HorizontalOptions="Center"
 VerticalOptions="Start" />
 <Button Text="Create Notification"
 HorizontalOptions="Center"
 VerticalOptions="Start"
 Clicked="OnSendClick" />
 <Label Text="Click the button below to schedule a local notification for in 10 seconds time."
 TextColor="Red"
 HorizontalOptions="Center"
 VerticalOptions="Start" />
 <Button Text="Create Notification"
 HorizontalOptions="Center"
 VerticalOptions="Start"
 Clicked="OnScheduleClick" />
</StackLayout>

Once an interface has been created, it can be consumed in the shared Xamarin.Forms project even though

platform implementations haven't been created yet. The sample application contains a ContentPage called

MainPage.xamlMainPage.xaml with the following content:

The layout contains Label elements that explain instructions, and Button elements that send or schedule a

notification when tapped.

The MainPage class code-behind handles the sending and receiving of notifications:

public partial class MainPage : ContentPage
{
 INotificationManager notificationManager;
 int notificationNumber = 0;

 public MainPage()
 {
 InitializeComponent();

 notificationManager = DependencyService.Get<INotificationManager>();
 notificationManager.NotificationReceived += (sender, eventArgs) =>
 {
 var evtData = (NotificationEventArgs)eventArgs;
 ShowNotification(evtData.Title, evtData.Message);
 };
 }

 void OnSendClick(object sender, EventArgs e)
 {
 notificationNumber++;
 string title = $"Local Notification #{notificationNumber}";
 string message = $"You have now received {notificationNumber} notifications!";
 notificationManager.SendNotification(title, message);
 }

 void OnScheduleClick(object sender, EventArgs e)
 {
 notificationNumber++;
 string title = $"Local Notification #{notificationNumber}";
 string message = $"You have now received {notificationNumber} notifications!";
 notificationManager.SendNotification(title, message, DateTime.Now.AddSeconds(10));
 }

 void ShowNotification(string title, string message)
 {
 Device.BeginInvokeOnMainThread(() =>
 {
 var msg = new Label()
 {
 Text = $"Notification Received:\nTitle: {title}\nMessage: {message}"
 };
 stackLayout.Children.Add(msg);
 });
 }
}

public class NotificationEventArgs : EventArgs
{
 public string Title { get; set; }
 public string Message { get; set; }
}

The MainPage class constructor uses the Xamarin.Forms DependencyService to retrieve a platform-specific

instance of the INotificationManager . The OnSendClick and OnScheduleClicked methods use the

INotificationManager instance to send and schedule new notifications. The ShowNotification method is called

from the event handler attached to the NotificationReceived event, and will insert a new Label into the page

when the event is invoked.

The NotificationReceived event handler casts its event arguments to NotificationEventArgs . This type is

defined in the shared Xamarin.Forms project:

For more information about the Xamarin.Forms DependencyService , see Xamarin.Forms DependencyService.

 Create the Android interface implementation

 Create the AndroidNotificationManager classCreate the AndroidNotificationManager class

using System;
using Android.App;
using Android.Content;
using Android.Graphics;
using Android.OS;
using AndroidX.Core.App;
using Xamarin.Forms;
using AndroidApp = Android.App.Application;

[assembly: Dependency(typeof(LocalNotifications.Droid.AndroidNotificationManager))]
namespace LocalNotifications.Droid
{
 public class AndroidNotificationManager : INotificationManager
 {
 const string channelId = "default";
 const string channelName = "Default";
 const string channelDescription = "The default channel for notifications.";

 public const string TitleKey = "title";
 public const string MessageKey = "message";

 bool channelInitialized = false;
 int messageId = 0;
 int pendingIntentId = 0;

 NotificationManager manager;

 public event EventHandler NotificationReceived;

 public static AndroidNotificationManager Instance { get; private set; }

 public AndroidNotificationManager() => Initialize();

 public void Initialize()
 {
 if (Instance == null)
 {
 CreateNotificationChannel();
 Instance = this;
 }
 }

 public void SendNotification(string title, string message, DateTime? notifyTime = null)
 {
 if (!channelInitialized)
 {
 CreateNotificationChannel();
 }

 if (notifyTime != null)
 {
 Intent intent = new Intent(AndroidApp.Context, typeof(AlarmHandler));
 intent.PutExtra(TitleKey, title);
 intent.PutExtra(MessageKey, message);

 PendingIntent pendingIntent = PendingIntent.GetBroadcast(AndroidApp.Context,
pendingIntentId++, intent, PendingIntentFlags.CancelCurrent);
 long triggerTime = GetNotifyTime(notifyTime.Value);
 AlarmManager alarmManager = AndroidApp.Context.GetSystemService(Context.AlarmService) as

For the Xamarin.Forms application to send and receive notifications on Android, the application must provide an

implementation of the INotificationManager interface.

The AndroidNotificationManager class implements the INotificationManager interface:

 AlarmManager alarmManager = AndroidApp.Context.GetSystemService(Context.AlarmService) as
AlarmManager;
 alarmManager.Set(AlarmType.RtcWakeup, triggerTime, pendingIntent);
 }
 else
 {
 Show(title, message);
 }
 }

 public void ReceiveNotification(string title, string message)
 {
 var args = new NotificationEventArgs()
 {
 Title = title,
 Message = message,
 };
 NotificationReceived?.Invoke(null, args);
 }

 public void Show(string title, string message)
 {
 Intent intent = new Intent(AndroidApp.Context, typeof(MainActivity));
 intent.PutExtra(TitleKey, title);
 intent.PutExtra(MessageKey, message);

 PendingIntent pendingIntent = PendingIntent.GetActivity(AndroidApp.Context, pendingIntentId++,
intent, PendingIntentFlags.UpdateCurrent);

 NotificationCompat.Builder builder = new NotificationCompat.Builder(AndroidApp.Context,
channelId)
 .SetContentIntent(pendingIntent)
 .SetContentTitle(title)
 .SetContentText(message)
 .SetLargeIcon(BitmapFactory.DecodeResource(AndroidApp.Context.Resources,
Resource.Drawable.xamagonBlue))
 .SetSmallIcon(Resource.Drawable.xamagonBlue)
 .SetDefaults((int)NotificationDefaults.Sound | (int)NotificationDefaults.Vibrate);

 Notification notification = builder.Build();
 manager.Notify(messageId++, notification);
 }

 void CreateNotificationChannel()
 {
 manager =
(NotificationManager)AndroidApp.Context.GetSystemService(AndroidApp.NotificationService);

 if (Build.VERSION.SdkInt >= BuildVersionCodes.O)
 {
 var channelNameJava = new Java.Lang.String(channelName);
 var channel = new NotificationChannel(channelId, channelNameJava,
NotificationImportance.Default)
 {
 Description = channelDescription
 };
 manager.CreateNotificationChannel(channel);
 }

 channelInitialized = true;
 }

 long GetNotifyTime(DateTime notifyTime)
 {
 DateTime utcTime = TimeZoneInfo.ConvertTimeToUtc(notifyTime);
 double epochDiff = (new DateTime(1970, 1, 1) - DateTime.MinValue).TotalSeconds;
 long utcAlarmTime = utcTime.AddSeconds(-epochDiff).Ticks / 10000;
 return utcAlarmTime; // milliseconds
 }

 }
}

[BroadcastReceiver(Enabled = true, Label = "Local Notifications Broadcast Receiver")]
public class AlarmHandler : BroadcastReceiver
{
 public override void OnReceive(Context context, Intent intent)
 {
 if (intent?.Extras != null)
 {
 string title = intent.GetStringExtra(AndroidNotificationManager.TitleKey);
 string message = intent.GetStringExtra(AndroidNotificationManager.MessageKey);

 AndroidNotificationManager manager = AndroidNotificationManager.Instance ?? new
AndroidNotificationManager();
 manager.Show(title, message);
 }
 }
}

IMPORTANTIMPORTANT

 Handle incoming notifications on AndroidHandle incoming notifications on Android

[Activity(
 //...
 LaunchMode = LaunchMode.SingleTop]
 public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsAppCompatActivity
 {
 // ...
 }

The assembly attribute above the namespace registers the INotificationManager interface implementation with

the DependencyService .

Android allows applications to define multiple channels for notifications. The Initialize method creates a basic

channel the sample application uses to send notifications. The SendNotification method defines the platform-

specific logic required to create and send a notification. The ReceiveNotification method is called by the

Android OS when a message is received, and invokes the event handler.

The SendNotification method creates a local notification immediately, or at an exact DateTime . A notification

can be scheduled for an exact DateTime using the AlarmManager class, and the notification will be received by an

object that derives from the BroadcastReceiver class:

By default, notifications scheduled using the AlarmManager class will not survive device restart. However, you can design

your application to automatically reschedule notifications if the device is restarted. For more information, Start an alarm

when the device restarts in Schedule repeating alarms on developer.android.com, and the sample. For information about

background processing on Android, see Guide to background processing on developer.android.com.

For more information about broadcast receivers, see Broadcast Receivers in Xamarin.Android.

The MainActivity class must detect incoming notifications and notify the AndroidNotificationManager instance.

The Activity attribute on the MainActivity class should specify a LaunchMode value of LaunchMode.SingleTop :

The SingleTop mode prevents multiple instances of an Activity from being started while the application is in

the foreground. This LaunchMode may not be appropriate for applications that launch multiple activities in more

complex notification scenarios. For more information about LaunchMode enumeration values, see Android

Activity LaunchMode.

https://developer.android.com/training/scheduling/alarms#boot
https://developer.android.com/training/scheduling/alarms
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/local-notifications
https://developer.android.com/guide/background
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/broadcast-receivers
https://developer.android.com/guide/topics/manifest/activity-element#lmode

protected override void OnCreate(Bundle savedInstanceState)
{
 // ...

 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 LoadApplication(new App());
 CreateNotificationFromIntent(Intent);
}

protected override void OnNewIntent(Intent intent)
{
 CreateNotificationFromIntent(intent);
}

void CreateNotificationFromIntent(Intent intent)
{
 if (intent?.Extras != null)
 {
 string title = intent.GetStringExtra(AndroidNotificationManager.TitleKey);
 string message = intent.GetStringExtra(AndroidNotificationManager.MessageKey);
 DependencyService.Get<INotificationManager>().ReceiveNotification(title, message);
 }
}

 Create the iOS interface implementation

 Create the iOSNotificationManager classCreate the iOSNotificationManager class

using System;
using Foundation;
using UserNotifications;
using Xamarin.Forms;

[assembly: Dependency(typeof(LocalNotifications.iOS.iOSNotificationManager))]
namespace LocalNotifications.iOS
{
 public class iOSNotificationManager : INotificationManager
 {
 int messageId = 0;
 bool hasNotificationsPermission;
 public event EventHandler NotificationReceived;

 public void Initialize()
 {
 // request the permission to use local notifications
 UNUserNotificationCenter.Current.RequestAuthorization(UNAuthorizationOptions.Alert, (approved,

In the MainActivity class is modified to receive incoming notifications:

The CreateNotificationFromIntent method extracts notification data from the intent argument and provides it

to the AndroidNotificationManager using the ReceiveNotification method. The CreateNotificationFromIntent

method is called from both the OnCreate method and the OnNewIntent method:

When the application is started by notification data, the Intent data will be passed to the OnCreate method.

If the application is already in the foreground, the Intent data will be passed to the OnNewIntent method.

Android offers many advanced options for notifications. For more information, see Notifications in

Xamarin.Android.

For the Xamarin.Forms application to send and receive notifications on iOS, the application must provide an

implementation of the INotificationManager .

The iOSNotificationManager class implements the INotificationManager interface:

https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/notifications/index

err) =>
 {
 hasNotificationsPermission = approved;
 });
 }

 public void SendNotification(string title, string message, DateTime? notifyTime = null)
 {
 // EARLY OUT: app doesn't have permissions
 if (!hasNotificationsPermission)
 {
 return;
 }

 messageId++;

 var content = new UNMutableNotificationContent()
 {
 Title = title,
 Subtitle = "",
 Body = message,
 Badge = 1
 };

 UNNotificationTrigger trigger;
 if (notifyTime != null)
 {
 // Create a calendar-based trigger.
 trigger = UNCalendarNotificationTrigger.CreateTrigger(GetNSDateComponents(notifyTime.Value),
false);
 }
 else
 {
 // Create a time-based trigger, interval is in seconds and must be greater than 0.
 trigger = UNTimeIntervalNotificationTrigger.CreateTrigger(0.25, false);
 }

 var request = UNNotificationRequest.FromIdentifier(messageId.ToString(), content, trigger);
 UNUserNotificationCenter.Current.AddNotificationRequest(request, (err) =>
 {
 if (err != null)
 {
 throw new Exception($"Failed to schedule notification: {err}");
 }
 });
 }

 public void ReceiveNotification(string title, string message)
 {
 var args = new NotificationEventArgs()
 {
 Title = title,
 Message = message
 };
 NotificationReceived?.Invoke(null, args);
 }

 NSDateComponents GetNSDateComponents(DateTime dateTime)
 {
 return new NSDateComponents
 {
 Month = dateTime.Month,
 Day = dateTime.Day,
 Year = dateTime.Year,
 Hour = dateTime.Hour,
 Minute = dateTime.Minute,
 Second = dateTime.Second
 };
 }

 }
 }
}

NOTENOTE

 Handle incoming notifications on iOSHandle incoming notifications on iOS

public class iOSNotificationReceiver : UNUserNotificationCenterDelegate
{
 public override void WillPresentNotification(UNUserNotificationCenter center, UNNotification
notification, Action<UNNotificationPresentationOptions> completionHandler)
 {
 ProcessNotification(notification);
 completionHandler(UNNotificationPresentationOptions.Alert);
 }

 void ProcessNotification(UNNotification notification)
 {
 string title = notification.Request.Content.Title;
 string message = notification.Request.Content.Body;

 DependencyService.Get<INotificationManager>().ReceiveNotification(title, message);
 }
}

public override bool FinishedLaunching(UIApplication app, NSDictionary options)
{
 global::Xamarin.Forms.Forms.Init();

 UNUserNotificationCenter.Current.Delegate = new iOSNotificationReceiver();

 LoadApplication(new App());
 return base.FinishedLaunching(app, options);
}

 Test the application

The assembly attribute above the namespace registers the INotificationManager interface implementation with

the DependencyService .

On iOS, you must request permission to use notifications before attempting to schedule a notification. The

Initialize method requests authorization to use local notifications. The SendNotification method defines the

logic required to create and send a notification. The ReceiveNotification method will be called by iOS when a

message is received, and invokes the event handler.

The SendNotification method creates a local notification immediately, using a UNTimeIntervalNotificationTrigger

object, or at an exact DateTime using a UNCalendarNotificationTrigger object.

On iOS, you must create a delegate that subclasses UNUserNotificationCenterDelegate to handle incoming

messages. The sample application defines an iOSNotificationReceiver class:

This class uses the DependencyService to get an instance of the iOSNotificationManager class and provides

incoming notification data to the ReceiveNotification method.

The AppDelegate class must specify an iOSNotificationReceiver object as the UNUserNotificationCenter

delegate during application startup. This occurs in the FinishedLaunching method:

iOS offers many advanced options for notifications. For more information, see Notifications in Xamarin.iOS.

https://docs.microsoft.com/en-us/xamarin/ios/platform/user-notifications/index

 Related links

Once the platform projects contain a registered implementation of the INotificationManager interface, the

application can be tested on both platforms. Run the application and click either of the Create NotificationCreate Notification

buttons to create a notification.

On Android, notifications will appear in the notification area. When the notification is tapped, the application

receives the notification and displays a message:

On iOS, incoming notifications are automatically received by the application without requiring user input. The

application receives the notification and displays a message:

Sample project

Notifications in Xamarin.Android

Broadcast Receivers in Xamarin.Android

Notifications in Xamarin.iOS

Xamarin.Forms DependencyService

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/local-notifications
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/notifications/index
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/broadcast-receivers
https://docs.microsoft.com/en-us/xamarin/ios/platform/user-notifications/index

Xamarin.Forms Localization
 11/2/2020 • 2 minutes to read • Edit Online

 Xamarin.Forms String and Image Localization

 Right-to-Left Localization

The built-in .NET localization framework can be used to build cross-platform multilingual applications with

Xamarin.Forms.

The built-in mechanism for localizing .NET applications uses RESX files and the classes in the System.Resources

and System.Globalization namespaces. The RESX files containing translated strings are embedded in the

Xamarin.Forms assembly, along with a compiler-generated class that provides strongly-typed access to the

translations. The translated text can then be retrieved in code.

Flow direction is the direction in which the UI elements on the page are scanned by the eye. Right-to-left

localization adds support for right-to-left flow direction to Xamarin.Forms applications.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/localization/index.md
https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-resource-files-for-desktop-apps#resources-in-resx-files

Xamarin.Forms String and Image Localization
 7/8/2021 • 9 minutes to read • Edit Online

 Create Resx files

 Download the sample

Localization is the process of adapting an application to meet the specific language or cultural requirements of a

target market. To accomplish localization, the text and images in an application may need to be translated into

multiple languages. A localized application automatically displays translated text based on the culture settings of

the mobile device:

The .NET framework includes a built-in mechanism for localizing applications using Resx resource files. A

resource file stores text and other content as name/value pairs that allow the application to retrieve content for a

provided key. Resource files allow localized content to be separated from application code.

Using resource files to localize Xamarin.Forms applications requires you to perform the following steps:

1. Create Resx files containing translated text.

2. Specify the default culture in the shared project.

3. Localize text in Xamarin.Forms.

4. Localize images based on culture settings for each platform.

5. Localize the application name on each platform.

6. Test localization on each platform.

Resource files are XML files with a .resx.resx extension that are compiled into binary resource (.resources) files

during the build process. Visual Studio 2019 generates a class that provides an API used to retrieve resources. A

localized application typically contains a default resource file with all strings used in the application, as well as

resource files for each supported language. The sample application has a ResxResx folder in the shared project that

contains the resource files, and its default resource file called AppResources.resxAppResources.resx.

Resource files contain the following information for each item:

NameName specifies the key used to access the text in code.

ValueValue specifies the translated text.

CommentComment is an optional field containing additional information.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/localization/text.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/usingresxlocalization
https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-resource-files-for-desktop-apps

A resource file is added with the Add New ItemAdd New Item dialog in Visual Studio 2019:

Once the file is added, rows can be added for each text resource:

The Access ModifierAccess Modifier drop down setting determines how Visual Studio generates the class used to access

resources. Setting the Access Modifier to PublicPublic or InternalInternal results in a generated class with the specified

accessibility level. Setting the Access Modifier to No code generationNo code generation does not generate a class file. The

default resource file should be configured to generate a class file, which results in a file with the .designer.cs.designer.cs

extension being added to the project.

Once the default resource file is created, additional files can be created for each culture the application supports.

Each additional resource file should include the translation culture in the filename and should have the AccessAccess

ModifierModifier set to No code generationNo code generation.

At runtime, the application attempts to resolve a resource request in order of specificity. For example, if the

device culture is en-USen-US the application looks for resource files in this order :

1. AppResources.en-US.resx

2. AppResources.en.resx

3. AppResources.resx (default)

The following screenshot shows a Spanish translation file named AppResources.es.resxAppResources.es.resx:

<?xml version="1.0" encoding="utf-8"?>
<root>
 ...
 <data name="AddButton" xml:space="preserve">
 <value>Add Note</value>
 </data>
 <data name="NotesLabel" xml:space="preserve">
 <value>Notes:</value>
 </data>
 <data name="NotesPlaceholder" xml:space="preserve">
 <value>e.g. Get Milk</value>
 </data>
</root>

The translation file uses the same NameName values specified in the default file but contains Spanish language

strings in the ValueValue column. Additionally, the Access ModifierAccess Modifier is set to No code generationNo code generation.

A resource file is added with the Add New FileAdd New File dialog in Visual Studio 2019 for Mac:

Once a default resource file has been created, text can be added by creating data elements within the root

element in the resource file:

A .designer.cs.designer.cs class file can be created by setting a Custom ToolCustom Tool property in the resource file options:

<?xml version="1.0" encoding="utf-8"?>
<root>
 ...
 <data name="NotesLabel" xml:space="preserve">
 <value>Notas:</value>
 </data>
 <data name="NotesPlaceholder" xml:space="preserve">
 <value>por ejemplo . comprar leche</value>
 </data>
 <data name="AddButton" xml:space="preserve">
 <value>Agregar nuevo elemento</value>
 </data>
</root>

 Specify the default culture

Setting the Custom ToolCustom Tool to PublicResXFileCodeGeneratorPublicResXFileCodeGenerator will result in generated class with public access.

Setting the Custom ToolCustom Tool to InternalResXFileCodeGeneratorInternalResXFileCodeGenerator will result in a generated class with internal

access. An empty Custom ToolCustom Tool value will not generate a class. The generated class name will match the

resource file name. For example, the AppResources.resxAppResources.resx file will result in the creation of an AppResources class

in a file called AppResources.designer.csAppResources.designer.cs .

Additional resource files can be created for each supported culture. Each language file should include the

translation culture in the filename so a file targeting es-MXes-MX should be named AppResources.es-MX.resxAppResources.es-MX.resx.

At runtime, the application attempts to resolve a resource request in order of specificity. For example, if the

device culture is en-USen-US the application looks for resource files in this order :

1. AppResources.en-US.resx

2. AppResources.en.resx

3. AppResources.resx (default)

Language translation files should have the same NameName values specified as the default file. The following XML

shows the Spanish translation file named AppResources.es.resxAppResources.es.resx:

For resource files to work correctly, the application must have an NeutralResourcesLanguage attribute specified.

In the project containing the resource files, the AssemblyInfo.csAssemblyInfo.cs file should be customized to specify the

default culture. The following code shows how to set the NeutralResourcesLanguage to en-USen-US in the

AssemblyInfo.csAssemblyInfo.cs file:

using System.Resources;

// The resources from the neutral language .resx file are stored directly
// within the library assembly. For that reason, changing en-US to a different
// language in this line will not by itself change the language shown in the
// app. See the discussion of UltimateResourceFallbackLocation in the
// documentation for additional information:
// https://docs.microsoft.com/dotnet/api/system.resources.neutralresourceslanguageattribute
[assembly: NeutralResourcesLanguage("en-US")]

WARNINGWARNING

 Specify supported languages on iOS

If you do not specify the NeutralResourcesLanguage attribute, the ResourceManager class returns null values for

any cultures without a specific resource file. When the default culture is specified, the ResourceManager returns results

from the default Resx file for unsupported cultures. Therefore, it is recommended that you always specify the

NeutralResourcesLanguage so that text is displayed for unsupported cultures.

Once a default resource file has been created and the default culture specified in the AssemblyInfo.csAssemblyInfo.cs file, the

application can retrieve localized strings at runtime.

For more information about resource files, see Create resource files for .NET apps.

On iOS, you must declare all supported languages in the Info.plistInfo.plist file for your project. In the Info.plistInfo.plist file, use

the SourceSource view to set an array for the CFBundleLocalizations key, and provide values that correspond to the

Resx files. In addition, ensure you set an expected language via the CFBundleDevelopmentRegion key:

Alternatively, open the Info.plistInfo.plist file in an XML editor and add the following:

https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-resource-files-for-desktop-apps

<key>CFBundleLocalizations</key>
<array>
 <string>de</string>
 <string>es</string>
 <string>fr</string>
 <string>ja</string>
 <string>pt</string> <!-- Brazil -->
 <string>pt-PT</string> <!-- Portugal -->
 <string>ru</string>
 <string>zh-Hans</string>
 <string>zh-Hant</string>
</array>
<key>CFBundleDevelopmentRegion</key>
<string>en</string>

NOTENOTE

 Specify supported languages on UWP

 Localize text in Xamarin.Forms

<ContentPage ...
 xmlns:resources="clr-namespace:LocalizationDemo.Resx">
 <Label Text="{x:Static resources:AppResources.NotesLabel}" />
 <Entry Placeholder="{x:Static resources:AppResources.NotesPlaceholder}" />
 <Button Text="{x:Static resources:AppResources.AddButton}" />
</ContentPage>

Apple treats Portuguese slightly differently than you might expect. For more information, see Adding Languages on

developer.apple.com.

For more information, see Specifying default and supported languages in Info.plist.

This is only necessary if you generate an App Bundle when you package the app for sideloading or the store.

When you generate a UWP App Bundle, when the bundle is installed, it will only load the resources related to

the install device's language settings. Therefore, if the device only has English, then only English resources will

be installed with the app. For more information and instructions, see Windows 8.1 Store apps: Ensure that

resources are installed on a device regardless of whether a device requires them.

Text is localized in Xamarin.Forms using the generated AppResources class. This class is named based on the

default resource file name. Since the sample project resource file is named AppResources.csAppResources.cs , Visual Studio

generates a matching class called AppResources . Static properties are generated in the AppResources class for

each row in the resource file. The following static properties are generated in the sample application's

AppResources class:

AddButton

NotesLabel

NotesPlaceholder

Accessing these values as x:Static properties allows localized text to be displayed in XAML:

Localized text can also be retrieved in code:

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/LocalizingYourApp/LocalizingYourApp.html#//apple_ref/doc/uid/10000171i-CH5-SW2
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/localization/index
https://docs.microsoft.com/en-us/previous-versions/dn482043(v=vs.140)#option-1-add-a-configuration-file-to-your-solution

public LocalizedCodePage()
{
 Label notesLabel = new Label
 {
 Text = AppResources.NotesLabel,
 // ...
 };

 Entry notesEntry = new Entry
 {
 Placeholder = AppResources.NotesPlaceholder,
 //...
 };

 Button addButton = new Button
 {
 Text = AppResources.AddButton,
 // ...
 };

 Content = new StackLayout
 {
 Children = {
 notesLabel,
 notesEntry,
 addButton
 }
 };
}

 Localize images

 Localize images on AndroidLocalize images on Android

The properties in the AppResources class use the current value of the

System.Globalization.CultureInfo.CurrentUICulture to determine which culture resource file to retrieve values

from.

In addition to storing text, Resx files are capable of storing more than just text, they can also store images and

binary data. However, mobile devices have a range of screen sizes and densities and each mobile platform has

functionality for displaying density-dependent images. Therefore, platform image localization functionality

should be used instead of storing images in resource files.

On Android, localized drawables (images) are stored using a naming convention for folders in the ResourcesResources

directory. Folders are named drawabledrawable with a suffix for the target language. For example, the Spanish-language

folder is named drawable-esdrawable-es .

When a four-letter locale code is required, Android requires an additional rr following the dash. For example, the

Mexico locale (es-MX) folder should be named drawable-es-rMXdrawable-es-rMX. The image file names in each locale folder

should be identical:

 Localize images on iOSLocalize images on iOS

NOTENOTE

 Localize images on UWPLocalize images on UWP

For more information, see Android Localization.

On iOS, localized images are stored using a naming convention for folders in the ResourcesResources directory. The

default folder is named Base.lprojBase.lproj . Language-specific folders are named with the language or locale name,

followed by .lproj.lproj . For example, the Spanish-language folder is named es.lprojes.lproj .

Four-letter local codes work just like two-letter language codes. For example, the Mexico locale (es-MX) folder

should be named es-MX.lprojes-MX.lproj . The image file names in each locale folder should be identical:

iOS supports creating a localized Asset Catalog instead of using the .lproj folder structure. However, these must be

created and managed in Xcode.

For more information, see iOS Localization.

On UWP, localized images are stored using a naming convention for folders in the Assets/ImagesAssets/Images directory.

Folders are named with the language or locale. For example, the Spanish-language folder is named eses and the

https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/localization
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/localization/index

 Consume localized imagesConsume localized images

<Image>
 <Image.Source>
 <OnPlatform x:TypeArguments="ImageSource">
 <On Platform="iOS, Android" Value="flag.png" />
 <On Platform="UWP" Value="Assets/Images/flag.png" />
 </OnPlatform>
 </Image.Source>
</Image>

NOTENOTE

string imgSrc = Device.RuntimePlatform == Device.UWP ? "Assets/Images/flag.png" : "flag.png";
Image flag = new Image
{
 Source = ImageSource.FromFile(imgSrc),
 WidthRequest = 100
};

 Localize the application name

 Test localization

Mexico locale folder should be named es-MXes-MX. The image file names in each locale folder should be identical:

For more information, see UWP Localization.

Since each platform stores images with a unique file structure, the XAML uses the OnPlatform class to set the

ImageSource property based on the current platform:

The OnPlatform markup extension offers a more concise way of specifying platform-specific values. For more

information, see OnPlatform markup extension.

The image source can be set based on the Device.RuntimePlatform property in code:

The application name is specified per-platform and does not use Resx resource files. To localize the application

name on Android, see Localize app name on Android. To localize the application name on iOS, see Localize app

name on iOS. To localize the application name on UWP, see Localize strings in the UWP package manifest.

Testing localization is best accomplished by changing your device language. It is possible to set the value of

System.Globalization.CultureInfo.CurrentUICulture in code but behavior is inconsistent across platforms so this

is not recommended for testing.

https://docs.microsoft.com/en-us/windows/uwp/design/globalizing/globalizing-portal/
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/localization
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/localization/index
https://docs.microsoft.com/en-us/windows/uwp/app-resources/localize-strings-ui-manifest

 Related links

On iOS, in the settings app, you can set the language for each app specifically without changing your device

language.

On Android, the language settings are detected and cached when the application starts. If you change

languages, you may need to exit and restart the application to see the changes applied.

Localization Sample Project

Create resource files for .NET apps

Cross-Platform Localization

Using the CultureInfo class (MSDN)

Android Localization

iOS Localization

UWP Localization

Locating and Using Resources for a Specific Culture (MSDN)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/usingresxlocalization
https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-resource-files-for-desktop-apps
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/localization
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/localization
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/localization/index
https://docs.microsoft.com/en-us/windows/uwp/design/globalizing/globalizing-portal/
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/s9ckwb4b(v=vs.90)

Right-to-left localization
 7/8/2021 • 5 minutes to read • Edit Online

NOTENOTE

TIPTIP

 Download the sample

Right-to-left localization adds support for right-to-left flow direction to Xamarin.Forms applications.

Right-to-left localization requires the use of iOS 9 or higher, and API 17 or higher on Android.

Flow direction is the direction in which the UI elements on the page are scanned by the eye. Some languages,

such as Arabic and Hebrew, require that UI elements are laid out in a right-to-left flow direction. This can be

achieved by setting the VisualElement.FlowDirection property. This property gets or sets the direction in which

UI elements flow within any parent element that controls their layout, and should be set to one of the

FlowDirection enumeration values:

LeftToRight

RightToLeft

MatchParent

Setting the FlowDirection property to RightToLeft on an element generally sets the alignment to the right, the

reading order to right-to-left, and the layout of the control to flow from right-to-left:

You should only set the FlowDirection property on initial layout. Changing this value at runtime causes an expensive

layout process that will affect performance.

The default FlowDirection property value for an element without a parent is LeftToRight , while the default

FlowDirection for an element with a parent is MatchParent . Therefore, an element inherits the FlowDirection

property value from its parent in the visual tree, and any element can override the value it gets from its parent.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/localization/right-to-left.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todolocalizedrtl
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_lefttoright
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_righttoleft
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_matchparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_righttoleft
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/localization/rtl-images/todoitempage-arabic-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_lefttoright
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_matchparent

TIPTIP

 Respecting device flow direction

<ContentPage ... FlowDirection="{x:Static Device.FlowDirection}"> />

this.FlowDirection = Device.FlowDirection;

 Platform setup

 iOSiOS

<key>CFBundleLocalizations</key>
<array>
 <string>en</string>
 <string>ar</string>
</array>

WARNINGWARNING

 AndroidAndroid

When localizing an app for right-to-left languages, set the FlowDirection property on a page or root layout. This

causes all of the elements contained within the page, or root layout, to respond appropriately to the flow direction.

Respecting the device's flow direction based on the selected language and region is an explicit developer choice

and does not happen automatically. It can be achieved by setting the FlowDirection property on a page, or root

layout, to the static Device.FlowDirection value:

All child elements of the page, or root layout, will by default then inherit the Device.FlowDirection value.

Specific platform setup is required to enable right-to-left locales.

The required right-to-left locale should be added as a supported language to the array items for the

CFBundleLocalizations key in Info.plistInfo.plist. The following example shows Arabic having been added to the array

for the CFBundleLocalizations key:

For more information, see Localization Basics in iOS.

Right-to-left localization can then be tested by changing the language and region on the device/simulator to a

right-to-left locale that was specified in Info.plistInfo.plist.

Please note that when changing the language and region to a right-to-left locale on iOS, any DatePicker views will

throw an exception if you do not include the resources required for the locale. For example, when testing an app in Arabic

that has a DatePicker , ensure that mideastmideast is selected in the InternationalizationInternationalization section of the iOS BuildiOS Build pane.

The app's AndroidManifest.xmlAndroidManifest.xml file should be updated so that the <uses-sdk> node sets the

android:minSdkVersion attribute to 17, and the <application> node sets the android:supportsRtl attribute to

true :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.flowdirection#xamarin_forms_device_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.flowdirection#xamarin_forms_device_flowdirection
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/localization/index
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker

<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <uses-sdk android:minSdkVersion="17" ... />
 <application ... android:supportsRtl="true">
 </application>
</manifest>

 Universal Windows Platform (UWP)Universal Windows Platform (UWP)

<Resources>
 <Resource Language="x-generate"/>
 <Resource Language="en" />
 <Resource Language="ar" />
</Resources>

using System.Resources;

[assembly: NeutralResourcesLanguage("en")]

 Limitations

 iOSiOS

 AndroidAndroid

 UWPUWP

Right-to-left localization can then be tested by changing the device/emulator to use the right-to-left language, or

by enabling Force RTL layout directionForce RTL layout direction in Settings > Developer OptionsSettings > Developer Options .

The required language resources should be specified in the <Resources> node of the Package.appxmanifestPackage.appxmanifest

file. The following example shows Arabic having been added to the <Resources> node:

In addition, UWP requires that the app's default culture is explicitly defined in the .NET Standard library. This can

be accomplished by setting the NeutralResourcesLanguage attribute in AssemblyInfo.cs , or in another class, to

the default culture:

Right-to-left localization can then be tested by changing the language and region on the device to the

appropriate right-to-left locale.

Xamarin.Forms right-to-left localization currently has a number of limitations:

NavigationPage button location, toolbar item location, and transition animation is controlled by the device

locale, rather than the FlowDirection property.

CarouselPage swipe direction does not flip.

Image visual content does not flip.

WebView content does not respect the FlowDirection property.

A TextDirection property needs to be added, to control text alignment.

Stepper orientation is controlled by the device locale, rather than the FlowDirection property.

EntryCell text alignment is controlled by the device locale, rather than the FlowDirection property.

ContextActions gestures and alignment are not reversed.

SearchBar orientation is controlled by the device locale, rather than the FlowDirection property.

ContextActions placement is controlled by the device locale, rather than the FlowDirection property.

Editor text alignment is controlled by the device locale, rather than the FlowDirection property.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.contextactions#xamarin_forms_cell_contextactions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.contextactions#xamarin_forms_cell_contextactions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection

 Force right-to-left layout

 iOSiOS

 AndroidAndroid

Window.DecorView.LayoutDirection = LayoutDirection.Rtl;

NOTENOTE

 Right to left language support with Xamarin.University

FlowDirection property is not inherited by FlyoutPage children.

ContextActions text alignment is controlled by the device locale, rather than the FlowDirection property.

Xamarin.iOS and Xamarin.Android applications can be forced to always use a right-to-left layout, regardless of

device settings, by modifying the respective platform projects.

Xamarin.iOS applications can be forced to always use a right-to-left layout by modifying the AppDelegateAppDelegate class

as follows:

[System.Runtime.InteropServices.DllImport(ObjCRuntime.Constants.ObjectiveCLibrary, EntryPoint =
"objc_msgSend")]
internal extern static IntPtr IntPtr_objc_msgSend(IntPtr receiver, IntPtr selector,
UISemanticContentAttribute arg1);

bool result = base.FinishedLaunching(app, options);

ObjCRuntime.Selector selector = new ObjCRuntime.Selector("setSemanticContentAttribute:");
IntPtr_objc_msgSend(UIView.Appearance.Handle, selector.Handle,
UISemanticContentAttribute.ForceRightToLeft);

return result;

1. Declare the IntPtr_objc_msgSend function as the first line in your AppDelegate class:

2. Call the IntPtr_objc_msgSend function from the FinishedLaunching method, before returning from the

FinshedLaunching method:

This approach is useful for applications that always require a right-to-left layout, and removes the requirement

to set the FlowDirection property.

For more information about the IntrPtr_objc_msgSend method, see Objective-C selectors in Xamarin.iOS.

Xamarin.Android applications can be forced to always use a right-to-left layout by modifying the MainActivityMainActivity

class to include the following line:

This approach requires that the application is setup to support right-to-left layout. For more information, see Android

platform setup.

This approach is useful for applications that always require a right-to-left layout, and removes the requirement

to set the FlowDirection property for most controls. However, some controls, such as CollectionView , don't

respect the LayoutDirection property and still require the FlowDirection property to be set.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.contextactions#xamarin_forms_cell_contextactions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/xamarin/ios/internals/objective-c-selectors
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://www.youtube-nocookie.com/embed/f2lQ5yw3iiU

 Related links

Xamarin.Forms 3.0 Right-to-Left Suppor t videoXamarin.Forms 3.0 Right-to-Left Suppor t video

TodoLocalizedRTL Sample App

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todolocalizedrtl

Xamarin.Forms MessagingCenter
 7/8/2021 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Publish a message

 Download the sample

The publish-subscribe pattern is a messaging pattern in which publishers send messages without having

knowledge of any receivers, known as subscribers. Similarly, subscribers listen for specific messages, without

having knowledge of any publishers.

Events in .NET implement the publish-subscribe pattern, and are the most simple and straightforward approach

for a communication layer between components if loose coupling is not required, such as a control and the page

that contains it. However, the publisher and subscriber lifetimes are coupled by object references to each other,

and the subscriber type must have a reference to the publisher type. This can create memory management

issues, especially when there are short lived objects that subscribe to an event of a static or long-lived object. If

the event handler isn't removed, the subscriber will be kept alive by the reference to it in the publisher, and this

will prevent or delay the garbage collection of the subscriber.

The Xamarin.Forms MessagingCenter class implements the publish-subscribe pattern, allowing message-based

communication between components that are inconvenient to link by object and type references. This

mechanism allows publishers and subscribers to communicate without having a reference to each other, helping

to reduce dependencies between them.

The MessagingCenter class provides multicast publish-subscribe functionality. This means that there can be

multiple publishers that publish a single message, and there can be multiple subscribers listening for the same

message:

Publishers send messages using the MessagingCenter.Send method, while subscribers listen for messages using

the MessagingCenter.Subscribe method. In addition, subscribers can also unsubscribe from message

subscriptions, if required, with the MessagingCenter.Unsubscribe method.

Internally, the MessagingCenter class uses weak references. This means that it will not keep objects alive, and will allow

them to be garbage collected. Therefore, it should only be necessary to unsubscribe from a message when a class no

longer wishes to receive the message.

MessagingCenter messages are strings. Publishers notify subscribers of a message with one of the

MessagingCenter.Send overloads. The following code example publishes a Hi message:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/messaging-center.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/usingmessagingcenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.send
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.subscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.unsubscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.send

MessagingCenter.Send<MainPage>(this, "Hi");

MessagingCenter.Send<MainPage, string>(this, "Hi", "John");

 Subscribe to a message

MessagingCenter.Subscribe<MainPage> (this, "Hi", (sender) =>
{
 // Do something whenever the "Hi" message is received
});

NOTENOTE

MessagingCenter.Subscribe<MainPage, string>(this, "Hi", async (sender, arg) =>
{
 await DisplayAlert("Message received", "arg=" + arg, "OK");
});

In this example the Send method specifies a generic argument that represents the sender. To receive the

message, a subscriber must also specify the same generic argument, indicating that they are listening for a

message from that sender. In addition, this example specifies two method arguments:

The first argument specifies the sender instance.

The second argument specifies the message.

Payload data can also be sent with a message:

In this example, the Send method specifies two generic arguments. The first is the type that's sending the

message, and the second is the type of the payload data being sent. To receive the message, a subscriber must

also specify the same generic arguments. This enables multiple messages that share a message identity but

send different payload data types to be received by different subscribers. In addition, this example specifies a

third method argument that represents the payload data to be sent to the subscriber. In this case the payload

data is a string .

The Send method will publish the message, and any payload data, using a fire-and-forget approach. Therefore,

the message is sent even if there are no subscribers registered to receive the message. In this situation, the sent

message is ignored.

Subscribers can register to receive a message using one of the MessagingCenter.Subscribe overloads. The

following code example shows an example of this:

In this example, the Subscribe method subscribes the this object to Hi messages that are sent by the

MainPage type, and executes a callback delegate in response to receiving the message. The callback delegate,

specified as a lambda expression, could be code that updates the UI, saves some data, or triggers some other

operation.

A subscriber might not need to handle every instance of a published message, and this can be controlled by the generic

type arguments that are specified on the Subscribe method.

The following example shows how to subscribe to a message that contains payload data:

In this example, the Subscribe method subscribes to Hi messages that are sent by the MainPage type, whose

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.send
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.send
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.send
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.subscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.subscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.subscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.subscribe

IMPORTANTIMPORTANT

 Unsubscribe from a message

MessagingCenter.Unsubscribe<MainPage>(this, "Hi");

MessagingCenter.Unsubscribe<MainPage, string>(this, "Hi");

 Related links

payload data is a string . A callback delegate is executed in response to receiving such a message, that displays

the payload data in an alert.

The delegate that's executed by the Subscribe method will be executed on the same thread that publishes the message

using the Send method.

Subscribers can unsubscribe from messages they no longer want to receive. This is achieved with one of the

MessagingCenter.Unsubscribe overloads:

In this example, the Unsubscribe method unsubscribes the this object from the Hi message sent by the

MainPage type.

Messages containing payload data should be unsubscribed from using the Unsubscribe overload that specifies

two generic arguments:

In this example, the Unsubscribe method unsubscribes the this object from the Hi message sent by the

MainPage type, whose payload data is a string .

MessagingCenterSample

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.unsubscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.unsubscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.unsubscribe
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter.unsubscribe
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/usingmessagingcenter

Xamarin.Forms Navigation
 7/8/2021 • 2 minutes to read • Edit Online

 Hierarchical Navigation

 TabbedPage

 CarouselPage

 FlyoutPage

 Modal Pages

Xamarin.Forms provides a number of different page navigation experiences, depending upon the Page type

being used.

Alternatively, Xamarin.Forms Shell applications use a URI-based navigation experience that doesn't enforce a set

navigation hierarchy. For more information, see Xamarin.Forms Shell Navigation.

The NavigationPage class provides a hierarchical navigation experience where the user is able to navigate

through pages, forwards and backwards, as desired. The class implements navigation as a last-in, first-out (LIFO)

stack of Page objects.

The Xamarin.Forms TabbedPage consists of a list of tabs and a larger detail area, with each tab loading content

into the detail area.

The Xamarin.Forms CarouselPage is a page that users can swipe from side to side to navigate through pages of

content, like a gallery.

The Xamarin.Forms FlyoutPage is a page that manages two pages of related information – a flyout page that

presents items, and a detail page that presents details about items on the flyout page.

Xamarin.Forms also provides support for modal pages. A modal page encourages users to complete a self-

contained task that cannot be navigated away from until the task is completed or cancelled.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/navigation/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

Hierarchical Navigation
 7/8/2021 • 10 minutes to read • Edit Online

 Performing Navigation

 Download the sample

The NavigationPage class provides a hierarchical navigation experience where the user is able to navigate

through pages, forwards and backwards, as desired. The class implements navigation as a last-in, first-out (LIFO)

stack of Page objects. This article demonstrates how to use the NavigationPage class to perform navigation in a

stack of pages.

To move from one page to another, an application will push a new page onto the navigation stack, where it will

become the active page, as shown in the following diagram:

To return back to the previous page, the application will pop the current page from the navigation stack, and the

new topmost page becomes the active page, as shown in the following diagram:

Navigation methods are exposed by the Navigation property on any Page derived types. These methods

provide the ability to push pages onto the navigation stack, to pop pages from the navigation stack, and to

perform stack manipulation.

In hierarchical navigation, the NavigationPage class is used to navigate through a stack of ContentPage objects.

The following screenshots show the main components of the NavigationPage on each platform:

The layout of a NavigationPage is dependent on the platform:

On iOS, a navigation bar is present at the top of the page that displays a title, and that has a Back button that

returns to the previous page.

On Android, a navigation bar is present at the top of the page that displays a title, an icon, and a Back button

that returns to the previous page. The icon is defined in the [Activity] attribute that decorates the

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/navigation/hierarchical.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-hierarchical
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

NOTENOTE

 Creating the Root PageCreating the Root Page

public App ()
{
 MainPage = new NavigationPage (new Page1Xaml ());
}

NOTENOTE

 Pushing Pages to the Navigation StackPushing Pages to the Navigation Stack

async void OnNextPageButtonClicked (object sender, EventArgs e)
{
 await Navigation.PushAsync (new Page2Xaml ());
}

MainActivity class in the Android platform-specific project.

On the Universal Windows Platform, a navigation bar is present at the top of the page that displays a title.

On all the platforms, the value of the Page.Title property will be displayed as the page title. In addition, the

IconColor property can be set to a Color that's applied to the icon in the navigation bar.

It's recommended that a NavigationPage should be populated with ContentPage instances only.

The first page added to a navigation stack is referred to as the root page of the application, and the following

code example shows how this is accomplished:

This causes the Page1Xaml ContentPage instance to be pushed onto the navigation stack, where it becomes the

active page and the root page of the application. This is shown in the following screenshots:

The RootPage property of a NavigationPage instance provides access to the first page in the navigation stack.

To navigate to Page2Xaml , it is necessary to invoke the PushAsync method on the Navigation property of the

current page, as demonstrated in the following code example:

This causes the Page2Xaml instance to be pushed onto the navigation stack, where it becomes the active page.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.title#xamarin_forms_page_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.rootpage#xamarin_forms_navigationpage_rootpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.pushasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation

NOTENOTE

 Popping Pages from the Navigation StackPopping Pages from the Navigation Stack

async void OnPreviousPageButtonClicked (object sender, EventArgs e)
{
 await Navigation.PopAsync ();
}

This is shown in the following screenshots:

When the PushAsync method is invoked, the following events occur :

The page calling PushAsync has its OnDisappearing override invoked.

The page being navigated to has its OnAppearing override invoked.

The PushAsync task completes.

However, the precise order in which these events occur is platform dependent. For more information, see

Chapter 24 of Charles Petzold's Xamarin.Forms book.

Calls to the OnDisappearing and OnAppearing overrides cannot be treated as guaranteed indications of page

navigation. For example, on iOS, the OnDisappearing override is called on the active page when the application

terminates.

The active page can be popped from the navigation stack by pressing the Back button on the device, regardless

of whether this is a physical button on the device or an on-screen button.

To programmatically return to the original page, the Page2Xaml instance must invoke the PopAsync method, as

demonstrated in the following code example:

This causes the Page2Xaml instance to be removed from the navigation stack, with the new topmost page

becoming the active page. When the PopAsync method is invoked, the following events occur :

The page calling PopAsync has its OnDisappearing override invoked.

The page being returned to has its OnAppearing override invoked.

The PopAsync task returns.

However, the precise order in which these events occur is platform dependent. For more information see

Chapter 24 of Charles Petzold's Xamarin.Forms book.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.pushasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://developer.xamarin.com/r/xamarin-forms/book/chapter24.pdf
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.popasync#xamarin_forms_navigationpage_popasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.popasync#xamarin_forms_navigationpage_popasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://developer.xamarin.com/r/xamarin-forms/book/chapter24.pdf

async void OnRootPageButtonClicked (object sender, EventArgs e)
{
 await Navigation.PopToRootAsync ();
}

 Animating Page TransitionsAnimating Page Transitions

async void OnNextPageButtonClicked (object sender, EventArgs e)
{
 // Page appearance not animated
 await Navigation.PushAsync (new Page2Xaml (), false);
}

async void OnPreviousPageButtonClicked (object sender, EventArgs e)
{
 // Page appearance not animated
 await Navigation.PopAsync (false);
}

async void OnRootPageButtonClicked (object sender, EventArgs e)
{
 // Page appearance not animated
 await Navigation.PopToRootAsync (false);
}

 Passing Data when Navigating

 Passing Data through a Page ConstructorPassing Data through a Page Constructor

public App ()
{
 MainPage = new NavigationPage (new MainPage (DateTime.Now.ToString ("u")));
}

As well as PushAsync and PopAsync methods, the Navigation property of each page also provides a

PopToRootAsync method, which is shown in the following code example:

This method pops all but the root Page off the navigation stack, therefore making the root page of the

application the active page.

The Navigation property of each page also provides overridden push and pop methods that include a boolean

parameter that controls whether to display a page animation during navigation, as shown in the following code

example:

Setting the boolean parameter to false disables the page-transition animation, while setting the parameter to

true enables the page-transition animation, provided that it is supported by the underlying platform. However,

the push and pop methods that lack this parameter enable the animation by default.

Sometimes it's necessary for a page to pass data to another page during navigation. Two techniques for

accomplishing this are passing data through a page constructor, and by setting the new page's BindingContext

to the data. Each will now be discussed in turn.

The simplest technique for passing data to another page during navigation is through a page constructor

parameter, which is shown in the following code example:

This code creates a MainPage instance, passing in the current date and time in ISO8601 format, which is

wrapped in a NavigationPage instance.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.pushasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.popasync#xamarin_forms_navigationpage_popasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.poptorootasync#xamarin_forms_navigationpage_poptorootasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

public MainPage (string date)
{
 InitializeComponent ();
 dateLabel.Text = date;
}

 Passing Data through a BindingContextPassing Data through a BindingContext

async void OnNavigateButtonClicked (object sender, EventArgs e)
{
 var contact = new Contact {
 Name = "Jane Doe",
 Age = 30,
 Occupation = "Developer",
 Country = "USA"
 };

 var secondPage = new SecondPage ();
 secondPage.BindingContext = contact;
 await Navigation.PushAsync (secondPage);
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="PassingData.SecondPage"
 Title="Second Page">
 <ContentPage.Content>
 <StackLayout HorizontalOptions="Center" VerticalOptions="Center">
 <StackLayout Orientation="Horizontal">
 <Label Text="Name:" HorizontalOptions="FillAndExpand" />
 <Label Text="{Binding Name}" FontSize="Medium" FontAttributes="Bold" />
 </StackLayout>
 ...
 <Button x:Name="navigateButton" Text="Previous Page" Clicked="OnNavigateButtonClicked" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

The MainPage instance receives the data through a constructor parameter, as shown in the following code

example:

The data is then displayed on the page by setting the Label.Text property, as shown in the following

screenshots:

An alternative approach for passing data to another page during navigation is by setting the new page's

BindingContext to the data, as shown in the following code example:

This code sets the BindingContext of the SecondPage instance to the Contact instance, and then navigates to

the SecondPage .

The SecondPage then uses data binding to display the Contact instance data, as shown in the following XAML

code example:

The following code example shows how the data binding can be accomplished in C#:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext

public class SecondPageCS : ContentPage
{
 public SecondPageCS ()
 {
 var nameLabel = new Label {
 FontSize = Device.GetNamedSize (NamedSize.Medium, typeof(Label)),
 FontAttributes = FontAttributes.Bold
 };
 nameLabel.SetBinding (Label.TextProperty, "Name");
 ...
 var navigateButton = new Button { Text = "Previous Page" };
 navigateButton.Clicked += OnNavigateButtonClicked;

 Content = new StackLayout {
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center,
 Children = {
 new StackLayout {
 Orientation = StackOrientation.Horizontal,
 Children = {
 new Label{ Text = "Name:", FontSize = Device.GetNamedSize (NamedSize.Medium, typeof(Label)),
HorizontalOptions = LayoutOptions.FillAndExpand },
 nameLabel
 }
 },
 ...
 navigateButton
 }
 };
 }

 async void OnNavigateButtonClicked (object sender, EventArgs e)
 {
 await Navigation.PopAsync ();
 }
}

 Manipulating the Navigation Stack

The data is then displayed on the page by a series of Label controls, as shown in the following screenshots:

For more information about data binding, see Data Binding Basics.

The Navigation property exposes a NavigationStack property from which the pages in the navigation stack can

be obtained. While Xamarin.Forms maintains access to the navigation stack, the Navigation property provides

the InsertPageBefore and RemovePage methods for manipulating the stack by inserting pages or removing

them.

The InsertPageBefore method inserts a specified page in the navigation stack before an existing specified page,

as shown in the following diagram:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.navigationstack#xamarin_forms_inavigation_navigationstack
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.insertpagebefore
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.removepage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.insertpagebefore

async void OnLoginButtonClicked (object sender, EventArgs e)
{
 ...
 var isValid = AreCredentialsCorrect (user);
 if (isValid) {
 App.IsUserLoggedIn = true;
 Navigation.InsertPageBefore (new MainPage (), this);
 await Navigation.PopAsync ();
 } else {
 // Login failed
 }
}

 Displaying Views in the Navigation Bar

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="NavigationPageTitleView.TitleViewPage">
 <NavigationPage.TitleView>
 <Slider HeightRequest="44" WidthRequest="300" />
 </NavigationPage.TitleView>
 ...
</ContentPage>

The RemovePage method removes the specified page from the navigation stack, as shown in the following

diagram:

These methods enable a custom navigation experience, such as replacing a login page with a new page,

following a successful login. The following code example demonstrates this scenario:

Provided that the user's credentials are correct, the MainPage instance is inserted into the navigation stack

before the current page. The PopAsync method then removes the current page from the navigation stack, with

the MainPage instance becoming the active page.

Any Xamarin.Forms View can be displayed in the navigation bar of a NavigationPage . This is accomplished by

setting the NavigationPage.TitleView attached property to a View . This attached property can be set on any

Page , and when the Page is pushed onto a NavigationPage , the NavigationPage will respect the value of the

property.

The following example, taken from the Title View sample, shows how to set the NavigationPage.TitleView

attached property from XAML:

Here is the equivalent C# code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.removepage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.popasync#xamarin_forms_navigationpage_popasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.titleviewproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-titleview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.titleviewproperty

public class TitleViewPage : ContentPage
{
 public TitleViewPage()
 {
 var titleView = new Slider { HeightRequest = 44, WidthRequest = 300 };
 NavigationPage.SetTitleView(this, titleView);
 ...
 }
}

IMPORTANTIMPORTANT

NOTENOTE

 LimitationsLimitations

This results in a Slider being displayed in the navigation bar on the NavigationPage :

Many views won't appear in the navigation bar unless the size of the view is specified with the WidthRequest and

HeightRequest properties. Alternatively, the view can be wrapped in a StackLayout with the HorizontalOptions

and VerticalOptions properties set to appropriate values.

Note that, because the Layout class derives from the View class, the TitleView attached property can be set to

display a layout class that contains multiple views. On iOS and the Universal Windows Platform (UWP), the

height of the navigation bar can't be changed, and so clipping will occur if the view displayed in the navigation

bar is larger than the default size of the navigation bar. However, on Android, the height of the navigation bar

can be changed by setting the NavigationPage.BarHeight bindable property to a double representing the new

height. For more information, see Setting the Navigation Bar Height on a NavigationPage.

Alternatively, an extended navigation bar can be suggested by placing some of the content in the navigation bar,

and some in a view at the top of the page content that you color match to the navigation bar. In addition, on iOS

the separator line and shadow that's at the bottom of the navigation bar can be removed by setting the

NavigationPage.HideNavigationBarSeparator bindable property to true . For more information, see Hiding the

Navigation Bar Separator on a NavigationPage.

The BackButtonTitle , Title , TitleIcon , and TitleView properties can all define values that occupy space on the

navigation bar. While the navigation bar size varies by platform and screen size, setting all of these properties will result in

conflicts due to the limited space available. Instead of attempting to use a combination of these properties, you may find

that you can better achieve your desired navigation bar design by only setting the TitleView property.

There are a number of limitations to be aware of when displaying a View in the navigation bar of a

NavigationPage :

On iOS, views placed in the navigation bar of a NavigationPage appear in a different position depending on

whether large titles are enabled. For more information about enabling large titles, see Displaying Large Titles.

On Android, placing views in the navigation bar of a NavigationPage can only be accomplished in apps that

use app-compat.

It's not recommended to place large and complex views, such as ListView and TableView , in the navigation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/navigation/hierarchical-images/titleview-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.titleviewproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.navigationpage.barheightproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.hidenavigationbarseparatorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.backbuttontitleproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.title#xamarin_forms_page_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.titleiconproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.titleviewproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview

 Related Links

bar of a NavigationPage .

Page Navigation

Hierarchical (sample)

PassingData (sample)

LoginFlow (sample)

TitleView (sample)

How to Create a Sign In Screen Flow in Xamarin.Forms video

NavigationPage

https://developer.xamarin.com/r/xamarin-forms/book/chapter24.pdf
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-hierarchical
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-passingdata
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-loginflow
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-titleview
https://www.youtube.com/watch?v=qKQ7pyyG1fo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

Xamarin.Forms TabbedPage
 7/8/2021 • 6 minutes to read • Edit Online

 Download the sample

The Xamarin.Forms TabbedPage consists of a list of tabs and a larger detail area, with each tab loading content

into the detail area. The following screenshots show a TabbedPage on iOS and Android:

On iOS, the list of tabs appears at the bottom of the screen, and the detail area is above. Each tab consists of a

title and an icon, which should be a PNG file with an alpha channel. In portrait orientation, tab bar icons appear

above tab titles. In landscape orientation, icons and titles appear side by side. In addition, a regular or compact

tab bar may be displayed, depending on the device and orientation. If there are more than five tabs, a MoreMore tab

will appear, which can be used to access the additional tabs. For information about icon requirements, see Tab

Bar Icon Size on developer.apple.com.

On Android, the list of tabs appears at the top of the screen, and the detail area is below. Each tab consists of a

title and an icon, which should be a PNG file with an alpha channel. However, the tabs can be moved to the

bottom of the screen with a platform-specific. If there are more than five tabs, and the tab list is at the bottom of

the screen, a More tab will appear that can be used to access the additional tabs. For information about icon

requirements, see Tabs on material.io and Support different pixel densities on developer.android.com. For

information about moving the tabs to the bottom of the screen, see Setting TabbedPage Toolbar Placement and

Color.

On the Universal Windows Platform (UWP), the list of tabs appears at the top of the screen, and the details area

is below. Each tab consists of a title. However, icons can be added to each tab with a platform-specific. For more

information, see TabbedPage Icons on Windows.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/navigation/tabbed-page.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-tabbedpagewithnavigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/navigation/tabbed-page-images/tabbedpage-today-large.png#lightbox
https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/custom-icons#tab-bar-icon-size
https://material.io/components/tabs/#
https://developer.android.com/training/multiscreen/screendensities

TIPTIP

 Create a TabbedPage

IMPORTANTIMPORTANT

WARNINGWARNING

 Populate a TabbedPage with a Page collection

Scalable Vector Graphic (SVG) files can be displayed as tab icons on a TabbedPage :

The iOS TabbedRenderer class has an overridable GetIcon method that can be used to load tab icons from a

specified source. In addition, selected and unselected versions of an icon can be provided if required.

The Android AppCompat TabbedPageRenderer class has an overridable SetTabIconImageSource method that can

be used to load tab icons from a custom Drawable . Alternatively, SVG files can be converted to vector drawable

resources, which can automatically be displayed by Xamarin.Forms. For more information about converting SVG files

to vector drawable resources, see Add multi-density vector graphics on developer.android.com.

For more information, see Xamarin.Forms TabbedPage with SVG tab icons.

Two approaches can be used to create a TabbedPage :

Populate the TabbedPage with a collection of child Page objects, such as a collection of ContentPage objects.

For more information, see Populate a TabbedPage with a Page Collection.

Assign a collection to the ItemsSource property and assign a DataTemplate to the ItemTemplate property to

return pages for objects in the collection. For more information, see Populate a TabbedPage with a template.

With both approaches, the TabbedPage will display each page as the user selects each tab.

It's recommended that a TabbedPage should be populated with NavigationPage and ContentPage instances only.

This will help to ensure a consistent user experience across all platforms.

In addition, TabbedPage defines the following properties:

BarBackgroundColor , of type Color , the background color of the tab bar.

BarTextColor , of type Color , the color of text on the tab bar.

SelectedTabColor , of type Color , the color of the tab when it's selected.

UnselectedTabColor , of type Color , the color of the tab when it's unselected.

All of these properties are backed by BindableProperty objects, which means that they can be styled, and the

properties can be the targets of data bindings.

In a TabbedPage , each Page object is created when the TabbedPage is constructed. This can lead to a poor user

experience, particularly if the TabbedPage is the root page of the application. However, Xamarin.Forms Shell enables

pages accessed through a tab bar to be created on demand, in response to navigation. For more information, see

Xamarin.Forms Shell.

A TabbedPage can be populated with a collection of child Page objects, such as a collection of ContentPage

objects. This is achieved by adding the Page objects to the TabbedPage.Children collection. This is accomplished

in XAML as follows:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://developer.android.com/studio/write/vector-asset-studio
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-tabbedpagewithsvgtabicons
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemssource#xamarin_forms_multipage_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemtemplate#xamarin_forms_multipage_1_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage.barbackgroundcolor#xamarin_forms_tabbedpage_barbackgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage.bartextcolor#xamarin_forms_tabbedpage_bartextcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage.selectedtabcolor#xamarin_forms_tabbedpage_selectedtabcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage.unselectedtabcolor#xamarin_forms_tabbedpage_unselectedtabcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.children

<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:TabbedPageWithNavigationPage;assembly=TabbedPageWithNavigationPage"
 x:Class="TabbedPageWithNavigationPage.MainPage">
 <local:TodayPage />
 <NavigationPage Title="Schedule" IconImageSource="schedule.png">
 <x:Arguments>
 <local:SchedulePage />
 </x:Arguments>
 </NavigationPage>
</TabbedPage>

NOTENOTE

public class MainPageCS : TabbedPage
{
 public MainPageCS ()
 {
 NavigationPage navigationPage = new NavigationPage (new SchedulePageCS ());
 navigationPage.IconImageSource = "schedule.png";
 navigationPage.Title = "Schedule";

 Children.Add (new TodayPageCS ());
 Children.Add (navigationPage);
 }
}

The Children property of the MultiPage<T> class, from which TabbedPage derives, is the ContentProperty of

MultiPage<T> . Therefore, in XAML it's not necessary to explicitly assign the Page objects to the Children property.

The equivalent C# code is:

In this example, the TabbedPage is populated with two Page objects. The first child is a ContentPage object, and

the second child is a NavigationPage containing a ContentPage object.

The following screenshots show a ContentPage object in a TabbedPage :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.children
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/navigation/tabbed-page-images/tabbedpage-today-large.png#lightbox

WARNINGWARNING

 Navigate within a tab

await Navigation.PushAsync (new UpcomingAppointmentsPage ());

Selecting another tab displays the ContentPage object that represents the tab:

On the ScheduleSchedule tab, the ContentPage object is wrapped in a NavigationPage object.

While a NavigationPage can be placed in a TabbedPage , it's not recommended to place a TabbedPage into a

NavigationPage . This is because, on iOS, a UITabBarController always acts as a wrapper for the

UINavigationController . For more information, see Combined View Controller Interfaces in the iOS Developer Library.

Navigation can be performed within a tab, provided that the ContentPage object is wrapped in a

NavigationPage object. This is accomplished by invoking the PushAsync method on the Navigation property of

the ContentPage object:

The page being navigated to is specified as the argument to the PushAsync method. In this example, the

UpcomingAppointmentsPage page is pushed onto the navigation stack, where it becomes the active page:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/navigation/tabbed-page-images/tabbedpage-week-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://developer.apple.com/library/ios/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/CombiningViewControllers.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.pushasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.pushasync

 Populate a TabbedPage with a template

<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:TabbedPageDemo;assembly=TabbedPageDemo"
 x:Class="TabbedPageDemo.TabbedPageDemoPage"
 ItemsSource="{x:Static local:MonkeyDataModel.All}">
 <TabbedPage.Resources>
 <ResourceDictionary>
 <local:NonNullToBooleanConverter x:Key="booleanConverter" />
 </ResourceDictionary>
 </TabbedPage.Resources>
 <TabbedPage.ItemTemplate>
 <DataTemplate>
 <ContentPage Title="{Binding Name}" IconImageSource="monkeyicon.png">
 <StackLayout Padding="5, 25">
 <Label Text="{Binding Name}" Font="Bold,Large" HorizontalOptions="Center" />
 <Image Source="{Binding PhotoUrl}" WidthRequest="200" HeightRequest="200" />
 <StackLayout Padding="50, 10">
 <StackLayout Orientation="Horizontal">
 <Label Text="Family:" HorizontalOptions="FillAndExpand" />
 <Label Text="{Binding Family}" Font="Bold,Medium" />
 </StackLayout>
 ...
 </StackLayout>
 </StackLayout>
 </ContentPage>
 </DataTemplate>
 </TabbedPage.ItemTemplate>
</TabbedPage>

For more information about performing navigation using the NavigationPage class, see Hierarchical Navigation.

A TabbedPage can be populated with pages by assigning a collection of data to the ItemsSource property, and

by assigning a DataTemplate to the ItemTemplate property that templates the data as Page objects. This is

accomplished in XAML as follows:

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/navigation/tabbed-page-images/tabbedpage-upcoming-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemssource#xamarin_forms_multipage_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemtemplate#xamarin_forms_multipage_1_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page

public class TabbedPageDemoPageCS : TabbedPage
{
 public TabbedPageDemoPageCS ()
 {
 var booleanConverter = new NonNullToBooleanConverter ();

 ItemTemplate = new DataTemplate (() =>
 {
 var nameLabel = new Label
 {
 FontSize = Device.GetNamedSize (NamedSize.Large, typeof(Label)),
 FontAttributes = FontAttributes.Bold,
 HorizontalOptions = LayoutOptions.Center
 };
 nameLabel.SetBinding (Label.TextProperty, "Name");

 var image = new Image { WidthRequest = 200, HeightRequest = 200 };
 image.SetBinding (Image.SourceProperty, "PhotoUrl");

 var familyLabel = new Label
 {
 FontSize = Device.GetNamedSize (NamedSize.Medium, typeof(Label)),
 FontAttributes = FontAttributes.Bold
 };
 familyLabel.SetBinding (Label.TextProperty, "Family");
 ...

 var contentPage = new ContentPage
 {
 IconImageSource = "monkeyicon.png",
 Content = new StackLayout {
 Padding = new Thickness (5, 25),
 Children =
 {
 nameLabel,
 image,
 new StackLayout
 {
 Padding = new Thickness (50, 10),
 Children =
 {
 new StackLayout
 {
 Orientation = StackOrientation.Horizontal,
 Children =
 {
 new Label { Text = "Family:", HorizontalOptions = LayoutOptions.FillAndExpand },
 familyLabel
 }
 },
 // ...
 }
 }
 }
 }
 };
 contentPage.SetBinding (TitleProperty, "Name");
 return contentPage;
 });
 ItemsSource = MonkeyDataModel.All;
 }
}

In this example, each tab consists of a ContentPage object that uses Image and Label objects to display data

for the tab:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

 Related links

Selecting another tab displays the ContentPage object that represents the tab.

TabbedPageWithNavigationPage (sample)

TabbedPage (sample)

TabbedPage with SVG tab icons

Hierarchical Navigation

Page Varieties

TabbedPage API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/navigation/tabbed-page-images/tabbedpage-template-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-tabbedpagewithnavigationpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-tabbedpagewithsvgtabicons
https://developer.xamarin.com/r/xamarin-forms/book/chapter25.pdf
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage

Xamarin.Forms Carousel Page
 7/8/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Download the sample

The Xamarin.Forms CarouselPage is a page that users can swipe from side to side to navigate through pages of

content, like a gallery. This article demonstrates how to use a CarouselPage to navigate through a collection of

pages.

The CarouselPage has been superseded by the CarouselView , which provides a scrollable layout where users can

swipe to move through a collection of items. For more information about the CarouselView , see Xamarin.Forms

CarouselView.

The following screenshots show a CarouselPage on each platform:

The layout of a CarouselPage is identical on each platform. Pages can be navigated through by swiping right to

left to navigate forwards through the collection, and by swiping left to right to navigate backwards through the

collection. The following screenshots show the first page in a CarouselPage instance:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/navigation/carousel-page.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage

NOTENOTE

 Create a CarouselPage

NOTENOTE

 Populate a CarouselPage with a Page collectionPopulate a CarouselPage with a Page collection

Swiping from right to left moves to the second page, as shown in the following screenshots:

Swiping from right to left again moves to the third page, while swiping from left to right returns to the previous

page.

The CarouselPage does not support UI virtualization. Therefore, performance may be affected if the CarouselPage

contains too many child elements.

If a CarouselPage is embedded into the Detail page of a FlyoutPage , the FlyoutPage.IsGestureEnabled

property should be set to false to prevent gesture conflicts between the CarouselPage and the FlyoutPage .

For more information about the CarouselPage , see Chapter 25 of Charles Petzold's Xamarin.Forms book.

Two approaches can be used to create a CarouselPage :

Populate the CarouselPage with a collection of child ContentPage instances.

Assign a collection to the ItemsSource property and assign a DataTemplate to the ItemTemplate property to

return ContentPage instances for objects in the collection.

With both approaches, the CarouselPage will then display each page in turn, with a swipe interaction moving to

the next page to be displayed.

A CarouselPage can only be populated with ContentPage instances, or ContentPage derivatives.

The following XAML code example shows a CarouselPage that displays three ContentPage instances:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.isgestureenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://developer.xamarin.com/r/xamarin-forms/book/chapter25.pdf
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemssource#xamarin_forms_multipage_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemtemplate#xamarin_forms_multipage_1_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

<CarouselPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="CarouselPageNavigation.MainPage">
 <ContentPage>
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS, Android" Value="0,40,0,0" />
 </OnPlatform>
 </ContentPage.Padding>
 <StackLayout>
 <Label Text="Red" FontSize="Medium" HorizontalOptions="Center" />
 <BoxView Color="Red" WidthRequest="200" HeightRequest="200" HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />
 </StackLayout>
 </ContentPage>
 <ContentPage>
 ...
 </ContentPage>
 <ContentPage>
 ...
 </ContentPage>
</CarouselPage>

The following code example shows the equivalent UI in C#:

public class MainPageCS : CarouselPage
{
 public MainPageCS ()
 {
 Thickness padding;
 switch (Device.RuntimePlatform)
 {
 case Device.iOS:
 case Device.Android:
 padding = new Thickness(0, 40, 0, 0);
 break;
 default:
 padding = new Thickness();
 break;
 }

 var redContentPage = new ContentPage {
 Padding = padding,
 Content = new StackLayout {
 Children = {
 new Label {
 Text = "Red",
 FontSize = Device.GetNamedSize (NamedSize.Medium, typeof(Label)),
 HorizontalOptions = LayoutOptions.Center
 },
 new BoxView {
 Color = Color.Red,
 WidthRequest = 200,
 HeightRequest = 200,
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 }
 }
 }
 };
 var greenContentPage = new ContentPage {
 Padding = padding,
 Content = new StackLayout {
 ...
 }
 };
 var blueContentPage = new ContentPage {
 Padding = padding,
 Content = new StackLayout {
 ...
 }
 };

 Children.Add (redContentPage);
 Children.Add (greenContentPage);
 Children.Add (blueContentPage);
 }
}

 Populate a CarouselPage with a templatePopulate a CarouselPage with a template

Each ContentPage simply displays a Label for a particular color and a BoxView of that color.

The following XAML code example shows a CarouselPage constructed by assigning a DataTemplate to the

ItemTemplate property to return pages for objects in the collection:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemtemplate#xamarin_forms_multipage_1_itemtemplate

<CarouselPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="CarouselPageNavigation.MainPage">
 <CarouselPage.ItemTemplate>
 <DataTemplate>
 <ContentPage>
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS, Android" Value="0,40,0,0" />
 </OnPlatform>
 </ContentPage.Padding>
 <StackLayout>
 <Label Text="{Binding Name}" FontSize="Medium" HorizontalOptions="Center" />
 <BoxView Color="{Binding Color}" WidthRequest="200" HeightRequest="200"
HorizontalOptions="Center" VerticalOptions="CenterAndExpand" />
 </StackLayout>
 </ContentPage>
 </DataTemplate>
 </CarouselPage.ItemTemplate>
</CarouselPage>

public MainPage ()
{
 ...
 ItemsSource = ColorsDataModel.All;
}

The CarouselPage is populated with data by setting the ItemsSource property in the constructor for the code-

behind file:

The following code example shows the equivalent CarouselPage created in C#:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemssource#xamarin_forms_multipage_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage

public class MainPageCS : CarouselPage
{
 public MainPageCS ()
 {
 Thickness padding;
 switch (Device.RuntimePlatform)
 {
 case Device.iOS:
 case Device.Android:
 padding = new Thickness(0, 40, 0, 0);
 break;
 default:
 padding = new Thickness();
 break;
 }

 ItemTemplate = new DataTemplate (() => {
 var nameLabel = new Label {
 FontSize = Device.GetNamedSize (NamedSize.Medium, typeof(Label)),
 HorizontalOptions = LayoutOptions.Center
 };
 nameLabel.SetBinding (Label.TextProperty, "Name");

 var colorBoxView = new BoxView {
 WidthRequest = 200,
 HeightRequest = 200,
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };
 colorBoxView.SetBinding (BoxView.ColorProperty, "Color");

 return new ContentPage {
 Padding = padding,
 Content = new StackLayout {
 Children = {
 nameLabel,
 colorBoxView
 }
 }
 };
 });

 ItemsSource = ColorsDataModel.All;
 }
}

 Related links

Each ContentPage simply displays a Label for a particular color and a BoxView of that color.

Page Varieties

CarouselPage (sample)

CarouselPageTemplate (sample)

CarouselPage

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-carouselpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-carouselpagetemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage

Xamarin.Forms FlyoutPage
 7/8/2021 • 7 minutes to read • Edit Online

 Download the sample

A flyout page typically displays a list of items, as shown in the following screenshots:

The location of the list of items is identical on each platform, and selecting one of the items will navigate to the

corresponding detail page. In addition, the flyout page also features a navigation bar that contains a button that

can be used to navigate to the active detail page:

On iOS, the navigation bar is present at the top of the page and has a button that navigates to the detail

page. In addition, the active detail page can be navigated to by swiping the flyout to the left.

On Android, the navigation bar is present at the top of the page and displays a title, an icon, and a button that

navigates to the detail page. The icon is defined in the [Activity] attribute that decorates the MainActivity

class in the Android platform-specific project. In addition, the active detail page can be navigated to by

swiping the flyout page to the left, by tapping the detail page at the far right of the screen, and by tapping the

Back button at the bottom of the screen.

On the Universal Windows Platform (UWP), the navigation bar is present at the top of the page and has a

button that navigates to the detail page.

A detail page displays data that corresponds to the item selected on the flyout page, and the main components

of the detail page are shown in the following screenshots:

The detail page contains a navigation bar, whose contents are platform-dependent:

On iOS, the navigation bar is present at the top of the page and displays a title, and has a button that returns

to the flyout page, provided that the detail page instance is wrapped in the NavigationPage instance. In

addition, the flyout page can be returned to by swiping the detail page to the right.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/navigation/flyoutpage.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-flyoutpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/navigation/flyoutpage-images/flyoutpage-components-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

 Navigation behavior

 Create a FlyoutPage

IMPORTANTIMPORTANT

<FlyoutPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:FlyoutPageNavigation;assembly=FlyoutPageNavigation"
 x:Class="FlyoutPageNavigation.MainPage">
 <FlyoutPage.Flyout>
 <local:FlyoutMenuPage x:Name="flyoutPage" />
 </FlyoutPage.Flyout>
 <FlyoutPage.Detail>
 <NavigationPage>
 <x:Arguments>
 <local:ContactsPage />
 </x:Arguments>
 </NavigationPage>
 </FlyoutPage.Detail>
</FlyoutPage>

On Android, a navigation bar is present at the top of the page and displays a title, an icon, and a button that

returns to the flyout page. The icon is defined in the [Activity] attribute that decorates the MainActivity

class in the Android platform-specific project.

On UWP, the navigation bar is present at the top of the page and displays a title, and has a button that returns

to the flyout page.

The behavior of the navigation experience between flyout and detail pages is platform dependent:

On iOS, the detail page slides to the right as the flyout page slides from the left, and the left part of the detail

page is still visible.

On Android, the detail and flyout pages are overlaid on each other.

On UWP, the flyout page slides from the left over part of the detail page, provided that the

FlyoutLayoutBehavior property is set to Popover .

Similar behavior will be observed in landscape mode, except that the flyout page on iOS and Android has a

similar width as the flyout page in portrait mode, so more of the detail page will be visible.

For information about controlling the navigation behavior, see Control the detail page layout behavior.

A FlyoutPage contains Flyout and Detail properties that are both of type Page , which are used to get and

set the flyout and detail pages respectively.

A FlyoutPage is designed to be a root page, and using it as a child page in other page types could result in unexpected

and inconsistent behavior. In addition, it's recommended that the flyout page of a FlyoutPage should always be a

ContentPage instance, and that the detail page should only be populated with TabbedPage , NavigationPage , and

ContentPage instances. This will help to ensure a consistent user experience across all platforms.

The following XAML code example shows a FlyoutPage that sets the Flyout and Detail properties:

The following code example shows the equivalent FlyoutPage created in C#:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyoutlayoutbehavior#xamarin_forms_flyoutpage_flyoutlayoutbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyout#xamarin_forms_flyoutpage_flyout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyout#xamarin_forms_flyoutpage_flyout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

public class MainPageCS : FlyoutPage
{
 FlyoutMenuPageCS flyoutPage;

 public MainPageCS()
 {
 flyoutPage = new FlyoutMenuPageCS();
 Flyout = flyoutPage;
 Detail = new NavigationPage(new ContactsPageCS());
 ...
 }
 ...
}

 Create the flyout pageCreate the flyout page

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="using:FlyoutPageNavigation"
 x:Class="FlyoutPageNavigation.FlyoutMenuPage"
 Padding="0,40,0,0"
 IconImageSource="hamburger.png"
 Title="Personal Organiser">
 <StackLayout>
 <ListView x:Name="listView" x:FieldModifier="public">
 <ListView.ItemsSource>
 <x:Array Type="{x:Type local:FlyoutPageItem}">
 <local:FlyoutPageItem Title="Contacts" IconSource="contacts.png" TargetType="{x:Type
local:ContactsPage}" />
 <local:FlyoutPageItem Title="TodoList" IconSource="todo.png" TargetType="{x:Type
local:TodoListPage}" />
 <local:FlyoutPageItem Title="Reminders" IconSource="reminders.png" TargetType="{x:Type
local:ReminderPage}" />
 </x:Array>
 </ListView.ItemsSource>
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid Padding="5,10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="30"/>
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Image Source="{Binding IconSource}" />
 <Label Grid.Column="1" Text="{Binding Title}" />
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
</ContentPage>

The Flyout property is set to a ContentPage instance. The Detail property is set to a NavigationPage

containing a ContentPage instance.

The following XAML code example shows the declaration of the FlyoutMenuPage object, which is referenced

through the Flyout property:

The page consists of a ListView that's populated with data in XAML by setting its ItemsSource property to an

array of FlyoutPageItem objects. Each FlyoutPageItem defines Title , IconSource , and TargetType properties.

A DataTemplate is assigned to the ListView.ItemTemplate property, to display each FlyoutPageItem . The

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyout#xamarin_forms_flyoutpage_flyout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyout#xamarin_forms_flyoutpage_flyout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemssource#xamarin_forms_itemsview_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemtemplate#xamarin_forms_itemsview_1_itemtemplate

NOTENOTE

DataTemplate contains a ViewCell that consists of an Image and a Label . The Image displays the IconSource

property value, and the Label displays the Title property value, for each FlyoutPageItem .

The page has its Title and IconImageSource properties set. The icon will appear on the detail page, provided

that the detail page has a title bar. This must be enabled on iOS by wrapping the detail page instance in a

NavigationPage instance.

The Flyout page must have its Title property set, or an exception will occur.

The following code example shows the equivalent page created in C#:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.title#xamarin_forms_page_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.iconimagesource#xamarin_forms_page_iconimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyout#xamarin_forms_flyoutpage_flyout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.title#xamarin_forms_page_title

public class FlyoutMenuPageCS : ContentPage
{
 ListView listView;
 public ListView ListView { get { return listView; } }

 public FlyoutMenuPageCS()
 {
 var flyoutPageItems = new List<FlyoutPageItem>();
 flyoutPageItems.Add(new FlyoutPageItem
 {
 Title = "Contacts",
 IconSource = "contacts.png",
 TargetType = typeof(ContactsPageCS)
 });
 flyoutPageItems.Add(new FlyoutPageItem
 {
 Title = "TodoList",
 IconSource = "todo.png",
 TargetType = typeof(TodoListPageCS)
 });
 flyoutPageItems.Add(new FlyoutPageItem
 {
 Title = "Reminders",
 IconSource = "reminders.png",
 TargetType = typeof(ReminderPageCS)
 });

 listView = new ListView
 {
 ItemsSource = flyoutPageItems,
 ItemTemplate = new DataTemplate(() =>
 {
 var grid = new Grid { Padding = new Thickness(5, 10) };
 grid.ColumnDefinitions.Add(new ColumnDefinition { Width = new GridLength(30) });
 grid.ColumnDefinitions.Add(new ColumnDefinition { Width = GridLength.Star });

 var image = new Image();
 image.SetBinding(Image.SourceProperty, "IconSource");
 var label = new Label { VerticalOptions = LayoutOptions.FillAndExpand };
 label.SetBinding(Label.TextProperty, "Title");

 grid.Children.Add(image);
 grid.Children.Add(label, 1, 0);

 return new ViewCell { View = grid };
 }),
 SeparatorVisibility = SeparatorVisibility.None
 };

 IconImageSource = "hamburger.png";
 Title = "Personal Organiser";
 Padding = new Thickness(0, 40, 0, 0);
 Content = new StackLayout
 {
 Children = { listView }
 };
 }
}

The following screenshots show the flyout page on each platform:

 Create and display the detail pageCreate and display the detail page

public partial class MainPage : FlyoutPage
{
 public MainPage()
 {
 ...
 flyoutPage.listView.ItemSelected += OnItemSelected;
 }

 void OnItemSelected(object sender, SelectedItemChangedEventArgs e)
 {
 var item = e.SelectedItem as FlyoutPageItem;
 if (item != null)
 {
 Detail = new NavigationPage((Page)Activator.CreateInstance(item.TargetType));
 flyoutPage.listView.SelectedItem = null;
 IsPresented = false;
 }
 }
}

The FlyoutMenuPage instance contains a ListView property that exposes its ListView instance so that the

MainPage FlyoutPage instance can register an event-handler to handle the ItemSelected event. This enables

the MainPage instance to set the Detail property to the page that represents the selected ListView item. The

following code example shows the event-handler :

The OnItemSelected method performs the following actions:

It retrieves the SelectedItem from the ListView instance, and provided that it's not null , sets the detail

page to a new instance of the page type stored in the TargetType property of the FlyoutPageItem . The page

type is wrapped in a NavigationPage instance to ensure that the icon referenced through the

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selecteditem#xamarin_forms_listview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

 Control the detail page layout behaviorControl the detail page layout behavior

IconImageSource property on the FlyoutMenuPage is shown on the detail page in iOS.

The selected item in the ListView is set to null to ensure that none of the ListView items will be selected

next time the FlyoutMenuPage is presented.

The detail page is presented to the user by setting the FlyoutPage.IsPresented property to false . This

property controls whether the flyout or detail page is presented. It should be set to true to display the

flyout page, and to false to display the detail page.

The following screenshots show the ContactPage detail page, which is shown after it's been selected on the

flyout page:

How the FlyoutPage manages the flyout and detail pages depends on whether the application is running on a

phone or tablet, the orientation of the device, and the value of the FlyoutLayoutBehavior property. This property

determines how the detail page will be displayed. It's possible values are:

Default – The pages are displayed using the platform default.

Popover – The detail page covers, or partially covers the flyout page.

Split – The flyout page is displayed on the left and the detail page is on the right.

SplitOnLandscape – A split screen is used when the device is in landscape orientation.

SplitOnPortrait – A split screen is used when the device is in portrait orientation.

The following XAML code example demonstrates how to set the FlyoutLayoutBehavior property on a

FlyoutPage :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.iconimagesource#xamarin_forms_page_iconimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.ispresented#xamarin_forms_flyoutpage_ispresented
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyoutlayoutbehavior#xamarin_forms_flyoutpage_flyoutlayoutbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyoutlayoutbehavior#xamarin_forms_flyoutpage_flyoutlayoutbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

<FlyoutPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FlyoutPageNavigation.MainPage"
 FlyoutLayoutBehavior="Popover">
 ...
</FlyoutPage>

public class MainPageCS : FlyoutPage
{
 FlyoutMenuPageCS flyoutPage;

 public MainPageCS()
 {
 ...
 FlyoutLayoutBehavior = FlyoutLayoutBehavior.Popover;
 }
}

IMPORTANTIMPORTANT

 Related links

The following code example shows the equivalent FlyoutPage created in C#:

The value of the FlyoutLayoutBehavior property only affects applications running on tablets or the desktop.

Applications running on phones always have the Popover behavior.

Page Varieties

FlyoutPage (sample)

FlyoutPage API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyoutlayoutbehavior#xamarin_forms_flyoutpage_flyoutlayoutbehavior
https://developer.xamarin.com/r/xamarin-forms/book/chapter25.pdf
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

Xamarin.Forms Modal Pages
 7/8/2021 • 6 minutes to read • Edit Online

 Overview

 Performing Navigation

NOTENOTE

 Pushing Pages to the Modal StackPushing Pages to the Modal Stack

 Download the sample

Xamarin.Forms provides support for modal pages. A modal page encourages users to complete a self-contained

task that cannot be navigated away from until the task is completed or cancelled. This article demonstrates how

to navigate to modal pages.

This article discusses the following topics:

Performing navigation – pushing pages to the modal stack, popping pages from the modal stack, disabling

the back button, and animating page transitions.

Passing data when navigating – passing data through a page constructor, and through a BindingContext .

A modal page can be any of the Page types supported by Xamarin.Forms. To display a modal page the

application will push it onto the modal stack, where it will become the active page, as shown in the following

diagram:

To return to the previous page the application will pop the current page from the modal stack, and the new

topmost page becomes the active page, as shown in the following diagram:

Modal navigation methods are exposed by the Navigation property on any Page derived types. These methods

provide the ability to push modal pages onto the modal stack, and pop modal pages from the modal stack.

The Navigation property also exposes a ModalStack property from which the modal pages in the modal stack

can be obtained. However, there is no concept of performing modal stack manipulation, or popping to the root

page in modal navigation. This is because these operations are not universally supported on the underlying

platforms.

A NavigationPage instance is not required for performing modal page navigation.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/navigation/modal.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-modal
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.modalstack#xamarin_forms_inavigation_modalstack
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

async void OnItemSelected (object sender, SelectedItemChangedEventArgs e)
{
 if (listView.SelectedItem != null) {
 var detailPage = new DetailPage ();
 ...
 await Navigation.PushModalAsync (detailPage);
 }
}

NOTENOTE

 Popping Pages from the Modal StackPopping Pages from the Modal Stack

To navigate to the ModalPage it is necessary to invoke the PushModalAsync method on the Navigation property

of the current page, as demonstrated in the following code example:

This causes the ModalPage instance to be pushed onto the modal stack, where it becomes the active page,

provided that an item has been selected in the ListView on the MainPage instance. The ModalPage instance is

shown in the following screenshots:

When PushModalAsync is invoked, the following events occur :

The page calling PushModalAsync has its OnDisappearing override invoked, provided that the underlying

platform isn't Android.

The page being navigated to has its OnAppearing override invoked.

The PushAsync task completes.

However, the precise order that these events occur is platform dependent. For more information, see Chapter 24

of Charles Petzold's Xamarin.Forms book.

Calls to the OnDisappearing and OnAppearing overrides cannot be treated as guaranteed indications of page

navigation. For example, on iOS, the OnDisappearing override is called on the active page when the application

terminates.

The active page can be popped from the modal stack by pressing the Back button on the device, regardless of

whether this is a physical button on the device or an on-screen button.

To programmatically return to the original page, the ModalPage instance must invoke the PopModalAsync

method, as demonstrated in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.pushmodalasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.pushmodalasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://aka.ms/xamformsebook
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.popmodalasync#xamarin_forms_inavigation_popmodalasync

async void OnDismissButtonClicked (object sender, EventArgs args)
{
 await Navigation.PopModalAsync ();
}

 Disabling the Back ButtonDisabling the Back Button

 Animating Page TransitionsAnimating Page Transitions

async void OnNextPageButtonClicked (object sender, EventArgs e)
{
 // Page appearance not animated
 await Navigation.PushModalAsync (new DetailPage (), false);
}

async void OnDismissButtonClicked (object sender, EventArgs args)
{
 // Page appearance not animated
 await Navigation.PopModalAsync (false);
}

 Passing Data when Navigating

 Passing Data through a Page ConstructorPassing Data through a Page Constructor

This causes the ModalPage instance to be removed from the modal stack, with the new topmost page becoming

the active page. When PopModalAsync is invoked, the following events occur :

The page calling PopModalAsync has its OnDisappearing override invoked.

The page being returned to has its OnAppearing override invoked, provided that the underlying platform isn't

Android.

The PopModalAsync task returns.

However, the precise order that these events occur is platform dependent. For more information, see Chapter 24

of Charles Petzold's Xamarin.Forms book.

On Android, the user can always return to the previous page by pressing the standard Back button on the

device. If the modal page requires the user to complete a self-contained task before leaving the page, the

application must disable the Back button. This can be accomplished by overriding the Page.OnBackButtonPressed

method on the modal page. For more information see Chapter 24 of Charles Petzold's Xamarin.Forms book.

The Navigation property of each page also provides overridden push and pop methods that include a boolean

parameter that controls whether to display a page animation during navigation, as shown in the following code

example:

Setting the boolean parameter to false disables the page-transition animation, while setting the parameter to

true enables the page-transition animation, provided that it is supported by the underlying platform. However,

the push and pop methods that lack this parameter enable the animation by default.

Sometimes it's necessary for a page to pass data to another page during navigation. Two techniques for

accomplishing this are by passing data through a page constructor, and by setting the new page's

BindingContext to the data. Each will now be discussed in turn.

The simplest technique for passing data to another page during navigation is through a page constructor

parameter, which is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inavigation.popmodalasync#xamarin_forms_inavigation_popmodalasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://developer.xamarin.com/r/xamarin-forms/book/chapter24.pdf
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onbackbuttonpressed#xamarin_forms_page_onbackbuttonpressed
https://developer.xamarin.com/r/xamarin-forms/book/chapter24.pdf
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext

public App ()
{
 MainPage = new MainPage (DateTime.Now.ToString ("u")));
}

public MainPage (string date)
{
 InitializeComponent ();
 dateLabel.Text = date;
}

 Passing Data through a BindingContextPassing Data through a BindingContext

async void OnItemSelected (object sender, SelectedItemChangedEventArgs e)
{
 if (listView.SelectedItem != null) {
 var detailPage = new DetailPage ();
 detailPage.BindingContext = e.SelectedItem as Contact;
 listView.SelectedItem = null;
 await Navigation.PushModalAsync (detailPage);
 }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ModalNavigation.DetailPage">
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0,40,0,0" />
 </OnPlatform>
 </ContentPage.Padding>
 <ContentPage.Content>
 <StackLayout HorizontalOptions="Center" VerticalOptions="Center">
 <StackLayout Orientation="Horizontal">
 <Label Text="Name:" FontSize="Medium" HorizontalOptions="FillAndExpand" />
 <Label Text="{Binding Name}" FontSize="Medium" FontAttributes="Bold" />
 </StackLayout>
 ...
 <Button x:Name="dismissButton" Text="Dismiss" Clicked="OnDismissButtonClicked" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

This code creates a MainPage instance, passing in the current date and time in ISO8601 format.

The MainPage instance receives the data through a constructor parameter, as shown in the following code

example:

The data is then displayed on the page by setting the Label.Text property.

An alternative approach for passing data to another page during navigation is by setting the new page's

BindingContext to the data, as shown in the following code example:

This code sets the BindingContext of the DetailPage instance to the Contact instance, and then navigates to

the DetailPage .

The DetailPage then uses data binding to display the Contact instance data, as shown in the following XAML

code example:

The following code example shows how the data binding can be accomplished in C#:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext

public class DetailPageCS : ContentPage
{
 public DetailPageCS ()
 {
 var nameLabel = new Label {
 FontSize = Device.GetNamedSize (NamedSize.Medium, typeof(Label)),
 FontAttributes = FontAttributes.Bold
 };
 nameLabel.SetBinding (Label.TextProperty, "Name");
 ...
 var dismissButton = new Button { Text = "Dismiss" };
 dismissButton.Clicked += OnDismissButtonClicked;

 Thickness padding;
 switch (Device.RuntimePlatform)
 {
 case Device.iOS:
 padding = new Thickness(0, 40, 0, 0);
 break;
 default:
 padding = new Thickness();
 break;
 }

 Padding = padding;
 Content = new StackLayout {
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center,
 Children = {
 new StackLayout {
 Orientation = StackOrientation.Horizontal,
 Children = {
 new Label{ Text = "Name:", FontSize = Device.GetNamedSize (NamedSize.Medium, typeof(Label)),
HorizontalOptions = LayoutOptions.FillAndExpand },
 nameLabel
 }
 },
 ...
 dismissButton
 }
 };
 }

 async void OnDismissButtonClicked (object sender, EventArgs args)
 {
 await Navigation.PopModalAsync ();
 }
}

 Summary

 Related Links

The data is then displayed on the page by a series of Label controls.

For more information about data binding, see Data Binding Basics.

This article demonstrated how to navigate to modal pages. A modal page encourages users to complete a self-

contained task that cannot be navigated away from until the task is completed or cancelled.

Page Navigation

Modal (sample)

PassingData (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://aka.ms/xamformsebook
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-modal
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-passingdata

Xamarin.Forms Shell
 3/5/2021 • 2 minutes to read • Edit Online

 Introduction

 Create a Xamarin.Forms Shell application

 Flyout

 Tabs

 Pages

 Navigation

 Search

 Lifecycle

 Custom renderers

Xamarin.Forms Shell reduces the complexity of mobile application development by providing the fundamental

features that most mobile applications require. This includes a common navigation user experience, a URI-based

navigation scheme, and an integrated search handler.

The process for creating a Xamarin.Forms Shell application is to create a XAML file that subclasses the Shell

class, set the MainPage property of the application's App class to the subclassed Shell object, and then

describe the visual hierarchy of the application in the subclassed Shell class.

A flyout is the optional root menu for a Shell application, and is accessible through an icon or by swiping from

the side of the screen. The flyout consists of an optional header, flyout items, optional menu items, and an

optional footer.

After a flyout, the next level of navigation in a Shell application is the bottom tab bar. Alternatively, the

navigation pattern for an application can begin with bottom tabs and make no use of a flyout. In both cases,

when a bottom tab contains more than one page, the pages will be navigable by top tabs.

A ShellContent object represents the ContentPage object for each FlyoutItem or Tab .

Shell applications can utilize a URI-based navigation scheme that uses routes to navigate to any page in the

application, without having to follow a set navigation hierarchy.

Shell applications can use integrated search functionality that's provided by a search box that can be added to

the top of each page.

Shell applications respect the Xamarin.Forms lifecycle, and additionally fire an Appearing event when a page is

about to appear on the screen, and a Disappearing event when a page is about to disappear from the screen.

Shell applications are customizable through the properties and methods that the various Shell classes expose.

However, it's also possible to create Shell custom renderers when more sophisticated platform-specific

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab

customizations are required.

Xamarin.Forms Shell introduction
 7/8/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Application visual hierarchy

NOTENOTE

 Navigation user experience

 Download the sample

Xamarin.Forms Shell reduces the complexity of mobile application development by providing the fundamental

features that most mobile applications require, including:

A single place to describe the visual hierarchy of an application.

A common navigation user experience.

A URI-based navigation scheme that permits navigation to any page in the application.

An integrated search handler.

In addition, Shell applications benefit from an increased rendering speed, and reduced memory consumption.

Existing applications can adopt Shell and benefit immediately from navigation, performance, and extensibility

improvements.

In a Xamarin.Forms Shell application, the visual hierarchy of the application is described in a class that

subclasses the Shell class. This class can consist of three main hierarchical objects:

1. FlyoutItem or TabBar . A FlyoutItem represents one or more items in the flyout, and should be used when

the navigation pattern for the application requires a flyout. A TabBar represents the bottom tab bar, and

should be used when the navigation pattern for the application begins with bottom tabs and doesn't require

a flyout.

2. Tab , which represents grouped content, navigable by bottom tabs.

3. ShellContent , which represents the ContentPage objects for each tab.

These objects don't represent any user interface, but rather the organization of the application's visual hierarchy.

Shell will take these objects and produce the navigation user interface for the content.

Pages are created on demand in Shell applications, in response to navigation.

For more information, see Create a Xamarin.Forms Shell application.

The navigation experience provided by Xamarin.Forms Shell is based on flyouts and tabs. The top level of

navigation in a Shell application is either a flyout or a bottom tab bar, depending on the navigation requirements

of the application. The following example shows an application where the top level of navigation is a flyout:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/introduction.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

NOTENOTE

In this example, some flyout items are duplicated as tab bar items. However, there are also items that can only be

accessed from the flyout. Selecting a flyout item results in the bottom tab that represents the item being

selected and displayed:

When the flyout isn't open the bottom tab bar can be considered to be the top level of navigation in the application.

Each tab on the tab bar displays a ContentPage . However, if a bottom tab contains more than one page, the

pages are navigable by the top tab bar :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/introduction-images/flyout-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/introduction-images/cats-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

 Search

Within each tab, additional ContentPage objects that are known as detail pages, can be navigated to:

Shell uses a URI-based navigation experience that uses routes to navigate to any page in the application, without

having to follow a set navigation hierarchy. In addition, it also provides the ability to navigate backwards without

having to visit all of the pages on the navigation stack. For more information, see Xamarin.Forms Shell

navigation.

Xamarin.Forms Shell includes integrated search functionality that's provided by the SearchHandler class. Search

capability can be added to a page by adding a subclassed SearchHandler object to it. This results in a search box

being added at the top of the page. When data is entered into the search box, the search suggestions area is

populated with data:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/introduction-images/dogs-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/introduction-images/dogdetails-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler

 Platform support

global::Xamarin.Forms.Forms.SetFlags("Shell_UWP_Experimental");

 Related links

Then, when a result is selected from the search suggestions area, custom logic can be executed such as

navigating to a detail page.

For more information, see Xamarin.Forms Shell search.

Xamarin.Forms Shell is fully available on iOS and Android, but only partially available on the Universal Windows

Platform (UWP). In addition, Shell is currently experimental on UWP and can only be used by adding the

following line of code to the App class in your UWP project, before calling Forms.Init :

For more information about the status of Shell on UWP, see Xamarin.Forms Shell Project Board on github.com.

Xaminals (sample)

Create a Xamarin.Forms Shell application

Xamarin.Forms Shell navigation

Xamarin.Forms Shell search

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/introduction-images/search-large.png#lightbox
https://github.com/xamarin/Xamarin.Forms/projects/54
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Create a Xamarin.Forms Shell application
 7/8/2021 • 3 minutes to read • Edit Online

 Subclass the Shell class

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MyApp.AppShell">

</Shell>

using Xamarin.Forms;

namespace MyApp
{
 public partial class AppShell : Shell
 {
 public AppShell()
 {
 InitializeComponent();
 }
 }
}

 Bootstrap the Shell application

 Download the sample

The process for creating a Xamarin.Forms Shell application is as follows:

1. Create a new Xamarin.Forms application, or load an existing application that you want to convert to a Shell

application.

2. Add a XAML file to the shared code project, that subclasses the Shell class. For more information, see

Subclass the Shell class.

3. Set the MainPage property of the application's App class to the subclassed Shell object. For more

information, see Bootstrap the Shell application.

4. Describe the visual hierarchy of the application in the subclassed Shell class. For more information, see

Describe the visual hierarchy of the application.

For a step-by-step walkthrough of how to create a Shell application, see Create a Xamarin.Forms application

quickstart.

The first step in creating a Xamarin.Forms Shell application is to add a XAML file to the shared code project that

subclasses the Shell class. This file can be named anything, but AppShellAppShell is recommended. The following code

example shows a newly created AppShell.xamlAppShell.xaml file:

The following example shows the code-behind file, AppShell.xaml.csAppShell.xaml.cs :

After creating the XAML file that subclasses the Shell object, the MainPage property of the App class should

be set to the subclassed Shell object:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/create.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.mainpage#xamarin_forms_application_mainpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.mainpage#xamarin_forms_application_mainpage

namespace MyApp
{
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();
 MainPage = new AppShell();
 }
 ...
 }
}

WARNINGWARNING

 Describe the visual hierarchy of the application

In this example, the AppShell class is the XAML file that derives from the Shell class.

While a blank Shell application will build, attempting to run it will result in a InvalidOperationException being thrown.

The final step in creating a Xamarin.Forms Shell application is to describe the visual hierarchy of the application,

in the subclassed Shell class. A subclassed Shell class consists of three main hierarchical objects:

1. FlyoutItem or TabBar . A FlyoutItem represents one or more items in the flyout, and should be used when

the navigation pattern for the application requires a flyout. A TabBar represents the bottom tab bar, and

should be used when the navigation pattern for the application begins with bottom tabs and doesn't require

a flyout. Every FlyoutItem object or TabBar object is a child of the Shell object.

2. Tab , which represents grouped content, navigable by bottom tabs. Every Tab object is a child of a

FlyoutItem object or TabBar object.

3. ShellContent , which represents the ContentPage objects for each tab. Every ShellContent object is a child of

a Tab object. When more than one ShellContent object is present in a Tab , the objects will be navigable by

top tabs.

These objects don't represent any user interface, but rather the organization of the application's visual hierarchy.

Shell will take these objects and produce the navigation user interface for the content.

The following XAML shows an example of a subclassed Shell class:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 ...
 <FlyoutItem FlyoutDisplayOptions="AsMultipleItems">
 <Tab Title="Domestic"
 Icon="paw.png">
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 </Tab>
 <!--
 Shell has implicit conversion operators that enable the Shell visual hierarchy to be simplified.
 This is possible because a subclassed Shell object can only ever contain a FlyoutItem object or a
TabBar object,
 which can only ever contain Tab objects, which can only ever contain ShellContent objects.

 The implicit conversion automatically wraps the ShellContent objects below in Tab objects.
 -->
 <ShellContent Title="Monkeys"
 Icon="monkey.png"
 ContentTemplate="{DataTemplate views:MonkeysPage}" />
 <ShellContent Title="Elephants"
 Icon="elephant.png"
 ContentTemplate="{DataTemplate views:ElephantsPage}" />
 <ShellContent Title="Bears"
 Icon="bear.png"
 ContentTemplate="{DataTemplate views:BearsPage}" />
 </FlyoutItem>
 ...
</Shell>

When run, this XAML displays the CatsPage , because it's the first item of content declared in the subclassed

Shell class:

Pressing the hamburger icon, or swiping from the left, displays the flyout:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/create-images/cats-large.png#lightbox

IMPORTANTIMPORTANT

 Related links

Multiple items are displayed on the flyout because the FlyoutDisplayOptions property is set to AsMultipleItems .

For more information, see Flyout display options.

In a Shell application, pages are created on demand in response to navigation. This is accomplished by using the

DataTemplate markup extension to set the ContentTemplate property of each ShellContent object to a

ContentPage object.

Xaminals (sample)

Create a Xamarin.Forms application quickstart

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/create-images/flyout-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellgroupitem.flyoutdisplayoptions#xamarin_forms_shellgroupitem_flyoutdisplayoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.datatemplateextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent.contenttemplate#xamarin_forms_shellcontent_contenttemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Xamarin.Forms Shell flyout
 7/8/2021 • 16 minutes to read • Edit Online

 Flyout items

 Download the sample

The navigation experience provided by Xamarin.Forms Shell is based on flyouts and tabs. A flyout is the optional

root menu for a Shell application, and is fully customizable. It's accessible through an icon or by swiping from

the side of the screen. The flyout consists of an optional header, flyout items, optional menu items, and an

optional footer :

One or more flyout items can be added to the flyout, and each flyout item is represented by a FlyoutItem

object. Each FlyoutItem object should be a child of the subclassed Shell object. Flyout items appear at the top

of the flyout when a flyout header isn't present.

The following example creates a flyout containing two flyout items:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/flyout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Xaminals.Controls"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <FlyoutItem Title="Cats"
 Icon="cat.png">
 <Tab>
 <ShellContent ContentTemplate="{DataTemplate views:CatsPage}" />
 </Tab>
 </FlyoutItem>
 <FlyoutItem Title="Dogs"
 Icon="dog.png">
 <Tab>
 <ShellContent ContentTemplate="{DataTemplate views:DogsPage}" />
 </Tab>
 </FlyoutItem>
</Shell>

IMPORTANTIMPORTANT

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Xaminals.Controls"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}" />
</Shell>

The FlyoutItem.Title property, of type string , defines the title of the flyout item. The FlyoutItem.Icon

property, of type ImageSource , defines the icon of the flyout item:

In this example, each ShellContent object can only be accessed through flyout items, and not through tabs. This

is because by default, tabs will only be displayed if the flyout item contains more than one tab.

In a Shell application, pages are created on demand in response to navigation. This is accomplished by using the

DataTemplate markup extension to set the ContentTemplate property of each ShellContent object to a

ContentPage object.

Shell has implicit conversion operators that enable the Shell visual hierarchy to be simplified, without

introducing additional views into the visual tree. This is possible because a subclassed Shell object can only

ever contain FlyoutItem objects or a TabBar object, which can only ever contain Tab objects, which can only

ever contain ShellContent objects. These implicit conversion operators can be used to remove the FlyoutItem

and Tab objects from the previous example:

This implicit conversion automatically wraps each ShellContent object in Tab objects, which are wrapped in

FlyoutItem objects.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.title#xamarin_forms_baseshellitem_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.icon#xamarin_forms_baseshellitem_icon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/flyout-images/two-page-app-flyout-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.datatemplateextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent.contenttemplate#xamarin_forms_shellcontent_contenttemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem

NOTENOTE

 Flyout display optionsFlyout display options

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Xaminals.Controls"
 xmlns:views="clr-namespace:Xaminals.Views"
 FlyoutHeaderBehavior="CollapseOnScroll"
 x:Class="Xaminals.AppShell">

 <FlyoutItem FlyoutDisplayOptions="AsMultipleItems">
 <Tab Title="Domestic"
 Icon="paw.png">
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 </Tab>
 <ShellContent Title="Monkeys"
 Icon="monkey.png"
 ContentTemplate="{DataTemplate views:MonkeysPage}" />
 <ShellContent Title="Elephants"
 Icon="elephant.png"
 ContentTemplate="{DataTemplate views:ElephantsPage}" />
 <ShellContent Title="Bears"
 Icon="bear.png"
 ContentTemplate="{DataTemplate views:BearsPage}" />
 </FlyoutItem>

 <ShellContent Title="About"
 Icon="info.png"
 ContentTemplate="{DataTemplate views:AboutPage}" />
</Shell>

NOTENOTE

All FlyoutItem objects in a subclassed Shell object are automatically added to the Shell.FlyoutItems collection,

which defines the list of items that will be shown in the flyout.

The FlyoutItem.FlyoutDisplayOptions property configures how a flyout item and its children are displayed in the

flyout. This property should be set to a FlyoutDisplayOptions enumeration member:

AsSingleItem , indicates that the item will be visible as a single item. This is the default value of the

FlyoutDisplayOptions property.

AsMultipleItems , indicates that the item and its children will be visible in the flyout as a group of items.

A flyout item for each Tab object within a FlyoutItem can be displayed by setting the

FlyoutItem.FlyoutDisplayOptions property to AsMultipleItems :

In this example, flyout items are created for the Tab object that's a child of the FlyoutItem object, and the

ShellContent objects that are children of the FlyoutItem object. This occurs because each ShellContent object

that's a child of the FlyoutItem object is automatically wrapped in a Tab object. In addition, a flyout item is

created for the final ShellContent object, which is automatically wrapped in a Tab object, and then in a

FlyoutItem object.

Tabs are displayed when a FlyoutItem contains more than one ShellContent object.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellgroupitem.flyoutdisplayoptions#xamarin_forms_shellgroupitem_flyoutdisplayoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutdisplayoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellgroupitem.flyoutdisplayoptions#xamarin_forms_shellgroupitem_flyoutdisplayoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellgroupitem.flyoutdisplayoptions#xamarin_forms_shellgroupitem_flyoutdisplayoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent

 Define FlyoutItem appearanceDefine FlyoutItem appearance

<Shell ...>
 ...
 <Shell.ItemTemplate>
 <DataTemplate>
 <Grid ColumnDefinitions="0.2*,0.8*">
 <Image Source="{Binding FlyoutIcon}"
 Margin="5"
 HeightRequest="45" />
 <Label Grid.Column="1"
 Text="{Binding Title}"
 FontAttributes="Italic"
 VerticalTextAlignment="Center" />
 </Grid>
 </DataTemplate>
 </Shell.ItemTemplate>
</Shell>

NOTENOTE

 Default template for FlyoutItemsDefault template for FlyoutItems

<DataTemplate x:Key="FlyoutTemplate">
 <Grid x:Name="FlyoutItemLayout"
 HeightRequest="{x:OnPlatform Android=50}"
 ColumnSpacing="{x:OnPlatform UWP=0}"
 RowSpacing="{x:OnPlatform UWP=0}">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />

This results in the following flyout items:

The appearance of each FlyoutItem can be customized by setting the Shell.ItemTemplate attached property to

a DataTemplate :

This example displays the title of each FlyoutItem object in italics:

Because Shell.ItemTemplate is an attached property, different templates can be attached to specific FlyoutItem

objects.

Shell provides the Title and FlyoutIcon properties to the BindingContext of the ItemTemplate .

In addition, Shell includes three style classes, which are automatically applied to FlyoutItem objects. For more

information, see Style FlyoutItem and MenuItem objects.

The default DataTemplate used for each FlyoutItem is shown below:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/flyout-images/flyout-reduced-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.itemtemplate#xamarin_forms_shell_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/flyout-images/flyoutitem-templated-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.itemtemplate#xamarin_forms_shell_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.title#xamarin_forms_baseshellitem_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.flyouticon#xamarin_forms_baseshellitem_flyouticon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem

 <VisualState x:Name="Normal" />
 <VisualState x:Name="Selected">
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="{x:OnPlatform Android=#F2F2F2, iOS=#F2F2F2}" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </VisualStateManager.VisualStateGroups>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="{x:OnPlatform Android=54, iOS=50, UWP=Auto}" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Image x:Name="FlyoutItemImage"
 Source="{Binding FlyoutIcon}"
 VerticalOptions="Center"
 HorizontalOptions="{x:OnPlatform Default=Center, UWP=Start}"
 HeightRequest="{x:OnPlatform Android=24, iOS=22, UWP=16}"
 WidthRequest="{x:OnPlatform Android=24, iOS=22, UWP=16}">
 <Image.Margin>
 <OnPlatform x:TypeArguments="Thickness">
 <OnPlatform.Platforms>
 <On Platform="UWP"
 Value="12,0,12,0" />
 </OnPlatform.Platforms>
 </OnPlatform>
 </Image.Margin>
 </Image>
 <Label x:Name="FlyoutItemLabel"
 Grid.Column="1"
 Text="{Binding Title}"
 FontSize="{x:OnPlatform Android=14, iOS=Small}"
 HorizontalOptions="{x:OnPlatform UWP=Start}"
 HorizontalTextAlignment="{x:OnPlatform UWP=Start}"
 FontAttributes="{x:OnPlatform iOS=Bold}"
 VerticalTextAlignment="Center">
 <Label.TextColor>
 <OnPlatform x:TypeArguments="Color">
 <OnPlatform.Platforms>
 <On Platform="Android"
 Value="#D2000000" />
 </OnPlatform.Platforms>
 </OnPlatform>
 </Label.TextColor>
 <Label.Margin>
 <OnPlatform x:TypeArguments="Thickness">
 <OnPlatform.Platforms>
 <On Platform="Android"
 Value="20, 0, 0, 0" />
 </OnPlatform.Platforms>
 </OnPlatform>
 </Label.Margin>
 <Label.FontFamily>
 <OnPlatform x:TypeArguments="x:String">
 <OnPlatform.Platforms>
 <On Platform="Android"
 Value="sans-serif-medium" />
 </OnPlatform.Platforms>
 </OnPlatform>
 </Label.FontFamily>
 </Label>
 </Grid>
</DataTemplate>

This template can be used for as a basis for making alterations to the existing flyout layout, and also shows the

visual states that are implemented for flyout items.

NOTENOTE

 Replace flyout contentReplace flyout content

<Shell ...
 x:Name="shell">
 ...
 <Shell.FlyoutContent>
 <CollectionView BindingContext="{x:Reference shell}"
 IsGrouped="True"
 ItemsSource="{Binding FlyoutItems}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Label Text="{Binding Title}"
 TextColor="White"
 FontSize="Large" />
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </Shell.FlyoutContent>
</Shell>

NOTENOTE

<Shell ...
 x:Name="shell">
 ...
 <Shell.FlyoutContentTemplate>
 <DataTemplate>
 <CollectionView BindingContext="{x:Reference shell}"
 IsGrouped="True"
 ItemsSource="{Binding FlyoutItems}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Label Text="{Binding Title}"
 TextColor="White"
 FontSize="Large" />
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </DataTemplate>
 </Shell.FlyoutContentTemplate>
</Shell>

In addition, the Grid , Image , and Label elements all have x:Name values and so can be targeted with the

Visual State Manager. For more information, see Set state on multiple elements.

The same template can also be used for MenuItem objects.

Flyout items, which represent the flyout content, can optionally be replaced with your own content by setting the

Shell.FlyoutContent bindable property to an object :

In this example, the flyout content is replaced with a CollectionView that displays the title of each item in the

FlyoutItems collection.

The FlyoutItems property, in the Shell class, is a read-only collection of flyout items.

Alternatively, flyout content can be defined by setting the Shell.FlyoutContentTemplate bindable property to a

DataTemplate :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

IMPORTANTIMPORTANT

 Menu items

<Shell ...>
 ...
 <MenuItem Text="Help"
 IconImageSource="help.png"
 Command="{Binding HelpCommand}"
 CommandParameter="https://docs.microsoft.com/xamarin/xamarin-forms/app-fundamentals/shell" />
</Shell>

NOTENOTE

 Define MenuItem appearanceDefine MenuItem appearance

A flyout header can optionally be displayed above your flyout content, and a flyout footer can optionally be displayed

below your flyout content. If your flyout content is scrollable, Shell will attempt to honor the scroll behavior of your flyout

header.

Menu items can be optionally added to the flyout, and each menu item is represented by a MenuItem object. The

position of MenuItem objects on the flyout is dependent upon their declaration order in the Shell visual

hierarchy. Therefore, any MenuItem objects declared before FlyoutItem objects will appear before the

FlyoutItem objects in the flyout, and any MenuItem objects declared after FlyoutItem objects will appear after

the FlyoutItem objects in the flyout.

The MenuItem class has a Clicked event, and a Command property. Therefore, MenuItem objects enable

scenarios that execute an action in response to the MenuItem being tapped.

MenuItem objects can be added to the flyout as shown in the following example:

This example adds a MenuItem object to the flyout, beneath all the flyout items:

The MenuItem object executes an ICommand named HelpCommand , which opens the URL specified by the

CommandParameter property in the system web browser.

The BindingContext of each MenuItem is inherited from the subclassed Shell object.

The appearance of each MenuItem can be customized by setting the Shell.MenuItemTemplate attached property

to a DataTemplate :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.clicked
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.command#xamarin_forms_menuitem_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/flyout-images/flyout-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.menuitemtemplate#xamarin_forms_shell_menuitemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

<Shell ...>
 <Shell.MenuItemTemplate>
 <DataTemplate>
 <Grid ColumnDefinitions="0.2*,0.8*">
 <Image Source="{Binding Icon}"
 Margin="5"
 HeightRequest="45" />
 <Label Grid.Column="1"
 Text="{Binding Text}"
 FontAttributes="Italic"
 VerticalTextAlignment="Center" />
 </Grid>
 </DataTemplate>
 </Shell.MenuItemTemplate>
 ...
 <MenuItem Text="Help"
 IconImageSource="help.png"
 Command="{Binding HelpCommand}"
 CommandParameter="https://docs.microsoft.com/xamarin/xamarin-forms/app-fundamentals/shell" />
</Shell>

NOTENOTE

 Style FlyoutItem and MenuItem objects

This example attaches the DataTemplate to each MenuItem object, displaying the title of the MenuItem object in

italics:

Because Shell.MenuItemTemplate is an attached property, different templates can be attached to specific

MenuItem objects.

Shell provides the Text and IconImageSource properties to the BindingContext of the MenuItemTemplate . You can

also use Title in place of Text and Icon in place of IconImageSource which will let you reuse the same template

for menu items and flyout items.

The default template for FlyoutItem objects can also be used for MenuItem objects. For more information, see

Default template for FlyoutItems.

Shell includes three style classes, which are automatically applied to FlyoutItem and MenuItem objects. The

style class names are FlyoutItemLabelStyle , FlyoutItemImageStyle , and FlyoutItemLayoutStyle .

The following XAML shows an example of defining styles for these style classes:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/flyout-images/menuitem-templated-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.itemtemplate#xamarin_forms_shell_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.text#xamarin_forms_menuitem_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.iconimagesource#xamarin_forms_menuitem_iconimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.menuitemtemplate#xamarin_forms_shell_menuitemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem

<Style TargetType="Label"
 Class="FlyoutItemLabelStyle">
 <Setter Property="TextColor"
 Value="Black" />
 <Setter Property="HeightRequest"
 Value="100" />
</Style>

<Style TargetType="Image"
 Class="FlyoutItemImageStyle">
 <Setter Property="Aspect"
 Value="Fill" />
</Style>

<Style TargetType="Layout"
 Class="FlyoutItemLayoutStyle"
 ApplyToDerivedTypes="True">
 <Setter Property="BackgroundColor"
 Value="Teal" />
</Style>

 Flyout header

<Shell ...>
 <Shell.FlyoutHeader>
 <controls:FlyoutHeader />
 </Shell.FlyoutHeader>
</Shell>

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Xaminals.Controls.FlyoutHeader"
 HeightRequest="200">
 <Grid BackgroundColor="Black">
 <Image Aspect="AspectFill"
 Source="xamarinstore.jpg"
 Opacity="0.6" />
 <Label Text="Animals"
 TextColor="White"
 FontAttributes="Bold"
 HorizontalTextAlignment="Center"
 VerticalTextAlignment="Center" />
 </Grid>
</ContentView>

These styles will automatically be applied to FlyoutItem and MenuItem objects, without having to set their

StyleClass properties to the style class names.

In addition, custom style classes can be defined and applied to FlyoutItem and MenuItem objects. For more

information about style classes, see Xamarin.Forms Style Classes.

The flyout header is the content that optionally appears at the top of the flyout, with its appearance being

defined by an object that can be set with the Shell.FlyoutHeader bindable property:

The FlyoutHeader type is shown in the following example:

This results in the following flyout header :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.styleclass#xamarin_forms_navigableelement_styleclass
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutheader#xamarin_forms_shell_flyoutheader

<Shell ...>
 <Shell.FlyoutHeaderTemplate>
 <DataTemplate>
 <Grid BackgroundColor="Black"
 HeightRequest="200">
 <Image Aspect="AspectFill"
 Source="xamarinstore.jpg"
 Opacity="0.6" />
 <Label Text="Animals"
 TextColor="White"
 FontAttributes="Bold"
 HorizontalTextAlignment="Center"
 VerticalTextAlignment="Center" />
 </Grid>
 </DataTemplate>
 </Shell.FlyoutHeaderTemplate>
</Shell>

<Shell ...
 FlyoutHeaderBehavior="CollapseOnScroll">
 ...
</Shell>

 Flyout footer

<Shell ...>
 <Shell.FlyoutFooter>
 <controls:FlyoutFooter />
 </Shell.FlyoutFooter>
</Shell>

Alternatively, the flyout header appearance can be defined by setting the Shell.FlyoutHeaderTemplate bindable

property to a DataTemplate :

By default, the flyout header will be fixed in the flyout while the content below will scroll if there are enough

items. However, this behavior can be changed by setting the Shell.FlyoutHeaderBehavior bindable property to

one of the FlyoutHeaderBehavior enumeration members:

Default – indicates that the default behavior for the platform will be used. This is the default value of the

FlyoutHeaderBehavior property.

Fixed – indicates that the flyout header remains visible and unchanged at all times.

Scroll – indicates that the flyout header scrolls out of view as the user scrolls the items.

CollapseOnScroll – indicates that the flyout header collapses to a title only, as the user scrolls the items.

The following example shows how to collapse the flyout header as the user scrolls:

The flyout footer is the content that optionally appears at the bottom of the flyout, with its appearance being

defined by an object that can be set with the Shell.FlyoutFooter bindable property:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutheadertemplate#xamarin_forms_shell_flyoutheadertemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutheaderbehavior#xamarin_forms_shell_flyoutheaderbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutheaderbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutheaderbehavior#xamarin_forms_shell_flyoutheaderbehavior

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:sys="clr-namespace:System;assembly=netstandard"
 x:Class="Xaminals.Controls.FlyoutFooter">
 <StackLayout>
 <Label Text="Xaminals"
 TextColor="GhostWhite"
 FontAttributes="Bold"
 HorizontalOptions="Center" />
 <Label Text="{Binding Source={x:Static sys:DateTime.Now}, StringFormat='{0:MMMM dd, yyyy}'}"
 TextColor="GhostWhite"
 HorizontalOptions="Center" />
 </StackLayout>
</ContentView>

<Shell ...>
 <Shell.FlyoutFooterTemplate>
 <DataTemplate>
 <StackLayout>
 <Label Text="Xaminals"
 TextColor="GhostWhite"
 FontAttributes="Bold"
 HorizontalOptions="Center" />
 <Label Text="{Binding Source={x:Static sys:DateTime.Now}, StringFormat='{0:MMMM dd, yyyy}'}"
 TextColor="GhostWhite"
 HorizontalOptions="Center" />
 </StackLayout>
 </DataTemplate>
 </Shell.FlyoutFooterTemplate>
</Shell>

 Flyout width and height

<Shell ...
 FlyoutWidth="400"
 FlyoutHeight="200">
 ...
</Shell>

The FlyoutFooter type is shown in the following example:

This results in the following flyout footer :

Alternatively, the flyout footer appearance can be defined by setting the Shell.FlyoutFooterTemplate property to

a DataTemplate :

The flyout footer is fixed to the bottom of the flyout, and can be any height. In addition, the footer never

obscures any menu items.

The width and height of the flyout can be customized by setting the Shell.FlyoutWidth and Shell.FlyoutHeight

attached properties to double values:

This enables scenarios such as expanding the flyout across the entire screen, or reducing the height of the flyout

so that it doesn't obscure the tab bar.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

 Flyout icon

<Shell ...
 FlyoutIcon="flyouticon.png">
 ...
</Shell>

 Flyout background

<Shell ...
 FlyoutBackgroundColor="AliceBlue">
 ...
</Shell>

NOTENOTE

<Shell ...
 FlyoutBackground="LightGray">
 ...
</Shell>

<Shell ...>
 <Shell.FlyoutBackground>
 <LinearGradientBrush StartPoint="0,0"
 EndPoint="1,1">
 <GradientStop Color="#8A2387"
 Offset="0.1" />
 <GradientStop Color="#E94057"
 Offset="0.6" />
 <GradientStop Color="#F27121"
 Offset="1.0" />
 </LinearGradientBrush>
 </Shell.FlyoutBackground>
 ...
</Shell>

 Flyout background image

By default, Shell applications have a hamburger icon which, when pressed, opens the flyout. This icon can be

changed by setting the Shell.FlyoutIcon bindable property, of type ImageSource , to an appropriate icon:

The background color of the flyout can be set with the Shell.FlyoutBackgroundColor bindable property:

The Shell.FlyoutBackgroundColor can also be set from a Cascading Style Sheet (CSS). For more information, see

Xamarin.Forms Shell specific properties.

Alternatively, the background of the flyout can be specified by setting the Shell.FlyoutBackground bindable

property to a Brush :

In this example, the flyout background is painted with a light gray SolidColorBrush .

The following example shows setting the flyout background to a LinearGradientBrush :

For more information about brushes, see Xamarin.Forms Brushes.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyouticon#xamarin_forms_shell_flyouticon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackgroundcolor#xamarin_forms_shell_flyoutbackgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackgroundcolor#xamarin_forms_shell_flyoutbackgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackground#xamarin_forms_shell_flyoutbackground
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.solidcolorbrush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.lineargradientbrush

<Shell ...
 FlyoutBackgroundImage="photo.jpg"
 FlyoutBackgroundImageAspect="AspectFill">
 ...
</Shell>

 Flyout backdrop

The flyout can have an optional background image, which appears beneath the flyout header and behind any

flyout items, menu items, and the flyout footer. The background image can be specified by setting the

FlyoutBackgroundImage bindable property, of type ImageSource , to a file, embedded resource, URI, or stream.

The aspect ratio of the background image can be configured by setting the FlyoutBackgroundImageAspect

bindable property, of type Aspect , to one of the Aspect enumeration members:

AspectFill - clips the image so that it fills the display area while preserving the aspect ratio.

AspectFit - letterboxes the image, if required, so that the image fits into the display area, with blank space

added to the top/bottom or sides depending on whether the image is wide or tall. This is the default value of

the FlyoutBackgroundImageAspect property.

Fill - stretches the image to completely and exactly fill the display area. This may result in image distortion.

The following example shows setting these properties:

This results in a background image appearing in the flyout, below the flyout header :

The backdrop of the flyout, which is the appearance of the flyout overlay, can be specified by setting the

Shell.FlyoutBackdrop attached property to a Brush :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackgroundimage#xamarin_forms_shell_flyoutbackgroundimage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackgroundimageaspect#xamarin_forms_shell_flyoutbackgroundimageaspect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_aspectfill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_aspectfit
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackgroundimageaspect#xamarin_forms_shell_flyoutbackgroundimageaspect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackdrop#xamarin_forms_shell_flyoutbackdrop
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush

<Shell ...
 FlyoutBackdrop="Silver">
 ...
</Shell>

IMPORTANTIMPORTANT

<Shell ...>
 <Shell.FlyoutBackdrop>
 <LinearGradientBrush StartPoint="0,0"
 EndPoint="1,1">
 <GradientStop Color="#8A2387"
 Offset="0.1" />
 <GradientStop Color="#E94057"
 Offset="0.6" />
 <GradientStop Color="#F27121"
 Offset="1.0" />
 </LinearGradientBrush>
 </Shell.FlyoutBackdrop>
 ...
</Shell>

 Flyout behavior

<Shell ...
 FlyoutBehavior="Disabled">
 ...
</Shell>

NOTENOTE

In this example, the flyout backdrop is painted with a silver SolidColorBrush .

The FlyoutBackdrop attached property can be set on any Shell element, but will only be applied when it's set on

Shell , FlyoutItem , or TabBar objects.

The following example shows setting the flyout backdrop to a LinearGradientBrush :

For more information about brushes, see Xamarin.Forms Brushes.

The flyout can be accessed through the hamburger icon or by swiping from the side of the screen. However, this

behavior can be changed by setting the Shell.FlyoutBehavior attached property to one of the FlyoutBehavior

enumeration members:

Disabled – indicates that the flyout can't be opened by the user.

Flyout – indicates that the flyout can be opened and closed by the user. This is the default value for the

FlyoutBehavior property.

Locked – indicates that the flyout can't be closed by the user, and that it doesn't overlap content.

The following example shows how to disable the flyout:

The FlyoutBehavior attached property can be set on Shell , FlyoutItem , ShellContent , and page objects, to

override the default flyout behavior.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.solidcolorbrush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbackdrop#xamarin_forms_shell_flyoutbackdrop
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.lineargradientbrush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbehavior#xamarin_forms_shell_flyoutbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutbehavior#xamarin_forms_shell_flyoutbehavior

 Flyout vertical scroll

<Shell ...
 FlyoutVerticalScrollMode="Disabled">
 ...
</Shell>

 FlyoutItem tab order

 FlyoutItem selection

By default, a flyout can be scrolled vertically when the flyout items don't fit in the flyout. This behavior can be

changed by setting the Shell.FlyoutVerticalScrollMode bindable property to one of the ScrollMode

enumeration members:

Disabled – indicates that vertical scrolling will be disabled.

Enabled – indicates that vertical scrolling will be enabled.

Auto – indicates that vertical scrolling will be enabled if the flyout items don't fit in the flyout. This is the

default value of the FlyoutVerticalScrollMode property.

The following example shows how to disable vertical scrolling:

By default, the tab order of FlyoutItem objects is the same order in which they are listed in XAML, or

programmatically added to a child collection. This order is the order in which the FlyoutItem objects will be

navigated through with a keyboard, and often this default order is the best order.

The default tab order can be changed by setting the FlyoutItem.TabIndex property, which indicates the order in

which FlyoutItem objects receive focus when the user navigates through items by pressing the Tab key. The

default value of the property is 0, and it can be set to any int value.

The following rules apply when using the default tab order, or setting the TabIndex property:

FlyoutItem objects with a TabIndex equal to 0 are added to the tab order based on their declaration order

in XAML or child collections.

FlyoutItem objects with a TabIndex greater than 0 are added to the tab order based on their TabIndex

value.

FlyoutItem objects with a TabIndex less than 0 are added to the tab order and appear before any zero

value.

Conflicts on a TabIndex are resolved by declaration order.

After defining a tab order, pressing the Tab key will cycle the focus through FlyoutItem objects in ascending

TabIndex order, wrapping around to the beginning once the final object is reached.

In addition to setting the tab order of FlyoutItem objects, it may be necessary to exclude some objects from the

tab order. This can be achieved with the FlyoutItem.IsTabStop property, which indicates whether a FlyoutItem

is included in tab navigation. Its default value is true , and when its value is false the FlyoutItem is ignored

by the tab-navigation infrastructure, irrespective if a TabIndex is set.

When a Shell application that uses a flyout is first run, the Shell.CurrentItem property will be set to the first

FlyoutItem object in the subclassed Shell object. However, the property can be set to another FlyoutItem , as

shown in the following example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutverticalscrollmode#xamarin_forms_shell_flyoutverticalscrollmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutverticalscrollmode#xamarin_forms_shell_flyoutverticalscrollmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.istabstop#xamarin_forms_baseshellitem_istabstop
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.tabindex#xamarin_forms_baseshellitem_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell

<Shell ...
 CurrentItem="{x:Reference aboutItem}">
 <FlyoutItem FlyoutDisplayOptions="AsMultipleItems">
 ...
 </FlyoutItem>
 <ShellContent x:Name="aboutItem"
 Title="About"
 Icon="info.png"
 ContentTemplate="{DataTemplate views:AboutPage}" />
</Shell>

CurrentItem = aboutItem;

Shell.Current.CurrentItem = aboutItem;

NOTENOTE

 FlyoutItem visibility

<Shell ...>
 <FlyoutItem ...
 FlyoutItemIsVisible="False">
 ...
 </FlyoutItem>
</Shell>

This example sets the CurrentItem property to the ShellContent object named aboutItem , which results in it

being selected and displayed. In this example, an implicit conversion is used to wrap the ShellContent object in

a Tab object, which is wrapped in a FlyoutItem object.

The equivalent C# code, given a ShellContent object named aboutItem , is:

In this example, the CurrentItem property is set in the subclassed Shell class. Alternatively, the CurrentItem

property can be set in any class through the Shell.Current static property:

An application may enter a state where selecting a flyout item is not a valid operation. In such cases, the FlyoutItem

can be disabled by setting its IsEnabled property to false . This will prevent users from being able to select the flyout

item.

Flyout items are visible in the flyout by default. However, an item can be hidden in the flyout with the

FlyoutItemIsVisible property, and removed from the flyout with the IsVisible property:

FlyoutItemIsVisible , of type bool , indicates if the item is hidden in the flyout, but is still reachable with the

GoToAsync navigation method. The default value of this property is true .

IsVisible , of type bool , indicates if the item should be removed from the visual tree and therefore not

appear in the flyout. Its default value is true .

The following example shows hiding an item in the flyout:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.isvisible#xamarin_forms_baseshellitem_isvisible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.isvisible#xamarin_forms_baseshellitem_isvisible

NOTENOTE

 Open and close the flyout programmatically

<Shell ...
 FlyoutIsPresented="{Binding IsFlyoutOpen}">
</Shell>

Shell.Current.FlyoutIsPresented = false;

 Related links

There's also a Shell.FlyoutItemIsVisible attached property, which can be set on FlyoutItem , MenuItem , Tab , and

ShellContent objects.

The flyout can be programmatically opened and closed by setting the Shell.FlyoutIsPresented bindable

property to a boolean value that indicates whether the flyout is currently open:

Alternatively, this can be performed in code:

Xaminals (sample)

Xamarin.Forms style classes

Xamarin.Forms visual state manager

Xamarin.Forms brushes

Xamarin.Forms Shell specific properties

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.flyoutispresented#xamarin_forms_shell_flyoutispresented
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Xamarin.Forms Shell tabs
 7/8/2021 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Single page

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <TabBar>
 <Tab>
 <ShellContent ContentTemplate="{DataTemplate views:CatsPage}" />
 </Tab>
 </TabBar>
</Shell>

 Download the sample

The navigation experience provided by Xamarin.Forms Shell is based on flyouts and tabs. The top level of

navigation in a Shell application is either a flyout or a bottom tab bar, depending on the navigation requirements

of the application. When the navigation experience for an application begins with bottom tabs, the child of the

subclassed Shell object should be a TabBar object, which represents the bottom tab bar.

A TabBar object can contain one or more Tab objects, with each Tab object representing a tab on the bottom

tab bar. Each Tab object can contain one or more ShellContent objects, with each ShellContent object

displaying a single ContentPage . When more than one ShellContent object is present in a Tab object, the

ContentPage objects will be navigable by top tabs. Within a tab, additional ContentPage objects that are known

as detail pages, can be navigated to.

The TabBar type disables the flyout.

A single page Shell application can be created by adding a Tab object to a TabBar object. Within the Tab

object, a ShellContent object should be set to a ContentPage object:

This code example results in the following single page application:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/tabs.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <Tab>
 <ShellContent ContentTemplate="{DataTemplate views:CatsPage}" />
 </Tab>
</Shell>

IMPORTANTIMPORTANT

 Bottom tabs

Shell has implicit conversion operators that enable the Shell visual hierarchy to be simplified, without

introducing additional views into the visual tree. This is possible because a subclassed Shell object can only

ever contain FlyoutItem objects or a TabBar object, which can only ever contain Tab objects, which can only

ever contain ShellContent objects. These implicit conversion operators can be used to remove the Tab objects

from the previous example:

This implicit conversion automatically wraps the ShellContent object in a Tab object, which is wrapped in a

TabBar object.

In a Shell application, pages are created on demand in response to navigation. This is accomplished by using the

DataTemplate markup extension to set the ContentTemplate property of each ShellContent object to a

ContentPage object.

Tab objects are rendered as bottom tabs, provided that there are multiple Tab objects in a single TabBar

object:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/tabs-images/single-page-app-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.datatemplateextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent.contenttemplate#xamarin_forms_shellcontent_contenttemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <TabBar>
 <Tab Title="Cats"
 Icon="cat.png">
 <ShellContent ContentTemplate="{DataTemplate views:CatsPage}" />
 </Tab>
 <Tab Title="Dogs"
 Icon="dog.png">
 <ShellContent ContentTemplate="{DataTemplate views:DogsPage}" />
 </Tab>
 </TabBar>
</Shell>

The Title property, of type string , defines the tab title. The Icon property, of type ImageSource , defines the

tab icon:

When there are more than five tabs on a TabBar , a MoreMore tab will appear, which can be used to access the

additional tabs:

In addition, Shell's implicit conversion operators can be used to remove the ShellContent and Tab objects

from the previous example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.title#xamarin_forms_baseshellitem_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.icon#xamarin_forms_baseshellitem_icon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/tabs-images/two-page-app-bottom-tabs-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/tabs-images/more-tabs-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <TabBar>
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 </TabBar>
</Shell>

IMPORTANTIMPORTANT

 Bottom and top tabs

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <TabBar>
 <Tab Title="Domestic"
 Icon="paw.png">
 <ShellContent Title="Cats"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 </Tab>
 <Tab Title="Monkeys"
 Icon="monkey.png">
 <ShellContent ContentTemplate="{DataTemplate views:MonkeysPage}" />
 </Tab>
 </TabBar>
</Shell>

This implicit conversion automatically wraps each ShellContent object in a Tab object.

In a Shell application, pages are created on demand in response to navigation. This is accomplished by using the

DataTemplate markup extension to set the ContentTemplate property of each ShellContent object to a

ContentPage object.

When more than one ShellContent object is present in a Tab object, a top tab bar is added to the bottom tab,

through which the ContentPage objects are navigable:

This results in the layout shown in the following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.datatemplateextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent.contenttemplate#xamarin_forms_shellcontent_contenttemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <TabBar>
 <Tab Title="Domestic"
 Icon="paw.png">
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 </Tab>
 <ShellContent Title="Monkeys"
 Icon="monkey.png"
 ContentTemplate="{DataTemplate views:MonkeysPage}" />
 </TabBar>
</Shell>

 Tab appearance

In addition, Shell's implicit conversion operators can be used to remove the second Tab object from the

previous example:

This implicit conversion automatically wraps the third ShellContent object in a Tab object.

The Shell class defines the following attached properties that control the appearance of tabs:

TabBarBackgroundColor , of type Color , that defines the background color for the tab bar. If the property is

unset, the BackgroundColor property value is used.

TabBarDisabledColor , of type Color , that defines the disabled color for the tab bar. If the property is unset,

the DisabledColor property value is used.

TabBarForegroundColor , of type Color , that defines the foreground color for the tab bar. If the property is

unset, the ForegroundColor property value is used.

TabBarTitleColor , of type Color , that defines the title color for the tab bar. If the property is unset, the

TitleColor property value will be used.

TabBarUnselectedColor , of type Color , that defines the unselected color for the tab bar. If the property is

unset, the UnselectedColor property value is used.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/tabs-images/two-page-app-top-tabs-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.tabbarbackgroundcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.tabbardisabledcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.tabbarforegroundcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.tabbartitlecolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.tabbarunselectedcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

<Style TargetType="TabBar">
 <Setter Property="Shell.TabBarBackgroundColor"
 Value="CornflowerBlue" />
 <Setter Property="Shell.TabBarTitleColor"
 Value="Black" />
 <Setter Property="Shell.TabBarUnselectedColor"
 Value="AntiqueWhite" />
</Style>

 Tab selection

<Shell ...
 CurrentItem="{x:Reference dogsItem}">
 <TabBar>
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent x:Name="dogsItem"
 Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 </TabBar>
</Shell>

CurrentItem = dogsItem;

Shell.Current.CurrentItem = dogsItem;

 TabBar and Tab visibility

All of these properties are backed by BindableProperty objects, which means that the properties can be targets

of data bindings, and styled.

The following example shows a XAML style that sets different tab bar color properties:

In addition, tabs can also be styled using Cascading Style Sheets (CSS). For more information, see

Xamarin.Forms Shell specific properties.

When a Shell application that uses a tab bar is first run, the Shell.CurrentItem property will be set to the first

Tab object in the subclassed Shell object. However, the property can be set to another Tab , as shown in the

following example:

This example sets the CurrentItem property to the ShellContent object named dogsItem , which results in it

being selected and displayed. In this example, an implicit conversion is used to wrap each ShellContent object

in a Tab object.

The equivalent C# code, given a ShellContent object named dogsItem , is:

In this example, the CurrentItem property is set in the subclassed Shell class. Alternatively, the CurrentItem

property can be set in any class through the Shell.Current static property:

The tab bar and tabs are visible in Shell applications by default. However, the tab bar can be hidden by setting

the Shell.TabBarIsVisible attached property to false .

While this property can be set on a subclassed Shell object, it's typically set on any ShellContent or

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.tabbarisvisibleproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent

<TabBar>
 <Tab Title="Domestic"
 Icon="paw.png">
 <ShellContent Title="Cats"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Shell.TabBarIsVisible="false"
 Title="Dogs"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 </Tab>
 <Tab Title="Monkeys"
 Icon="monkey.png">
 <ShellContent ContentTemplate="{DataTemplate views:MonkeysPage}" />
 </Tab>
</TabBar>

<TabBar>
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}"
 IsVisible="False" />
 <ShellContent Title="Monkeys"
 Icon="monkey.png"
 ContentTemplate="{DataTemplate views:MonkeysPage}" />
</TabBar>

 Related links

ContentPage objects that want to make the tab bar invisible:

In this example, the tab bar is hidden when the upper DogsDogs tab is selected.

In addition, Tab objects can be hidden by setting the IsVisible bindable property to false :

In this example, the second tab is hidden.

Xaminals (sample)

Xamarin.Forms Shell navigation

Xamarin.Forms CSS Shell specific properties

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.isvisible#xamarin_forms_baseshellitem_isvisible
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Xamarin.Forms Shell pages
 7/8/2021 • 6 minutes to read • Edit Online

 Display pages

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <TabBar>
 <ShellContent Title="Cats"
 Icon="cat.png"
 ContentTemplate="{DataTemplate views:CatsPage}" />
 <ShellContent Title="Dogs"
 Icon="dog.png"
 ContentTemplate="{DataTemplate views:DogsPage}" />
 <ShellContent Title="Monkeys"
 Icon="monkey.png"
 ContentTemplate="{DataTemplate views:MonkeysPage}" />
 </TabBar>
</Shell>

 Download the sample

A ShellContent object represents the ContentPage object for each FlyoutItem or Tab . When more than one

ShellContent object is present in a Tab object, the ContentPage objects will be navigable by top tabs. Within a

page, additional ContentPage objects that are known as detail pages, can be navigated to.

In addition, the Shell class defines attached properties that can be used to configure the appearance of pages

in Xamarin.Forms Shell applications. This includes setting page colors, setting the page presentation mode,

disabling the navigation bar, disabling the tab bar, and displaying views in the navigation bar.

In Xamarin.Forms Shell applications, pages are typically created on demand in response to navigation. This is

accomplished by using the DataTemplate markup extension to set the ContentTemplate property of each

ShellContent object to a ContentPage object:

In this example, Shell's implicit conversion operators are used to remove the Tab objects from the visual

hierarchy. However, each ShellContent object is rendered in a tab:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/pages.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.datatemplateextension
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent.contenttemplate#xamarin_forms_shellcontent_contenttemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent

NOTENOTE

 Load pages at application startup

WARNINGWARNING

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:Xaminals.Views"
 x:Class="Xaminals.AppShell">
 <TabBar>
 <ShellContent Title="Cats"
 Icon="cat.png">
 <views:CatsPage />
 </ShellContent>
 <ShellContent Title="Dogs"
 Icon="dog.png">
 <views:DogsPage />
 </ShellContent>
 <ShellContent Title="Monkeys"
 Icon="monkey.png">
 <views:MonkeysPage />
 </ShellContent>
 </TabBar>
</Shell>

The BindingContext of each ShellContent object is inherited from the parent Tab object.

Within each ContentPage object, additional ContentPage objects can be navigated to. For more information

about navigation, see Xamarin.Forms Shell navigation.

In a Shell application, each ContentPage object is typically created on demand, in response to navigation.

However, it's also possible to create ContentPage objects at application startup.

ContentPage objects that are created at application startup can lead to a poor startup experience.

ContentPage objects can be created at application startup by setting the ShellContent.Content properties to

ContentPage objects:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/pages-images/three-pages-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent.content#xamarin_forms_shellcontent_content

NOTENOTE

 Set page colors

NOTENOTE

<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Xaminals.AppShell"
 BackgroundColor="#455A64"
 ForegroundColor="White"
 TitleColor="White"
 DisabledColor="#B4FFFFFF"
 UnselectedColor="#95FFFFFF">

</Shell>

In this example, CatsPage , DogsPage , and MonkeysPage are all created at application startup, rather than on

demand in response to navigation.

The Content property is the content property of the ShellContent class, and therefore does not need to be explicitly

set.

The Shell class defines the following attached properties that can be used to set page colors in a Shell

application:

BackgroundColor , of type Color , that defines the background color in the Shell chrome. The color will not fill

in behind the Shell content.

DisabledColor , of type Color , that defines the color to shade text and icons that are disabled.

ForegroundColor , of type Color , that defines the color to shade text and icons.

TitleColor , of type Color , that defines the color used for the title of the current page.

UnselectedColor , of type Color , that defines the color used for unselected text and icons in the Shell

chrome.

All of these properties are backed by BindableProperty objects, which mean that the properties can be targets

of data bindings, and styled using XAML styles. In addition, the properties can be set using Cascading Style

Sheets (CSS). For more information, see Xamarin.Forms Shell specific properties.

There are also properties that enable tab colors to be defined. For more information, see Tab appearance.

The following XAML shows setting the color properties in a subclassed Shell class:

In this example, the color values will be applied to all pages in the Shell application, unless overridden at the

page level.

Because the color properties are attached properties, they can also be set on individual pages, to set the colors

on that page:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent.content#xamarin_forms_shellcontent_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.backgroundcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.disabledcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.foregroundcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.titlecolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.unselectedcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell

<ContentPage ...
 Shell.BackgroundColor="Gray"
 Shell.ForegroundColor="White"
 Shell.TitleColor="Blue"
 Shell.DisabledColor="#95FFFFFF"
 Shell.UnselectedColor="#B4FFFFFF">

</ContentPage>

<Style x:Key="DomesticShell"
 TargetType="Element" >
 <Setter Property="Shell.BackgroundColor"
 Value="#039BE6" />
 <Setter Property="Shell.ForegroundColor"
 Value="White" />
 <Setter Property="Shell.TitleColor"
 Value="White" />
 <Setter Property="Shell.DisabledColor"
 Value="#B4FFFFFF" />
 <Setter Property="Shell.UnselectedColor"
 Value="#95FFFFFF" />
</Style>

 Set page presentation mode

IMPORTANTIMPORTANT

<ContentPage ...
 Shell.PresentationMode="Modal">
 ...
</ContentPage>

Alternatively, the color properties can be set with a XAML style:

For more information about XAML styles, see Styling Xamarin.Forms Apps using XAML Styles.

By default, a small navigation animation occurs when a page is navigated to with the GoToAsync method.

However, this behavior can be changed by setting the Shell.PresentationMode attached property on a

ContentPage to one of the PresentationMode enumeration members:

NotAnimated indicates that the page will be displayed without a navigation animation.

Animated indicates that the page will be displayed with a navigation animation. This is the default value of

the Shell.PresentationMode attached property.

Modal indicates that the page will be displayed as a modal page.

ModalAnimated indicates that the page will be displayed as a modal page, with a navigation animation.

ModalNotAnimated indicates that the page will be displayed as a modal page, without a navigation animation.

The PresentationMode type is a flags enumeration. This means that a combination of enumeration members can be

applied in code. However, for ease of use in XAML, the ModalAnimated member is a combination of the Animated and

Modal members, and the ModalNotAnimated member is a combination of the NotAnimated and Modal members.

For more information about flag enumerations, see Enumeration types as bit flags.

The following XAML example sets the Shell.PresentationMode attached property on a ContentPage :

In this example, the ContentPage is set to be displayed as a modal page, when the page is navigated to with the

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.presentationmodeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.presentationmode
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/enum#enumeration-types-as-bit-flags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.presentationmodeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

 Enable navigation bar shadow

<ContentPage ...
 Shell.NavBarHasShadow="true">
 ...
</ContentPage>

 Disable the navigation bar

<ContentPage ...
 Shell.NavBarIsVisible="false">
 ...
</ContentPage>

 Display views in the navigation bar

GoToAsync method.

The Shell.NavBarHasShadow attached property, of type bool , controls whether the navigation bar has a shadow.

By default the value of the property is false on iOS, and true on Android.

While this property can be set on a subclassed Shell object, it can also be set on any pages that want to enable

the navigation bar shadow. For example, the following XAML shows enabling the navigation bar shadow from a

ContentPage :

This results in the navigation bar shadow being enabled.

The Shell.NavBarIsVisible attached property, of type bool , controls if the navigation bar is visible when a page

is presented. By default the value of the property is true .

While this property can be set on a subclassed Shell object, it's typically set on any pages that want to make

the navigation bar invisible. For example, the following XAML shows disabling the navigation bar from a

ContentPage :

This results in the navigation bar becoming invisible when the page is presented:

The Shell.TitleView attached property, of type View , enables any View to be displayed in the navigation bar.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navbarhasshadowproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navbarisvisibleproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.titleviewproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

<ContentPage ...>
 <Shell.TitleView>
 <Image Source="xamarin_logo.png"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 </Shell.TitleView>
 ...
</ContentPage>

IMPORTANTIMPORTANT

 Page visibility

 Related links

While this property can be set on a subclassed Shell object, it can also be set on any pages that want to display

a view in the navigation bar. For example, the following XAML shows displaying an Image in the navigation bar

of a ContentPage :

This results in an image being displayed in the navigation bar on the page:

If the navigation bar has been made invisible, with the NavBarIsVisible attached property, the title view will not be

displayed.

Many views won't appear in the navigation bar unless the size of the view is specified with the WidthRequest

and HeightRequest properties, or the location of the view is specified with the HorizontalOptions and

VerticalOptions properties.

Because the Layout class derives from the View class, the TitleView attached property can be set to display a

layout class that contains multiple views. Similarly, because the ContentView class ultimately derives from the

View class, the TitleView attached property can be set to display a ContentView that contains a single view.

Shell respects page visibility, set with the IsVisible property. Therefore, when a page's IsVisible property is

set to false it won't be visible in the Shell application and it won't be possible to navigate to it.

Xaminals (sample)

Xamarin.Forms Shell navigation

Styling Xamarin.Forms Apps using XAML Styles

Xamarin.Forms CSS Shell specific properties

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navbarisvisibleproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.titleviewproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isvisible#xamarin_forms_visualelement_isvisible
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Xamarin.Forms Shell navigation
 7/8/2021 • 15 minutes to read • Edit Online

NOTENOTE

 Routes

 Register routesRegister routes

 Download the sample

Xamarin.Forms Shell includes a URI-based navigation experience that uses routes to navigate to any page in the

application, without having to follow a set navigation hierarchy. In addition, it also provides the ability to

navigate backwards without having to visit all of the pages on the navigation stack.

The Shell class defines the following navigation-related properties:

BackButtonBehavior , of type BackButtonBehavior , an attached property that defines the behavior of the back

button.

CurrentItem , of type ShellItem , the currently selected item.

CurrentPage , of type Page , the currently presented page.

CurrentState , of type ShellNavigationState , the current navigation state of the Shell .

Current , of type Shell , a type-casted alias for Application.Current.MainPage .

The BackButtonBehavior , CurrentItem , and CurrentState properties are backed by BindableProperty objects,

which means that these properties can be targets of data bindings.

Navigation is performed by invoking the GoToAsync method, from the Shell class. When navigation is about to

be performed, the Navigating event is fired, and the Navigated event is fired when navigation completes.

Navigation can still be performed between pages in a Shell application by using the Navigation property. For more

information, see Hierarchical Navigation.

Navigation is performed in a Shell application by specifying a URI to navigate to. Navigation URIs can have three

components:

A route, which defines the path to content that exists as part of the Shell visual hierarchy.

A page. Pages that don't exist in the Shell visual hierarchy can be pushed onto the navigation stack from

anywhere within a Shell application. For example, a details page won't be defined in the Shell visual

hierarchy, but can be pushed onto the navigation stack as required.

One or more query parameters. Query parameters are parameters that can be passed to the destination

page while navigating.

When a navigation URI includes all three components, the structure is: //route/page?queryParameters

Routes can be defined on FlyoutItem , TabBar , Tab , and ShellContent objects, through their Route

properties:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/navigation.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.backbuttonbehaviorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentpage#xamarin_forms_shell_currentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentstate#xamarin_forms_shell_currentstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.current#xamarin_forms_shell_current
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.backbuttonbehaviorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentstate#xamarin_forms_shell_currentstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navigating
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navigated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.navigation#xamarin_forms_navigableelement_navigation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent

<Shell ...>
 <FlyoutItem ...
 Route="animals">
 <Tab ...
 Route="domestic">
 <ShellContent ...
 Route="cats" />
 <ShellContent ...
 Route="dogs" />
 </Tab>
 <ShellContent ...
 Route="monkeys" />
 <ShellContent ...
 Route="elephants" />
 <ShellContent ...
 Route="bears" />
 </FlyoutItem>
 <ShellContent ...
 Route="about" />
 ...
</Shell>

NOTENOTE

animals
 domestic
 cats
 dogs
 monkeys
 elephants
 bears
about

WARNINGWARNING

 Register detail page routesRegister detail page routes

Routing.RegisterRoute("monkeydetails", typeof(MonkeyDetailPage));
Routing.RegisterRoute("beardetails", typeof(BearDetailPage));
Routing.RegisterRoute("catdetails", typeof(CatDetailPage));
Routing.RegisterRoute("dogdetails", typeof(DogDetailPage));
Routing.RegisterRoute("elephantdetails", typeof(ElephantDetailPage));

All items in the Shell hierarchy have a route associated with them. If you don't set a route, one is generated at runtime.

However, generated routes are not guaranteed to be consistent across different application sessions.

The above example creates the following route hierarchy, which can be used in programmatic navigation:

To navigate to the ShellContent object for the dogs route, the absolute route URI is //animals/domestic/dogs .

Similarly, to navigate to the ShellContent object for the about route, the absolute route URI is //about .

An ArgumentException will be thrown on application startup if a duplicate route is detected. This exception will also be

thrown if two or more routes at the same level in the hierarchy share a route name.

In the Shell subclass constructor, or any other location that runs before a route is invoked, additional routes

can be explicitly registered for any detail pages that aren't represented in the Shell visual hierarchy. This is

accomplished with the Routing.RegisterRoute method:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routing.registerroute

WARNINGWARNING

Routing.RegisterRoute("monkeys/details", typeof(MonkeyDetailPage));
Routing.RegisterRoute("bears/details", typeof(BearDetailPage));
Routing.RegisterRoute("cats/details", typeof(CatDetailPage));
Routing.RegisterRoute("dogs/details", typeof(DogDetailPage));
Routing.RegisterRoute("elephants/details", typeof(ElephantDetailPage));

NOTENOTE

 Perform navigation

IMPORTANTIMPORTANT

 Absolute routesAbsolute routes

await Shell.Current.GoToAsync("//animals/monkeys");

This example registers detail pages, that aren't defined in the Shell subclass, as routes. These detail pages can

then be navigated to using URI-based navigation, from anywhere within the application. The routes for such

pages are known as global routes.

An ArgumentException will be thrown if the Routing.RegisterRoute method attempts to register the same route to

two or more different types.

Alternatively, pages can be registered at different route hierarchies if required:

This example enables contextual page navigation, where navigating to the details route from the page for the

monkeys route displays the MonkeyDetailPage . Similarly, navigating to the details route from the page for the

elephants route displays the ElephantDetailPage . For more information, see Contextual navigation.

Pages whose routes have been registered with the Routing.RegisterRoute method can be deregistered with the

Routing.UnRegisterRoute method, if required.

To perform navigation, a reference to the Shell subclass must first be obtained. This reference can be obtained

by casting the App.Current.MainPage property to a Shell object, or through the Shell.Current property.

Navigation can then be performed by calling the GoToAsync method on the Shell object. This method

navigates to a ShellNavigationState and returns a Task that will complete once the navigation animation has

completed. The ShellNavigationState object is constructed by the GoToAsync method, from a string , or a Uri

, and it has its Location property set to the string or Uri argument.

When a route from the Shell visual hierarchy is navigated to, a navigation stack isn't created. However, when a page that's

not in the Shell visual hierarchy is navigated to, a navigation stack is created.

The current navigation state of the Shell object can be retrieved through the Shell.Current.CurrentState

property, which includes the URI of the displayed route in the Location property.

Navigation can be performed by specifying a valid absolute URI as an argument to the GoToAsync method:

This example navigates to the page for the monkeys route, with the route being defined on a ShellContent

object. The ShellContent object that represents the monkeys route is a child of a FlyoutItem object, whose

route is animals .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routing.registerroute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routing.registerroute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routing.unregisterroute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.current#xamarin_forms_shell_current
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentstate#xamarin_forms_shell_currentstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem

 Relative routesRelative routes

F O RM ATF O RM AT DESC RIP T IO NDESC RIP T IO N

route The route hierarchy will be searched for the specified route,
upwards from the current position. The matching page will
be pushed to the navigation stack.

/route The route hierarchy will be searched from the specified route,
downwards from the current position. The matching page
will be pushed to the navigation stack.

//route The route hierarchy will be searched for the specified route,
upwards from the current position. The matching page will
replace the navigation stack.

///route The route hierarchy will be searched for the specified route,
downwards from the current position. The matching page
will replace the navigation stack.

await Shell.Current.GoToAsync("monkeydetails");

 Contextual navigationContextual navigation

monkeys
 details
bears
 details

 Backwards navigationBackwards navigation

await Shell.Current.GoToAsync("..");

await Shell.Current.GoToAsync("../route");

Navigation can also be performed by specifying a valid relative URI as an argument to the GoToAsync method.

The routing system will attempt to match the URI to a ShellContent object. Therefore, if all the routes in an

application are unique, navigation can be performed by only specifying the unique route name as a relative URI.

The following relative route formats are supported:

The following example navigates to the page for the monkeydetails route:

In this example, the monkeyDetails route is searched for up the hierarchy until the matching page is found.

When the page is found, it's pushed to the navigation stack.

Relative routes enable contextual navigation. For example, consider the following route hierarchy:

When the registered page for the monkeys route is displayed, navigating to the details route will display the

registered page for the monkeys/details route. Similarly, when the registered page for the bears route is

displayed, navigating to the details route will display the registered page for the bears/details route. For

information on how to register the routes in this example, see Register page routes.

Backwards navigation can be performed by specifying ".." as the argument to the GoToAsync method:

Backwards navigation with ".." can also be combined with a route:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync

IMPORTANTIMPORTANT

await Shell.Current.GoToAsync("../../route");

await Shell.Current.GoToAsync($"..?parameterToPassBack={parameterValueToPassBack}");

NOTENOTE

 Invalid routesInvalid routes

F O RM ATF O RM AT EXP L A N AT IO NEXP L A N AT IO N

//page or ///page Global routes currently can't be the only page on the
navigation stack. Therefore, absolute routing to global
routes is unsupported.

WARNINGWARNING

 Debugging navigationDebugging navigation

In this example, backwards navigation is performed, and then navigation to the specified route.

Navigating backwards and into a specified route is only possible if the backwards navigation places you at the current

location in the route hierarchy to navigate to the specified route.

Similarly, it's possible to navigate backwards multiple times, and then navigate to a specified route:

In this example, backwards navigation is performed twice, and then navigation to the specified route.

In addition, data can be passed through query properties when navigating backwards:

In this example, backwards navigation is performed, and the query parameter value is passed to the query

parameter on the previous page.

Query parameters can be appended to any backwards navigation request.

For more information about passing data when navigating, see Pass data.

The following route formats are invalid:

Use of these route formats results in an Exception being thrown.

Attempting to navigate to a non-existent route results in an ArgumentException exception being thrown.

Some of the Shell classes are decorated with the DebuggerDisplayAttribute , which specifies how a class or field

is displayed by the debugger. This can help to debug navigation requests by displaying data related to the

navigation request. For example, the following screenshot shows the CurrentItem and CurrentState properties

of the Shell.Current object:

In this example, the CurrentItem property, of type FlyoutItem , displays the title and route of the FlyoutItem

object. Similarly, the CurrentState property, of type ShellNavigationState , displays the URI of the displayed

route within the Shell application.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentstate#xamarin_forms_shell_currentstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.current#xamarin_forms_shell_current
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentitem#xamarin_forms_shell_currentitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.currentstate#xamarin_forms_shell_currentstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate

 Navigation stackNavigation stack

public class MyTab : Tab
{
 protected override void OnRemovePage(Page page)
 {
 base.OnRemovePage(page);

 // Custom logic
 }
}

 Navigation events

P RO P ERT YP RO P ERT Y T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N

Current ShellNavigationState The URI of the current page.

Source ShellNavigationSource The type of navigation that occurred.

Target ShellNavigationState The URI representing where the
navigation is destined.

CanCancel bool A value indicating if it's possible to
cancel the navigation.

Cancelled bool A value indicating if the navigation was
canceled.

The Tab class defines a Stack property, of type IReadOnlyList<Page> , which represents the current navigation

stack within the Tab . The class also provides the following overridable navigation methods:

GetNavigationStack , returns IReadOnlyList<Page >, the current navigation stack.

OnInsertPageBefore , that's called when INavigation.InsertPageBefore is called.

OnPopAsync , returns Task<Page> , and is called when INavigation.PopAsync is called.

OnPopToRootAsync , returns Task , and is called when INavigation.OnPopToRootAsync is called.

OnPushAsync , returns Task , and is called when INavigation.PushAsync is called.

OnRemovePage , that's called when INavigation.RemovePage is called.

The following example shows how to override the OnRemovePage method:

In this example, MyTab objects should be consumed in your Shell visual hierarchy instead of Tab objects.

The Shell class defines the Navigating event, which is fired when navigation is about to be performed, either

due to programmatic navigation or user interaction. The ShellNavigatingEventArgs object that accompanies the

Navigating event provides the following properties:

In addition, the ShellNavigatingEventArgs class provides a Cancel method that can be used to cancel

navigation, and a GetDeferral method that returns a ShellNavigatingDeferral token that can be used to

complete navigation. For more information about navigation deferral, see Navigation deferral.

The Shell class also defines the Navigated event, which is fired when navigation has completed. The

ShellNavigatedEventArgs object that accompanies the Navigated event provides the following properties:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.stack#xamarin_forms_shellsection_stack
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.getnavigationstack
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.oninsertpagebefore
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.onpopasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.onpoptorootasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.onpushasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.onremovepage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection.onremovepage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navigating
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.current#xamarin_forms_shellnavigatingeventargs_current
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.source#xamarin_forms_shellnavigatingeventargs_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationsource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.target#xamarin_forms_shellnavigatingeventargs_target
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.cancancel#xamarin_forms_shellnavigatingeventargs_cancancel
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.cancelled#xamarin_forms_shellnavigatingeventargs_cancelled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.cancel
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.getdeferral
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingdeferral
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navigated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatedeventargs

P RO P ERT YP RO P ERT Y T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N

Current ShellNavigationState The URI of the current page.

Previous ShellNavigationState The URI of the previous page.

Source ShellNavigationState The type of navigation that occurred.

IMPORTANTIMPORTANT

protected override void OnNavigating(ShellNavigatingEventArgs args)
{
 base.OnNavigating(args);

 // Cancel any back navigation.
 if (args.Source == ShellNavigationSource.Pop)
 {
 args.Cancel();
 }
// }

 Navigation deferral

The OnNavigating method is called when the Navigating event fires. Similarly, the OnNavigated method is called

when the Navigated event fires. Both methods can be overridden in your Shell subclass to intercept navigation

requests.

The ShellNavigatedEventArgs and ShellNavigatingEventArgs classes both have Source properties, of type

ShellNavigationSource . This enumeration provides the following values:

Unknown

Push

Pop

PopToRoot

Insert

Remove

ShellItemChanged

ShellSectionChanged

ShellContentChanged

Therefore, navigation can be intercepted in an OnNavigating override and actions can be performed based on

the navigation source. For example, the following code shows how to cancel backwards navigation if the data on

the page is unsaved:

Shell navigation can be intercepted and completed or canceled based on user choice. This can be achieved by

overriding the OnNavigating method in your Shell subclass, and by calling the GetDeferral method on the

ShellNavigatingEventArgs object. This method returns a ShellNavigatingDeferral token that has a Complete

method, which can be used to complete the navigation request:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatedeventargs.current#xamarin_forms_shellnavigatedeventargs_current
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatedeventargs.previous#xamarin_forms_shellnavigatedeventargs_previous
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatedeventargs.source#xamarin_forms_shellnavigatedeventargs_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navigating
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.navigated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigationsource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.getdeferral
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingdeferral
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingdeferral.complete

public MyShell : Shell
{
 // ...
 protected override async void OnNavigating(ShellNavigatingEventArgs args)
 {
 base.OnNavigating(args);

 ShellNavigatingDeferral token = args.GetDeferral();

 var result = await DisplayActionSheet("Navigate?", "Cancel", "Yes", "No");
 if (result != "Yes")
 {
 args.Cancel();
 }
 token.Complete();
 }
}

WARNINGWARNING

 Pass data

async void OnCollectionViewSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 string elephantName = (e.CurrentSelection.FirstOrDefault() as Animal).Name;
 await Shell.Current.GoToAsync($"elephantdetails?name={elephantName}");
}

 Process navigation data using query property attributesProcess navigation data using query property attributes

In this example, an action sheet is displayed that invites the user to complete the navigation request, or cancel it.

Navigation is canceled by invoking the Cancel method on the ShellNavigatingEventArgs object. Navigation is

completed by invoking the Complete method on the ShellNavigatingDeferral token that was retrieved by the

GetDeferral method on the ShellNavigatingEventArgs object.

The GoToAsync method will throw a InvalidOperationException if a user tries to navigate while there is a pending

navigation deferral.

Data can be passed as query parameters when performing URI-based programmatic navigation. This is

achieved by appending ? after a route, followed by a query parameter id, = , and a value. For example, the

following code is executed in the sample application when a user selects an elephant on the ElephantsPage :

This code example retrieves the currently selected elephant in the CollectionView , and navigates to the

elephantdetails route, passing elephantName as a query parameter.

There are two approaches to receiving navigation data:

1. The class that represents the page being navigated to, or the class for the page's BindingContext , can be

decorated with a QueryPropertyAttribute for each query parameter. For more information, see Process

navigation data using query property attributes.

2. The class that represents the page being navigated to, or the class for the page's BindingContext , can

implement the IQueryAttributable interface. For more information, see Process navigation data using a

single method.

Navigation data can be received by decorating the receiving class with a QueryPropertyAttribute for each query

parameter :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs.cancel
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingdeferral.complete
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellnavigatingdeferral
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.querypropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.querypropertyattribute

[QueryProperty(nameof(Name), "name")]
public partial class ElephantDetailPage : ContentPage
{
 public string Name
 {
 set
 {
 LoadAnimal(value);
 }
 }
 ...

 void LoadAnimal(string name)
 {
 try
 {
 Animal animal = ElephantData.Elephants.FirstOrDefault(a => a.Name == name);
 BindingContext = animal;
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load animal.");
 }
 }
}

NOTENOTE

 Process navigation data using a single methodProcess navigation data using a single method

The first argument for the QueryPropertyAttribute specifies the name of the property that will receive the data,

with the second argument specifying the query parameter id. Therefore, the QueryPropertyAttribute in the

above example specifies that the Name property will receive the data passed in the name query parameter from

the URI in the GoToAsync method call. The Name property setter calls the LoadAnimal method to retrieve the

Animal object for the name , and sets it as the BindingContext of the page.

Query parameter values that are received via the QueryPropertyAttribute are automatically URL decoded.

Navigation data can be received by implementing the IQueryAttributable interface on the receiving class. The

IQueryAttributable interface specifies that the implementing class must implement the ApplyQueryAttributes

method. This method has a query argument, of type IDictionary<string, string> , that contains any data

passed during navigation. Each key in the dictionary is a query parameter id, with its value being the query

parameter value. The advantage of using this approach is that navigation data can be processed using a single

method, which can be useful when you have multiple items of navigation data that require processing as a

whole.

The following example shows a view model class that implements the IQueryAttributable interface:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.querypropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.querypropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable.applyqueryattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable

public class MonkeyDetailViewModel : IQueryAttributable, INotifyPropertyChanged
{
 public Animal Monkey { get; private set; }

 public void ApplyQueryAttributes(IDictionary<string, string> query)
 {
 // The query parameter requires URL decoding.
 string name = HttpUtility.UrlDecode(query["name"]);
 LoadAnimal(name);
 }

 void LoadAnimal(string name)
 {
 try
 {
 Monkey = MonkeyData.Monkeys.FirstOrDefault(a => a.Name == name);
 OnPropertyChanged("Monkey");
 }
 catch (Exception)
 {
 Console.WriteLine("Failed to load animal.");
 }
 }
 ...
}

IMPORTANTIMPORTANT

 Pass and process multiple query parametersPass and process multiple query parameters

async void OnCollectionViewSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 string elephantName = (e.CurrentSelection.FirstOrDefault() as Animal).Name;
 string elephantLocation = (e.CurrentSelection.FirstOrDefault() as Animal).Location;
 await Shell.Current.GoToAsync($"elephantdetails?name={elephantName}&location={elephantLocation}");
}

In this example, the ApplyQueryAttributes method retrieves the value of the name query parameter from the

URI in the GoToAsync method call. Then, the LoadAnimal method is called to retrieve the Animal object, where

its set as the value of the Monkey property that is data bound to.

Query parameter values that are received via the IQueryAttributable interface aren't automatically URL decoded.

Multiple query parameters can be passed by connecting them with & . For example, the following code passes

two data items:

This code example retrieves the currently selected elephant in the CollectionView , and navigates to the

elephantdetails route, passing elephantName and elephantLocation as query parameters.

To receive multiple items of data, the class that represents the page being navigated to, or the class for the

page's BindingContext , can be decorated with a QueryPropertyAttribute for each query parameter :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable.applyqueryattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.querypropertyattribute

[QueryProperty(nameof(Name), "name")]
[QueryProperty(nameof(Location), "location")]
public partial class ElephantDetailPage : ContentPage
{
 public string Name
 {
 set
 {
 // Custom logic
 }
 }

 public string Location
 {
 set
 {
 // Custom logic
 }
 }
 ...
}

public class ElephantDetailViewModel : IQueryAttributable, INotifyPropertyChanged
{
 public Animal Elephant { get; private set; }

 public void ApplyQueryAttributes(IDictionary<string, string> query)
 {
 string name = HttpUtility.UrlDecode(query["name"]);
 string location = HttpUtility.UrlDecode(query["location"]);
 ...
 }
 ...
}

 Back button behavior

In this example, the class is decorated with a QueryPropertyAttribute for each query parameter. The first

QueryPropertyAttribute specifies that the Name property will receive the data passed in the name query

parameter, while the second QueryPropertyAttribute specifies that the Location property will receive the data

passed in the location query parameter. In both cases, the query parameter values are specified in the URI in

the GoToAsync method call.

Alternatively, navigation data can be processed by a single method by implementing the IQueryAttributable

interface on the class that represents the page being navigated to, or the class for the page's BindingContext :

In this example, the ApplyQueryAttributes method retrieves the value of the name and location query

parameters from the URI in the GoToAsync method call.

Back button appearance and behavior can be redefined by setting the BackButtonBehavior attached property to

a BackButtonBehavior object. The BackButtonBehavior class defines the following properties:

Command , of type ICommand , which is executed when the back button is pressed.

CommandParameter , of type object , which is the parameter that's passed to the Command .

IconOverride , of type ImageSource , the icon used for the back button.

IsEnabled , of type boolean , indicates whether the back button is enabled. The default value is true .

TextOverride , of type string , the text used for the back button.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.querypropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iqueryattributable.applyqueryattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.gotoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell.backbuttonbehaviorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior.command#xamarin_forms_backbuttonbehavior_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior.commandparameter#xamarin_forms_backbuttonbehavior_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior.iconoverride#xamarin_forms_backbuttonbehavior_iconoverride
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior.isenabled#xamarin_forms_backbuttonbehavior_isenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior.textoverride#xamarin_forms_backbuttonbehavior_textoverride

<ContentPage ...>
 <Shell.BackButtonBehavior>
 <BackButtonBehavior Command="{Binding BackCommand}"
 IconOverride="back.png" />
 </Shell.BackButtonBehavior>
 ...
</ContentPage>

Shell.SetBackButtonBehavior(this, new BackButtonBehavior
{
 Command = new Command(() =>
 {
 ...
 }),
 IconOverride = "back.png"
});

 Related links

All of these properties are backed by BindableProperty objects, which means that the properties can be targets

of data bindings.

The following code shows an example of redefining back button appearance and behavior :

The equivalent C# code is:

The Command property is set to an ICommand to be executed when the back button is pressed, and the

IconOverride property is set to the icon that's used for the back button:

Xaminals (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.backbuttonbehavior.command#xamarin_forms_backbuttonbehavior_command
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/navigation-images/back-button-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Xamarin.Forms Shell search
 7/8/2021 • 6 minutes to read • Edit Online

 Create a SearchHandler

 Download the sample

Xamarin.Forms Shell includes integrated search functionality that's provided by the SearchHandler class. Search

capability can be added to a page by setting the Shell.SearchHandler attached property to a subclassed

SearchHandler object. This results in a search box being added at the top of the page:

When a query is entered into the search box, the Query property is updated, and on each update the

OnQueryChanged method is executed. This method can be overridden to populate the search suggestions area

with data:

Then, when a result is selected from the search suggestions area, the OnItemSelected method is executed. This

method can be overridden to respond appropriately, such as by navigating to a detail page.

Search functionality can be added to a Shell application by subclassing the SearchHandler class, and overriding

the OnQueryChanged and OnItemSelected methods:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/search.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/search-images/searchhandler-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.query#xamarin_forms_searchhandler_query
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.onquerychanged
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/search-images/search-suggestions-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.onitemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.onquerychanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.onitemselected

public class AnimalSearchHandler : SearchHandler
{
 public IList<Animal> Animals { get; set; }
 public Type SelectedItemNavigationTarget { get; set; }

 protected override void OnQueryChanged(string oldValue, string newValue)
 {
 base.OnQueryChanged(oldValue, newValue);

 if (string.IsNullOrWhiteSpace(newValue))
 {
 ItemsSource = null;
 }
 else
 {
 ItemsSource = Animals
 .Where(animal => animal.Name.ToLower().Contains(newValue.ToLower()))
 .ToList<Animal>();
 }
 }

 protected override async void OnItemSelected(object item)
 {
 base.OnItemSelected(item);

 // Let the animation complete
 await Task.Delay(1000);

 ShellNavigationState state = (App.Current.MainPage as Shell).CurrentState;
 // The following route works because route names are unique in this application.
 await Shell.Current.GoToAsync($"{GetNavigationTarget()}?name={((Animal)item).Name}");
 }

 string GetNavigationTarget()
 {
 return (Shell.Current as AppShell).Routes.FirstOrDefault(route =>
route.Value.Equals(SelectedItemNavigationTarget)).Key;
 }
}

NOTENOTE

 Consume a SearchHandler

The OnQueryChanged override has two arguments: oldValue , which contains the previous search query, and

newValue , which contains the current search query. The search suggestions area can be updated by setting the

SearchHandler.ItemsSource property to an IEnumerable collection that contains items that match the current

search query.

When a search result is selected by the user, the OnItemSelected override is executed and the SelectedItem

property is set. In this example, the method navigates to another page that displays data about the selected

Animal . For more information about navigation, see Xamarin.Forms Shell navigation.

Additional SearchHandler properties can be set to control the search box appearance.

The subclassed SearchHandler can be consumed by setting the Shell.SearchHandler attached property to an

object of the subclassed type, on the consuming page:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.onquerychanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.itemssource#xamarin_forms_searchhandler_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.onitemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.selecteditem#xamarin_forms_searchhandler_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler

<ContentPage ...
 xmlns:controls="clr-namespace:Xaminals.Controls">
 <Shell.SearchHandler>
 <controls:AnimalSearchHandler Placeholder="Enter search term"
 ShowsResults="true"
 DisplayMemberName="Name" />
 </Shell.SearchHandler>
 ...
</ContentPage>

Shell.SetSearchHandler(this, new AnimalSearchHandler
{
 Placeholder = "Enter search term",
 ShowsResults = true,
 DisplayMemberName = "Name"
});

 Define search results item appearance

The equivalent C# code is:

The AnimalSearchHandler.OnQueryChanged method returns a List of Animal objects. The DisplayMemberName

property is set to the Name property of each Animal object, and so the data displayed in the suggestions area

will be each animal name.

The ShowsResults property is set to true , so that search suggestions are displayed as the user enters a search

query:

As the search query changes, the search suggestions area is updated:

When a search result is selected, the MonkeyDetailPage is navigated to, and a detail page about the selected

monkey is displayed:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.displaymembername#xamarin_forms_searchhandler_displaymembername
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.showsresults#xamarin_forms_searchhandler_showsresults
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/search-images/search-results-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/search-images/search-results-change-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/search-images/detailpage-large.png#lightbox

<ContentPage ...
 xmlns:controls="clr-namespace:Xaminals.Controls">
 <Shell.SearchHandler>
 <controls:AnimalSearchHandler Placeholder="Enter search term"
 ShowsResults="true">
 <controls:AnimalSearchHandler.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10"
 ColumnDefinitions="0.15*,0.85*">
 <Image Source="{Binding ImageUrl}"
 HeightRequest="40"
 WidthRequest="40" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold"
 VerticalOptions="Center" />
 </Grid>
 </DataTemplate>
 </controls:AnimalSearchHandler.ItemTemplate>
 </controls:AnimalSearchHandler>
 </Shell.SearchHandler>
 ...
</ContentPage>

Shell.SetSearchHandler(this, new AnimalSearchHandler
{
 Placeholder = "Enter search term",
 ShowsResults = true,
 ItemTemplate = new DataTemplate(() =>
 {
 Grid grid = new Grid { Padding = 10 };
 grid.ColumnDefinitions.Add(new ColumnDefinition { Width = new GridLength(0.15, GridUnitType.Star)
});
 grid.ColumnDefinitions.Add(new ColumnDefinition { Width = new GridLength(0.85, GridUnitType.Star)
});

 Image image = new Image { HeightRequest = 40, WidthRequest = 40 };
 image.SetBinding(Image.SourceProperty, "ImageUrl");
 Label nameLabel = new Label { FontAttributes = FontAttributes.Bold, VerticalOptions =
LayoutOptions.Center };
 nameLabel.SetBinding(Label.TextProperty, "Name");

 grid.Children.Add(image);
 grid.Children.Add(nameLabel, 1, 0);
 return grid;
 })
});

In addition to displaying string data in the search results, the appearance of each search result item can be

defined by setting the SearchHandler.ItemTemplate property to a DataTemplate :

The equivalent C# code is:

The elements specified in the DataTemplate define the appearance of each item in the suggestions area. In this

example, layout within the DataTemplate is managed by a Grid . The Grid contains an Image object, and a

Label object, that both bind to properties of each Monkey object.

The following screenshots show the result of templating each item in the suggestions area:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.itemtemplate#xamarin_forms_searchhandler_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

 Search box visibility

IMPORTANTIMPORTANT

<ContentPage ...
 xmlns:controls="clr-namespace:Xaminals.Controls">
 <Shell.SearchHandler>
 <controls:AnimalSearchHandler SearchBoxVisibility="Hidden"
 ... />
 </Shell.SearchHandler>
 ...
</ContentPage>

 Search box focus

For more information about data templates, see Xamarin.Forms data templates.

By default, when a SearchHandler is added at the top of a page, the search box is visible and fully expanded.

However, this behavior can be changed by setting the SearchHandler.SearchBoxVisibility property to one of the

SearchBoxVisibility enumeration members:

Hidden – the search box is not visible or accessible.

Collapsible – the search box is hidden until the user performs an action to reveal it. On iOS the search box

is revealed by vertically bouncing the page content, and on Android the search box is revealed by tapping the

question mark icon.

Expanded – the search box is visible and fully expanded. This is the default value of the SearchBoxVisibility

property.

On iOS, a collapsible search box requires iOS 11 or greater.

The following example shows to how to hide the search box:

Tapping in a search box invokes the onscreen keyboard, with the search box gaining input focus. This can also be

achieved programmatically by calling the Focus method, which attempts to set input focus on the search box,

and returns true if successful. When a search box gains focus, the Focused event is fired and the overridable

OnFocused method is called.

When a search box has input focus, tapping elsewhere on the screen dismisses the onscreen keyboard, and the

search box loses input focus. This can also be achieved programmatically by calling the Unfocus method. When

a search box loses focus, the Unfocused event is fired and the overridable OnUnfocus method is called.

The focus state of a search box can be retrieved through the IsFocused property, which returns true if a

SearchHandler currently has input focus.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/shell/search-images/search-results-template-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.searchboxvisibility#xamarin_forms_searchhandler_searchboxvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchboxvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.searchboxvisibility#xamarin_forms_searchhandler_searchboxvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.focus#xamarin_forms_searchhandler_focus
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.focused
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.unfocus#xamarin_forms_searchhandler_unfocus
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.unfocused
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.isfocused#xamarin_forms_searchhandler_isfocused
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler

 SearchHandler keyboard

<SearchHandler Keyboard="Email" />

SearchHandler searchHandler = new SearchHandler { Keyboard = Keyboard.Email };

<SearchHandler Placeholder="Enter search terms">
 <SearchHandler.Keyboard>
 <Keyboard x:FactoryMethod="Create">
 <x:Arguments>
 <KeyboardFlags>Suggestions,CapitalizeCharacter</KeyboardFlags>
 </x:Arguments>
 </Keyboard>
 </SearchHandler.Keyboard>
</SearchHandler>

The keyboard that's presented when users interact with a SearchHandler can be set programmatically via the

Keyboard property, to one of the following properties from the Keyboard class:

Chat – used for texting and places where emoji are useful.

Default – the default keyboard.

Email – used when entering email addresses.

Numeric – used when entering numbers.

Plain – used when entering text, without any KeyboardFlags specified.

Telephone – used when entering telephone numbers.

Text – used when entering text.

Url – used for entering file paths & web addresses.

This can be accomplished in XAML as follows:

The equivalent C# code is:

The Keyboard class also has a Create factory method that can be used to customize a keyboard by specifying

capitalization, spellcheck, and suggestion behavior. KeyboardFlags enumeration values are specified as

arguments to the method, with a customized Keyboard being returned. The KeyboardFlags enumeration

contains the following values:

None – no features are added to the keyboard.

CapitalizeSentence – indicates that the first letter of the first word of each entered sentence will be

automatically capitalized.

Spellcheck – indicates that spellcheck will be performed on entered text.

Suggestions – indicates that word completions will be offered on entered text.

CapitalizeWord – indicates that the first letter of each word will be automatically capitalized.

CapitalizeCharacter – indicates that every character will be automatically capitalized.

CapitalizeNone – indicates that no automatic capitalization will occur.

All – indicates that spellcheck, word completions, and sentence capitalization will occur on entered text.

The following XAML code example shows how to customize the default Keyboard to offer word completions

and capitalize every entered character :

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchhandler.keyboard#xamarin_forms_searchhandler_keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.chat#xamarin_forms_keyboard_chat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.default#xamarin_forms_keyboard_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.email#xamarin_forms_keyboard_email
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.numeric#xamarin_forms_keyboard_numeric
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.plain#xamarin_forms_keyboard_plain
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.telephone#xamarin_forms_keyboard_telephone
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.text#xamarin_forms_keyboard_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.url#xamarin_forms_keyboard_url
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.create
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizesentence
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_spellcheck
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_suggestions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizeword
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizecharacter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizenone
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_all
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard

SearchHandler searchHandler = new SearchHandler { Placeholder = "Enter search terms" };
searchHandler.Keyboard = Keyboard.Create(KeyboardFlags.Suggestions | KeyboardFlags.CapitalizeCharacter);

 Related links
Xaminals (sample)

Xamarin.Forms Shell navigation

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Xamarin.Forms Shell lifecycle
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Hierarchical navigation

 Modal navigation

 Related links

 Download the sample

Shell applications respect the Xamarin.Forms lifecycle, and additionally fire an Appearing event when a page is

about to appear on the screen, and a Disappearing event when a page is about to disappear from the screen.

These events are propagated to pages, and can be handled by overriding the OnAppearing or OnDisappearing

methods on the page.

In a Shell application, the Appearing and Disappearing events are raised from cross-platform code, prior to platform

code making a page visible, or removing a page from the screen.

For more information about the Xamarin.Forms app lifecycle, see Xamarin.Forms app lifecycle.

In a Shell application, pushing a page onto the navigation stack will result in the currently visible ShellContent

object, and its page content, raising the Disappearing event. Similarly, popping the last page from the

navigation stack will result in the newly visible ShellContent object, and its page content, raising the Appearing

event.

For more information about hierarchical navigation, see Xamarin.Forms hierarchical navigation.

In a Shell application, pushing a modal page onto the modal navigation stack will result in all visible Shell

objects raising the Disappearing event. Similarly, popping the last modal page from the modal navigation stack

will result in all visible Shell objects raising the Appearing event.

For more information about modal navigation, see Xamarin.Forms modal pages.

Xaminals (sample)

Xamarin.Forms app lifecycle

Xamarin.Forms modal pages

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/lifecycle.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.disappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.ondisappearing#xamarin_forms_page_ondisappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellcontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.disappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.disappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.baseshellitem.appearing
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-xaminals/

Xamarin.Forms Shell custom renderers
 3/5/2021 • 3 minutes to read • Edit Online

 Create a custom renderer class

NOTENOTE

One of the advantages of Xamarin.Forms Shell applications is that their appearance and behavior is highly

customizable through the properties and methods that the various Shell classes expose. However, it's also

possible to create a Shell custom renderer when more extensive platform-specific customizations are required.

As with other custom renderers, a Shell custom renderer can be added to just one platform project to customize

appearance and behavior, while allowing the default behavior on the other platform; or a different Shell custom

renderer can be added to each platform project to customize appearance and behavior on both iOS and

Android.

Shell applications are rendered using the ShellRenderer class on iOS and Android. On iOS, the ShellRenderer

class can be found in the Xamarin.Forms.Platform.iOS namespace. On Android, the ShellRenderer class can be

found in the Xamarin.Forms.Platform.Android namespace.

The process for creating a Shell custom renderer is as follows:

1. Subclass the Shell class. This will already be accomplished in your Shell application.

2. Consume the subclassed Shell class. This will already be accomplished in your Shell application.

3. Create a custom renderer class that derives from the ShellRenderer class, on the required platforms.

The process for creating a Shell custom renderer class is as follows:

1. Create a subclass of the ShellRenderer class.

2. Override the required methods to perform the required customization.

3. Add an ExportRendererAttribute to the ShellRenderer subclass, to specify that it will be used to render the

Shell application. This attribute is used to register the custom renderer with Xamarin.Forms.

It's optional to provide a Shell custom renderer in each platform project. If a custom renderer isn't registered, then the

default ShellRenderer class will be used.

The ShellRenderer class exposes the following overridable methods:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/shell/customrenderers.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shell

IO SIO S A N DRO IDA N DRO ID UW PUW P

SetElementSize

CreateFlyoutRenderer

CreateNavBarAppearanceTracker

CreatePageRendererTracker

CreateShellFlyoutContentRenderer

CreateShellItemRenderer

CreateShellItemTransition

CreateShellSearchResultsRenderer

CreateShellSectionRenderer

CreateTabBarAppearanceTracker

Dispose

OnCurrentItemChanged

OnElementPropertyChanged

OnElementSet

UpdateBackgroundColor

CreateFragmentForPage

CreateShellFlyoutContentRenderer

CreateShellFlyoutRenderer

CreateShellItemRenderer

CreateShellSectionRenderer

CreateTrackerForToolbar

CreateToolbarAppearanceTracker

CreateTabLayoutAppearanceTracker

CreateBottomNavViewAppearanceTracker

OnElementPropertyChanged

OnElementSet

SwitchFragment

Dispose

CreateShellFlyoutTemplateSelector

CreateShellHeaderRenderer

CreateShellItemRenderer

CreateShellSectionRenderer

OnElementPropertyChanged

OnElementSet

UpdateFlyoutBackdropColor

UpdateFlyoutBackgroundColor

IMPORTANTIMPORTANT

 iOS exampleiOS example

using UIKit;
using Xamarin.Forms;
using Xamarin.Forms.Platform.iOS;

[assembly: ExportRenderer(typeof(Xaminals.AppShell), typeof(Xaminals.iOS.MyShellRenderer))]
namespace Xaminals.iOS
{
 public class MyShellRenderer : ShellRenderer
 {
 protected override IShellSectionRenderer CreateShellSectionRenderer(ShellSection shellSection)
 {
 var renderer = base.CreateShellSectionRenderer(shellSection);
 if (renderer != null)
 {
 (renderer as
ShellSectionRenderer).NavigationBar.SetBackgroundImage(UIImage.FromFile("monkey.png"),
UIBarMetrics.Default);
 }
 return renderer;
 }
 }
}

The FlyoutItem and TabBar classes are aliases for the ShellItem class, and the Tab class is an alias for the

ShellSection class. Therefore, the CreateShellItemRenderer method should be overridden when creating a

custom renderer for FlyoutItem objects, and the CreateShellSectionRenderer method should be overridden

when creating a custom renderer for Tab objects.

There are additional Shell renderer classes, such as ShellSectionRenderer and ShellItemRenderer , on iOS, Android,

and UWP. However, these additional renderer classes are created by overrides in the ShellRenderer class. Therefore,

customizing the behavior of these additional renderer classes can be achieved by subclassing them, and creating an

instance of the subclass in the appropriate override in the subclassed ShellRenderer class.

The following code example shows a subclassed ShellRenderer , for iOS, that sets a background image on the

navigation bar of the Shell application:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tab
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shellsection

 Android exampleAndroid example

using Android.Content;
using Xamarin.Forms;
using Xamarin.Forms.Platform.Android;

[assembly: ExportRenderer(typeof(Xaminals.AppShell), typeof(Xaminals.Droid.MyShellRenderer))]
namespace Xaminals.Droid
{
 public class MyShellRenderer : ShellRenderer
 {
 public MyShellRenderer(Context context) : base(context)
 {
 }

 protected override IShellToolbarAppearanceTracker CreateToolbarAppearanceTracker()
 {
 return new MyShellToolbarAppearanceTracker(this);
 }
 }
}

using AndroidX.AppCompat.Widget;
using Xamarin.Forms;
using Xamarin.Forms.Platform.Android;

namespace Xaminals.Droid
{
 public class MyShellToolbarAppearanceTracker : ShellToolbarAppearanceTracker
 {
 public MyShellToolbarAppearanceTracker(IShellContext context) : base(context)
 {
 }

 public override void SetAppearance(Toolbar toolbar, IShellToolbarTracker toolbarTracker,
ShellAppearance appearance)
 {
 base.SetAppearance(toolbar, toolbarTracker, appearance);
 toolbar.SetBackgroundResource(Resource.Drawable.monkey);
 }
 }
}

The MyShellRenderer class overrides the CreateShellSectionRenderer method, and retrieves the renderer

created by the base class. It then modifies the renderer by setting a background image on the navigation bar,

before returning the renderer.

The following code example shows a subclassed ShellRenderer , for Android, that sets a background image on

the navigation bar of the Shell application:

The MyShellRenderer class overrides the CreateToolbarAppearanceTracker method, and returns an instance of the

MyShellToolbarAppearanceTracker class. The MyShellToolbarAppearanceTracker class, which derives from the

ShellToolbarAppearanceTracker class, is shown in the following example:

The MyShellToolbarAppearanceTracker class overrides the SetAppearance method, and modifies the toolbar by

setting a background image on it.

IMPORTANTIMPORTANT

 Related links

It's only necessary to add the ExportRendererAttribute to a custom renderer that derives from the ShellRenderer

class. Additional subclassed Shell renderer classes are created by the subclassed ShellRenderer class.

Xamarin.Forms Custom Renderers

Xamarin.Forms templates
 11/2/2020 • 2 minutes to read • Edit Online

 Control templates

 Data templates

Xamarin.Forms control templates define the visual structure of ContentView derived custom controls, and

ContentPage derived pages.

Xamarin.Forms data templates define the presentation of data on supported controls.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/templates/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

Xamarin.Forms control templates
 7/8/2021 • 13 minutes to read • Edit Online

 Create a ControlTemplate

public class CardView : ContentView
{
 public static readonly BindableProperty CardTitleProperty = BindableProperty.Create(nameof(CardTitle),
typeof(string), typeof(CardView), string.Empty);
 public static readonly BindableProperty CardDescriptionProperty =
BindableProperty.Create(nameof(CardDescription), typeof(string), typeof(CardView), string.Empty);
 // ...

 public string CardTitle
 {
 get => (string)GetValue(CardTitleProperty);
 set => SetValue(CardTitleProperty, value);
 }

 public string CardDescription
 {
 get => (string)GetValue(CardDescriptionProperty);
 set => SetValue(CardDescriptionProperty, value);
 }
 // ...
}

 Download the sample

Xamarin.Forms control templates enable you to define the visual structure of ContentView derived custom

controls, and ContentPage derived pages. Control templates separate the user interface (UI) for a custom

control, or page, from the logic that implements the control or page. Additional content can also be inserted into

the templated custom control, or templated page, at a pre-defined location.

For example, a control template can be created that redefines the UI provided by a custom control. The control

template can then be consumed by the required custom control instance. Alternatively, a control template can be

created that defines any common UI that will be used by multiple pages in an application. The control template

can then be consumed by multiple pages, with each page still displaying its unique content.

The following example shows the code for a CardView custom control:

The CardView class, which derives from the ContentView class, represents a custom control that displays data in

a card-like layout. The class contains properties, which are backed by bindable properties, for the data it

displays. However, the CardView class does not define any UI. Instead, the UI will be defined with a control

template. For more information about creating ContentView derived custom controls, see Xamarin.Forms

ContentView.

A control template is created with the ControlTemplate type. When you create a ControlTemplate , you combine

View objects to build the UI for a custom control, or page. A ControlTemplate must have only one View as its

root element. However, the root element usually contains other View objects. The combination of objects makes

up the control's visual structure.

While a ControlTemplate can be defined inline, the typical approach to declaring a ControlTemplate is as a

resource in a resource dictionary. Because control templates are resources, they obey the same scoping rules

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/templates/control-template.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-controltemplatedemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

that apply to all resources. For example, if you declare a control template in the root element of your application

definition XAML file, the template can be used anywhere in your application. If you define the template in a page,

only that page can use the control template. For more information about resources, see Xamarin.Forms

Resource Dictionaries.

The following XAML example shows a ControlTemplate for CardView objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 ...>
 <ContentPage.Resources>
 <ControlTemplate x:Key="CardViewControlTemplate">
 <Frame BindingContext="{Binding Source={RelativeSource TemplatedParent}}"
 BackgroundColor="{Binding CardColor}"
 BorderColor="{Binding BorderColor}"
 CornerRadius="5"
 HasShadow="True"
 Padding="8"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="75" />
 <RowDefinition Height="4" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="75" />
 <ColumnDefinition Width="200" />
 </Grid.ColumnDefinitions>
 <Frame IsClippedToBounds="True"
 BorderColor="{Binding BorderColor}"
 BackgroundColor="{Binding IconBackgroundColor}"
 CornerRadius="38"
 HeightRequest="60"
 WidthRequest="60"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Image Source="{Binding IconImageSource}"
 Margin="-20"
 WidthRequest="100"
 HeightRequest="100"
 Aspect="AspectFill" />
 </Frame>
 <Label Grid.Column="1"
 Text="{Binding CardTitle}"
 FontAttributes="Bold"
 FontSize="Large"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="Start" />
 <BoxView Grid.Row="1"
 Grid.ColumnSpan="2"
 BackgroundColor="{Binding BorderColor}"
 HeightRequest="2"
 HorizontalOptions="Fill" />
 <Label Grid.Row="2"
 Grid.ColumnSpan="2"
 Text="{Binding CardDescription}"
 VerticalTextAlignment="Start"
 VerticalOptions="Fill"
 HorizontalOptions="Fill" />
 </Grid>
 </Frame>
 </ControlTemplate>
 </ContentPage.Resources>
 ...
</ContentPage>

When a ControlTemplate is declared as a resource, it must have a key specified with the x:Key attribute so that

it can be identified in the resource dictionary. In this example, the root element of the CardViewControlTemplate

is a Frame object. The Frame object uses the RelativeSource markup extension to set its BindingContext to the

runtime object instance to which the template will be applied, which is known as the templated parent. The

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

 Consume a ControlTemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:ControlTemplateDemos.Controls"
 ...>
 <StackLayout Margin="30">
 <controls:CardView BorderColor="DarkGray"
 CardTitle="John Doe"
 CardDescription="Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
elit dolor, convallis non interdum."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewControlTemplate}" />
 <controls:CardView BorderColor="DarkGray"
 CardTitle="Jane Doe"
 CardDescription="Phasellus eu convallis mi. In tempus augue eu dignissim
fermentum. Morbi ut lacus vitae eros lacinia."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewControlTemplate}" />
 <controls:CardView BorderColor="DarkGray"
 CardTitle="Xamarin Monkey"
 CardDescription="Aliquam sagittis, odio lacinia fermentum dictum, mi erat
scelerisque erat, quis aliquet arcu."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewControlTemplate}" />
 </StackLayout>
</ContentPage>

Frame object uses a combination of Grid , Frame , Image , Label , and BoxView objects to define the visual

structure of a CardView object. The binding expressions of these objects resolve against CardView properties,

due to inheriting the BindingContext from the root Frame element. For more information about the

RelativeSource markup extension, see Xamarin.Forms Relative Bindings.

A ControlTemplate can be applied to a ContentView derived custom control by setting its ControlTemplate

property to the control template object. Similarly, a ControlTemplate can be applied to a ContentPage derived

page by setting its ControlTemplate property to the control template object. At runtime, when a

ControlTemplate is applied, all of the controls that are defined in the ControlTemplate are added to the visual

tree of the templated custom control, or templated page.

The following example shows the CardViewControlTemplate being assigned to the ControlTemplate property of

each CardView object:

In this example, the controls in the CardViewControlTemplate become part of the visual tree for each CardView

object. Because the root Frame object for the control template sets its BindingContext to the templated parent,

the Frame and its children resolve their binding expressions against the properties of each CardView object.

The following screenshots show the CardViewControlTemplate applied to the three CardView objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview.controltemplate#xamarin_forms_templatedview_controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedpage.controltemplate#xamarin_forms_templatedpage_controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview.controltemplate#xamarin_forms_templatedview_controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

IMPORTANTIMPORTANT

 Pass parameters with TemplateBinding

IMPORTANTIMPORTANT

WARNINGWARNING

The point in time that a ControlTemplate is applied to a control instance can be detected by overriding the

OnApplyTemplate method in the templated custom control, or templated page. For more information, see Get a named

element from a template.

The TemplateBinding markup extension binds a property of an element that is in a ControlTemplate to a public

property that is defined by the templated custom control or templated page. When you use a TemplateBinding ,

you enable properties on the control to act as parameters to the template. Therefore, when a property on a

templated custom control or templated page is set, that value is passed onto the element that has the

TemplateBinding on it.

The TemplateBinding markup expression enables the RelativeSource binding from the previous control template to

be removed, and replaces the Binding expressions.

The TemplateBinding markup extension defines the following properties:

Path , of type string , the path to the property.

Mode , of type BindingMode , the direction in which changes propagate between the source and target.

Converter , of type IValueConverter , the binding value converter.

ConverterParameter , of type object , the parameter to the binding value converter.

StringFormat , of type string , the string format for the binding.

The ContentProperty for the TemplateBinding markup extension is Path . Therefore, the "Path=" part of the

markup extension can be omitted if the path is the first item in the TemplateBinding expression. For more

information about using these properties in a binding expression, see Xamarin.Forms Data Binding.

The TemplateBinding markup extension should only be used within a ControlTemplate . However, attempting to use a

TemplateBinding expression outside of a ControlTemplate will not result in a build error or an exception being

thrown.

The following XAML example shows a ControlTemplate for CardView objects, that uses the TemplateBinding

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/templates/control-template-images/relativesource-controltemplate-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 ...>
 <ContentPage.Resources>
 <ControlTemplate x:Key="CardViewControlTemplate">
 <Frame BackgroundColor="{TemplateBinding CardColor}"
 BorderColor="{TemplateBinding BorderColor}"
 CornerRadius="5"
 HasShadow="True"
 Padding="8"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="75" />
 <RowDefinition Height="4" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="75" />
 <ColumnDefinition Width="200" />
 </Grid.ColumnDefinitions>
 <Frame IsClippedToBounds="True"
 BorderColor="{TemplateBinding BorderColor}"
 BackgroundColor="{TemplateBinding IconBackgroundColor}"
 CornerRadius="38"
 HeightRequest="60"
 WidthRequest="60"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Image Source="{TemplateBinding IconImageSource}"
 Margin="-20"
 WidthRequest="100"
 HeightRequest="100"
 Aspect="AspectFill" />
 </Frame>
 <Label Grid.Column="1"
 Text="{TemplateBinding CardTitle}"
 FontAttributes="Bold"
 FontSize="Large"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="Start" />
 <BoxView Grid.Row="1"
 Grid.ColumnSpan="2"
 BackgroundColor="{TemplateBinding BorderColor}"
 HeightRequest="2"
 HorizontalOptions="Fill" />
 <Label Grid.Row="2"
 Grid.ColumnSpan="2"
 Text="{TemplateBinding CardDescription}"
 VerticalTextAlignment="Start"
 VerticalOptions="Fill"
 HorizontalOptions="Fill" />
 </Grid>
 </Frame>
 </ControlTemplate>
 </ContentPage.Resources>
 ...
</ContentPage>

markup extension:

In this example, the TemplateBinding markup extension resolves binding expressions against the properties of

each CardView object. The following screenshots show the CardViewControlTemplate applied to the three

CardView objects:

IMPORTANTIMPORTANT

 Apply a ControlTemplate with a style

Using the TemplateBinding markup extension is equivalent to setting the BindingContext of the root element in the

template to its templated parent with the RelativeSource markup extension, and then resolving bindings of child

objects with the Binding markup extension. In fact, the TemplateBinding markup extension creates a Binding

whose Source is RelativeBindingSource.TemplatedParent .

Control templates can also be applied with styles. This is achieved by creating an implicit or explicit style that

consumes the ControlTemplate .

The following XAML example shows an implicit style that consumes the CardViewControlTemplate :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/templates/control-template-images/templatebinding-controltemplate-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:ControlTemplateDemos.Controls"
 ...>
 <ContentPage.Resources>
 <ControlTemplate x:Key="CardViewControlTemplate">
 ...
 </ControlTemplate>

 <Style TargetType="controls:CardView">
 <Setter Property="ControlTemplate"
 Value="{StaticResource CardViewControlTemplate}" />
 </Style>
 </ContentPage.Resources>
 <StackLayout Margin="30">
 <controls:CardView BorderColor="DarkGray"
 CardTitle="John Doe"
 CardDescription="Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
elit dolor, convallis non interdum."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png" />
 <controls:CardView BorderColor="DarkGray"
 CardTitle="Jane Doe"
 CardDescription="Phasellus eu convallis mi. In tempus augue eu dignissim
fermentum. Morbi ut lacus vitae eros lacinia."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"/>
 <controls:CardView BorderColor="DarkGray"
 CardTitle="Xamarin Monkey"
 CardDescription="Aliquam sagittis, odio lacinia fermentum dictum, mi erat
scelerisque erat, quis aliquet arcu."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png" />
 </StackLayout>
</ContentPage>

 Redefine a control’s UI

In this example, the implicit Style is automatically applied to each CardView object, and sets the

ControlTemplate property of each CardView to CardViewControlTemplate .

For more information about styles, see Xamarin.Forms Styles.

When a ControlTemplate is instantiated and assigned to the ControlTemplate property of a ContentView

derived custom control, or a ContentPage derived page, the visual structure defined for the custom control or

page is replaced with the visual structure defined in the ControlTemplate .

For example, the CardViewUI custom control defines its user interface using the following XAML:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview.controltemplate#xamarin_forms_templatedview_controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

<ContentView xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ControlTemplateDemos.Controls.CardViewUI"
 x:Name="this">
 <Frame BindingContext="{x:Reference this}"
 BackgroundColor="{Binding CardColor}"
 BorderColor="{Binding BorderColor}"
 CornerRadius="5"
 HasShadow="True"
 Padding="8"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="75" />
 <RowDefinition Height="4" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="75" />
 <ColumnDefinition Width="200" />
 </Grid.ColumnDefinitions>
 <Frame IsClippedToBounds="True"
 BorderColor="{Binding BorderColor, FallbackValue='Black'}"
 BackgroundColor="{Binding IconBackgroundColor, FallbackValue='Gray'}"
 CornerRadius="38"
 HeightRequest="60"
 WidthRequest="60"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Image Source="{Binding IconImageSource}"
 Margin="-20"
 WidthRequest="100"
 HeightRequest="100"
 Aspect="AspectFill" />
 </Frame>
 <Label Grid.Column="1"
 Text="{Binding CardTitle, FallbackValue='Card title'}"
 FontAttributes="Bold"
 FontSize="Large"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="Start" />
 <BoxView Grid.Row="1"
 Grid.ColumnSpan="2"
 BackgroundColor="{Binding BorderColor, FallbackValue='Black'}"
 HeightRequest="2"
 HorizontalOptions="Fill" />
 <Label Grid.Row="2"
 Grid.ColumnSpan="2"
 Text="{Binding CardDescription, FallbackValue='Card description'}"
 VerticalTextAlignment="Start"
 VerticalOptions="Fill"
 HorizontalOptions="Fill" />
 </Grid>
 </Frame>
</ContentView>

However, the controls that comprise this UI can be replaced by defining a new visual structure in a

ControlTemplate , and assigning it to the ControlTemplate property of a CardViewUI object:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview.controltemplate#xamarin_forms_templatedview_controltemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 ...>
 <ContentPage.Resources>
 <ControlTemplate x:Key="CardViewCompressed">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="100" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Image Source="{TemplateBinding IconImageSource}"
 BackgroundColor="{TemplateBinding IconBackgroundColor}"
 WidthRequest="100"
 HeightRequest="100"
 Aspect="AspectFill"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <StackLayout Grid.Column="1">
 <Label Text="{TemplateBinding CardTitle}"
 FontAttributes="Bold" />
 <Label Text="{TemplateBinding CardDescription}" />
 </StackLayout>
 </Grid>
 </ControlTemplate>
 </ContentPage.Resources>
 <StackLayout Margin="30">
 <controls:CardViewUI BorderColor="DarkGray"
 CardTitle="John Doe"
 CardDescription="Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
elit dolor, convallis non interdum."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewCompressed}" />
 <controls:CardViewUI BorderColor="DarkGray"
 CardTitle="Jane Doe"
 CardDescription="Phasellus eu convallis mi. In tempus augue eu dignissim
fermentum. Morbi ut lacus vitae eros lacinia."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewCompressed}" />
 <controls:CardViewUI BorderColor="DarkGray"
 CardTitle="Xamarin Monkey"
 CardDescription="Aliquam sagittis, odio lacinia fermentum dictum, mi erat
scelerisque erat, quis aliquet arcu."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"
 ControlTemplate="{StaticResource CardViewCompressed}" />
 </StackLayout>
</ContentPage>

In this example, the visual structure of the CardViewUI object is redefined in a ControlTemplate that provides a

more compact visual structure that's suitable for a condensed list:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

 Substitute content into a ContentPresenter
A ContentPresenter can be placed in a control template to mark where content to be displayed by the templated

custom control or templated page will appear. The custom control or page that consumes the control template

will then define content to be displayed by the ContentPresenter . The following diagram illustrates a

ControlTemplate for a page that contains a number of controls, including a ContentPresenter marked by a blue

rectangle:

The following XAML shows a control template named TealTemplate that contains a ContentPresenter in its

visual structure:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/templates/control-template-images/redefine-controltemplate-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter

<ControlTemplate x:Key="TealTemplate">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.1*" />
 <RowDefinition Height="0.8*" />
 <RowDefinition Height="0.1*" />
 </Grid.RowDefinitions>
 <BoxView Color="Teal" />
 <Label Margin="20,0,0,0"
 Text="{TemplateBinding HeaderText}"
 TextColor="White"
 FontSize="Title"
 VerticalOptions="Center" />
 <ContentPresenter Grid.Row="1" />
 <BoxView Grid.Row="2"
 Color="Teal" />
 <Label x:Name="changeThemeLabel"
 Grid.Row="2"
 Margin="20,0,0,0"
 Text="Change Theme"
 TextColor="White"
 HorizontalOptions="Start"
 VerticalOptions="Center">
 <Label.GestureRecognizers>
 <TapGestureRecognizer Tapped="OnChangeThemeLabelTapped" />
 </Label.GestureRecognizers>
 </Label>
 <controls:HyperlinkLabel Grid.Row="2"
 Margin="0,0,20,0"
 Text="Help"
 TextColor="White"
 Url="https://docs.microsoft.com/xamarin/xamarin-forms/"
 HorizontalOptions="End"
 VerticalOptions="Center" />
 </Grid>
</ControlTemplate>

<controls:HeaderFooterPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:ControlTemplateDemos.Controls"
 ControlTemplate="{StaticResource TealTemplate}"
 HeaderText="MyApp"
 ...>
 <StackLayout Margin="10">
 <Entry Placeholder="Enter username" />
 <Entry Placeholder="Enter password"
 IsPassword="True" />
 <Button Text="Login" />
 </StackLayout>
</controls:HeaderFooterPage>

The following example shows TealTemplate assigned to the ControlTemplate property of a ContentPage

derived page:

At runtime, when TealTemplate is applied to the page, the page content is substituted into the ContentPresenter

defined in the control template:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedpage.controltemplate#xamarin_forms_templatedpage_controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter

 Get a named element from a template

IMPORTANTIMPORTANT

<ControlTemplate x:Key="TealTemplate">
 <Grid>
 ...
 <Label x:Name="changeThemeLabel"
 Grid.Row="2"
 Margin="20,0,0,0"
 Text="Change Theme"
 TextColor="White"
 HorizontalOptions="Start"
 VerticalOptions="Center">
 <Label.GestureRecognizers>
 <TapGestureRecognizer Tapped="OnChangeThemeLabelTapped" />
 </Label.GestureRecognizers>
 </Label>
 ...
 </Grid>
</ControlTemplate>

Named elements within a control template can be retrieved from the templated custom control or templated

page. This can be achieved with the GetTemplateChild method, which returns the named element in the

instantiated ControlTemplate visual tree, if found. Otherwise, it returns null .

After a control template has been instantiated, the template's OnApplyTemplate method is called. The

GetTemplateChild method should therefore be called from a OnApplyTemplate override in the templated control

or templated page.

The GetTemplateChild method should only be called after the OnApplyTemplate method has been called.

The following XAML shows a control template named TealTemplate that can be applied to ContentPage derived

pages:

In this example, the Label element is named, and can be retrieved in the code for the templated page. This is

achieved by calling the GetTemplateChild method from the OnApplyTemplate override for the templated page:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/templates/control-template-images/tealtemplate-contentpage-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

public partial class AccessTemplateElementPage : HeaderFooterPage
{
 Label themeLabel;

 public AccessTemplateElementPage()
 {
 InitializeComponent();
 }

 protected override void OnApplyTemplate()
 {
 base.OnApplyTemplate();
 themeLabel = (Label)GetTemplateChild("changeThemeLabel");
 themeLabel.Text = OriginalTemplate ? "Aqua Theme" : "Teal Theme";
 }
}

 Bind to a viewmodel

In this example, the Label object named changeThemeLabel is retrieved once the ControlTemplate has been

instantiated. changeThemeLabel can then be accessed and manipulated by the AccessTemplateElementPage class.

The following screenshots show that the text displayed by the Label has been changed:

A ControlTemplate can data bind to a viewmodel, even when the ControlTemplate binds to the templated

parent (the runtime object instance to which the template is applied).

The following XAML example shows a page that consumes a viewmodel named PeopleViewModel :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/templates/control-template-images/get-named-element-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ControlTemplateDemos"
 xmlns:controls="clr-namespace:ControlTemplateDemos.Controls"
 ...>
 <ContentPage.BindingContext>
 <local:PeopleViewModel />
 </ContentPage.BindingContext>

 <ContentPage.Resources>
 <DataTemplate x:Key="PersonTemplate">
 <controls:CardView BorderColor="DarkGray"
 CardTitle="{Binding Name}"
 CardDescription="{Binding Description}"
 ControlTemplate="{StaticResource CardViewControlTemplate}" />
 </DataTemplate>
 </ContentPage.Resources>

 <StackLayout Margin="10"
 BindableLayout.ItemsSource="{Binding People}"
 BindableLayout.ItemTemplate="{StaticResource PersonTemplate}" />
</ContentPage>

In this example, the BindingContext of the page is set to a PeopleViewModel instance. This viewmodel exposes a

People collection and an ICommand named DeletePersonCommand . The StackLayout on the page uses a bindable

layout to data bind to the People collection, and the ItemTemplate of the bindable layout is set to the

PersonTemplate resource. This DataTemplate specifies that each item in the People collection will be displayed

using a CardView object. The visual structure of the CardView object is defined using a ControlTemplate named

CardViewControlTemplate :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

<ControlTemplate x:Key="CardViewControlTemplate">
 <Frame BindingContext="{Binding Source={RelativeSource TemplatedParent}}"
 BackgroundColor="{Binding CardColor}"
 BorderColor="{Binding BorderColor}"
 CornerRadius="5"
 HasShadow="True"
 Padding="8"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="75" />
 <RowDefinition Height="4" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Label Text="{Binding CardTitle}"
 FontAttributes="Bold"
 FontSize="Large"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="Start" />
 <BoxView Grid.Row="1"
 BackgroundColor="{Binding BorderColor}"
 HeightRequest="2"
 HorizontalOptions="Fill" />
 <Label Grid.Row="2"
 Text="{Binding CardDescription}"
 VerticalTextAlignment="Start"
 VerticalOptions="Fill"
 HorizontalOptions="Fill" />
 <Button Text="Delete"
 Command="{Binding Source={RelativeSource AncestorType={x:Type local:PeopleViewModel}},
Path=DeletePersonCommand}"
 CommandParameter="{Binding CardTitle}"
 HorizontalOptions="End" />
 </Grid>
 </Frame>
</ControlTemplate>

In this example, the root element of the ControlTemplate is a Frame object. The Frame object uses the

RelativeSource markup extension to set its BindingContext to the templated parent. The binding expressions of

the Frame object and its children resolve against CardView properties, due to inheriting the BindingContext

from the root Frame element. The following screenshots show the page displaying the People collection, which

consists of three items:

While the objects in the ControlTemplate bind to properties on its templated parent, the Button within the

control template binds to both its templated parent, and to the DeletePersonCommand in the viewmodel. This is

because the Button.Command property redefines its binding source to be the binding context of the ancestor

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/templates/control-template-images/viewmodel-controltemplate-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

 Related links

whose binding context type is PeopleViewModel , which is the StackLayout . The Path part of the binding

expressions can then resolve the DeletePersonCommand property. However, the Button.CommandParameter property

doesn't alter its binding source, instead inheriting it from its parent in the ControlTemplate . Therefore, the

CommandParameter property binds to the CardTitle property of the CardView .

The overall effect of the Button bindings is that when the Button is tapped, the DeletePersonCommand in the

PeopleViewModel class is executed, with the value of the CardName property being passed to the

DeletePersonCommand . This results in the specified CardView being removed from the bindable layout:

For more information about relative bindings, see Xamarin.Forms Relative Bindings.

ControlTemplateDemos (sample)

Xamarin.Forms ContentView

Xamarin.Forms Relative Bindings

Xamarin.Forms Resource Dictionaries

Xamarin.Forms Data Binding

Xamarin.Forms Styles

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/templates/control-template-images/viewmodel-itemdeleted-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-controltemplatedemos

Xamarin.Forms Data Templates
 7/8/2021 • 2 minutes to read • Edit Online

 Introduction

 Creating a DataTemplate

 Creating a DataTemplateSelector

 Related Links

 Download the sample

A DataTemplate is used to specify the appearance of data on supported controls, and typically binds to the data

to be displayed.

Xamarin.Forms data templates provide the ability to define the presentation of data on supported controls. This

article provides an introduction to data templates, examining why they are necessary.

Data templates can be created inline, in a ResourceDictionary , or from a custom type or appropriate

Xamarin.Forms cell type. An inline template should be used if there's no need to reuse the data template

elsewhere. Alternatively, a data template can be reused by defining it as a custom type, or as a control-level,

page-level, or application-level resource.

A DataTemplateSelector can be used to choose a DataTemplate at runtime based on the value of a data-bound

property. This enables multiple DataTemplate instances to be applied to the same type of object, to customize

the appearance of particular objects. This article demonstrates how to create and consume a

DataTemplateSelector .

Data Templates (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/templates/data-templates/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplates
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplates

Introduction to Xamarin.Forms Data Templates
 7/8/2021 • 3 minutes to read • Edit Online

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
 public string Location { get; set; }
}

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataTemplates"
 ...>
 <StackLayout Margin="20">
 ...
 <ListView Margin="0,20,0,0">
 <ListView.ItemsSource>
 <x:Array Type="{x:Type local:Person}">
 <local:Person Name="Steve" Age="21" Location="USA" />
 <local:Person Name="John" Age="37" Location="USA" />
 <local:Person Name="Tom" Age="42" Location="UK" />
 <local:Person Name="Lucas" Age="29" Location="Germany" />
 <local:Person Name="Tariq" Age="39" Location="UK" />
 <local:Person Name="Jane" Age="30" Location="USA" />
 </x:Array>
 </ListView.ItemsSource>
 </ListView>
 </StackLayout>
</ContentPage>

NOTENOTE

 Download the sample

Xamarin.Forms data templates provide the ability to define the presentation of data on supported controls. This

article provides an introduction to data templates, examining why they are necessary.

Consider a ListView that displays a collection of Person objects. The following code example shows the

definition of the Person class:

The Person class defines Name , Age , and Location properties, which can be set when a Person object is

created. The ListView is used to display the collection of Person objects, as shown in the following XAML code

example:

Items are added to the ListView in XAML by initializing the ItemsSource property from an array of Person

instances.

Note that the x:Array element requires a Type attribute indicating the type of the items in the array.

The equivalent C# page is shown in the following code example, which initializes the ItemsSource property to a

List of Person instances:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/templates/data-templates/introduction.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplates
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemssource#xamarin_forms_itemsview_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemssource#xamarin_forms_itemsview_1_itemssource

public WithoutDataTemplatePageCS()
{
 ...
 var people = new List<Person>
 {
 new Person { Name = "Steve", Age = 21, Location = "USA" },
 new Person { Name = "John", Age = 37, Location = "USA" },
 new Person { Name = "Tom", Age = 42, Location = "UK" },
 new Person { Name = "Lucas", Age = 29, Location = "Germany" },
 new Person { Name = "Tariq", Age = 39, Location = "UK" },
 new Person { Name = "Jane", Age = 30, Location = "USA" }
 };

 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children = {
 ...
 new ListView { ItemsSource = people, Margin = new Thickness(0, 20, 0, 0) }
 }
 };
}

public class Person
{
 ...
 public override string ToString ()
 {
 return Name;
 }
}

The ListView calls ToString when displaying the objects in the collection. Because there is no Person.ToString

override, ToString returns the type name of each object, as shown in the following screenshots:

The Person object can override the ToString method to display meaningful data, as shown in the following

code example:

This results in the ListView displaying the Person.Name property value for each object in the collection, as

shown in the following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Creating a DataTemplate

 Related Links

The Person.ToString override could return a formatted string consisting of the Name , Age , and Location

properties. However, this approach offers only a limited control over the appearance of each item of data. For

more flexibility, a DataTemplate can be created that defines the appearance of the data.

A DataTemplate is used to specify the appearance of data, and typically uses data binding to display data. Its

common usage scenario is when displaying data from a collection of objects in a ListView . For example, when

a ListView is bound to a collection of Person objects, the ListView.ItemTemplate property will be set to a

DataTemplate that defines the appearance of each Person object in the ListView . The DataTemplate will

contain elements that bind to property values of each Person object. For more information about data binding,

see Data Binding Basics.

A DataTemplate that's placed as a direct child of the properties listed above is known as an inline template.

Alternatively, a DataTemplate can be defined as a control-level, page-level, or application-level resource.

Choosing where to define a DataTemplate impacts where it can be used:

A DataTemplate defined at the control level can only be applied to the control.

A DataTemplate defined at the page level can be applied to multiple valid controls on the page.

A DataTemplate defined at the application level can be applied to valid controls throughout the application.

Data templates lower in the view hierarchy take precedence over those defined higher up when they share

x:Key attributes. For example, an application-level data template will be overridden by a page-level data

template, and a page-level data template will be overridden by a control-level data template, or an inline data

template.

Cell Appearance

Data Templates (sample)

DataTemplate

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplates
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

Creating a Xamarin.Forms DataTemplate
 7/8/2021 • 5 minutes to read • Edit Online

 Creating an Inline DataTemplate

 Download the sample

Data templates can be created inline, in a ResourceDictionary, or from a custom type or appropriate

Xamarin.Forms cell type. This article explores each technique.

A common usage scenario for a DataTemplate is displaying data from a collection of objects in a ListView . The

appearance of the data for each cell in the ListView can be managed by setting the ListView.ItemTemplate

property to a DataTemplate . There are a number of techniques that can be used to accomplish this:

Creating an Inline DataTemplate.

Creating a DataTemplate with a Type.

Creating a DataTemplate as a Resource.

Regardless of the technique being used, the result is that the appearance of each cell in the ListView is defined

by a DataTemplate , as shown in the following screenshots:

The ListView.ItemTemplate property can be set to an inline DataTemplate . An inline template, which is one that's

placed as a direct child of an appropriate control property, should be used if there's no need to reuse the data

template elsewhere. The elements specified in the DataTemplate define the appearance of each cell, as shown in

the following XAML code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/templates/data-templates/creating.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplates
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

<ListView Margin="0,20,0,0">
 <ListView.ItemsSource>
 <x:Array Type="{x:Type local:Person}">
 <local:Person Name="Steve" Age="21" Location="USA" />
 <local:Person Name="John" Age="37" Location="USA" />
 <local:Person Name="Tom" Age="42" Location="UK" />
 <local:Person Name="Lucas" Age="29" Location="Germany" />
 <local:Person Name="Tariq" Age="39" Location="UK" />
 <local:Person Name="Jane" Age="30" Location="USA" />
 </x:Array>
 </ListView.ItemsSource>
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid>
 ...
 <Label Text="{Binding Name}" FontAttributes="Bold" />
 <Label Grid.Column="1" Text="{Binding Age}" />
 <Label Grid.Column="2" Text="{Binding Location}" HorizontalTextAlignment="End" />
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

The child of an inline DataTemplate must be of, or derive from, type Cell . This example uses a ViewCell , which

derives from Cell . Layout inside the ViewCell is managed here by a Grid . The Grid contains three Label

instances that bind their Text properties to the appropriate properties of each Person object in the collection.

The equivalent C# code is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text

public class WithDataTemplatePageCS : ContentPage
{
 public WithDataTemplatePageCS()
 {
 ...
 var people = new List<Person>
 {
 new Person { Name = "Steve", Age = 21, Location = "USA" },
 ...
 };

 var personDataTemplate = new DataTemplate(() =>
 {
 var grid = new Grid();
 ...
 var nameLabel = new Label { FontAttributes = FontAttributes.Bold };
 var ageLabel = new Label();
 var locationLabel = new Label { HorizontalTextAlignment = TextAlignment.End };

 nameLabel.SetBinding(Label.TextProperty, "Name");
 ageLabel.SetBinding(Label.TextProperty, "Age");
 locationLabel.SetBinding(Label.TextProperty, "Location");

 grid.Children.Add(nameLabel);
 grid.Children.Add(ageLabel, 1, 0);
 grid.Children.Add(locationLabel, 2, 0);

 return new ViewCell { View = grid };
 });

 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children = {
 ...
 new ListView { ItemsSource = people, ItemTemplate = personDataTemplate, Margin = new
Thickness(0, 20, 0, 0) }
 }
 };
 }
}

 Creating a DataTemplate with a Type

In C#, the inline DataTemplate is created using a constructor overload that specifies a Func argument.

The ListView.ItemTemplate property can also be set to a DataTemplate that's created from a cell type. The

advantage of this approach is that the appearance defined by the cell type can be reused by multiple data

templates throughout the application. The following XAML code shows an example of this approach:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DataTemplates"
 ...>
 <StackLayout Margin="20">
 ...
 <ListView Margin="0,20,0,0">
 <ListView.ItemsSource>
 <x:Array Type="{x:Type local:Person}">
 <local:Person Name="Steve" Age="21" Location="USA" />
 ...
 </x:Array>
 </ListView.ItemsSource>
 <ListView.ItemTemplate>
 <DataTemplate>
 <local:PersonCell />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
</ContentPage>

<ViewCell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DataTemplates.PersonCell">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.3*" />
 </Grid.ColumnDefinitions>
 <Label Text="{Binding Name}" FontAttributes="Bold" />
 <Label Grid.Column="1" Text="{Binding Age}" />
 <Label Grid.Column="2" Text="{Binding Location}" HorizontalTextAlignment="End" />
 </Grid>
</ViewCell>

Here, the ListView.ItemTemplate property is set to a DataTemplate that's created from a custom type that

defines the cell appearance. The custom type must derive from type ViewCell , as shown in the following code

example:

Within the ViewCell , layout is managed here by a Grid . The Grid contains three Label instances that bind

their Text properties to the appropriate properties of each Person object in the collection.

The equivalent C# code is shown in the following example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text

public class WithDataTemplatePageFromTypeCS : ContentPage
{
 public WithDataTemplatePageFromTypeCS()
 {
 ...
 var people = new List<Person>
 {
 new Person { Name = "Steve", Age = 21, Location = "USA" },
 ...
 };

 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children = {
 ...
 new ListView { ItemTemplate = new DataTemplate(typeof(PersonCellCS)), ItemsSource = people,
Margin = new Thickness(0, 20, 0, 0) }
 }
 };
 }
}

public class PersonCellCS : ViewCell
{
 public PersonCellCS()
 {
 var grid = new Grid();
 ...
 var nameLabel = new Label { FontAttributes = FontAttributes.Bold };
 var ageLabel = new Label();
 var locationLabel = new Label { HorizontalTextAlignment = TextAlignment.End };

 nameLabel.SetBinding(Label.TextProperty, "Name");
 ageLabel.SetBinding(Label.TextProperty, "Age");
 locationLabel.SetBinding(Label.TextProperty, "Location");

 grid.Children.Add(nameLabel);
 grid.Children.Add(ageLabel, 1, 0);
 grid.Children.Add(locationLabel, 2, 0);

 View = grid;
 }
}

NOTENOTE

 Creating a DataTemplate as a Resource

In C#, the DataTemplate is created using a constructor overload that specifies the cell type as an argument. The

cell type must derive from type ViewCell , as shown in the following code example:

Note that Xamarin.Forms also includes cell types that can be used to display simple data in ListView cells. For more

information, see Cell Appearance.

Data templates can also be created as reusable objects in a ResourceDictionary . This is achieved by giving each

declaration a unique x:Key attribute, which provides it with a descriptive key in the ResourceDictionary , as

shown in the following XAML code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 ...>
 <ContentPage.Resources>
 <ResourceDictionary>
 <DataTemplate x:Key="personTemplate">
 <ViewCell>
 <Grid>
 ...
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ResourceDictionary>
 </ContentPage.Resources>
 <StackLayout Margin="20">
 ...
 <ListView ItemTemplate="{StaticResource personTemplate}" Margin="0,20,0,0">
 <ListView.ItemsSource>
 <x:Array Type="{x:Type local:Person}">
 <local:Person Name="Steve" Age="21" Location="USA" />
 ...
 </x:Array>
 </ListView.ItemsSource>
 </ListView>
 </StackLayout>
</ContentPage>

public class WithDataTemplatePageCS : ContentPage
{
 public WithDataTemplatePageCS ()
 {
 ...
 var personDataTemplate = new DataTemplate (() => {
 var grid = new Grid ();
 ...
 return new ViewCell { View = grid };
 });

 Resources = new ResourceDictionary ();
 Resources.Add ("personTemplate", personDataTemplate);

 Content = new StackLayout {
 Margin = new Thickness(20),
 Children = {
 ...
 new ListView { ItemTemplate = (DataTemplate)Resources ["personTemplate"], ItemsSource = people };
 }
 };
 }
}

 Summary

The DataTemplate is assigned to the ListView.ItemTemplate property by using the StaticResource markup

extension. Note that while the DataTemplate is defined in the page's ResourceDictionary , it could also be defined

at the control level or application level.

The following code example shows the equivalent page in C#:

The DataTemplate is added to the ResourceDictionary using the Add method, which specifies a Key string that

is used to reference the DataTemplate when retrieving it.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.add#xamarin_forms_resourcedictionary_add_system_string_system_object_

 Related Links

This article has explained how to create data templates, inline, from a custom type, or in a ResourceDictionary .

An inline template should be used if there's no need to reuse the data template elsewhere. Alternatively, a data

template can be reused by defining it as a custom type, or as a control-level, page-level, or application-level

resource.

Cell Appearance

Data Templates (sample)

DataTemplate

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplates
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

Creating a Xamarin.Forms DataTemplateSelector
 7/8/2021 • 3 minutes to read • Edit Online

 Creating a DataTemplateSelector

public class PersonDataTemplateSelector : DataTemplateSelector
{
 public DataTemplate ValidTemplate { get; set; }
 public DataTemplate InvalidTemplate { get; set; }

 protected override DataTemplate OnSelectTemplate (object item, BindableObject container)
 {
 return ((Person)item).DateOfBirth.Year >= 1980 ? ValidTemplate : InvalidTemplate;
 }
}

 LimitationsLimitations

 Consuming a DataTemplateSelector in XAML

 Download the sample

A DataTemplateSelector can be used to choose a DataTemplate at runtime based on the value of a data-bound

property. This enables multiple DataTemplates to be applied to the same type of object, to customize the

appearance of particular objects. This article demonstrates how to create and consume a DataTemplateSelector.

A data template selector enables scenarios such as a ListView binding to a collection of objects, where the

appearance of each object in the ListView can be chosen at runtime by the data template selector returning a

particular DataTemplate .

A data template selector is implemented by creating a class that inherits from DataTemplateSelector . The

OnSelectTemplate method is then overridden to return a particular DataTemplate , as shown in the following

code example:

The OnSelectTemplate method returns the appropriate template based on the value of the DateOfBirth

property. The template to return is the value of the ValidTemplate property or the InvalidTemplate property,

which are set when consuming the PersonDataTemplateSelector .

An instance of the data template selector class can then be assigned to Xamarin.Forms control properties such

as ListView.ItemTemplate . For a list of valid properties, see Creating a DataTemplate.

DataTemplateSelector instances have the following limitations:

The DataTemplateSelector subclass must always return the same template for the same data if queried

multiple times.

The DataTemplateSelector subclass must not return another DataTemplateSelector subclass.

The DataTemplateSelector subclass must not return new instances of a DataTemplate on each call. Instead,

the same instance must be returned. Failure to do so will create a memory leak and will disable virtualization.

On Android, there can be no more than 20 different data templates per ListView .

In XAML, the PersonDataTemplateSelector can be instantiated by declaring it as a resource, as shown in the

following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/templates/data-templates/selector.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:local="clr-
namespace:Selector;assembly=Selector" x:Class="Selector.HomePage">
 <ContentPage.Resources>
 <ResourceDictionary>
 <DataTemplate x:Key="validPersonTemplate">
 <ViewCell>
 ...
 </ViewCell>
 </DataTemplate>
 <DataTemplate x:Key="invalidPersonTemplate">
 <ViewCell>
 ...
 </ViewCell>
 </DataTemplate>
 <local:PersonDataTemplateSelector x:Key="personDataTemplateSelector"
 ValidTemplate="{StaticResource validPersonTemplate}"
 InvalidTemplate="{StaticResource invalidPersonTemplate}" />
 </ResourceDictionary>
 </ContentPage.Resources>
 ...
</ContentPage>

<ListView x:Name="listView" ItemTemplate="{StaticResource personDataTemplateSelector}" />

This page level ResourceDictionary defines two DataTemplate instances and a PersonDataTemplateSelector

instance. The PersonDataTemplateSelector instance sets its ValidTemplate and InvalidTemplate properties to

the appropriate DataTemplate instances by using the StaticResource markup extension. Note that while the

resources are defined in the page's ResourceDictionary , they could also be defined at the control level or

application level.

The PersonDataTemplateSelector instance is consumed by assigning it to the ListView.ItemTemplate property, as

shown in the following code example:

At runtime, the ListView calls the PersonDataTemplateSelector.OnSelectTemplate method for each of the items in

the underlying collection, with the call passing the data object as the item parameter. The DataTemplate that is

returned by the method is then applied to that object.

The following screenshots show the result of the ListView applying the PersonDataTemplateSelector to each

object in the underlying collection:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Consuming a DataTemplateSelector in C#

public class HomePageCS : ContentPage
{
 DataTemplate validTemplate;
 DataTemplate invalidTemplate;

 public HomePageCS ()
 {
 ...
 SetupDataTemplates ();
 var listView = new ListView {
 ItemsSource = people,
 ItemTemplate = new PersonDataTemplateSelector {
 ValidTemplate = validTemplate,
 InvalidTemplate = invalidTemplate }
 };

 Content = new StackLayout {
 Margin = new Thickness (20),
 Children = {
 ...
 listView
 }
 };
 }
 ...
}

 Summary

 Related Links

Any Person object that has a DateOfBirth property value greater than or equal to 1980 is displayed in green,

with the remaining objects being displayed in red.

In C#, the PersonDataTemplateSelector can be instantiated and assigned to the ListView.ItemTemplate property,

as shown in the following code example:

The PersonDataTemplateSelector instance sets its ValidTemplate and InvalidTemplate properties to the

appropriate DataTemplate instances created by the SetupDataTemplates method. At runtime, the ListView calls

the PersonDataTemplateSelector.OnSelectTemplate method for each of the items in the underlying collection, with

the call passing the data object as the item parameter. The DataTemplate that is returned by the method is then

applied to that object.

This article has demonstrated how to create and consume a DataTemplateSelector . A DataTemplateSelector can

be used to choose a DataTemplate at runtime based on the value of a data-bound property. This enables

multiple DataTemplate instances to be applied to the same type of object, to customize the appearance of

particular objects.

Data Template Selector (sample)

DataTemplateSelector

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/templates-datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector

Xamarin.Forms Triggers
 7/8/2021 • 13 minutes to read • Edit Online

 Property triggers

<Entry Placeholder="enter name">
 <Entry.Triggers>
 <Trigger TargetType="Entry"
 Property="IsFocused" Value="True">
 <Setter Property="BackgroundColor" Value="Yellow" />
 <!-- multiple Setters elements are allowed -->
 </Trigger>
 </Entry.Triggers>
</Entry>

 Applying a trigger using a styleApplying a trigger using a style

 Download the sample

Triggers allow you to express actions declaratively in XAML that change the appearance of controls based on

events or property changes. In addition, state triggers, which are a specialized group of triggers, define when a

VisualState should be applied.

You can assign a trigger directly to a control, or add it to a page-level or app-level resource dictionary to be

applied to multiple controls.

A simple trigger can be expressed purely in XAML, adding a Trigger element to a control's triggers collection.

This example shows a trigger that changes an Entry background color when it receives focus:

The important parts of the trigger's declaration are:

TargetTypeTargetType - the control type that the trigger applies to.

Proper tyProper ty - the property on the control that is monitored.

ValueValue - the value, when it occurs for the monitored property, that causes the trigger to activate.

SetterSetter - a collection of Setter elements can be added and when the trigger condition is met. You must

specify the Property and Value to set.

EnterActions and ExitActionsEnterActions and ExitActions (not shown) - are written in code and can be used in addition to (or

instead of) Setter elements. They are described below.

Triggers can also be added to a Style declaration on a control, in a page, or an application ResourceDictionary .

This example declares an implicit style (i.e. no Key is set) which means it will apply to all Entry controls on the

page.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/app-fundamentals/triggers.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithtriggers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

<ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Entry">
 <Style.Triggers>
 <Trigger TargetType="Entry"
 Property="IsFocused" Value="True">
 <Setter Property="BackgroundColor" Value="Yellow" />
 <!-- multiple Setters elements are allowed -->
 </Trigger>
 </Style.Triggers>
 </Style>
 </ResourceDictionary>
</ContentPage.Resources>

 Data triggers

<!-- the x:Name is referenced below in DataTrigger-->
<!-- tip: make sure to set the Text="" (or some other default) -->
<Entry x:Name="entry"
 Text=""
 Placeholder="required field" />

<Button x:Name="button" Text="Save"
 FontSize="Large"
 HorizontalOptions="Center">
 <Button.Triggers>
 <DataTrigger TargetType="Button"
 Binding="{Binding Source={x:Reference entry},
 Path=Text.Length}"
 Value="0">
 <Setter Property="IsEnabled" Value="False" />
 <!-- multiple Setters elements are allowed -->
 </DataTrigger>
 </Button.Triggers>
</Button>

TIPTIP

 Event triggers

<EventTrigger Event="Clicked">
 <local:NumericValidationTriggerAction />
</EventTrigger>

Data triggers use data binding to monitor another control to cause the Setter s to get called. Instead of the

Property attribute in a property trigger, set the Binding attribute to monitor for the specified value.

The example below uses the data binding syntax {Binding Source={x:Reference entry}, Path=Text.Length} which

is how we refer to another control's properties. When the length of the entry is zero, the trigger is activated. In

this sample the trigger disables the button when the input is empty.

When evaluating Path=Text.Length always provide a default value for the target property (eg. Text="") because

otherwise it will be null and the trigger won't work like you expect.

In addition to specifying Setter s you can also provide EnterActions and ExitActions .

The EventTrigger element requires only an Event property, such as "Clicked" in the example below.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:WorkingWithTriggers;assembly=WorkingWithTriggers"

public class NumericValidationTriggerAction : TriggerAction<Entry>
{
 protected override void Invoke (Entry entry)
 {
 double result;
 bool isValid = Double.TryParse (entry.Text, out result);
 entry.TextColor = isValid ? Color.Default : Color.Red;
 }
}

<EventTrigger Event="TextChanged">
 <local:NumericValidationTriggerAction />
</EventTrigger>

 Multi triggers

Notice that there are no Setter elements but rather a reference to a class defined by

local:NumericValidationTriggerAction which requires the xmlns:local to be declared in the page's XAML:

The class itself implements TriggerAction which means it should provide an override for the Invoke method

that is called whenever the trigger event occurs.

A trigger action implementation should:

Implement the generic TriggerAction<T> class, with the generic parameter corresponding with the type

of control the trigger will be applied to. You can use superclasses such as VisualElement to write trigger

actions that work with a variety of controls, or specify a control type like Entry .

Override the Invoke method - this is called whenever the trigger criteria are met.

Optionally expose properties that can be set in the XAML when the trigger is declared. For an example of

this, see the VisualElementPopTriggerAction class in the accompanying sample application.

The event trigger can then be consumed from XAML:

Be careful when sharing triggers in a ResourceDictionary , one instance will be shared among controls so any

state that is configured once will apply to them all.

Note that event triggers do not support EnterActions and ExitActions described below.

A MultiTrigger looks similar to a Trigger or DataTrigger except there can be more than one condition. All the

conditions must be true before the Setter s are triggered.

Here's an example of a trigger for a button that binds to two different inputs (email and phone):

<MultiTrigger TargetType="Button">
 <MultiTrigger.Conditions>
 <BindingCondition Binding="{Binding Source={x:Reference email},
 Path=Text.Length}"
 Value="0" />
 <BindingCondition Binding="{Binding Source={x:Reference phone},
 Path=Text.Length}"
 Value="0" />
 </MultiTrigger.Conditions>
 <Setter Property="IsEnabled" Value="False" />
 <!-- multiple Setter elements are allowed -->
</MultiTrigger>

<PropertyCondition Property="Text" Value="OK" />

 Building a "require all" multi triggerBuilding a "require all" multi trigger

public class MultiTriggerConverter : IValueConverter
{
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if ((int)value > 0) // length > 0 ?
 return true; // some data has been entered
 else
 return false; // input is empty
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 throw new NotSupportedException ();
 }
}

<ResourceDictionary>
 <local:MultiTriggerConverter x:Key="dataHasBeenEntered" />
</ResourceDictionary>

The Conditions collection could also contain PropertyCondition elements like this:

The multi trigger only updates its control when all conditions are true. Testing for "all field lengths are zero"

(such as a login page where all inputs must be complete) is tricky because you want a condition "where

Text.Length > 0" but this can't be expressed in XAML.

This can be done with an IValueConverter . The converter code below transforms the Text.Length binding into

a bool that indicates whether a field is empty or not:

To use this converter in a multi trigger, first add it to the page's resource dictionary (along with a custom

xmlns:local namespace definition):

The XAML is shown below. Note the following differences from the first multi trigger example:

The button has IsEnabled="false" set by default.

The multi trigger conditions use the converter to turn the Text.Length value into a boolean .

When all the conditions are true , the setter makes the button's IsEnabled property true .

<Entry x:Name="user" Text="" Placeholder="user name" />

<Entry x:Name="pwd" Text="" Placeholder="password" />

<Button x:Name="loginButton" Text="Login"
 FontSize="Large"
 HorizontalOptions="Center"
 IsEnabled="false">
 <Button.Triggers>
 <MultiTrigger TargetType="Button">
 <MultiTrigger.Conditions>
 <BindingCondition Binding="{Binding Source={x:Reference user},
 Path=Text.Length,
 Converter={StaticResource dataHasBeenEntered}}"
 Value="true" />
 <BindingCondition Binding="{Binding Source={x:Reference pwd},
 Path=Text.Length,
 Converter={StaticResource dataHasBeenEntered}}"
 Value="true" />
 </MultiTrigger.Conditions>
 <Setter Property="IsEnabled" Value="True" />
 </MultiTrigger>
 </Button.Triggers>
</Button>

 EnterActions and ExitActions

These screenshots show the difference between the two multi trigger examples above. In the top part of the

screens, text input in just one Entry is enough to enable the SaveSave button. In the bottom part of the screens, the

LoginLogin button remains inactive until both fields contain data.

Another way to implement changes when a trigger occurs is by adding EnterActions and ExitActions

collections and specifying TriggerAction<T> implementations.

The EnterActions collection is used to define an IList of TriggerAction objects that will be invoked when the

trigger condition is met. The ExitActions collection is used to define an IList of TriggerAction objects that

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.triggerbase.enteractions#xamarin_forms_triggerbase_enteractions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.triggeraction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.triggerbase.exitactions#xamarin_forms_triggerbase_exitactions

NOTENOTE

<Entry Placeholder="enter job title">
 <Entry.Triggers>
 <Trigger TargetType="Entry"
 Property="Entry.IsFocused" Value="True">
 <Trigger.EnterActions>
 <local:FadeTriggerAction StartsFrom="0" />
 </Trigger.EnterActions>

 <Trigger.ExitActions>
 <local:FadeTriggerAction StartsFrom="1" />
 </Trigger.ExitActions>
 <!-- You can use both Enter/Exit and Setter together if required -->
 </Trigger>
 </Entry.Triggers>
</Entry>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:WorkingWithTriggers;assembly=WorkingWithTriggers"

public class FadeTriggerAction : TriggerAction<VisualElement>
{
 public int StartsFrom { set; get; }

 protected override void Invoke(VisualElement sender)
 {
 sender.Animate("FadeTriggerAction", new Animation((d) =>
 {
 var val = StartsFrom == 1 ? d : 1 - d;
 // so i was aiming for a different color, but then i liked the pink :)
 sender.BackgroundColor = Color.FromRgb(1, val, 1);
 }),
 length: 1000, // milliseconds
 easing: Easing.Linear);
 }
}

 State triggers

will be invoked after the trigger condition is no longer met.

The TriggerAction objects defined in the EnterActions and ExitActions collections are ignored by the

EventTrigger class.

You can provide both EnterActions and ExitActions as well as Setter s in a trigger, but be aware that the

Setter s are called immediately (they do not wait for the EnterAction or ExitAction to complete). Alternatively

you can perform everything in the code and not use Setter s at all.

As always, when a class is referenced in XAML you should declare a namespace such as xmlns:local as shown

here:

The FadeTriggerAction code is shown below:

State triggers are a specialized group of triggers that define the conditions under which a VisualState should

be applied.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.triggeraction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.eventtrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

NOTENOTE

 State triggerState trigger

IMPORTANTIMPORTANT

State triggers are added to the StateTriggers collection of a VisualState . This collection can contain a single

state trigger, or multiple state triggers. A VisualState will be applied when any state triggers in the collection

are active.

When using state triggers to control visual states, Xamarin.Forms uses the following precedence rules to

determine which trigger (and corresponding VisualState) will be active:

1. Any trigger that derives from StateTriggerBase .

2. An AdaptiveTrigger activated due to the MinWindowWidth condition being met.

3. An AdaptiveTrigger activated due to the MinWindowHeight condition being met.

If multiple triggers are simultaneously active (for example, two custom triggers) then the first trigger declared in

the markup takes precedence.

State triggers can be set in a Style , or directly on elements.

For more information about visual states, see Xamarin.Forms Visual State Manager.

The StateTrigger class, which derives from the StateTriggerBase class, has an IsActive bindable property. A

StateTrigger triggers a VisualState change when the IsActive property changes value.

The StateTriggerBase class, which is the base class for all state triggers, has an IsActive property and an

IsActiveChanged event. This event fires whenever a VisualState change occurs. In addition, the

StateTriggerBase class has overridable OnAttached and OnDetached methods.

The StateTrigger.IsActive bindable property hides the inherited StateTriggerBase.IsActive property.

The following XAML example shows a Style that includes StateTrigger objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate.statetriggers#xamarin_forms_visualstate_statetriggers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowwidth#xamarin_forms_adaptivetrigger_minwindowwidth
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowheight#xamarin_forms_adaptivetrigger_minwindowheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetrigger.isactive#xamarin_forms_statetrigger_isactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactive#xamarin_forms_statetriggerbase_isactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetrigger.isactive#xamarin_forms_statetrigger_isactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactive#xamarin_forms_statetriggerbase_isactive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetrigger

<Style TargetType="Grid">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup>
 <VisualState x:Name="Checked">
 <VisualState.StateTriggers>
 <StateTrigger IsActive="{Binding IsToggled}"
 IsActiveChanged="OnCheckedStateIsActiveChanged" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="Black" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Unchecked">
 <VisualState.StateTriggers>
 <StateTrigger IsActive="{Binding IsToggled, Converter={StaticResource
inverseBooleanConverter}}"
 IsActiveChanged="OnUncheckedStateIsActiveChanged" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="White" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>

void OnCheckedStateIsActiveChanged(object sender, EventArgs e)
{
 StateTriggerBase stateTrigger = sender as StateTriggerBase;
 Console.WriteLine($"Checked state active: {stateTrigger.IsActive}");
}

void OnUncheckedStateIsActiveChanged(object sender, EventArgs e)
{
 StateTriggerBase stateTrigger = sender as StateTriggerBase;
 Console.WriteLine($"Unchecked state active: {stateTrigger.IsActive}");
}

Checked state active: False
Unchecked state active: True

In this example, the implicit Style targets Grid objects. When the IsToggled property of the bound object is

true , the background color of the Grid is set to black. When the IsToggled property of the bound object

becomes false , a VisualState change is triggered, and the background color of the Grid becomes white.

In addition, every time a VisualState change occurs, the IsActiveChanged event for the VisualState is fired.

Each VisualState registers an event handler for this event:

In this example, when a handler for the IsActiveChanged event is fired, the handler outputs whether the

VisualState is active or not. For example, the following messages are output to the console window when

changing from the Checked visual state to the Unchecked visual state:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

NOTENOTE

 Adaptive triggerAdaptive trigger

NOTENOTE

<Style TargetType="StackLayout">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup>
 <VisualState x:Name="Vertical">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="0" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="Orientation"
 Value="Vertical" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Horizontal">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="800" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="Orientation"
 Value="Horizontal" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>

Custom state triggers can be created by deriving from the StateTriggerBase class, and overriding the OnAttached

and OnDetached methods to perform any required registrations and cleanup.

An AdaptiveTrigger triggers a VisualState change when the window is a specified height or width. This trigger

has two bindable properties:

MinWindowHeight , of type double , which indicates the minimum window height at which the VisualState

should be applied.

MinWindowWidth , of type double , which indicates the minimum window width at which the VisualState

should be applied.

The AdaptiveTrigger derives from the StateTriggerBase class and can therefore attach an event handler to the

IsActiveChanged event.

The following XAML example shows a Style that includes AdaptiveTrigger objects:

In this example, the implicit Style targets StackLayout objects. When the window width is between 0 and 800

device-independent units, StackLayout objects to which the Style is applied will have a vertical orientation.

When the window width is >= 800 device-independent units, the VisualState change is triggered, and the

StackLayout orientation changes to horizontal:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowheight#xamarin_forms_adaptivetrigger_minwindowheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowheight#xamarin_forms_adaptivetrigger_minwindowheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

<AdaptiveTrigger MinWindowWidth="800"
 MinWindowHeight="1200"/>

 Compare state triggerCompare state trigger

NOTENOTE

The MinWindowHeight and MinWindowWidth properties can be used independently or in conjunction with each

other. The following XAML shows an example of setting both properties:

In this example, the AdaptiveTrigger indicates that the corresponding VisualState will be applied when the

current window width is >= 800 device-independent units and the current window height is >= 1200 device-

independent units.

The CompareStateTrigger triggers a VisualState change when a property is equal to a specific value. This

trigger has two bindable properties:

Property , of type object , which indicates the property being compared by the trigger.

Value , of type object , which indicates the value at which the VisualState should be applied.

The CompareStateTrigger derives from the StateTriggerBase class and can therefore attach an event handler to the

IsActiveChanged event.

The following XAML example shows a Style that includes CompareStateTrigger objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowheight#xamarin_forms_adaptivetrigger_minwindowheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowheight#xamarin_forms_adaptivetrigger_minwindowheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.comparestatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.comparestatetrigger.property#xamarin_forms_comparestatetrigger_property
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.comparestatetrigger.value#xamarin_forms_comparestatetrigger_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.comparestatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.comparestatetrigger

<Style TargetType="Grid">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup>
 <VisualState x:Name="Checked">
 <VisualState.StateTriggers>
 <CompareStateTrigger Property="{Binding Source={x:Reference checkBox},
Path=IsChecked}"
 Value="True" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="Black" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Unchecked">
 <VisualState.StateTriggers>
 <CompareStateTrigger Property="{Binding Source={x:Reference checkBox},
Path=IsChecked}"
 Value="False" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="White" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>
...
<Grid>
 <Frame BackgroundColor="White"
 CornerRadius="12"
 Margin="24"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <StackLayout Orientation="Horizontal">
 <CheckBox x:Name="checkBox"
 VerticalOptions="Center" />
 <Label Text="Check the CheckBox to modify the Grid background color."
 VerticalOptions="Center" />
 </StackLayout>
 </Frame>
</Grid>

In this example, the implicit Style targets Grid objects. When the IsChecked property of the CheckBox is

false , the background color of the Grid is set to white. When the CheckBox.IsChecked property becomes

true , a VisualState change is triggered, and the background color of the Grid becomes black:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox.ischecked#xamarin_forms_checkbox_ischecked
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

 Device state triggerDevice state trigger

NOTENOTE

The DeviceStateTrigger triggers a VisualState change based on the device platform the app is running on.

This trigger has a single bindable property:

Device , of type string , which indicates the device platform on which the VisualState should be applied.

The DeviceStateTrigger derives from the StateTriggerBase class and can therefore attach an event handler to the

IsActiveChanged event.

The following XAML example shows a Style that includes DeviceStateTrigger objects:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/triggers-images/comparestatetrigger-unchecked-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/triggers-images/comparestatetrigger-checked-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.devicestatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.devicestatetrigger.device#xamarin_forms_devicestatetrigger_device
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.devicestatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style

<Style x:Key="DeviceStateTriggerPageStyle"
 TargetType="ContentPage">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup>
 <VisualState x:Name="iOS">
 <VisualState.StateTriggers>
 <DeviceStateTrigger Device="iOS" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="Silver" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Android">
 <VisualState.StateTriggers>
 <DeviceStateTrigger Device="Android" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="#2196F3" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="UWP">
 <VisualState.StateTriggers>
 <DeviceStateTrigger Device="UWP" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="Aquamarine" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>

 Orientation state triggerOrientation state trigger

In this example, the explicit Style targets ContentPage objects. ContentPage objects that consume the style set

their background color to silver on iOS, to pale blue on Android, and to aquamarine on UWP. The following

screenshots show the resulting pages on iOS and Android:

The OrientationStateTrigger triggers a VisualState change when the orientation of the device changes. This

trigger has a single bindable property:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/triggers-images/devicestatetrigger-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.orientationstatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

NOTENOTE

<Style x:Key="OrientationStateTriggerPageStyle"
 TargetType="ContentPage">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup>
 <VisualState x:Name="Portrait">
 <VisualState.StateTriggers>
 <OrientationStateTrigger Orientation="Portrait" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="Silver" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Landscape">
 <VisualState.StateTriggers>
 <OrientationStateTrigger Orientation="Landscape" />
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="White" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>

 Related links

Orientation , of type DeviceOrientation , which indicates the orientation to which the VisualState should be

applied.

The OrientationStateTrigger derives from the StateTriggerBase class and can therefore attach an event handler to

the IsActiveChanged event.

The following XAML example shows a Style that includes OrientationStateTrigger objects:

In this example, the explicit Style targets ContentPage objects. ContentPage objects that consume the style set

their background color to silver when the orientation is portrait, and set their background color to white when

the orientation is landscape.

Triggers Sample

Xamarin.Forms Visual State Manager

Xamarin.Forms Trigger API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.orientationstatetrigger.orientation#xamarin_forms_orientationstatetrigger_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.internals.deviceorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.orientationstatetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase.isactivechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithtriggers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.triggeraction-1

Controls Reference
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Related Links

 Download the sample

The user interface of a Xamarin.Forms application is constructed of objects that map to the native controls of

each target platform. This allows platform-specific applications for iOS, Android, and the Universal Windows

Platform to use Xamarin.Forms code contained in a .NET Standard library.

The four main control groups used to create the user interface of a Xamarin.Forms application are as follows:

PagesPages

LayoutsLayouts

ViewsViews

CellsCells

A Xamarin.Forms page generally occupies the entire screen. The page usually contains a layout, which contains

views and possibly other layouts. Cells are specialized components used in connection with TableView and

ListView . A class diagram that shows the hierarchy of types that are typically used to build a user interface in

Xamarin.Forms can be found at Xamarin.Forms Controls Class Hierarchy.

In the four articles on PagesPages , LayoutsLayouts , ViewsViews , and CellsCells , each type of control is described with links to its API

documentation, an article describing its use (if one exists), and one or more sample programs (if they exist). Each

type of control is also accompanied by a screenshot showing a page from the FormsGaller yFormsGaller y sample running

on iOS and Android devices. Below each screenshot are links to the source code for the C# page, the equivalent

XAML page, and (when appropriate) the C# code-behind file for the XAML page.

Pages, Layouts, and Views derive from the VisualElement class. The VisualElement class provides a variety of

properties, methods, and events that are useful in deriving classes. For more information, see VisualElement properties,

methods, and events.

In addition to the controls supplied with Xamarin.Forms, third-party controls are available. For more

information, see Third Party Controls.

Xamarin.Forms FormsGallery sample

Xamarin.Forms Controls Class Hierarchy

API Documentation

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/controls/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery/
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/net-standard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms?view=xamarin-forms

Xamarin.Forms Pages
 7/8/2021 • 2 minutes to read • Edit Online

 Pages

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

ContentPage ContentPage is the simplest and

most common type of page. Set the
Content property to a single View

object, which is most often a Layout

such as StackLayout , Grid , or

ScrollView .

API Documentation

C# code for this page / XAML page

FlyoutPage A FlyoutPage manages two panes of

information. Set the Flyout property

to a page generally showing a list or
menu. Set the Detail property to a

page showing a selected item from the
flyout page. The IsPresented

property governs whether the flyout
or detail page is visible.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

 Download the sample

Xamarin.Forms Pages represent cross-platform mobile application screens.

All the page types that are described below derive from the Xamarin.Forms Page class. These visual elements

occupy all or most of the screen. A Page object represents a ViewController in iOS and a Page in the Universal

Windows Platform. On Android, each page takes up the screen like an Activity , but Xamarin.Forms pages are

not Activity objects.

Xamarin.Forms supports the following page types:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/controls/pages.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/pages-images/pages.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage.content#xamarin_forms_contentpage_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/pages-images/contentpage-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ContentPageDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ContentPageDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyout#xamarin_forms_flyoutpage_flyout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.ispresented#xamarin_forms_flyoutpage_ispresented
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-flyoutpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/pages-images/flyoutpage-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/FlyoutPageDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/FlyoutPageDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/FlyoutPageDemoPage.xaml.cs

NavigationPage The NavigationPage manages

navigation among other pages using a
stack-based architecture. When using
page navigation in your application, an
instance of the home page should be
passed to the constructor of a
NavigationPage object.

API Documentation / Guide / Sample
1, 2, and 3

C# code for this page / XAML Page
with code=behind

TabbedPage TabbedPage derives from the abstract

MultiPage class and allows

navigation among child pages using
tabs. Set the Children property to a

collection of pages, or set the
ItemsSource property to a collection

of data objects and the
ItemTemplate property to a

DataTemplate describing how each

object is to be visually represented.

API Documentation / Guide / Sample 1
and 2

C# code for this page / XAML page

CarouselPage CarouselPage derives from the

abstract MultiPage class and allows

navigation among child pages through
finger swiping. Set the Children

property to a collection of
ContentPage objects, or set the

ItemsSource property to a collection

of data objects and the
ItemTemplate property to a

DataTemplate describing how each

object is to be visually represented.

API Documentation / Guide / Sample 1
and 2

C# code for this page / XAML page

TemplatedPage TemplatedPage displays full-screen

content with a control template, and is
the base class for ContentPage .

API Documentation / Guide

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Related links

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-hierarchical
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-passingdata
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-loginflow
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/pages-images/navigationpage-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/NavigationPageDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/NavigationPageDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/NavigationPageDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.children#xamarin_forms_multipage_1_children
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemssource#xamarin_forms_multipage_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemtemplate#xamarin_forms_multipage_1_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-tabbedpagewithnavigationpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/pages-images/tabbedpage-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/TabbedPageDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/TabbedPageDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.children#xamarin_forms_multipage_1_children
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemssource#xamarin_forms_multipage_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.multipage-1.itemtemplate#xamarin_forms_multipage_1_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-carouselpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-carouselpagetemplate
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/pages-images/carouselpage-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/CarouselPageDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/CarouselPageDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/pages-images/templatedpage.png

Xamarin.Forms FormsGallery sample

Xamarin.Forms Samples

Xamarin.Forms API Documentation

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms?view=xamarin-forms

Xamarin.Forms Layouts
 7/8/2021 • 2 minutes to read • Edit Online

 Layouts with Single Content

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

ContentView ContentView contains a single child

that is set with the Content property.

The Content property can be set to

any View derivative, including other

Layout derivatives. ContentView is

mostly used as a structural element
and serves as a base class to Frame .

API Documentation / Guide / Sample

C# code for this page / XAML page

 Download the sample

Xamarin.Forms Layouts are used to compose user-interface controls into visual structures.

The Layout and Layout<T> classes in Xamarin.Forms are specialized subtypes of views that act as containers

for views and other layouts. The Layout class itself derives from View . A Layout derivative typically contains

logic to set the position and size of child elements in Xamarin.Forms applications.

The classes that derive from Layout can be divided into two categories:

These classes derive from Layout , which defines Padding and IsClippedToBounds properties:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/controls/layouts.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/layouts.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.padding#xamarin_forms_layout_padding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.isclippedtobounds#xamarin_forms_layout_isclippedtobounds
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview.content#xamarin_forms_contentview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-contentviewdemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/contentview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ContentViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ContentViewDemoPage.xaml

Frame The Frame class derives from

ContentView and displays a border,

or frame, around its child. The Frame

class has a default Padding value of

20, and also defines BorderColor ,

CornerRadius , and HasShadow

properties.

API Documentation / Guide / Sample

C# code for this page / XAML page

ScrollView ScrollView is capable of scrolling its

contents. Set the Content property

to a view or layout too large to fit on
the screen. (The content of a
ScrollView is very often a

StackLayout .) Set the Orientation

property to indicate if scrolling should
be vertical, horizontal, or both.

API Documentation / Guide / Sample

C# code for this page / XAML page

TemplatedView TemplatedView displays content with

a control template, and is the base
class for ContentView .

API Documentation / Guide

ContentPresenter ContentPresenter is a layout

manager for templated views, used
within a ControlTemplate to mark

where the content that is to be
presented appears.

API Documentation / Guide

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Layouts with Multiple Children
These classes derive from Layout<View> :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.padding#xamarin_forms_layout_padding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame.bordercolor#xamarin_forms_frame_bordercolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame.cornerradius#xamarin_forms_frame_cornerradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame.hasshadow#xamarin_forms_frame_hasshadow
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-frame/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/frame-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/FrameDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/FrameDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.content#xamarin_forms_scrollview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.orientation#xamarin_forms_scrollview_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/scrollview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ScrollViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ScrollViewDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/templatedview.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/contentpresenter.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

StackLayout StackLayout positions child elements

in a stack either horizontally or
vertically based on the Orientation

property. The Spacing property

governs the spacing between the
children, and has a default value of 6.

API Documentation / Guide / Sample

C# code for this page / XAML page

Grid Grid positions its child elements in a

grid of rows and columns. A child's
position is indicated using the attached
properties Row , Column , RowSpan ,

and ColumnSpan .

API Documentation / Guide / Sample

C# code for this page / XAML page

AbsoluteLayout AbsoluteLayout positions child

elements at specific locations relative
to its parent. A child's position is
indicated using the attached
properties LayoutBounds and

LayoutFlags . An AbsoluteLayout

is useful for animating the positions of
views.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

RelativeLayout RelativeLayout positions child

elements relative to the
RelativeLayout itself or to their

siblings. A child's position is indicated
using the attached properties that are
set to objects of type Constraint

and BoundsConstraint .

API Documentation / Guide / Sample

C# code for this page / XAML page

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.orientation#xamarin_forms_stacklayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.spacing#xamarin_forms_stacklayout_spacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/stacklayout-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/StackLayoutDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/StackLayoutDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/grid-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/GridDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/GridDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/absolutelayout-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/AbsoluteLayoutDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/AbsoluteLayoutDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/AbsoluteLayoutDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/relativelayout-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/RelativeLayoutDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/RelativeLayoutDemoPage.xaml

FlexLayout FlexLayout is based on the CSS

Flexible Box Layout Module, commonly
known as flex layout or flex-box.
FlexLayout defines six bindable

properties and five attached bindable
properties that allow children to be
stacked or wrapped with many
alignment and orientation options.

API Documentation / Guide / Sample

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Related links
Xamarin.Forms FormsGallery sample

Xamarin.Forms Samples

Xamarin.Forms API Documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://www.w3.org/TR/css-flexbox-1/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/layouts-images/flexlayout-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/FlexLayoutDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/FlexLayoutDemoPage.xaml
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms?view=xamarin-forms

Xamarin.Forms Views
 7/8/2021 • 10 minutes to read • Edit Online

 Views for presentation

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

BoxView BoxView displays a solid rectangle

colored by the Color property.

BoxView has a default size request of

40x40. For other sizes, assign the
WidthRequest and HeightRequest

properties.

API Documentation / Guide / Sample
1, 2, 3, 4, 5, and 6

C# code for this page / XAML page

Ellipse Ellipse displays an ellipse or circle

of size WidthRequest x

HeightRequest . To paint the inside of

the ellipse, set its Fill property to a

Color . To give the ellipse an outline,

set its Stroke property to a Color .

API Documentation / Guide / Sample

C# code for this page / XAML page

Label Label displays single-line text strings

or multi-line blocks of text, either with
constant or variable formatting. Set
the Text property to a string for

constant formatting, or set the
FormattedText property to a

FormattedString object for variable

formatting.

API Documentation / Guide / Sample

C# code for this page / XAML page

 Download the sample

Xamarin.Forms views are the building blocks of cross-platform mobile user interfaces.

Views are user-interface objects such as labels, buttons, and sliders that are commonly known as controls or

widgets in other graphical programming environments. The views supported by Xamarin.Forms all derive from

the View class. They can be divided into several categories:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/controls/views.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.color#xamarin_forms_boxview_color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-basicboxview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-textdecoration
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-listviewcolors/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-gameoflife
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-dotmatrixclock
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-boxviewclock
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/boxview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/BoxViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/BoxViewDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.ellipse
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.fill#xamarin_forms_shapes_shape_fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.stroke#xamarin_forms_shapes_shape_stroke
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.ellipse
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/ellipse-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/EllipseDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/EllipseDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.formattedtext#xamarin_forms_label_formattedtext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.formattedstring
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/label-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/LabelDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/LabelDemoPage.xaml

Line Line displays a line from a start

point to an end point. The start point
is represented by the X1 and Y1

properties, while the end point is
represented by the X2 and Y2

properties. To color the line, set its
Stroke property to a Color .

API Documentation / Guide / Sample

C# code for this page / XAML page

Image Image displays a bitmap. Bitmaps can

be downloaded over the Web,
embedded as resources in the
common project or platform projects,
or created using a .NET Stream

object.

API Documentation / Guide / Sample

C# code for this page / XAML page

Map Map displays a map. The

Xamarin.Forms.MapsXamarin.Forms.Maps NuGet
package must be installed. Android
and Universal Windows Platform
require a map authorization key.

API Documentation / Guide / Sample

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line.x1#xamarin_forms_shapes_line_x1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line.y1#xamarin_forms_shapes_line_y1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line.x2#xamarin_forms_shapes_line_x2
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line.y2#xamarin_forms_shapes_line_y2
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.stroke#xamarin_forms_shapes_shape_stroke
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.line
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/line-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/LineDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/LineDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithimages
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/image-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ImageDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ImageDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/map-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/MapDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/MapDemoPage.xaml

OpenGLView OpenGLView displays OpenGL

graphics in iOS and Android projects.
There is no support for the Universal
Windows Platform. The iOS and
Android projects require a reference to
the OpenTK-1.0OpenTK-1.0 assembly or the
OpenTKOpenTK version 1.0.0.0 assembly.
OpenGLView is easier to use in a

Shared Project; if used in a .NET
Standard library, then a Dependency
Service will also be required (as shown
in the sample code).

This is the only graphics facility that is
built into Xamarin.Forms, but a
Xamarin.Forms application can also
render graphics using SkiaSharp , or

UrhoSharp .

API Documentation

C# code for this page / XAML page
with code-behind

Path Path displays curves and complex

shapes. The Data property specifies

the shape to be drawn. To color the
shape, set its Stroke property to a

Color .

API Documentation / Guide / Sample

C# code for this page / XAML page

Polygon Polygon displays a polygon. The

Points property specifies the vertex

points of the polygon, while the
FillRule property specifies how the

interior fill of the polygon is
determined. To paint the inside of the
polygon, set its Fill property to a

Color . To give the polygon an

outline, set its Stroke property to a

Color .

API Documentation / Guide / Sample
C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.openglview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/graphics/urhosharp.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.openglview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/openglview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/OpenGLViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/OpenGLViewDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/OpenGLViewDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.path
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.path.data#xamarin_forms_shapes_path_data
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.stroke#xamarin_forms_shapes_shape_stroke
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.path
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/path-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/PathDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/PathDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon.points#xamarin_forms_shapes_polygon_points
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon.fillrule#xamarin_forms_shapes_polygon_fillrule
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.fill#xamarin_forms_shapes_shape_fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.stroke#xamarin_forms_shapes_shape_stroke
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/polygon-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/PolygonDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/PolygonDemoPage.xaml

Polyline Polyline displays a series of

connected straight lines. The Points

property specifies the vertex points of
the polyline, while the FillRule

property specifies how the interior fill
of the polyline is determined. To paint
the inside of the polyline, set its Fill

property to a Color . To give the

polyline an outline, set its Stroke

property to a Color .

API Documentation / Guide / Sample
C# code for this page / XAML page

Rectangle Rectangle displays a rectangle or

square. To paint the inside of the
rectangle, set its Fill property to a

Color . To give the rectangle an

outline, set its Stroke property to a

Color .

API Documentation / Guide / Sample

C# code for this page / XAML page

WebView WebView displays Web pages or

HTML content, based on whether the
Source property is set to a

UriWebViewSource or an

HtmlWebViewSource object.

API Documentation / Guide / Sample 1
and 2

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Views that initiate commands

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polyline
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon.points#xamarin_forms_shapes_polygon_points
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polygon.fillrule#xamarin_forms_shapes_polygon_fillrule
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.fill#xamarin_forms_shapes_shape_fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.stroke#xamarin_forms_shapes_shape_stroke
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.polyline
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/polyline-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/PolylineDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/PolylineDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.fill#xamarin_forms_shapes_shape_fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.shape.stroke#xamarin_forms_shapes_shape_stroke
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.rectangle
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/rectangle-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/RectangleDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/RectangleDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.source#xamarin_forms_webview_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.urlwebviewsource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.htmlwebviewsource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithwebview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-webview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/webview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/WebViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/WebViewDemoPage.xaml

Button Button is a rectangular object that

displays text, and which fires a
Clicked event when it's been

pressed.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

ImageButton ImageButton is a rectangular object

that displays an image, and which fires
a Clicked event when it's been

pressed.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

RadioButton RadioButton allows the selection of

one option from a set, and fires a
CheckedChanged event when

selection occurs.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

RefreshView RefreshView is a container control

that provides pull-to-refresh
functionality for scrollable content. The
ICommand defined by the Command

property is executed when a refresh is
triggered, and the IsRefreshing

property indicates the current state of
the control.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.clicked
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-buttondemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/button-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ButtonDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ButtonDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ButtonDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/imagebutton-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ImageButtonDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ImageButtonDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ImageButtonDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-radiobuttondemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/radiobutton-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/RadioButtonDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/RadioButtonDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/RadioButtonDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.refreshview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.refreshview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/refreshview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/RefreshViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/RefreshViewDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/RefreshViewDemoPage.xaml.cs

SearchBar SearchBar displays an area for the

user to type a text string, and a button
(or a keyboard key) that signals the
application to perform a search. The
Text property provides access to the

text, and the SearchButtonPressed

event indicates that the button has
been pressed.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

SwipeView SwipeView is a container control that

wraps around an item of content, and
provides context menu items that are
revealed by a swipe gesture. Each
menu item is represented by a
SwipeItem , which has a Command

property that executes an ICommand

when the item is tapped.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Views for setting values

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

CheckBox CheckBox allows the user to select a

Boolean value using a type of button
that can either be checked or empty.
The IsChecked property is the state

of the CheckBox , and the

CheckedChanged event is fired when

the state changes.

API Documentation / Guide / Sample

C# code for this page / XAML page

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.searchbuttonpressed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-searchbardemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/searchbar-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/SearchBarDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/SearchBarDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/SearchBarDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipeview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.swipeview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/swipeview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/SwipeViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/SwipeViewDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/SwipeViewDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-checkboxdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/checkbox-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/CheckBoxPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/CheckBoxPage.xaml

Slider Slider allows the user to select a

double value from a continuous

range specified with the Minimum and

Maximum properties.

API Documentation / Guide / Sample

C# code for this page / XAML page

Stepper Stepper allows the user to select a

double value from a range of

incremental values specified with the
Minimum , Maximum , and Increment

properties.

API Documentation / Guide / Sample

C# code for this page / XAML page

Switch Switch takes the form of an on/off

switch to allow the user to select a
Boolean value. The IsToggled

property is the state of the switch, and
the Toggled event is fired when the

state changes.

API Documentation / Guide / Sample

C# code for this page / XAML page

DatePicker DatePicker allows the user to select

a date with the platform date picker.
Set a range of allowable dates with the
MinimumDate and MaximumDate

properties. The Date property is the

selected date, and the DateSelected

event is fired when that property
changes.

API Documentation / Guide / Sample

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.minimum#xamarin_forms_slider_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.maximum#xamarin_forms_slider_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-sliderdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/slider-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/SliderDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/SliderDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.increment#xamarin_forms_stepper_increment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-stepperdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/stepper-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/StepperDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/StepperDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.istoggled#xamarin_forms_switch_istoggled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.toggled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-switchdemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/switch-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/SwitchDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/SwitchDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.minimumdate#xamarin_forms_datepicker_minimumdate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.maximumdate#xamarin_forms_datepicker_maximumdate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.date#xamarin_forms_datepicker_date
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.dateselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-datepicker
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/datepicker-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/DatePickerDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/DatePickerDemoPage.xaml

TimePicker TimePicker allows the user to select

a time with the platform time picker.
The Time property is the selected

time. An application can monitor
changes in the Time property by

installing a handler for the
PropertyChanged event.

API Documentation / Guide / Sample

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Views for editing text

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

Entry Entry allows the user to enter and

edit a single line of text. The text is
available as the Text property, and

the TextChanged and Completed

events are fired when the text changes
or the user signals completion by
tapping the enter key.

Use an Editor for entering and

editing multiple lines of text.

API Documentation / Guide / Sample C# code for this page / XAML page

Editor Editor allows the user to enter and

edit multiple lines of text. The text is
available as the Text property, and

the TextChanged and Completed

events are fired when the text changes
or the user signals completion.

Use an Entry view for entering and

editing a single line of text.

API Documentation / Guide / Sample
C# code for this page / XAML page

 Views to indicate activity

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

These two classes derive from the InputView class, which defines the Keyboard property:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.propertychanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-timepicker
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/timepicker-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/TimePickerDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/TimePickerDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.keyboard#xamarin_forms_inputview_keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.completed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/entry-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/EntryDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/EntryDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor.completed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/editor-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/EditorDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/EditorDemoPage.xaml

ActivityIndicator ActivityIndicator uses an

animation to show that the application
is engaged in a lengthy activity
without giving any indication of
progress. The IsRunning property

controls the animation.

If the activity's progress is known, use
a ProgressBar instead.

API Documentation / Guide / Sample
C# code for this page / XAML page

ProgressBar ProgressBar uses an animation to

show that the application is
progressing through a lengthy activity.
Set the Progress property to values

between 0 and 1 to indicate the
progress.

If the activity's progress is not known,
use an ActivityIndicator instead.

API Documentation / Guide / Sample
C# code for this page / XAML page
with code-behind

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Views that display collections

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

CarouselView CarouselView displays a scrollable

list of data items. Set the
ItemsSource property to a collection

of objects, and set the ItemTemplate

property to a DataTemplate object

describing how the items are to be
formatted. The CurrentItemChanged

event signals that the currently
displayed item has changed, which is
available as the CurrentItem

property.

Guide / Sample

C# code for this page / XAML page

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator.isrunning#xamarin_forms_activityindicator_isrunning
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-activityindicatordemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/activityindicator-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ActivityIndicatorDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ActivityIndicatorDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar.progress#xamarin_forms_progressbar_progress
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-progressbardemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/progressbar-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ProgressBarDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ProgressBarDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ProgressBarDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/carouselview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/CarouselViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/CarouselViewDemoPage.xaml

CollectionView CollectionView displays a scrollable

list of selectable data items, using
different layout specifications. It aims
to provide a more flexible, and
performant alternative to ListView .

Set the ItemsSource property to a

collection of objects, and set the
ItemTemplate property to a

DataTemplate object describing how

the items are to be formatted. The
SelectionChanged event signals that

a selection has been made, which is
available as the SelectedItem

property.

Guide / Sample

C# code for this page / XAML page

IndicatorView IndicatorView displays indicators

that represent the number of items in
a CarouselView . Set the

CarouselView.IndicatorView

property to the IndicatorView

object to display indicators for the
CarouselView .

API Documentation / Guide / Sample

C# code for this page / XAML page

ListView ListView derives from ItemsView

and displays a scrollable list of
selectable data items. Set the
ItemsSource property to a collection

of objects, and set the ItemTemplate

property to a DataTemplate object

describing how the items are to be
formatted. The ItemSelected event

signals that a selection has been made,
which is available as the
SelectedItem property.

API Documentation / Guide / Sample

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/collectionview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/CollectionViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/CollectionViewDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-indicatorviewdemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/indicatorview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/IndicatorViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/IndicatorViewDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemssource#xamarin_forms_itemsview_1_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemtemplate#xamarin_forms_itemsview_1_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selecteditem#xamarin_forms_listview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithlistview/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/listview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ListViewDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ListViewDemoPage.xaml

Picker Picker displays a selected item from

a list of text strings, and allows
selecting that item when the view is
tapped. Set the Items property to a

list of strings, or the ItemsSource

property to a collection of objects. The
SelectedIndexChanged event is fired

when an item is selected.

The Picker displays the list of items

only when it's selected. Use a
ListView or TableView for a

scrollable list that remains on the page.

API Documentation / Guide / Sample

C# code for this page / XAML page
with code-behind

TableView TableView displays a list of rows of

type Cell with optional headers and

subheaders. Set the Root property to

an object of type TableRoot , and add

TableSection objects to that

TableRoot . Each TableSection is a

collection of Cell objects.

API Documentation / Guide / Sample

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Related links
Xamarin.Forms FormsGallery sample

Xamarin.Forms Samples

Xamarin.Forms API Documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.items#xamarin_forms_picker_items
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindexchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-pickerdemo
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/picker-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/PickerDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/PickerDemoPage.xaml
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/PickerDemoPage.xaml.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview.root#xamarin_forms_tableview_root
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableroot
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tablesection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-tableview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/views-images/tableview-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/TableViewFormDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/TableViewFormDemoPage.xaml
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms?view=xamarin-forms

Xamarin.Forms Cells
 7/8/2021 • 2 minutes to read • Edit Online

 Cells

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

TextCell A TextCell displays one or two text

strings. Set the Text property and,

optionally, the Detail property to

these text strings.

API Documentation / Guide

C# code for this page / XAML page

ImageCell The ImageCell displays the same

information as TextCell but includes

a bitmap that you set with the
Source property.

API Documentation / Guide

C# code for this page / XAML page

 Download the sample

Xamarin.Forms cells can be added to ListViews and TableViews.

A cell is a specialized element used for items in a table and describes how each item in a list should be rendered.

The Cell class derives from Element , from which VisualElement also derives. A cell is not itself a visual

element; it is instead a template for creating a visual element.

Cell is used exclusively with ListView and TableView controls. To learn how to use and customize cells, refer

to the ListView and TableView documentation.

Xamarin.Forms supports the following cell types:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/controls/cells.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell.text#xamarin_forms_textcell_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell.detail#xamarin_forms_textcell_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/cells-images/textcell-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/TextCellDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/TextCellDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagecell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image.source#xamarin_forms_image_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagecell
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/cells-images/imagecell-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/ImageCellDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/ImageCellDemoPage.xaml

SwitchCell The SwitchCell contains text set

with the Text property and an on/off

switch initially set with the Boolean
On property. Handle the OnChanged

event to be notified when the On

property changes.

API Documentation / Guide

C# code for this page / XAML page

EntryCell The EntryCell defines a Label

property that identifies the cell and a
single line of editable text in the Text

property. Handle the Completed

event to be notified when the user has
completed the text entry.

API Documentation / Guide

C# code for this page / XAML page

T Y P ET Y P E DESC RIP T IO NDESC RIP T IO N A P P EA RA N C EA P P EA RA N C E

 Related links
Xamarin.Forms FormsGallery sample

Xamarin.Forms Samples

Xamarin.Forms API Documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell.text#xamarin_forms_switchcell_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell.on#xamarin_forms_switchcell_on
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell.onchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/cells-images/switchcell-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/SwitchCellDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/SwitchCellDemoPage.xaml
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell.label#xamarin_forms_entrycell_label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell.text#xamarin_forms_entrycell_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell.completed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/controls/cells-images/entrycell-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/CodeExamples/EntryCellDemoPage.cs
https://github.com/xamarin/xamarin-forms-samples/blob/master/FormsGallery/FormsGallery/FormsGallery/XamlExamples/EntryCellDemoPage.xaml
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms?view=xamarin-forms

Xamarin.Forms common control properties,
methods, and events

 3/5/2021 • 12 minutes to read • Edit Online

 Properties

 AnchorX

 AnchorY

 Background

 BackgroundColor

 Behaviors

 Bounds

 Clip

 Effects

The Xamarin.Forms VisualElement class is the base class for most of the controls used in a Xamarin.Forms

application. The VisualElement class defines many properties, methods, and events that are used in deriving

classes.

The following properties are available on VisualElement objects.

The AnchorX property is a double value that defines the center point on the X axis for transforms such as scale

and rotation. The default value is 0.5.

The AnchorY property is a double value that defines the center point on the Y axis for transforms such as scale

and rotation. The default value is 0.5.

The Background property is a Brush value that enables brushes to be used as the background in any control.

The default value is Brush.Default .

The BackgroundColor property is a Color that determines the background color of the control. If unset, the

background will be the default Color object, which renders as transparent.

The Behaviors property is a List of Behavior objects. Behaviors enable you to attach reusable functionality to

elements by adding them to the Behaviors list. For more information about the Behavior class, see

Xamarin.Forms Behaviors.

The Bounds property is a read-only Rectangle object that represents the space occupied by the control. The

Bounds property value is assigned during the layout cycle. The Rectangle struct contains useful properties

and methods for testing intersection and containment of rectangles. For more information, see the

Xamarin.Forms Rectangle API.

The Clip property is a Geometry object that defines the outline of the contents of an element. To define a clip,

use a Geometry object such as EllipseGeometry to set the element's Clip property. Only the area that is within

the region of the geometry will be visible. For more information, see Clip with a Geometry.

The Effects property is a List of Effect objects, inherited from the Element class. Effects allow native

controls to be customized, and are typically used for small styling changes. For more information about the

Effect class, see Xamarin.Forms Effects.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/controls/common-properties.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.anchorx#xamarin_forms_visualelement_anchorx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.anchory#xamarin_forms_visualelement_anchory
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.behaviors#xamarin_forms_visualelement_behaviors
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.bounds#xamarin_forms_visualelement_bounds
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element

 FlowDirection

 Height

 HeightRequest

 InputTransparent

 IsEnabled

 IsFocused

 IsTabStop

 IsVisible

 MinimumHeightRequest

 MinimumWidthRequest

The FlowDirection property is a FlowDirection enum value. Flow direction can be set to MatchParent ,

LeftToRight , or RightToLeft and determines the layout order and direction. The FlowDirection property is

typically used to support languages that read right-to-left.

The Height property is a read-only double value that describes the rendered height of the control. The Height

property is calculated during the layout cycle and can't be directly set. The height of a control can be requested

using the HeightRequest property.

The HeightRequest property is a double value that determines the desired height of the control. The absolute

height of the control may not match the requested value. For more information, see Request properties.

The InputTransparent property is a bool that determines whether the control receives user input. The default

value is false , ensuring that the element receives input. This property transfers to child elements when it's set.

Setting the InputTransparent property to true on a layout class will result in all elements within the layout not

receiving input.

The IsEnabled property is a bool value that determines whether the control reacts to user input. The default

value is true . Setting this property to false will prevent the control from accepting user input.

The IsFocused property is a bool value that describes whether the control is currently the focused object.

Calling the Focus method on the control will result in the IsFocused value being set to true. Calling the

Unfocus method will set this property to false.

The IsTabStop property is a bool value that defines whether the control receives focus when the user is

advancing through controls with the tab key. If this property is false, the TabIndex property will have no effect.

The IsVisible property is a bool value that determines whether the control is rendered. Controls with the

IsVisible property set to false won't be displayed, won't be considered for space calculations during the layout

cycle, and can't accept user input.

The MinimumHeightRequest property is a double value that determines how overflow is handled when two

elements are competing for limited space. Setting the MinimumHeightRequest property allows the layout process

to scale the element down to the minimum dimension requested. If no MinimumHeightRequest is specified, the

default value is -1 and the layout process will consider the HeightRequest to be the minimum value. This means

that elements with no MinimumHeightRequest value will not have scalable height.

For more information, see Minimum request properties.

The MinimumWidthRequest property is a double value that determines how overflow is handled when two

elements are competing for limited space. Setting the MinimumWidthRequest property allows the layout process

to scale the element down to the minimum dimension requested. If no MinimumWidthRequest is specified, the

default value is -1 and the layout process will consider the WidthRequest to be the minimum value. This means

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.height#xamarin_forms_visualelement_height
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.inputtransparent#xamarin_forms_visualelement_inputtransparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isenabled#xamarin_forms_visualelement_isenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isfocused#xamarin_forms_visualelement_isfocused
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.istabstop#xamarin_forms_visualelement_istabstop
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isvisible#xamarin_forms_visualelement_isvisible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.minimumheightrequest#xamarin_forms_visualelement_minimumheightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.minimumwidthrequest#xamarin_forms_visualelement_minimumwidthrequest

 Opacity

 Parent

 Resources

 Rotation

 RotationX

 RotationY

 Scale

 ScaleX

 ScaleY

 Style

that elements with no MinimumWidthRequest value will not have scalable width.

For more information, see Minimum request properties.

The Opacity property is a double value from zero to one that determines the opacity of the control during

rendering. The default value for this property is 1.0. Values outside of the range from 0 to 1 will be clamped. The

Opacity property is only applied if the IsVisible property is true . Opacity is applied iteratively. Therefore if a

parent control has 0.5 opacity and its child has 0.5 opacity, the child will render with an effective 0.25 opacity

value. Setting the Opacity property of an input control to 0 has undefined behavior.

The Parent property is inherited from the Element class. This property is an Element object that is the parent

of control. The Parent property is typically set automatically on an element when it's added as a child of

another element.

The Resources property is a ResourceDictionary instance that is populated with key/value pairs that are

typically populated at runtime from XAML. This dictionary allows application developers to reuse objects

defined in XAML at both compile time and run time. The keys in the dictionary are populated from the x:Key

attribute of the XAML tag. The object created from XAML is inserted into the ResourceDictionary for the

specified key. once it has been initialized.

For more information, see Resource Dictionaries.

The Rotation property is a double value between zero and 360 that defines the rotation about the Z axis in

degrees. The default value of this property is 0. Rotation is applied relative to the AnchorX and AnchorY values.

The RotationX property is a double value between zero and 360 that defines the rotation about the X axis in

degrees. The default value of this property is 0. Rotation is applied relative to the AnchorX and AnchorY values.

The RotationY property is a double value between zero and 360 that defines the rotation about the Y axis in

degrees. The default value of this property is 0. Rotation is applied relative to the AnchorX and AnchorY values.

The Scale property is a double value that defines the scale of the control. The default value of this property is

1.0. Scale is applied relative to the AnchorX and AnchorY values.

The ScaleX property is a double value that defines the scale of the control along the X axis. The default value of

this property is 1.0. The ScaleX property is applied relative to the AnchorX value.

The ScaleY property is a double value that defines the scale of the control along the Y axis. The default value of

this property is 1.0. The ScaleY property is applied relative to the AnchorY value.

The Style property is inherited from the NavigableElement class. This property is an instance of the Style

class. The Style class contains triggers, setters, and behaviors that define the appearance and behavior of

visual elements. For more information, see Xamarin.Forms XAML Styles.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.opacity#xamarin_forms_visualelement_opacity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.parent#xamarin_forms_element_parent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotationx#xamarin_forms_visualelement_rotationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotationy#xamarin_forms_visualelement_rotationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scalex#xamarin_forms_visualelement_scalex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scaley#xamarin_forms_visualelement_scaley
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style

 StyleClass

 TabIndex

 TranslationX

 TranslationY

 Triggers

 Visual

 Width

 WidthRequest

 X

 Y

 Methods

The StyleClass property is a list of string objects that represent the names of Style classes. This property is

inherited from the NavigableElement class. The StyleClass property allows multiple style attributes to be

applied to a VisualElement instance. For more information, see Xamarin.Forms Style Classes.

The TabIndex property is an int value that defines the control order when advancing through controls with

the tab key. The TabIndex property is the implementation for the property defined on the ITabStopElement

interface, which the VisualElement class implements.

The TranslationX property is a double value that defines the delta translation to be applied on the X axis.

Translation is applied after layout and is typically used for applying animations. Translating an element outside

the bounds of its parent container my prevent inputs from working.

For more information, see Animation in Xamarin.Forms.

The TranslationY property is a double value that defines the delta translation to be applied on the Y axis.

Translation is applied after layout and is typically used for applying animations. Translating an element outside

the bounds of its parent container my prevent inputs from working.

For more information, see Animation in Xamarin.Forms.

The Triggers property is a read-only List of TriggerBase objects. Triggers allow application developers to

express actions in XAML that change the visual appearance of controls in response to event or property

changes. For more information, see Xamarin.Forms Triggers.

The Visual property is an IVisual instance that enables renderers to be created and selectively applied to

VisualElement instances. The Visual property is set to match its parent so defining a renderer on a component

will also apply to any children of that component. If no custom renderer is set on a control or its ancestors, the

default Xamarin.Forms renderer will be used. For more information, see Xamarin.Forms Visual.

The Width property is a read-only double value that describes the rendered width of the control. The Width

property is calculated during the layout cycle and can't be directly set. The width of a control can be requested

using the WidthRequest property.

The WidthRequest property is a double value that determines the desired width of the control. The absolute

width of the control may not match the requested value. For more information, see Request properties.

The X property is a read-only double value that describes the current X position of the control.

The Y property is a read-only double value that describes the current Y position of the control.

The following methods are available on the VisualElement class. For a complete list, see VisualElement API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.styleclass#xamarin_forms_navigableelement_styleclass
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.tabindex#xamarin_forms_visualelement_tabindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.triggers#xamarin_forms_visualelement_triggers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.width#xamarin_forms_visualelement_width
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.x#xamarin_forms_visualelement_x
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.y#xamarin_forms_visualelement_y
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement#methods

 FindByName

public object FindByName (string name)

 Focus

public bool Focus ()

 Unfocus

public void Unfocus ()

 Events

 Focused

 SizeChanged

 Unfocused

 Units of Measurement

Methods.

The FindByName method is inherited from the Element class and has the following signature:

This method searches all child elements for the provided name argument and returns the element that has the

specified name. If no match is found, null is returned.

The Focus method attempts to set focus on the element. This method has the following signature:

The Focus method returns true if keyboard focus was successfully set and false if the method call did not

result in a focus change. The element must be able to receive focus for this method to work. Calling the Focus

method on elements that are offscreen or unrealized has undefined behavior.

The Unfocus method attempts to remove focus on the element. This method has the following signature:

The element must already have focus for this method to work.

The following events are available on the VisualElement class. For a complete list, see Xamarin.Forms

VisualElement Events.

The Focused event is raised whenever the VisualElement instance receives focus. This event is not bubbled

through the Xamarin.Forms stack, it's received directly from the native control. This event is emitted by the

IsFocused property setter.

The SizeChanged event is raised whenever the VisualElement instance Height or Width properties change. If

developers wish to respond directly to the size change, instead of responding to the post-change event, they

should implement the OnSizeAllocated virtual method instead.

The Unfocused event is raised whenever the VisualElement instance loses focus. This event is not bubbled

through the Xamarin.Forms stack, it's received directly from the native control. This event is emitted by the

IsFocused property setter.

Android, iOS, and UWP platforms all have different measurement units that can vary across devices.

Xamarin.Forms uses a platform-independent unit of measurement that normalizes units across devices and

platforms. There are 160 units per inch, or 64 units per centimeter, in Xamarin.Forms.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.findbyname
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.focus#xamarin_forms_visualelement_focus
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.unfocus#xamarin_forms_visualelement_unfocus
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement#events
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.focused
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.sizechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onsizeallocated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.unfocused

 Request properties

 Minimum request properties

 Unspecified minimum property valuesUnspecified minimum property values

<StackLayout Orientation="Horizontal">
 <BoxView HeightRequest="100" BackgroundColor="Purple" WidthRequest="500"></BoxView>
 <BoxView HeightRequest="100" BackgroundColor="Green" WidthRequest="500" MinimumWidthRequest="250">
</BoxView>
</StackLayout>

 Minimum and absolute property valuesMinimum and absolute property values

 Minimum properties within a GridMinimum properties within a Grid

 Related links

Properties whose names contain "request" define a desired value, which may not match the actual rendered

value. For example, HeightRequest might be set to 150 but if the layout only allows room for 100 units, the

rendered Height of the control will only be 100. Rendered size is affected by available space and contained

components.

Minimum request properties include MinimumHeightRequest and MinimumWidthRequest , and are intended to

enable more precise control over how elements handle overflow relative to each other. However, layout behavior

related to these properties has some important considerations.

If a minimum value is not set, the minimum property defaults to -1. The layout process ignores this value and

considers the absolute value to be the minimum. The practical consequence of this behavior is that an element

with no minimum value specified will notwill not shrink. An element with a minimum value specified willwill shrink.

The following XAML shows two BoxView elements in a horizontal StackLayout :

The first BoxView instance requests a width of 500 and does not specify a minimum width. The second BoxView

instance requests a width of 500 and a minimum width of 250. If the parent StackLayout element is not wide

enough to contain both components at their requested width, the first BoxView instance will be considered by

the layout process to have a minimum width of 500 because no other valid minimum is specified. The second

BoxView instance is allowed to scale down to 250 and it will shrink to fit until its width hits 250 units.

If the desired behavior is for the first BoxView instance to scale down with no minimum width, the

MinimumWidthRequest must be set to a valid value, such as 0.

The behavior is undefined when the minimum value is greater than the absolute value. For example, if

WidthRequest is set to 100, the MinimumWidthRequest property should never exceed 100. When specifying a

minimum property value, you should always specify an absolute value to ensure the absolute value is greater

than the minimum value.

Grid layouts have their own system for relative sizing of rows and columns. Using MinimumWidthRequest or

MinimumHeightRequest within a Grid layout will not have an effect. For more information, see Xamarin.Forms

Grid.

VisualElement API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

Xamarin.Forms Third-Party Controls
 11/2/2020 • 2 minutes to read • Edit Online

In addition to the controls supplied with Xamarin.Forms, third-party controls are available from the following

companies:

Telerik

SyncFusion

DevExpress

Infragistics

ComponentOne

Steema

These controls provide additional support for Xamarin.Forms developers by augmenting the standard controls

with custom controls and services.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/controls/thirdparty.md
https://www.telerik.com/xamarin-ui
https://www.syncfusion.com/xamarin-ui-controls
https://www.devexpress.com/xamarin/
https://www.infragistics.com/products/xamarin
https://www.grapecity.com/componentone-xamarin/
https://www.steema.com/product/forms

Xamarin.Forms BoxView
 7/8/2021 • 18 minutes to read • Edit Online

 Setting BoxView Color and Size

 Download the sample

BoxView renders a simple rectangle of a specified width, height, and color. You can use BoxView for decoration,

rudimentary graphics, and for interaction with the user through touch.

Because Xamarin.Forms does not have a built-in vector graphics system, the BoxView helps to compensate.

Some of the sample programs described in this article use BoxView for rendering graphics. The BoxView can be

sized to resemble a line of a specific width and thickness, and then rotated by any angle using the Rotation

property.

Although BoxView can mimic simple graphics, you might want to investigate Using SkiaSharp in Xamarin.Forms

for more sophisticated graphics requirements.

Typically you'll set the following properties of BoxView :

Color to set its color.

CornerRadius to set its corner radius.

WidthRequest to set the width of the BoxView in device-independent units.

HeightRequest to set the height of the BoxView .

The Color property is of type Color ; the property can be set to any Color value, including the 141 static read-

only fields of named colors ranging alphabetically from AliceBlue to YellowGreen .

The CornerRadius property is of type CornerRadius ; the property can be set to a single double uniform corner

radius value, or a CornerRadius structure defined by four double values that are applied to the top left, top

right, bottom left, and bottom right of the BoxView .

The WidthRequest and HeightRequest properties only play a role if the BoxView is unconstrained in layout. This

is the case when the layout container needs to know the child's size, for example, when the BoxView is a child of

an auto-sized cell in the Grid layout. A BoxView is also unconstrained when its HorizontalOptions and

VerticalOptions properties are set to values other than LayoutOptions.Fill . If the BoxView is unconstrained,

but the WidthRequest and HeightRequest properties are not set, then the width or height are set to default

values of 40 units, or about 1/4 inch on mobile devices.

The WidthRequest and HeightRequest properties are ignored if the BoxView is constrained in layout, in which

case the layout container imposes its own size on the BoxView .

A BoxView can be constrained in one dimension and unconstrained in the other. For example, if the BoxView is a

child of a vertical StackLayout , the vertical dimension of the BoxView is unconstrained and its horizontal

dimension is generally constrained. But there are exceptions for that horizontal dimension: If the BoxView has its

HorizontalOptions property set to something other than LayoutOptions.Fill , then the horizontal dimension is

also unconstrained. It's also possible for the StackLayout itself to have an unconstrained horizontal dimension,

in which case the BoxView will also be horizontally unconstrained.

The BasicBoxViewBasicBoxView sample displays a one-inch-square unconstrained BoxView in the center of its page:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/boxview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-basicboxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.color#xamarin_forms_boxview_color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.cornerradius#xamarin_forms_boxview_cornerradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cornerradius
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-basicboxview

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:BasicBoxView"
 x:Class="BasicBoxView.MainPage">

 <BoxView Color="CornflowerBlue"
 CornerRadius="10"
 WidthRequest="160"
 HeightRequest="160"
 VerticalOptions="Center"
 HorizontalOptions="Center" />

</ContentPage>

 Rendering Text Decorations

Here's the result:

If the VerticalOptions and HorizontalOptions properties are removed from the BoxView tag or are set to Fill

, then the BoxView becomes constrained by the size of the page, and expands to fill the page.

A BoxView can also be a child of an AbsoluteLayout . In that case, both the location and size of the BoxView are

set using the LayoutBounds attached bindable property. The AbsoluteLayout is discussed in the article

AbsoluteLayoutAbsoluteLayout.

You'll see examples of all these cases in the sample programs that follow.

You can use the BoxView to add some simple decorations on your pages in the form of horizontal and vertical

lines. The TextDecorationTextDecoration sample demonstrates this. All of the program's visuals are defined in the

MainPage.xamlMainPage.xaml file, which contains several Label and BoxView elements in the StackLayout shown here:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/boxview-images/basicboxview-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-textdecoration

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:TextDecoration"
 x:Class="TextDecoration.MainPage">
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0, 20, 0, 0" />
 </OnPlatform>
 </ContentPage.Padding>

 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="BoxView">
 <Setter Property="Color" Value="Black" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <ScrollView Margin="15">
 <StackLayout>

 ···

 </StackLayout>
 </ScrollView>
</ContentPage>

<AbsoluteLayout>
 <BoxView AbsoluteLayout.LayoutBounds="0, 10, 200, 5" />
 <BoxView AbsoluteLayout.LayoutBounds="0, 20, 200, 5" />
 <BoxView AbsoluteLayout.LayoutBounds="10, 0, 5, 65" />
 <BoxView AbsoluteLayout.LayoutBounds="20, 0, 5, 65" />
 <Label Text="Stylish Header"
 FontSize="24"
 AbsoluteLayout.LayoutBounds="30, 25, AutoSize, AutoSize"/>
</AbsoluteLayout>

All of the markup that follows are children of the StackLayout . This markup consists of several types of

decorative BoxView elements used with the Label element:

The stylish header at the top of the page is achieved with an AbsoluteLayout whose children are four BoxView

elements and a Label , all of which are assigned specific locations and sizes:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/boxview-images/textdecoration-large.png#lightbox

<StackLayout HorizontalOptions="Center">
 <Label Text="Underlined Text"
 FontSize="24" />
 <BoxView HeightRequest="2" />
</StackLayout>

<BoxView HeightRequest="3" />

<StackLayout Orientation="Horizontal">
 <BoxView WidthRequest="4"
 Margin="0, 0, 10, 0" />
 <Label>

 ···

 </Label>
</StackLayout>

 Listing Colors with BoxView

In the XAML file, the AbsoluteLayout is followed by a Label with formatted text that describes the

AbsoluteLayout .

You can underline a text string by enclosing both the Label and BoxView in a StackLayout that has its

HorizontalOptions value set to something other than Fill . The width of the StackLayout is then governed by

the width of the Label , which then imposes that width on the BoxView . The BoxView is assigned only an

explicit height:

You can't use this technique to underline individual words within longer text strings or a paragraph.

It's also possible to use a BoxView to resemble an HTML hr (horizontal rule) element. Simply let the width of

the BoxView be determined by its parent container, which in this case is the StackLayout :

Finally, you can draw a vertical line on one side of a paragraph of text by enclosing both the BoxView and the

Label in a horizontal StackLayout . In this case, the height of the BoxView is the same as the height of

StackLayout , which is governed by the height of the Label :

The BoxView is convenient for displaying colors. This program uses a ListView to list all the public static read-

only fields of the Xamarin.Forms Color structure:

public class NamedColor
{
 // Instance members.
 private NamedColor()
 {
 }

 public string Name { private set; get; }

 public string FriendlyName { private set; get; }

 public Color Color { private set; get; }

 public string RgbDisplay { private set; get; }

 // Static members.
 static NamedColor()
 {
 List<NamedColor> all = new List<NamedColor>();
 StringBuilder stringBuilder = new StringBuilder();

 // Loop through the public static fields of the Color structure.
 foreach (FieldInfo fieldInfo in typeof(Color).GetRuntimeFields ())
 {
 if (fieldInfo.IsPublic &&
 fieldInfo.IsStatic &&
 fieldInfo.FieldType == typeof (Color))
 {
 // Convert the name to a friendly name.
 string name = fieldInfo.Name;
 stringBuilder.Clear();
 int index = 0;

 foreach (char ch in name)
 {
 if (index != 0 && Char.IsUpper(ch))
 {
 stringBuilder.Append(' ');
 }
 stringBuilder.Append(ch);
 index++;
 }

The L istViewColorsL istViewColors program includes a class named NamedColor . The static constructor uses reflection to

access all the fields of the Color structure and create a NamedColor object for each one. These are stored in the

static All property:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/boxview-images/listviewcolors-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-listviewcolors

 }

 // Instantiate a NamedColor object.
 Color color = (Color)fieldInfo.GetValue(null);

 NamedColor namedColor = new NamedColor
 {
 Name = name,
 FriendlyName = stringBuilder.ToString(),
 Color = color,
 RgbDisplay = String.Format("{0:X2}-{1:X2}-{2:X2}",
 (int)(255 * color.R),
 (int)(255 * color.G),
 (int)(255 * color.B))
 };

 // Add it to the collection.
 all.Add(namedColor);
 }
 }
 all.TrimExcess();
 All = all;
 }

 public static IList<NamedColor> All { private set; get; }
}

The program visuals are described in the XAML file. The ItemsSource property of the ListView is set to the

static NamedColor.All property, which means that the ListView displays all the individual NamedColor objects:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ListViewColors"
 x:Class="ListViewColors.MainPage">
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="10, 20, 10, 0" />
 <On Platform="Android, UWP" Value="10, 0" />
 </OnPlatform>
 </ContentPage.Padding>

 <ListView SeparatorVisibility="None"
 ItemsSource="{x:Static local:NamedColor.All}">
 <ListView.RowHeight>
 <OnPlatform x:TypeArguments="x:Int32">
 <On Platform="iOS, Android" Value="80" />
 <On Platform="UWP" Value="90" />
 </OnPlatform>
 </ListView.RowHeight>

 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ContentView Padding="5">
 <Frame OutlineColor="Accent"
 Padding="10">
 <StackLayout Orientation="Horizontal">
 <BoxView Color="{Binding Color}"
 WidthRequest="50"
 HeightRequest="50" />
 <StackLayout>
 <Label Text="{Binding FriendlyName}"
 FontSize="22"
 VerticalOptions="StartAndExpand" />
 <Label Text="{Binding RgbDisplay, StringFormat='RGB = {0}'}"
 FontSize="16"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
 </StackLayout>
 </Frame>
 </ContentView>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</ContentPage>

 Playing the Game of Life by Subclassing BoxView

The NamedColor objects are formatted by the ViewCell object that is set as the data template of the ListView .

This template includes a BoxView whose Color property is bound to the Color property of the NamedColor

object.

The Game of Life is a cellular automaton invented by mathematician John Conway and popularized in the pages

of Scientific American in the 1970s. A good introduction is provided by the Wikipedia article Conway's Game of

Life.

The Xamarin.Forms GameOfLifeGameOfLife program defines a class named LifeCell that derives from BoxView . This

class encapsulates the logic of an individual cell in the Game of Life:

https://en.wikipedia.org/wiki/Conway%2527s_Game_of_Life
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-gameoflife

class LifeCell : BoxView
{
 bool isAlive;

 public event EventHandler Tapped;

 public LifeCell()
 {
 BackgroundColor = Color.White;

 TapGestureRecognizer tapGesture = new TapGestureRecognizer();
 tapGesture.Tapped += (sender, args) =>
 {
 Tapped?.Invoke(this, EventArgs.Empty);
 };
 GestureRecognizers.Add(tapGesture);
 }

 public int Col { set; get; }

 public int Row { set; get; }

 public bool IsAlive
 {
 set
 {
 if (isAlive != value)
 {
 isAlive = value;
 BackgroundColor = isAlive ? Color.Black : Color.White;
 }
 }
 get
 {
 return isAlive;
 }
 }
}

LifeCell adds three more properties to BoxView : the Col and Row properties store the position of the cell

within the grid, and the IsAlive property indicates its state. The IsAlive property also sets the Color

property of the BoxView to black if the cell is alive, and white if the cell is not alive.

LifeCell also installs a TapGestureRecognizer to allow the user to toggle the state of cells by tapping them. The

class translates the Tapped event from the gesture recognizer into its own Tapped event.

The GameOfLifeGameOfLife program also includes a LifeGrid class that encapsulates much of the logic of the game, and

a MainPage class that handles the program's visuals. These include an overlay that describes the rules of the

game. Here is the program in action showing a couple hundred LifeCell objects on the page:

 Creating a Digital Clock

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DotMatrixClock"
 x:Class="DotMatrixClock.MainPage"
 Padding="10"
 SizeChanged="OnPageSizeChanged">

 <AbsoluteLayout x:Name="absoluteLayout"
 VerticalOptions="Center" />
</ContentPage>

The DotMatr ixClockDotMatr ixClock program creates 210 BoxView elements to simulate the dots of an old-fashioned 5-by-7

dot-matrix display. You can read the time in either portrait or landscape mode, but it's larger in landscape:

The XAML file does little more than instantiate the AbsoluteLayout used for the clock:

Everything else occurs in the code-behind file. The dot-matrix display logic is greatly simplified by the definition

of several arrays that describe the dots corresponding to each of the 10 digits and a colon:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/boxview-images/gameoflife-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-dotmatrixclock
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/boxview-images/dotmatrixclock-large.png#lightbox

public partial class MainPage : ContentPage
{
 // Total dots horizontally and vertically.
 const int horzDots = 41;
 const int vertDots = 7;

 // 5 x 7 dot matrix patterns for 0 through 9.
 static readonly int[, ,] numberPatterns = new int[10, 7, 5]
 {
 {
 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 1, 0, 0, 1, 1}, { 1, 0, 1, 0, 1},
 { 1, 1, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}
 },
 {
 { 0, 0, 1, 0, 0}, { 0, 1, 1, 0, 0}, { 0, 0, 1, 0, 0}, { 0, 0, 1, 0, 0},
 { 0, 0, 1, 0, 0}, { 0, 0, 1, 0, 0}, { 0, 1, 1, 1, 0}
 },
 {
 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 0, 0, 0, 0, 1}, { 0, 0, 0, 1, 0},
 { 0, 0, 1, 0, 0}, { 0, 1, 0, 0, 0}, { 1, 1, 1, 1, 1}
 },
 {
 { 1, 1, 1, 1, 1}, { 0, 0, 0, 1, 0}, { 0, 0, 1, 0, 0}, { 0, 0, 0, 1, 0},
 { 0, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}
 },
 {
 { 0, 0, 0, 1, 0}, { 0, 0, 1, 1, 0}, { 0, 1, 0, 1, 0}, { 1, 0, 0, 1, 0},
 { 1, 1, 1, 1, 1}, { 0, 0, 0, 1, 0}, { 0, 0, 0, 1, 0}
 },
 {
 { 1, 1, 1, 1, 1}, { 1, 0, 0, 0, 0}, { 1, 1, 1, 1, 0}, { 0, 0, 0, 0, 1},
 { 0, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}
 },
 {
 { 0, 0, 1, 1, 0}, { 0, 1, 0, 0, 0}, { 1, 0, 0, 0, 0}, { 1, 1, 1, 1, 0},
 { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}
 },
 {
 { 1, 1, 1, 1, 1}, { 0, 0, 0, 0, 1}, { 0, 0, 0, 1, 0}, { 0, 0, 1, 0, 0},
 { 0, 1, 0, 0, 0}, { 0, 1, 0, 0, 0}, { 0, 1, 0, 0, 0}
 },
 {
 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0},
 { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 0}
 },
 {
 { 0, 1, 1, 1, 0}, { 1, 0, 0, 0, 1}, { 1, 0, 0, 0, 1}, { 0, 1, 1, 1, 1},
 { 0, 0, 0, 0, 1}, { 0, 0, 0, 1, 0}, { 0, 1, 1, 0, 0}
 },
 };

 // Dot matrix pattern for a colon.
 static readonly int[,] colonPattern = new int[7, 2]
 {
 { 0, 0 }, { 1, 1 }, { 1, 1 }, { 0, 0 }, { 1, 1 }, { 1, 1 }, { 0, 0 }
 };

 // BoxView colors for on and off.
 static readonly Color colorOn = Color.Red;
 static readonly Color colorOff = new Color(0.5, 0.5, 0.5, 0.25);

 // Box views for 6 digits, 7 rows, 5 columns.
 BoxView[, ,] digitBoxViews = new BoxView[6, 7, 5];

 ···

}

public partial class MainPage : ContentPage
{

 ···

 public MainPage()
 {
 InitializeComponent();

 // BoxView dot dimensions.
 double height = 0.85 / vertDots;
 double width = 0.85 / horzDots;

 // Create and assemble the BoxViews.
 double xIncrement = 1.0 / (horzDots - 1);
 double yIncrement = 1.0 / (vertDots - 1);
 double x = 0;

 for (int digit = 0; digit < 6; digit++)
 {
 for (int col = 0; col < 5; col++)
 {
 double y = 0;

 for (int row = 0; row < 7; row++)
 {
 // Create the digit BoxView and add to layout.
 BoxView boxView = new BoxView();
 digitBoxViews[digit, row, col] = boxView;
 absoluteLayout.Children.Add(boxView,
 new Rectangle(x, y, width, height),
 AbsoluteLayoutFlags.All);
 y += yIncrement;
 }
 x += xIncrement;
 }
 x += xIncrement;

 // Colons between the hours, minutes, and seconds.
 if (digit == 1 || digit == 3)
 {
 int colon = digit / 2;

 for (int col = 0; col < 2; col++)
 {
 double y = 0;

 for (int row = 0; row < 7; row++)
 {
 // Create the BoxView and set the color.
 BoxView boxView = new BoxView
 {
 Color = colonPattern[row, col] == 1 ?
 colorOn : colorOff
 };
 absoluteLayout.Children.Add(boxView,
 new Rectangle(x, y, width, height),
 AbsoluteLayoutFlags.All);
 y += yIncrement;
 }

These fields conclude with a three-dimensional array of BoxView elements for storing the dot patterns for the

six digits.

The constructor creates all the BoxView elements for the digits and colon, and also initializes the Color

property of the BoxView elements for the colon:

 x += xIncrement;
 }
 x += xIncrement;
 }
 }

 // Set the timer and initialize with a manual call.
 Device.StartTimer(TimeSpan.FromSeconds(1), OnTimer);
 OnTimer();
 }

 ···

}

public partial class MainPage : ContentPage
{

 ···

 void OnPageSizeChanged(object sender, EventArgs args)
 {
 // No chance a display will have an aspect ratio > 41:7
 absoluteLayout.HeightRequest = vertDots * Width / horzDots;
 }

 ···

}

This program uses the relative positioning and sizing feature of AbsoluteLayout . The width and height of each

BoxView are set to fractional values, specifically 85% of 1 divided by the number of horizontal and vertical dots.

The positions are also set to fractional values.

Because all the positions and sizes are relative to the total size of the AbsoluteLayout , the SizeChanged handler

for the page need only set a HeightRequest of the AbsoluteLayout :

The width of the AbsoluteLayout is automatically set because it stretches to the full width of the page.

The final code in the MainPage class processes the timer callback and colors the dots of each digit. The definition

of the multi-dimensional arrays at the beginning of the code-behind file helps make this logic the simplest part

of the program:

public partial class MainPage : ContentPage
{

 ···

 bool OnTimer()
 {
 DateTime dateTime = DateTime.Now;

 // Convert 24-hour clock to 12-hour clock.
 int hour = (dateTime.Hour + 11) % 12 + 1;

 // Set the dot colors for each digit separately.
 SetDotMatrix(0, hour / 10);
 SetDotMatrix(1, hour % 10);
 SetDotMatrix(2, dateTime.Minute / 10);
 SetDotMatrix(3, dateTime.Minute % 10);
 SetDotMatrix(4, dateTime.Second / 10);
 SetDotMatrix(5, dateTime.Second % 10);
 return true;
 }

 void SetDotMatrix(int index, int digit)
 {
 for (int row = 0; row < 7; row++)
 for (int col = 0; col < 5; col++)
 {
 bool isOn = numberPatterns[digit, row, col] == 1;
 Color color = isOn ? colorOn : colorOff;
 digitBoxViews[index, row, col].Color = color;
 }
 }
}

 Creating an Analog Clock
A dot-matrix clock might seem to be an obvious application of BoxView , but BoxView elements are also capable

of realizing an analog clock:

All the visuals in the BoxViewClockBoxViewClock program are children of an AbsoluteLayout . These elements are sized

using the LayoutBounds attached property, and rotated using the Rotation property.

The three BoxView elements for the hands of the clock are instantiated in the XAML file, but not positioned or

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/boxview-images/boxviewclock-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-boxviewclock

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:BoxViewClock"
 x:Class="BoxViewClock.MainPage">
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0, 20, 0, 0" />
 </OnPlatform>
 </ContentPage.Padding>

 <AbsoluteLayout x:Name="absoluteLayout"
 SizeChanged="OnAbsoluteLayoutSizeChanged">

 <BoxView x:Name="hourHand"
 Color="Black" />

 <BoxView x:Name="minuteHand"
 Color="Black" />

 <BoxView x:Name="secondHand"
 Color="Black" />
 </AbsoluteLayout>
</ContentPage>

public partial class MainPage : ContentPage
{

 ···

 BoxView[] tickMarks = new BoxView[60];

 public MainPage()
 {
 InitializeComponent();

 // Create the tick marks (to be sized and positioned later).
 for (int i = 0; i < tickMarks.Length; i++)
 {
 tickMarks[i] = new BoxView { Color = Color.Black };
 absoluteLayout.Children.Add(tickMarks[i]);
 }

 Device.StartTimer(TimeSpan.FromSeconds(1.0 / 60), OnTimerTick);
 }

 ···

}

sized:

The constructor of the code-behind file instantiates the 60 BoxView elements for the tick marks around the

circumference of the clock:

The sizing and positioning of all the BoxView elements occurs in the SizeChanged handler for the

AbsoluteLayout . A little structure internal to the class called HandParams describes the size of each of the three

hands relative to the total size of the clock:

public partial class MainPage : ContentPage
{
 // Structure for storing information about the three hands.
 struct HandParams
 {
 public HandParams(double width, double height, double offset) : this()
 {
 Width = width;
 Height = height;
 Offset = offset;
 }

 public double Width { private set; get; } // fraction of radius
 public double Height { private set; get; } // ditto
 public double Offset { private set; get; } // relative to center pivot
 }

 static readonly HandParams secondParams = new HandParams(0.02, 1.1, 0.85);
 static readonly HandParams minuteParams = new HandParams(0.05, 0.8, 0.9);
 static readonly HandParams hourParams = new HandParams(0.125, 0.65, 0.9);

 ···

 }

The SizeChanged handler determines the center and radius of the AbsoluteLayout , and then sizes and positions

the 60 BoxView elements used as tick marks. The for loop concludes by setting the Rotation property of each

of these BoxView elements. At the end of the SizeChanged handler, the LayoutHand method is called to size and

position the three hands of the clock:

public partial class MainPage : ContentPage
{

 ···

 void OnAbsoluteLayoutSizeChanged(object sender, EventArgs args)
 {
 // Get the center and radius of the AbsoluteLayout.
 Point center = new Point(absoluteLayout.Width / 2, absoluteLayout.Height / 2);
 double radius = 0.45 * Math.Min(absoluteLayout.Width, absoluteLayout.Height);

 // Position, size, and rotate the 60 tick marks.
 for (int index = 0; index < tickMarks.Length; index++)
 {
 double size = radius / (index % 5 == 0 ? 15 : 30);
 double radians = index * 2 * Math.PI / tickMarks.Length;
 double x = center.X + radius * Math.Sin(radians) - size / 2;
 double y = center.Y - radius * Math.Cos(radians) - size / 2;
 AbsoluteLayout.SetLayoutBounds(tickMarks[index], new Rectangle(x, y, size, size));
 tickMarks[index].Rotation = 180 * radians / Math.PI;
 }

 // Position and size the three hands.
 LayoutHand(secondHand, secondParams, center, radius);
 LayoutHand(minuteHand, minuteParams, center, radius);
 LayoutHand(hourHand, hourParams, center, radius);
 }

 void LayoutHand(BoxView boxView, HandParams handParams, Point center, double radius)
 {
 double width = handParams.Width * radius;
 double height = handParams.Height * radius;
 double offset = handParams.Offset;

 AbsoluteLayout.SetLayoutBounds(boxView,
 new Rectangle(center.X - 0.5 * width,
 center.Y - offset * height,
 width, height));

 // Set the AnchorY property for rotations.
 boxView.AnchorY = handParams.Offset;
 }

 ···

}

The LayoutHand method sizes and positions each hand to point straight up to the 12:00 position. At the end of

the method, the AnchorY property is set to a position corresponding to the center of the clock. This indicates the

center of rotation.

The hands are rotated in the timer callback function:

public partial class MainPage : ContentPage
{

 ···

 bool OnTimerTick()
 {
 // Set rotation angles for hour and minute hands.
 DateTime dateTime = DateTime.Now;
 hourHand.Rotation = 30 * (dateTime.Hour % 12) + 0.5 * dateTime.Minute;
 minuteHand.Rotation = 6 * dateTime.Minute + 0.1 * dateTime.Second;

 // Do an animation for the second hand.
 double t = dateTime.Millisecond / 1000.0;

 if (t < 0.5)
 {
 t = 0.5 * Easing.SpringIn.Ease(t / 0.5);
 }
 else
 {
 t = 0.5 * (1 + Easing.SpringOut.Ease((t - 0.5) / 0.5));
 }

 secondHand.Rotation = 6 * (dateTime.Second + t);
 return true;
 }
}

 Related Links

The second hand is treated a little differently: An animation easing function is applied to make the movement

seem mechanical rather than smooth. On each tick, the second hand pulls back a little and then overshoots its

destination. This little bit of code adds a lot to the realism of the movement.

Basic BoxView (sample)

Text Decoration (sample)

ListView Colors (sample)

Game of Life (sample)

Dot-Matrix Clock (sample)

BoxView Clock (sample)

BoxView

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-basicboxview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-textdecoration
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-listviewcolors/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-gameoflife
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-dotmatrixclock
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-boxviewclock
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview

Images in Xamarin.Forms
 7/8/2021 • 12 minutes to read • Edit Online

 Display images

 Local images

 Download the sample

Images can be shared across platforms with Xamarin.Forms, they can be loaded specifically for each platform, or

they can be downloaded for display.

Images are a crucial part of application navigation, usability, and branding. Xamarin.Forms applications need to

be able to share images across all platforms, but also potentially display different images on each platform.

Platform-specific images are also required for icons and splash screens; these need to be configured on a per-

platform basis.

Xamarin.Forms uses the Image view to display images on a page. It has several important properties:

Source - An ImageSource instance, either File, Uri or Resource, which sets the image to display.

Aspect - How to size the image within the bounds it is being displayed within (whether to stretch, crop or

letterbox).

ImageSource instances can be obtained using static methods for each type of image source:

FromFile - Requires a filename or filepath that can be resolved on each platform.

FromUri - Requires a Uri object, eg. new Uri("http://server.com/image.jpg") .

FromResource - Requires a resource identifier to an image file embedded in the application or .NET Standard

library project, with a Build Action:EmbeddedResourceBuild Action:EmbeddedResource.

FromStream - Requires a stream that supplies image data.

The Aspect property determines how the image will be scaled to fit the display area:

Fill - Stretches the image to completely and exactly fill the display area. This may result in the image being

distorted.

AspectFill - Clips the image so that it fills the display area while preserving the aspect (i.e. no distortion).

AspectFit - Letterboxes the image (if required) so that the entire image fits into the display area, with blank

space added to the top/bottom or sides depending on whether the image is wide or tall.

Images can be loaded from a local file, an embedded resource, downloaded, or loaded from a stream. In

addition, font icons can be displayed by the Image view by specifying the font icon data in a FontImageSource

object. For more information, see Display font icons in the Fonts guide.

Image files can be added to each application project and referenced from Xamarin.Forms shared code. This

method of distributing images is required when images are platform-specific, such as when using different

resolutions on different platforms, or slightly different designs.

To use a single image across all apps, the same filename must be used on every platform, and it should be a

valid Android resource name (i.e. only lowercase letters, numerals, the underscore, and the period are allowed).

iOSiOS - The preferred way to manage and support images since iOS 9 is to use Asset Catalog Image SetsAsset Catalog Image Sets ,

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/images.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithimages
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image.source#xamarin_forms_image_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image.aspect#xamarin_forms_image_aspect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromfile#xamarin_forms_imagesource_fromfile_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromuri#xamarin_forms_imagesource_fromuri_system_uri_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromresource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromstream#xamarin_forms_imagesource_fromstream_system_func_system_io_stream__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image.aspect#xamarin_forms_image_aspect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_aspectfill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_aspectfit
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

IMPORTANTIMPORTANT

<Image Source="waterfront.jpg" />

var image = new Image { Source = "waterfront.jpg" };

image.Source = Device.RuntimePlatform == Device.Android
 ? ImageSource.FromFile("waterfront.jpg")
 : ImageSource.FromFile("Images/waterfront.jpg");

which should contain all of the versions of an image that are necessary to support various devices and scale

factors for an application. For more information, see Adding Images to an Asset Catalog Image Set.

AndroidAndroid - Place images in the Resources/drawableResources/drawable directory with Build Action: AndroidResourceBuild Action: AndroidResource.

High- and low-DPI versions of an image can also be supplied (in appropriately named ResourcesResources

subdirectories such as drawable-ldpidrawable-ldpi , drawable-hdpidrawable-hdpi , and drawable-xhdpidrawable-xhdpi).

Universal Windows Platform (UWP)Universal Windows Platform (UWP) - By default, images should be placed in the application's root

directory with Build Action: ContentBuild Action: Content. Alternatively, images can be placed in a different directory which is

then specified with a platform-specific. For more information, see Default image directory on Windows.

Prior to iOS 9, images were typically placed in the ResourcesResources folder with Build Action: BundleResourceBuild Action: BundleResource. However, this

method of working with images in an iOS app has been deprecated by Apple. For more information, see Image Sizes and

Filenames.

Adhering to these rules for file naming and placement allows the following XAML to load and display the image

on all platforms:

The equivalent C# code is as follows:

The following screenshots show the result of displaying a local image on each platform:

For more flexibility the Device.RuntimePlatform property can be used to select a different image file or path for

some or all platforms, as shown in this code example:

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/displaying-an-image
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/displaying-an-image
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/images-images/local.png#lightbox

IMPORTANTIMPORTANT

 Native resolutions (retina and high-DPI)Native resolutions (retina and high-DPI)

 Additional controls that display imagesAdditional controls that display images

To use the same image filename across all platforms the name must be valid on all platforms. Android drawables have

naming restrictions – only lowercase letters, numbers, underscore, and period are allowed – and for cross-platform

compatibility this must be followed on all the other platforms too. The example filename waterfront.pngwaterfront.png follows the

rules, but examples of invalid filenames include "water front.png", "WaterFront.png", "water-front.png", and

"wåterfront.png".

iOS, Android, and UWP include support for different image resolutions, where the operating system chooses the

appropriate image at runtime based on the device's capabilities. Xamarin.Forms uses the native platforms' APIs

for loading local images, so it automatically supports alternate resolutions if the files are correctly named and

located in the project.

The preferred way to manage images since iOS 9 is to drag images for each resolution required to the

appropriate asset catalog image set. For more information, see Adding Images to an Asset Catalog Image Set.

Prior to iOS 9, retina versions of the image could be placed in the ResourcesResources folder - two and three times the

resolution with a @2x@2x or @3x@3x suffixes on the filename before the file extension (eg. myimage@2x.pngmyimage@2x.png).

However, this method of working with images in an iOS app has been deprecated by Apple. For more

information, see Image Sizes and Filenames.

Android alternate resolution images should be placed in specially-named directories in the Android project, as

shown in the following screenshot:

UWP image file names can be suffixed with .scale-xxx before the file extension, where xxx is the percentage

of scaling applied to the asset, e.g. myimage.scale-200.pngmyimage.scale-200.png. Images can then be referred to in code or XAML

without the scale modifier, e.g. just myimage.pngmyimage.png. The platform will select the nearest appropriate asset scale

based on the display's current DPI.

Some controls have properties that display an image, such as:

Button has an ImageSource property that can be set to a bitmap image to be displayed on the Button .

For more information, see Using bitmaps with buttons.

ImageButton has a Source property that can be set to the image to display in the ImageButton . For more

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/displaying-an-image
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/displaying-an-image
https://developer.android.com/guide/practices/screens_support.html
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/images-images/xs-highdpisolution.png#lightbox
https://docs.microsoft.com/en-us/windows/uwp/app-resources/images-tailored-for-scale-theme-contrast
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.imagesource#xamarin_forms_button_imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton.source#xamarin_forms_imagebutton_source

 Embedded images

IMPORTANTIMPORTANT

information, see Setting the image source.

ToolbarItem has an IconImageSource property that can be set to an image that's loaded from a file,

embedded resource, URI, or stream.

ImageCell has an ImageSource property that can be set to an image retrieved from a file, embedded

resource, URI, or stream.

Page . Any page type that derives from Page has IconImageSource and BackgroundImageSource

properties, which can be assigned a file, embedded resource, URI, or stream. Under certain

circumstances, such as when a NavigationPage is displaying a ContentPage , the icon will be displayed if

supported by the platform.

On iOS, the Page.IconImageSource property can't be populated from an image in an asset catalog image set.

Instead, load icon images for the Page.IconImageSource property from a file, embedded resource, URI, or

stream.

Embedded images are also shipped with an application (like local images) but instead of having a copy of the

image in each application's file structure the image file is embedded in the assembly as a resource. This method

of distributing images is recommended when identical images are used on each platform, and is particularly

suited to creating components, as the image is bundled with the code.

To embed an image in a project, right-click to add new items and select the image/s you wish to add. By default

the image will have Build Action: NoneBuild Action: None; this needs to be set to Build Action: EmbeddedResourceBuild Action: EmbeddedResource.

Visual Studio

Visual Studio for Mac

The Build ActionBuild Action can be viewed and changed in the Proper tiesProper ties window for a file.

In this example the resource ID is WorkingWithImages.beach.jpgWorkingWithImages.beach.jpg. The IDE has generated this default by

concatenating the Default NamespaceDefault Namespace for this project with the filename, using a period (.) between each value.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.iconimagesource#xamarin_forms_menuitem_iconimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagecell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagecell.imagesource#xamarin_forms_imagecell_imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.iconimagesource#xamarin_forms_page_iconimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.backgroundimagesource#xamarin_forms_page_backgroundimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.iconimagesource#xamarin_forms_page_iconimagesource
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/images-images/vs-buildaction.png#lightbox

Image embeddedImage = new Image
{
 Source = ImageSource.FromResource("WorkingWithImages.beach.jpg", typeof(MyClass).GetTypeInfo().Assembly)
};

NOTENOTE

 XAMLXAML

If you place embedded images into folders within your project, the folder names are also separated by periods

(.) in the resource ID. Moving the beach.jpgbeach.jpg image into a folder called MyImagesMyImages would result in a resource ID

of WorkingWithImages.MyImages.beach.jpgWorkingWithImages.MyImages.beach.jpg

The code to load an embedded image simply passes the Resource IDResource ID to the ImageSource.FromResource method

as shown below:

To support displaying embedded images in release mode on the Universal Windows Platform, it's necessary to use the

overload of ImageSource.FromResource that specifies the source assembly in which to search for the image.

Currently there is no implicit conversion for resource identifiers. Instead, you must use

ImageSource.FromResource or new ResourceImageSource() to load embedded images.

The following screenshots show the result of displaying an embedded image on each platform:

Because there is no built-in type converter from string to ResourceImageSource , these types of images cannot

be natively loaded by XAML. Instead, a simple custom XAML markup extension can be written to load images

using a Resource IDResource ID specified in XAML:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromresource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromresource
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/images-images/resource.png#lightbox

[ContentProperty (nameof(Source))]
public class ImageResourceExtension : IMarkupExtension
{
 public string Source { get; set; }

 public object ProvideValue (IServiceProvider serviceProvider)
 {
 if (Source == null)
 {
 return null;
 }

 // Do your translation lookup here, using whatever method you require
 var imageSource = ImageSource.FromResource(Source,
typeof(ImageResourceExtension).GetTypeInfo().Assembly);

 return imageSource;
 }
}

NOTENOTE

<?xml version="1.0" encoding="UTF-8" ?>
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:WorkingWithImages;assembly=WorkingWithImages"
 x:Class="WorkingWithImages.EmbeddedImagesXaml">
 <StackLayout VerticalOptions="Center" HorizontalOptions="Center">
 <!-- use a custom Markup Extension -->
 <Image Source="{local:ImageResource WorkingWithImages.beach.jpg}" />
 </StackLayout>
</ContentPage>

 Troubleshoot embedded imagesTroubleshoot embedded images
 Debug codeDebug code

using System.Reflection;
// ...
// NOTE: use for debugging, not in released app code!
var assembly = typeof(MyClass).GetTypeInfo().Assembly;
foreach (var res in assembly.GetManifestResourceNames())
{
 System.Diagnostics.Debug.WriteLine("found resource: " + res);
}

 Images embedded in other projectsImages embedded in other projects

To support displaying embedded images in release mode on the Universal Windows Platform, it's necessary to use the

overload of ImageSource.FromResource that specifies the source assembly in which to search for the image.

To use this extension add a custom xmlns to the XAML, using the correct namespace and assembly values for

the project. The image source can then be set using this syntax:

{local:ImageResource WorkingWithImages.beach.jpg} . A complete XAML example is shown below:

Because it is sometimes difficult to understand why a particular image resource isn't being loaded, the following

debug code can be added temporarily to an application to help confirm the resources are correctly configured. It

will output all known resources embedded in the given assembly to the ConsoleConsole to help debug resource

loading issues.

var imageSource = ImageSource.FromResource("filename.png",
 typeof(MyClass).GetTypeInfo().Assembly);

 Download images

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="WorkingWithImages.DownloadImagesXaml">
 <StackLayout VerticalOptions="Center" HorizontalOptions="Center">
 <Label Text="Image UriSource Xaml" />
 <Image Source="https://aka.ms/campus.jpg" />
 <Label Text="campus.jpg gets downloaded from microsoft.com" />
 </StackLayout>
</ContentPage>

var webImage = new Image {
 Source = ImageSource.FromUri(
 new Uri("https://aka.ms/campus.jpg")
) };

webImage.Source = "https://aka.ms/campus.jpg";

 Downloaded image cachingDownloaded image caching

By default, the ImageSource.FromResource method only looks for images in the same assembly as the code

calling the ImageSource.FromResource method. Using the debug code above you can determine which assemblies

contain a specific resource by changing the typeof() statement to a Type known to be in each assembly.

However, the source assembly being searched for an embedded image can be specified as an argument to the

ImageSource.FromResource method:

Images can be automatically downloaded for display, as shown in the following XAML:

The equivalent C# code is as follows:

The ImageSource.FromUri method requires a Uri object, and returns a new UriImageSource that reads from the

Uri .

There is also an implicit conversion for URI strings, so the following example will also work:

The following screenshots show the result of displaying a remote image on each platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromuri#xamarin_forms_imagesource_fromuri_system_uri_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.uriimagesource
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/images-images/download.png#lightbox

image.Source = new UriImageSource { CachingEnabled = false, Uri = new Uri("https://server.com/image") };

webImage.Source = new UriImageSource
{
 Uri = new Uri("https://aka.ms/campus.jpg"),
 CachingEnabled = true,
 CacheValidity = new TimeSpan(5,0,0,0)
};

 Animated GIFs

<Image Source="demo.gif" />

IMPORTANTIMPORTANT

NOTENOTE

 Icons and splash screens

A UriImageSource also supports caching of downloaded images, configured through the following properties:

CachingEnabled - Whether caching is enabled (true by default).

CacheValidity - A TimeSpan that defines how long the image will be stored locally.

Caching is enabled by default and will store the image locally for 24 hours. To disable caching for a particular

image, instantiate the image source as follows:

To set a specific cache period (for example, 5 days) instantiate the image source as follows:

Built-in caching makes it very easy to support scenarios like scrolling lists of images, where you can set (or bind)

an image in each cell and let the built-in cache take care of re-loading the image when the cell is scrolled back

into view.

Xamarin.Forms includes support for displaying small, animated GIFs. This is accomplished by setting the

Image.Source property to an animated GIF file:

While the animated GIF support in Xamarin.Forms includes the ability to download files, it does not support caching or

streaming animated GIFs.

By default, when an animated GIF is loaded it will not be played. This is because the IsAnimationPlaying

property, that controls whether an animated GIF is playing or stopped, has a default value of false . This

property, of type bool , is backed by a BindableProperty object, which means that it can be the target of a data

binding, and styled.

Therefore, when an animated GIF is loaded it will not be played until the IsAnimationPlaying property is set to

true . Playback can then be stopped by setting the IsAnimationPlaying property to false . Note that this

property has no effect when displaying a non-GIF image source.

On Android, animated GIF support requires that your application is using fast renderers, and won't work if you've opted

into using the legacy renderers. On UWP, animated GIF support requires a minimum release of Windows 10 Anniversary

Update (version 1607).

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.uriimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.uriimagesource.cachingenabled#xamarin_forms_uriimagesource_cachingenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.uriimagesource.cachevalidity#xamarin_forms_uriimagesource_cachevalidity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image.source#xamarin_forms_image_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

 Icons

 Splash screens

 Related links

While not related to the Image view, application icons and splash screens are also an important use of images

in Xamarin.Forms projects.

Setting icons and splash screens for Xamarin.Forms apps is done in each of the application projects. This means

generating correctly sized images for iOS, Android, and UWP. These images should be named and located

according to each platforms' requirements.

See the iOS Working with Images, Google Iconography, and UWP Guidelines for tile and icon assets for more

information on creating these application resources.

In addition, font icons can be displayed by the Image view by specifying the font icon data in a FontImageSource

object. For more information, see Display font icons in the Fonts guide.

Only iOS and UWP applications require a splash screen (also called a startup screen or default image).

Refer to the documentation for iOS Working with Images and Splash screens on the Windows Dev Center.

WorkingWithImages (sample)

iOS Working with Images

Android Iconography

Guidelines for tile and icon assets

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/index
https://developer.android.com/design/style/iconography.html
https://docs.microsoft.com/en-us/windows/uwp/controls-and-patterns/tiles-and-notifications-app-assets/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/index
https://docs.microsoft.com/en-us/windows/uwp/launch-resume/splash-screens/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithimages
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/index
https://developer.android.com/design/style/iconography.html
https://docs.microsoft.com/en-us/windows/uwp/controls-and-patterns/tiles-and-notifications-app-assets/

Xamarin.Forms Label
 7/8/2021 • 14 minutes to read • Edit Online

 Text decorations

<Label Text="This is underlined text." TextDecorations="Underline" />
<Label Text="This is text with strikethrough." TextDecorations="Strikethrough" />
<Label Text="This is underlined text with strikethrough." TextDecorations="Underline, Strikethrough" />

var underlineLabel = new Label { Text = "This is underlined text.", TextDecorations =
TextDecorations.Underline };
var strikethroughLabel = new Label { Text = "This is text with strikethrough.", TextDecorations =
TextDecorations.Strikethrough };
var bothLabel = new Label { Text = "This is underlined text with strikethrough.", TextDecorations =
TextDecorations.Underline | TextDecorations.Strikethrough };

NOTENOTE

 Transform text

 Download the sample

Display text in Xamarin.Forms

The Label view is used for displaying text, both single and multi-line. Labels can have text decorations, colored

text, and use custom fonts (families, sizes, and options).

Underline and strikethrough text decorations can be applied to Label instances by setting the

Label.TextDecorations property to one or more TextDecorations enumeration members:

None

Underline

Strikethrough

The following XAML example demonstrates setting the Label.TextDecorations property:

The equivalent C# code is:

The following screenshots show the TextDecorations enumeration members applied to Label instances:

Text decorations can also be applied to Span instances. For more information about the Span class, see Formatted Text.

A Label can transform the casing of its text, stored in the Text property, by setting the TextTransform

property to a value of the TextTransform enumeration. This enumeration has four values:

None indicates that the text won't be transformed.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/text/label.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

<Label Text="This text will be displayed in uppercase."
 TextTransform="Uppercase" />

Label label = new Label
{
 Text = "This text will be displayed in uppercase.",
 TextTransform = TextTransform.Uppercase
};

 Character spacing

<Label Text="Character spaced text"
 CharacterSpacing="10" />

Label label = new Label { Text = "Character spaced text", CharacterSpacing = 10 };

 New lines

<!-- Unicode line feed character -->
<Label Text="First line
 Second line" />

<!-- Property element syntax -->
<Label>
 <Label.Text>
 First line
 Second line
 </Label.Text>
</Label>

Default indicates that the default behavior for the platform will be used. This is the default value of the

TextTransform property.

Lowercase indicates that the text will be transformed to lowercase.

Uppercase indicates that the text will be transformed to uppercase.

The following example shows transforming text to uppercase:

The equivalent C# code is:

Character spacing can be applied to Label instances by setting the Label.CharacterSpacing property to a

double value:

The equivalent C# code is:

The result is that characters in the text displayed by the Label are spaced CharacterSpacing device-

independent units apart.

There are two main techniques for forcing text in a Label onto a new line, from XAML:

1. Use the unicode line feed character, which is "
".

2. Specify your text using property element syntax.

The following code shows an example of both techniques:

In C#, text can be forced onto a new line with the "\n" character :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

Label label = new Label { Text = "First line\nSecond line" };

 Colors

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TextSample.LabelPage"
 Title="Label Demo">
 <StackLayout Padding="5,10">
 <Label TextColor="#77d065" FontSize = "20" Text="This is a green label." />
 </StackLayout>
</ContentPage>

public partial class LabelPage : ContentPage
{
 public LabelPage ()
 {
 InitializeComponent ();

 var layout = new StackLayout { Padding = new Thickness(5,10) };
 var label = new Label { Text="This is a green label.", TextColor = Color.FromHex("#77d065"),
FontSize = 20 };
 layout.Children.Add(label);
 this.Content = layout;
 }
}

 Fonts

 Truncation and wrapping

Labels can be set to use a custom text color via the bindable TextColor property.

Special care is necessary to ensure that colors will be usable on each platform. Because each platform has

different defaults for text and background colors, you'll need to be careful to pick a default that works on each.

The following XAML example sets the text color of a Label :

The equivalent C# code is:

The following screenshots show the result of setting the TextColor property:

For more information about colors, see Colors.

For more information about specifying fonts on a Label , see Fonts.

Labels can be set to handle text that can't fit on one line in one of several ways, exposed by the LineBreakMode

property. LineBreakMode is an enumeration with the following values:

HeadTruncationHeadTruncation – truncates the head of the text, showing the end.

CharacterWrapCharacterWrap – wraps text onto a new line at a character boundary.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.linebreakmode

 Display a specific number of lines

<Label Text="Lorem ipsum dolor sit amet, consectetur adipiscing elit. In facilisis nulla eu felis fringilla
vulputate. Nullam porta eleifend lacinia. Donec at iaculis tellus."
 LineBreakMode="WordWrap"
 MaxLines="2" />

var label =
{
 Text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. In facilisis nulla eu felis fringilla
vulputate. Nullam porta eleifend lacinia. Donec at iaculis tellus.", LineBreakMode = LineBreakMode.WordWrap,
 MaxLines = 2
};

 Display HTML

MiddleTruncationMiddleTruncation – displays the beginning and end of the text, with the middle replace by an ellipsis.

NoWrapNoWrap – does not wrap text, displaying only as much text as can fit on one line.

TailTruncationTailTruncation – shows the beginning of the text, truncating the end.

WordWrapWordWrap – wraps text at the word boundary.

The number of lines displayed by a Label can be specified by setting the Label.MaxLines property to a int

value:

When MaxLines is -1, which is its default value, the Label respects the value of the LineBreakMode property

to either show just one line, possibly truncated, or all lines with all text.

When MaxLines is 0, the Label isn't displayed.

When MaxLines is 1, the result is identical to setting the LineBreakMode property to NoWrap , HeadTruncation ,

MiddleTruncation , or TailTruncation . However, the Label will respect the value of the LineBreakMode

property with regard to placement of an ellipsis, if applicable.

When MaxLines is greater than 1, the Label will display up to the specified number of lines, while

respecting the value of the LineBreakMode property with regard to placement of an ellipsis, if applicable.

However, setting the MaxLines property to a value greater than 1 has no effect if the LineBreakMode property

is set to NoWrap .

The following XAML example demonstrates setting the MaxLines property on a Label :

The equivalent C# code is:

The following screenshots show the result of setting the MaxLines property to 2, when the text is long enough

to occupy more than 2 lines:

The Label class has a TextType property, which determines whether the Label instance should display plain

text, or HTML text. This property should be set to one of the members of the TextType enumeration:

Text indicates that the Label will display plain text, and is the default value of the Label.TextType property.

Html indicates that the Label will display HTML text.

Therefore, Label instances can display HTML by setting the Label.TextType property to Html , and the

Label.Text property to a HTML string:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.linebreakmode#xamarin_forms_label_linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.linebreakmode#xamarin_forms_label_linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.linebreakmode#xamarin_forms_label_linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.linebreakmode#xamarin_forms_label_linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.linebreakmode#xamarin_forms_label_linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

Label label = new Label
{
 Text = "This is <strong style=\"color:red\">HTML text.",
 TextType = TextType.Html
};

<Label Text="This is <strong style="color:red">HTML text."
 TextType="Html" />

<Label TextType="Html">
 <![CDATA[
 This is <strong style="color:red">HTML text.
]]>
</Label>

IMPORTANTIMPORTANT

 Formatted text

In the example above, the double quote characters in the HTML have to be escaped using the \ symbol.

In XAML, HTML strings can become unreadable due to additionally escaping the < and > symbols:

Alternatively, for greater readability the HTML can be inlined in a CDATA section:

In this example, the Label.Text property is set to the HTML string that's inlined in the CDATA section. This

works because the Text property is the ContentProperty for the Label class.

The following screenshots show a Label displaying HTML:

Displaying HTML in a Label is limited to the HTML tags that are supported by the underlying platform.

Labels expose a FormattedText property that allows the presentation of text with multiple fonts and colors in

the same view.

The FormattedText property is of type FormattedString , which comprises one or more Span instances, set via

the Spans property. The following Span properties can be used to set visual appearance:

BackgroundColor – the color of the span background.

CharacterSpacing , of type double , is the spacing between characters of the Span text.

Font – the font for the text in the span.

FontAttributes – the font attributes for the text in the span.

FontFamily – the font family to which the font for the text in the span belongs.

FontSize – the size of the font for the text in the span.

ForegroundColor – the color for the text in the span. This property is obsolete and has been replaced by the

TextColor property.

LineHeight - the multiplier to apply to the default line height of the span. For more information, see Line

Height.

Style – the style to apply to the span.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.formattedtext#xamarin_forms_label_formattedtext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.formattedstring
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.formattedstring.spans#xamarin_forms_formattedstring_spans
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.backgroundcolor#xamarin_forms_span_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.font#xamarin_forms_span_font
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.fontattributes#xamarin_forms_span_fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.fontfamily#xamarin_forms_span_fontfamily
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.fontsize#xamarin_forms_span_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.foregroundcolor#xamarin_forms_span_foregroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.lineheight#xamarin_forms_span_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.style#xamarin_forms_span_style

NOTENOTE

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TextSample.LabelPage"
 Title="Label Demo - XAML">
 <StackLayout Padding="5,10">
 ...
 <Label LineBreakMode="WordWrap">
 <Label.FormattedText>
 <FormattedString>

 <Span.GestureRecognizers>
 <TapGestureRecognizer Command="{Binding TapCommand}" />
 </Span.GestureRecognizers>

 </FormattedString>
 </Label.FormattedText>
 </Label>
 </StackLayout>
</ContentPage>

Text – the text of the span.

TextColor – the color for the text in the span.

TextDecorations - the decorations to apply to the text in the span. For more information, see Text

Decorations.

The BackgroundColor , Text , and Text bindable properties have a default binding mode of OneWay . For more

information about this binding mode, see The Default Binding Mode in the Binding Mode guide.

In addition, the GestureRecognizers property can be used to define a collection of gesture recognizers that will

respond to gestures on the Span .

It's not possible to display HTML in a Span .

The following XAML example demonstrates a FormattedText property that consists of three Span instances:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.text#xamarin_forms_span_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.textcolor#xamarin_forms_span_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.backgroundcolor#xamarin_forms_span_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.text#xamarin_forms_span_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.text#xamarin_forms_span_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gestureelement.gesturerecognizers#xamarin_forms_gestureelement_gesturerecognizers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span

public class LabelPageCode : ContentPage
{
 public LabelPageCode ()
 {
 var layout = new StackLayout{ Padding = new Thickness (5, 10) };
 ...
 var formattedString = new FormattedString ();
 formattedString.Spans.Add (new Span{ Text = "Red bold, ", ForegroundColor = Color.Red,
FontAttributes = FontAttributes.Bold });

 var span = new Span { Text = "default, " };
 span.GestureRecognizers.Add(new TapGestureRecognizer { Command = new Command(async () => await
DisplayAlert("Tapped", "This is a tapped Span.", "OK")) });
 formattedString.Spans.Add(span);
 formattedString.Spans.Add (new Span { Text = "italic small.", FontAttributes =
FontAttributes.Italic, FontSize = Device.GetNamedSize(NamedSize.Small, typeof(Label)) });

 layout.Children.Add (new Label { FormattedText = formattedString });
 this.Content = layout;
 }
}

IMPORTANTIMPORTANT

 Line height

NOTENOTE

The Text property of a Span can be set through data binding. For more information, see Data Binding.

Note that a Span can also respond to any gestures that are added to the span's GestureRecognizers collection.

For example, a TapGestureRecognizer has been added to the second Span in the above code examples.

Therefore, when this Span is tapped the TapGestureRecognizer will respond by executing the ICommand defined

by the Command property. For more information about gesture recognizers, see Xamarin.Forms Gestures.

The following screenshots show the result of setting the FormattedString property to three Span instances:

The vertical height of a Label and a Span can be customized by setting the Label.LineHeight property or

Span.LineHeight to a double value. On iOS and Android these values are multipliers of the original line height,

and on the Universal Windows Platform (UWP) the Label.LineHeight property value is a multiplier of the label

font size.

On iOS, the Label.LineHeight and Span.LineHeight properties change the line height of text that fits on a single

line, and text that wraps onto multiple lines.

On Android, the Label.LineHeight and Span.LineHeight properties only change the line height of text that wraps

onto multiple lines.

On UWP, the Label.LineHeight property changes the line height of text that wraps onto multiple lines, and the

Span.LineHeight property has no effect.

The following XAML example demonstrates setting the LineHeight property on a Label :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.text#xamarin_forms_span_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gestureelement.gesturerecognizers#xamarin_forms_gestureelement_gesturerecognizers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.command#xamarin_forms_tapgesturerecognizer_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.lineheight#xamarin_forms_label_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.lineheight#xamarin_forms_span_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.lineheight#xamarin_forms_label_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.lineheight#xamarin_forms_span_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.lineheight#xamarin_forms_label_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.lineheight#xamarin_forms_span_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.lineheight#xamarin_forms_label_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.lineheight#xamarin_forms_span_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.lineheight#xamarin_forms_label_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

<Label Text="Lorem ipsum dolor sit amet, consectetur adipiscing elit. In facilisis nulla eu felis fringilla
vulputate. Nullam porta eleifend lacinia. Donec at iaculis tellus."
 LineBreakMode="WordWrap"
 LineHeight="1.8" />

var label =
{
 Text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. In facilisis nulla eu felis fringilla
vulputate. Nullam porta eleifend lacinia. Donec at iaculis tellus.", LineBreakMode = LineBreakMode.WordWrap,
 LineHeight = 1.8
};

<Label LineBreakMode="WordWrap">
 <Label.FormattedText>
 <FormattedString>
 <Span Text="Lorem ipsum dolor sit amet, consectetur adipiscing elit. In a tincidunt sem.
Phasellus mollis sit amet turpis in rutrum. Sed aliquam ac urna id scelerisque. "
 LineHeight="1.8"/>
 <Span Text="Nullam feugiat sodales elit, et maximus nibh vulputate id."
 LineHeight="1.8" />
 </FormattedString>
 </Label.FormattedText>
</Label>

var formattedString = new FormattedString();
formattedString.Spans.Add(new Span
{
 Text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. In a tincidunt sem. Phasellus mollis sit
amet turpis in rutrum. Sed aliquam ac urna id scelerisque. ",
 LineHeight = 1.8
});
formattedString.Spans.Add(new Span
{
 Text = "Nullam feugiat sodales elit, et maximus nibh vulputate id.",
 LineHeight = 1.8
});
var label = new Label
{
 FormattedText = formattedString,
 LineBreakMode = LineBreakMode.WordWrap
};

The equivalent C# code is:

The following screenshots show the result of setting the Label.LineHeight property to 1.8:

The following XAML example demonstrates setting the LineHeight property on a Span :

The equivalent C# code is:

The following screenshots show the result of setting the Span.LineHeight property to 1.8:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.lineheight#xamarin_forms_label_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.lineheight#xamarin_forms_span_lineheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span.lineheight#xamarin_forms_span_lineheight

 Padding

<Label Padding="10">
 <Label.FormattedText>
 <FormattedString>

 </FormattedString>
 </Label.FormattedText>
</Label>

FormattedString formattedString = new FormattedString();
formattedString.Spans.Add(new Span
{
 Text = "Lorem ipsum"
});
formattedString.Spans.Add(new Span
{
 Text = "dolor sit amet."
});
Label label = new Label
{
 FormattedText = formattedString,
 Padding = new Thickness(20)
};

IMPORTANTIMPORTANT

 Hyperlinks

Padding represents the space between an element and its child elements, and is used to separate the element

from its own content. Padding can be applied to Label instances by setting the Label.Padding property to a

Thickness value:

The equivalent C# code is:

On iOS, when a Label is created that sets the Padding property, padding will be applied and the padding value can be

updated later. However, when a Label is created that doesn't set the Padding property, attempting to set it later will

have no effect.

On Android and the Universal Windows Platform, the Padding property value can be specified when the Label is

created, or later.

For more information about padding, see Margins and Padding.

The text displayed by Label and Span instances can be turned into hyperlinks with the following approach:

1. Set the TextColor and TextDecoration properties of the Label or Span .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span

<Label>
 <Label.FormattedText>
 <FormattedString>

 <Span Text="here"
 TextColor="Blue"
 TextDecorations="Underline">
 <Span.GestureRecognizers>
 <TapGestureRecognizer Command="{Binding TapCommand}"
 CommandParameter="https://docs.microsoft.com/xamarin/" />
 </Span.GestureRecognizers>

 </FormattedString>
 </Label.FormattedText>
</Label>

2. Add a TapGestureRecognizer to the GestureRecognizers collection of the Label or Span , whose Command

property binds to a ICommand , and whose CommandParameter property contains the URL to open.

3. Define the ICommand that will be executed by the TapGestureRecognizer .

4. Write the code that will be executed by the ICommand .

The following code example, taken from the Hyperlink Demos sample, shows a Label whose content is set

from multiple Span instances:

In this example, the first and third Span instances comprise text, while the second Span represents a tappable

hyperlink. It has its text color set to blue, and has an underline text decoration. This creates the appearance of a

hyperlink, as shown in the following screenshots:

When the hyperlink is tapped, the TapGestureRecognizer will respond by executing the ICommand defined by its

Command property. In addition, the URL specified by the CommandParameter property will be passed to the

ICommand as a parameter.

The code-behind for the XAML page contains the TapCommand implementation:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gestureelement.gesturerecognizers#xamarin_forms_gestureelement_gesturerecognizers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.command#xamarin_forms_tapgesturerecognizer_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.commandparameter#xamarin_forms_tapgesturerecognizer_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-hyperlinks/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/text/label-images/hyperlinks-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.command#xamarin_forms_tapgesturerecognizer_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.commandparameter#xamarin_forms_tapgesturerecognizer_commandparameter

public partial class MainPage : ContentPage
{
 // Launcher.OpenAsync is provided by Xamarin.Essentials.
 public ICommand TapCommand => new Command<string>(async (url) => await Launcher.OpenAsync(url));

 public MainPage()
 {
 InitializeComponent();
 BindingContext = this;
 }
}

 Creating a reusable hyperlink classCreating a reusable hyperlink class

public class HyperlinkSpan : Span
{
 public static readonly BindableProperty UrlProperty =
 BindableProperty.Create(nameof(Url), typeof(string), typeof(HyperlinkSpan), null);

 public string Url
 {
 get { return (string)GetValue(UrlProperty); }
 set { SetValue(UrlProperty, value); }
 }

 public HyperlinkSpan()
 {
 TextDecorations = TextDecorations.Underline;
 TextColor = Color.Blue;
 GestureRecognizers.Add(new TapGestureRecognizer
 {
 // Launcher.OpenAsync is provided by Xamarin.Essentials.
 Command = new Command(async () => await Launcher.OpenAsync(Url))
 });
 }
}

The TapCommand executes the Launcher.OpenAsync method, passing the TapGestureRecognizer.CommandParameter

property value as a parameter. The Launcher.OpenAsync method is provided by Xamarin.Essentials, and opens

the URL in a web browser. Therefore, the overall effect is that when the hyperlink is tapped on the page, a web

browser appears and the URL associated with the hyperlink is navigated to.

The previous approach to creating a hyperlink requires writing repetitive code every time you require a

hyperlink in your application. However, both the Label and Span classes can be subclassed to create

HyperlinkLabel and HyperlinkSpan classes, with the gesture recognizer and text formatting code added there.

The following code example, taken from the Hyperlink Demos sample, shows a HyperlinkSpan class:

The HyperlinkSpan class defines a Url property, and associated BindableProperty , and the constructor sets the

hyperlink appearance and the TapGestureRecognizer that will respond when the hyperlink is tapped. When a

HyperlinkSpan is tapped, the TapGestureRecognizer will respond by executing the Launcher.OpenAsync method

to open the URL, specified by the Url property, in a web browser.

The HyperlinkSpan class can be consumed by adding an instance of the class to the XAML:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer.commandparameter#xamarin_forms_tapgesturerecognizer_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-hyperlinks/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tapgesturerecognizer

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:HyperlinkDemo"
 x:Class="HyperlinkDemo.MainPage">
 <StackLayout>
 ...
 <Label>
 <Label.FormattedText>
 <FormattedString>

 <local:HyperlinkSpan Text="here"
 Url="https://docs.microsoft.com/appcenter/" />

 </FormattedString>
 </Label.FormattedText>
 </Label>
 </StackLayout>
</ContentPage>

 Styling labels

 Related links

The previous sections covered setting Label and Span properties on a per-instance basis. However, sets of

properties can be grouped into one style that is consistently applied to one or many views. This can increase

readability of code and make design changes easier to implement. For more information, see Styles.

Text (sample)

Hyperlinks (sample)

Creating Mobile Apps with Xamarin.Forms, Chapter 3

Label API

Span API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/styles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-hyperlinks
https://developer.xamarin.com/r/xamarin-forms/book/chapter03.pdf
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.span

Xamarin.Forms Map
 11/2/2020 • 2 minutes to read • Edit Online

 Initialization and Configuration

 Map Control

 Position and Distance

 Pins

 Polygons, Polylines, and Circles

 Geocoding

 Launch the Native Map App

The Xamarin.Forms.Maps NuGet package is required to use maps functionality in an application. In addition,

accessing the user's location requires location permissions to have been granted to the application.

The Map control is a cross-platform view for displaying and annotating maps. It uses the native map control for

each platform, providing a fast and familiar maps experience for users.

The Position struct is typically used when positioning a map and its pins, and the Distance struct that can

optionally be used when positioning a map.

The Map control allows locations to be marked with Pin objects. A Pin is a map marker that opens an

information window when tapped.

Polygon , Polyline , and Circle elements allow you to highlight specific areas on a map. A Polygon is a fully

enclosed shape that can have a stroke and fill color. A Polyline is a line that does not fully enclose an area. A

Circle highlights a circular area of the map.

The Geocoder class converts between string addresses and latitude and longitude coordinates that are stored in

Position objects.

The native map app on each platform can be launched from a Xamarin.Forms application by the

Xamarin.Essentials Launcher class.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/index.md
https://www.nuget.org/packages/Xamarin.Forms.Maps/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position

Xamarin.Forms Map Initialization and Configuration
 7/8/2021 • 7 minutes to read • Edit Online

 Map initialization

Xamarin.FormsMaps.Init();

Xamarin.FormsMaps.Init(this, savedInstanceState);

Xamarin.FormsMaps.Init("INSERT_AUTHENTICATION_TOKEN_HERE");

 Platform configuration

 iOSiOS

 Download the sample

The Map control uses the native map control on each platform. This provides a fast, familiar maps experience

for users, but means that some configuration steps are needed to adhere to each platforms API requirements.

The Map control is provided by the Xamarin.Forms.Maps NuGet package, which should be added to every

project in the solution.

After installing the Xamarin.Forms.Maps NuGet package, it must be initialized in each platform project.

On iOS, this should occur in AppDelegate.csAppDelegate.cs by invoking the Xamarin.FormsMaps.Init method after the

Xamarin.Forms.Forms.Init method:

On Android, this should occur in MainActivity.csMainActivity.cs by invoking the Xamarin.FormsMaps.Init method after the

Xamarin.Forms.Forms.Init method:

On the Universal Windows Platform (UWP), this should occur in MainPage.xaml.csMainPage.xaml.cs by invoking the

Xamarin.FormsMaps.Init method from the MainPage constructor :

For information about the authentication token required on UWP, see Universal Windows Platform.

Once the NuGet package has been added and the initialization method called inside each application,

Xamarin.Forms.Maps APIs can be used in the shared code project.

Additional configuration is required on Android and the Universal Windows Platform (UWP) before the map will

display. In addition, on iOS, Android, and UWP, accessing the user's location requires location permissions to

have been granted to the application.

Displaying and interacting with a map on iOS doesn't require any additional configuration. However, to access

location services, you must set the following keys in Info.plistInfo.plist:

iOS 11 and later

iOS 10 and earlier

NSLocationWhenInUseUsageDescription – for using location services when the application is in use

NSLocationAlwaysAndWhenInUseUsageDescription – for using location services at all times

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/setup.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://www.nuget.org/packages/Xamarin.Forms.Maps/
https://www.nuget.org/packages/Xamarin.Forms.Maps/
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW26
https://developer.apple.com/documentation/bundleresources/information_property_list/nslocationalwaysandwheninuseusagedescription

<key>NSLocationAlwaysUsageDescription</key>
<string>Can we use your location at all times?</string>
<key>NSLocationWhenInUseUsageDescription</key>
<string>Can we use your location when your application is being used?</string>
<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
<string>Can we use your location at all times?</string>

 AndroidAndroid

 Get a Google Maps API keyGet a Google Maps API key

NSLocationWhenInUseUsageDescription – for using location services when the application is in use

NSLocationAlwaysUsageDescription – for using location services at all times

To support iOS 11 and earlier, you can include all three keys: NSLocationWhenInUseUsageDescription ,

NSLocationAlwaysAndWhenInUseUsageDescription , and NSLocationAlwaysUsageDescription .

The XML representation for these keys in Info.plistInfo.plist is shown below. You should update the string values to

reflect how your application is using the location information:

The Info.plistInfo.plist entries can also be added in SourceSource view while editing the Info.plistInfo.plist file:

A prompt is then displayed when the application attempts to access the user's location, requesting access:

The configuration process for displaying and interacting with a map on Android is:

1. Get a Google Maps API key and add it to the manifest.

2. Specify the Google Play services version number in the manifest.

3. Specify the requirement for Apache HTTP Legacy library in the manifest.

4. [optional] Specify the WRITE_EXTERNAL_STORAGE permission in the manifest.

5. [optional] Specify location permissions in the manifest.

6. [optional] Request runtime location permissions in the MainActivity class.

For an example of a correctly configured manifest file, see AndroidManifest.xml from the sample application.

To use the Google Maps API on Android you must generate an API key. To do this, follow the instructions in

Obtaining a Google Maps API key.

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW26
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW18
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/setup-images/permission-ios-large.png#lightbox
https://github.com/xamarin/xamarin-forms-samples/blob/master/WorkingWithMaps/WorkingWithMaps/WorkingWithMaps.Android/Properties/AndroidManifest.xml
https://developers.google.com/maps/documentation/android/
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key

<application ...>
 <meta-data android:name="com.google.android.geo.API_KEY" android:value="PASTE-YOUR-API-KEY-HERE" />
</application>

NOTENOTE

 Specify the Google Play services version numberSpecify the Google Play services version number

<meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />

 Specify the requirement for the Apache HTTP legacy librarySpecify the requirement for the Apache HTTP legacy library

<uses-library android:name="org.apache.http.legacy" android:required="false" />

 Specify the WRITE_EXTERNAL_STORAGE permissionSpecify the WRITE_EXTERNAL_STORAGE permission

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 Specify location permissionsSpecify location permissions

Once you've obtained an API key it must be added within the <application> element of the

Proper ties/AndroidManifest.xmlProper ties/AndroidManifest.xml file:

This embeds the API key into the manifest. Without a valid API key the Map control will display a blank grid.

com.google.android.geo.API_KEY is the recommended metadata name for the API key. For backwards compatibility,

the com.google.android.maps.v2.API_KEY metadata name can be used, but only allows authentication to the Android

Maps API v2.

For your APK to access Google Maps, you must include SHA-1 fingerprints and package names for every

keystore (debug and release) that you use to sign your APK. For example, if you use one computer for debug

and another computer for generating the release APK, you should include the SHA-1 certificate fingerprint from

the debug keystore of the first computer and the SHA-1 certificate fingerprint from the release keystore of the

second computer. Also remember to edit the key credentials if the app's Package NamePackage Name changes. See

Obtaining a Google Maps API key.

Add the following declaration within the <application> element of AndroidManifest.xmlAndroidManifest.xml :

This embeds the version of Google Play services that the application was compiled with, into the manifest.

If your Xamarin.Forms application targets API 28 or higher, you must add the following declaration within the

<application> element of AndroidManifest.xmlAndroidManifest.xml :

This tells the application to use the Apache Http client library, which has been removed from the bootclasspath

in Android 9.

If your application targets API 22 or lower, it may be necessary to add the WRITE_EXTERNAL_STORAGE permission to

the manifest, as a child of the <manifest> element:

This is not required if your application targets API 23 or greater.

If your application needs to access the user's location, you must request permission by adding the

ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION permissions to the manifest (or both), as a child of the

<manifest> element:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key

<manifest xmlns:android="http://schemas.android.com/apk/res/android" android:versionCode="1"
android:versionName="1.0" package="com.companyname.myapp">
 ...
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
</manifest>

 Request runtime location permissionsRequest runtime location permissions

The ACCESS_COARSE_LOCATION permission allows the API to use WiFi or mobile data, or both, to determine the

device's location. The ACCESS_FINE_LOCATION permissions allows the API to use the Global Positioning System

(GPS), WiFi, or mobile data to determine a precise a location as possible.

Alternatively, these permissions can be enabled by using the manifest editor to add the following permissions:

AccessCoarseLocation

AccessFineLocation

These are shown in the screenshot below:

If your application targets API 23 or later and needs to access the user's location, it must check to see if it has the

required permission at runtime, and request it if it does not have it. This can be accomplished as follows:

const int RequestLocationId = 0;

readonly string[] LocationPermissions =
{
 Manifest.Permission.AccessCoarseLocation,
 Manifest.Permission.AccessFineLocation
};

protected override void OnStart()
{
 base.OnStart();

 if ((int)Build.VERSION.SdkInt >= 23)
 {
 if (CheckSelfPermission(Manifest.Permission.AccessFineLocation) != Permission.Granted)
 {
 RequestPermissions(LocationPermissions, RequestLocationId);
 }
 else
 {
 // Permissions already granted - display a message.
 }
 }
}

1. In the MainActivity class, add the following fields:

2. In the MainActivity class, add the following OnStart override:

Provided that the application is targeting API 23 or greater, this code performs a runtime permission

check for the AccessFineLocation permission. If permission has not been granted, a permission request is

made by calling the RequestPermissions method.

3. In the MainActivity class, add the following OnRequestPermissionsResult override:

 Universal Windows PlatformUniversal Windows Platform

NOTENOTE

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
[GeneratedEnum] Permission[] grantResults)
{
 if (requestCode == RequestLocationId)
 {
 if ((grantResults.Length == 1) && (grantResults[0] == (int)Permission.Granted))
 // Permissions granted - display a message.
 else
 // Permissions denied - display a message.
 }
 else
 {
 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
 }
}

This override handles the result of the permission request.

The overall effect of this code is that when the application requests the user's location, the following dialog is

displayed which requests permission:

On UWP, your application must be authenticated before it can display a map and consume map services. To

authenticate your application, you must specify a maps authentication key. For more information, see Request a

maps authentication key. The authentication token should then be specified in the

FormsMaps.Init("AUTHORIZATION_TOKEN") method call, to authenticate the application with Bing Maps.

On UWP, to use map services such as geocoding you must also set the MapService.ServiceToken property to the

authentication key value. This can be accomplished with the following line of code:

Windows.Services.Maps.MapService.ServiceToken = "INSERT_AUTH_TOKEN_HERE"; .

In addition, if your application needs to access the user's location, you must enable the location capability in the

package manifest. This can be accomplished as follows:

1. In Solution ExplorerSolution Explorer , double-click package.appxmanifestpackage.appxmanifest and select the CapabilitiesCapabilities tab.

2. In the CapabilitiesCapabilities list, check the box for LocationLocation. This add the location device capability to the

package manifest file.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/setup-images/permission-android-large.png#lightbox
https://docs.microsoft.com/en-us/windows/uwp/maps-and-location/authentication-key

 Release buildsRelease builds

var assembliesToInclude = new [] { typeof(Xamarin.Forms.Maps.UWP.MapRenderer).GetTypeInfo().Assembly };
Xamarin.Forms.Forms.Init(e, assembliesToInclude);

IMPORTANTIMPORTANT

 Related links

<Capabilities>
 <!-- DeviceCapability elements must follow Capability elements (if present) -->
 <DeviceCapability Name="location"/>
</Capabilities>

UWP release builds use .NET native compilation to compile the application directly to native code. However, a

consequence of this is that the renderer for the Map control on UWP may be linked out of the executable. This

can be fixed by using a UWP-specific overload of the Forms.Init method in App.xaml.csApp.xaml.cs :

This code passes the assembly in which the Xamarin.Forms.Maps.UWP.MapRenderer class resides, to the Forms.Init

method. This ensures that the assembly isn't linked out of the executable by the .NET native compilation process.

Failure to do this will result in the Map control not appearing when running a release build.

Maps Sample

Xamarin.Forms.Maps Pins.

Maps API

Map Custom Renderer

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps

Xamarin.Forms Map Control
 7/8/2021 • 8 minutes to read • Edit Online

 Download the sample

The Map control is a cross-platform view for displaying and annotating maps. It uses the native map control for

each platform, providing a fast and familiar maps experience for users:

The Map class defines the following properties that control map appearance and behavior :

IsShowingUser , of type bool , indicates whether the map is showing the user's current location.

ItemsSource , of type IEnumerable , which specifies the collection of IEnumerable items to be displayed.

ItemTemplate , of type DataTemplate , which specifies the DataTemplate to apply to each item in the collection

of displayed items.

ItemTemplateSelector , of type DataTemplateSelector , which specifies the DataTemplateSelector that will be

used to choose a DataTemplate for an item at runtime.

HasScrollEnabled , of type bool , determines whether the map is allowed to scroll.

HasZoomEnabled , of type bool , determines whether the map is allowed to zoom.

MapElements , of type IList<MapElement> , represents the list of elements on the map, such as polygons and

polylines.

MapType , of type MapType , indicates the display style of the map.

MoveToLastRegionOnLayoutChange , of type bool , controls whether the displayed map region will move from

its current region to its previously set region when a layout change occurs.

Pins , of type IList<Pin> , represents the list of pins on the map.

TrafficEnabled , of type bool , indicates whether traffic data is overlaid on the map.

VisibleRegion , of type MapSpan , returns the currently displayed region of the map.

These properties, with the exception of the MapElements , Pins , and VisibleRegion properties, are backed by

BindableProperty objects, which mean they can be targets of data bindings.

The Map class also defines a MapClicked event that's fired when the map is tapped. The MapClickedEventArgs

object that accompanies the event has a single property named Position , of type Position . When the event is

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/map.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/map-images/map-default-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.isshowinguser#xamarin_forms_maps_map_isshowinguser
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemssource#xamarin_forms_maps_map_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemtemplate#xamarin_forms_maps_map_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.hasscrollenabled#xamarin_forms_maps_map_hasscrollenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.haszoomenabled#xamarin_forms_maps_map_haszoomenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.pins#xamarin_forms_maps_map_pins
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.visibleregion#xamarin_forms_maps_map_visibleregion
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position

 Display a map

<ContentPage ...
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps">
 <maps:Map x:Name="map" />
</ContentPage>

NOTENOTE

using Xamarin.Forms;
using Xamarin.Forms.Maps;

namespace WorkingWithMaps
{
 public class MapTypesPageCode : ContentPage
 {
 public MapTypesPageCode()
 {
 Map map = new Map();
 Content = map;
 }
 }
}

fired, the Position property is set to the map location that was tapped. For information about the Position

struct, see Map Position and Distance.

For information about the ItemsSource , ItemTemplate , and ItemTemplateSelector properties, see Display a pin

collection.

A Map can be displayed by adding it to a layout or page:

An additional xmlns namespace definition is required to reference the Xamarin.Forms.Maps controls. In the previous

example the Xamarin.Forms.Maps namespace is referenced through the maps keyword.

The equivalent C# code is:

This example calls the default Map constructor, which centers the map on Rome:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemssource#xamarin_forms_maps_map_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemtemplate#xamarin_forms_maps_map_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/map-images/map-default-large.png#lightbox

 Map types

<maps:Map MapType="Satellite" />

Map map = new Map
{
 MapType = MapType.Satellite
};

Alternatively, a MapSpan argument can be passed to a Map constructor to set the center point and zoom level of

the map when it's loaded. For more information, see Display a specific location on a map.

The Map.MapType property can be set to a MapType enumeration member to define the display style of the map.

The MapType enumeration defines the following members:

Street specifies that a street map will be displayed.

Satellite specifies that a map containing satellite imagery will be displayed.

Hybrid specifies that a map combining street and satellite data will be displayed.

By default, a Map will display a street map if the MapType property is undefined. Alternatively, the MapType

property can be set to one of the MapType enumeration members:

The equivalent C# code is:

The following screenshots show a Map when the MapType property is set to Street :

The following screenshots show a Map when the MapType property is set to Satellite :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.maptype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.maptype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/map-images/maptype-street-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype

 Display a specific location on a map

<maps:Map>
 <x:Arguments>
 <maps:MapSpan>
 <x:Arguments>
 <maps:Position>
 <x:Arguments>
 <x:Double>36.9628066</x:Double>
 <x:Double>-122.0194722</x:Double>
 </x:Arguments>
 </maps:Position>
 <x:Double>0.01</x:Double>
 <x:Double>0.01</x:Double>
 </x:Arguments>
 </maps:MapSpan>
 </x:Arguments>
</maps:Map>

The following screenshots show a Map when the MapType property is set to Hybrid :

The region of a map to display when a map is loaded can be set by passing a MapSpan argument to the Map

constructor :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/map-images/maptype-satellite-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.maptype#xamarin_forms_maps_map_maptype
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/map-images/maptype-hybrid-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map

Position position = new Position(36.9628066, -122.0194722);
MapSpan mapSpan = new MapSpan(position, 0.01, 0.01);
Map map = new Map(mapSpan);

 Create a MapSpan object

The equivalent C# code is:

This example creates a Map object that shows the region that is specified by the MapSpan object. The MapSpan

object is centered on the latitude and longitude represented by a Position object, and spans 0.01 latitude and

0.01 longitude degrees. For information about the Position struct, see Map Position and Distance. For

information about passing arguments in XAML, see Passing Arguments in XAML.

The result is that when the map is displayed, it's centered on a specific location, and spans a specific number of

latitude and longitude degrees:

There are a number of approaches for creating MapSpan objects. A common approach is supply the required

arguments to the MapSpan constructor. These are a latitude and longitude represented by a Position object,

and double values that represent the degrees of latitude and longitude that are spanned by the MapSpan . For

information about the Position struct, see Map Position and Distance.

Alternatively, there are three methods in the MapSpan class that return new MapSpan objects:

1. ClampLatitude returns a MapSpan with the same LongitudeDegrees as the method's class instance, and a

radius defined by its north and south arguments.

2. FromCenterAndRadius returns a MapSpan that is defined by its Position and Distance arguments.

3. WithZoom returns a MapSpan with the same center as the method's class instance, but with a radius

multiplied by its double argument.

For information about the Distance struct, see Map Position and Distance.

Once a MapSpan has been created, the following properties can be accessed to retrieve data about it:

Center , which represents the Position in the geographical center of the MapSpan .

LatitudeDegrees , which represents the degrees of latitude that are spanned by the MapSpan .

LongitudeDegrees , which represents the degrees of longitude that are spanned by the MapSpan .

Radius , which represents the MapSpan radius.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/map-images/map-region-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.clamplatitude
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.fromcenterandradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.withzoom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.center#xamarin_forms_maps_mapspan_center
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.latitudedegrees#xamarin_forms_maps_mapspan_latitudedegrees
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.longitudedegrees#xamarin_forms_maps_mapspan_longitudedegrees
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.radius#xamarin_forms_maps_mapspan_radius

 Move the map

MapSpan mapSpan = MapSpan.FromCenterAndRadius(position, Distance.FromKilometers(0.444));
map.MoveToRegion(mapSpan);

 Zoom the map

double zoomLevel = 0.5;
double latlongDegrees = 360 / (Math.Pow(2, zoomLevel));
if (map.VisibleRegion != null)
{
 map.MoveToRegion(new MapSpan(map.VisibleRegion.Center, latlongDegrees, latlongDegrees));
}

IMPORTANTIMPORTANT

 Customize map behavior

NOTENOTE

 Show traffic dataShow traffic data

<maps:Map TrafficEnabled="true" />

The Map.MoveToRegion method can be called to change the position and zoom level of a map. This method

accepts a MapSpan argument that defines the region of the map to display, and its zoom level.

The following code shows an example of moving the displayed region on a map:

The zoom level of a Map can be changed without altering its location. This can be accomplished using the map

UI, or programatically by calling the MoveToRegion method with a MapSpan argument that uses the current

location as the Position argument:

In this example, the MoveToRegion method is called with a MapSpan argument that specifies the current location

of the map, via the Map.VisibleRegion property, and the zoom level as degrees of latitude and longitude. The

overall result is that the zoom level of the map is changed, but its location isn't. An alternative approach for

implementing zoom on a map is to use the MapSpan.WithZoom method to control the zoom factor.

Zooming a map, whether via the map UI or programatically, requires that the Map.HasZoomEnabled property is true .

For more information about this property, see Disable zoom.

The behavior of a Map can be customized by setting some of its properties, and by handling the MapClicked

event.

Additional map behavior customization can be achieved by creating a map custom renderer. For more information, see

Customizing a Xamarin.Forms Map.

The Map class defines a TrafficEnabled property of type bool . By default this property is false , which

indicates that traffic data won't be overlaid on the map. When this property is set to true , traffic data is overlaid

on the map. The following example shows setting this property:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.movetoregion
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.movetoregion
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.movetoregion
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.visibleregion#xamarin_forms_maps_map_visibleregion
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan.withzoom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.haszoomenabled#xamarin_forms_maps_map_haszoomenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map

Map map = new Map
{
 TrafficEnabled = true
};

 Disable scrollDisable scroll

<maps:Map HasScrollEnabled="false" />

Map map = new Map
{
 HasScrollEnabled = false
};

 Disable zoomDisable zoom

<maps:Map HasZoomEnabled="false" />

Map map = new Map
{
 HasZoomEnabled = false
};

 Show the user's locationShow the user's location

<maps:Map IsShowingUser="true" />

Map map = new Map
{
 IsShowingUser = true
};

The Map class defines a HasScrollEnabled property of type bool . By default this property is true , which

indicates that the map is allowed to scroll. When this property is set to false , the map will not scroll. The

following example shows setting this property:

The equivalent C# code is:

The Map class defines a HasZoomEnabled property of type bool . By default this property is true , which

indicates that zoom can be performed on the map. When this property is set to false , the map can't be

zoomed. The following example shows setting this property:

The equivalent C# code is:

The Map class defines a IsShowingUser property of type bool . By default this property is false , which

indicates that the map is not showing the user's current location. When this property is set to true , the map

shows the user's current location. The following example shows setting this property:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.hasscrollenabled#xamarin_forms_maps_map_hasscrollenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.haszoomenabled#xamarin_forms_maps_map_haszoomenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.isshowinguser#xamarin_forms_maps_map_isshowinguser

IMPORTANTIMPORTANT

 Maintain map region on layout changeMaintain map region on layout change

<maps:Map MoveToLastRegionOnLayoutChange="false" />

Map map = new Map
{
 MoveToLastRegionOnLayoutChange = false
};

 Map clicksMap clicks

void OnMapClicked(object sender, MapClickedEventArgs e)
{
 System.Diagnostics.Debug.WriteLine($"MapClick: {e.Position.Latitude}, {e.Position.Longitude}");
}

<maps:Map MapClicked="OnMapClicked" />

Map map = new Map();
map.MapClicked += OnMapClicked;

 Related links

On iOS, Android, and the Universal Windows Platform, accessing the user's location requires location permissions to have

been granted to the application. For more information, see Platform configuration.

The Map class defines a MoveToLastRegionOnLayoutChange property of type bool . By default this property is

true , which indicates that the displayed map region will move from its current region to its previously set

region when a layout change occurs, such as on device rotation. When this property is set to false , the

displayed map region will remain centered when a layout change occurs. The following example shows setting

this property:

The equivalent C# code is:

The Map class defines a MapClicked event that's fired when the map is tapped. The MapClickedEventArgs object

that accompanies the event has a single property named Position , of type Position . When the event is fired,

the Position property is set to the map location that was tapped. For information about the Position struct,

see Map Position and Distance.

The following code example shows an event handler for the MapClicked event:

In this example, the OnMapClicked event handler outputs the latitude and longitude that represents the tapped

map location. The event handler can be registered with the MapClicked event as follows:

The equivalent C# code is:

Maps Sample

Map Position and Distance

Customizing a Xamarin.Forms Map

Passing Arguments in XAML

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps

Xamarin.Forms Map Position and Distance
 7/8/2021 • 2 minutes to read • Edit Online

 Position

Position position = new Position(36.9628066, -122.0194722);

NOTENOTE

 Distance

Distance distance = new Distance(1450.5);

 Download the sample

The Xamarin.Forms.Maps namespace contains a Position struct that's typically used when positioning a map

and its pins, and a Distance struct that can optionally be used when positioning a map.

The Position struct encapsulates a position stored as latitude and longitude values. This struct defines two

read-only properties:

Latitude , of type double , which represents the latitude of the position in decimal degrees.

Longitude , of type double , which represents the longitude of the position in decimal degrees.

Position objects are created with the Position constructor, which requires latitude and longitude arguments

specified as double values:

When creating a Position object, the latitude value will be clamped between -90.0 and 90.0, and the longitude

value will be clamped between -180.0 and 180.0.

The GeographyUtils class has a ToRadians extension method that converts a double value from degrees to radians,

and a ToDegrees extension method that converts a double value from radians to degrees.

The Distance struct encapsulates a distance stored as a double value, which represents the distance in meters.

This struct defines three read-only properties:

Kilometers , of type double , which represents the distance in kilometers that's spanned by the Distance .

Meters , of type double , which represents the distance in meters that's spanned by the Distance .

Miles , of type double , which represents the distance in miles that's spanned by the Distance .

Distance objects can be created with the Distance constructor, which requires a meters argument specified as

a double :

Alternatively, Distance objects can be created with the FromKilometers , FromMeters , FromMiles , and

BetweenPositions factory methods:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/position-distance.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position.latitude#xamarin_forms_maps_position_latitude
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position.longitude#xamarin_forms_maps_position_longitude
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance.kilometers#xamarin_forms_maps_distance_kilometers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance.meters#xamarin_forms_maps_distance_meters
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance.miles#xamarin_forms_maps_distance_miles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance.fromkilometers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance.frommeters
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance.frommiles

Distance distance1 = Distance.FromKilometers(1.45); // argument represents the number of kilometers
Distance distance2 = Distance.FromMeters(1450.5); // argument represents the number of meters
Distance distance3 = Distance.FromMiles(0.969); // argument represents the number of miles
Distance distance4 = Distance.BetweenPositions(position1, position2);

 Related links
Maps Sample

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps

Xamarin.Forms Map Pins
 7/8/2021 • 5 minutes to read • Edit Online

 Display a pin

 Download the sample

The Xamarin.Forms Map control allows locations to be marked with Pin objects. A Pin is a map marker that

opens an information window when tapped:

When a Pin object is added to the Map.Pins collection, the pin is rendered on the map.

The Pin class has the following properties:

Address , of type string , which typically represents the address for the pin location. However, it can be any

string content, not just an address.

Label , of type string , which typically represents the pin title.

Position , of type Position , which represents the latitude and longitude of the pin.

Type , of type PinType , which represents the type of pin.

These properties are backed by BindableProperty objects, which means a Pin can be the target of data

bindings. For more information about data binding Pin objects, see Display a pin collection.

In addition, the Pin class defines MarkerClicked and InfoWindowClicked events. The MarkerClicked event is

fired when a pin is tapped, and the InfoWindowClicked event is fired when the information window is tapped.

The PinClickedEventArgs object that accompanies both events has a single HideInfoWindow property, of type

bool .

A Pin can be added to a Map in XAML:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/pins.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/pins-images/pin-and-information-window-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.address#xamarin_forms_maps_pin_address
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.label#xamarin_forms_maps_pin_label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.position#xamarin_forms_maps_pin_position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.type#xamarin_forms_maps_pin_type
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pintype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map

<ContentPage ...
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps">
 <maps:Map x:Name="map"
 IsShowingUser="True"
 MoveToLastRegionOnLayoutChange="False">
 <x:Arguments>
 <maps:MapSpan>
 <x:Arguments>
 <maps:Position>
 <x:Arguments>
 <x:Double>36.9628066</x:Double>
 <x:Double>-122.0194722</x:Double>
 </x:Arguments>
 </maps:Position>
 <x:Double>0.01</x:Double>
 <x:Double>0.01</x:Double>
 </x:Arguments>
 </maps:MapSpan>
 </x:Arguments>
 <maps:Map.Pins>
 <maps:Pin Label="Santa Cruz"
 Address="The city with a boardwalk"
 Type="Place">
 <maps:Pin.Position>
 <maps:Position>
 <x:Arguments>
 <x:Double>36.9628066</x:Double>
 <x:Double>-122.0194722</x:Double>
 </x:Arguments>
 </maps:Position>
 </maps:Pin.Position>
 </maps:Pin>
 </maps:Map.Pins>
 </maps:Map>
</ContentPage>

using Xamarin.Forms.Maps;
// ...
Map map = new Map
{
 // ...
};
Pin pin = new Pin
{
 Label = "Santa Cruz",
 Address = "The city with a boardwalk",
 Type = PinType.Place,
 Position = new Position(36.9628066, -122.0194722)
};
map.Pins.Add(pin);

This XAML creates a Map object that shows the region that is specified by the MapSpan object. The MapSpan

object is centered on the latitude and longitude represented by a Position object, which extends 0.01 latitude

and longitude degrees. A Pin object is added to the Map.Pins collection, and drawn on the Map at the location

specified by its Position property. For information about the Position struct, see Map Position and Distance.

For information about passing arguments in XAML to objects that lack default constructors, see Passing

Arguments in XAML.

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.mapspan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.position#xamarin_forms_maps_pin_position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position

WARNINGWARNING

 Interact with a pin

Failure to set the Pin.Label property will result in an ArgumentException being thrown when the Pin is added to a

Map .

This example code results in a single pin being rendered on a map:

By default, when a Pin is tapped its information window is displayed:

Tapping elsewhere on the map closes the information window.

The Pin class defines a MarkerClicked event, which is fired when a Pin is tapped. It's not necessary to handle

this event to display the information window. Instead, this event should be handled when there's a requirement

to be notified that a specific pin has been tapped.

The Pin class also defines a InfoWindowClicked event that's fired when an information window is tapped. This

event should be handled when there's a requirement to be notified that a specific information window has been

tapped.

The following code shows an example of handling these events:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.label#xamarin_forms_maps_pin_label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/pins-images/pin-only-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/pins-images/pin-and-information-window-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin

using Xamarin.Forms.Maps;
// ...
Pin boardwalkPin = new Pin
{
 Position = new Position(36.9641949, -122.0177232),
 Label = "Boardwalk",
 Address = "Santa Cruz",
 Type = PinType.Place
};
boardwalkPin.MarkerClicked += async (s, args) =>
{
 args.HideInfoWindow = true;
 string pinName = ((Pin)s).Label;
 await DisplayAlert("Pin Clicked", $"{pinName} was clicked.", "Ok");
};

Pin wharfPin = new Pin
{
 Position = new Position(36.9571571, -122.0173544),
 Label = "Wharf",
 Address = "Santa Cruz",
 Type = PinType.Place
};
wharfPin.InfoWindowClicked += async (s, args) =>
{
 string pinName = ((Pin)s).Label;
 await DisplayAlert("Info Window Clicked", $"The info window was clicked for {pinName}.", "Ok");
};

 Pin types

 Display a pin collection

The PinClickedEventArgs object that accompanies both events has a single HideInfoWindow property, of type

bool . When this property is set to true inside an event handler, the information window will be hidden.

Pin objects include a Type property, of type PinType , which represents the type of pin. The PinType

enumeration defines the following members:

Generic , represents a generic pin.

Place , represents a pin for a place.

SavedPin , represents a pin for a saved location.

SearchResult , represents a pin for a search result.

However, setting the Pin.Type property to any PinType member does not change the appearance of the

rendered pin. Instead, you must create a custom renderer to customize pin appearance. For more information,

see Customizing a map pin.

The Map class defines the following properties:

ItemsSource , of type IEnumerable , which specifies the collection of IEnumerable items to be displayed.

ItemTemplate , of type DataTemplate , which specifies the DataTemplate to apply to each item in the collection

of displayed items.

ItemTemplateSelector , of type DataTemplateSelector , which specifies the DataTemplateSelector that will be

used to choose a DataTemplate for an item at runtime.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.type#xamarin_forms_maps_pin_type
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pintype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin.type#xamarin_forms_maps_pin_type
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pintype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemssource#xamarin_forms_maps_map_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemtemplate#xamarin_forms_maps_map_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

IMPORTANTIMPORTANT

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps"
 x:Class="WorkingWithMaps.PinItemsSourcePage">
 <Grid>
 ...
 <maps:Map x:Name="map"
 ItemsSource="{Binding Locations}">
 <maps:Map.ItemTemplate>
 <DataTemplate>
 <maps:Pin Position="{Binding Position}"
 Address="{Binding Address}"
 Label="{Binding Description}" />
 </DataTemplate>
 </maps:Map.ItemTemplate>
 </maps:Map>
 ...
 </Grid>
</ContentPage>

 Choose item appearance at runtimeChoose item appearance at runtime

The ItemTemplate property takes precedence when both the ItemTemplate and ItemTemplateSelector properties

are set.

A Map can be populated with pins by using data binding to bind its ItemsSource property to an IEnumerable

collection:

The ItemsSource property data binds to the Locations property of the connected viewmodel, which returns an

ObservableCollection of Location objects, which is a custom type. Each Location object defines Address and

Description properties, of type string , and a Position property, of type Position .

The appearance of each item in the IEnumerable collection is defined by setting the ItemTemplate property to a

DataTemplate that contains a Pin object that data binds to appropriate properties.

The following screenshots show a Map displaying a Pin collection using data binding:

The appearance of each item in the IEnumerable collection can be chosen at runtime, based on the item value,

by setting the ItemTemplateSelector property to a DataTemplateSelector :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemtemplate#xamarin_forms_maps_map_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemssource#xamarin_forms_maps_map_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemssource#xamarin_forms_maps_map_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map.itemtemplate#xamarin_forms_maps_map_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/pins-images/pins-itemsource-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector

<ContentPage ...
 xmlns:local="clr-namespace:WorkingWithMaps"
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps">
 <ContentPage.Resources>
 <local:MapItemTemplateSelector x:Key="MapItemTemplateSelector">
 <local:MapItemTemplateSelector.DefaultTemplate>
 <DataTemplate>
 <maps:Pin Position="{Binding Position}"
 Address="{Binding Address}"
 Label="{Binding Description}" />
 </DataTemplate>
 </local:MapItemTemplateSelector.DefaultTemplate>
 <local:MapItemTemplateSelector.XamarinTemplate>
 <DataTemplate>
 <!-- Change the property values, or the properties that are bound to. -->
 <maps:Pin Position="{Binding Position}"
 Address="{Binding Address}"
 Label="Xamarin!" />
 </DataTemplate>
 </local:MapItemTemplateSelector.XamarinTemplate>
 </local:MapItemTemplateSelector>
 </ContentPage.Resources>

 <Grid>
 ...
 <maps:Map x:Name="map"
 ItemsSource="{Binding Locations}"
 ItemTemplateSelector="{StaticResource MapItemTemplateSelector}" />
 ...
 </Grid>
</ContentPage>

public class MapItemTemplateSelector : DataTemplateSelector
{
 public DataTemplate DefaultTemplate { get; set; }
 public DataTemplate XamarinTemplate { get; set; }

 protected override DataTemplate OnSelectTemplate(object item, BindableObject container)
 {
 return ((Location)item).Address.Contains("San Francisco") ? XamarinTemplate : DefaultTemplate;
 }
}

NOTENOTE

 Related links

The following example shows the MapItemTemplateSelector class:

The MapItemTemplateSelector class defines DefaultTemplate and XamarinTemplate DataTemplate properties that

are set to different data templates. The OnSelectTemplate method returns the XamarinTemplate , which displays

"Xamarin" as a label when a Pin is tapped, when the item has an address that contains "San Francisco". When

the item doesn't have an address that contains "San Francisco", the OnSelectTemplate method returns the

DefaultTemplate .

A use case for this functionality is binding properties of sub-classed Pin objects to different properties, based on the

Pin sub-type.

For more information about data template selectors, see Creating a Xamarin.Forms DataTemplateSelector.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.pin

Maps Sample

Map Custom Renderer

Passing Arguments in XAML

Creating a Xamarin.Forms DataTemplateSelector

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps

Xamarin.Forms Map Polygons and Polylines
 7/8/2021 • 4 minutes to read • Edit Online

 Download the sample

Polygon , Polyline , and Circle elements allow you to highlight specific areas on a map. A Polygon is a fully

enclosed shape that can have a stroke and fill color. A Polyline is a line that does not fully enclose an area. A

Circle highlights a circular area of the map:

The Polygon , Polyline , and Circle classes derive from the MapElement class, which exposes the following

bindable properties:

StrokeColor is a Color object that determines the line color.

StrokeWidth is a float object that determines the line width.

The Polygon class defines an additional bindable property:

FillColor is a Color object that determines the polygon's background color.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/polygons.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/polygons-images/polygon-polyline-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/polygons-images/circle-large.png#lightbox

NOTENOTE

 Create a polygon

<ContentPage ...
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps">
 <maps:Map>
 <maps:Map.MapElements>
 <maps:Polygon StrokeColor="#FF9900"
 StrokeWidth="8"
 FillColor="#88FF9900">
 <maps:Polygon.Geopath>
 <maps:Position>
 <x:Arguments>
 <x:Double>47.6368678</x:Double>
 <x:Double>-122.137305</x:Double>
 </x:Arguments>
 </maps:Position>
 ...
 </maps:Polygon.Geopath>
 </maps:Polygon>
 </maps:Map.MapElements>
 </maps:Map>
</ContentPage>

In addition, the Polygon and Polyline classes both define a GeoPath property, which is a list of Position

objects that specify the points of the shape.

The Circle class defines the following bindable properties:

Center is a Position object that defines the center of the circle, in latitude and longitude.

Radius is a Distance object that defines the radius of the circle in meters, kilometers, or miles.

FillColor is a Color property that determines the color within the circle perimeter.

If the StrokeColor property is not specified the stroke will default to black. If the FillColor property is not specified,

the fill will default to transparent. Therefore, if neither property is specified the shape will have a black outline with no fill.

A Polygon object can be added to a map by instantiating it and adding it to the map's MapElements collection.

This can be accomplished in XAML as follows:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.distance

using Xamarin.Forms.Maps;
// ...
Map map = new Map
{
 // ...
};

// instantiate a polygon
Polygon polygon = new Polygon
{
 StrokeWidth = 8,
 StrokeColor = Color.FromHex("#1BA1E2"),
 FillColor = Color.FromHex("#881BA1E2"),
 Geopath =
 {
 new Position(47.6368678, -122.137305),
 new Position(47.6368894, -122.134655),
 new Position(47.6359424, -122.134655),
 new Position(47.6359496, -122.1325521),
 new Position(47.6424124, -122.1325199),
 new Position(47.642463, -122.1338932),
 new Position(47.6406414, -122.1344833),
 new Position(47.6384943, -122.1361248),
 new Position(47.6372943, -122.1376912)
 }
};

// add the polygon to the map's MapElements collection
map.MapElements.Add(polygon);

NOTENOTE

 Create a polyline

The StrokeColor and StrokeWidth properties are specified to customize the polygon's outline. The FillColor

property value matches the StrokeColor property value but has an alpha value specified to make it transparent,

allowing the underlying map to be visible through the shape. The GeoPath property contains a list of Position

objects defining the geographic coordinates of the polygon points. A Polygon object is rendered on the map

once it has been added to the MapElements collection of the Map .

A Polygon is a fully enclosed shape. The first and last points will automatically be connected if they do not match.

A Polyline object can be added to a map by instantiating it and adding it to the map's MapElements collection.

This can be accomplished in XAML as follows:

<ContentPage ...
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps">
 <maps:Map>
 <maps:Map.MapElements>
 <maps:Polyline StrokeColor="Blue"
 StrokeWidth="12">
 <maps:Polyline.Geopath>
 <maps:Position>
 <x:Arguments>
 <x:Double>47.6381401</x:Double>
 <x:Double>-122.1317367</x:Double>
 </x:Arguments>
 </maps:Position>
 ...
 </maps:Polyline.Geopath>
 </maps:Polyline>
 </maps:Map.MapElements>
 </maps:Map>
</ContentPage>

using Xamarin.Forms.Maps;
// ...
Map map = new Map
{
 // ...
};
// instantiate a polyline
Polyline polyline = new Polyline
{
 StrokeColor = Color.Blue,
 StrokeWidth = 12,
 Geopath =
 {
 new Position(47.6381401, -122.1317367),
 new Position(47.6381473, -122.1350841),
 new Position(47.6382847, -122.1353094),
 new Position(47.6384582, -122.1354703),
 new Position(47.6401136, -122.1360819),
 new Position(47.6403883, -122.1364681),
 new Position(47.6407426, -122.1377019),
 new Position(47.6412558, -122.1404056),
 new Position(47.6414148, -122.1418647),
 new Position(47.6414654, -122.1432702)
 }
};

// add the polyline to the map's MapElements collection
map.MapElements.Add(polyline);

 Create a circle

The StrokeColor and StrokeWidth properties are specified to customize the line. The GeoPath property

contains a list of Position objects defining the geographic coordinates of the polyline points. A Polyline

object is rendered on the map once it has been added to the MapElements collection of the Map .

A Circle object can be added to a map by instantiating it and adding it to the map's MapElements collection.

This can be accomplished in XAML as follows:

<ContentPage ...
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps">
 <maps:Map>
 <maps:Map.MapElements>
 <maps:Circle StrokeColor="#88FF0000"
 StrokeWidth="8"
 FillColor="#88FFC0CB">
 <maps:Circle.Center>
 <maps:Position>
 <x:Arguments>
 <x:Double>37.79752</x:Double>
 <x:Double>-122.40183</x:Double>
 </x:Arguments>
 </maps:Position>
 </maps:Circle.Center>
 <maps:Circle.Radius>
 <maps:Distance>
 <x:Arguments>
 <x:Double>250</x:Double>
 </x:Arguments>
 </maps:Distance>
 </maps:Circle.Radius>
 </maps:Circle>
 </maps:Map.MapElements>
 ...
 </maps:Map>
</ContentPage>

using Xamarin.Forms.Maps;
// ...
Map map = new Map();

// Instantiate a Circle
Circle circle = new Circle
{
 Center = new Position(37.79752, -122.40183),
 Radius = new Distance(250),
 StrokeColor = Color.FromHex("#88FF0000"),
 StrokeWidth = 8,
 FillColor = Color.FromHex("#88FFC0CB")
};

// Add the Circle to the map's MapElements collection
map.MapElements.Add(circle);

NOTENOTE

The equivalent C# code is:

The location of the Circle on the Map is determined by the value of the Center and Radius properties. The

Center property defines the center of the circle, in latitude and longitude, while the Radius property defines

the radius of the circle in meters. The StrokeColor and StrokeWidth properties are specified to customize the

circle's outline. The FillColor property value specifies the color within the circle perimeter. Both of the color

values specify an alpha channel, allowing the underlying map to be visible through the circle. The Circle object

is rendered on the map once it has been added to the MapElements collection of the Map .

The GeographyUtils class has a ToCircumferencePositions extension method that converts a Circle object (that

defines Center and Radius property values) to a list of Position objects that make up the latitude and longitude

coordinates of the circle perimeter.

Related links
Maps Sample

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps

Xamarin.Forms Map Geocoding
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Geocode an address

using Xamarin.Forms.Maps;
// ...
Geocoder geoCoder = new Geocoder();

IEnumerable<Position> approximateLocations = await geoCoder.GetPositionsForAddressAsync("Pacific Ave, San
Francisco, California");
Position position = approximateLocations.FirstOrDefault();
string coordinates = $"{position.Latitude}, {position.Longitude}";

 Reverse geocode an address

using Xamarin.Forms.Maps;
// ...
Geocoder geoCoder = new Geocoder();

Position position = new Position(37.8044866, -122.4324132);
IEnumerable<string> possibleAddresses = await geoCoder.GetAddressesForPositionAsync(position);
string address = possibleAddresses.FirstOrDefault();

 Related links

 Download the sample

The Xamarin.Forms.Maps namespace provides a Geocoder class, which converts between string addresses and

latitude and longitude coordinates that are stored in Position objects. For more information about the

Position struct, see Map Position and Distance.

An alternative geocoding API is avalible in Xamarin.Essentials. The Xamarin.Essentials Geocoding API offers structured

address data when geocoding addresses, as opposed to the strings returned by this API. For more information, see

Xamarin.Essentials: Geocoding.

A street address can be geocoded into latitude and longitude coordinates by creating a Geocoder instance and

calling the GetPositionsForAddressAsync method on the Geocoder instance:

The GetPositionsForAddressAsync method takes a string argument that represents the address, and

asynchronously returns a collection of Position objects that could represent the address.

Latitude and longitude coordinates can be reverse geocoded into a street address by creating a Geocoder

instance and calling the GetAddressesForPositionAsync method on the Geocoder instance:

The GetAddressesForPositionAsync method takes a Position argument comprised of latitude and longitude

coordinates, and asynchronously returns a collection of strings that represent the addresses near the position.

Maps Sample

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/geocoder.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder.getpositionsforaddressasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder.getpositionsforaddressasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder.getaddressesforpositionasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder.getaddressesforpositionasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.position
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps

Xamarin.Forms Map Position and Distance

Geocoder API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.geocoder

Launch the Native Map App from Xamarin.Forms
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Launch the map app at a specific location

if (Device.RuntimePlatform == Device.iOS)
{
 //
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html
 await Launcher.OpenAsync("http://maps.apple.com/?q=394+Pacific+Ave+San+Francisco+CA");
}
else if (Device.RuntimePlatform == Device.Android)
{
 // open the maps app directly
 await Launcher.OpenAsync("geo:0,0?q=394+Pacific+Ave+San+Francisco+CA");
}
else if (Device.RuntimePlatform == Device.UWP)
{
 await Launcher.OpenAsync("bingmaps:?where=394 Pacific Ave San Francisco CA");
}

 Download the sample

The native map app on each platform can be launched from a Xamarin.Forms application by the

Xamarin.Essentials Launcher class. This class enables an application to open another app through its custom

URI scheme. The launcher functionality can be invoked with the OpenAsync method, passing in a string or

Uri argument that represents the custom URL scheme to open. For more information about

Xamarin.Essentials, see Xamarin.Essentials.

An alternative to using the Xamarin.Essentials Launcher class is to use its Map class. For more information, see

Xamarin.Essentials: Map.

The maps app on each platform uses a unique custom URI scheme. For information about the maps URI scheme

on iOS, see Map Links on developer.apple.com. For information about the maps URI scheme on Android, see

Maps Developer Guide and Google Maps Intents for Android on developers.android.com. For information about

the maps URI scheme on the Universal Windows Platform (UWP), see Launch the Windows Maps app.

A location in the native maps app can be opened by adding appropriate query parameters to the custom URI

scheme for each map app:

This example code results in the native map app being launched on each platform, with the map centered on a

pin representing the specified location:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/map/native-map-app.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html
https://developer.android.com/guide/components/intents-common.html#Maps
https://developers.google.com/maps/documentation/urls/android-intents
https://docs.microsoft.com/en-us/windows/uwp/launch-resume/launch-maps-app

 Launch the map app with directions

if (Device.RuntimePlatform == Device.iOS)
{
 //
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html
 await Launcher.OpenAsync("http://maps.apple.com/?daddr=San+Francisco,+CA&saddr=cupertino");
}
else if (Device.RuntimePlatform == Device.Android)
{
 // opens the 'task chooser' so the user can pick Maps, Chrome or other mapping app
 await Launcher.OpenAsync("http://maps.google.com/?daddr=San+Francisco,+CA&saddr=Mountain+View");
}
else if (Device.RuntimePlatform == Device.UWP)
{
 await Launcher.OpenAsync("bingmaps:?rtp=adr.394 Pacific Ave San Francisco CA~adr.One Microsoft Way
Redmond WA 98052");
}

The native maps app can be launched displaying directions, by adding appropriate query parameters to the

custom URI scheme for each map app:

This example code results in the native map app being launched on each platform, with the map centered on a

route between the specified locations:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/native-map-app-images/location-large.png#lightbox

 Related links
Maps Sample

Xamarin.Essentials

Map Links

Maps Developer Guide

Google Maps Intents for Android

Launch the Windows Maps app

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/map/native-map-app-images/directions-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithmaps
https://developer.apple.com/library/archive/featuredarticles/iPhoneURLScheme_Reference/MapLinks/MapLinks.html
https://developer.android.com/guide/components/intents-common.html#Maps
https://developers.google.com/maps/documentation/
https://docs.microsoft.com/en-us/windows/uwp/launch-resume/launch-maps-app

Xamarin.Forms Shapes
 7/8/2021 • 5 minutes to read • Edit Online

 Paint shapes

<Ellipse Fill="DarkBlue"
 Stroke="Red"
 StrokeThickness="4"
 WidthRequest="150"
 HeightRequest="50"
 HorizontalOptions="Start" />

A Shape is a type of View that enables you to draw a shape to the screen. Shape objects can be used inside

layout classes and most controls, because the Shape class derives from the View class.

Xamarin.Forms Shapes is available in the Xamarin.Forms.Shapes namespace on iOS, Android, macOS, the

Universal Windows Platform (UWP), and the Windows Presentation Foundation (WPF).

Shape defines the following properties:

Aspect , of type Stretch , describes how the shape fills its allocated space. The default value of this property

is Stretch.None .

Fill , of type Brush , indicates the brush used to paint the shape's interior.

Stroke , of type Brush , indicates the brush used to paint the shape's outline.

StrokeDashArray , of type DoubleCollection , which represents a collection of double values that indicate the

pattern of dashes and gaps that are used to outline a shape.

StrokeDashOffset , of type double , specifies the distance within the dash pattern where a dash begins. The

default value of this property is 0.0.

StrokeLineCap , of type PenLineCap , describes the shape at the start and end of a line or segment. The default

value of this property is PenLineCap.Flat .

StrokeLineJoin , of type PenLineJoin , specifies the type of join that is used at the vertices of a shape. The

default value of this property is PenLineJoin.Miter .

StrokeMiterLimit , of type double , specifies the limit on the ratio of the miter length to half the

StrokeThickness of a shape. The default value of this property is 10.0.

StrokeThickness , of type double , indicates the width of the shape outline. The default value of this property

is 1.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

Xamarin.Forms defines a number of objects that derive from the Shape class. These are Ellipse , Line , Path ,

Polygon , Polyline , and Rectangle .

Brush objects are used to paint a shapes's Stroke and Fill :

In this example, the stroke and fill of an Ellipse are specified:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

IMPORTANTIMPORTANT

 Stretch shapes

<Path Aspect="Uniform"
 Stroke="Yellow"
 Fill="Red"
 BackgroundColor="LightGray"
 HorizontalOptions="Start"
 HeightRequest="100"
 WidthRequest="100">
 <Path.Data>
 <!-- Path data goes here -->
 </Path.Data>
</Path>

Brush objects use a type converter that enables Color values to specified for the Stroke property.

If you don't specify a Brush object for Stroke , or if you set StrokeThickness to 0, then the border around the

shape is not drawn.

For more information about Brush objects, see Xamarin.Forms Brushes. For more information about valid

Color values, see Colors in Xamarin.Forms.

Shape objects have an Aspect property, of type Stretch . This property determines how a Shape object's

contents is stretched to fill the Shape object's layout space. A Shape object's layout space is the amount of

space the Shape is allocated by the Xamarin.Forms layout system, because of either an explicit WidthRequest

and HeightRequest setting or because of its HorizontalOptions and VerticalOptions settings.

The Stretch enumeration defines the following members:

None , which indicates that the content preserves its original size. This is the default value of the

Shape.Aspect property.

Fill , which indicates that the content is resized to fill the destination dimensions. The aspect ratio is not

preserved.

Uniform , which indicates that the content is resized to fit the destination dimensions, while preserving the

aspect ratio.

UniformToFill , indicates that the content is resized to fill the destination dimensions, while preserving the

aspect ratio. If the aspect ratio of the destination rectangle differs from the source, the source content is

clipped to fit in the destination dimensions.

The following XAML shows how to set the Aspect property:

In this example, a Path object draws a heart. The Path object's WidthRequest and HeightRequest properties

are set to 100 device-independent units, and its Aspect property is set to Uniform . As a result, the object's

contents are resized to fit the destination dimensions, while preserving the aspect ratio:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

 Draw dashed shapes

<Rectangle Fill="DarkBlue"
 Stroke="Red"
 StrokeThickness="4"
 StrokeDashArray="1,1"
 StrokeDashOffset="6"
 WidthRequest="150"
 HeightRequest="50"
 HorizontalOptions="Start" />

 Control line ends

Shape objects have a StrokeDashArray property, of type DoubleCollection . This property represents a

collection of double values that indicate the pattern of dashes and gaps that are used to outline a shape. A

DoubleCollection is an ObservableCollection of double values. Each double in the collection specifies the

length of a dash or gap. The first item in the collection, which is located at index 0, specifies the length of a dash.

The second item in the collection, which is located at index 1, specifies the length of a gap. Therefore, objects

with an even index value specify dashes, while objects with an odd index value specify gaps.

Shape objects also have a StrokeDashOffset property , of type double , which specifies the distance within the

dash pattern where a dash begins. Failure to set this property will result in the Shape having a solid outline.

Dashed shapes can be drawn by setting both the StrokeDashArray and StrokeDashOffset properties. The

StrokeDashArray property should be set to one or more double values, with each pair delimited by a single

comma and/or one or more spaces. For example, "0.5 1.0" and "0.5,1.0" are both valid.

The following XAML example shows how to draw a dashed rectangle:

In this example, a filled rectangle with a dashed stroke is drawn:

A line has three parts: start cap, line body, and end cap. The start and end caps describe the shape at the start

and end of a line, or segment.

Shape objects have a StrokeLineCap property, of type PenLineCap , that describes the shape at the start and end

of a line, or segment. The PenLineCap enumeration defines the following members:

Flat , which represents a cap that doesn't extend past the last point of the line. This is comparable to no line

cap, and is the default value of the StrokeLineCap property.

Square , which represents a rectangle that has a height equal to the line thickness and a length equal to half

the line thickness.

Round , which represents a semicircle that has a diameter equal to the line thickness.

IMPORTANTIMPORTANT

<Line X1="0"
 Y1="20"
 X2="300"
 Y2="20"
 StrokeLineCap="Round"
 Stroke="Red"
 StrokeThickness="12" />

 Control line joins

NOTENOTE

<Polyline Points="20 20,250 50,20 120"
 Stroke="DarkBlue"
 StrokeThickness="20"
 StrokeLineJoin="Round" />

The StrokeLineCap property has no effect if you set it on a shape that has no start or end points. For example, this

property has no effect if you set it on an Ellipse , or Rectangle .

The following XAML shows how to set the StrokeLineCap property:

In this example, the red line is rounded at the start and end of the line:

Shape objects have a StrokeLineJoin property, of type PenLineJoin , that specifies the type of join that is used

at the vertices of the shape. The PenLineJoin enumeration defines the following members:

Miter , which represents regular angular vertices. This is the default value of the StrokeLineJoin property.

Bevel , which represents beveled vertices.

Round , which represents rounded vertices.

When the StrokeLineJoin property is set to Miter , the StrokeMiterLimit property can be set to a double to

limit the miter length of line joins in the shape.

The following XAML shows how to set the StrokeLineJoin property:

In this example, the dark blue polyline has rounded joins at its vertices:

 Related links
ShapeDemos (sample)

Xamarin.Forms Brushes

Colors in Xamarin.Forms

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Ellipse
 7/8/2021 • 2 minutes to read • Edit Online

 Create an Ellipse

<Ellipse Fill="Red"
 WidthRequest="150"
 HeightRequest="50"
 HorizontalOptions="Start" />

<Ellipse Stroke="Red"
 StrokeThickness="4"
 WidthRequest="150"
 HeightRequest="150"
 HorizontalOptions="Start" />

 Download the sample

The Ellipse class derives from the Shape class, and can be used to draw ellipses and circles. For information

on the properties that the Ellipse class inherits from the Shape class, see Xamarin.Forms Shapes.

The Ellipse class sets the Aspect property, inherited from the Shape class, to Stretch.Fill . For more

information about the Aspect property, see Stretch shapes.

To draw an ellipse, create an Ellipse object and set its WidthRequest and HeightRequest properties. To paint

the inside of the ellipse, set its Fill property to a Brush -derived object. To give the ellipse an outline, set its

Stroke property to a Brush -derived object. The StrokeThickness property specifies the thickness of the ellipse

outline. For more information about Brush objects, see Xamarin.Forms Brushes.

To draw a circle, make the WidthRequest and HeightRequest properties of the Ellipse object equal.

The following XAML example shows how to draw a filled ellipse:

In this example, a red filled ellipse with dimensions 150x50 (device-independent units) is drawn:

The following XAML example shows how to draw a circle:

In this example, a red circle with dimensions 150x150 (device-independent units) is drawn:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/ellipse.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush

 Related links

For information about drawing a dashed ellipse, see Draw dashed shapes.

ShapeDemos (sample)

Xamarin.Forms Shapes

Xamarin.Forms Brushes

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Fill rules
 7/8/2021 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

 EvenOdd

<Path Stroke="Black"
 Fill="#CCCCFF"
 Aspect="Uniform"
 HorizontalOptions="Start">
 <Path.Data>
 <!-- FillRule doesn't need to be set, because EvenOdd is the default. -->
 <GeometryGroup>
 <EllipseGeometry RadiusX="50"
 RadiusY="50"
 Center="75,75" />
 <EllipseGeometry RadiusX="70"
 RadiusY="70"
 Center="75,75" />
 <EllipseGeometry RadiusX="100"
 RadiusY="100"
 Center="75,75" />
 <EllipseGeometry RadiusX="120"
 RadiusY="120"
 Center="75,75" />
 </GeometryGroup>
 </Path.Data>
</Path>

 Download the sample

Several Xamarin.Forms Shapes classes have FillRule properties, of type FillRule . These include Polygon ,

Polyline , and GeometryGroup .

The FillRule enumeration defines EvenOdd and Nonzero members. Each member represents a different rule

for determining whether a point is in the fill region of a shape.

All shapes are considered closed for the purposes of fill rules.

The EvenOdd fill rule draws a ray from the point to infinity in any direction and counts the number of segments

within the shape that the ray crosses. If this number is odd, the point is inside. If this number is even, the point is

outside.

The following XAML example creates and renders a composite shape, with the FillRule defaulting to EvenOdd :

In this example, a composite shape made up of a series of concentric rings is displayed:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/fillrules.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

 Nonzero

<Path Stroke="Black"
 Fill="#CCCCFF"
 Aspect="Uniform"
 HorizontalOptions="Start">
 <Path.Data>
 <GeometryGroup FillRule="Nonzero">
 <EllipseGeometry RadiusX="50"
 RadiusY="50"
 Center="75,75" />
 <EllipseGeometry RadiusX="70"
 RadiusY="70"
 Center="75,75" />
 <EllipseGeometry RadiusX="100"
 RadiusY="100"
 Center="75,75" />
 <EllipseGeometry RadiusX="120"
 RadiusY="120"
 Center="75,75" />
 </GeometryGroup>
 </Path.Data>
</Path>

In the composite shape, notice that the center and third rings are not filled. This is because a ray drawn from any

point within either of those two rings passes through an even number of segments:

In the image above, the red circles represent points, and the lines represent arbitrary rays. For the upper point,

the two arbitrary rays each pass through an even number of line segments. Therefore, the ring the point is in

isn't filled. For the lower point, the two arbitrary rays each pass through an odd number of line segments.

Therefore, the ring the point is in is filled.

The Nonzero fill rule draws a ray from the point to infinity in any direction and then examines the places where

a segment of the shape crosses the ray. Starting with a count of zero, the count is incremented each time a

segment crosses the ray from left to right and decremented each time a segment crosses the ray from right to

left. After counting the crossings, if the result is zero then the point is outside the polygon. Otherwise, it's inside.

The following XAML example creates and renders a composite shape, with the FillRule set to Nonzero :

In this example, a composite shape made up of a series of concentric rings is displayed:

In the composite shape, notice that all rings are filled. This is because all the segments are running in the same

direction, and so a ray drawn from any point will cross one or more segments and the sum of the crossings will

not equal zero:

In the image above the red arrows represent the direction the segments are drawn, and black arrow represents

an arbitrary ray running from a point in the innermost ring. Starting with a value of zero, for each segment that

the ray crosses, a value of one is added because the segment crosses the ray from left to right.

A more complex shape with segments running in different directions is required to better demonstrate the

behavior of the Nonzero fill rule. The following XAML example creates a similar shape to the previous example,

except that it's created with a PathGeometry rather than an EllipseGeometry :

<Path Stroke="Black"
 Fill="#CCCCFF">
 <Path.Data>
 <GeometryGroup FillRule="Nonzero">
 <PathGeometry>
 <PathGeometry.Figures>
 <!-- Inner ring -->
 <PathFigure StartPoint="120,120">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <ArcSegment Size="50,50"
 IsLargeArc="True"
 SweepDirection="CounterClockwise"
 Point="140,120" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>

 <!-- Second ring -->
 <PathFigure StartPoint="120,100">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <ArcSegment Size="70,70"
 IsLargeArc="True"
 SweepDirection="CounterClockwise"
 Point="140,100" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>

 <!-- Third ring -->
 <PathFigure StartPoint="120,70">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <ArcSegment Size="100,100"
 IsLargeArc="True"
 SweepDirection="CounterClockwise"
 Point="140,70" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>

 <!-- Outer ring -->
 <PathFigure StartPoint="120,300">
 <PathFigure.Segments>
 <ArcSegment Size="130,130"
 IsLargeArc="True"
 SweepDirection="Clockwise"
 Point="140,300" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </GeometryGroup>
 </Path.Data>
 </Path>

In this example, a series of arc segments are drawn, that aren't closed:

 Related links

In the image above, the third arc from the center is not filled. This is because the sum of the values from a given

ray crossing the segments in its path is zero:

In the image above, the red circle represents a point, the black lines represent arbitrary rays that move out from

the point in the non-filled region, and the red arrows represent the direction the segments are drawn. As can be

seen, the sum of the values from the rays crossing the segments is zero:

The arbitrary ray that travels diagonally right crosses two segments that run in different directions.

Therefore, the segments cancel each other out giving a value of zero.

The arbitrary ray that travels diagonally left crosses a total of six segments. However, the crossings cancel

each other out so that zero is the final sum.

A sum of zero results in the ring not being filled.

ShapeDemos (sample)

Xamarin.Forms Shapes

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Geometries
 7/8/2021 • 17 minutes to read • Edit Online

NOTENOTE

 Simple geometries

 EllipseGeometryEllipseGeometry

 Download the sample

The Geometry class, and the classes that derive from it, enable you to describe the geometry of a 2D shape.

Geometry objects can be simple, such as rectangles and circles, or composite, created from two or more

geometry objects. In addition, more complex geometries can be created that include arcs and curves.

The Geometry class is the parent class for several classes that define different categories of geometries:

EllipseGeometry , which represents the geometry of an ellipse or circle.

GeometryGroup , which represents a container that can combine multiple geometry objects into a single

object.

LineGeometry , which represents the geometry of a line.

PathGeometry , which represents the geometry of a complex shape that can be composed of arcs, curves,

ellipses, lines, and rectangles.

RectangleGeometry , which represents the geometry of a rectangle or square.

There's also a RoundedRectangleGeometry class that derives from the GeometryGroup class. For more information, see

RoundRectangleGeometry.

The Geometry and Shape classes seem similar, in that they both describe 2D shapes, but have an important

difference. The Geometry class derives from the BindableObject class, while the Shape class derives from the

View class. Therefore, Shape objects can render themselves and participate in the layout system, while

Geometry objects cannot. While Shape objects are more readily usable than Geometry objects, Geometry

objects are more versatile. While a Shape object is used to render 2D graphics, a Geometry object can be used

to define the geometric region for 2D graphics, and define a region for clipping.

The following classes have properties that can be set to Geometry objects:

The Path class uses a Geometry to describe its contents. You can render a Geometry by setting the

Path.Data property to a Geometry object, and setting the Path object's Fill and Stroke properties.

The VisualElement class has a Clip property, of type Geometry , that defines the outline of the contents of

an element. When the Clip property is set to a Geometry object, only the area that is within the region of

the Geometry will be visible. For more information, see Clip with a Geometry.

The classes that derive from the Geometry class can be grouped into three categories: simple geometries, path

geometries, and composite geometries.

The simple geometry classes are EllipseGeometry , LineGeometry , and RectangleGeometry . They are used to

create basic geometric shapes, such as circles, lines, and rectangles. These same shapes, as well as more complex

shapes, can be created using a PathGeometry or by combining geometry objects together, but these classes

provide a simpler approach for producing these basic geometric shapes.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/geometries.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

<Path Fill="Blue"
 Stroke="Red">
 <Path.Data>
 <EllipseGeometry Center="50,50"
 RadiusX="50"
 RadiusY="50" />
 </Path.Data>
</Path>

 LineGeometryLineGeometry

<Path Stroke="Black">
 <Path.Data>
 <LineGeometry StartPoint="10,20"
 EndPoint="100,130" />
 </Path.Data>
</Path>

An ellipse geometry represents the geometry or an ellipse or circle, and is defined by a center point, an x-radius,

and a y-radius.

The EllipseGeometry class defines the following properties:

Center , of type Point , which represents the center point of the geometry.

RadiusX , of type double , which represents the x-radius value of the geometry. The default value of this

property is 0.0.

RadiusY , of type double , which represents the y-radius value of the geometry. The default value of this

property is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The following example shows how to create and render an EllipseGeometry in a Path object:

In this example, the center of the EllipseGeometry is set to (50,50) and the x-radius and y-radius are both set to

50. This creates a red circle with a diameter of 100 device-independent units, whose interior is painted blue:

A line geometry represents the geometry of a line, and is defined by specifying the start point of the line and the

end point.

The LineGeometry class defines the following properties:

StartPoint , of type Point , which represents the start point of the line.

EndPoint , of type Point , which represents the end point of the line.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The following example shows how to create and render a LineGeometry in a Path object:

In this example, a LineGeometry is drawn from (10,20) to (100,130):

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

NOTENOTE

 RectangleGeometryRectangleGeometry

<Path Fill="Blue"
 Stroke="Red">
 <Path.Data>
 <RectangleGeometry Rect="10,10,150,100" />
 </Path.Data>
</Path>

 Path geometries

Setting the Fill property of a Path that renders a LineGeometry will have no effect, because a line has no interior.

A rectangle geometry represents the geometry of a rectangle or square, and is defined with a Rect structure

that specifies its relative position and its height and width.

The RectangleGeometry class defines the Rect property, of type Rect , which represents the dimensions of the

rectangle. This property is backed by a BindableProperty object, which means that it can be the target of data

bindings, and styled.

The following example shows how to create and render a RectangleGeometry in a Path object:

The position and dimensions of the rectangle are defined by a Rect structure. In this example, the position is

(10,10), the width is 150, and the height is 100 device-independent units:

A path geometry describes a complex shape that can be composed of arcs, curves, ellipses, lines, and rectangles.

The PathGeometry class defines the following properties:

Figures , of type PathFigureCollection , which represents the collection of PathFigure objects that describe

the path's contents.

FillRule , of type FillRule , which determines how the intersecting areas contained in the geometry are

combined. The default value of this property is FillRule.EvenOdd .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

For more information about the FillRule enumeration, see Xamarin.Forms Shapes: Fill rules.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

NOTENOTE

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint="10,50">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <LineSegment Point="10,150" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Create an ArcSegmentCreate an ArcSegment

The Figures property is the ContentProperty of the PathGeometry class, and so does not need to be explicitly set

from XAML.

A PathGeometry is made up of a collection of PathFigure objects, with each PathFigure describing a shape in

the geometry. Each PathFigure is itself comprised of one or more PathSegment objects, each of which describes

a segment of the shape. There are many types of segments:

ArcSegment , which creates an elliptical arc between two points.

BezierSegment , which creates a cubic Bezier curve between two points.

LineSegment , which creates a line between two points.

PolyBezierSegment , which creates a series of cubic Bezier curves.

PolyLineSegment , which creates a series of lines.

PolyQuadraticBezierSegment , which creates a series of quadratic Bezier curves.

QuadraticBezierSegment , which creates a quadratic Bezier curve.

All the above classes derive from the abstract PathSegment class.

The segments within a PathFigure are combined into a single geometric shape with the end point of each

segment being the start point of the next segment. The StartPoint property of a PathFigure specifies the point

from which the first segment is drawn. Each subsequent segment starts at the end point of the previous

segment. For example, a vertical line from 10,50 to 10,150 can be defined by setting the StartPoint property

to 10,50 and creating a LineSegment with a Point property setting of 10,150 :

More complex geometries can be created by using a combination of PathSegment objects, and by using multiple

PathFigure objects within a PathGeometry .

An ArcSegment creates an elliptical arc between two points. An elliptical arc is defined by its start and end points,

x- and y-radius, x-axis rotation factor, a value indicating whether the arc should be greater than 180 degrees, and

a value describing the direction in which the arc is drawn.

The ArcSegment class defines the following properties:

Point , of type Point , which represents the endpoint of the elliptical arc. The default value of this property is

(0,0).

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point

NOTENOTE

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint="10,10">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <ArcSegment Size="100,50"
 RotationAngle="45"
 IsLargeArc="True"
 SweepDirection="CounterClockwise"
 Point="200,100" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Create a BezierSegmentCreate a BezierSegment

Size , of type Size , which represents the x- and y-radius of the arc. The default value of this property is

(0,0).

RotationAngle , of type double , which represents the amount in degrees by which the ellipse is rotated

around the x-axis. The default value of this property is 0.

SweepDirection , of type SweepDirection , which specifies the direction in which the arc is drawn. The default

value of this property is SweepDirection.CounterClockwise .

IsLargeArc , of type bool , which indicates whether the arc should be greater than 180 degrees. The default

value of this property is false .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The ArcSegment class does not contain a property for the starting point of the arc. It only defines the end point of the

arc it represents. The start point of the arc is the current point of the PathFigure to which the ArcSegment is added.

The SweepDirection enumeration defines the following members:

CounterClockwise , which specifies that arcs are drawn in a clockwise direction.

Clockwise , which specifies that arcs are drawn in a counter clockwise direction.

The following example shows how to create and render an ArcSegment in a Path object:

In this example, an elliptical arc is drawn from (10,10) to (200,100).

A BezierSegment creates a cubic Bezier curve between two points. A cubic Bezier curve is defined by four points:

a start point, an end point, and two control points.

The BezierSegment class defines the following properties:

Point1 , of type Point , which represents the first control point of the curve. The default value of this

property is (0,0).

Point2 , of type Point , which represents the second control point of the curve. The default value of this

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.size
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point

NOTENOTE

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint="10,10">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <BezierSegment Point1="100,0"
 Point2="200,200"
 Point3="300,10" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Create a LineSegmentCreate a LineSegment

property is (0,0).

Point3 , of type Point , which represents the end point of the curve. The default value of this property is

(0,0).

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The BezierSegment class does not contain a property for the starting point of the curve. The start point of the curve is

the current point of the PathFigure to which the BezierSegment is added.

The two control points of a cubic Bezier curve behave like magnets, attracting portions of what would otherwise

be a straight line toward themselves and producing a curve. The first control point affects the start portion of

the curve. The second control point affects the end portion of the curve. The curve doesn't necessarily pass

through either of the control points. Instead, each control point moves its portion of the line toward itself, but

not through itself.

The following example shows how to create and render a BezierSegment in a Path object:

In this example, a cubic Bezier curve is drawn from (10,10) to (300,10). The curve has two control points at

(100,0) and (200,200):

A LineSegment creates a line between two points.

The LineSegment class defines the Point property, of type Point , which represents the end point of the line

segment. The default value of this property is (0,0), and it's backed by a BindableProperty object, which means

that it can be the target of data bindings, and styled.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

NOTENOTE

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Start">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure IsClosed="True"
 StartPoint="10,100">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <LineSegment Point="100,100" />
 <LineSegment Point="100,50" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Create a PolyBezierSegmentCreate a PolyBezierSegment

NOTENOTE

The LineSegment class does not contain a property for the starting point of the line. It only defines the end point. The

start point of the line is the current point of the PathFigure to which the LineSegment is added.

The following example shows how to create and render LineSegment objects in a Path object:

In this example, a line segment is drawn from (10,100) to (100,100), and from (100,100) to (100,50). In addition,

the PathFigure is closed because its IsClosed property is set to true . This results in a triangle being drawn:

A PolyBezierSegment creates one or more cubic Bezier curves.

The PolyBezierSegment class defines the Points property, of type PointCollection , which represents the points

that define the PolyBezierSegment . A PointCollection is an ObservableCollection of Point objects. This

property is backed by a BindableProperty object, which means that it can be the target of data bindings, and

styled.

The PolyBezierSegment class does not contain a property for the starting point of the curve. The start point of the

curve is the current point of the PathFigure to which the PolyBezierSegment is added.

The following example shows how to create and render a PolyBezierSegment in a Path object:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint="10,10">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <PolyBezierSegment Points="0,0 100,0 150,100 150,0 200,0 300,10" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Create a PolyLineSegmentCreate a PolyLineSegment

NOTENOTE

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="10,10">
 <PathFigure.Segments>
 <PolyLineSegment Points="50,10 50,50" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

In this example, the PolyBezierSegment specifies two cubic Bezier curves. The first curve is from (10,10) to

(150,100) with a control point of (0,0), and another control point of (100,0). The second curve is from (150,100)

to (300,10) with a control point of (150,0) and another control point of (200,0):

A PolyLineSegment creates one or more line segments.

The PolyLineSegment class defines the Points property, of type PointCollection , which represents the points

that define the PolyLineSegment . A PointCollection is an ObservableCollection of Point objects. This property

is backed by a BindableProperty object, which means that it can be the target of data bindings, and styled.

The PolyLineSegment class does not contain a property for the starting point of the line. The start point of the line is

the current point of the PathFigure to which the PolyLineSegment is added.

The following example shows how to create and render a PolyLineSegment in a Path object:

In this example, the PolyLineSegment specifies two lines. The first line is from (10,10) to (50,10), and the second

line is from (50,10) to (50,50):

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

 Create a PolyQuadraticBezierSegmentCreate a PolyQuadraticBezierSegment

NOTENOTE

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint="10,10">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <PolyQuadraticBezierSegment Points="100,100 150,50 0,100 15,200" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Create a QuadraticBezierSegmentCreate a QuadraticBezierSegment

A PolyQuadraticBezierSegment creates one or more quadratic Bezier curves.

The PolyQuadraticBezierSegment class defines the Points property, of type PointCollection , which represents

the points that define the PolyQuadraticBezierSegment . A PointCollection is an ObservableCollection of Point

objects. This property is backed by a BindableProperty object, which means that it can be the target of data

bindings, and styled.

The PolyQuadraticBezierSegment class does not contain a property for the starting point of the curve. The start point

of the curve is the current point of the PathFigure to which the PolyQuadraticBezierSegment is added.

The following example shows to create and render a PolyQuadraticBezierSegment in a Path object:

In this example, the PolyQuadraticBezierSegment specifies two Bezier curves. The first curve is from (10,10) to

(150,50) with a control point at (100,100). The second curve is from (100,100) to (15,200) with a control point at

(0,100):

A QuadraticBezierSegment creates a quadratic Bezier curve between two points.

The QuadraticBezierSegment class defines the following properties:

Point1 , of type Point , which represents the control point of the curve. The default value of this property is

(0,0).

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point

NOTENOTE

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint="10,10">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <QuadraticBezierSegment Point1="200,200"
 Point2="300,10" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Create complex geometriesCreate complex geometries

Point2 , of type Point , which represents the end point of the curve. The default value of this property is

(0,0).

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The QuadraticBezierSegment class does not contain a property for the starting point of the curve. The start point of

the curve is the current point of the PathFigure to which the QuadraticBezierSegment is added.

The following example shows how to create and render a QuadraticBezierSegment in a Path object:

In this example, a quadratic Bezier curve is drawn from (10,10) to (300,10). The curve has a control point at

(200,200):

More complex geometries can be created by using a combination of PathSegment objects. The following

example creates a shape using a BezierSegment , a LineSegment , and an ArcSegment :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Path Stroke="Black">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="10,50">
 <PathFigure.Segments>
 <BezierSegment Point1="100,0"
 Point2="200,200"
 Point3="300,100"/>
 <LineSegment Point="400,100" />
 <ArcSegment Size="50,50"
 RotationAngle="45"
 IsLargeArc="True"
 SweepDirection="Clockwise"
 Point="200,100"/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

In this example, a BezierSegment is first defined using four points. The example then adds a LineSegment , which

is drawn between the end point of the BezierSegment to the point specified by the LineSegment . Finally, an

ArcSegment is drawn from the end point of the LineSegment to the point specified by the ArcSegment .

Even more complex geometries can be created by using multiple PathFigure objects within a PathGeometry .

The following example creates a PathGeometry from seven PathFigure objects, some of which contain multiple

PathSegment objects:

<Path Stroke="Red"
 StrokeThickness="12"
 StrokeLineJoin="Round">
 <Path.Data>
 <PathGeometry>
 <!-- H -->
 <PathFigure StartPoint="0,0">
 <LineSegment Point="0,100" />
 </PathFigure>
 <PathFigure StartPoint="0,50">
 <LineSegment Point="50,50" />
 </PathFigure>
 <PathFigure StartPoint="50,0">
 <LineSegment Point="50,100" />
 </PathFigure>

 <!-- E -->
 <PathFigure StartPoint="125, 0">
 <BezierSegment Point1="60, -10"
 Point2="60, 60"
 Point3="125, 50" />
 <BezierSegment Point1="60, 40"
 Point2="60, 110"
 Point3="125, 100" />
 </PathFigure>

 <!-- L -->
 <PathFigure StartPoint="150, 0">
 <LineSegment Point="150, 100" />
 <LineSegment Point="200, 100" />
 </PathFigure>

 <!-- L -->
 <PathFigure StartPoint="225, 0">
 <LineSegment Point="225, 100" />
 <LineSegment Point="275, 100" />
 </PathFigure>

 <!-- O -->
 <PathFigure StartPoint="300, 50">
 <ArcSegment Size="25, 50"
 Point="300, 49.9"
 IsLargeArc="True" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

 Composite geometries

In this example, the word "Hello" is drawn using a combination of LineSegment and BezierSegment objects,

along with a single ArcSegment object:

Composite geometry objects can be created using a GeometryGroup . The GeometryGroup class creates a

composite geometry from one or more Geometry objects. Any number of Geometry objects can be added to a

GeometryGroup .

NOTENOTE

<Path Stroke="Green"
 StrokeThickness="2"
 Fill="Orange">
 <Path.Data>
 <GeometryGroup>
 <EllipseGeometry RadiusX="100"
 RadiusY="100"
 Center="150,150" />
 <EllipseGeometry RadiusX="100"
 RadiusY="100"
 Center="250,150" />
 <EllipseGeometry RadiusX="100"
 RadiusY="100"
 Center="150,250" />
 <EllipseGeometry RadiusX="100"
 RadiusY="100"
 Center="250,250" />
 </GeometryGroup>
 </Path.Data>
</Path>

 RoundRectangleGeometryRoundRectangleGeometry

The GeometryGroup class defines the following properties:

Children , of type GeometryCollection , which species the objects that define the GeomtryGroup . A

GeometryCollection is an ObservableCollection of Geometry objects.

FillRule , of type FillRule , which specifies how the intersecting areas in the GeometryGroup are combined.

The default value of this property is FillRule.EvenOdd .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The Children property is the ContentProperty of the GeometryGroup class, and so does not need to be explicitly set

from XAML.

For more information about the FillRule enumeration, see Xamarin.Forms Shapes: Fill rules.

To draw a composite geometry, set the required Geometry objects as the children of a GeometryGroup , and

display them with a Path object. The following XAML shows an example of this:

In this example, four EllipseGeometry objects with identical x-radius and y-radius coordinates, but with different

center coordinates, are combined. This creates four overlapping circles, whose interiors are filled orange due to

the default EvenOdd fill rule:

A round rectangle geometry represents the geometry of a rectangle, or square, with rounded corners, and is

defined by a corner radius and a Rect structure that specifies its relative position and its height and width.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rect

NOTENOTE

<Path Fill="Blue"
 Stroke="Red">
 <Path.Data>
 <RoundRectangleGeometry CornerRadius="5"
 Rect="10,10,150,100" />
 </Path.Data>
</Path>

 Clip with a Geometry

<Image Source="monkeyface.png">
 <Image.Clip>
 <EllipseGeometry RadiusX="100"
 RadiusY="100"
 Center="180,180" />
 </Image.Clip>
</Image>

The RoundRectangleGeometry class, which derives from the GeometryGroup class, defines the following properties:

CornerRadius , of type CornerRadius , which is the corner radius of the geometry.

Rect , of type Rect , which represents the dimensions of the rectangle.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The fill rule used by the RoundRectangleGeometry is FillRule.Nonzero . For more information about fill rules, see

Xamarin.Forms Shapes: Fill rules.

The following example shows how to create and render a RoundRectangleGeometry in a Path object:

The position and dimensions of the rectangle are defined by a Rect structure. In this example, the position is

(10,10), the width is 150, and the height is 100 device-independent units. In addition, the rectangle corners are

rounded with a radius of 5 device-independent units.

The VisualElement class has a Clip property, of type Geometry , that defines the outline of the contents of an

element. When the Clip property is set to a Geometry object, only the area that is within the region of the

Geometry will be visible.

The following example shows how to use a Geometry object as the clip region for an Image :

In this example, an EllipseGeometry with RadiusX and RadiusY values of 100, and a Center value of (180,180)

is set to the Clip property of an Image . Only the part of the image that is within the area of the ellipse will be

displayed:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cornerradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

NOTENOTE

 Other features

 Related links

Simple geometries, path geometries, and composite geometries can all be used to clip VisualElement objects.

The GeometryHelper class provides the following helper methods:

FlattenGeometry , which flattens a Geometry into a PathGeometry .

FlattenCubicBezier , which flattens a cubic Bezier curve into a List<Point> collection.

FlattenQuadraticBezier , which flattens a quadratic Bezier curve into a List<Point> collection.

FlattenArc , which flattens an elliptical arc into a List<Point> collection.

ShapeDemos (sample)

Xamarin.Forms Shapes

Xamarin.Forms Shapes: Fill rules

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Line
 7/8/2021 • 2 minutes to read • Edit Online

 Create a Line

NOTENOTE

<Line X1="40"
 Y1="0"
 X2="0"
 Y2="120"
 Stroke="Red" />

 Download the sample

The Line class derives from the Shape class, and can be used to draw lines. For information on the properties

that the Line class inherits from the Shape class, see Xamarin.Forms Shapes.

Line defines the following properties:

X1 , of type double, indicates the x-coordinate of the start point of the line. The default value of this property

is 0.0.

Y1 , of type double, indicates the y-coordinate of the start point of the line. The default value of this property

is 0.0.

X2 , of type double, indicates the x-coordinate of the end point of the line. The default value of this property

is 0.0.

Y2 , of type double, indicates the y-coordinate of the end point of the line. The default value of this property

is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

For information about controlling how line ends are drawn, see Control line ends.

To draw a line, create a Line object and set its X1 and Y1 properties to its start point, and its X2 and Y

properties to its end point. In addition, set its Stroke property to a Brush -derived object because a line without

a stroke is invisible. For more information about Brush objects, see Xamarin.Forms Brushes.

Setting the Fill property of a Line has no effect, because a line has no interior.

The following XAML example shows how to draw a line:

In this example, a red diagonal line is drawn from (40,0) to (0,120):

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/line.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush

<Line Stroke="Red"
 X2="200" />

<Line X1="40"
 Y1="0"
 X2="0"
 Y2="120"
 Stroke="DarkBlue"
 StrokeDashArray="1,1"
 StrokeDashOffset="6" />

 Related links

Because the X1 , Y1 , X2 , and Y2 properties have default values of 0, it's possible to draw some lines with

minimal syntax:

In this example, a horizontal line that's 200 device-independent units long is defined. Because the other

properties are 0 by default, a line is drawn from (0,0) to (200,0).

The following XAML example shows how to draw a dashed line:

In this example, a dark blue dashed diagonal line is drawn from (40,0) to (0,120):

For more information about drawing a dashed line, see Draw dashed shapes.

ShapeDemos (sample)

Xamarin.Forms Shapes

Xamarin.Forms Brushes

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Path
 7/8/2021 • 2 minutes to read • Edit Online

 Create a Path

 Create a Path with path markup syntaxCreate a Path with path markup syntax

<Path Data="M 10,100 L 100,100 100,50Z"
 Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Start" />

 Download the sample

The Path class derives from the Shape class, and can be used to draw curves and complex shapes. These

curves and shapes are often described using Geometry objects. For information on the properties that the Path

class inherits from the Shape class, see Xamarin.Forms Shapes.

Path defines the following properties:

Data , of type Geometry , which specifies the shape to be drawn.

RenderTransform , of type Transform , which represents the transform that is applied to the geometry of a

path prior to it being drawn.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

For more information about transforms, see Xamarin.Forms Path Transforms.

To draw a path, create a Path object and set its Data property. There are two techniques for setting the Data

property:

You can set a string value for Data in XAML, using path markup syntax. With this approach, the Path.Data

value is consuming a serialization format for graphics. Typically, you don't edit this string value by hand after

it's created. Instead, you use design tools to manipulate the data, and export it as a string fragment that's

consumable by the Data property.

You can set the Data property to a Geometry object. This can be a specific Geometry object, or a

GeometryGroup which acts as a container that can combine multiple geometry objects into a single object.

The following XAML example shows how to draw a triangle using path markup syntax:

The Data string begins with the move command, indicated by M , which establishes an absolute start point for

the path. L is the line command, which creates a straight line from the start point to the specified end point. Z

is the close command, which creates a line that connects the current point to the starting point. The result is a

triangle:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/path.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

 Create a Path with Geometry objectsCreate a Path with Geometry objects

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Start">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure IsClosed="True"
 StartPoint="10,100">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <LineSegment Point="100,100" />
 <LineSegment Point="100,50" />
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

 Related links

For more information about path markup syntax, see Xamarin.Forms Path markup syntax.

Curves and shapes can be described using Geometry objects, which are used to set the Path object's Data

property. There are a variety of Geometry objects to choose from. The EllipseGeometry , LineGeometry , and

RectangleGeometry classes describe relatively simple shapes. To create more complex shapes or create curves,

use a PathGeometry .

PathGeometry objects are comprised of one or more PathFigure objects. Each PathFigure object represents a

different shape. Each PathFigure object is itself comprised of one or more PathSegment objects, each

representing a connection portion of the shape. Segment types include the following the LineSegment ,

BezierSegment , and ArcSegment classes.

The following XAML example shows how to draw a triangle using a PathGeometry object:

In this example, the start point of the triangle is (10,100). A line segment is drawn from (10,100) to (100,100),

and from (100,100) to (100,50). Then the figures first and last segments are connected, because the

PathFigure.IsClosed property is set to true . The result is a triangle:

For more information about geometries, see Xamarin.Forms Geometries.

ShapeDemos (sample)

Xamarin.Forms Shapes

Xamarin.Forms Geometries

Xamarin.Forms Path markup syntax

Xamarin.Forms Path transforms

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Path markup syntax
 7/8/2021 • 7 minutes to read • Edit Online

<Path Stroke="Black"
 Data="M13.908992,16.207977 L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983Z" />

TIPTIP

Geometry pathData = (Geometry)new PathGeometryConverter().ConvertFromInvariantString("M13.908992,16.207977
L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983Z");

 Move command

 Download the sample

Xamarin.Forms path markup syntax enables you to compactly specify path geometries in XAML. The syntax is

specified as a string value to the Path.Data property:

Path markup syntax is composed of an optional FillRule value, and one or more figure descriptions. This

syntax can be expressed as: <Path Data=" [fillRule] figureDescription [figureDescription] * " ... />

In this syntax:

fillRule is an optional Xamarin.Forms.Shapes.FillRule that specifies whether the geometry should use the

EvenOdd or Nonzero FillRule . F0 is used to specify the EvenOdd fill rule, while F1 is used to specify the

Nonzero fill rule. For more information about fill rules, see Xamarin.Forms Shapes: Fill rules.

figureDescription represents a figure composed of a move command, draw commands, and an optional

close command. A move command specifies the start point of the figure. Draw commands describe the

figure's contents, and the optional close command closes the figure.

In the example above, the path markup syntax specifies a start point using the move command (M), a series of

straight lines using the line command (L), and closes the path with the close command (Z).

In path markup syntax, spaces are not required before or after commands. In addition, two numbers don't have

to be separated by a comma or white space, but this can only be achieved when the string is unambiguous.

Path markup syntax is compatible with Scalable Vector Graphics (SVG) image path definitions, and so it can be useful for

porting graphics from SVG format.

While path markup syntax is intended for consumption in XAML, it can be converted to a Geometry object in

code by invoking the ConvertFromInvariantString method in the PathGeometryConverter class:

The move command specifies the start point of a new figure. The syntax for this command is: M startPoint or

m startPoint.

In this syntax, startPoint is a Point structure that specifies the start point of a new figure. If you list multiple

points after the move command, a line is drawn to those points.

M 10,10 is an example of a valid move command.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/path-markup-syntax.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point

Draw commands

 Line commandLine command

 Horizontal line commandHorizontal line command

 Vertical line commandVertical line command

 Elliptical arc commandElliptical arc command

A draw command can consist of several shape commands. The following draw commands are available:

Line (L or l).

Horizontal line (H or h).

Vertical line (V or v).

Elliptical arc (A or a).

Cubic Bezier curve (C or c).

Quadratic Bezier curve (Q or q).

Smooth cubic Bezier curve (S or s).

Smooth quadratic Bezier curve (T or t).

Each draw command is specified with a case-insensitive letter. When sequentially entering more than one

command of the same type, you can omit the duplicate command entry. For example L 100,200 300,400 is

equivalent to L 100,200 L 300,400 .

The line command creates a straight line between the current point and the specified end point. The syntax for

this command is: L endPoint or l endPoint.

In this syntax, endPoint is a Point that represents the end point of the line.

L 20,30 and L 20 30 are examples of valid line commands.

For information about creating a straight line as a PathGeometry object, see Create a LineSegment.

The horizontal line command creates a horizontal line between the current point and the specified x-coordinate.

The syntax for this command is: H x or h x.

In this syntax, x is a double that represents the x-coordinate of the end point of the line.

H 90 is an example of a valid horizontal line command.

The vertical line command creates a vertical line between the current point and the specified y-coordinate. The

syntax for this command is: V y or v y.

In this syntax, y is a double that represents the y-coordinate of the end point of the line.

V 90 is an example of a valid vertical line command.

The elliptical arc command creates an elliptical arc between the current point and the specified end point. The

syntax for this command is: A size rotationAngle isLargeArcFlag sweepDirectionFlag endPoint or a size

rotationAngle isLargeArcFlag sweepDirectionFlag endPoint.

In this syntax:

size is a Size that represents the x- and y-radius of the arc.

rotationAngle is a double that represents the rotation of the ellipse, in degrees.

isLargeArcFlag should be set to 1 if the angle of the arc should be 180 degrees or greater, otherwise set it to

0.

sweepDirectionFlag should be set to 1 if the arc is drawn in a positive-angle direction, otherwise set it to 0.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.size

 Cubic Bezier curve commandCubic Bezier curve command

 Quadratic Bezier curve commandQuadratic Bezier curve command

 Smooth cubic Bezier curve commandSmooth cubic Bezier curve command

 Smooth quadratic Bezier curve commandSmooth quadratic Bezier curve command

endPoint is a Point to which the arc is drawn.

A 150,150 0 1,0 150,-150 is an example of a valid elliptical arc command.

For information about creating an elliptical arc as a PathGeometry object, see Create an ArcSegment.

The cubic Bezier curve command creates a cubic Bezier curve between the current point and the specified end

point by using the two specified control point. The syntax for this command is: C controlPoint1 controlPoint2

endPoint or c controlPoint1 controlPoint2 endPoint.

In this syntax:

controlPoint1 is a Point that represents the first control point of the curve, which determines the starting

tangent of the curve.

controlPoint2 is a Point that represents the second control point of the curve, which determines the ending

tangent of the curve.

endPoint is a Point that represents the point to which the curve is drawn.

C 100,200 200,400 300,200 is an example of a valid cubic Bezier curve command.

For information about creating a cubic Bezier curve as a PathGeometry object, see Create a BezierSegment.

The quadratic Bezier curve command creates a quadratic Bezier curve between the current point and the

specified end point by using the specified control point. The syntax for this command is: Q controlPoint

endPoint or q controlPoint endPoint.

In this syntax:

controlPoint is a Point that represents the control point of the curve, which determines the starting and

ending tangents of the curve.

endPoint is a Point that represents the point to which the curve is drawn.

Q 100,200 300,200 is an example of a valid quadratic Bezier curve command.

For information about creating a quadratic Bezier curve as a PathGeometry object, see Create a

QuadraticBezierSegment.

The smooth cubic Bezier curve command creates a cubic Bezier curve between the current point and the

specified end point by using the specified control point. The syntax for this command is: S controlPoint2

endPoint or s controlPoint2 endPoint.

In this syntax:

controlPoint2 is a Point that represents the second control point of the curve, which determines the ending

tangent of the curve.

endPoint is a Point that represents the point to which the curve is drawn.

The first control point is assumed to be the reflection of the second control point of the previous command,

relative to the current point. If there is no previous command, or the previous command was not a cubic Bezier

curve command or a smooth cubic Bezier curve command, the first control point is assumed to be coincident

with the current point.

S 100,200 200,300 is an example of a valid smooth cubic Bezier curve command.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point

 Close command

 Additional values

 Related links

The smooth quadratic Bezier curve command creates a quadratic Bezier curve between the current point and

the specified end point by using a control point. The syntax for this command is: T endPoint or t endPoint.

In this syntax, endPoint is a Point that represents the point to which the curve is drawn.

The control point is assumed to be the reflection of the control point of the previous command relative to the

current point. If there is no previous command or if the previous command was not a quadratic Bezier curve or

a smooth quadratic Bezier curve command, the control point is assumed to be coincident with the current point.

T 100,30 is an example of a valid smooth quadratic cubic Bezier curve command.

The close command ends the current figure and creates a line that connects the current point to the starting

point of the figure. Therefore, this command creates a line-join between the last segment and the first segment

of the figure.

The syntax for the close command is: Z or z .

Instead of a standard numerical value, you can also use the following case-sensitive special values:

Infinity represents double.PositiveInfinity .

-Infinity represents double.NegativeInfinity .

NaN represents double.NaN .

In addition, you may also use case-insensitive scientific notation. Therefore, +1.e17 is a valid value.

ShapeDemos (sample)

Xamarin.Forms Shapes: Geometries

Xamarin.Forms Shapes: Fill rules

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Path transforms
 7/8/2021 • 12 minutes to read • Edit Online

 Rotation transform

 Download the sample

A Transform defines how to transform a Path object from one coordinate space to another coordinate space.

When a transform is applied to a Path object, it changes how the object is rendered in the UI.

Transforms can be categorized into four general classifications: rotation, scaling, skew, and translation.

Xamarin.Forms defines a class for each of these transform classifications:

RotateTransform , which rotates a Path by a specified Angle .

ScaleTransform , which scales a Path object by specified ScaleX and ScaleY amounts.

SkewTransform , which skews a Path object by specified AngleX and AngleY amounts.

TranslateTransform , which moves a Path object by specified X and Y amounts.

Xamarin.Forms also provides the following classes for creating more complex transformations:

TransformGroup , which represents a composite transform composed of multiple transform objects.

CompositeTransform , which applies multiple transform operations to a Path object.

MatrixTransform , which creates custom transforms that are not provided by the other transform classes.

All of these classes derive from the Transform class, which defines a Value property of type Matrix , which

represents the current transformation as a Matrix object. This property is backed by a BindableProperty object,

which means that it can be the target of data bindings, and styled. For more information about the Matrix

struct, see Transform matrix.

To apply a transform to a Path , you create a transform class and set it as the value of the Path.RenderTransform

property.

A rotate transform rotates a Path object clockwise about a specified point in a 2D x-y coordinate system.

The RotateTransform class, which derives from the Transform class, defines the following properties:

Angle , of type double , represents the angle, in degrees, of clockwise rotation. The default value of this

property is 0.0.

CenterX , of type double , represents the x-coordinate of the rotation center point. The default value of this

property is 0.0.

CenterY , of type double , represents the y-coordinate of the rotation center point. The default value of this

property is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The CenterX and CenterY properties specify the point about which the Path object is rotated. This center point

is expressed in the coordinate space of the object that's transformed. By default, the rotation is applied to (0,0),

which is the upper-left corner of the Path object.

The following example shows how to rotate a Path object:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/path-transforms.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 HeightRequest="100"
 WidthRequest="100"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <RotateTransform CenterX="0"
 CenterY="0"
 Angle="45" />
 </Path.RenderTransform>
</Path>

 Scale transform

In this example, the Path object is rotated 45 degrees about its upper-left corner.

A scale transform scales a Path object in the 2D x-y coordinate system.

The ScaleTransform class, which derives from the Transform class, defines the following properties:

ScaleX , of type double , which represents the x-axis scale factor. The default value of this property is 1.0.

ScaleY , of type double , which represents the y-axis scale factor. The default value of this property is 1.0.

CenterX , of type double , which represents the x-coordinate of the center point of this transform. The default

value of this property is 0.0.

CenterY , of type double , which represents the y-coordinate of the center point of this transform. The default

value of this property is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The value of ScaleX and ScaleY have a huge impact on the resulting scaling:

Values between 0 and 1 decrease the width and height of the scaled object.

Values greater than 1 increase the width and height of the scaled object.

Values of 1 indicate that the object is not scaled.

Negative values flip the scale object horizontally and vertically.

Values between 0 and -1 flip the scale object and decrease its width and height.

Values less than -1 flip the object and increase its width and height.

Values of -1 flip the scaled object but do not change its horizontal or vertical size.

The CenterX and CenterY properties specify the point about which the Path object is scaled. This center point

is expressed in the coordinate space of the object that's transformed. By default, scaling is applied to (0,0), which

is the upper-left corner of the Path object. This has the effect of moving the Path object and making it appear

larger, because when you apply a transform you change the coordinate space in which the Path object resides.

The following example shows how to scale a Path object:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 HeightRequest="100"
 WidthRequest="100"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <ScaleTransform CenterX="0"
 CenterY="0"
 ScaleX="1.5"
 ScaleY="1.5" />
 </Path.RenderTransform>
</Path>

 Skew transform

NOTENOTE

In this example, the Path object is scaled to 1.5 times the size.

A skew transform skews a Path object in the 2D x-y coordinate system, and is useful for creating the illusion of

3D depth in a 2D object.

The SkewTransform class, which derives from the Transform class, defines the following properties:

AngleX , of type double , which represents the x-axis skew angle, which is measured in degrees

counterclockwise from the y-axis. The default value of this property is 0.0.

AngleY , of type double , which represents the y-axis skew angle, which is measured in degrees

counterclockwise from the x-axis. The default value of this property is 0.0.

CenterX , of type double , which represents the x-coordinate of the transform center. The default value of this

property is 0.0.

CenterY , of type double , which represents the y-coordinate of the transform center. The default value of this

property is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

To predict the effect of a skew transformation, consider that AngleX skews x-axis values relative to the original

coordinate system. Therefore, for an AngleX of 30, the y-axis rotates 30 degrees through the origin and skews

the values in x by 30 degrees from that origin. Similarly, an AngleY of 30 skews the y values of the Path object

by 30 degrees from the origin.

To skew a Path object in place, set the CenterX and CenterY properties to the object's center point.

The following example shows how to skew a Path object:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 HeightRequest="100"
 WidthRequest="100"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <SkewTransform CenterX="0"
 CenterY="0"
 AngleX="45"
 AngleY="0" />
 </Path.RenderTransform>
</Path>

 Translate transform

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 HeightRequest="100"
 WidthRequest="100"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <TranslateTransform X="50"
 Y="50" />
 </Path.RenderTransform>
</Path>

 Multiple transforms

 Transform groupsTransform groups

In this example, a horizontal skew of 45 degrees is applied to the Path object, from a center point of (0,0).

A translate transform moves an object in the 2D x-y coordinate system.

The TranslateTransform class, which derives from the Transform class, defines the following properties:

X , of type double , which represents the distance to move along the x-axis. The default value of this

property is 0.0.

Y , of type double , which represents the distance to move along the y-axis. The default value of this

property is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

Negative X values move an object to the left, while positive values move an object to the right. Negative Y

values move an object up, while positive values move an object down.

The following example shows how to translate a Path object:

In this example, the Path object is moved 50 device-independent units to the right, and 50 device-independent

units down.

Xamarin.Forms has two classes that support applying multiple transforms to a Path object. These are

TransformGroup , and CompositeTransform . A TransformGroup performs transforms in any desired order, while a

CompositeTransform performs transforms in a specific order.

Transform groups represent composite transforms composed of multiple Transform objects.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 HeightRequest="100"
 WidthRequest="100"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="1.5"
 ScaleY="1.5" />
 <RotateTransform Angle="45" />
 </TransformGroup>
 </Path.RenderTransform>
</Path>

 Composite transforms

The TransformGroup class, which derives from the Transform class, defines a Children property, of type

TransformCollection , which represents a collection of Transform objects. This property is backed by a

BindableProperty object, which means that it can be the target of data bindings, and styled.

The order of transformations is important in a composite transform that uses the TransformGroup class. For

example, if you first rotate, then scale, then translate, you get a different result than if you first translate, then

rotate, then scale. One reason order is significant is that transforms like rotation and scaling are performed

respect to the origin of the coordinate system. Scaling an object that is centered at the origin produces a

different result to scaling an object that has been moved away from the origin. Similarly, rotating an object that

is centered at the origin produces a different result than rotating an object that has been moved away from the

origin.

The following example shows how to perform a composite transform using the TransformGroup class:

In this example, the Path object is scaled to 1.5 times its size, and then rotated by 45 degrees.

A composite transform applies multiple transforms to an object.

The CompositeTransform class, which derives from the Transform class, defines the following properties:

CenterX , of type double , which represents the x-coordinate of the center point of this transform. The default

value of this property is 0.0.

CenterY , of type double , which represents the y-coordinate of the center point of this transform. The default

value of this property is 0.0.

ScaleX , of type double , which represents the x-axis scale factor. The default value of this property is 1.0.

ScaleY , of type double , which represents the y-axis scale factor. The default value of this property is 1.0.

SkewX , of type double , which represents the x-axis skew angle, which is measured in degrees

counterclockwise from the y-axis. The default value of this property is 0.0.

SkewY , of type double , which represents the y-axis skew angle, which is measured in degrees

counterclockwise from the x-axis. The default value of this property is 0.0.

Rotation , of type double , represents the angle, in degrees, of clockwise rotation. The default value of this

property is 0.0.

TranslateX , of type double , which represents the distance to move along the x-axis. The default value of this

property is 0.0.

TranslateY , of type double , which represents the distance to move along the y-axis. The default value of this

property is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

IMPORTANTIMPORTANT

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 HeightRequest="100"
 WidthRequest="100"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <CompositeTransform ScaleX="1.5"
 ScaleY="1.5"
 Rotation="45"
 TranslateX="50"
 TranslateY="50" />
 </Path.RenderTransform>
</Path>

 Transform matrix

bindings, and styled.

A CompositeTransform applies transforms in this order :

1. Scale (ScaleX and ScaleY).

2. Skew (SkewX and SkewY).

3. Rotate (Rotation).

4. Translate (TranslateX , TranslateY).

If you want to apply multiple transforms to an object in a different order, you should create a TransformGroup

and insert the transforms in your intended order.

A CompositeTransform uses the same center points, CenterX and CenterY , for all transformations. If you want to

specify different center points per transform, use a TransformGroup ,

The following example shows how to perform a composite transform using the CompositeTransform class:

In this example, the Path object is scaled to 1.5 times its size, then rotated by 45 degrees, and then translated

by 50 device-independent units.

A transform can be described in terms of a 3x3 affine transformation matrix, that performs transformations in

2D space. This 3x3 matrix is represented by the Matrix struct, which is a collection of three rows and three

columns of double values.

The Matrix struct defines the following properties:

Determinant , of type double , which gets the determinant of the matrix.

HasInverse , of type bool , which indicates whether the matrix is invertible.

Identity , of type Matrix , which gets an identity matrix.

HasIdentity , of type bool , which indicates whether the matrix is an identity matrix.

M11 , of type double , which represents the value of the first row and first column of the matrix.

M12 , of type double , which represents the value of the first row and second column of the matrix.

M21 , of type double , which represents the value of the second row and first column of the matrix.

M22 , of type double , which represents the value of the second row and second column of the matrix.

OffsetX , of type double , which represents the value of the third row and first column of the matrix.

OffsetY , of type double , which represents the value of the third row and second column of the matrix.

NOTENOTE

 Custom transforms

The OffsetX and OffsetY properties are so named because they specify the amount to translate the coordinate

space along the x-axis, and y-axis, respectively.

In addition, the Matrix struct exposes a series of methods that can be used to manipulate the matrix values,

including Append , Invert , Multiply , Prepend and many more.

The following table shows the structure of a Xamarin.Forms matrix:

M11

M12

0.0

M21

M22

0.0

OffsetX

OffsetY

1.0

An affine transformation matrix has its final column equal to (0,0,1), so only the members in the first two columns need to

be specified.

By manipulating matrix values, you can rotate, scale, skew, and translate Path objects. For example, if you

change the OffsetX value to 100, you can use it move a Path object 100 device-independent units along the x-

axis. If you change the M22 value to 3, you can use it to stretch a Path object to three times its current height. If

you change both values, you move the Path object 100 device-independent units along the x-axis and stretch

its height by a factor of 3. In addition, affine transformation matrices can be multiplied to form any number of

linear transformations, such as rotation and skew, followed by translation.

The MatrixTransform class, which derives from the Transform class, defines a Matrix property, of type Matrix ,

which represents the matrix that defines the transformation. This property is backed by a BindableProperty

object, which means that it can be the target of data bindings, and styled.

Any transform that you can describe with a TranslateTransform , ScaleTransform , RotateTransform , or

SkewTransform object can equally be described by a MatrixTransform . However, the TranslateTransform ,

ScaleTransform , RotateTransform , and SkewTransform classes are easier to conceptualize than setting the vector

components in a Matrix . Therefore, the MatrixTransform class is typically used to create custom

transformations that aren't provided by the RotateTransform , ScaleTransform , SkewTransform , or

TranslateTransform classes.

The following example shows how to transform a Path object using a MatrixTransform :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <MatrixTransform>
 <MatrixTransform.Matrix>
 <!-- M11 stretches, M12 skews -->
 <Matrix OffsetX="10"
 OffsetY="100"
 M11="1.5"
 M12="1" />
 </MatrixTransform.Matrix>
 </MatrixTransform>
 </Path.RenderTransform>
</Path>

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z">
 <Path.RenderTransform>
 <MatrixTransform Matrix="1.5,1,0,1,10,100" />
 </Path.RenderTransform>
</Path>

<Path Stroke="Black"
 Aspect="Uniform"
 HorizontalOptions="Center"
 RenderTransform="1.5 1 0 1 10 100"
 Data="M13.908992,16.207977L32.000049,16.207977 32.000049,31.999985 13.908992,30.109983z" />

 Related links

In this example, the Path object is stretched, skewed, and offset in both the X and Y dimensions.

Alternatively, this can be written in a simplified form that uses a type converter that's built into Xamarin.Forms:

In this example, the Matrix property is specified as a comma-delimited string consisting of six members: M11 ,

M12 , M21 , M22 , OffsetX , OffsetY . While the members are comma-delimited in this example, they can also be

delimited by one or more spaces.

In addition, the previous example can be simplified even further by specifying the same six members as the

value of the RenderTransform property:

ShapeDemos (sample)

Xamarin.Forms Shapes

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Polygon
 7/8/2021 • 2 minutes to read • Edit Online

 Create a Polygon

<Polygon Points="40,10 70,80 10,50"
 Fill="AliceBlue"
 Stroke="Green"
 StrokeThickness="5" />

 Download the sample

The Polygon class derives from the Shape class, and can be used to draw polygons, which are connected series

of lines that form closed shapes. For information on the properties that the Polygon class inherits from the

Shape class, see Xamarin.Forms Shapes.

Polygon defines the following properties:

Points , of type PointCollection , which is a collection of Point structures that describe the vertex points of

the polygon.

FillRule , of type FillRule , which specifies how the interior fill of the shape is determined. The default

value of this property is FillRule.EvenOdd .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The PointsCollection type is an ObservableCollection of Point objects. The Point structure defines X and

Y properties, of type double , that represent an x- and y-coordinate pair in 2D space. Therefore, the Points

property should be set to a list of x-coordinate and y-coordinate pairs that describe the polygon vertex points,

delimited by a single comma and/or one or more spaces. For example, "40,10 70,80" and "40 10, 70 80" are

both valid.

For more information about the FillRule enumeration, see Xamarin.Forms Shapes: Fill rules.

To draw a polygon, create a Polygon object and set its Points property to the vertices of a shape. A line is

automatically drawn that connects the first and last points. To paint the inside of the polygon, set its Fill

property to a Brush -derived object. To give the polygon an outline, set its Stroke property to a Brush -derived

object. The StrokeThickness property specifies the thickness of the polygon outline. For more information about

Brush objects, see Xamarin.Forms Brushes.

The following XAML example shows how to draw a filled polygon:

In this example, a filled polygon that represents a triangle is drawn:

The following XAML example shows how to draw a dashed polygon:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/polygon.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush

<Polygon Points="40,10 70,80 10,50"
 Fill="AliceBlue"
 Stroke="Green"
 StrokeThickness="5"
 StrokeDashArray="1,1"
 StrokeDashOffset="6" />

<Polygon Points="0 48, 0 144, 96 150, 100 0, 192 0, 192 96, 50 96, 48 192, 150 200 144 48"
 Fill="Blue"
 Stroke="Red"
 StrokeThickness="3" />

<Polygon Points="0 48, 0 144, 96 150, 100 0, 192 0, 192 96, 50 96, 48 192, 150 200 144 48"
 Fill="Black"
 FillRule="Nonzero"
 Stroke="Yellow"
 StrokeThickness="3" />

 Related links

In this example, the polygon outline is dashed:

For more information about drawing a dashed polygon, see Draw dashed shapes.

The following XAML example shows a polygon that uses the default fill rule:

In this example, the fill behavior of each polygon is determined using the EvenOdd fill rule.

The following XAML example shows a polygon that uses the Nonzero fill rule:

In this example, the fill behavior of each polygon is determined using the Nonzero fill rule.

ShapeDemos (sample)

Xamarin.Forms Shapes

Xamarin.Forms Shapes: Fill rules

Xamarin.Forms Brushes

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes: Polyline
 7/8/2021 • 2 minutes to read • Edit Online

 Create a Polyline

IMPORTANTIMPORTANT

<Polyline Points="0,0 10,30, 15,0 18,60 23,30 35,30 40,0 43,60 48,30 100,30"
 Stroke="Red" />

 Download the sample

The Polyline class derives from the Shape class, and can be used to draw a series of connected straight lines. A

polyline is similar to a polygon, except the last point in a polyline is not connected to the first point. For

information on the properties that the Polyline class inherits from the Shape class, see Xamarin.Forms

Shapes.

Polyline defines the following properties:

Points , of type PointCollection , which is a collection of Point structures that describe the vertex points of

the polyline.

FillRule , of type FillRule , which specifies how the intersecting areas in the polyline are combined. The

default value of this property is FillRule.EvenOdd .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The PointsCollection type is an ObservableCollection of Point objects. The Point structure defines X and

Y properties, of type double , that represent an x- and y-coordinate pair in 2D space. Therefore, the Points

property should be set to a list of x-coordinate and y-coordinate pairs that describe the polyline vertex points,

delimited by a single comma and/or one or more spaces. For example, "40,10 70,80" and "40 10, 70 80" are

both valid.

For more information about the FillRule enumeration, see Xamarin.Forms Shapes: Fill rules.

To draw a polyline, create a Polyline object and set its Points property to the vertices of a shape. To give the

polyline an outline, set its Stroke property to a Brush -derived object. The StrokeThickness property specifies

the thickness of the polyline outline. For more information about Brush objects, see Xamarin.Forms Brushes.

If you set the Fill property of a Polyline to a Brush -derived object, the interior space of the polyline is painted,

even if the start point and end point do not intersect.

The following XAML example shows how to draw a polyline:

In this example, a red polyline is drawn:

The following XAML example shows how to draw a dashed polyline:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/polyline.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush

<Polyline Points="0,0 10,30, 15,0 18,60 23,30 35,30 40,0 43,60 48,30 100,30"
 Stroke="Red"
 StrokeThickness="2"
 StrokeDashArray="1,1"
 StrokeDashOffset="6" />

<Polyline Points="0 48, 0 144, 96 150, 100 0, 192 0, 192 96, 50 96, 48 192, 150 200 144 48"
 Fill="Blue"
 Stroke="Red"
 StrokeThickness="3" />

<Polyline Points="0 48, 0 144, 96 150, 100 0, 192 0, 192 96, 50 96, 48 192, 150 200 144 48"
 Fill="Black"
 FillRule="Nonzero"
 Stroke="Yellow"
 StrokeThickness="3" />

 Related links

In this example, the polyline is dashed:

For more information about drawing a dashed polyline, see Draw dashed shapes.

The following XAML example shows a polyline that uses the default fill rule:

In this example, the fill behavior of the polyline is determined using the EvenOdd fill rule.

The following XAML example shows a polyline that uses the Nonzero fill rule:

In this example, the fill behavior of the polyline is determined using the Nonzero fill rule.

ShapeDemos (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms Shapes

Xamarin.Forms Shapes: Fill rules

Xamarin.Forms Brushes

Xamarin.Forms Shapes: Rectangle
 7/8/2021 • 2 minutes to read • Edit Online

 Create a Rectangle

<Rectangle Fill="Red"
 WidthRequest="150"
 HeightRequest="50"
 HorizontalOptions="Start" />

 Download the sample

The Rectangle class derives from the Shape class, and can be used to draw rectangles and squares. For

information on the properties that the Rectangle class inherits from the Shape class, see Xamarin.Forms

Shapes.

Rectangle defines the following properties:

RadiusX , of type double , which is the x-axis radius that's used to round the corners of the rectangle. The

default value of this property is 0.0.

RadiusY , of type double , which is the y-axis radius that's used to round the corners of the rectangle. The

default value of this property is 0.0.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The Rectangle class sets the Aspect property, inherited from the Shape class, to Stretch.Fill . For more

information about the Aspect property, see Stretch shapes.

To draw a rectangle, create a Rectangle object and sets its WidthRequest and HeightRequest properties. To paint

the inside of the rectangle, set its Fill property to a Brush -derived object. To give the rectangle an outline, set

its Stroke property to a Brush -derived object. The StrokeThickness property specifies the thickness of the

rectangle outline. For more information about Brush objects, see Xamarin.Forms Brushes.

To give the rectangle rounded corners, set its RadiusX and RadiusY properties. These properties set the x-axis

and y-axis radii that's used to round the corners of the rectangle.

To draw a square, make the WidthRequest and HeightRequest properties of the Rectangle object equal.

The following XAML example shows how to draw a filled rectangle:

In this example, a red filled rectangle with dimensions 150x50 (device-independent units) is drawn:

The following XAML example shows how to draw a filled rectangle, with rounded corners:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/shapes/rectangle.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.brush

<Rectangle Fill="Blue"
 Stroke="Black"
 StrokeThickness="3"
 RadiusX="50"
 RadiusY="10"
 WidthRequest="200"
 HeightRequest="100"
 HorizontalOptions="Start" />

 Related links

In this example, a blue filled rectangle with rounded corners is drawn:

For information about drawing a dashed rectangle, see Draw dashed shapes.

ShapeDemos (sample)

Xamarin.Forms Shapes

Xamarin.Forms Brushes

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shapesdemos/

Xamarin.Forms WebView
 7/8/2021 • 14 minutes to read • Edit Online

 Content

NOTENOTE

 WebsitesWebsites

 Download the sample

WebView is a view for displaying web and HTML content in your app:

WebView supports the following types of content:

HTML & CSS websites – WebView has full support for websites written using HTML & CSS, including

JavaScript support.

Documents – Because WebView is implemented using native components on each platform, WebView is

capable of showing documents in the formats that are supported by the underlying platform.

HTML strings – WebView can show HTML strings from memory.

Local Files – WebView can present any of the content types above embedded in the app.

WebView on Windows does not support Silverlight, Flash or any ActiveX controls, even if they are supported by Internet

Explorer on that platform.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/webview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithwebview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

var browser = new WebView
{
 Source = "https://dotnet.microsoft.com/apps/xamarin"
};

NOTENOTE

 iOS and ATSiOS and ATS

NOTENOTE

<key>NSAppTransportSecurity</key>
 <dict>
 <key>NSExceptionDomains</key>
 <dict>
 <key>xamarin.com</key>
 <dict>
 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
 <true/>
 <key>NSTemporaryExceptionMinimumTLSVersion</key>
 <string>TLSv1.1</string>
 </dict>
 </dict>
 </dict>
 ...
</key>

<key>NSAppTransportSecurity</key>
 <dict>
 <key>NSAllowsArbitraryLoads </key>
 <true/>
 </dict>
 ...
</key>

 HTML StringsHTML Strings

To display a website from the internet, set the WebView 's Source property to a string URL:

URLs must be fully formed with the protocol specified (i.e. it must have "http://" or "https://" prepended to it).

Since version 9, iOS will only allow your application to communicate with servers that implement best-practice

security by default. Values must be set in Info.plist to enable communication with unsecure servers.

If your application requires a connection to an unsecure website, you should always enter the domain as an exception

using NSExceptionDomains instead of turning ATS off completely using NSAllowsArbitraryLoads .

NSAllowsArbitraryLoads should only be used in extreme emergency situations.

The following demonstrates how to enable a specific domain (in this case xamarin.com) to bypass ATS

requirements:

It is best practice to only enable some domains to bypass ATS, allowing you to use trusted sites while benefitting

from the additional security on untrusted domains. The following demonstrates the less secure method of

disabling ATS for the app:

See App Transport Security for more information about this new feature in iOS 9.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webviewsource
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats

var browser = new WebView();
var htmlSource = new HtmlWebViewSource();
htmlSource.Html = @"<html><body>
 <h1>Xamarin.Forms</h1>
 <p>Welcome to WebView.</p>
 </body></html>";
browser.Source = htmlSource;

NOTENOTE

 Local HTML ContentLocal HTML Content

If you want to present a string of HTML defined dynamically in code, you'll need to create an instance of

HtmlWebViewSource :

In the above code, @ is used to mark the HTML as a verbatim string literal, meaning most escape characters are

ignored.

It may be necessary to set the WidthRequest and HeightRequest properties of the WebView to see the HTML

content, depending upon the layout the WebView is a child of. For example, this is required in a StackLayout .

WebView can display content from HTML, CSS and JavaScript embedded within the app. For example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.htmlwebviewsource
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/#regular-and-verbatim-string-literals
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

<html>
 <head>
 <title>Xamarin Forms</title>
 </head>
 <body>
 <h1>Xamarin.Forms</h1>
 <p>This is an iOS web page.</p>

 </body>
</html>

html,body {
 margin:0;
 padding:10;
}
body,p,h1 {
 font-family: Chalkduster;
}

CSS:

Note that the fonts specified in the above CSS will need to be customized for each platform, as not every

platform has the same fonts.

To display local content using a WebView , you'll need to open the HTML file like any other, then load the contents

as a string into the Html property of an HtmlWebViewSource . For more information on opening files, see

Working with Files.

The following screenshots show the result of displaying local content on each platform:

Although the first page has been loaded, the WebView has no knowledge of where the HTML came from. That is

public interface IBaseUrl { string Get(); }

var source = new HtmlWebViewSource();
source.BaseUrl = DependencyService.Get<IBaseUrl>().Get();

 iOSiOS

a problem when dealing with pages that reference local resources. Examples of when that might happen include

when local pages link to each other, a page makes use of a separate JavaScript file, or a page links to a CSS

stylesheet.

To solve this, you need to tell the WebView where to find files on the filesystem. Do that by setting the BaseUrl

property on the HtmlWebViewSource used by the WebView .

Because the filesystem on each of the operating systems is different, you need to determine that URL on each

platform. Xamarin.Forms exposes the DependencyService for resolving dependencies at runtime on each

platform.

To use the DependencyService , first define an interface that can be implemented on each platform:

Note that until the interface is implemented on each platform, the app will not run. In the common project, make

sure that you remember to set the BaseUrl using the DependencyService :

Implementations of the interface for each platform must then be provided.

On iOS, the web content should be located in the project's root directory or ResourcesResources directory with build

action BundleResource, as demonstrated below:

Visual Studio

Visual Studio for Mac

[assembly: Dependency (typeof (BaseUrl_iOS))]
namespace WorkingWithWebview.iOS
{
 public class BaseUrl_iOS : IBaseUrl
 {
 public string Get()
 {
 return NSBundle.MainBundle.BundlePath;
 }
 }
}

 AndroidAndroid

The BaseUrl should be set to the path of the main bundle:

On Android, place HTML, CSS, and images in the Assets folder with build action AndroidAsset as demonstrated

below:

Visual Studio

Visual Studio for Mac

[assembly: Dependency (typeof(BaseUrl_Android))]
namespace WorkingWithWebview.Android
{
 public class BaseUrl_Android : IBaseUrl
 {
 public string Get()
 {
 return "file:///android_asset/";
 }
 }
}

var assetManager = MainActivity.Instance.Assets;
using (var streamReader = new StreamReader (assetManager.Open ("local.html")))
{
 var html = streamReader.ReadToEnd ();
}

 Universal Windows PlatformUniversal Windows Platform

[assembly: Dependency(typeof(BaseUrl))]
namespace WorkingWithWebview.UWP
{
 public class BaseUrl : IBaseUrl
 {
 public string Get()
 {
 return "ms-appx-web:///";
 }
 }
}

 Navigation

On Android, the BaseUrl should be set to "file:///android_asset/" :

On Android, files in the AssetsAssets folder can also be accessed through the current Android context, which is

exposed by the MainActivity.Instance property:

On Universal Windows Platform (UWP) projects, place HTML, CSS and images in the project root with the build

action set to Content.

The BaseUrl should be set to "ms-appx-web:///" :

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="WebViewSample.InAppBrowserXaml"
 Title="Browser">
 <StackLayout Margin="20">
 <StackLayout Orientation="Horizontal">
 <Button Text="Back" HorizontalOptions="StartAndExpand" Clicked="OnBackButtonClicked" />
 <Button Text="Forward" HorizontalOptions="EndAndExpand" Clicked="OnForwardButtonClicked" />
 </StackLayout>
 <!-- WebView needs to be given height and width request within layouts to render. -->
 <WebView x:Name="webView" WidthRequest="1000" HeightRequest="1000" />
 </StackLayout>
</ContentPage>

WebView supports navigation through several methods and properties that it makes available:

GoFor ward()GoFor ward() – if CanGoForward is true, calling GoForward navigates forward to the next visited page.

GoBack()GoBack() – if CanGoBack is true, calling GoBack will navigate to the last visited page.

CanGoBackCanGoBack – true if there are pages to navigate back to, false if the browser is at the starting URL.

CanGoFor wardCanGoFor ward – true if the user has navigated backwards and can move forward to a page that was

already visited.

Within pages, WebView does not support multi-touch gestures. It is important to make sure that content is

mobile-optimized and appears without the need for zooming.

It is common for applications to show a link within a WebView , rather than the device's browser. In those

situations, it is useful to allow normal navigation, but when the user hits back while they are on the starting link,

the app should return to the normal app view.

Use the built-in navigation methods and properties to enable this scenario.

Start by creating the page for the browser view:

In the code-behind:

public partial class InAppBrowserXaml : ContentPage
{
 public InAppBrowserXaml(string URL)
 {
 InitializeComponent();
 webView.Source = URL;
 }

 async void OnBackButtonClicked(object sender, EventArgs e)
 {
 if (webView.CanGoBack)
 {
 webView.GoBack();
 }
 else
 {
 await Navigation.PopAsync();
 }
 }

 void OnForwardButtonClicked(object sender, EventArgs e)
 {
 if (webView.CanGoForward)
 {
 webView.GoForward();
 }
 }
}

 Events

That's it!

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="WebViewSample.LoadingLabelXaml"
 Title="Loading Demo">
 <StackLayout>
 <!--Loading label should not render by default.-->
 <Label x:Name="labelLoading" Text="Loading..." IsVisible="false" />
 <WebView HeightRequest="1000" WidthRequest="1000" Source="https://dotnet.microsoft.com/apps/xamarin"
Navigated="webviewNavigated" Navigating="webviewNavigating" />
 </StackLayout>
</ContentPage>

void webviewNavigating(object sender, WebNavigatingEventArgs e)
{
 labelLoading.IsVisible = true;
}

void webviewNavigated(object sender, WebNavigatedEventArgs e)
{
 labelLoading.IsVisible = false;
}

WebView raises the following events to help you respond to changes in state:

Navigating – event raised when the WebView begins loading a new page.

Navigated – event raised when the page is loaded and navigation has stopped.

ReloadRequested – event raised when a request is made to reload the current content.

The WebNavigatingEventArgs object that accompanies the Navigating event has four properties:

Cancel – indicates whether or not to cancel the navigation.

NavigationEvent – the navigation event that was raised.

Source – the element that performed the navigation.

Url – the navigation destination.

The WebNavigatedEventArgs object that accompanies the Navigated event has four properties:

NavigationEvent – the navigation event that was raised.

Result – describes the result of the navigation, using a WebNavigationResult enumeration member. Valid

values are Cancel , Failure , Success , and Timeout .

Source – the element that performed the navigation.

Url – the navigation destination.

If you anticipate using webpages that take a long time to load, consider using the Navigating and Navigated

events to implement a status indicator. For example:

The two event handlers:

This results in the following output (loading):

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.navigating
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.navigated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.reloadrequested
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webnavigatingeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.navigating
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webnavigatedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.navigated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webnavigationresult
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.navigating
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.navigated

Finished Loading:

Reloading content

var webView = new WebView();
...
webView.Reload();

 Performance

NOTENOTE

// Opt-in to using UIWebView instead of WkWebView.
[assembly: ExportRenderer(typeof(Xamarin.Forms.WebView),
typeof(Xamarin.Forms.Platform.iOS.WebViewRenderer))]

NOTENOTE

 Permissions

WebView has a Reload method that can be used to reload the current content:

When the Reload method is invoked the ReloadRequested event is fired, indicating that a request has been

made to reload the current content.

Popular web browsers adopt technologies like hardware accelerated rendering and JavaScript compilation. Prior

to Xamarin.Forms 4.4, the Xamarin.Forms WebView was implemented on iOS by the UIWebView class. However,

many of these technologies were unavailable in this implementation. Therefore, since Xamarin.Forms 4.4, the

Xamarin.Forms WebView is implemented on iOS by the WkWebView class, which supports faster browsing.

On iOS, the WkWebViewRenderer has a constructor overload that accepts a WkWebViewConfiguration argument. This

enables the renderer to be configured on creation.

An application can return to using the iOS UIWebView class to implement the Xamarin.Forms WebView , for

compatibility reasons. This can be achieved by adding the following code to the AssemblyInfo.csAssemblyInfo.cs file in the iOS

platform project for the application:

In Xamarin.Forms 5.0, the WebViewRenderer class has been removed. Therefore, Xamarin.Forms 5.0 doesn't contain a

reference to the UIWebView control.

WebView on Android by default is about as fast as the built-in browser.

The UWP WebView uses the Microsoft Edge rendering engine. Desktop and tablet devices should see the same

performance as using the Edge browser itself.

In order for WebView to work, you must make sure that permissions are set for each platform. Note that on

some platforms, WebView will work in debug mode, but not when built for release. That is because some

permissions, like those for internet access on Android, are set by default by Visual Studio for Mac when in debug

mode.

UWPUWP – requires the Internet (Client & Server) capability when displaying network content.

AndroidAndroid – requires INTERNET only when displaying content from the network. Local content requires no

special permissions.

iOSiOS – requires no special permissions.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/web-view

 Layout

<StackLayout>
 <Label Text="test" />
 <WebView Source="https://dotnet.microsoft.com/apps/xamarin"
 HeightRequest="1000"
 WidthRequest="1000" />
</StackLayout>

<RelativeLayout>
 <Label Text="test"
 RelativeLayout.XConstraint= "{ConstraintExpression
 Type=Constant, Constant=10}"
 RelativeLayout.YConstraint= "{ConstraintExpression
 Type=Constant, Constant=20}" />
 <WebView Source="https://dotnet.microsoft.com/apps/xamarin"
 RelativeLayout.XConstraint="{ConstraintExpression Type=Constant,
 Constant=10}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=Constant,
 Constant=50}"
 WidthRequest="1000" HeightRequest="1000" />
</RelativeLayout>

<AbsoluteLayout>
 <Label Text="test" AbsoluteLayout.LayoutBounds="0,0,100,100" />
 <WebView Source="https://dotnet.microsoft.com/apps/xamarin"
 AbsoluteLayout.LayoutBounds="0,150,500,500" />
</AbsoluteLayout>

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="100" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Label Text="test" Grid.Row="0" />
 <WebView Source="https://dotnet.microsoft.com/apps/xamarin" Grid.Row="1" />
</Grid>

 Invoking JavaScript

Unlike most other Xamarin.Forms views, WebView requires that HeightRequest and WidthRequest are specified

when contained in StackLayout or RelativeLayout. If you fail to specify those properties, the WebView will not

render.

The following examples demonstrate layouts that result in working, rendering WebView s:

StackLayout with WidthRequest & HeightRequest:

RelativeLayout with WidthRequest & HeightRequest:

AbsoluteLayout without WidthRequest & HeightRequest:

Grid without WidthRequest & HeightRequest. Grid is one of the few layouts that does not require specifying

requested heights and widths.:

WebView includes the ability to invoke a JavaScript function from C#, and return any result to the calling C#

code. This is accomplished with the WebView.EvaluateJavaScriptAsync method, which is shown in the following

example from the WebView sample:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.evaluatejavascriptasync
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-webview

var numberEntry = new Entry { Text = "5" };
var resultLabel = new Label();
var webView = new WebView();
...

int number = int.Parse(numberEntry.Text);
string result = await webView.EvaluateJavaScriptAsync($"factorial({number})");
resultLabel.Text = $"Factorial of {number} is {result}.";

<html>
<body>
<script type="text/javascript">
function factorial(num) {
 if (num === 0 || num === 1)
 return 1;
 for (var i = num - 1; i >= 1; i--) {
 num *= i;
 }
 return num;
}
</script>
</body>
</html>

 Cookies

using System.Net;
using Xamarin.Forms;
// ...

CookieContainer cookieContainer = new CookieContainer();
Uri uri = new Uri("https://dotnet.microsoft.com/apps/xamarin", UriKind.RelativeOrAbsolute);

Cookie cookie = new Cookie
{
 Name = "XamarinCookie",
 Expires = DateTime.Now.AddDays(1),
 Value = "My cookie",
 Domain = uri.Host,
 Path = "/"
};
cookieContainer.Add(uri, cookie);
webView.Cookies = cookieContainer;
webView.Source = new UrlWebViewSource { Url = uri.ToString() };

The WebView.EvaluateJavaScriptAsync method evaluates the JavaScript that's specified as the argument, and

returns any result as a string . In this example, the factorial JavaScript function is invoked, which returns the

factorial of number as a result. This JavaScript function is defined in the local HTML file that the WebView loads,

and is shown in the following example:

Cookies can be set on a WebView , which are then sent with the web request to the specified URL. This is

accomplished by adding Cookie objects to a CookieContainer , which is then set as the value of the

WebView.Cookies bindable property. The following code shows an example of this:

In this example, a single Cookie is added to the CookieContainer object, which is then set as the value of the

WebView.Cookies property. When the WebView sends a web request to the specified URL, the cookie is sent with

the request.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview.evaluatejavascriptasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

UIWebView Deprecation and App Store Rejection (ITMS-90809)

IMPORTANTIMPORTANT

 Configure the linkerConfigure the linker

Starting in April 2020, Apple will reject apps that still use the deprecated UIWebView API. While Xamarin.Forms

has switched to WKWebView as the default, there is still a reference to the older SDK in the Xamarin.Forms

binaries. Current iOS linker behavior does not remove this, and as a result the deprecated UIWebView API will

still appear to be referenced from your app when you submit to the App Store.

In Xamarin.Forms 5.0, the WebViewRenderer class has been removed. Therefore, Xamarin.Forms 5.0 doesn't contain a

reference to the UIWebView control.

A preview version of the linker is available to fix this issue. To enable the preview, you will need to supply an

additional argument --optimize=experimental-xforms-product-type to the linker.

The prerequisites for this to work are:

Xamarin.Forms 4.5 or higherXamarin.Forms 4.5 or higher . Xamarin.Forms 4.6, or higher, is required if your app uses Material Visual.

Xamarin.iOS 13.10.0.17 or higherXamarin.iOS 13.10.0.17 or higher . Check your Xamarin.iOS version in Visual Studio. This version of

Xamarin.iOS is included with Visual Studio for Mac 8.4.1 and Visual Studio 16.4.3.

Remove references to Remove references to UIWebView . Your code should not have any references to UIWebView or any classes

that make use of UIWebView .

For more information about detecting and removing UIWebView references, see UIWebView deprecation.

Visual Studio

Visual Studio for Mac

Follow these steps for the linker to remove UIWebView references:

1. Open iOS project proper tiesOpen iOS project proper ties – Right-click your iOS project and choose Proper tiesProper ties .

2. Navigate to the iOS Build sectionNavigate to the iOS Build section – Select the iOS BuildiOS Build section.

3. Update the Additional mtouch argumentsUpdate the Additional mtouch arguments – In the Additional mtouch argumentsAdditional mtouch arguments add this flag

--optimize=experimental-xforms-product-type (in addition to any value that might already be in there). Note:

this flag works together with the L inker BehaviorL inker Behavior set to SDK OnlySDK Only or L ink AllL ink All . If, for any reason, you see

errors when setting the Linker Behavior to All, this is most likely a problem within the app code or a third-

party library that is not linker safe. For more information on the linker, see Linking Xamarin.iOS Apps.

4. Update all build configurationsUpdate all build configurations – Use the ConfigurationConfiguration and PlatformPlatform lists at the top of the window to

update all build configurations. The most important configuration to update is the Release/iPhoneRelease/iPhone

configuration, since that is typically used to create builds for App Store submission.

You can see the window with the new flag in place in this screenshot:

https://developer.apple.com/news/?id=12232019b
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/linker
https://docs.microsoft.com/en-us/xamarin/cross-platform/troubleshooting/questions/version-logs
https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/webview
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/linker

 Related Links

Now when you create a new (release) build and submit it to the App Store, there should be no warnings about

the deprecated API.

Working with WebView (sample)

WebView (sample)

UIWebView deprecation

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/webview-images/iosbuildblade-vs.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithwebview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-webview
https://docs.microsoft.com/en-us/xamarin/ios/user-interface/controls/webview

Xamarin.Forms Button
 7/8/2021 • 19 minutes to read • Edit Online

 Handling button clicks

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ButtonDemos.BasicButtonClickPage"
 Title="Basic Button Click">
 <StackLayout>

 <Label x:Name="label"
 Text="Click the Button below"
 FontSize="Large"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center" />

 <Button Text="Click to Rotate Text!"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center"
 Clicked="OnButtonClicked" />

 </StackLayout>
</ContentPage>

 Download the sample

The Button responds to a tap or click that directs an application to carry out a particular task.

The Button is the most fundamental interactive control in all of Xamarin.Forms. The Button usually displays a

short text string indicating a command, but it can also display a bitmap image, or a combination of text and an

image. The user presses the Button with a finger or clicks it with a mouse to initiate that command.

Most of the topics discussed below correspond to pages in the ButtonDemosButtonDemos sample.

Button defines a Clicked event that is fired when the user taps the Button with a finger or mouse pointer. The

event is fired when the finger or mouse button is released from the surface of the Button . The Button must

have its IsEnabled property set to true for it to respond to taps.

The Basic Button ClickBasic Button Click page in the ButtonDemosButtonDemos sample demonstrates how to instantiate a Button in XAML

and handle its Clicked event. The BasicButtonClickPage.xamlBasicButtonClickPage.xaml file contains a StackLayout with both a Label

and a Button :

The Button tends to occupy all the space that's allowed for it. For example, if you don't set the

HorizontalOptions property of Button to something other than Fill , the Button will occupy the full width of

its parent.

By default, the Button is rectangular, but you can give it rounded corners by using the CornerRadius property,

as described below in the section Button appearanceButton appearance.

The Text property specifies the text that appears in the Button . The Clicked event is set to an event handler

named OnButtonClicked . This handler is located in the code-behind file, BasicButtonClickPage.xaml.csBasicButtonClickPage.xaml.cs :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/button.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-buttondemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-buttondemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.clicked
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isenabled#xamarin_forms_visualelement_isenabled
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-buttondemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.cornerradius#xamarin_forms_button_cornerradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.text#xamarin_forms_button_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.clicked

public partial class BasicButtonClickPage : ContentPage
{
 public BasicButtonClickPage ()
 {
 InitializeComponent ();
 }

 async void OnButtonClicked(object sender, EventArgs args)
 {
 await label.RelRotateTo(360, 1000);
 }
}

 Creating a button in code

When the Button is tapped, the OnButtonClicked method executes. The sender argument is the Button object

responsible for this event. You can use this to access the Button object, or to distinguish between multiple

Button objects sharing the same Clicked event.

This particular Clicked handler calls an animation function that rotates the Label 360 degrees in 1000

milliseconds. Here's the program running on iOS and Android devices, and as a Universal Windows Platform

(UWP) application on the Windows 10 desktop:

Notice that the OnButtonClicked method includes the async modifier because await is used within the event

handler. A Clicked event handler requires the async modifier only if the body of the handler uses await .

Each platform renders the Button in its own specific manner. In the Button appearanceButton appearance section, you'll see how

to set colors and make the Button border visible for more customized appearances. Button implements the

IFontElement interface, so it includes FontFamily , FontSize , and FontAttributes properties.

It's common to instantiate a Button in XAML, but you can also create a Button in code. This might be

convenient when your application needs to create multiple buttons based on data that is enumerable with a

foreach loop.

The Code Button ClickCode Button Click page demonstrates how to create a page that is functionally equivalent to the BasicBasic

Button ClickButton Click page but entirely in C#:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/button-images/basicbuttonclick-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.internals.ifontelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.fontfamily#xamarin_forms_button_fontfamily
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.fontsize#xamarin_forms_button_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.fontattributes#xamarin_forms_button_fontattributes

public class CodeButtonClickPage : ContentPage
{
 public CodeButtonClickPage ()
 {
 Title = "Code Button Click";

 Label label = new Label
 {
 Text = "Click the Button below",
 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
 VerticalOptions = LayoutOptions.CenterAndExpand,
 HorizontalOptions = LayoutOptions.Center
 };

 Button button = new Button
 {
 Text = "Click to Rotate Text!",
 VerticalOptions = LayoutOptions.CenterAndExpand,
 HorizontalOptions = LayoutOptions.Center
 };
 button.Clicked += async (sender, args) => await label.RelRotateTo(360, 1000);

 Content = new StackLayout
 {
 Children =
 {
 label,
 button
 }
 };
 }
}

button.Clicked += async (sender, args) => await label.RelRotateTo(360, 1000);

button.Clicked += OnButtonClicked;

 Disabling the button

 Using the command interface

Everything is done in the class's constructor. Because the Clicked handler is only one statement long, it can be

attached to the event very simply:

Of course, you can also define the event handler as a separate method (just like the OnButtonClick method in

Basic Button ClickBasic Button Click) and attach that method to the event:

Sometimes an application is in a particular state where a particular Button click is not a valid operation. In

those cases, the Button should be disabled by setting its IsEnabled property to false . The classic example is

an Entry control for a filename accompanied by a file-open Button : The Button should be enabled only if

some text has been typed into the Entry . You can use a DataTrigger for this task, as shown in the DataData

TriggersTr iggers article.

It is possible for an application to respond to Button taps without handling the Clicked event. The Button

implements an alternative notification mechanism called the command or commanding interface. This consists

of two properties:

Command of type ICommand , an interface defined in the System.Windows.Input namespace.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.command#xamarin_forms_button_command
https://docs.microsoft.com/en-us/dotnet/api/system.windows.input.icommand
https://docs.microsoft.com/en-us/dotnet/api/system.windows.input

class CommandDemoViewModel : INotifyPropertyChanged
{
 double number = 1;

 public event PropertyChangedEventHandler PropertyChanged;

 public CommandDemoViewModel()
 {
 MultiplyBy2Command = new Command(() => Number *= 2);

 DivideBy2Command = new Command(() => Number /= 2);
 }

 public double Number
 {
 set
 {
 if (number != value)
 {
 number = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Number"));
 }
 }
 get
 {
 return number;
 }
 }

 public ICommand MultiplyBy2Command { private set; get; }

 public ICommand DivideBy2Command { private set; get; }
}

CommandParameter property of type Object .

This approach is particularly suitable in connection with data-binding, and particularly when implementing the

Model-View-ViewModel (MVVM) architecture. These topics are discussed in the articles Data Binding, From Data

Bindings to MVVM, and MVVM.

In an MVVM application, the viewmodel defines properties of type ICommand that are then connected to the

XAML Button elements with data bindings. Xamarin.Forms also defines Command and Command<T> classes that

implement the ICommand interface and assist the viewmodel in defining properties of type ICommand .

Commanding is described in greater detail in the article The Command InterfaceThe Command Interface but the Basic ButtonBasic Button

CommandCommand page in the ButtonDemosButtonDemos sample shows the basic approach.

The CommandDemoViewModel class is a very simple viewmodel that defines a property of type double named

Number , and two properties of type ICommand named MultiplyBy2Command and DivideBy2Command :

The two ICommand properties are initialized in the class's constructor with two objects of type Command . The

Command constructors include a little function (called the execute constructor argument) that either doubles or

halves the Number property.

The BasicButtonCommand.xamlBasicButtonCommand.xaml file sets its BindingContext to an instance of CommandDemoViewModel . The

Label element and two Button elements contain bindings to the three properties in CommandDemoViewModel :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.commandparameter#xamarin_forms_button_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command-1
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-buttondemos

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ButtonDemos"
 x:Class="ButtonDemos.BasicButtonCommandPage"
 Title="Basic Button Command">

 <ContentPage.BindingContext>
 <local:CommandDemoViewModel />
 </ContentPage.BindingContext>

 <StackLayout>
 <Label Text="{Binding Number, StringFormat='Value is now {0}'}"
 FontSize="Large"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center" />

 <Button Text="Multiply by 2"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center"
 Command="{Binding MultiplyBy2Command}" />

 <Button Text="Divide by 2"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center"
 Command="{Binding DivideBy2Command}" />
 </StackLayout>
</ContentPage>

As the two Button elements are tapped, the commands are executed, and the number changes value:

The advantage of this approach over Clicked handlers is that all the logic involving the functionality of this

page is located in the viewmodel rather than the code-behind file, achieving a better separation of the user

interface from the business logic.

It is also possible for the Command objects to control the enabling and disabling of the Button elements. For

example, suppose you want to limit the range of number values between 2 and 2 . You can add another

function to the constructor (called the canExecute argument) that returns true if the Button should be

enabled. Here's the modification to the CommandDemoViewModel constructor :

10 –10

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/button-images/basicbuttoncommand-large.png#lightbox

class CommandDemoViewModel : INotifyPropertyChanged
{
 ···
 public CommandDemoViewModel()
 {
 MultiplyBy2Command = new Command(
 execute: () =>
 {
 Number *= 2;
 ((Command)MultiplyBy2Command).ChangeCanExecute();
 ((Command)DivideBy2Command).ChangeCanExecute();
 },
 canExecute: () => Number < Math.Pow(2, 10));

 DivideBy2Command = new Command(
 execute: () =>
 {
 Number /= 2;
 ((Command)MultiplyBy2Command).ChangeCanExecute();
 ((Command)DivideBy2Command).ChangeCanExecute();
 },
 canExecute: () => Number > Math.Pow(2, -10));
 }
 ···
}

The calls to the ChangeCanExecute method of Command are necessary so that the Command method can call the

canExecute method and determine whether the Button should be disabled or not. With this code change, as

the number reaches the limit, the Button is disabled:

It is possible for two or more Button elements to be bound to the same ICommand property. The Button

elements can be distinguished using the CommandParameter property of Button . In this case, you'll want to use

the generic Command<T> class. The CommandParameter object is then passed as an argument to the execute and

canExecute methods. This technique is shown in detail in the Basic CommandingBasic Commanding section of the CommandCommand

InterfaceInterface article.

The ButtonDemosButtonDemos sample also uses this technique in its MainPage class. The MainPage.xamlMainPage.xaml file contains a

Button for each page of the sample:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/button-images/basicbuttoncommandmodified-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.commandparameter#xamarin_forms_button_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.command-1
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-buttondemos

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ButtonDemos"
 x:Class="ButtonDemos.MainPage"
 Title="Button Demos">
 <ScrollView>
 <FlexLayout Direction="Column"
 JustifyContent="SpaceEvenly"
 AlignItems="Center">

 <Button Text="Basic Button Click"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:BasicButtonClickPage}" />

 <Button Text="Code Button Click"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:CodeButtonClickPage}" />

 <Button Text="Basic Button Command"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:BasicButtonCommandPage}" />

 <Button Text="Press and Release Button"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:PressAndReleaseButtonPage}" />

 <Button Text="Button Appearance"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:ButtonAppearancePage}" />

 <Button Text="Toggle Button Demo"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:ToggleButtonDemoPage}" />

 <Button Text="Image Button Demo"
 Command="{Binding NavigateCommand}"
 CommandParameter="{x:Type local:ImageButtonDemoPage}" />

 </FlexLayout>
 </ScrollView>
</ContentPage>

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();

 NavigateCommand = new Command<Type>(async (Type pageType) =>
 {
 Page page = (Page)Activator.CreateInstance(pageType);
 await Navigation.PushAsync(page);
 });

 BindingContext = this;
 }

 public ICommand NavigateCommand { private set; get; }
}

Each Button has its Command property bound to a property named NavigateCommand , and the CommandParameter

is set to a Type object corresponding to one of the page classes in the project.

That NavigateCommand property is of type ICommand and is defined in the code-behind file:

https://docs.microsoft.com/en-us/dotnet/api/system.type

 Pressing and releasing the button

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ButtonDemos.PressAndReleaseButtonPage"
 Title="Press and Release Button">
 <StackLayout>

 <Label x:Name="label"
 Text="Press and hold the Button below"
 FontSize="Large"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center" />

 <Button Text="Press to Rotate Text!"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center"
 Pressed="OnButtonPressed"
 Released="OnButtonReleased" />

 </StackLayout>
</ContentPage>

The constructor initializes the NavigateCommand property to a Command<Type> object because Type is the type of

the CommandParameter object set in the XAML file. This means that the execute method has an argument of type

Type that corresponds to this CommandParameter object. The function instantiates the page and then navigates to

it.

Notice that the constructor concludes by setting its BindingContext to itself. This is necessary for properties in

the XAML file to bind to the NavigateCommand property.

Besides the Clicked event, Button also defines Pressed and Released events. The Pressed event occurs

when a finger presses on a Button , or a mouse button is pressed with the pointer positioned over the Button .

The Released event occurs when the finger or mouse button is released. Generally, a Clicked event is also fired

at the same time as the Released event, but if the finger or mouse pointer slides away from the surface of the

Button before being released, the Clicked event might not occur.

The Pressed and Released events are not often used, but they can be used for special purposes, as

demonstrated in the Press and Release ButtonPress and Release Button page. The XAML file contains a Label and a Button with

handlers attached for the Pressed and Released events:

The code-behind file animates the Label when a Pressed event occurs, but suspends the rotation when a

Released event occurs:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.pressed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.released

public partial class PressAndReleaseButtonPage : ContentPage
{
 bool animationInProgress = false;
 Stopwatch stopwatch = new Stopwatch();

 public PressAndReleaseButtonPage ()
 {
 InitializeComponent ();
 }

 void OnButtonPressed(object sender, EventArgs args)
 {
 stopwatch.Start();
 animationInProgress = true;

 Device.StartTimer(TimeSpan.FromMilliseconds(16), () =>
 {
 label.Rotation = 360 * (stopwatch.Elapsed.TotalSeconds % 1);

 return animationInProgress;
 });
 }

 void OnButtonReleased(object sender, EventArgs args)
 {
 animationInProgress = false;
 stopwatch.Stop();
 }
}

 Button appearance

The result is that the Label only rotates while a finger is in contact with the Button , and stops when the finger

is released:

This kind of behavior has applications for games: A finger held on a Button might make an on-screen object

move in a particular direction.

The Button inherits or defines several properties that affect its appearance:

TextColor is the color of the Button text

BackgroundColor is the color of the background to that text

BorderColor is the color of an area surrounding the Button

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/button-images/pressandreleasebutton-large.png
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.textcolor#xamarin_forms_button_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.bordercolor#xamarin_forms_button_bordercolor

NOTENOTE

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ButtonDemos"
 x:Class="ButtonDemos.ButtonAppearancePage"
 Title="Button Appearance">
 <StackLayout>
 <Button x:Name="button"
 Text="Button"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="Center"
 TextColor="{Binding Source={x:Reference textColorPicker},
 Path=SelectedItem.Color}"
 BackgroundColor="{Binding Source={x:Reference backgroundColorPicker},
 Path=SelectedItem.Color}"
 BorderColor="{Binding Source={x:Reference borderColorPicker},
 Path=SelectedItem.Color}" />

 <StackLayout BindingContext="{x:Reference button}"
 Padding="10">

 <Slider x:Name="fontSizeSlider"
 Maximum="48"
 Minimum="1"
 Value="{Binding FontSize}" />

 <Label Text="{Binding Source={x:Reference fontSizeSlider},
 Path=Value,
 StringFormat='FontSize = {0:F0}'}"
 HorizontalTextAlignment="Center" />

 <Slider x:Name="borderWidthSlider"
 Minimum="-1"
 Maximum="12"
 Value="{Binding BorderWidth}" />

 <Label Text="{Binding Source={x:Reference borderWidthSlider},
 Path=Value,
 StringFormat='BorderWidth = {0:F0}'}"
 HorizontalTextAlignment="Center" />

 <Slider x:Name="cornerRadiusSlider"
 Minimum="-1"
 Maximum="24"
 Value="{Binding CornerRadius}" />

FontFamily is the font family used for the text

FontSize is the size of the text

FontAttributes indicates if the text is italic or bold

BorderWidth is the width of the border

CornerRadius is the corner radius of the Button

CharacterSpacing is the spacing between characters of the Button text.

TextTransform determines the casing of the Button text.

The Button class also has Margin and Padding properties that control the layout behavior of the Button . For more

information, see Margin and Padding.

The effects of six of these properties (excluding FontFamily and FontAttributes) are demonstrated in the

Button AppearanceButton Appearance page. Another property, Image , is discussed in the section Using bitmaps with buttonUsing bitmaps with button.

All of the views and data bindings in the Button AppearanceButton Appearance page are defined in the XAML file:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.fontfamily#xamarin_forms_button_fontfamily
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.fontsize#xamarin_forms_button_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.fontattributes#xamarin_forms_button_fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.borderwidth#xamarin_forms_button_borderwidth
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.cornerradius#xamarin_forms_button_cornerradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.characterspacing#xamarin_forms_button_characterspacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.padding#xamarin_forms_button_padding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.imagesource#xamarin_forms_button_imagesource

 Value="{Binding CornerRadius}" />

 <Label Text="{Binding Source={x:Reference cornerRadiusSlider},
 Path=Value,
 StringFormat='CornerRadius = {0:F0}'}"
 HorizontalTextAlignment="Center" />

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Grid.Resources>
 <Style TargetType="Label">
 <Setter Property="VerticalOptions" Value="Center" />
 </Style>
 </Grid.Resources>

 <Label Text="Text Color:"
 Grid.Row="0" Grid.Column="0" />

 <Picker x:Name="textColorPicker"
 ItemsSource="{Binding Source={x:Static local:NamedColor.All}}"
 ItemDisplayBinding="{Binding FriendlyName}"
 SelectedIndex="0"
 Grid.Row="0" Grid.Column="1" />

 <Label Text="Background Color:"
 Grid.Row="1" Grid.Column="0" />

 <Picker x:Name="backgroundColorPicker"
 ItemsSource="{Binding Source={x:Static local:NamedColor.All}}"
 ItemDisplayBinding="{Binding FriendlyName}"
 SelectedIndex="0"
 Grid.Row="1" Grid.Column="1" />

 <Label Text="Border Color:"
 Grid.Row="2" Grid.Column="0" />

 <Picker x:Name="borderColorPicker"
 ItemsSource="{Binding Source={x:Static local:NamedColor.All}}"
 ItemDisplayBinding="{Binding FriendlyName}"
 SelectedIndex="0"
 Grid.Row="2" Grid.Column="1" />
 </Grid>
 </StackLayout>
 </StackLayout>
</ContentPage>

The Button at the top of the page has its three Color properties bound to Picker elements at the bottom of

the page. The items in the Picker elements are colors from the NamedColor class included in the project. Three

Slider elements contain two-way bindings to the FontSize , BorderWidth , and CornerRadius properties of the

Button .

This program allows you to experiment with combinations of all these properties:

 Button visual states

<Button Text="Click me!"
 ...>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="Scale"
 Value="1" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="Pressed">
 <VisualState.Setters>
 <Setter Property="Scale"
 Value="0.8" />
 </VisualState.Setters>
 </VisualState>

 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Button>

To see the Button border, you'll need to set a BorderColor to something other than Default , and the

BorderWidth to a positive value.

On iOS, you'll notice that large border widths intrude into the interior of the Button and interfere with the

display of text. If you choose to use a border with an iOS Button , you'll probably want to begin and end the

Text property with spaces to retain its visibility.

On UWP, selecting a CornerRadius that exceeds half the height of the Button raises an exception.

Button has a Pressed VisualState that can be used to initiate a visual change to the Button when pressed by

the user, provided that it's enabled.

The following XAML example shows how to define a visual state for the Pressed state:

The Pressed VisualState specifies that when the Button is pressed, its Scale property will be changed from

its default value of 1 to 0.8. The Normal VisualState specifies that when the Button is in a normal state, its

Scale property will be set to 1. Therefore, the overall effect is that when the Button is pressed, it's rescaled to

be slightly smaller, and when the Button is released, it's rescaled to its default size.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/button-images/buttonappearance-large.png
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale

 Creating a toggle button

class ToggleButton : Button
{
 public event EventHandler<ToggledEventArgs> Toggled;

 public static BindableProperty IsToggledProperty =
 BindableProperty.Create("IsToggled", typeof(bool), typeof(ToggleButton), false,
 propertyChanged: OnIsToggledChanged);

 public ToggleButton()
 {
 Clicked += (sender, args) => IsToggled ^= true;
 }

 public bool IsToggled
 {
 set { SetValue(IsToggledProperty, value); }
 get { return (bool)GetValue(IsToggledProperty); }
 }

 protected override void OnParentSet()
 {
 base.OnParentSet();
 VisualStateManager.GoToState(this, "ToggledOff");
 }

 static void OnIsToggledChanged(BindableObject bindable, object oldValue, object newValue)
 {
 ToggleButton toggleButton = (ToggleButton)bindable;
 bool isToggled = (bool)newValue;

 // Fire event
 toggleButton.Toggled?.Invoke(toggleButton, new ToggledEventArgs(isToggled));

 // Set the visual state
 VisualStateManager.GoToState(toggleButton, isToggled ? "ToggledOn" : "ToggledOff");
 }
}

For more information about visual states, see The Xamarin.Forms Visual State Manager.

It is possible to subclass Button so that it works like an on-off switch: Tap the button once to toggle the button

on and tap it again to toggle it off.

The following ToggleButton class derives from Button and defines a new event named Toggled and a Boolean

property named IsToggled . These are the same two properties defined by the Xamarin.Forms Switch :

The ToggleButton constructor attaches a handler to the Clicked event so that it can change the value of the

IsToggled property. The OnIsToggledChanged method fires the Toggled event.

The last line of the OnIsToggledChanged method calls the static VisualStateManager.GoToState method with the

two text strings "ToggledOn" and "ToggledOff". You can read about this method and how your application can

respond to visual states in the article The Xamarin.Forms Visual State ManagerThe Xamarin.Forms Visual State Manager .

Because ToggleButton makes the call to VisualStateManager.GoToState , the class itself doesn't need to include

any additional facilities to change the button's appearance based on its IsToggled state. That is the

responsibility of the XAML that hosts the ToggleButton .

The Toggle Button DemoToggle Button Demo page contains two instances of ToggleButton , including Visual State Manager

markup that sets the Text , BackgroundColor , and TextColor of the button based on the visual state:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ButtonDemos"
 x:Class="ButtonDemos.ToggleButtonDemoPage"
 Title="Toggle Button Demo">

 <ContentPage.Resources>
 <Style TargetType="local:ToggleButton">
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 <Setter Property="HorizontalOptions" Value="Center" />
 </Style>
 </ContentPage.Resources>

 <StackLayout Padding="10, 0">
 <local:ToggleButton Toggled="OnItalicButtonToggled">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="ToggleStates">
 <VisualState Name="ToggledOff">
 <VisualState.Setters>
 <Setter Property="Text" Value="Italic Off" />
 <Setter Property="BackgroundColor" Value="#C0C0C0" />
 <Setter Property="TextColor" Value="Black" />
 </VisualState.Setters>
 </VisualState>

 <VisualState Name="ToggledOn">
 <VisualState.Setters>
 <Setter Property="Text" Value=" Italic On " />
 <Setter Property="BackgroundColor" Value="#404040" />
 <Setter Property="TextColor" Value="White" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </local:ToggleButton>

 <local:ToggleButton Toggled="OnBoldButtonToggled">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="ToggleStates">
 <VisualState Name="ToggledOff">
 <VisualState.Setters>
 <Setter Property="Text" Value="Bold Off" />
 <Setter Property="BackgroundColor" Value="#C0C0C0" />
 <Setter Property="TextColor" Value="Black" />
 </VisualState.Setters>
 </VisualState>

 <VisualState Name="ToggledOn">
 <VisualState.Setters>
 <Setter Property="Text" Value=" Bold On " />
 <Setter Property="BackgroundColor" Value="#404040" />
 <Setter Property="TextColor" Value="White" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </local:ToggleButton>

 <Label x:Name="label"
 Text="Just a little passage of some sample text that can be formatted in italic or boldface
by toggling the two buttons."
 FontSize="Large"
 HorizontalTextAlignment="Center"
 VerticalOptions="CenterAndExpand" />

 </StackLayout>
</ContentPage>

public partial class ToggleButtonDemoPage : ContentPage
{
 public ToggleButtonDemoPage ()
 {
 InitializeComponent ();
 }

 void OnItalicButtonToggled(object sender, ToggledEventArgs args)
 {
 if (args.Value)
 {
 label.FontAttributes |= FontAttributes.Italic;
 }
 else
 {
 label.FontAttributes &= ~FontAttributes.Italic;
 }
 }

 void OnBoldButtonToggled(object sender, ToggledEventArgs args)
 {
 if (args.Value)
 {
 label.FontAttributes |= FontAttributes.Bold;
 }
 else
 {
 label.FontAttributes &= ~FontAttributes.Bold;
 }
 }
}

 Using bitmaps with buttons

The Toggled event handlers are in the code-behind file. They are responsible for setting the FontAttributes

property of the Label based on the state of the buttons:

Here's the program running on iOS, Android, and the UWP:

The Button class defines an ImageSource property that allows you to display a bitmap image on the Button ,

either alone or in combination with text. You can also specify how the text and image are arranged.

The ImageSource property is of type ImageSource , which means that the bitmaps can be loaded from a file,

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/button-images/togglebuttondemo-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.image#xamarin_forms_button_image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource

NOTENOTE

embedded resource, URI, or stream.

While a Button can load an animated GIF, it will only display the first frame of the GIF.

Each platform supported by Xamarin.Forms allows images to be stored in multiple sizes for different pixel

resolutions of the various devices that the application might run on. These multiple bitmaps are named or

stored in such a way that the operating system can pick the best match for the device's video display resolution.

For a bitmap on a Button , the best size is usually between 32 and 64 device-independent units, depending on

how large you want it to be. The images used in this example are based on a size of 48 device-independent

units.

In the iOS project, the ResourcesResources folder contains three sizes of this image:

A 48-pixel square bitmap stored as /Resources/MonkeyFace.png/Resources/MonkeyFace.png

A 96-pixel square bitmap stored as /Resource/MonkeyFace@2x.png/Resource/MonkeyFace@2x.png

A 144-pixel square bitmap stored as /Resource/MonkeyFace@3x.png/Resource/MonkeyFace@3x.png

All three bitmaps were given a Build ActionBuild Action of BundleResourceBundleResource.

For the Android project, the bitmaps all have the same name, but they are stored in different subfolders of the

ResourcesResources folder :

A 72-pixel square bitmap stored as /Resources/drawable-hdpi/MonkeyFace.png/Resources/drawable-hdpi/MonkeyFace.png

A 96-pixel square bitmap stored as /Resources/drawable-xhdpi/MonkeyFace.png/Resources/drawable-xhdpi/MonkeyFace.png

A 144-pixel square bitmap stored as /Resources/drawable-xxhdpi/MonkeyFace.png/Resources/drawable-xxhdpi/MonkeyFace.png

A 192-pixel square bitmap stored as /Resources/drawable-xxxhdpi/MonkeyFace.png/Resources/drawable-xxxhdpi/MonkeyFace.png

These were given a Build ActionBuild Action of AndroidResourceAndroidResource.

In the UWP project, bitmaps can be stored anywhere in the project, but they are generally stored in a custom

folder or the AssetsAssets existing folder. The UWP project contains these bitmaps:

A 48-pixel square bitmap stored as /Assets/MonkeyFace.scale-100.png/Assets/MonkeyFace.scale-100.png

A 96-pixel square bitmap stored as /Assets/MonkeyFace.scale-200.png/Assets/MonkeyFace.scale-200.png

A 192-pixel square bitmap stored as /Assets/MonkeyFace.scale-400.png/Assets/MonkeyFace.scale-400.png

They were all given a Build ActionBuild Action of ContentContent.

You can specify how the Text and ImageSource properties are arranged on the Button using the

ContentLayout property of Button . This property is of type ButtonContentLayout , which is an embedded class

in Button . The constructor has two arguments:

A member of the ImagePosition enumeration: Left , Top , Right , or Bottom indicating how the bitmap

appears relative to the text.

A double value for the spacing between the bitmap and the text.

The defaults are Left and 10 units. Two read-only properties of ButtonContentLayout named Position and

Spacing provide the values of those properties.

In code, you can create a Button and set the ContentLayout property like this:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.contentlayout#xamarin_forms_button_contentlayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.buttoncontentlayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.buttoncontentlayout.-ctor#xamarin_forms_button_buttoncontentlayout__ctor_xamarin_forms_button_buttoncontentlayout_imageposition_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.buttoncontentlayout.imageposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.buttoncontentlayout.position#xamarin_forms_button_buttoncontentlayout_position
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.buttoncontentlayout.spacing#xamarin_forms_button_buttoncontentlayout_spacing

Button button = new Button
{
 Text = "button text",
 ImageSource = new FileImageSource
 {
 File = "image filename"
 },
 ContentLayout = new Button.ButtonContentLayout(Button.ButtonContentLayout.ImagePosition.Right, 20)
};

<Button Text="button text"
 ImageSource="image filename"
 ContentLayout="Right, 20" />

<Button>
 <Button.ImageSource>
 <OnPlatform x:TypeArguments="ImageSource">
 <On Platform="iOS, Android" Value="MonkeyFace.png" />
 <On Platform="UWP" Value="Assets/MonkeyFace.png" />
 </OnPlatform>
 </Button.ImageSource>
</Button>

<Button ImageSource="MonkeyFace.png" />

In XAML, you need specify only the enumeration member, or the spacing, or both in any order separated by

commas:

The Image Button DemoImage Button Demo page uses OnPlatform to specify different filenames for the iOS, Android, and UWP

bitmap files. If you want to use the same filename for each platform and avoid the use of OnPlatform , you'll

need to store the UWP bitmaps in the root directory of the project.

The first Button on the Image Button DemoImage Button Demo page sets the Image property but not the Text property:

If the UWP bitmaps are stored in the root directory of the project, this markup can be considerably simplified:

To avoid a lot of repetitious markup in the ImageButtonDemo.xamlImageButtonDemo.xaml file, an implicit Style is also defined to

set the ImageSource property. This Style is automatically applied to five other Button elements. Here's the

complete XAML file:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ButtonDemos.ImageButtonDemoPage">

 <FlexLayout Direction="Column"
 JustifyContent="SpaceEvenly"
 AlignItems="Center">

 <FlexLayout.Resources>
 <Style TargetType="Button">
 <Setter Property="ImageSource">
 <OnPlatform x:TypeArguments="ImageSource">
 <On Platform="iOS, Android" Value="MonkeyFace.png" />
 <On Platform="UWP" Value="Assets/MonkeyFace.png" />
 </OnPlatform>
 </Setter>
 </Style>
 </FlexLayout.Resources>

 <Button>
 <Button.ImageSource>
 <OnPlatform x:TypeArguments="ImageSource">
 <On Platform="iOS, Android" Value="MonkeyFace.png" />
 <On Platform="UWP" Value="Assets/MonkeyFace.png" />
 </OnPlatform>
 </Button.ImageSource>
 </Button>

 <Button Text="Default" />

 <Button Text="Left - 10"
 ContentLayout="Left, 10" />

 <Button Text="Top - 10"
 ContentLayout="Top, 10" />

 <Button Text="Right - 20"
 ContentLayout="Right, 20" />

 <Button Text="Bottom - 20"
 ContentLayout="Bottom, 20" />
 </FlexLayout>
</ContentPage>

The final four Button elements make use of the ContentLayout property to specify a position and spacing of

the text and bitmap:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/button-images/imagebuttondemo-large.png#lightbox

 Related links

You've now seen the various ways that you can handle Button events and change the Button appearance.

ButtonDemos sample

Button API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-buttondemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

Xamarin.Forms ImageButton
 7/8/2021 • 6 minutes to read • Edit Online

NOTENOTE

 Setting the image source

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FormsGallery.XamlExamples.ImageButtonDemoPage"
 Title="ImageButton Demo">
 <StackLayout>
 <Label Text="ImageButton"
 FontSize="50"
 FontAttributes="Bold"
 HorizontalOptions="Center" />

 <ImageButton Source="XamarinLogo.png"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

 Download the sample

The ImageButton displays an image and responds to a tap or click that directs an application to carry out a

particular task.

The ImageButton view combines the Button view and Image view to create a button whose content is an

image. The user presses the ImageButton with a finger or clicks it with a mouse to direct the application to carry

out a particular task. However, unlike the Button view, the ImageButton view has no concept of text and text

appearance.

While the Button view defines an Image property, that allows you to display a image on the Button , this property is

intended to be used when displaying a small icon next to the Button text.

The code examples in this guide are taken from the FormsGallery sample.

ImageButton defines a Source property that should be set to the image to display in the button, with the image

source being either a file, a URI, a resource, or a stream. For more information about loading images from

different sources, see Images in Xamarin.Forms.

The following example shows how to instantiate a ImageButton in XAML:

The Source property specifies the image that appears in the ImageButton . In this example it's set to a local file

that will be loaded from each platform project, resulting in the following screenshots:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/imagebutton.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.image#xamarin_forms_button_image
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery

NOTENOTE

public class ImageButtonDemoPage : ContentPage
{
 public ImageButtonDemoPage()
 {
 Label header = new Label
 {
 Text = "ImageButton",
 FontSize = 50,
 FontAttributes = FontAttributes.Bold,
 HorizontalOptions = LayoutOptions.Center
 };

 ImageButton imageButton = new ImageButton
 {
 Source = "XamarinLogo.png",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };

 // Build the page.
 Title = "ImageButton Demo";
 Content = new StackLayout
 {
 Children = { header, imageButton }
 };
 }
}

 Handling ImageButton clicks

By default, the ImageButton is rectangular, but you can give it rounded corners by using the CornerRadius

property. For more information about ImageButton appearance, see ImageButton appearance.

While an ImageButton can load an animated GIF, it will only display the first frame of the GIF.

The following example shows how to create a page that is functionally equivalent to the previous XAML

example, but entirely in C#:

ImageButton defines a Clicked event that is fired when the user taps the ImageButton with a finger or mouse

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/imagebutton-images/basicimagebutton-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FormsGallery.XamlExamples.ImageButtonDemoPage"
 Title="ImageButton Demo">
 <StackLayout>
 <Label Text="ImageButton"
 FontSize="50"
 FontAttributes="Bold"
 HorizontalOptions="Center" />

 <ImageButton Source="XamarinLogo.png"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 Clicked="OnImageButtonClicked" />

 <Label x:Name="label"
 Text="0 ImageButton clicks"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

public partial class ImageButtonDemoPage : ContentPage
{
 int clickTotal;

 public ImageButtonDemoPage()
 {
 InitializeComponent();
 }

 void OnImageButtonClicked(object sender, EventArgs e)
 {
 clickTotal += 1;
 label.Text = $"{clickTotal} ImageButton click{(clickTotal == 1 ? "" : "s")}";
 }
}

pointer. The event is fired when the finger or mouse button is released from the surface of the ImageButton . The

ImageButton must have its IsEnabled property set to true to respond to taps.

The following example shows how to instantiate a ImageButton in XAML and handle its Clicked event:

The Clicked event is set to an event handler named OnImageButtonClicked that is located in the code-behind

file:

When the ImageButton is tapped, the OnImageButtonClicked method executes. The sender argument is the

ImageButton responsible for this event. You can use this to access the ImageButton object, or to distinguish

between multiple ImageButton objects sharing the same Clicked event.

This particular Clicked handler increments a counter and displays the counter value in a Label :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

The following example shows how to create a page that is functionally equivalent to the previous XAML

example, but entirely in C#:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/imagebutton-images/imagebutton-large.png#lightbox

public class ImageButtonDemoPage : ContentPage
{
 Label label;
 int clickTotal = 0;

 public ImageButtonDemoPage()
 {
 Label header = new Label
 {
 Text = "ImageButton",
 FontSize = 50,
 FontAttributes = FontAttributes.Bold,
 HorizontalOptions = LayoutOptions.Center
 };

 ImageButton imageButton = new ImageButton
 {
 Source = "XamarinLogo.png",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };
 imageButton.Clicked += OnImageButtonClicked;

 label = new Label
 {
 Text = "0 ImageButton clicks",
 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };

 // Build the page.
 Title = "ImageButton Demo";
 Content = new StackLayout
 {
 Children =
 {
 header,
 imageButton,
 label
 }
 };
 }

 void OnImageButtonClicked(object sender, EventArgs e)
 {
 clickTotal += 1;
 label.Text = $"{clickTotal} ImageButton click{(clickTotal == 1 ? "" : "s")}";
 }
}

 Disabling the ImageButton

 Using the command interface

Sometimes an application is in a particular state where a particular ImageButton click is not a valid operation. In

those cases, the ImageButton should be disabled by setting its IsEnabled property to false .

It is possible for an application to respond to ImageButton taps without handling the Clicked event. The

ImageButton implements an alternative notification mechanism called the command or commanding interface.

This consists of two properties:

Command of type ICommand , an interface defined in the System.Windows.Input namespace.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.input.icommand
https://docs.microsoft.com/en-us/dotnet/api/system.windows.input

 Pressing and releasing the ImageButton

 ImageButton appearance

NOTENOTE

 ImageButton visual states

CommandParameter property of type Object .

This approach is suitable in connection with data-binding, and particularly when implementing the Model-View-

ViewModel (MVVM) architecture.

For more information about using the command interface, see Using the command interface in the Button

guide.

Besides the Clicked event, ImageButton also defines Pressed and Released events. The Pressed event occurs

when a finger presses on a ImageButton , or a mouse button is pressed with the pointer positioned over the

ImageButton . The Released event occurs when the finger or mouse button is released. Generally, the Clicked

event is also fired at the same time as the Released event, but if the finger or mouse pointer slides away from

the surface of the ImageButton before being released, the Clicked event might not occur.

For more information about these events, see Pressing and releasing the button in the Button guide.

In addition to the properties that ImageButton inherits from the View class, ImageButton also defines several

properties that affect its appearance:

Aspect is how the image will be scaled to fit the display area.

BorderColor is the color of an area surrounding the ImageButton .

BorderWidth is the width of the border.

CornerRadius is the corner radius of the ImageButton .

The Aspect property can be set to one of the members of the Aspect enumeration:

Fill - stretches the image to completely and exactly fill the ImageButton . This may result in the image being

distorted.

AspectFill - clips the image so that it fills the ImageButton while preserving the aspect ratio.

AspectFit - letterboxes the image (if necessary) so that the entire image fits into the ImageButton , with

blank space added to the top/bottom or sides depending on whether the image is wide or tall. This is the

default value of the Aspect enumeration.

The ImageButton class also has Margin and Padding properties that control the layout behavior of the

ImageButton . For more information, see Margin and Padding.

ImageButton has a Pressed VisualState that can be used to initiate a visual change to the ImageButton when

pressed by the user, provided that it's enabled.

The following XAML example shows how to define a visual state for the Pressed state:

https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_aspectfill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect#xamarin_forms_aspect_aspectfit
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.aspect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

<ImageButton Source="XamarinLogo.png"
 ...>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="Scale"
 Value="1" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="Pressed">
 <VisualState.Setters>
 <Setter Property="Scale"
 Value="0.8" />
 </VisualState.Setters>
 </VisualState>

 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</ImageButton>

 Related links

The Pressed VisualState specifies that when the ImageButton is pressed, its Scale property will be changed

from its default value of 1 to 0.8. The Normal VisualState specifies that when the ImageButton is in a normal

state, its Scale property will be set to 1. Therefore, the overall effect is that when the ImageButton is pressed,

it's rescaled to be slightly smaller, and when the ImageButton is released, it's rescaled to its default size.

For more information about visual states, see The Xamarin.Forms Visual State Manager.

FormsGallery sample

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/formsgallery

Xamarin.Forms RadioButton
 7/8/2021 • 10 minutes to read • Edit Online

 Download the sample

The Xamarin.Forms RadioButton is a type of button that allows users to select one option from a set. Each

option is represented by one radio button, and you can only select one radio button in a group. By default, each

RadioButton displays text:

However, on some platforms a RadioButton can display a View , and on all platforms the appearance of each

RadioButton can be redefined with a ControlTemplate :

The RadioButton control defines the following properties:

Content , of type object , which defines the string or View to be displayed by the RadioButton .

IsChecked , of type bool , which defines whether the RadioButton is checked. This property uses a TwoWay

binding, and has a default value of false .

GroupName , of type string , which defines the name that specifies which RadioButton controls are mutually

exclusive. This property has a default value of null .

Value , of type object , which defines an optional unique value associated with the RadioButton .

BorderColor , of type Color , which defines the border stroke color.

BorderWidth , of type double , which defines the width of the RadioButton border.

CharacterSpacing , of type double , which defines the spacing between characters of any displayed text.

CornerRadius , of type int , which defines the corner radius of the RadioButton .

FontAttributes , of type FontAttributes , which determines text style.

FontFamily , of type string , which defines the font family.

FontSize , of type double , which defines the font size.

TextColor , of type Color , which defines the color of any displayed text.

TextTransform , of type TextTransform , which defines the casing of any displayed text.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The RadioButton control also defines a CheckedChanged event that's fired when the IsChecked property

changes, either through user or programmatic manipulation. The CheckedChangedEventArgs object that

accompanies the CheckedChanged event has a single property named Value , of type bool . When the event is

fired, the value of the CheckedChangedEventArgs.Value property is set to the new value of the IsChecked

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/radiobutton.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-radiobuttondemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton

 Create RadioButtons

 Display string-based contentDisplay string-based content

<StackLayout>
 <Label Text="What's your favorite animal?" />
 <RadioButton Content="Cat" />
 <RadioButton Content="Dog" />
 <RadioButton Content="Elephant" />
 <RadioButton Content="Monkey"
 IsChecked="true" />
</StackLayout>

 Display arbitrary contentDisplay arbitrary content

property.

RadioButton grouping can be managed by the RadioButtonGroup class, which defines the following attached

properties:

GroupName , of type string , which defines the group name for RadioButton objects in a Layout<View> .

SelectedValue , of type object , which represents the value of the checked RadioButton object within a

Layout<View> group. This attached property uses a TwoWay binding by default.

For more information about the GroupName attached property, see Group RadioButtons. For more information

about the SelectedValue attached property, see Respond to RadioButton state changes.

The appearance of a RadioButton is defined by the type of data assigned to the RadioButton.Content property:

When the RadioButton.Content property is assigned a string , it will be displayed on each platform,

horizontally aligned next to the radio button circle.

When the RadioButton.Content is assigned a View , it will be displayed on supported platforms (iOS, UWP),

while unsupported platforms will fallback to a string representation of the View object (Android). In both

cases, the content is displayed horizontally aligned next to the radio button circle.

When a ControlTemplate is applied to a RadioButton , a View can be assigned to the RadioButton.Content

property on all platforms. For more information, see Redefine RadioButton appearance.

A RadioButton displays text when the Content property is assigned a string :

In this example, RadioButton objects are implicitly grouped inside the same parent container. This XAML results

in the appearance shown in the following screenshots:

On iOS and UWP, a RadioButton can display arbitrary content when the Content property is assigned a View :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

<StackLayout>
 <Label Text="What's your favorite animal?" />
 <RadioButton>
 <RadioButton.Content>
 <Image Source="cat.png" />
 </RadioButton.Content>
 </RadioButton>
 <RadioButton>
 <RadioButton.Content>
 <Image Source="dog.png" />
 </RadioButton.Content>
 </RadioButton>
 <RadioButton>
 <RadioButton.Content>
 <Image Source="elephant.png" />
 </RadioButton.Content>
 </RadioButton>
 <RadioButton>
 <RadioButton.Content>
 <Image Source="monkey.png" />
 </RadioButton.Content>
 </RadioButton>
</StackLayout>

NOTENOTE

 Associate values with RadioButtons

In this example, RadioButton objects are implicitly grouped inside the same parent container. This XAML results

in the appearance shown in the following screenshots:

On Android, RadioButton objects will display a string-based representation of the View object that's been set as

content:

When a ControlTemplate is applied to a RadioButton , a View can be assigned to the RadioButton.Content

property on all platforms. For more information, see Redefine RadioButton appearance.

Each RadioButton object has a Value property, of type object , which defines an optional unique value to

associate with the radio button. This enables the value of a RadioButton to be different to its content, and is

particularly useful when RadioButton objects are displaying View objects.

The following XAML shows setting the Content and Value properties on each RadioButton object:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton

<StackLayout>
 <Label Text="What's your favorite animal?" />
 <RadioButton Value="Cat">
 <RadioButton.Content>
 <Image Source="cat.png" />
 </RadioButton.Content>
 </RadioButton>
 <RadioButton Value="Dog">
 <RadioButton.Content>
 <Image Source="dog.png" />
 </RadioButton.Content>
 </RadioButton>
 <RadioButton Value="Elephant">
 <RadioButton.Content>
 <Image Source="elephant.png" />
 </RadioButton.Content>
 </RadioButton>
 <RadioButton Value="Monkey">
 <RadioButton.Content>
 <Image Source="monkey.png" />
 </RadioButton.Content>
 </RadioButton>
</StackLayout>

 Group RadioButtons

IMPORTANTIMPORTANT

 Explicit grouping with the GroupName propertyExplicit grouping with the GroupName property

<Label Text="What's your favorite color?" />
<RadioButton Content="Red"
 GroupName="colors" />
<RadioButton Content="Green"
 GroupName="colors" />
<RadioButton Content="Blue"
 GroupName="colors" />
<RadioButton Content="Other"
 GroupName="colors" />

In this example, each RadioButton has an Image as its content, while also defining a string-based value. This

enables the value of the checked radio button to be easily identified.

Radio buttons work in groups, and there are three approaches to grouping radio buttons:

Place them inside the same parent container. This is known as implicit grouping.

Set the GroupName property on each radio button in the group to the same value. This is known as explicit

grouping.

Set the RadioButtonGroup.GroupName attached property on a parent container, which in turn sets the

GroupName property of any RadioButton objects in the container. This is also known as explicit grouping.

RadioButton objects don't have to belong to the same parent to be grouped. They are mutually exclusive provided that

they share a group name.

The following XAML example shows explicitly grouping RadioButton objects by setting their GroupName

properties:

In this example, each RadioButton is mutually exclusive because it shares the same GroupName value.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton

Explicit grouping with the RadioButtonGroup.GroupName attached propertyExplicit grouping with the RadioButtonGroup.GroupName attached property

<StackLayout RadioButtonGroup.GroupName="colors">
 <Label Text="What's your favorite color?" />
 <RadioButton Content="Red" />
 <RadioButton Content="Green" />
 <RadioButton Content="Blue" />
 <RadioButton Content="Other" />
</StackLayout>

NOTENOTE

 Respond to RadioButton state changes

 Respond to an event firingRespond to an event firing

<RadioButton Content="Red"
 GroupName="colors"
 CheckedChanged="OnColorsRadioButtonCheckedChanged" />

void OnColorsRadioButtonCheckedChanged(object sender, CheckedChangedEventArgs e)
{
 // Perform required operation
}

 Respond to a property changeRespond to a property change

The RadioButtonGroup class defines a GroupName attached property, of type string , which can be set on a

Layout<View> object. This enables any layout to be turned into a radio button group:

In this example, each RadioButton in the StackLayout will have its GroupName property set to fruits , and will

be mutually exclusive.

When a Layout<View > object that sets the RadioButtonGroup.GroupName attached property contains a RadioButton

that sets its GroupName property, the value of the RadioButton.GroupName property will take precedence.

A radio button has two states: checked or unchecked. When a radio button is checked, its IsChecked property is

true . When a radio button is unchecked, its IsChecked property is false . A radio button can be cleared by

tapping another radio button in the same group, but it cannot be cleared by tapping it again. However, you can

clear a radio button programmatically by setting its IsChecked property to false .

When the IsChecked property changes, either through user or programmatic manipulation, the CheckedChanged

event fires. An event handler for this event can be registered to respond to the change:

The code-behind contains the handler for the CheckedChanged event:

The sender argument is the RadioButton responsible for this event. You can use this to access the RadioButton

object, or to distinguish between multiple RadioButton objects sharing the same CheckedChanged event handler.

The RadioButtonGroup class defines a SelectedValue attached property, of type object , which can be set on a

Layout<View> object. This attached property represents the value of the checked RadioButton within a group

defined on a layout.

When the IsChecked property changes, either through user or programmatic manipulation, the

RadioButtonGroup.SelectedValue attached property also changes. Therefore, the RadioButtonGroup.SelectedValue

attached property can be data bound to a property that stores the user's selection:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton

<StackLayout RadioButtonGroup.GroupName="{Binding GroupName}"
 RadioButtonGroup.SelectedValue="{Binding Selection}">
 <Label Text="What's your favorite animal?" />
 <RadioButton Content="Cat"
 Value="Cat" />
 <RadioButton Content="Dog"
 Value="Dog" />
 <RadioButton Content="Elephant"
 Value="Elephant" />
 <RadioButton Content="Monkey"
 Value="Monkey"/>
 <Label x:Name="animalLabel">
 <Label.FormattedText>
 <FormattedString>

 </FormattedString>
 </Label.FormattedText>
 </Label>
</StackLayout>

 RadioButton visual states

In this example, the value of the RadioButtonGroup.GroupName attached property is set by the GroupName property

on the binding context. Similarly, the value of the RadioButtonGroup.SelectedValue attached property is set by

the Selection property on the binding context. In addition, the Selection property is updated to the Value

property of the checked RadioButton .

RadioButton objects have Checked and Unchecked visual states that can be used to initiate a visual change

when a RadioButton is checked or unchecked.

The following XAML example shows how to define a visual state for the Checked and Unchecked states:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton

<ContentPage ...>
 <ContentPage.Resources>
 <Style TargetType="RadioButton">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CheckedStates">
 <VisualState x:Name="Checked">
 <VisualState.Setters>
 <Setter Property="TextColor"
 Value="Green" />
 <Setter Property="Opacity"
 Value="1" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Unchecked">
 <VisualState.Setters>
 <Setter Property="TextColor"
 Value="Red" />
 <Setter Property="Opacity"
 Value="0.5" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>
 </ContentPage.Resources>
 <StackLayout>
 <Label Text="What's your favorite mode of transport?" />
 <RadioButton Content="Car" />
 <RadioButton Content="Bike" />
 <RadioButton Content="Train" />
 <RadioButton Content="Walking" />
 </StackLayout>
</ContentPage>

 Redefine RadioButton appearance

In this example, the implicit Style targets RadioButton objects. The Checked VisualState specifies that when a

RadioButton is checked, its TextColor property will be set to green with an Opacity value of 1. The Unchecked

VisualState specifies that when a RadioButton is in a unchecked state, its TextColor property will be set to red

with an Opacity value of 0.5. Therefore, the overall effect is that when a RadioButton is unchecked it's red and

partially transparent, and is green without transparency when it's checked:

For more information about visual states, see Xamarin.Forms Visual State Manager.

By default, RadioButton objects use platform renderers to utilize native controls on supported platforms.

However, RadioButton visual structure can be redefined with a ControlTemplate , so that RadioButton objects

have an identical appearance on all platforms. This is possible because the RadioButton class inherits from the

TemplatedView class.

The following XAML shows a ControlTemplate that can be used to redefine the visual structure of RadioButton

objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton

<ContentPage ...>
 <ContentPage.Resources>
 <ControlTemplate x:Key="RadioButtonTemplate">
 <Frame BorderColor="#F3F2F1"
 BackgroundColor="#F3F2F1"
 HasShadow="False"
 HeightRequest="100"
 WidthRequest="100"
 HorizontalOptions="Start"
 VerticalOptions="Start"
 Padding="0">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CheckedStates">
 <VisualState x:Name="Checked">
 <VisualState.Setters>
 <Setter Property="BorderColor"
 Value="#FF3300" />
 <Setter TargetName="check"
 Property="Opacity"
 Value="1" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Unchecked">
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="#F3F2F1" />
 <Setter Property="BorderColor"
 Value="#F3F2F1" />
 <Setter TargetName="check"
 Property="Opacity"
 Value="0" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </VisualStateManager.VisualStateGroups>
 <Grid Margin="4"
 WidthRequest="100">
 <Grid WidthRequest="18"
 HeightRequest="18"
 HorizontalOptions="End"
 VerticalOptions="Start">
 <Ellipse Stroke="Blue"
 Fill="White"
 WidthRequest="16"
 HeightRequest="16"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <Ellipse x:Name="check"
 Fill="Blue"
 WidthRequest="8"
 HeightRequest="8"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 </Grid>
 <ContentPresenter />
 </Grid>
 </Frame>
 </ControlTemplate>

 <Style TargetType="RadioButton">
 <Setter Property="ControlTemplate"
 Value="{StaticResource RadioButtonTemplate}" />
 </Style>
 </ContentPage.Resources>
 <!-- Page content -->
</ContentPage>

NOTENOTE

In this example, the root element of the ControlTemplate is a Frame object that defines Checked and Unchecked

visual states. The Frame object uses a combination of Grid , Ellipse , and ContentPresenter objects to define

the visual structure of a RadioButton . The example also includes an implicit style that will assign the

RadioButtonTemplate to the ControlTemplate property of any RadioButton objects on the page.

The ContentPresenter object marks the location in the visual structure where RadioButton content will be displayed.

The following XAML shows RadioButton objects that consume the ControlTemplate via the implicit style:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.shapes.ellipse
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate

<StackLayout>
 <Label Text="What's your favorite animal?" />
 <StackLayout RadioButtonGroup.GroupName="animals"
 Orientation="Horizontal">
 <RadioButton Value="Cat">
 <RadioButton.Content>
 <StackLayout>
 <Image Source="cat.png"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 <Label Text="Cat"
 HorizontalOptions="Center"
 VerticalOptions="End" />
 </StackLayout>
 </RadioButton.Content>
 </RadioButton>
 <RadioButton Value="Dog">
 <RadioButton.Content>
 <StackLayout>
 <Image Source="dog.png"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 <Label Text="Dog"
 HorizontalOptions="Center"
 VerticalOptions="End" />
 </StackLayout>
 </RadioButton.Content>
 </RadioButton>
 <RadioButton Value="Elephant">
 <RadioButton.Content>
 <StackLayout>
 <Image Source="elephant.png"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 <Label Text="Elephant"
 HorizontalOptions="Center"
 VerticalOptions="End" />
 </StackLayout>
 </RadioButton.Content>
 </RadioButton>
 <RadioButton Value="Monkey">
 <RadioButton.Content>
 <StackLayout>
 <Image Source="monkey.png"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 <Label Text="Monkey"
 HorizontalOptions="Center"
 VerticalOptions="End" />
 </StackLayout>
 </RadioButton.Content>
 </RadioButton>
 </StackLayout>
</StackLayout>

In this example, the visual structure defined for each RadioButton is replaced with the visual structure defined in

the ControlTemplate , and so at runtime the objects in the ControlTemplate become part of the visual tree for

each RadioButton . In addition, the content for each RadioButton is substituted into the ContentPresenter

defined in the control template. This results in the following RadioButton appearance:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.radiobutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.controltemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpresenter

 Disable a RadioButton

 Related links

For more information about control templates, see Xamarin.Forms control templates.

Sometimes an application enters a state where a RadioButton being checked is not a valid operation. In such

cases, the RadioButton can be disabled by setting its IsEnabled property to false .

RadioButton Demos (sample)

Xamarin.Forms Button

Xamarin.Forms Visual State Manager

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-radiobuttondemos/

Xamarin.Forms RefreshView
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Create a RefreshView

<RefreshView IsRefreshing="{Binding IsRefreshing}"
 Command="{Binding RefreshCommand}">
 <ScrollView>
 <FlexLayout Direction="Row"
 Wrap="Wrap"
 AlignItems="Center"
 AlignContent="Center"
 BindableLayout.ItemsSource="{Binding Items}"
 BindableLayout.ItemTemplate="{StaticResource ColorItemTemplate}" />
 </ScrollView>
</RefreshView>

 Download the sample

The RefreshView is a container control that provides pull to refresh functionality for scrollable content.

Therefore, the child of a RefreshView must be a scrollable control, such as ScrollView , CollectionView , or

ListView .

RefreshView defines the following properties:

Command , of type ICommand , which is executed when a refresh is triggered.

CommandParameter , of type object , which is the parameter that's passed to the Command .

IsRefreshing , of type bool , which indicates the current state of the RefreshView .

RefreshColor , of type Color , the color of the progress circle that appears during the refresh.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

On the Universal Windows Platform, the pull direction of a RefreshView can be set with a platform-specific. For more

information, see RefreshView Pull Direction.

The following example shows how to instantiate a RefreshView in XAML:

A RefreshView can also be created in code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/refreshview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-refreshviewdemo/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

RefreshView refreshView = new RefreshView();
ICommand refreshCommand = new Command(() =>
{
 // IsRefreshing is true
 // Refresh data here
 refreshView.IsRefreshing = false;
});
refreshView.Command = refreshCommand;

ScrollView scrollView = new ScrollView();
FlexLayout flexLayout = new FlexLayout { ... };
scrollView.Content = flexLayout;
refreshView.Content = scrollView;

NOTENOTE

 RefreshView appearance

<RefreshView RefreshColor="Teal"
 ... />

In this example, the RefreshView provides pull to refresh functionality to a ScrollView whose child is a

FlexLayout . The FlexLayout uses a bindable layout to generate its content by binding to a collection of items,

and sets the appearance of each item with a DataTemplate . For more information about bindable layouts, see

Bindable Layouts in Xamarin.Forms.

The value of the RefreshView.IsRefreshing property indicates the current state of the RefreshView . When a

refresh is triggered by the user, this property will automatically transition to true . Once the refresh completes,

you should reset the property to false .

When the user initiates a refresh, the ICommand defined by the Command property is executed, which should

refresh the items being displayed. A refresh visualization is shown while the refresh occurs, which consists of an

animated progress circle:

Manually setting the IsRefreshing property to true will trigger the refresh visualization, and will execute the

ICommand defined by the Command property.

In addition to the properties that RefreshView inherits from the VisualElement class, RefreshView also defines

the RefreshColor property. This property can be set to define the color of the progress circle that appears

during the refresh:

The following screenshot shows a RefreshView with the RefreshColor property set:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/refreshview-images/default-progress-circle-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

NOTENOTE

 Disable a RefreshView

 Related links

In addition, the BackgroundColor property can be set to a Color that represents the background color of the

progress circle.

On iOS, the BackgroundColor property sets the background color of the UIView that contains the progress circle.

An application may enter a state where pull to refresh is not a valid operation. In such cases, the RefreshView

can be disabled by setting its IsEnabled property to false . This will prevent users from being able to trigger

pull to refresh.

Alternatively, when defining the Command property, the CanExecute delegate of the ICommand can be specified to

enable or disable the command.

RefreshView (sample)

Bindable Layouts in Xamarin.Forms

RefreshView Pull Direction platform-specific

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/refreshview-images/teal-progress-circle-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-refreshviewdemo/

Xamarin.Forms SearchBar
 7/8/2021 • 4 minutes to read • Edit Online

 Create a SearchBar

 Download the sample

The Xamarin.Forms SearchBar is a user input control used to initiating a search. The SearchBar control

supports placeholder text, query input, search execution, and cancellation. The following screenshot shows a

SearchBar query with results displayed in a ListView :

The SearchBar class defines the following properties:

CancelButtonColor is a Color that defines the color of the cancel button.

CharacterSpacing , of type double , is the spacing between characters of the SearchBar text.

FontAttributes is a FontAttributes enum value that determines whether the SearchBar font is bold, italic,

or neither.

FontFamily is a string that determines the font family used by the SearchBar .

FontSize can be a NamedSize enum value or a double value that represents specific font sizes across

platforms.

HorizontalTextAlignment is a TextAlignment enum value that defines the horizontal alignment of the query

text.

VerticalTextAlignment is a TextAlignment enum value that defines the vertical alignment of the query text.

Placeholder is a string that defines the placeholder text, such as "Search...".

PlaceholderColor is a Color that defines the color of the placeholder text.

SearchCommand is an ICommand that allows binding user actions, such as finger taps or clicks, to commands

defined on a viewmodel.

SearchCommandParameter is an object that specifies the parameter that should be passed to the

SearchCommand .

Text is a string containing the query text in the SearchBar .

TextColor is a Color that defines the query text color.

TextTransform is a TextTransform value that determines the casing of the SearchBar text.

These properties are backed by BindableProperty objects, which means the SearchBar can be customized and

be the target of data bindings. Specifying font properties on the SearchBar is consistent with customizing text

on other Xamarin.Forms Text controls. For more information, see Fonts in Xamarin.Forms.

A SearchBar can be instantiated in XAML. Its optional Placeholder property can be set to define the hint text in

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/searchbar.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-searchbardemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/searchbar-images/device-searchbars.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.cancelbuttoncolor#xamarin_forms_searchbar_cancelbuttoncolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.fontattributes#xamarin_forms_searchbar_fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.fontfamily#xamarin_forms_searchbar_fontfamily
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.fontsize#xamarin_forms_searchbar_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.horizontaltextalignment#xamarin_forms_searchbar_horizontaltextalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.placeholder#xamarin_forms_inputview_placeholder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.placeholdercolor#xamarin_forms_inputview_placeholdercolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.searchcommand#xamarin_forms_searchbar_searchcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.searchcommandparameter#xamarin_forms_searchbar_searchcommandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textcolor#xamarin_forms_inputview_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/index

<SearchBar Placeholder="Search items..." />

SearchBar searchBar = new SearchBar{ Placeholder = "Search items..." };

 SearchBar appearance propertiesSearchBar appearance properties

<SearchBar Placeholder="Search items..."
 CancelButtonColor="Orange"
 PlaceholderColor="Orange"
 TextColor="Orange"
 TextTransform="Lowercase"
 HorizontalTextAlignment="Center"
 FontSize="Medium"
 FontAttributes="Italic" />

SearchBar searchBar = new SearchBar
{
 Placeholder = "Search items...",
 PlaceholderColor = Color.Orange,
 TextColor = Color.Orange,
 TextTransform = TextTransform.Lowercase,
 HorizontalTextAlignment = TextAlignment.Center,
 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(SearchBar)),
 FontAttributes = FontAttributes.Italic
};

NOTENOTE

 Perform a search with event handlers

the query input box. The default value for the Placeholder is an empty string so no placeholder will appear if it

isn't set. The following example shows how to instantiate a SearchBar in XAML with the optional Placeholder

property set:

A SearchBar can also be created in code:

The SearchBar control defines many properties that customize the appearance of the control. The following

example shows how to instantiate a SearchBar in XAML with multiple properties specified:

These properties can also be specified when creating a SearchBar object in code:

The following screenshot shows the resulting SearchBar control:

On iOS, the SearchBarRenderer class contains an overridable UpdateCancelButton method. This method controls

when the cancel button appears, and can be overridden in a custom renderer. For more information about custom

renderers, see Xamarin.Forms Custom Renderers.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/searchbar-images/device-searchbars-styled.png#lightbox

<SearchBar TextChanged="OnTextChanged" />
<ListView x:Name="searchResults" >

SearchBar searchBar = new SearchBar {/*...*/};
searchBar.TextChanged += OnTextChanged;

void OnTextChanged(object sender, EventArgs e)
{
 SearchBar searchBar = (SearchBar)sender;
 searchResults.ItemsSource = DataService.GetSearchResults(searchBar.Text);
}

 Perform a search using a viewmodel

A search can be executed using the SearchBar control by attaching an event handler to one of the following

events:

SearchButtonPressed is called when the user either clicks the search button or presses the enter key.

TextChanged is called anytime the text in the query box is changed.

The following example shows an event handler attached to the TextChanged event in XAML and uses a

ListView to display search results:

An event handler can also be attached to a SearchBar created in code:

The TextChanged event handler in the code-behind file is the same, whether the SearchBar is created via XAML

or code:

The previous example implies the existence of a DataService class with a GetSearchResults method capable of

returning items that match a query. The SearchBar control's Text property value is passed to the

GetSearchResults method and the result is used to update the ListView control's ItemsSource property. The

overall effect is that search results are displayed in the ListView control.

The sample application provides a DataService class implementation that can be used to test search

functionality.

A search can be executed without event handlers by binding the SearchCommand and SearchCommandParameter

properties to ICommand implementations. The sample project demonstrates these implementations using the

Model-View-ViewModel (MVVM) pattern. For more information about data bindings with MVVM, see Data

Bindings with MVVM.

The viewmodel in the sample application contains the following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar.searchbuttonpressed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged

public class SearchViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void NotifyPropertyChanged([CallerMemberName] string propertyName = "")
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 public ICommand PerformSearch => new Command<string>((string query) =>
 {
 SearchResults = DataService.GetSearchResults(query);
 });

 private List<string> searchResults = DataService.Fruits;
 public List<string> SearchResults
 {
 get
 {
 return searchResults;
 }
 set
 {
 searchResults = value;
 NotifyPropertyChanged();
 }
 }
}

NOTENOTE

<ContentPage ...>
 <ContentPage.BindingContext>
 <viewmodels:SearchViewModel />
 </ContentPage.BindingContext>
 <StackLayout ...>
 <SearchBar x:Name="searchBar"
 ...
 SearchCommand="{Binding PerformSearch}"
 SearchCommandParameter="{Binding Text, Source={x:Reference searchBar}}"/>
 <ListView x:Name="searchResults"
 ...
 ItemsSource="{Binding SearchResults}" />
 </StackLayout>
</ContentPage>

The viewmodel assumes the existence of a DataService class capable of performing searches. The DataService class,

including example data, is available in the sample application.

The following XAML shows how to bind a SearchBar to the example viewmodel, with a ListView control

displaying the search results:

This example sets the BindingContext to be an instance of the SearchViewModel class. It binds the SearchCommand

property to the PerformSearch ICommand in the viewmodel, and binds the SearchBar Text property to the

SearchCommandParameter property. The ListView.ItemsSource property is bound to the SearchResults property

of the viewmodel.

For more information about the ICommand Interface and bindings, see Xamarin.Forms data binding and the

ICommand interface.

Related links
SearchBar Demos

Xamarin.Forms Text controls

Fonts in Xamarin.Forms

Xamarin.Forms data binding

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-searchbardemos/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/index

Xamarin.Forms SwipeView
 7/8/2021 • 10 minutes to read • Edit Online

 Download the sample

The SwipeView is a container control that wraps around an item of content, and provides context menu items

that are revealed by a swipe gesture:

SwipeView defines the following properties:

LeftItems , of type SwipeItems , which represents the swipe items that can be invoked when the control is

swiped from the left side.

RightItems , of type SwipeItems , which represents the swipe items that can be invoked when the control is

swiped from the right side.

TopItems , of type SwipeItems , which represents the swipe items that can be invoked when the control is

swiped from the top down.

BottomItems , of type SwipeItems , which represents the swipe items that can be invoked when the control is

swiped from the bottom up.

Threshold , of type double , which represents the number of device-independent units that trigger a swipe

gesture to fully reveal swipe items.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

In addition, the SwipeView inherits the Content property from the ContentView class. The Content property is

the content property of the SwipeView class, and therefore does not need to be explicitly set.

The SwipeView class also defines three events:

SwipeStarted is fired when a swipe starts. The SwipeStartedEventArgs object that accompanies this event has

a SwipeDirection property, of type SwipeDirection .

SwipeChanging is fired as the swipe moves. The SwipeChangingEventArgs object that accompanies this event

has a SwipeDirection property, of type SwipeDirection , and an Offset property of type double .

SwipeEnded is fired when a swipe ends. The SwipeEndedEventArgs object that accompanies this event has a

SwipeDirection property, of type SwipeDirection , and an IsOpen property of type bool .

In addition, SwipeView includes Open and Close methods, which programmatically open and close the swipe

items, respectively.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/swipeview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-swipeviewdemos/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/swipeview-images/swipeview-collectionview-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview.content#xamarin_forms_contentview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview

NOTENOTE

 Create a SwipeView

<SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Favorite"
 IconImageSource="favorite.png"
 BackgroundColor="LightGreen"
 Invoked="OnFavoriteSwipeItemInvoked" />
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Invoked="OnDeleteSwipeItemInvoked" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
 <Grid HeightRequest="60"
 WidthRequest="300"
 BackgroundColor="LightGray">
 <Label Text="Swipe right"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 </Grid>
</SwipeView>

SwipeView has a platform-specific on iOS and Android, that controls the transition that's used when opening a

SwipeView . For more information, see SwipeView Swipe Transition Mode on iOS and SwipeView Swipe Transition Mode

on Android.

A SwipeView must define the content that the SwipeView wraps around, and the swipe items that are revealed

by the swipe gesture. The swipe items are one or more SwipeItem objects that are placed in one of the four

SwipeView directional collections - LeftItems , RightItems , TopItems , or BottomItems .

The following example shows how to instantiate a SwipeView in XAML:

The equivalent C# code is:

// SwipeItems
SwipeItem favoriteSwipeItem = new SwipeItem
{
 Text = "Favorite",
 IconImageSource = "favorite.png",
 BackgroundColor = Color.LightGreen
};
favoriteSwipeItem.Invoked += OnFavoriteSwipeItemInvoked;

SwipeItem deleteSwipeItem = new SwipeItem
{
 Text = "Delete",
 IconImageSource = "delete.png",
 BackgroundColor = Color.LightPink
};
deleteSwipeItem.Invoked += OnDeleteSwipeItemInvoked;

List<SwipeItem> swipeItems = new List<SwipeItem>() { favoriteSwipeItem, deleteSwipeItem };

// SwipeView content
Grid grid = new Grid
{
 HeightRequest = 60,
 WidthRequest = 300,
 BackgroundColor = Color.LightGray
};
grid.Children.Add(new Label
{
 Text = "Swipe right",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
});

SwipeView swipeView = new SwipeView
{
 LeftItems = new SwipeItems(swipeItems),
 Content = grid
};

In this example, the SwipeView content is a Grid that contains a Label :

The swipe items are used to perform actions on the SwipeView content, and are revealed when the control is

swiped from the left side:

By default, a swipe item is executed when it is tapped by the user. However, this behavior can be changed. For

more information, see Swipe mode.

Once a swipe item has been executed the swipe items are hidden and the SwipeView content is re-displayed.

However, this behavior can be changed. For more information, see Swipe behavior.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/swipeview-images/swipeview-content-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/swipeview-images/swipeview-swipeitems-large.png#lightbox

NOTENOTE

 Swipe items

IMPORTANTIMPORTANT

<SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Favorite"
 IconImageSource="favorite.png"
 BackgroundColor="LightGreen"
 Invoked="OnFavoriteSwipeItemInvoked" />
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Invoked="OnDeleteSwipeItemInvoked" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
</SwipeView>

Swipe content and swipe items can be placed inline, or defined as resources.

The LeftItems , RightItems , TopItems , and BottomItems collections are all of type SwipeItems . The SwipeItems

class defines the following properties:

Mode , of type SwipeMode , which indicates the effect of a swipe interaction. For more information about swipe

mode, see Swipe mode.

SwipeBehaviorOnInvoked , of type SwipeBehaviorOnInvoked , which indicates how a SwipeView behaves after a

swipe item is invoked. For more information about swipe behavior, see Swipe behavior.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

Each swipe item is defined as a SwipeItem object that's placed into one of the four SwipeItems directional

collections. The SwipeItem class derives from the MenuItem class, and adds the following members:

A BackgroundColor property, of type Color , that defines the background color of the swipe item. This

property is backed by a bindable property.

An Invoked event, which is fired when the swipe item is executed.

The MenuItem class defines several properties, including Command , CommandParameter , IconImageSource , and Text .

These properties can be set on a SwipeItem object to define its appearance, and to define an ICommand that executes

when the swipe item is invoked. For more information, see Xamarin.Forms MenuItem.

The following example shows two SwipeItem objects in the LeftItems collection of a SwipeView :

The appearance of each SwipeItem is defined by a combination of the Text , IconImageSource , and

BackgroundColor properties:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/swipeview-images/swipeview-swipeitems-large.png#lightbox

NOTENOTE

 Swipe direction

<SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Command="{Binding DeleteCommand}" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <SwipeView.RightItems>
 <SwipeItems>
 <SwipeItem Text="Favorite"
 IconImageSource="favorite.png"
 BackgroundColor="LightGreen"
 Command="{Binding FavoriteCommand}" />
 <SwipeItem Text="Share"
 IconImageSource="share.png"
 BackgroundColor="LightYellow"
 Command="{Binding ShareCommand}" />
 </SwipeItems>
 </SwipeView.RightItems>
 <!-- Content -->
</SwipeView>

WARNINGWARNING

When a SwipeItem is tapped, its Invoked event fires and is handled by its registered event handler. In addition,

the MenuItem.Clicked event fires. Alternatively, the Command property can be set to an ICommand

implementation that will be executed when the SwipeItem is invoked.

When the appearance of a SwipeItem is defined only using the Text or IconImageSource properties, the content is

always centered.

In addition to defining swipe items as SwipeItem objects, it's also possible to define custom swipe item views.

For more information, see Custom swipe items.

SwipeView supports four different swipe directions, with the swipe direction being defined by the directional

SwipeItems collection the SwipeItem objects are added to. Each swipe direction can hold its own swipe items.

For example, the following example shows a SwipeView whose swipe items depend on the swipe direction:

In this example, the SwipeView content can be swiped right or left. Swiping to the right will show the DeleteDelete

swipe item, while swiping to the left will show the FavoriteFavorite and ShareShare swipe items.

Only one instance of a directional SwipeItems collection can be set at a time on a SwipeView . Therefore, you cannot

have two LeftItems definitions on a SwipeView .

The SwipeStarted , SwipeChanging , and SwipeEnded events report the swipe direction via the SwipeDirection

property in the event arguments. This property is of type SwipeDirection , which is an enumeration consisting of

four members:

Right indicates that a right swipe occurred.

Left indicates that a left swipe occurred.

 Swipe threshold

<SwipeView Threshold="200">
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Favorite"
 IconImageSource="favorite.png"
 BackgroundColor="LightGreen" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
</SwipeView>

NOTENOTE

 Swipe mode

<SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems Mode="Execute">
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Command="{Binding DeleteCommand}" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
</SwipeView>

Up indicates that an upwards swipe occurred.

Down indicates that a downwards swipe occurred.

SwipeView includes a Threshold property, of type double , which represents the number of device-independent

units that trigger a swipe gesture to fully reveal swipe items.

The following example shows a SwipeView that sets the Threshold property:

In this example, the SwipeView must be swiped for 200 device-independent units before the SwipeItem is fully

revealed.

Currently, the Threshold property is only implemented on iOS and Android.

The SwipeItems class has a Mode property, which indicates the effect of a swipe interaction. This property

should be set to one of the SwipeMode enumeration members:

Reveal indicates that a swipe reveals the swipe items. This is the default value of the SwipeItems.Mode

property.

Execute indicates that a swipe executes the swipe items.

In reveal mode, the user swipes a SwipeView to open a menu consisting of one or more swipe items, and must

explicitly tap a swipe item to execute it. After the swipe item has been executed the swipe items are closed and

the SwipeView content is re-displayed. In execute mode, the user swipes a SwipeView to open a menu consisting

of one more swipe items, which are then automatically executed. Following execution, the swipe items are

closed and the SwipeView content is re-displayed.

The following example shows a SwipeView configured to use execute mode:

 Swipe behavior

<SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems SwipeBehaviorOnInvoked="RemainOpen">
 <SwipeItem Text="Favorite"
 IconImageSource="favorite.png"
 BackgroundColor="LightGreen"
 Invoked="OnFavoriteSwipeItemInvoked" />
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Invoked="OnDeleteSwipeItemInvoked" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
</SwipeView>

 Custom swipe items

In this example, the SwipeView content can be swiped right to reveal the swipe item, which is executed

immediately. Following execution, the SwipeView content is re-displayed.

The SwipeItems class has a SwipeBehaviorOnInvoked property, which indicates how a SwipeView behaves after a

swipe item is invoked. This property should be set to one of the SwipeBehaviorOnInvoked enumeration members:

Auto indicates that in reveal mode the SwipeView closes after a swipe item is invoked, and in execute mode

the SwipeView remains open after a swipe item is invoked. This is the default value of the

SwipeItems.SwipeBehaviorOnInvoked property.

Close indicates that the SwipeView closes after a swipe item is invoked.

RemainOpen indicates that the SwipeView remains open after a swipe item is invoked.

The following example shows a SwipeView configured to remain open after a swipe item is invoked:

Custom swipe items can be defined with the SwipeItemView type. The SwipeItemView class derives from the

ContentView class, and adds the following properties:

Command , of type ICommand , which is executed when a swipe item is tapped.

CommandParameter , of type object , which is the parameter that's passed to the Command .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The SwipeItemView class also defines an Invoked event that's fired when the item is tapped, after the Command is

executed.

The following example shows a SwipeItemView object in the LeftItems collection of a SwipeView :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItemView Command="{Binding CheckAnswerCommand}"
 CommandParameter="{Binding Source={x:Reference resultEntry}, Path=Text}">
 <StackLayout Margin="10"
 WidthRequest="300">
 <Entry x:Name="resultEntry"
 Placeholder="Enter answer"
 HorizontalOptions="CenterAndExpand" />
 <Label Text="Check"
 FontAttributes="Bold"
 HorizontalOptions="Center" />
 </StackLayout>
 </SwipeItemView>
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
</SwipeView>

 Open and close a SwipeView programmatically

swipeView.Open(OpenSwipeItem.LeftItems);

swipeView.Close();

In this example, the SwipeItemView comprises a StackLayout containing an Entry and a Label . After the user

enters input into the Entry , the rest of the SwipeViewItem can be tapped which executes the ICommand defined

by the SwipeItemView.Command property.

SwipeView includes Open and Close methods, which programmatically open and close the swipe items,

respectively. By default, these methods will animate the SwipeView when its opened or closed.

The Open method requires an OpenSwipeItem argument, to specify the direction the SwipeView will be opened

from. The OpenSwipeItem enumeration has four members:

LeftItems , which indicates that the SwipeView will be opened from the left, to reveal the swipe items in the

LeftItems collection.

TopItems , which indicates that the SwipeView will be opened from the top, to reveal the swipe items in the

TopItems collection.

RightItems , which indicates that the SwipeView will be opened from the right, to reveal the swipe items in

the RightItems collection.

BottomItems , which indicates that the SwipeView will be opened from the bottom, to reveal the swipe items

in the BottomItems collection.

In addition, the Open method also accepts an optional bool argument that defines whether the SwipeView will

be animated when it opens.

Given a SwipeView named swipeView , the following example shows how to open a SwipeView to reveal the

swipe items in the LeftItems collection:

The swipeView can then be closed with the Close method:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

NOTENOTE

 Disable a SwipeView

 Related links

The Close method also accepts an optional bool argument that defines whether the SwipeView will be animated

when it closes.

An application may enter a state where swiping an item of content is not a valid operation. In such cases, the

SwipeView can be disabled by setting its IsEnabled property to false . This will prevent users from being able

to swipe content to reveal swipe items.

In addition, when defining the Command property of a SwipeItem or SwipeItemView , the CanExecute delegate of

the ICommand can be specified to enable or disable the swipe item.

SwipeView (sample)

Xamarin.Forms MenuItem

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-swipeviewdemos/

Xamarin.Forms CheckBox
 7/8/2021 • 3 minutes to read • Edit Online

NOTENOTE

 Create a CheckBox

<CheckBox />

<CheckBox IsChecked="true" />

CheckBox checkBox = new CheckBox { IsChecked = true };

 Respond to a CheckBox changing state

 Download the sample

The Xamarin.Forms CheckBox is a type of button that can either be checked or empty. When a checkbox is

checked, it's considered to be on. When a checkbox is empty, it's considered to be off.

CheckBox defines a bool property named IsChecked , which indicates whether the CheckBox is checked. This

property is also backed by a BindableProperty object, which means that it can be styled, and be the target of

data bindings.

The IsChecked bindable property has a default binding mode of BindingMode.TwoWay .

CheckBox defines a CheckedChanged event that's fired when the IsChecked property changes, either through

user manipulation or when an application sets the IsChecked property. The CheckedChangedEventArgs object that

accompanies the CheckedChanged event has a single property named Value , of type bool . When the event is

fired, the value of the Value property is set to the new value of the IsChecked property.

The following example shows how to instantiate a CheckBox in XAML:

This XAML results in the appearance shown in the following screenshots:

By default, the CheckBox is empty. The CheckBox can be checked by user manipulation, or by setting the

IsChecked property to true :

This XAML results in the appearance shown in the following screenshots:

Alternatively, a CheckBox can be created in code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/checkbox.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-checkboxdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway

<CheckBox CheckedChanged="OnCheckBoxCheckedChanged" />

void OnCheckBoxCheckedChanged(object sender, CheckedChangedEventArgs e)
{
 // Perform required operation after examining e.Value
}

CheckBox checkBox = new CheckBox { ... };
checkBox.CheckedChanged += (sender, e) =>
{
 // Perform required operation after examining e.Value
};

 Data bind a CheckBox

<CheckBox x:Name="checkBox" />
<Label Text="Lorem ipsum dolor sit amet, elit rutrum, enim hendrerit augue vitae praesent sed non, lorem
aenean quis praesent pede.">
 <Label.Triggers>
 <DataTrigger TargetType="Label"
 Binding="{Binding Source={x:Reference checkBox}, Path=IsChecked}"
 Value="true">
 <Setter Property="FontAttributes"
 Value="Italic, Bold" />
 <Setter Property="FontSize"
 Value="Large" />
 </DataTrigger>
 </Label.Triggers>
</Label>

When the IsChecked property changes, either through user manipulation or when an application sets the

IsChecked property, the CheckedChanged event fires. An event handler for this event can be registered to

respond to the change:

The code-behind file contains the handler for the CheckedChanged event:

The sender argument is the CheckBox responsible for this event. You can use this to access the CheckBox

object, or to distinguish between multiple CheckBox objects sharing the same CheckedChanged event handler.

Alternatively, an event handler for the CheckedChanged event can be registered in code:

The CheckedChanged event handler can be eliminated by using data binding and triggers to respond to a

CheckBox being checked or empty:

In this example, the Label uses a binding expression in a data trigger to monitor the IsChecked property of the

CheckBox . When this property becomes true , the FontAttributes and FontSize properties of the Label

change. When the IsChecked property returns to false , the FontAttributes and FontSize properties of the

Label are reset to their initial state.

In the following screenshots, the iOS screenshot shows the Label formatting when the CheckBox is empty,

while the Android screenshot shows the Label formatting when the CheckBox is checked:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

 Disable a Checkbox

 CheckBox appearance

<CheckBox Color="Red" />

 CheckBox visual states

<CheckBox ...>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="Color"
 Value="Red" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="IsChecked">
 <VisualState.Setters>
 <Setter Property="Color"
 Value="Green" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</CheckBox>

For more information about triggers, see Xamarin.Forms Triggers.

Sometimes an application enters a state where a CheckBox being checked is not a valid operation. In such cases,

the CheckBox can be disabled by setting its IsEnabled property to false .

In addition to the properties that CheckBox inherits from the View class, CheckBox also defines a Color

property that sets its color to a Color :

The following screenshots show a series of checked CheckBox objects, where each object has its Color

property set to a different Color :

CheckBox has an IsChecked VisualState that can be used to initiate a visual change to the CheckBox when it

becomes checked.

The following XAML example shows how to define a visual state for the IsChecked state:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/checkbox-images/checkbox-databinding-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

 Related links

In this example, the IsChecked VisualState specifies that when the CheckBox is checked, its Color property

will be set to green. The Normal VisualState specifies that when the CheckBox is in a normal state, its Color

property will be set to red. Therefore, the overall effect is that the CheckBox is red when it's empty, and green

when it's checked.

For more information about visual states, see Xamarin.Forms Visual State Manager.

CheckBox Demos (sample)

Xamarin.Forms Triggers

Xamarin.Forms Visual State Manager

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-checkboxdemos/

Xamarin.Forms DatePicker
 7/8/2021 • 5 minutes to read • Edit Online

WARNINGWARNING

 Initializing the DateTime properties

DatePicker datePicker = new DatePicker
{
 MinimumDate = new DateTime(2018, 1, 1),
 MaximumDate = new DateTime(2018, 12, 31),
 Date = new DateTime(2018, 6, 21)
};

 Download the sample

A Xamarin.Forms view that allows the user to select a date.

The Xamarin.Forms DatePicker invokes the platform's date-picker control and allows the user to select a date.

DatePicker defines eight properties:

MinimumDate of type DateTime , which defaults to the first day of the year 1900.

MaximumDate of type DateTime , which defaults to the last day of the year 2100.

Date of type DateTime , the selected date, which defaults to the value DateTime.Today .

Format of type string , a standard or custom .NET formatting string, which defaults to "D", the long date

pattern.

TextColor of type Color , the color used to display the selected date, which defaults to Color.Default .

FontAttributes of type FontAttributes , which defaults to FontAtributes.None .

FontFamily of type string , which defaults to null .

FontSize of type double , which defaults to -1.0.

CharacterSpacing , of type double , is the spacing between characters of the DatePicker text.

The DatePicker fires a DateSelected event when the user selects a date.

When setting MinimumDate and MaximumDate , make sure that MinimumDate is always less than or equal to

MaximumDate . Otherwise, DatePicker will raise an exception.

Internally, the DatePicker ensures that Date is between MinimumDate and MaximumDate , inclusive. If

MinimumDate or MaximumDate is set so that Date is not between them, DatePicker will adjust the value of Date .

All eight properties are backed by BindableProperty objects, which means that they can be styled, and the

properties can be targets of data bindings. The Date property has a default binding mode of

BindingMode.TwoWay , which means that it can be a target of a data binding in an application that uses the Model-

View-ViewModel (MVVM) architecture.

In code, you can initialize the MinimumDate , MaximumDate , and Date properties to values of type DateTime :

When a DateTime value is specified in XAML, the XAML parser uses the DateTime.Parse method with a

CultureInfo.InvariantCulture argument to convert the string to a DateTime value. The dates must be specified

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/datepicker.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.minimumdate#xamarin_forms_datepicker_minimumdate
https://docs.microsoft.com/en-us/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.maximumdate#xamarin_forms_datepicker_maximumdate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.date#xamarin_forms_datepicker_date
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.today#system_datetime_today
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.format#xamarin_forms_datepicker_format
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings/
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.textcolor#xamarin_forms_datepicker_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.default#xamarin_forms_color_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.fontattributes#xamarin_forms_datepicker_fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.fontattributes#xamarin_forms_fontattributes_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.fontfamily#xamarin_forms_datepicker_fontfamily
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.fontsize#xamarin_forms_datepicker_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker.dateselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm

<DatePicker MinimumDate="01/01/2018"
 MaximumDate="12/31/2018"
 Date="06/21/2018" />

<DatePicker MinimumDate="{Binding MinDate}"
 MaximumDate="{Binding MaxDate}"
 Date="{Binding SelectedDate}" />

 DatePicker and layout

<DatePicker ···
 HorizontalOptions="Center"
 ··· />

TIPTIP

 DatePicker in an application

in a precise format: two-digit months, two-digit days, and four-digit years separated by slashes:

If the BindingContext property of DatePicker is set to an instance of a viewmodel containing properties of type

DateTime named MinDate , MaxDate , and SelectedDate (for example), you can instantiate the DatePicker like

this:

In this example, all three properties are initialized to the corresponding properties in the viewmodel. Because

the Date property has a binding mode of TwoWay , any new date that the user selects is automatically reflected

in the viewmodel.

If the DatePicker does not contain a binding on its Date property, an application should attach a handler to the

DateSelected event to be informed when the user selects a new date.

For information about setting font properties, see Fonts.

It's possible to use an unconstrained horizontal layout option such as Center , Start , or End with DatePicker :

However, this is not recommended. Depending on the setting of the Format property, selected dates might

require different display widths. For example, the "D" format string causes DateTime to display dates in a long

format, and "Wednesday, September 12, 2018" requires a greater display width than "Friday, May 4, 2018".

Depending on the platform, this difference might cause the DateTime view to change width in layout, or for the

display to be truncated.

It's best to use the default HorizontalOptions setting of Fill with DatePicker , and not to use a width of Auto

when putting DatePicker in a Grid cell.

The DaysBetweenDatesDaysBetweenDates sample includes two DatePicker views on its page. These can be used to select two

dates, and the program calculates the number of days between those dates. The program doesn't change the

settings of the MinimumDate and MaximumDate properties, so the two dates must be between 1900 and 2100.

Here's the XAML file:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-datepicker

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DaysBetweenDates"
 x:Class="DaysBetweenDates.MainPage">
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0, 20, 0, 0" />
 </OnPlatform>
 </ContentPage.Padding>

 <StackLayout Margin="10">
 <Label Text="Days Between Dates"
 Style="{DynamicResource TitleStyle}"
 Margin="0, 20"
 HorizontalTextAlignment="Center" />

 <Label Text="Start Date:" />

 <DatePicker x:Name="startDatePicker"
 Format="D"
 Margin="30, 0, 0, 30"
 DateSelected="OnDateSelected" />

 <Label Text="End Date:" />

 <DatePicker x:Name="endDatePicker"
 MinimumDate="{Binding Source={x:Reference startDatePicker},
 Path=Date}"
 Format="D"
 Margin="30, 0, 0, 30"
 DateSelected="OnDateSelected" />

 <StackLayout Orientation="Horizontal"
 Margin="0, 0, 0, 30">
 <Label Text="Include both days in total: "
 VerticalOptions="Center" />
 <Switch x:Name="includeSwitch"
 Toggled="OnSwitchToggled" />
 </StackLayout>

 <Label x:Name="resultLabel"
 FontAttributes="Bold"
 HorizontalTextAlignment="Center" />

 </StackLayout>
</ContentPage>

Each DatePicker is assigned a Format property of "D" for a long date format. Notice also that the

endDatePicker object has a binding that targets its MinimumDate property. The binding source is the selected

Date property of the startDatePicker object. This ensures that the end date is always later than or equal to the

start date. In addition to the two DatePicker objects, a Switch is labeled "Include both days in total".

The two DatePicker views have handlers attached to the DateSelected event, and the Switch has a handler

attached to its Toggled event. These event handlers are in the code-behind file and trigger a new calculation of

the days between the two dates:

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();
 }

 void OnDateSelected(object sender, DateChangedEventArgs args)
 {
 Recalculate();
 }

 void OnSwitchToggled(object sender, ToggledEventArgs args)
 {
 Recalculate();
 }

 void Recalculate()
 {
 TimeSpan timeSpan = endDatePicker.Date - startDatePicker.Date +
 (includeSwitch.IsToggled ? TimeSpan.FromDays(1) : TimeSpan.Zero);

 resultLabel.Text = String.Format("{0} day{1} between dates",
 timeSpan.Days, timeSpan.Days == 1 ? "" : "s");
 }
}

When the sample is first run, both DatePicker views are initialized to today's date. The following screenshot

shows the program running on iOS and Android:

Tapping either of the DatePicker displays invokes the platform date picker. The platforms implement this date

picker in very different ways, but each approach is familiar to users of that platform:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/datepicker-images/daysbetweendatesstart-large.png#lightbox

TIPTIP

 Related links

On Android, the DatePicker dialog can be customized by overriding the CreateDatePickerDialog method in a

custom renderer. This allows, for example, additional buttons to be added to the dialog.

After two dates are selected, the application displays the number of days between those dates:

DaysBetweenDates sample

DatePicker API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/datepicker-images/daysbetweendatesselect-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/datepicker-images/daysbetweendatesresult-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker

Xamarin.Forms Slider
 7/8/2021 • 12 minutes to read • Edit Online

WARNINGWARNING

WARNINGWARNING

 Download the sample

Use a Slider for selecting from a range of continuous values.

The Xamarin.Forms Slider is a horizontal bar that can be manipulated by the user to select a double value

from a continuous range.

The Slider defines three properties of type double :

Minimum is the minimum of the range, with a default value of 0.

Maximum is the maximum of the range, with a default value of 1.

Value is the slider's value, which can range between Minimum and Maximum and has a default value of 0.

All three properties are backed by BindableProperty objects. The Value property has a default binding mode of

BindingMode.TwoWay , which means that it's suitable as a binding source in an application that uses the Model-

View-ViewModel (MVVM) architecture.

Internally, the Slider ensures that Minimum is less than Maximum . If Minimum or Maximum are ever set so that

Minimum is not less than Maximum , an exception is raised. See the PrecautionsPrecautions section below for more information on

setting the Minimum and Maximum properties.

The Slider coerces the Value property so that it is between Minimum and Maximum , inclusive. If the Minimum

property is set to a value greater than the Value property, the Slider sets the Value property to Minimum .

Similarly, if Maximum is set to a value less than Value , then Slider sets the Value property to Maximum .

Slider defines a ValueChanged event that is fired when the Value changes, either through user manipulation

of the Slider or when the program sets the Value property directly. A ValueChanged event is also fired when

the Value property is coerced as described in the previous paragraph.

The ValueChangedEventArgs object that accompanies the ValueChanged event has two properties, both of type

double : OldValue and NewValue . At the time the event is fired, the value of NewValue is the same as the Value

property of the Slider object.

Slider also defines DragStarted and DragCompleted events, that are fired at the beginning and end of the drag

action. Unlike the ValueChanged event, the DragStarted and DragCompleted events are only fired through user

manipulation of the Slider . When the DragStarted event fires, the DragStartedCommand , of type ICommand , is

executed. Similarly, when the DragCompleted event fires, the DragCompletedCommand , of type ICommand , is

executed.

Do not use unconstrained horizontal layout options of Center , Start , or End with Slider . On both Android and

the UWP, the Slider collapses to a bar of zero length, and on iOS, the bar is very short. Keep the default

HorizontalOptions setting of Fill , and don't use a width of Auto when putting Slider in a Grid layout.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/slider.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-sliderdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.minimum#xamarin_forms_slider_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.maximum#xamarin_forms_slider_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.value#xamarin_forms_slider_value
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.valuechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.valuechangedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.valuechangedeventargs.oldvalue#xamarin_forms_valuechangedeventargs_oldvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.valuechangedeventargs.newvalue#xamarin_forms_valuechangedeventargs_newvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.valuechanged

NOTENOTE

 Basic Slider code and markup

 Creating a Slider in codeCreating a Slider in code

The Slider also defines several properties that affect its appearance:

MinimumTrackColor is the bar color on the left side of the thumb.

MaximumTrackColor is the bar color on the right side of the thumb.

ThumbColor is the thumb color.

ThumbImageSource is the image to use for the thumb, of type ImageSource .

The ThumbColor and ThumbImageSource properties are mutually exclusive. If both properties are set, the

ThumbImageSource property will take precedence.

The S liderDemosSliderDemos sample begins with three pages that are functionally identical, but are implemented in

different ways. The first page uses only C# code, the second uses XAML with an event handler in code, and the

third is able to avoid the event handler by using data binding in the XAML file.

The Basic S lider CodeBasic S lider Code page in the S liderDemosSliderDemos sample shows show to create a Slider and two Label

objects in code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.minimumtrackcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.maximumtrackcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.thumbcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.thumbimagesourceproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-sliderdemos
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-sliderdemos

public class BasicSliderCodePage : ContentPage
{
 public BasicSliderCodePage()
 {
 Label rotationLabel = new Label
 {
 Text = "ROTATING TEXT",
 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };

 Label displayLabel = new Label
 {
 Text = "(uninitialized)",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };

 Slider slider = new Slider
 {
 Maximum = 360
 };
 slider.ValueChanged += (sender, args) =>
 {
 rotationLabel.Rotation = slider.Value;
 displayLabel.Text = String.Format("The Slider value is {0}", args.NewValue);
 };

 Title = "Basic Slider Code";
 Padding = new Thickness(10, 0);
 Content = new StackLayout
 {
 Children =
 {
 rotationLabel,
 slider,
 displayLabel
 }
 };
 }
}

The Slider is initialized to have a Maximum property of 360. The ValueChanged handler of the Slider uses the

Value property of the slider object to set the Rotation property of the first Label and uses the

String.Format method with the NewValue property of the event arguments to set the Text property of the

second Label . These two approaches to obtain the current value of the Slider are interchangeable.

Here's the program running on iOS and Android devices:

 Creating a Slider in XAMLCreating a Slider in XAML

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="SliderDemos.BasicSliderXamlPage"
 Title="Basic Slider XAML"
 Padding="10, 0">
 <StackLayout>
 <Label x:Name="rotatingLabel"
 Text="ROTATING TEXT"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Slider Maximum="360"
 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="displayLabel"
 Text="(uninitialized)"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

The second Label displays the text "(uninitialized)" until the Slider is manipulated, which causes the first

ValueChanged event to be fired. Notice that the number of decimal places that are displayed is different for each

platform. These differences are related to the platform implementations of the Slider and are discussed later in

this article in the section Platform implementation differences.

The Basic S lider XAMLBasic S lider XAML page is functionally the same as Basic S lider CodeBasic S lider Code but implemented mostly in XAML:

The code-behind file contains the handler for the ValueChanged event:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/slider-images/basicslidercode-large.png#lightbox

public partial class BasicSliderXamlPage : ContentPage
{
 public BasicSliderXamlPage()
 {
 InitializeComponent();
 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
 {
 double value = args.NewValue;
 rotatingLabel.Rotation = value;
 displayLabel.Text = String.Format("The Slider value is {0}", value);
 }
}

double value = ((Slider)sender).Value;

double value = slider.Value;

 Data binding the SliderData binding the Slider

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="SliderDemos.BasicSliderBindingsPage"
 Title="Basic Slider Bindings"
 Padding="10, 0">
 <StackLayout>
 <Label Text="ROTATING TEXT"
 Rotation="{Binding Source={x:Reference slider},
 Path=Value}"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

 <Slider x:Name="slider"
 Maximum="360" />

 <Label x:Name="displayLabel"
 Text="{Binding Source={x:Reference slider},
 Path=Value,
 StringFormat='The Slider value is {0:F0}'}"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

It's also possible for the event handler to obtain the Slider that is firing the event through the sender

argument. The Value property contains the current value:

If the Slider object were given a name in the XAML file with an x:Name attribute (for example, "slider"), then

the event handler could reference that object directly:

The Basic S lider BindingsBasic S lider Bindings page shows how to write a nearly equivalent program that eliminates the Value

event handler by using Data Binding:

The Rotation property of the first Label is bound to the Value property of the Slider , as is the Text

property of the second Label with a StringFormat specification. The Basic S lider BindingsBasic S lider Bindings page functions a

little differently from the two previous pages: When the page first appears, the second Label displays the text

string with the value. This is a benefit of using data binding. To display text without data binding, you'd need to

 Precautions

// Throws an exception!
Slider slider = new Slider
{
 Minimum = 10,
 Maximum = 20
};

Slider slider = new Slider
{
 Maximum = 20,
 Minimum = 10
};

<Slider Maximum="20"
 Minimum="10" ... />

<Slider Minimum="-20"
 Maximum="-10" ... />

Slider slider = new Slider
{
 Value = 10
};

specifically initialize the Text property of the Label or simulate a firing of the ValueChanged event by calling

the event handler from the class constructor.

The value of the Minimum property must always be less than the value of the Maximum property. The following

code snippet causes the Slider to raise an exception:

The C# compiler generates code that sets these two properties in sequence, and when the Minimum property is

set to 10, it is greater than the default Maximum value of 1. You can avoid the exception in this case by setting the

Maximum property first:

Setting Maximum to 20 is not a problem because it is greater than the default Minimum value of 0. When

Minimum is set, the value is less than the Maximum value of 20.

The same problem exists in XAML. Set the properties in an order that ensures that Maximum is always greater

than Minimum :

You can set the Minimum and Maximum values to negative numbers, but only in an order where Minimum is

always less than Maximum :

The Value property is always greater than or equal to the Minimum value and less than or equal to Maximum . If

Value is set to a value outside that range, the value will be coerced to lie within the range, but no exception is

raised. For example, this code will not raise an exception:

Instead, the Value property is coerced to the Maximum value of 1.

Here's a code snippet shown above:

Slider slider = new Slider
{
 Maximum = 20,
 Minimum = 10
};

<Slider ValueChanged="OnSliderValueChanged"
 Maximum="20"
 Minimum="10" />

 Platform implementation differences

 The Android implementationThe Android implementation

 The UWP implementationThe UWP implementation

 The StepSlider solutionThe StepSlider solution

 Sliders for color selection

 Handling Sliders in the code-behind fileHandling Sliders in the code-behind file

When Minimum is set to 10, then Value is also set to 10.

If a ValueChanged event handler has been attached at the time that the Value property is coerced to something

other than its default value of 0, then a ValueChanged event is fired. Here's a snippet of XAML:

When Minimum is set to 10, Value is also set to 10, and the ValueChanged event is fired. This might occur before

the rest of the page has been constructed, and the handler might attempt to reference other elements on the

page that have not yet been created. You might want to add some code to the ValueChanged handler that checks

for null values of other elements on the page. Or, you can set the ValueChanged event handler after the

Slider values have been initialized.

The screenshots shown earlier display the value of the Slider with a different number of decimal points. This

relates to how the Slider is implemented on the Android and UWP platforms.

The Android implementation of Slider is based on the Android SeekBar and always sets the Max property to

1000. This means that the Slider on Android has only 1,001 discrete values. If you set the Slider to have a

Minimum of 0 and a Maximum of 5000, then as the Slider is manipulated, the Value property has values of 0, 5,

10, 15, and so forth.

The UWP implementation of Slider is based on the UWP Slider control. The StepFrequency property of the

UWP Slider is set to the difference of the Maximum and Minimum properties divided by 10, but not greater than

1.

For example, for the default range of 0 to 1, the StepFrequency property is set to 0.1. As the Slider is

manipulated, the Value property is restricted to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (This is evident

in the last page in the S liderDemosSliderDemos sample.) When the difference between the Maximum and Minimum

properties is 10 or greater, then StepFrequency is set to 1, and the Value property has integral values.

A more versatile StepSlider is discussed in Chapter 27. Custom renderers of the book Creating Mobile Apps

with Xamarin.Forms. The StepSlider is similar to Slider but adds a Steps property to specify the number of

values between Minimum and Maximum .

The final two pages in the S liderDemosSliderDemos sample both use three Slider instances for color selection. The first

page handles all the interactions in the code-behind file, while the second page shows how to use data binding

with a ViewModel.

https://docs.microsoft.com/en-us/dotnet/api/android.widget.seekbar
https://docs.microsoft.com/en-us/dotnet/api/android.widget.progressbar.max#android_widget_progressbar_max
https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.controls.slider
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-sliderdemos
https://xamarin.azureedge.net/developer/xamarin-forms-book/XamarinFormsBook-Ch27-Apr2016.pdf
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-sliderdemos

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="SliderDemos.RgbColorSlidersPage"
 Title="RGB Color Sliders">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Slider">
 <Setter Property="Maximum" Value="255" />
 </Style>

 <Style TargetType="Label">
 <Setter Property="HorizontalTextAlignment" Value="Center" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout Margin="10">
 <BoxView x:Name="boxView"
 Color="Black"
 VerticalOptions="FillAndExpand" />

 <Slider x:Name="redSlider"
 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="redLabel" />

 <Slider x:Name="greenSlider"
 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="greenLabel" />

 <Slider x:Name="blueSlider"
 ValueChanged="OnSliderValueChanged" />

 <Label x:Name="blueLabel" />
 </StackLayout>
</ContentPage>

The RGB Color S lidersRGB Color S liders page instantiates a BoxView to display a color, three Slider instances to select the red,

green, and blue components of the color, and three Label elements for displaying those color values:

A Style gives all three Slider elements a range of 0 to 255. The Slider elements share the same

ValueChanged handler, which is implemented in the code-behind file:

public partial class RgbColorSlidersPage : ContentPage
{
 public RgbColorSlidersPage()
 {
 InitializeComponent();
 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
 {
 if (sender == redSlider)
 {
 redLabel.Text = String.Format("Red = {0:X2}", (int)args.NewValue);
 }
 else if (sender == greenSlider)
 {
 greenLabel.Text = String.Format("Green = {0:X2}", (int)args.NewValue);
 }
 else if (sender == blueSlider)
 {
 blueLabel.Text = String.Format("Blue = {0:X2}", (int)args.NewValue);
 }

 boxView.Color = Color.FromRgb((int)redSlider.Value,
 (int)greenSlider.Value,
 (int)blueSlider.Value);
 }
}

 Binding the Slider to a ViewModelBinding the Slider to a ViewModel

public class HslColorViewModel : INotifyPropertyChanged
{
 Color color;

 public event PropertyChangedEventHandler PropertyChanged;

The first section sets the Text property of one of the Label instances to a short text string indicating the value

of the Slider in hexadecimal. Then, all three Slider instances are accessed to create a Color value from the

RGB components:

The HSL Color S lidersHSL Color S liders page shows how to use a ViewModel to perform the calculations used to create a

Color value from hue, saturation, and luminosity values. Like all ViewModels, the HSLColorViewModel class

implements the INotifyPropertyChanged interface, and fires a PropertyChanged event whenever one of the

properties changes:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/slider-images/rgbcolorsliders-large.png#lightbox

 public event PropertyChangedEventHandler PropertyChanged;

 public double Hue
 {
 set
 {
 if (color.Hue != value)
 {
 Color = Color.FromHsla(value, color.Saturation, color.Luminosity);
 }
 }
 get
 {
 return color.Hue;
 }
 }

 public double Saturation
 {
 set
 {
 if (color.Saturation != value)
 {
 Color = Color.FromHsla(color.Hue, value, color.Luminosity);
 }
 }
 get
 {
 return color.Saturation;
 }
 }

 public double Luminosity
 {
 set
 {
 if (color.Luminosity != value)
 {
 Color = Color.FromHsla(color.Hue, color.Saturation, value);
 }
 }
 get
 {
 return color.Luminosity;
 }
 }

 public Color Color
 {
 set
 {
 if (color != value)
 {
 color = value;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Hue"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Saturation"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Luminosity"));
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs("Color"));
 }
 }
 get
 {
 return color;
 }
 }
}

ViewModels and the INotifyPropertyChanged interface are discussed in the article Data Binding.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:SliderDemos"
 x:Class="SliderDemos.HslColorSlidersPage"
 Title="HSL Color Sliders">

 <ContentPage.BindingContext>
 <local:HslColorViewModel Color="Chocolate" />
 </ContentPage.BindingContext>

 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Label">
 <Setter Property="HorizontalTextAlignment" Value="Center" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>

 <StackLayout Margin="10">
 <BoxView Color="{Binding Color}"
 VerticalOptions="FillAndExpand" />

 <Slider Value="{Binding Hue}" />
 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />

 <Slider Value="{Binding Saturation}" />
 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />

 <Slider Value="{Binding Luminosity}" />
 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />
 </StackLayout>
</ContentPage>

The HslColorSlidersPage.xamlHslColorSlidersPage.xaml file instantiates the HslColorViewModel and sets it to the page's

BindingContext property. This allows all the elements in the XAML file to bind to properties in the ViewModel:

As the Slider elements are manipulated, the BoxView and Label elements are updated from the ViewModel:

The StringFormat component of the Binding markup extension is set for a format of "F2" to display two

decimal places. (String formatting in data bindings is discussed in the article String Formatting.) However, the

UWP version of the program is limited to values of 0, 0.1, 0.2, ... 0.9, and 1.0. This is a direct result of the

implementation of the UWP Slider as described above in the section Platform implementation differences.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/slider-images/hslcolorsliders-large.png#lightbox

Related Links
Slider Demos sample

Slider API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-sliderdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider

Xamarin.Forms Stepper
 7/8/2021 • 7 minutes to read • Edit Online

WARNINGWARNING

 Basic Stepper code and markup

 Creating a Stepper in codeCreating a Stepper in code

 Download the sample

Use a Stepper for selecting a numeric value from a range of values.

The Xamarin.Forms Stepper consists of two buttons labeled with minus and plus signs. These buttons can be

manipulated by the user to incrementally select a double value from a range of values.

The Stepper defines four properties of type double :

Increment is the amount to change the selected value by, with a default value of 1.

Minimum is the minimum of the range, with a default value of 0.

Maximum is the maximum of the range, with a default value of 100.

Value is the stepper's value, which can range between Minimum and Maximum and has a default value of 0.

All of these properties are backed by BindableProperty objects. The Value property has a default binding mode

of BindingMode.TwoWay , which means that it's suitable as a binding source in an application that uses the Model-

View-ViewModel (MVVM) architecture.

Internally, the Stepper ensures that Minimum is less than Maximum . If Minimum or Maximum are ever set so that

Minimum is not less than Maximum , an exception is raised. For more information on setting the Minimum and Maximum

properties, see Precautions section.

The Stepper coerces the Value property so that it is between Minimum and Maximum , inclusive. If the Minimum

property is set to a value greater than the Value property, the Stepper sets the Value property to Minimum .

Similarly, if Maximum is set to a value less than Value , then Stepper sets the Value property to Maximum .

Stepper defines a ValueChanged event that is fired when the Value changes, either through user manipulation

of the Stepper or when the application sets the Value property directly. A ValueChanged event is also fired

when the Value property is coerced as described in the previous paragraph.

The ValueChangedEventArgs object that accompanies the ValueChanged event has two properties, both of type

double : OldValue and NewValue . At the time the event is fired, the value of NewValue is the same as the Value

property of the Stepper object.

The StepperDemosStepperDemos sample contains three pages that are functionally identical, but are implemented in

different ways. The first page uses only C# code, the second uses XAML with an event handler in code, and third

is able to avoid the event handler by using data binding in the XAML file.

The Basic Stepper CodeBasic Stepper Code page in the StepperDemosStepperDemos sample shows how to create a Stepper and two Label

objects in code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/stepper.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-stepperdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.increment#xamarin_forms_stepper_increment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.valuechangedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.valuechangedeventargs.oldvalue#xamarin_forms_valuechangedeventargs_oldvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.valuechangedeventargs.newvalue#xamarin_forms_valuechangedeventargs_newvalue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-stepperdemos
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-stepperdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

public class BasicStepperCodePage : ContentPage
{
 public BasicStepperCodePage()
 {
 Label rotationLabel = new Label
 {
 Text = "ROTATING TEXT",
 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };

 Label displayLabel = new Label
 {
 Text = "(uninitialized)",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand
 };

 Stepper stepper = new Stepper
 {
 Maximum = 360,
 Increment = 30,
 HorizontalOptions = LayoutOptions.Center
 };
 stepper.ValueChanged += (sender, e) =>
 {
 rotationLabel.Rotation = stepper.Value;
 displayLabel.Text = string.Format("The Stepper value is {0}", e.NewValue);
 };

 Title = "Basic Stepper Code";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children = { rotationLabel, stepper, displayLabel }
 };
 }
}

The Stepper is initialized to have a Maximum property of 360, and an Increment property of 30. Manipulating

the Stepper changes the selected value incrementally between Minimum to Maximum based on the value of the

Increment property. The ValueChanged handler of the Stepper uses the Value property of the stepper object

to set the Rotation property of the first Label and uses the string.Format method with the NewValue

property of the event arguments to set the Text property of the second Label . These two approaches to

obtain the current value of the Stepper are interchangeable.

The following screenshots show the Basic Stepper CodeBasic Stepper Code page:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.increment#xamarin_forms_stepper_increment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text

 Creating a Stepper in XAMLCreating a Stepper in XAML

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StepperDemo.BasicStepperXAMLPage"
 Title="Basic Stepper XAML">
 <StackLayout Margin="20">
 <Label x:Name="_rotatingLabel"
 Text="ROTATING TEXT"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 <Stepper Maximum="360"
 Increment="30"
 HorizontalOptions="Center"
 ValueChanged="OnStepperValueChanged" />
 <Label x:Name="_displayLabel"
 Text="(uninitialized)"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

The second Label displays the text "(uninitialized)" until the Stepper is manipulated, which causes the first

ValueChanged event to be fired.

The Basic Stepper XAMLBasic Stepper XAML page is functionally the same as Basic Stepper CodeBasic Stepper Code but implemented mostly in

XAML:

The code-behind file contains the handler for the ValueChanged event:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/stepper-images/basic-stepper-code-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged

public partial class BasicStepperXAMLPage : ContentPage
{
 public BasicStepperXAMLPage()
 {
 InitializeComponent();
 }

 void OnStepperValueChanged(object sender, ValueChangedEventArgs e)
 {
 double value = e.NewValue;
 _rotatingLabel.Rotation = value;
 _displayLabel.Text = string.Format("The Stepper value is {0}", value);
 }
}

double value = ((Stepper)sender).Value;

double value = stepper.Value;

 Data binding the StepperData binding the Stepper

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StepperDemo.BasicStepperBindingsPage"
 Title="Basic Stepper Bindings">
 <StackLayout Margin="20">
 <Label Text="ROTATING TEXT"
 Rotation="{Binding Source={x:Reference _stepper}, Path=Value}"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 <Stepper x:Name="_stepper"
 Maximum="360"
 Increment="30"
 HorizontalOptions="Center" />
 <Label Text="{Binding Source={x:Reference _stepper}, Path=Value, StringFormat='The Stepper value is
{0:F0}'}"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

It's also possible for the event handler to obtain the Stepper that is firing the event through the sender

argument. The Value property contains the current value:

If the Stepper object were given a name in the XAML file with an x:Name attribute (for example, "stepper"), then

the event handler could reference that object directly:

The Basic Stepper BindingsBasic Stepper Bindings page shows how to write a nearly equivalent application that eliminates the

Value event handler by using Data Binding:

The Rotation property of the first Label is bound to the Value property of the Stepper , as is the Text

property of the second Label with a StringFormat specification. The Basic Stepper BindingsBasic Stepper Bindings page functions

a little differently from the two previous pages: When the page first appears, the second Label displays the text

string with the value. This is a benefit of using data binding. To display text without data binding, you'd need to

specifically initialize the Text property of the Label or simulate a firing of the ValueChanged event by calling

the event handler from the class constructor.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.text#xamarin_forms_label_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged

Precautions

// Throws an exception!
Stepper stepper = new Stepper
{
 Minimum = 180,
 Maximum = 360
};

Stepper stepper = new Stepper
{
 Maximum = 360,
 Minimum = 180
};

<Stepper Maximum="360"
 Minimum="180" ... />

<Stepper Minimum="-360"
 Maximum="-180" ... />

Stepper stepper = new Stepper
{
 Value = 180
};

The value of the Minimum property must always be less than the value of the Maximum property. The following

code snippet causes the Stepper to raise an exception:

The C# compiler generates code that sets these two properties in sequence, and when the Minimum property is

set to 180, it is greater than the default Maximum value of 100. You can avoid the exception in this case by setting

the Maximum property first:

Setting Maximum to 360 is not a problem because it is greater than the default Minimum value of 0. When

Minimum is set, the value is less than the Maximum value of 360.

The same problem exists in XAML. Set the properties in an order that ensures that Maximum is always greater

than Minimum :

You can set the Minimum and Maximum values to negative numbers, but only in an order where Minimum is

always less than Maximum :

The Value property is always greater than or equal to the Minimum value and less than or equal to Maximum . If

Value is set to a value outside that range, the value will be coerced to lie within the range, but no exception is

raised. For example, this code will not raise an exception:

Instead, the Value property is coerced to the Maximum value of 100.

Here's a code snippet shown above:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.maximum#xamarin_forms_stepper_maximum

Stepper stepper = new Stepper
{
 Maximum = 360,
 Minimum = 180
};

<Stepper ValueChanged="OnStepperValueChanged"
 Maximum="360"
 Minimum="180" />

 Related Links

When Minimum is set to 180, then Value is also set to 180.

If a ValueChanged event handler has been attached at the time that the Value property is coerced to something

other than its default value of 0, then a ValueChanged event is fired. Here's a snippet of XAML:

When Minimum is set to 180, Value is also set to 180, and the ValueChanged event is fired. This might occur

before the rest of the page has been constructed, and the handler might attempt to reference other elements on

the page that have not yet been created. You might want to add some code to the ValueChanged handler that

checks for null values of other elements on the page. Or, you can set the ValueChanged event handler after the

Stepper values have been initialized.

Stepper Demos sample

Stepper API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.minimum#xamarin_forms_stepper_minimum
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.value#xamarin_forms_stepper_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper.valuechanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-stepperdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper

Xamarin.Forms Switch
 7/8/2021 • 4 minutes to read • Edit Online

 Create a Switch

<Switch IsToggled="true"/>

Switch switchControl = new Switch { IsToggled = true };

 Switch appearance

 Download the sample

The Xamarin.Forms Switch control is a horizontal toggle button that can be manipulated by the user to toggle

between on and off states, which are represented by a boolean value. The Switch class inherits from View .

The following screenshots show a Switch control in its onon and offoff toggle states on iOS and Android:

The Switch control defines the following properties:

IsToggled is a boolean value that indicates whether the Switch is onon.

OnColor is a Color that affects how the Switch is rendered in the toggled, or onon, state.

ThumbColor is the Color of the switch thumb.

These properties are backed by a BindableProperty object, which means the Switch can be styled and be the

target of data bindings.

The Switch control defines a Toggled event that is fired when the IsToggled property changes, either through

user manipulation or when an application sets the IsToggled property. The ToggledEventArgs object that

accompanies the Toggled event has a single property named Value , of type bool . When the event is fired, the

value of the Value property reflects the new value of the IsToggled property.

A Switch can be instantiated in XAML. Its IsToggled property can be set to toggle the Switch . By default, the

IsToggled property is false . The following example shows how to instantiate a Switch in XAML with the

optional IsToggled property set:

A Switch can also be created in code:

In addition to the properties that Switch inherits from the View class, Switch also defines OnColor and

ThumbColor properties. The OnColor property can be set to define the Switch color when it is toggled to its onon

state, and the ThumbColor property can be set to define the Color of the switch thumb. The following example

shows how to instantiate a Switch in XAML with these properties set:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/switch.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-switchdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.istoggled#xamarin_forms_switch_istoggled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.oncolor#xamarin_forms_switch_oncolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

<Switch OnColor="Orange"
 ThumbColor="Green" />

Switch switch = new Switch { OnColor = Color.Orange, ThumbColor = Color.Green };

 Respond to a Switch state change

<Switch Toggled="OnToggled" />

void OnToggled(object sender, ToggledEventArgs e)
{
 // Perform an action after examining e.Value
}

Switch switchControl = new Switch {...};
switchControl.Toggled += (sender, e) =>
{
 // Perform an action after examining e.Value
}

 Data bind a Switch

The properties can also be set when creating a Switch in code:

The following screenshot shows the Switch in its onon and offoff toggle states, with the OnColor and ThumbColor

properties set:

When the IsToggled property changes, either through user manipulation or when an application sets the

IsToggled property, the Toggled event fires. An event handler for this event can be registered to respond to the

change:

The code-behind file contains the handler for the Toggled event:

The sender argument in the event handler is the Switch responsible for firing this event. You can use the

sender property to access the Switch object, or to distinguish between multiple Switch objects sharing the

same Toggled event handler.

The Toggled event handler can also be assigned in code:

The Toggled event handler can be eliminated by using data binding and triggers to respond to a Switch

changing toggle states.

<Switch x:Name="styleSwitch" />
<Label Text="Lorem ipsum dolor sit amet, elit rutrum, enim hendrerit augue vitae praesent sed non, lorem
aenean quis praesent pede.">
 <Label.Triggers>
 <DataTrigger TargetType="Label"
 Binding="{Binding Source={x:Reference styleSwitch}, Path=IsToggled}"
 Value="true">
 <Setter Property="FontAttributes"
 Value="Italic, Bold" />
 <Setter Property="FontSize"
 Value="Large" />
 </DataTrigger>
 </Label.Triggers>
</Label>

 Switch visual states

<Switch IsToggled="True">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="On">
 <VisualState.Setters>
 <Setter Property="ThumbColor"
 Value="MediumSpringGreen" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Off">
 <VisualState.Setters>
 <Setter Property="ThumbColor"
 Value="Red" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Switch>

In this example, the Label uses a binding expression in a DataTrigger to monitor the IsToggled property of

the Switch named styleSwitch . When this property becomes true , the FontAttributes and FontSize

properties of the Label are changed. When the IsToggled property returns to false , the FontAttributes and

FontSize properties of the Label are reset to their initial state.

For information about triggers, see Xamarin.Forms Triggers.

Switch has On and Off visual states that can be used to initiate a visual change when the IsToggled property

changes.

The following XAML example shows how to define visual states for the On and Off states:

In this example, the On VisualState specifies that when the IsToggled property is true , the ThumbColor

property will be set to medium spring green. The Off VisualState specifies that when the IsToggled property

is false , the ThumbColor property will be set to red. Therefore, the overall effect is that when the Switch is in

an off position its thumb is red, and its thumb is medium spring green when the Switch is in an on position:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.istoggled#xamarin_forms_switch_istoggled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.istoggled#xamarin_forms_switch_istoggled

 Disable a Switch

 Related links

For more information about visual states, see Xamarin.Forms Visual State Manager.

An application may enter a state where the Switch being toggled is not a valid operation. In such cases, the

Switch can be disabled by setting its IsEnabled property to false . This will prevent users from being able to

manipulate the Switch .

Switch Demos

Xamarin.Forms Triggers

Xamarin.Forms Visual State Manager

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-switchdemos/

Xamarin.Forms TimePicker
 7/8/2021 • 5 minutes to read • Edit Online

 Initializing the Time property

TimePicker timePicker = new TimePicker
{
 Time = new TimeSpan(4, 15, 26) // Time set to "04:15:26"
};

<TimePicker Time="4:15:26" />

<TimePicker Time="{Binding SelectedTime}" />

 Download the sample

A Xamarin.Forms view that allows the user to select a time.

The Xamarin.Forms TimePicker invokes the platform's time-picker control and allows the user to select a time.

TimePicker defines the following properties:

Time of type TimeSpan , the selected time, which defaults to a TimeSpan of 0. The TimeSpan type indicates a

duration of time since midnight.

Format of type string , a standard or custom .NET formatting string, which defaults to "t", the short time

pattern.

TextColor of type Color , the color used to display the selected time, which defaults to Color.Default .

FontAttributes of type FontAttributes , which defaults to FontAtributes.None .

FontFamily of type string , which defaults to null .

FontSize of type double , which defaults to -1.0.

CharacterSpacing , of type double , is the spacing between characters of the TimePicker text.

All of these properties are backed by BindableProperty objects, which means that they can be styled, and the

properties can be targets of data bindings. The Time property has a default binding mode of

BindingMode.TwoWay , which means that it can be a target of a data binding in an application that uses the Model-

View-ViewModel (MVVM) architecture.

The TimePicker doesn't include an event to indicate a new selected Time value. If you need to be notified of

this, you can add a handler for the PropertyChanged event.

In code, you can initialize the Time property to a value of type TimeSpan :

When the Time property is specified in XAML, the value is converted to a TimeSpan and validated to ensure

that the number of milliseconds is greater than or equal to 0, and that the number of hours is less than 24. The

time components should be separated by colons:

If the BindingContext property of TimePicker is set to an instance of a ViewModel containing a property of type

TimeSpan named SelectedTime (for example), you can instantiate the TimePicker like this:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/timepicker.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.format#xamarin_forms_timepicker_format
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings/
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.textcolor#xamarin_forms_timepicker_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.default#xamarin_forms_color_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.fontattributes#xamarin_forms_timepicker_fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.fontattributes#xamarin_forms_fontattributes_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.fontfamily#xamarin_forms_timepicker_fontfamily
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.fontsize#xamarin_forms_timepicker_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.propertychanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker

 TimePicker and layout

<TimePicker ···
 HorizontalOptions="Center"
 ··· />

TIPTIP

 TimePicker in an application

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:SetTimer"
 x:Class="SetTimer.MainPage">
 <StackLayout>
 ...
 <Entry x:Name="_entry"
 Placeholder="Enter event to be reminded of" />
 <Label Text="Select the time below to be reminded at." />
 <TimePicker x:Name="_timePicker"
 Time="11:00:00"
 Format="T"
 PropertyChanged="OnTimePickerPropertyChanged" />
 <StackLayout Orientation="Horizontal">
 <Label Text="Enable timer:" />
 <Switch x:Name="_switch"
 HorizontalOptions="EndAndExpand"
 Toggled="OnSwitchToggled" />
 </StackLayout>
 </StackLayout>
</ContentPage>

In this example, the Time property is initialized to the SelectedTime property in the ViewModel. Because the

Time property has a binding mode of TwoWay , any new time that the user selects is automatically propagated

to the ViewModel.

If the TimePicker does not contain a binding on its Time property, an application should attach a handler to the

PropertyChanged event to be informed when the user selects a new time.

For information about setting font properties, see Fonts.

It's possible to use an unconstrained horizontal layout option such as Center , Start , or End with TimePicker :

However, this is not recommended. Depending on the setting of the Format property, selected times might

require different display widths. For example, the "T" format string causes the TimePicker view to display times

in a long format, and "4:15:26 AM" requires a greater display width than the short time format ("t") of "4:15

AM". Depending on the platform, this difference might cause the TimePicker view to change width in layout, or

for the display to be truncated.

It's best to use the default HorizontalOptions setting of Fill with TimePicker , and not to use a width of Auto

when putting TimePicker in a Grid cell.

The SetTimerSetTimer sample includes TimePicker , Entry , and Switch views on its page. The TimePicker can be used

to select a time, and when that time occurs an alert dialog is displayed that reminds the user of the text in the

Entry , provided the Switch is toggled on. Here's the XAML file:

The Entry lets you enter reminder text that will be displayed when the selected time occurs. The TimePicker is

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.time#xamarin_forms_timepicker_time
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.propertychanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.format#xamarin_forms_timepicker_format
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker

public partial class MainPage : ContentPage
{
 DateTime _triggerTime;

 public MainPage()
 {
 InitializeComponent();

 Device.StartTimer(TimeSpan.FromSeconds(1), OnTimerTick);
 }

 bool OnTimerTick()
 {
 if (_switch.IsToggled && DateTime.Now >= _triggerTime)
 {
 _switch.IsToggled = false;
 DisplayAlert("Timer Alert", "The '" + _entry.Text + "' timer has elapsed", "OK");
 }
 return true;
 }

 void OnTimePickerPropertyChanged(object sender, PropertyChangedEventArgs args)
 {
 if (args.PropertyName == "Time")
 {
 SetTriggerTime();
 }
 }

 void OnSwitchToggled(object sender, ToggledEventArgs args)
 {
 SetTriggerTime();
 }

 void SetTriggerTime()
 {
 if (_switch.IsToggled)
 {
 _triggerTime = DateTime.Today + _timePicker.Time;
 if (_triggerTime < DateTime.Now)
 {
 _triggerTime += TimeSpan.FromDays(1);
 }
 }
 }
}

assigned a Format property of "T" for long time format. It has an event handler attached to the PropertyChanged

event, and the Switch has a handler attached to its Toggled event. These events handlers are in the code-

behind file and call the SetTriggerTime method:

The SetTriggerTime method calculates a timer time based on the DateTime.Today property value and the

TimeSpan value returned from the TimePicker . This is necessary because the DateTime.Today property returns

a DateTime indicating the current date, but with a time of midnight. If the timer time has already passed today,

then it's assumed to be tomorrow.

The timer ticks every second, executing the OnTimerTick method that checks whether the Switch is on and

whether the current time is greater than or equal to the timer time. When the timer time occurs, the

DisplayAlert method presents an alert dialog to the user as a reminder.

When the sample is first run, the TimePicker view is initialized to 11am. Tapping the TimePicker invokes the

platform time picker. The platforms implement the time picker in very different ways, but each approach is

familiar to users of that platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker.format#xamarin_forms_timepicker_format
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.propertychanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.toggled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayalert
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker

TIPTIP
On Android, the TimePicker dialog can be customized by overriding the CreateTimePickerDialog method in a

custom renderer. This allows, for example, additional buttons to be added to the dialog.

After selecting a time, the selected time is displayed in the TimePicker :

Provided that the Switch is toggled to the on position, the application displays an alert dialog reminding the

user of the text in the Entry when the selected time occurs:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/timepicker-images/timepicker-open-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/timepicker-images/timepicker-selected-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

 Related links

As soon as the alert dialog is displayed, the Switch is toggled to the off position.

SetTimer sample

TimePicker API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/timepicker-images/timer-test-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker

Xamarin.Forms Editor
 7/8/2021 • 8 minutes to read • Edit Online

 Set and read text

<Editor x:Name="editor" Text="I am an Editor" />

var editor = new Editor { Text = "I am an Editor" };

var text = editor.Text;

 Set placeholder text

<Editor Placeholder="Enter text here" PlaceholderColor="Olive" />

var editor = new Editor { Placeholder = "Enter text here", PlaceholderColor = Color.Olive };

 Prevent text entry

<Editor Text="This is a read-only Editor"
 IsReadOnly="true" />

var editor = new Editor { Text = "This is a read-only Editor", IsReadOnly = true });

 Download the sample

The Editor control is used to accept multi-line input.

The Editor , like other text-presenting views, exposes the Text property. This property can be used to set and

read the text presented by the Editor . The following example demonstrates setting the Text property in

XAML:

In C#:

To read text, access the Text property in C#:

The Editor can be set to show placeholder text when it is not storing user input. This is accomplished by setting

the Placeholder property to a string , and is often used to indicate the type of content that is appropriate for

the Editor . In addition, the placeholder text color can be controlled by setting the PlaceholderColor property to

a Color :

Users can be prevented from modifying the text in an Editor by setting the IsReadOnly property, which has a

default value of false , to true :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/text/editor.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.placeholder#xamarin_forms_inputview_placeholder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.placeholdercolor#xamarin_forms_inputview_placeholdercolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor

NOTENOTE

 Transform text

<Editor Text="This text will be displayed in uppercase."
 TextTransform="Uppercase" />

Editor editor = new Editor
{
 Text = "This text will be displayed in uppercase.",
 TextTransform = TextTransform.Uppercase
};

 Limit input length

<Editor ... MaxLength="10" />

var editor = new Editor { ... MaxLength = 10 };

 Character spacing

<Editor ...
 CharacterSpacing="10" />

The IsReadonly property does not alter the visual appearance of an Editor , unlike the IsEnabled property that also

changes the visual appearance of the Editor to gray.

An Editor can transform the casing of its text, stored in the Text property, by setting the TextTransform

property to a value of the TextTransform enumeration. This enumeration has four values:

None indicates that the text won't be transformed.

Default indicates that the default behavior for the platform will be used. This is the default value of the

TextTransform property.

Lowercase indicates that the text will be transformed to lowercase.

Uppercase indicates that the text will be transformed to uppercase.

The following example shows transforming text to uppercase:

The equivalent C# code is:

The MaxLength property can be used to limit the input length that's permitted for the Editor . This property

should be set to a positive integer :

A MaxLength property value of 0 indicates that no input will be allowed, and a value of int.MaxValue , which is

the default value for an Editor , indicates that there is no effective limit on the number of characters that may

be entered.

Character spacing can be applied to an Editor by setting the Editor.CharacterSpacing property to a double

value:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.maxlength#xamarin_forms_inputview_maxlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.maxlength#xamarin_forms_inputview_maxlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor

Editor editor = new editor { CharacterSpacing = 10 };

NOTENOTE

 Auto-size an Editor

<Editor Text="Enter text here" AutoSize="TextChanges" />

var editor = new Editor { Text = "Enter text here", AutoSize = EditorAutoSizeOption.TextChanges };

NOTENOTE

 Customize the keyboard

<Editor Keyboard="Chat" />

The equivalent C# code is:

The result is that characters in the text displayed by the Editor are spaced CharacterSpacing device-

independent units apart.

The CharacterSpacing property value is applied to the text displayed by the Text and Placeholder properties.

An Editor can be made to auto-size to its content by setting the Editor.AutoSize property to TextChanges ,

which is a value of the EditorAutoSizeOption enumeration. This enumeration has two values:

Disabled indicates that automatic resizing is disabled, and is the default value.

TextChanges indicates that automatic resizing is enabled.

This can be accomplished in code as follows:

When auto-resizing is enabled, the height of the Editor will increase when the user fills it with text, and the

height will decrease as the user deletes text.

An Editor will not auto-size if the HeightRequest property has been set.

The keyboard that's presented when users interact with an Editor can be set programmatically via the

Keyboard property, to one of the following properties from the Keyboard class:

Chat – used for texting and places where emoji are useful.

Default – the default keyboard.

Email – used when entering email addresses.

Numeric – used when entering numbers.

Plain – used when entering text, without any KeyboardFlags specified.

Telephone – used when entering telephone numbers.

Text – used when entering text.

Url – used for entering file paths & web addresses.

This can be accomplished in XAML as follows:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor.autosize#xamarin_forms_editor_autosize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editorautosizeoption#xamarin_forms_editorautosizeoption_textchanges
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editorautosizeoption
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editorautosizeoption#xamarin_forms_editorautosizeoption_disabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editorautosizeoption#xamarin_forms_editorautosizeoption_textchanges
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.keyboard#xamarin_forms_inputview_keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.chat#xamarin_forms_keyboard_chat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.default#xamarin_forms_keyboard_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.email#xamarin_forms_keyboard_email
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.numeric#xamarin_forms_keyboard_numeric
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.plain#xamarin_forms_keyboard_plain
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.telephone#xamarin_forms_keyboard_telephone
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.text#xamarin_forms_keyboard_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.url#xamarin_forms_keyboard_url

var editor = new Editor { Keyboard = Keyboard.Chat };

<Editor>
 <Editor.Keyboard>
 <Keyboard x:FactoryMethod="Create">
 <x:Arguments>
 <KeyboardFlags>Suggestions,CapitalizeCharacter</KeyboardFlags>
 </x:Arguments>
 </Keyboard>
 </Editor.Keyboard>
</Editor>

var editor = new Editor();
editor.Keyboard = Keyboard.Create(KeyboardFlags.Suggestions | KeyboardFlags.CapitalizeCharacter);

 Enable and disable spell checking

<Editor ... IsSpellCheckEnabled="false" />

var editor = new Editor { ... IsSpellCheckEnabled = false };

The equivalent C# code is:

Examples of each keyboard can be found in our Recipes repository.

The Keyboard class also has a Create factory method that can be used to customize a keyboard by specifying

capitalization, spellcheck, and suggestion behavior. KeyboardFlags enumeration values are specified as

arguments to the method, with a customized Keyboard being returned. The KeyboardFlags enumeration

contains the following values:

None – no features are added to the keyboard.

CapitalizeSentence – indicates that the first letter of the first word of each entered sentence will be

automatically capitalized.

Spellcheck – indicates that spellcheck will be performed on entered text.

Suggestions – indicates that word completions will be offered on entered text.

CapitalizeWord – indicates that the first letter of each word will be automatically capitalized.

CapitalizeCharacter – indicates that every character will be automatically capitalized.

CapitalizeNone – indicates that no automatic capitalization will occur.

All – indicates that spellcheck, word completions, and sentence capitalization will occur on entered text.

The following XAML code example shows how to customize the default Keyboard to offer word completions

and capitalize every entered character :

The equivalent C# code is:

The IsSpellCheckEnabled property controls whether spell checking is enabled. By default, the property is set to

true . As the user enters text, misspellings are indicated.

However, for some text entry scenarios, such as entering a username, spell checking provides a negative

experience and so should be disabled by setting the IsSpellCheckEnabled property to false :

https://github.com/xamarin/recipes/tree/master/Recipes/xamarin-forms/Controls/choose-keyboard-for-entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.create
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizesentence
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_spellcheck
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_suggestions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizeword
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizecharacter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizenone
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_all
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.isspellcheckenabled#xamarin_forms_inputview_isspellcheckenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.isspellcheckenabled#xamarin_forms_inputview_isspellcheckenabled

NOTENOTE

 Enable and disable text prediction

<Editor ... IsTextPredictionEnabled="false" />

var editor = new Editor { ... IsTextPredictionEnabled = false };

NOTENOTE

 Colors

public partial class EditorPage : ContentPage
{
 public EditorPage ()
 {
 InitializeComponent ();
 var layout = new StackLayout { Padding = new Thickness(5,10) };
 this.Content = layout;
 //dark blue on UWP & Android, light blue on iOS
 var editor = new Editor { BackgroundColor = Device.RuntimePlatform == Device.iOS ?
Color.FromHex("#A4EAFF") : Color.FromHex("#2c3e50") };
 layout.Children.Add(editor);
 }
}

When the IsSpellCheckEnabled property is set to false , and a custom keyboard isn't being used, the native spell

checker will be disabled. However, if a Keyboard has been set that disables spell checking, such as Keyboard.Chat , the

IsSpellCheckEnabled property is ignored. Therefore, the property cannot be used to enable spell checking for a

Keyboard that explicitly disables it.

The IsTextPredictionEnabled property controls whether text prediction and automatic text correction is enabled.

By default, the property is set to true . As the user enters text, word predictions are presented.

However, for some text entry scenarios, such as entering a username, text prediction and automatic text

correction provides a negative experience and should be disabled by setting the IsTextPredictionEnabled

property to false :

When the IsTextPredictionEnabled property is set to false , and a custom keyboard isn't being used, text prediction

and automatic text correction is disabled. However, if a Keyboard has been set that disables text prediction, the

IsTextPredictionEnabled property is ignored. Therefore, the property cannot be used to enable text prediction for a

Keyboard that explicitly disables it.

Editor can be set to use a custom background color via the BackgroundColor property. Special care is

necessary to ensure that colors will be usable on each platform. Because each platform has different defaults for

text color, you may need to set a custom background color for each platform. See Working with Platform Tweaks

for more information about optimizing the UI for each platform.

In C#:

In XAML:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.isspellcheckenabled#xamarin_forms_inputview_isspellcheckenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.chat#xamarin_forms_keyboard_chat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TextSample.EditorPage"
 Title="Editor Demo">
 <ContentPage.Content>
 <StackLayout Padding="5,10">
 <Editor>
 <Editor.BackgroundColor>
 <OnPlatform x:TypeArguments="x:Color">
 <On Platform="iOS" Value="#a4eaff" />
 <On Platform="Android, UWP" Value="#2c3e50" />
 </OnPlatform>
 </Editor.BackgroundColor>
 </Editor>
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Events and interactivity

Make sure that the background and text colors you choose are usable on each platform and don't obscure any

placeholder text.

Editor exposes two events:

TextChanged – raised when the text changes in the editor. Provides the text before and after the change.

Completed – raised when the user has ended input by pressing the return key on the keyboard.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor.completed

NOTENOTE

 CompletedCompleted

void EditorCompleted (object sender, EventArgs e)
{
 var text = ((Editor)sender).Text; // sender is cast to an Editor to enable reading the `Text` property
of the view.
}

public partial class EditorPage : ContentPage
{
 public EditorPage ()
 {
 InitializeComponent ();
 var layout = new StackLayout { Padding = new Thickness(5,10) };
 this.Content = layout;
 var editor = new Editor ();
 editor.Completed += EditorCompleted;
 layout.Children.Add(editor);
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="TextSample.EditorPage"
Title="Editor Demo">
 <ContentPage.Content>
 <StackLayout Padding="5,10">
 <Editor Completed="EditorCompleted" />
 </StackLayout>
 </ContentPage.Content>
</Contentpage>

 TextChangedTextChanged

The VisualElement class, from which Entry inherits, also has Focused and Unfocused events.

The Completed event is used to react to the completion of an interaction with an Editor . Completed is raised

when the user ends input with a field by entering the return key on the keyboard (or by pressing the Tab key on

UWP). The handler for the event is a generic event handler, taking the sender and EventArgs :

The completed event can be subscribed to in code and XAML:

In C#:

In XAML:

The TextChanged event is used to react to a change in the content of a field.

TextChanged is raised whenever the Text of the Editor changes. The handler for the event takes an instance

of TextChangedEventArgs . TextChangedEventArgs provides access to the old and new values of the Editor Text

via the OldTextValue and NewTextValue properties:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.focused
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.unfocused

void EditorTextChanged (object sender, TextChangedEventArgs e)
{
 var oldText = e.OldTextValue;
 var newText = e.NewTextValue;
}

public partial class EditorPage : ContentPage
{
 public EditorPage ()
 {
 InitializeComponent ();
 var layout = new StackLayout { Padding = new Thickness(5,10) };
 this.Content = layout;
 var editor = new Editor ();
 editor.TextChanged += EditorTextChanged;
 layout.Children.Add(editor);
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="TextSample.EditorPage"
Title="Editor Demo">
 <ContentPage.Content>
 <StackLayout Padding="5,10">
 <Editor TextChanged="EditorTextChanged" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Related links

The completed event can be subscribed to in code and XAML:

In code:

In XAML:

Text (sample)

Editor API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor

Xamarin.Forms Entry
 7/8/2021 • 10 minutes to read • Edit Online

 Set and read text

<Entry x:Name="entry" Text="I am an Entry" />

var entry = new Entry { Text = "I am an Entry" };

var text = entry.Text;

 Set placeholder text

<Entry Placeholder="Username" PlaceholderColor="Olive" />

var entry = new Entry { Placeholder = "Username", PlaceholderColor = Color.Olive };

NOTENOTE

 Prevent text entry

 Download the sample

The Xamarin.Forms Entry is used for single-line text input. The Entry , like the Editor view, supports multiple

keyboard types. Additionally, the Entry can be used as a password field.

The Entry , like other text-presenting views, exposes the Text property. This property can be used to set and

read the text presented by the Entry . The following example demonstrates setting the Text property in XAML:

In C#:

To read text, access the Text property in C#:

The Entry can be set to show placeholder text when it is not storing user input. This is accomplished by setting

the Placeholder property to a string , and is often used to indicate the type of content that is appropriate for

the Entry . In addition, the placeholder text color can be controlled by setting the PlaceholderColor property to

a Color :

The width of an Entry can be defined by setting its WidthRequest property. Do not depend on the width of an

Entry being defined based on the value of its Text property.

Users can be prevented from modifying the text in an Entry by setting the IsReadOnly property, which has a

default value of false , to true :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/text/entry.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.placeholder#xamarin_forms_inputview_placeholder
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.placeholdercolor#xamarin_forms_inputview_placeholdercolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

<Entry Text="This is a read-only Entry"
 IsReadOnly="true" />

var entry = new Entry { Text = "This is a read-only Entry", IsReadOnly = true });

NOTENOTE

 Transform text

<Entry Text="This text will be displayed in uppercase."
 TextTransform="Uppercase" />

Entry entry = new Entry
{
 Text = "This text will be displayed in uppercase.",
 TextTransform = TextTransform.Uppercase
};

 Limit input length

<Entry ... MaxLength="10" />

var entry = new Entry { ... MaxLength = 10 };

 Character spacing

The IsReadonly property does not alter the visual appearance of an Entry , unlike the IsEnabled property that also

changes the visual appearance of the Entry to gray.

An Entry can transform the casing of its text, stored in the Text property, by setting the TextTransform

property to a value of the TextTransform enumeration. This enumeration has four values:

None indicates that the text won't be transformed.

Default indicates that the default behavior for the platform will be used. This is the default value of the

TextTransform property.

Lowercase indicates that the text will be transformed to lowercase.

Uppercase indicates that the text will be transformed to uppercase.

The following example shows transforming text to uppercase:

The equivalent C# code is:

The MaxLength property can be used to limit the input length that's permitted for the Entry . This property

should be set to a positive integer :

A MaxLength property value of 0 indicates that no input will be allowed, and a value of int.MaxValue , which is

the default value for an Entry , indicates that there is no effective limit on the number of characters that may be

entered.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.maxlength#xamarin_forms_inputview_maxlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.maxlength#xamarin_forms_inputview_maxlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

<Entry ...
 CharacterSpacing="10" />

Entry entry = new Entry { CharacterSpacing = 10 };

NOTENOTE

 Password fields

<Entry IsPassword="true" />

var MyEntry = new Entry { IsPassword = true };

Character spacing can be applied to an Entry by setting the Entry.CharacterSpacing property to a double

value:

The equivalent C# code is:

The result is that characters in the text displayed by the Entry are spaced CharacterSpacing device-

independent units apart.

The CharacterSpacing property value is applied to the text displayed by the Text and Placeholder properties.

Entry provides the IsPassword property. When IsPassword is true , the contents of the field will be presented

as black circles:

In XAML:

In C#:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

<Entry IsPassword="true" Placeholder="Password" />

var MyEntry = new Entry { IsPassword = true, Placeholder = "Password" };

Placeholders may be used with instances of Entry that are configured as password fields:

In XAML:

In C#:

 Set the cursor position and text selection length

<Entry Text="Cursor position set" CursorPosition="5" />

var entry = new Entry { Text = "Cursor position set", CursorPosition = 5 };

<Entry Text="Cursor position and selection length set" CursorPosition="2" SelectionLength="10" />

var entry = new Entry { Text = "Cursor position and selection length set", CursorPosition = 2,
SelectionLength = 10 };

 Display a clear button

The CursorPosition property can be used to return or set the position at which the next character will be

inserted into the string stored in the Text property:

The default value of the CursorPosition property is 0, which indicates that text will be inserted at the start of the

Entry .

In addition, the SelectionLength property can be used to return or set the length of text selection within the

Entry :

The default value of the SelectionLength property is 0, which indicates that no text is selected.

The ClearButtonVisibility property can be used to control whether an Entry displays a clear button, which

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.cursorposition#xamarin_forms_entry_cursorposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.cursorposition#xamarin_forms_entry_cursorposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.selectionlength#xamarin_forms_entry_selectionlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.selectionlength#xamarin_forms_entry_selectionlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

<Entry Text="Xamarin.Forms"
 ClearButtonVisibility="WhileEditing" />

var entry = new Entry { Text = "Xamarin.Forms", ClearButtonVisibility = ClearButtonVisibility.WhileEditing
};

 Customize the keyboard

<Entry Keyboard="Chat" />

var entry = new Entry { Keyboard = Keyboard.Chat };

enables the user to clear the text. This property should be set to a ClearButtonVisibility enumeration member:

Never indicates that a clear button will never be displayed. This is the default value for the

Entry.ClearButtonVisibility property.

WhileEditing indicates that a clear button will be displayed in the Entry , while it has focus and text.

The following example shows setting the property in XAML:

The equivalent C# code is:

The following screenshots show an Entry with the clear button enabled:

The keyboard that's presented when users interact with an Entry can be set programmatically via the Keyboard

property, to one of the following properties from the Keyboard class:

Chat – used for texting and places where emoji are useful.

Default – the default keyboard.

Email – used when entering email addresses.

Numeric – used when entering numbers.

Plain – used when entering text, without any KeyboardFlags specified.

Telephone – used when entering telephone numbers.

Text – used when entering text.

Url – used for entering file paths & web addresses.

This can be accomplished in XAML as follows:

The equivalent C# code is:

Examples of each keyboard can be found in our Recipes repository.

The Keyboard class also has a Create factory method that can be used to customize a keyboard by specifying

capitalization, spellcheck, and suggestion behavior. KeyboardFlags enumeration values are specified as

arguments to the method, with a customized Keyboard being returned. The KeyboardFlags enumeration

contains the following values:

None – no features are added to the keyboard.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.keyboard#xamarin_forms_inputview_keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.chat#xamarin_forms_keyboard_chat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.default#xamarin_forms_keyboard_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.email#xamarin_forms_keyboard_email
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.numeric#xamarin_forms_keyboard_numeric
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.plain#xamarin_forms_keyboard_plain
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.telephone#xamarin_forms_keyboard_telephone
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.text#xamarin_forms_keyboard_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.url#xamarin_forms_keyboard_url
https://github.com/xamarin/recipes/tree/master/Recipes/xamarin-forms/Controls/choose-keyboard-for-entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.create
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_none

<Entry Placeholder="Enter text here">
 <Entry.Keyboard>
 <Keyboard x:FactoryMethod="Create">
 <x:Arguments>
 <KeyboardFlags>Suggestions,CapitalizeCharacter</KeyboardFlags>
 </x:Arguments>
 </Keyboard>
 </Entry.Keyboard>
</Entry>

var entry = new Entry { Placeholder = "Enter text here" };
entry.Keyboard = Keyboard.Create(KeyboardFlags.Suggestions | KeyboardFlags.CapitalizeCharacter);

 Customize the return keyCustomize the return key

<Entry ReturnType="Send" />

var entry = new Entry { ReturnType = ReturnType.Send };

NOTENOTE

CapitalizeSentence – indicates that the first letter of the first word of each entered sentence will be

automatically capitalized.

Spellcheck – indicates that spellcheck will be performed on entered text.

Suggestions – indicates that word completions will be offered on entered text.

CapitalizeWord – indicates that the first letter of each word will be automatically capitalized.

CapitalizeCharacter – indicates that every character will be automatically capitalized.

CapitalizeNone – indicates that no automatic capitalization will occur.

All – indicates that spellcheck, word completions, and sentence capitalization will occur on entered text.

The following XAML code example shows how to customize the default Keyboard to offer word completions

and capitalize every entered character :

The equivalent C# code is:

The appearance of the return key on the soft keyboard, which is displayed when an Entry has focus, can be

customized by setting the ReturnType property to a value of the ReturnType enumeration:

Default – indicates that no specific return key is required and that the platform default will be used.

Done – indicates a "Done" return key.

Go – indicates a "Go" return key.

Next – indicates a "Next" return key.

Search – indicates a "Search" return key.

Send – indicates a "Send" return key.

The following XAML example shows how to set the return key:

The equivalent C# code is:

The exact appearance of the return key is dependent upon the platform. On iOS, the return key is a text-based button.

However, on the Android and Universal Windows Platforms, the return key is a icon-based button.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizesentence
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_spellcheck
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_suggestions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizeword
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizecharacter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_capitalizenone
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboardflags#xamarin_forms_keyboardflags_all
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.returntype#xamarin_forms_entry_returntype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.returntype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.returntype#xamarin_forms_returntype_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.returntype#xamarin_forms_returntype_done
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.returntype#xamarin_forms_returntype_go
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.returntype#xamarin_forms_returntype_next
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.returntype#xamarin_forms_returntype_search
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.returntype#xamarin_forms_returntype_send

 Enable and disable spell checking

<Entry ... IsSpellCheckEnabled="false" />

var entry = new Entry { ... IsSpellCheckEnabled = false };

NOTENOTE

 Enable and disable text prediction

<Entry ... IsTextPredictionEnabled="false" />

var entry = new Entry { ... IsTextPredictionEnabled = false };

NOTENOTE

 Colors

When the return key is pressed, the Completed event fires and any ICommand specified by the ReturnCommand

property is executed. In addition, any object specified by the ReturnCommandParameter property will be passed

to the ICommand as a parameter. For more information about commands, see The Command Interface.

The IsSpellCheckEnabled property controls whether spell checking is enabled. By default, the property is set to

true . As the user enters text, misspellings are indicated.

However, for some text entry scenarios, such as entering a username, spell checking provides a negative

experience and should be disabled by setting the IsSpellCheckEnabled property to false :

When the IsSpellCheckEnabled property is set to false , and a custom keyboard isn't being used, the native spell

checker will be disabled. However, if a Keyboard has been set that disables spell checking, such as Keyboard.Chat , the

IsSpellCheckEnabled property is ignored. Therefore, the property cannot be used to enable spell checking for a

Keyboard that explicitly disables it.

The IsTextPredictionEnabled property controls whether text prediction and automatic text correction is enabled.

By default, the property is set to true . As the user enters text, word predictions are presented.

However, for some text entry scenarios, such as entering a username, text prediction and automatic text

correction provides a negative experience and should be disabled by setting the IsTextPredictionEnabled

property to false :

When the IsTextPredictionEnabled property is set to false , and a custom keyboard isn't being used, text prediction

and automatic text correction is disabled. However, if a Keyboard has been set that disables text prediction, the

IsTextPredictionEnabled property is ignored. Therefore, the property cannot be used to enable text prediction for a

Keyboard that explicitly disables it.

Entry can be set to use a custom background and text colors via the following bindable properties:

TextColorTextColor – sets the color of the text.

BackgroundColorBackgroundColor – sets the color shown behind the text.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.completed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.returncommand#xamarin_forms_entry_returncommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.returncommandparameter#xamarin_forms_entry_returncommandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.isspellcheckenabled#xamarin_forms_inputview_isspellcheckenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.isspellcheckenabled#xamarin_forms_inputview_isspellcheckenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.isspellcheckenabled#xamarin_forms_inputview_isspellcheckenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard.chat#xamarin_forms_keyboard_chat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.istextpredictionenabled#xamarin_forms_entry_istextpredictionenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.istextpredictionenabled#xamarin_forms_entry_istextpredictionenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.istextpredictionenabled#xamarin_forms_entry_istextpredictionenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard

<Entry TextColor="Green" />

var entry = new Entry();
entry.TextColor = Color.Green;

<Entry BackgroundColor="#2c3e50" />

var entry = new Entry();
entry.BackgroundColor = Color.FromHex("#2c3e50");

Special care is necessary to ensure that colors will be usable on each platform. Because each platform has

different defaults for text and background colors, you'll often need to set both if you set one.

Use the following code to set the text color of an entry:

In XAML:

In C#:

Note that the placeholder is not affected by the specified TextColor .

To set the background color in XAML:

In C#:

 Events and interactivity

NOTENOTE

 CompletedCompleted

void Entry_Completed (object sender, EventArgs e)
{
 var text = ((Entry)sender).Text; //cast sender to access the properties of the Entry
}

Be careful to make sure that the background and text colors you choose are usable on each platform and don't

obscure any placeholder text.

Entry exposes two events:

TextChanged – raised when the text changes in the entry. Provides the text before and after the change.

Completed – raised when the user has ended input by pressing the return key on the keyboard.

The VisualElement class, from which Entry inherits, also has Focused and Unfocused events.

The Completed event is used to react to the completion of an interaction with an Entry. Completed is raised

when the user ends input with a field by pressing the return key on the keyboard (or by pressing the Tab key on

UWP). The handler for the event is a generic event handler, taking the sender and EventArgs :

The completed event can be subscribed to in XAML:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.completed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.focused
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.unfocused

<Entry Completed="Entry_Completed" />

var entry = new Entry ();
entry.Completed += Entry_Completed;

 TextChangedTextChanged

void Entry_TextChanged (object sender, TextChangedEventArgs e)
{
 var oldText = e.OldTextValue;
 var newText = e.NewTextValue;
}

<Entry TextChanged="Entry_TextChanged" />

var entry = new Entry ();
entry.TextChanged += Entry_TextChanged;

 Related Links

and C#:

After the Completed event fires, any ICommand specified by the ReturnCommand property is executed, with the

object specified by the ReturnCommandParameter property being passed to the ICommand .

The TextChanged event is used to react to a change in the content of a field.

TextChanged is raised whenever the Text of the Entry changes. The handler for the event takes an instance of

TextChangedEventArgs . TextChangedEventArgs provides access to the old and new values of the Entry Text via

the OldTextValue and NewTextValue properties:

The TextChanged event can be subscribed to in XAML:

and C#:

Text (sample)

Entry API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.completed
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.returncommand#xamarin_forms_entry_returncommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry.returncommandparameter#xamarin_forms_entry_returncommandparameter
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry

Xamarin.Forms ActivityIndicator
 7/8/2021 • 2 minutes to read • Edit Online

 Create an ActivityIndicator

<ActivityIndicator IsRunning="true" />

ActivityIndicator activityIndicator = new ActivityIndicator { IsRunning = true };

 ActivityIndicator appearance properties

<ActivityIndicator Color="Orange" />

 Download the sample

The Xamarin.Forms ActivityIndicator control displays an animation to show that the application is engaged in

a lengthy activity. Unlike the ProgressBar , the ActivityIndicator gives no indication of progress. The

ActivityIndicator inherits from View .

The following screenshots show an ActivityIndicator control on iOS and Android:

The ActivityIndicator control defines the following properties:

Color is a Color value that defines the display color of the ActivityIndicator .

IsRunning is a bool value that indicates whether the ActivityIndicator should be visible and animating, or

hidden. When the value is false the ActivityIndicator isn't visible.

These properties are backed by BindableProperty objects, which means that the ActivityIndicator can be

styled and be the target of data bindings.

The ActivityIndicator class can be instantiated in XAML. Its IsRunning property determines if the control is

visible and animating. The IsRunning property defaults to false . The following example shows how to

instantiate an ActivityIndicator in XAML with the optional IsRunning property set:

An ActivityIndicator can also be created in code:

The Color property defines the ActivityIndicator color. The following example shows how to instantiate an

ActivityIndicator in XAML with the Color property set:

The Color property can also be set when creating an ActivityIndicator in code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/activityindicator.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-activityindicatordemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator.color#xamarin_forms_activityindicator_color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator.isrunning#xamarin_forms_activityindicator_isrunning
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

ActivityIndicator activityIndicator = new ActivityIndicator { Color = Color.Orange };

 Related links

The following screenshots show the ActivityIndicator with the Color property set to Color.Orange on iOS

and Android:

ActivityIndicator Demos

ProgressBar

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-activityindicatordemos/

Xamarin.Forms ProgressBar
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Create a ProgressBar

<ProgressBar Progress="0.5" />

ProgressBar progressBar = new ProgressBar { Progress = 0.5f };

 Download the sample

The Xamarin.Forms ProgressBar control visually represents progress as a horizontal bar that is filled to a

percentage represented by a float value. The ProgressBar class inherits from View .

The following screenshots show a ProgressBar on iOS and Android:

The ProgressBar control defines two properties:

Progress is a float value that represents the current progress as a value from 0 to 1. Progress values less

than 0 will be clamped to 0, values greater than 1 will be clamped to 1.

ProgressColor is a Color that affects the interior bar color representing the current progress.

These properties are backed by BindableProperty objects, which means that the ProgressBar can be styled and

be the target of data bindings.

The ProgressBar control also defines a ProgressTo method that animates the bar from its current value to a

specified value. For more information, see Animate a ProgressBar.

The ProgressBar does not accept user manipulation so it is skipped when using the Tab key to select controls.

A ProgressBar can be instantiated in XAML. Its Progress property determines the fill percentage of the inner,

colored bar. The default Progress property value is 0. The following example shows how to instantiate a

ProgressBar in XAML with the optional Progress property set:

A ProgressBar can also be created in code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/progressbar.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-progressbardemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar.progress#xamarin_forms_progressbar_progress
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar.progresscolor#xamarin_forms_progressbar_progresscolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

WARNINGWARNING

 ProgressBar appearance properties

<ProgressBar ProgressColor="Orange" />

ProgressBar progressBar = new ProgressBar { ProgressColor = Color.Orange };

 Animate a ProgressBar

// animate to 75% progress over 500 milliseconds with linear easing
await progressBar.ProgressTo(0.75, 500, Easing.Linear);

 Related links

Do not use unconstrained horizontal layout options such as Center , Start , or End with ProgressBar . On UWP, the

ProgressBar collapses to a bar of zero width. Keep the default HorizontalOptions value of Fill and don't use a

width of Auto when putting a ProgressBar in a Grid layout.

The ProgressColor property defines the inner bar color when the Progress property is greater than zero. The

following example shows how to instantiate a ProgressBar in XAML with the ProgressColor property set:

The ProgressColor property can also be set when creating a ProgressBar in code:

The following screenshots show the ProgressBar with the ProgressColor property set to Color.Orange on iOS

and Android:

The ProgressTo method animates the ProgressBar from its current Progress value to a provided value over

time. The method accepts a float progress value, a uint duration in milliseconds, an Easing enum value and

returns a Task<bool> . The following code demonstrates how to animate a ProgressBar :

For more information about the Easing enumeration, see Easing functions in Xamarin.Forms.

ProgressBar Demos

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-progressbardemos/

Xamarin.Forms CarouselView
 3/5/2021 • 2 minutes to read • Edit Online

 Introduction

 Data

 Layout

 Interaction

 Empty views

 Scrolling

The CarouselView is a view for presenting data in a scrollable layout, where users can swipe to move through a

collection of items.

A CarouselView is populated with data by setting its ItemsSource property to any collection that implements

IEnumerable . The appearance of each item can be defined by setting the ItemTemplate property to a

DataTemplate .

By default, a CarouselView will display its items in a horizontal list. However, it also has access to the same

layouts as CollectionView, including a vertical orientation.

The currently displayed item in a CarouselView can be accessed through the CurrentItem and Position

properties.

In CarouselView , an empty view can be specified that provides feedback to the user when no data is available

for display. The empty view can be a string, a view, or multiple views.

When a user swipes to initiate a scroll, the end position of the scroll can be controlled so that items are fully

displayed. In addition, CarouselView defines two ScrollTo methods, that programmatically scroll items into

view. One of the overloads scrolls the item at the specified index into view, while the other scrolls the specified

item into view.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/carouselview/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto

Xamarin.Forms CarouselView Introduction
 7/8/2021 • 2 minutes to read • Edit Online

CarouselView is a view for presenting data in a scrollable layout, where users can swipe to move through a

collection of items. By default, CarouselView will display its items in a horizontal orientation. A single item will

be displayed on screen, with swipe gestures resulting in forwards and backwards navigation through the

collection of items. In addition, indicators can be displayed that represent each item in the CarouselView :

By default, CarouselView provides looped access to its collection of items. Therefore, swiping backwards from

the first item in the collection will display the last item in the collection. Similarly, swiping forwards from the last

item in the collection will return to the first item in the collection.

CarouselView shares much of its implementation with CollectionView . However, the two controls have different

use cases. CollectionView is typically used to present lists of data of any length, whereas CarouselView is

typically used to highlight information in a list of limited length.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/carouselview/introduction.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/populate-data-images/indicators-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

Xamarin.Forms CarouselView Data
 7/8/2021 • 9 minutes to read • Edit Online

NOTENOTE

 Populate a CarouselView with data

IMPORTANTIMPORTANT

<CarouselView ItemsSource="{Binding Monkeys}" />

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

 Download the sample

CarouselView includes the following properties that define the data to be displayed, and its appearance:

ItemsSource , of type IEnumerable , specifies the collection of items to be displayed, and has a default value of

null .

ItemTemplate , of type DataTemplate , specifies the template to apply to each item in the collection of items to

be displayed.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

CarouselView defines a ItemsUpdatingScrollMode property that represents the scrolling behavior of the

CarouselView when new items are added to it. For more information about this property, see Control scroll position

when new items are added.

CarouselView supports incremental data virtualization as the user scrolls. For more information, see Load data

incrementally.

A CarouselView is populated with data by setting its ItemsSource property to any collection that implements

IEnumerable . By default, CarouselView displays items horizontally.

If the CarouselView is required to refresh as items are added, removed, or changed in the underlying collection, the

underlying collection should be an IEnumerable collection that sends property change notifications, such as

ObservableCollection .

CarouselView can be populated with data by using data binding to bind its ItemsSource property to an

IEnumerable collection. In XAML, this is achieved with the Binding markup extension:

The equivalent C# code is:

In this example, the ItemsSource property data binds to the Monkeys property of the connected viewmodel.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/carouselview/populate-data.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource

NOTENOTE

 Define item appearance

<CarouselView ItemsSource="{Binding Monkeys}">
 <CarouselView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Frame HasShadow="True"
 BorderColor="DarkGray"
 CornerRadius="5"
 Margin="20"
 HeightRequest="300"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <StackLayout>
 <Label Text="{Binding Name}"
 FontAttributes="Bold"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <Image Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="150"
 WidthRequest="150"
 HorizontalOptions="Center" />
 <Label Text="{Binding Location}"
 HorizontalOptions="Center" />
 <Label Text="{Binding Details}"
 FontAttributes="Italic"
 HorizontalOptions="Center"
 MaxLines="5"
 LineBreakMode="TailTruncation" />
 </StackLayout>
 </Frame>
 </StackLayout>
 </DataTemplate>
 </CarouselView.ItemTemplate>
</CarouselView>

Compiled bindings can be enabled to improve data binding performance in Xamarin.Forms applications. For more

information, see Compiled Bindings.

For information on how to change the CarouselView orientation, see Xamarin.Forms CarouselView Layout. For

information on how to define the appearance of each item in the CarouselView , see Define item appearance. For

more information about data binding, see Xamarin.Forms Data Binding.

The appearance of each item in the CarouselView can be defined by setting the CarouselView.ItemTemplate

property to a DataTemplate :

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

carouselView.ItemTemplate = new DataTemplate(() =>
{
 Label nameLabel = new Label { ... };
 nameLabel.SetBinding(Label.TextProperty, "Name");

 Image image = new Image { ... };
 image.SetBinding(Image.SourceProperty, "ImageUrl");

 Label locationLabel = new Label { ... };
 locationLabel.SetBinding(Label.TextProperty, "Location");

 Label detailsLabel = new Label { ... };
 detailsLabel.SetBinding(Label.TextProperty, "Details");

 StackLayout stackLayout = new StackLayout
 {
 Children = { nameLabel, image, locationLabel, detailsLabel }
 };

 Frame frame = new Frame { ... };
 StackLayout rootStackLayout = new StackLayout
 {
 Children = { frame }
 };

 return rootStackLayout;
});

public class Monkey
{
 public string Name { get; set; }
 public string Location { get; set; }
 public string Details { get; set; }
 public string ImageUrl { get; set; }
}

The elements specified in the DataTemplate define the appearance of each item in the CarouselView . In the

example, layout within the DataTemplate is managed by a StackLayout , and the data is displayed with an Image

object, and three Label objects, that all bind to properties of the Monkey class:

The following screenshots show the result of templating each item:

For more information about data templates, see Xamarin.Forms Data Templates.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/populate-data-images/datatemplate-large.png#lightbox

 Choose item appearance at runtime

<ContentPage ...
 xmlns:controls="clr-namespace:CarouselViewDemos.Controls"
 x:Class="CarouselViewDemos.Views.HorizontalLayoutDataTemplateSelectorPage">
 <ContentPage.Resources>
 <DataTemplate x:Key="AmericanMonkeyTemplate">
 ...
 </DataTemplate>

 <DataTemplate x:Key="OtherMonkeyTemplate">
 ...
 </DataTemplate>

 <controls:MonkeyDataTemplateSelector x:Key="MonkeySelector"
 AmericanMonkey="{StaticResource AmericanMonkeyTemplate}"
 OtherMonkey="{StaticResource OtherMonkeyTemplate}" />
 </ContentPage.Resources>

 <CarouselView ItemsSource="{Binding Monkeys}"
 ItemTemplate="{StaticResource MonkeySelector}" />
</ContentPage>

CarouselView carouselView = new CarouselView
{
 ItemTemplate = new MonkeyDataTemplateSelector { ... }
};
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

public class MonkeyDataTemplateSelector : DataTemplateSelector
{
 public DataTemplate AmericanMonkey { get; set; }
 public DataTemplate OtherMonkey { get; set; }

 protected override DataTemplate OnSelectTemplate(object item, BindableObject container)
 {
 return ((Monkey)item).Location.Contains("America") ? AmericanMonkey : OtherMonkey;
 }
}

The appearance of each item in the CarouselView can be chosen at runtime, based on the item value, by setting

the CarouselView.ItemTemplate property to a DataTemplateSelector object:

The equivalent C# code is:

The ItemTemplate property is set to a MonkeyDataTemplateSelector object. The following example shows the

MonkeyDataTemplateSelector class:

The MonkeyDataTemplateSelector class defines AmericanMonkey and OtherMonkey DataTemplate properties that

are set to different data templates. The OnSelectTemplate override returns the AmericanMonkey template when

the monkey name contains "America". When the monkey name doesn't contain "America", the

OnSelectTemplate override returns the OtherMonkey template, which displays its data grayed out:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

IMPORTANTIMPORTANT

 Display indicators

<StackLayout>
 <CarouselView ItemsSource="{Binding Monkeys}"
 IndicatorView="indicatorView">
 <CarouselView.ItemTemplate>
 <!-- DataTemplate that defines item appearance -->
 </CarouselView.ItemTemplate>
 </CarouselView>
 <IndicatorView x:Name="indicatorView"
 IndicatorColor="LightGray"
 SelectedIndicatorColor="DarkGray"
 HorizontalOptions="Center" />
</StackLayout>

For more information about data template selectors, see Create a Xamarin.Forms DataTemplateSelector.

When using CarouselView , never set the root element of your DataTemplate objects to a ViewCell . This will result in

an exception being thrown because CarouselView has no concept of cells.

Indicators, that represent the number of items and current position in a CarouselView , can be displayed next to

the CarouselView . This can be accomplished with the IndicatorView control:

In this example, the IndicatorView is rendered beneath the CarouselView , with an indicator for each item in the

CarouselView . The IndicatorView is populated with data by setting the CarouselView.IndicatorView property to

the IndicatorView object. Each indicator is a light gray circle, while the indicator that represents the current item

in the CarouselView is dark gray:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/populate-data-images/datatemplateselector-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

IMPORTANTIMPORTANT

 Context menus

Setting the CarouselView.IndicatorView property results in the IndicatorView.Position property binding to the

CarouselView.Position property, and the IndicatorView.ItemsSource property binding to the

CarouselView.ItemsSource property.

For more information about indicators, see Xamarin.Forms IndicatorView.

CarouselView supports context menus for items of data through the SwipeView , which reveals the context menu

with a swipe gesture. The SwipeView is a container control that wraps around an item of content, and provides

context menu items for that item of content. Therefore, context menus are implemented for a CarouselView by

creating a SwipeView that defines the content that the SwipeView wraps around, and the context menu items

that are revealed by the swipe gesture. This is achieved by adding a SwipeView to the DataTemplate that defines

the appearance of each item of data in the CarouselView :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/populate-data-images/indicators-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

<CarouselView x:Name="carouselView"
 ItemsSource="{Binding Monkeys}">
 <CarouselView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Frame HasShadow="True"
 BorderColor="DarkGray"
 CornerRadius="5"
 Margin="20"
 HeightRequest="300"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <SwipeView>
 <SwipeView.TopItems>
 <SwipeItems>
 <SwipeItem Text="Favorite"
 IconImageSource="favorite.png"
 BackgroundColor="LightGreen"
 Command="{Binding Source={x:Reference carouselView},
Path=BindingContext.FavoriteCommand}"
 CommandParameter="{Binding}" />
 </SwipeItems>
 </SwipeView.TopItems>
 <SwipeView.BottomItems>
 <SwipeItems>
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Command="{Binding Source={x:Reference carouselView},
Path=BindingContext.DeleteCommand}"
 CommandParameter="{Binding}" />
 </SwipeItems>
 </SwipeView.BottomItems>
 <StackLayout>
 <!-- Define item appearance -->
 </StackLayout>
 </SwipeView>
 </Frame>
 </StackLayout>
 </DataTemplate>
 </CarouselView.ItemTemplate>
</CarouselView>

The equivalent C# code is:

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

carouselView.ItemTemplate = new DataTemplate(() =>
{
 StackLayout stackLayout = new StackLayout();
 Frame frame = new Frame { ... };

 SwipeView swipeView = new SwipeView();
 SwipeItem favoriteSwipeItem = new SwipeItem
 {
 Text = "Favorite",
 IconImageSource = "favorite.png",
 BackgroundColor = Color.LightGreen
 };
 favoriteSwipeItem.SetBinding(MenuItem.CommandProperty, new Binding("BindingContext.FavoriteCommand",
source: carouselView));
 favoriteSwipeItem.SetBinding(MenuItem.CommandParameterProperty, ".");

 SwipeItem deleteSwipeItem = new SwipeItem
 {
 Text = "Delete",
 IconImageSource = "delete.png",
 BackgroundColor = Color.LightPink
 };
 deleteSwipeItem.SetBinding(MenuItem.CommandProperty, new Binding("BindingContext.DeleteCommand", source:
carouselView));
 deleteSwipeItem.SetBinding(MenuItem.CommandParameterProperty, ".");

 swipeView.TopItems = new SwipeItems { favoriteSwipeItem };
 swipeView.BottomItems = new SwipeItems { deleteSwipeItem };

 StackLayout swipeViewStackLayout = new StackLayout { ... };
 swipeView.Content = swipeViewStackLayout;
 frame.Content = swipeView;
 stackLayout.Children.Add(frame);

 return stackLayout;
});

In this example, the SwipeView content is a StackLayout that defines the appearance of each item that's

surrounded by a Frame in the CarouselView . The swipe items are used to perform actions on the SwipeView

content, and are revealed when the control is swiped from the top and from the bottom:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/populate-data-images/swipeview-bottom-large.png#lightbox

 Pull to refresh

<RefreshView IsRefreshing="{Binding IsRefreshing}"
 Command="{Binding RefreshCommand}">
 <CarouselView ItemsSource="{Binding Animals}">
 ...
 </CarouselView>
</RefreshView>

RefreshView refreshView = new RefreshView();
ICommand refreshCommand = new Command(() =>
{
 // IsRefreshing is true
 // Refresh data here
 refreshView.IsRefreshing = false;
});
refreshView.Command = refreshCommand;

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Animals");
refreshView.Content = carouselView;
// ...

SwipeView supports four different swipe directions, with the swipe direction being defined by the directional

SwipeItems collection the SwipeItems objects are added to. By default, a swipe item is executed when it's tapped

by the user. In addition, once a swipe item has been executed the swipe items are hidden and the SwipeView

content is re-displayed. However, these behaviors can be changed.

For more information about the SwipeView control, see Xamarin.Forms SwipeView.

CarouselView supports pull to refresh functionality through the RefreshView , which enables the data being

displayed to be refreshed by pulling down on the items. The RefreshView is a container control that provides

pull to refresh functionality to its child, provided that the child supports scrollable content. Therefore, pull to

refresh is implemented for a CarouselView by setting it as the child of a RefreshView :

The equivalent C# code is:

When the user initiates a refresh, the ICommand defined by the Command property is executed, which should

refresh the items being displayed. A refresh visualization is shown while the refresh occurs, which consists of an

animated progress circle:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/populate-data-images/swipeview-top-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

 Load data incrementally

NOTENOTE

The value of the RefreshView.IsRefreshing property indicates the current state of the RefreshView . When a

refresh is triggered by the user, this property will automatically transition to true . Once the refresh completes,

you should reset the property to false .

For more information about RefreshView , see Xamarin.Forms RefreshView.

CarouselView supports incremental data virtualization as the user scrolls. This enables scenarios such as

asynchronously loading a page of data from a web service, as the user scrolls. In addition, the point at which

more data is loaded is configurable so that users don't see blank space, or are stopped from scrolling.

CarouselView defines the following properties to control incremental loading of data:

RemainingItemsThreshold , of type int , the threshold of items not yet visible in the list at which the

RemainingItemsThresholdReached event will be fired.

RemainingItemsThresholdReachedCommand , of type ICommand , which is executed when the

RemainingItemsThreshold is reached.

RemainingItemsThresholdReachedCommandParameter , of type object , which is the parameter that's passed to the

RemainingItemsThresholdReachedCommand .

CarouselView also defines a RemainingItemsThresholdReached event that is fired when the CarouselView is

scrolled far enough that RemainingItemsThreshold items have not been displayed. This event can be handled to

load more items. In addition, when the RemainingItemsThresholdReached event is fired, the

RemainingItemsThresholdReachedCommand is executed, enabling incremental data loading to take place in a

viewmodel.

The default value of the RemainingItemsThreshold property is -1, which indicates that the

RemainingItemsThresholdReached event will never be fired. When the property value is 0, the

RemainingItemsThresholdReached event will be fired when the final item in the ItemsSource is displayed. For

values greater than 0, the RemainingItemsThresholdReached event will be fired when the ItemsSource contains

that number of items not yet scrolled to.

CarouselView validates the RemainingItemsThreshold property so that its value is always greater than or equal to -1.

The following XAML example shows a CarouselView that loads data incrementally:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/populate-data-images/pull-to-refresh-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

<CarouselView ItemsSource="{Binding Animals}"
 RemainingItemsThreshold="2"
 RemainingItemsThresholdReached="OnCarouselViewRemainingItemsThresholdReached"
 RemainingItemsThresholdReachedCommand="{Binding LoadMoreDataCommand}">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView
{
 RemainingItemsThreshold = 2
};
carouselView.RemainingItemsThresholdReached += OnCollectionViewRemainingItemsThresholdReached;
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Animals");

void OnCollectionViewRemainingItemsThresholdReached(object sender, EventArgs e)
{
 // Retrieve more data here and add it to the CollectionView's ItemsSource collection.
}

NOTENOTE

 Related links

The equivalent C# code is:

In this code example, the RemainingItemsThresholdReached event fires when there are 2 items not yet scrolled to,

and in response executes the OnCollectionViewRemainingItemsThresholdReached event handler :

Data can also be loaded incrementally by binding the RemainingItemsThresholdReachedCommand to an ICommand

implementation in the viewmodel.

CarouselView (sample)

Xamarin.Forms IndicatorView

Xamarin.Forms RefreshView

Xamarin.Forms Data Binding

Xamarin.Forms Data Templates

Create a Xamarin.Forms DataTemplateSelector

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/

Xamarin.Forms CarouselView Layout
 7/8/2021 • 4 minutes to read • Edit Online

NOTENOTE

 Horizontal layout

 Download the sample

CarouselView defines the following properties that control layout:

ItemsLayout , of type LinearItemsLayout , specifies the layout to be used.

PeekAreaInsets , of type Thickness , specifies how much to make adjacent items partially visible by.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

By default, a CarouselView will display its items in a horizontal orientation. A single item will be displayed on

screen, with swipe gestures resulting in forwards and backwards navigation through the collection of items.

However, a vertical orientation is also possible. This is because the ItemsLayout property is of type

LinearItemsLayout , which inherits from the ItemsLayout class. The ItemsLayout class defines the following

properties:

Orientation , of type ItemsLayoutOrientation , specifies the direction in which the CarouselView expands as

items are added.

SnapPointsAlignment , of type SnapPointsAlignment , specifies how snap points are aligned with items.

SnapPointsType , of type SnapPointsType , specifies the behavior of snap points when scrolling.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings. For more information about snap points, see Snap points in the Xamarin.Forms CollectionView

Scrolling guide.

The ItemsLayoutOrientation enumeration defines the following members:

Vertical indicates that the CarouselView will expand vertically as items are added.

Horizontal indicates that the CarouselView will expand horizontally as items are added.

The LinearItemsLayout class inherits from the ItemsLayout class, and defines an ItemSpacing property, of type

double , that represents the empty space around each item. The default value of this property is 0, and its value

must always be greater than or equal to 0. The LinearItemsLayout class also defines static Vertical and

Horizontal members. These members can be used to create vertical or horizontal lists, respectively.

Alternatively, a LinearItemsLayout object can be created, specifying an ItemsLayoutOrientation enumeration

member as an argument.

CarouselView uses the native layout engines to perform layout.

By default, CarouselView will display its items horizontally. Therefore, it's not necessary to set the ItemsLayout

property to use this layout:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/carouselview/layout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.orientation#xamarin_forms_itemslayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview.itemslayout#xamarin_forms_carouselview_itemslayout

<CarouselView ItemsSource="{Binding Monkeys}">
 <CarouselView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Frame HasShadow="True"
 BorderColor="DarkGray"
 CornerRadius="5"
 Margin="20"
 HeightRequest="300"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <StackLayout>
 <Label Text="{Binding Name}"
 FontAttributes="Bold"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <Image Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="150"
 WidthRequest="150"
 HorizontalOptions="Center" />
 <Label Text="{Binding Location}"
 HorizontalOptions="Center" />
 <Label Text="{Binding Details}"
 FontAttributes="Italic"
 HorizontalOptions="Center"
 MaxLines="5"
 LineBreakMode="TailTruncation" />
 </StackLayout>
 </Frame>
 </StackLayout>
 </DataTemplate>
 </CarouselView.ItemTemplate>
</CarouselView>

<CarouselView ItemsSource="{Binding Monkeys}">
 <CarouselView.ItemsLayout>
 <LinearItemsLayout Orientation="Horizontal" />
 </CarouselView.ItemsLayout>
 ...
</CarouselView>

CarouselView carouselView = new CarouselView
{
 ...
 ItemsLayout = LinearItemsLayout.Horizontal
};

Alternatively, this layout can also be accomplished by setting the ItemsLayout property to a LinearItemsLayout

object, specifying the Horizontal ItemsLayoutOrientation enumeration member as the Orientation property

value:

The equivalent C# code is:

This results in a layout that grows horizontally as new items are added:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview.itemslayout#xamarin_forms_carouselview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation

 Vertical layout

<CarouselView ItemsSource="{Binding Monkeys}">
 <CarouselView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical" />
 </CarouselView.ItemsLayout>
 <CarouselView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <Frame HasShadow="True"
 BorderColor="DarkGray"
 CornerRadius="5"
 Margin="20"
 HeightRequest="300"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <StackLayout>
 <Label Text="{Binding Name}"
 FontAttributes="Bold"
 FontSize="Large"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <Image Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="150"
 WidthRequest="150"
 HorizontalOptions="Center" />
 <Label Text="{Binding Location}"
 HorizontalOptions="Center" />
 <Label Text="{Binding Details}"
 FontAttributes="Italic"
 HorizontalOptions="Center"
 MaxLines="5"
 LineBreakMode="TailTruncation" />
 </StackLayout>
 </Frame>
 </StackLayout>
 </DataTemplate>
 </CarouselView.ItemTemplate>
</CarouselView>

CarouselView can display its items vertically by setting the ItemsLayout property to a LinearItemsLayout

object, specifying the Vertical ItemsLayoutOrientation enumeration member as the Orientation property

value:

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/layout-images/horizontal-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview.itemslayout#xamarin_forms_carouselview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation

CarouselView carouselView = new CarouselView
{
 ...
 ItemsLayout = LinearItemsLayout.Vertical
};

 Partially visible adjacent items

<CarouselView ItemsSource="{Binding Monkeys}"
 PeekAreaInsets="100">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView
{
 ...
 PeekAreaInsets = new Thickness(100)
};

This results in a layout that grows vertically as new items are added:

By default, CarouselView displays full items at once. However, this behavior can be changed by setting the

PeekAreaInsets property to a Thickness value that specifies how much to make adjacent items partially visible

by. This can be useful to indicate to users that there are additional items to view. The following XAML shows an

example of setting this property:

The equivalent C# code is:

The result is that adjacent items are partially exposed on screen:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/layout-images/vertical-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/layout-images/peek-items-large.png#lightbox

Item spacing

<CarouselView ItemsSource="{Binding Monkeys}">
 <CarouselView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="20" />
 </CarouselView.ItemsLayout>
 ...
</CarouselView>

NOTENOTE

CarouselView carouselView = new CarouselView
{
 ...
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Vertical)
 {
 ItemSpacing = 20
 }
};

 Dynamic resizing of items

void OnImageTapped(object sender, EventArgs e)
{
 Image image = sender as Image;
 image.HeightRequest = image.WidthRequest = image.HeightRequest.Equals(150) ? 200 : 150;
 Frame frame = ((Frame)image.Parent.Parent);
 frame.HeightRequest = frame.HeightRequest.Equals(300) ? 350 : 300;
}

By default, there is no space between each item in a CarouselView . This behavior can be changed by setting the

ItemSpacing property on the items layout used by the CarouselView .

When a CarouselView sets its ItemsLayout property to a LinearItemsLayout object, the

LinearItemsLayout.ItemSpacing property can be set to a double value that represents the space between items:

The LinearItemsLayout.ItemSpacing property has a validation callback set, which ensures that the value of the

property is always greater than or equal to 0.

The equivalent C# code is:

This code results in a vertical layout, that has a spacing of 20 between items.

Items in a CarouselView can be dynamically resized at runtime by changing layout related properties of

elements within the DataTemplate . For example, the following code example changes the HeightRequest and

WidthRequest properties of an Image object, and the HeightRequest property of its parent Frame :

The OnImageTapped event handler is executed in response to an Image object being tapped, and changes the

dimensions of the image (and its parent Frame), so that it's more easily viewed:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview.itemslayout#xamarin_forms_carouselview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

 Right-to-left layout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="CarouselViewDemos.Views.HorizontalTemplateLayoutRTLPage"
 Title="Horizontal layout (RTL FlowDirection)"
 FlowDirection="RightToLeft">
 <CarouselView ItemsSource="{Binding Monkeys}">
 ...
 </CarouselView>
</ContentPage>

 Related links

CarouselView can layout its content in a right-to-left flow direction by setting its FlowDirection property to

RightToLeft . However, the FlowDirection property should ideally be set on a page or root layout, which causes

all the elements within the page, or root layout, to respond to the flow direction:

The default FlowDirection for an element with a parent is MatchParent . Therefore, the CarouselView inherits

the FlowDirection property value from the ContentPage .

For more information about flow direction, see Right-to-left localization.

CarouselView (sample)

Right-to-left localization

Xamarin.Forms CarouselView Scrolling

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/layout-images/runtime-resizing-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_righttoleft
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_matchparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/

Xamarin.Forms CarouselView Interaction
 7/8/2021 • 8 minutes to read • Edit Online

 Respond to the current item changing

 Download the sample

CarouselView defines the following properties that control user interaction:

CurrentItem , of type object , the current item being displayed. This property has a default binding mode of

TwoWay , and has a null value when there isn't any data to display.

CurrentItemChangedCommand , of type ICommand , which is executed when the current item changes.

CurrentItemChangedCommandParameter , of type object , which is the parameter that's passed to the

CurrentItemChangedCommand .

IsBounceEnabled , of type bool , which specifies whether the CarouselView will bounce at a content

boundary. The default value is true .

IsSwipeEnabled , of type bool , which determines whether a swipe gesture will change the displayed item.

The default value is true .

Loop , of type bool , which determines whether the CarouselView provides looped access to its collection of

items. The default value is true .

Position , of type int , the index of the current item in the underlying collection. This property has a default

binding mode of TwoWay , and has a 0 value when there isn't any data to display.

PositionChangedCommand , of type ICommand , which is executed when the position changes.

PositionChangedCommandParameter , of type object , which is the parameter that's passed to the

PositionChangedCommand .

VisibleViews , of type ObservableCollection<View> , which is a read-only property that contains the objects

for the items that are currently visible.

All of these properties are backed by BindableProperty objects, which means that the properties can be targets

of data bindings.

CarouselView defines a CurrentItemChanged event that's fired when the CurrentItem property changes, either

due to user scrolling, or when an application sets the property. The CurrentItemChangedEventArgs object that

accompanies the CurrentItemChanged event has two properties, both of type object :

PreviousItem – the previous item, after the property change.

CurrentItem – the current item, after the property change.

CarouselView also defines a PositionChanged event that's fired when the Position property changes, either

due to user scrolling, or when an application sets the property. The PositionChangedEventArgs object that

accompanies the PositionChanged event has two properties, both of type int :

PreviousPosition – the previous position, after the property change.

CurrentPosition – the current position, after the property change.

When the currently displayed item changes, the CurrentItem property will be set to the value of the item. When

this property changes, the CurrentItemChangedCommand is executed with the value of the

CurrentItemChangedCommandParameter being passed to the ICommand . The Position property is then updated, and

the CurrentItemChanged event fires.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/carouselview/interaction.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

IMPORTANTIMPORTANT

 EventEvent

<CarouselView ItemsSource="{Binding Monkeys}"
 CurrentItemChanged="OnCurrentItemChanged">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
carouselView.CurrentItemChanged += OnCurrentItemChanged;

void OnCurrentItemChanged(object sender, CurrentItemChangedEventArgs e)
{
 Monkey previousItem = e.PreviousItem as Monkey;
 Monkey currentItem = e.CurrentItem as Monkey;
}

 CommandCommand

The Position property changes when the CurrentItem property changes. This will result in the

PositionChangedCommand being executed, and the PositionChanged event firing.

The following XAML example shows a CarouselView that uses an event handler to respond to the current item

changing:

The equivalent C# code is:

In this example, the OnCurrentItemChanged event handler is executed when the CurrentItemChanged event fires:

In this example, the OnCurrentItemChanged event handler exposes the previous and current items:

The following XAML example shows a CarouselView that uses a command to respond to the current item

changing:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/interaction-images/current-item-events-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

<CarouselView ItemsSource="{Binding Monkeys}"
 CurrentItemChangedCommand="{Binding ItemChangedCommand}"
 CurrentItemChangedCommandParameter="{Binding Source={RelativeSource Self}, Path=CurrentItem}">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
carouselView.SetBinding(CarouselView.CurrentItemChangedCommandProperty, "ItemChangedCommand");
carouselView.SetBinding(CarouselView.CurrentItemChangedCommandParameterProperty, new Binding("CurrentItem",
source: RelativeBindingSource.Self));

public ICommand ItemChangedCommand => new Command<Monkey>((item) =>
{
 PreviousMonkey = CurrentMonkey;
 CurrentMonkey = item;
});

 Respond to the position changing

NOTENOTE

 EventEvent

<CarouselView ItemsSource="{Binding Monkeys}"
 PositionChanged="OnPositionChanged">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
carouselView.PositionChanged += OnPositionChanged;

The equivalent C# code is:

In this example, the CurrentItemChangedCommand property binds to the ItemChangedCommand property, passing the

CurrentItem property value to it as an argument. The ItemChangedCommand can then respond to the current item

changing, as required:

In this example, the ItemChangedCommand updates objects that store the previous and current items.

When the currently displayed item changes, the Position property will be set to the index of the current item in

the underlying collection. When this property changes, the PositionChangedCommand is executed with the value of

the PositionChangedCommandParameter being passed to the ICommand . The PositionChanged event then fires. If the

Position property has been programmatically changed, the CarouselView will be scrolled to the item that

corresponds to the Position value.

Setting the Position property to 0 will result in the first item in the underlying collection being displayed.

The following XAML example shows a CarouselView that uses an event handler to respond to the Position

property changing:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

void OnPositionChanged(object sender, PositionChangedEventArgs e)
{
 int previousItemPosition = e.PreviousPosition;
 int currentItemPosition = e.CurrentPosition;
}

 CommandCommand

<CarouselView ItemsSource="{Binding Monkeys}"
 PositionChangedCommand="{Binding PositionChangedCommand}"
 PositionChangedCommandParameter="{Binding Source={RelativeSource Self}, Path=Position}">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
carouselView.SetBinding(CarouselView.PositionChangedCommandProperty, "PositionChangedCommand");
carouselView.SetBinding(CarouselView.PositionChangedCommandParameterProperty, new Binding("Position",
source: RelativeBindingSource.Self));

public ICommand PositionChangedCommand => new Command<int>((position) =>
{
 PreviousPosition = CurrentPosition;
 CurrentPosition = position;
});

In this example, the OnPositionChanged event handler is executed when the PositionChanged event fires:

In this example, the OnCurrentItemChanged event handler exposes the previous and current positions:

The following XAML example shows a CarouselView that uses a command to respond to the Position property

changing:

The equivalent C# code is:

In this example, the PositionChangedCommand property binds to the PositionChangedCommand property, passing the

Position property value to it as an argument. The PositionChangedCommand can then respond to the position

changing, as required:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/interaction-images/current-position-events-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

 Preset the current item

<CarouselView ItemsSource="{Binding Monkeys}"
 CurrentItem="{Binding CurrentItem}">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
carouselView.SetBinding(CarouselView.CurrentItemProperty, "CurrentItem");

NOTENOTE

public class MonkeysViewModel : INotifyPropertyChanged
{
 // ...
 public ObservableCollection<Monkey> Monkeys { get; private set; }

 public Monkey CurrentItem { get; set; }

 public MonkeysViewModel()
 {
 // ...
 CurrentItem = Monkeys.Skip(3).FirstOrDefault();
 OnPropertyChanged("CurrentItem");
 }
}

In this example, the PositionChangedCommand updates objects that store the previous and current positions.

The current item in a CarouselView can be programmatically set by setting the CurrentItem property to the

item. The following XAML example shows a CarouselView that pre-chooses the current item:

The equivalent C# code is:

The CurrentItem property has a default binding mode of TwoWay .

The CarouselView.CurrentItem property data binds to the CurrentItem property of the connected view model,

which is of type Monkey . By default, a TwoWay binding is used so that if the user changes the current item, the

value of the CurrentItem property will be set to the current Monkey object. The CurrentItem property is defined

in the MonkeysViewModel class:

In this example, the CurrentItem property is set to the fourth item in the Monkeys collection:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

 Preset the position

<CarouselView ItemsSource="{Binding Monkeys}"
 Position="{Binding Position}">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView();
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
carouselView.SetBinding(CarouselView.PositionProperty, "Position");

NOTENOTE

The displayed item CarouselView can be programmatically set by setting the Position property to the index of

the item in the underlying collection. The following XAML example shows a CarouselView that sets the displayed

item:

The equivalent C# code is:

The Position property has a default binding mode of TwoWay .

The CarouselView.Position property data binds to the Position property of the connected view model, which

is of type int . By default, a TwoWay binding is used so that if the user scrolls through the CarouselView , the

value of the Position property will be set to the index of the displayed item. The Position property is defined

in the MonkeysViewModel class:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/interaction-images/preset-item-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

public class MonkeysViewModel : INotifyPropertyChanged
{
 // ...
 public int Position { get; set; }

 public MonkeysViewModel()
 {
 // ...
 Position = 3;
 OnPropertyChanged("Position");
 }
}

 Define visual states

In this example, the Position property is set to the fourth item in the Monkeys collection:

CarouselView defines four visual states:

CurrentItem represents the visual state for the currently displayed item.

PreviousItem represents the visual state for the previously displayed item.

NextItem represents the visual state for the next item.

DefaultItem represents the visual state for the remainder of the items.

These visual states can be used to initiate visual changes to the items displayed by the CarouselView .

The following XAML example shows how to define the CurrentItem , PreviousItem , NextItem , and DefaultItem

visual states:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/interaction-images/preset-position-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

<CarouselView ItemsSource="{Binding Monkeys}"
 PeekAreaInsets="100">
 <CarouselView.ItemTemplate>
 <DataTemplate>
 <StackLayout>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="CurrentItem">
 <VisualState.Setters>
 <Setter Property="Scale"
 Value="1.1" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="PreviousItem">
 <VisualState.Setters>
 <Setter Property="Opacity"
 Value="0.5" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="NextItem">
 <VisualState.Setters>
 <Setter Property="Opacity"
 Value="0.5" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="DefaultItem">
 <VisualState.Setters>
 <Setter Property="Opacity"
 Value="0.25" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <!-- Item template content -->
 <Frame HasShadow="true">
 ...
 </Frame>
 </StackLayout>
 </DataTemplate>
 </CarouselView.ItemTemplate>
</CarouselView>

NOTENOTE

In this example, the CurrentItem visual state specifies that the current item displayed by the CarouselView will

have its Scale property changed from its default value of 1 to 1.1. The PreviousItem and NextItem visual

states specify that the items surrounding the current item will be displayed with an Opacity value of 0.5. The

DefaultItem visual state specifies that the remainder of the items displayed by the CarouselView will be

displayed with an Opacity value of 0.25.

Alternatively, the visual states can be defined in a Style that has a TargetType property value that's the type of the

root element of the DataTemplate , which is set as the ItemTemplate property value.

The following screenshots show the CurrentItem , PreviousItem , and NextItem visual states:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.opacity#xamarin_forms_visualelement_opacity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

 Clear the current item

 Disable bounce

 Disable loop

 Disable swipe interaction

 Related links

For more information about visual states, see Xamarin.Forms Visual State Manager.

The CurrentItem property can be cleared by setting it, or the object it binds to, to null .

By default, CarouselView bounces items at content boundaries. This can be disabled by setting the

IsBounceEnabled property to false .

By default, CarouselView provides looped access to its collection of items. Therefore, swiping backwards from

the first item in the collection will display the last item in the collection. Similarly, swiping forwards from the last

item in the collection will return to the first item in the collection. This behavior can be disabled by setting the

Loop property to false .

By default, CarouselView allows users to move through items using a swipe gesture. This swipe interaction can

be disabled by setting the IsSwipeEnabled property to false .

CarouselView (sample)

Xamarin.Forms Visual State Manager

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/interaction-images/visual-states-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/

Xamarin.Forms CarouselView EmptyView
 7/8/2021 • 6 minutes to read • Edit Online

NOTENOTE

 Display a string when data is unavailable

<CarouselView ItemsSource="{Binding EmptyMonkeys}"
 EmptyView="No items to display." />

CarouselView carouselView = new CarouselView
{
 EmptyView = "No items to display."
};
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "EmptyMonkeys");

 Display views when data is unavailable

 Download the sample

CarouselView defines the following properties that can be used to provide user feedback when there's no data

to display:

EmptyView , of type object , the string, binding, or view that will be displayed when the ItemsSource

property is null , or when the collection specified by the ItemsSource property is null or empty. The

default value is null .

EmptyViewTemplate , of type DataTemplate , the template to use to format the specified EmptyView . The default

value is null .

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

The main usage scenarios for setting the EmptyView property are displaying user feedback when a filtering

operation on a CarouselView yields no data, and displaying user feedback while data is being retrieved from a

web service.

The EmptyView property can be set to a view that includes interactive content if required.

For more information about data templates, see Xamarin.Forms Data Templates.

The EmptyView property can be set to a string, which will be displayed when the ItemsSource property is null ,

or when the collection specified by the ItemsSource property is null or empty. The following XAML shows an

example of this scenario:

The equivalent C# code is:

The result is that, because the data bound collection is null , the string set as the EmptyView property value is

displayed.

The EmptyView property can be set to a view, which will be displayed when the ItemsSource property is null ,

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/carouselview/emptyview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource

<StackLayout Margin="20">
 <SearchBar SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={RelativeSource Self}, Path=Text}"
 Placeholder="Filter" />
 <CarouselView ItemsSource="{Binding Monkeys}">
 <CarouselView.EmptyView>
 <ContentView>
 <StackLayout HorizontalOptions="CenterAndExpand"
 VerticalOptions="CenterAndExpand">
 <Label Text="No results matched your filter."
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 <Label Text="Try a broader filter?"
 FontAttributes="Italic"
 FontSize="12"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </StackLayout>
 </ContentView>
 </CarouselView.EmptyView>
 <CarouselView.ItemTemplate>
 ...
 </CarouselView.ItemTemplate>
 </CarouselView>
</StackLayout>

SearchBar searchBar = new SearchBar { ... };
CarouselView carouselView = new CarouselView
{
 EmptyView = new ContentView
 {
 Content = new StackLayout
 {
 Children =
 {
 new Label { Text = "No results matched your filter.", ... },
 new Label { Text = "Try a broader filter?", ... }
 }
 }
 }
};
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

or when the collection specified by the ItemsSource property is null or empty. This can be a single view, or a

view that contains multiple child views. The following XAML example shows the EmptyView property set to a

view that contains multiple child views:

In this example, what looks like a redundant ContentView has been added as the root element of the EmptyView .

This is because internally, the EmptyView is added to a native container that doesn't provide any context for

Xamarin.Forms layout. Therefore, to position the views that comprise your EmptyView , you must add a root

layout, whose child is a layout that can position itself within the root layout.

The equivalent C# code is:

When the SearchBar executes the FilterCommand , the collection displayed by the CarouselView is filtered for

the search term stored in the SearchBar.Text property. If the filtering operation yields no data, the StackLayout

set as the EmptyView property value is displayed.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview

Display a templated custom type when data is unavailable

<StackLayout Margin="20">
 <SearchBar x:Name="searchBar"
 SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={RelativeSource Self}, Path=Text}"
 Placeholder="Filter" />
 <CarouselView ItemsSource="{Binding Monkeys}">
 <CarouselView.EmptyView>
 <controls:FilterData Filter="{Binding Source={x:Reference searchBar}, Path=Text}" />
 </CarouselView.EmptyView>
 <CarouselView.EmptyViewTemplate>
 <DataTemplate>
 <Label Text="{Binding Filter, StringFormat='Your filter term of {0} did not match any
records.'}"
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </DataTemplate>
 </CarouselView.EmptyViewTemplate>
 <CarouselView.ItemTemplate>
 ...
 </CarouselView.ItemTemplate>
 </CarouselView>
</StackLayout>

SearchBar searchBar = new SearchBar { ... };
CarouselView carouselView = new CarouselView
{
 EmptyView = new FilterData { Filter = searchBar.Text },
 EmptyViewTemplate = new DataTemplate(() =>
 {
 return new Label { ... };
 })
};

public class FilterData : BindableObject
{
 public static readonly BindableProperty FilterProperty = BindableProperty.Create(nameof(Filter),
typeof(string), typeof(FilterData), null);

 public string Filter
 {
 get { return (string)GetValue(FilterProperty); }
 set { SetValue(FilterProperty, value); }
 }
}

The EmptyView property can be set to a custom type, whose template is displayed when the ItemsSource

property is null , or when the collection specified by the ItemsSource property is null or empty. The

EmptyViewTemplate property can be set to a DataTemplate that defines the appearance of the EmptyView . The

following XAML shows an example of this scenario:

The equivalent C# code is:

The FilterData type defines a Filter property, and a corresponding BindableProperty :

The EmptyView property is set to a FilterData object, and the Filter property data binds to the

SearchBar.Text property. When the SearchBar executes the FilterCommand , the collection displayed by the

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar

NOTENOTE

 Choose an EmptyView at runtime

CarouselView is filtered for the search term stored in the Filter property. If the filtering operation yields no

data, the Label defined in the DataTemplate , that's set as the EmptyViewTemplate property value, is displayed.

When displaying a templated custom type when data is unavailable, the EmptyViewTemplate property can be set to a

view that contains multiple child views.

Views that will be displayed as an EmptyView when data is unavailable, can be defined as ContentView objects in

a ResourceDictionary . The EmptyView property can then be set to a specific ContentView , based on some

business logic, at runtime. The following XAML example shows an example of this scenario:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewmodels="clr-namespace:CarouselViewDemos.ViewModels"
 x:Class="CarouselViewDemos.Views.EmptyViewSwapPage"
 Title="EmptyView (swap)">
 <ContentPage.BindingContext>
 <viewmodels:MonkeysViewModel />
 </ContentPage.BindingContext>
 <ContentPage.Resources>
 <ContentView x:Key="BasicEmptyView">
 <StackLayout>
 <Label Text="No items to display."
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </StackLayout>
 </ContentView>
 <ContentView x:Key="AdvancedEmptyView">
 <StackLayout>
 <Label Text="No results matched your filter."
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 <Label Text="Try a broader filter?"
 FontAttributes="Italic"
 FontSize="12"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </StackLayout>
 </ContentView>
 </ContentPage.Resources>
 <StackLayout Margin="20">
 <SearchBar SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={RelativeSource Self}, Path=Text}"
 Placeholder="Filter" />
 <StackLayout Orientation="Horizontal">
 <Label Text="Toggle EmptyViews" />
 <Switch Toggled="OnEmptyViewSwitchToggled" />
 </StackLayout>
 <CarouselView x:Name="carouselView"
 ItemsSource="{Binding Monkeys}">
 <CarouselView.ItemTemplate>
 ...
 </CarouselView.ItemTemplate>
 </CarouselView>
 </StackLayout>
</ContentPage>

void ToggleEmptyView(bool isToggled)
{
 carouselView.EmptyView = isToggled ? Resources["BasicEmptyView"] : Resources["AdvancedEmptyView"];
}

This XAML defines two ContentView objects in the page-level ResourceDictionary , with the Switch object

controlling which ContentView object will be set as the EmptyView property value. When the Switch is toggled,

the OnEmptyViewSwitchToggled event handler executes the ToggleEmptyView method:

The ToggleEmptyView method sets the EmptyView property of the carouselView object to one of the two

ContentView objects stored in the ResourceDictionary , based on the value of the Switch.IsToggled property.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.istoggled#xamarin_forms_switch_istoggled

 Choose an EmptyViewTemplate at runtime

<ContentPage ...
 xmlns:controls="clr-namespace:CarouselViewDemos.Controls">
 <ContentPage.Resources>
 <DataTemplate x:Key="AdvancedTemplate">
 ...
 </DataTemplate>

 <DataTemplate x:Key="BasicTemplate">
 ...
 </DataTemplate>

 <controls:SearchTermDataTemplateSelector x:Key="SearchSelector"
 DefaultTemplate="{StaticResource AdvancedTemplate}"
 OtherTemplate="{StaticResource BasicTemplate}" />
 </ContentPage.Resources>

 <StackLayout Margin="20">
 <SearchBar x:Name="searchBar"
 SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={RelativeSource Self}, Path=Text}"
 Placeholder="Filter" />
 <CarouselView ItemsSource="{Binding Monkeys}"
 EmptyView="{Binding Source={x:Reference searchBar}, Path=Text}"
 EmptyViewTemplate="{StaticResource SearchSelector}">
 <CarouselView.ItemTemplate>
 ...
 </CarouselView.ItemTemplate>
 </CarouselView>
 </StackLayout>
</ContentPage>

SearchBar searchBar = new SearchBar { ... };
CarouselView carouselView = new CarouselView()
{
 EmptyView = searchBar.Text,
 EmptyViewTemplate = new SearchTermDataTemplateSelector { ... }
};
carouselView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

When the SearchBar executes the FilterCommand , the collection displayed by the CarouselView is filtered for

the search term stored in the SearchBar.Text property. If the filtering operation yields no data, the ContentView

object set as the EmptyView property is displayed.

For more information about resource dictionaries, see Xamarin.Forms Resource Dictionaries.

The appearance of the EmptyView can be chosen at runtime, based on its value, by setting the

CarouselView.EmptyViewTemplate property to a DataTemplateSelector object:

The equivalent C# code is:

The EmptyView property is set to the SearchBar.Text property, and the EmptyViewTemplate property is set to a

SearchTermDataTemplateSelector object.

When the SearchBar executes the FilterCommand , the collection displayed by the CarouselView is filtered for

the search term stored in the SearchBar.Text property. If the filtering operation yields no data, the

DataTemplate chosen by the SearchTermDataTemplateSelector object is set as the EmptyViewTemplate property

and displayed.

The following example shows the SearchTermDataTemplateSelector class:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate

public class SearchTermDataTemplateSelector : DataTemplateSelector
{
 public DataTemplate DefaultTemplate { get; set; }
 public DataTemplate OtherTemplate { get; set; }

 protected override DataTemplate OnSelectTemplate(object item, BindableObject container)
 {
 string query = (string)item;
 return query.ToLower().Equals("xamarin") ? OtherTemplate : DefaultTemplate;
 }
}

 Related links

The SearchTermTemplateSelector class defines DefaultTemplate and OtherTemplate DataTemplate properties

that are set to different data templates. The OnSelectTemplate override returns DefaultTemplate , which displays

a message to the user, when the search query isn't equal to "xamarin". When the search query is equal to

"xamarin", the OnSelectTemplate override returns OtherTemplate , which displays a basic message to the user.

For more information about data template selectors, see Create a Xamarin.Forms DataTemplateSelector.

CarouselView (sample)

Xamarin.Forms Data Templates

Xamarin.Forms Resource Dictionaries

Create a Xamarin.Forms DataTemplateSelector

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/

Xamarin.Forms CarouselView Scrolling
 7/8/2021 • 8 minutes to read • Edit Online

 Detect scrolling

 Download the sample

CarouselView defines the following scroll related properties:

HorizontalScrollBarVisibility , of type ScrollBarVisibility , which specifies when the horizontal scroll bar

is visible.

IsDragging , of type bool , which indicates whether the CarouselView is scrolling. This is a read only

property, whose default value is false .

IsScrollAnimated , of type bool , which specifies whether an animation will occur when scrolling the

CarouselView . The default value is true .

ItemsUpdatingScrollMode , of type ItemsUpdatingScrollMode , which represents the scrolling behavior of the

CarouselView when new items are added to it.

VerticalScrollBarVisibility , of type ScrollBarVisibility , which specifies when the vertical scroll bar is

visible.

All of these properties are backed by BindableProperty objects, which means that they can be targets of data

bindings.

CarouselView also defines two ScrollTo methods, that scroll items into view. One of the overloads scrolls the

item at the specified index into view, while the other scrolls the specified item into view. Both overloads have

additional arguments that can be specified to indicate the exact position of the item after the scroll has

completed, and whether to animate the scroll.

CarouselView defines a ScrollToRequested event that is fired when one of the ScrollTo methods is invoked.

The ScrollToRequestedEventArgs object that accompanies the ScrollToRequested event has many properties,

including IsAnimated , Index , Item , and ScrollToPosition . These properties are set from the arguments

specified in the ScrollTo method calls.

In addition, CarouselView defines a Scrolled event that is fired to indicate that scrolling occurred. The

ItemsViewScrolledEventArgs object that accompanies the Scrolled event has many properties. For more

information, see Detect scrolling.

When a user swipes to initiate a scroll, the end position of the scroll can be controlled so that items are fully

displayed. This feature is known as snapping, because items snap to position when scrolling stops. For more

information, see Snap points.

CarouselView can also load data incrementally as the user scrolls. For more information, see Load data

incrementally.

The IsDragging property can be examined to determine whether the CarouselView is currently scrolling

through items.

In addition, CarouselView defines a Scrolled event which is fired to indicate that scrolling occurred. This event

should be consumed when data about the scroll is required.

The following XAML example shows a CarouselView that sets an event handler for the Scrolled event:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/carouselview/scrolling.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrolltorequested
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltorequestedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

<CarouselView Scrolled="OnCollectionViewScrolled">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView();
carouselView.Scrolled += OnCarouselViewScrolled;

void OnCarouselViewScrolled(object sender, ItemsViewScrolledEventArgs e)
{
 Debug.WriteLine("HorizontalDelta: " + e.HorizontalDelta);
 Debug.WriteLine("VerticalDelta: " + e.VerticalDelta);
 Debug.WriteLine("HorizontalOffset: " + e.HorizontalOffset);
 Debug.WriteLine("VerticalOffset: " + e.VerticalOffset);
 Debug.WriteLine("FirstVisibleItemIndex: " + e.FirstVisibleItemIndex);
 Debug.WriteLine("CenterItemIndex: " + e.CenterItemIndex);
 Debug.WriteLine("LastVisibleItemIndex: " + e.LastVisibleItemIndex);
}

IMPORTANTIMPORTANT

 Scroll an item at an index into view

carouselView.ScrollTo(6);

NOTENOTE

 Scroll an item into view

MonkeysViewModel viewModel = BindingContext as MonkeysViewModel;
Monkey monkey = viewModel.Monkeys.FirstOrDefault(m => m.Name == "Proboscis Monkey");
carouselView.ScrollTo(monkey);

The equivalent C# code is:

In this code example, the OnCarouselViewScrolled event handler is executed when the Scrolled event fires:

In this example, the OnCarouselViewScrolled event handler outputs the values of the ItemsViewScrolledEventArgs

object that accompanies the event.

The Scrolled event is fired for user initiated scrolls, and for programmatic scrolls.

The first ScrollTo method overload scrolls the item at the specified index into view. Given a CarouselView

object named carouselView , the following example shows how to scroll the item at index 6 into view:

The ScrollToRequested event is fired when the ScrollTo method is invoked.

The second ScrollTo method overload scrolls the specified item into view. Given a CarouselView object named

carouselView , the following example shows how to scroll the Proboscis Monkey item into view:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrolltorequested
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

NOTENOTE

 Disable scroll animation

carouselView.ScrollTo(monkey, animate: false);

 Control scroll position

 MakeVisibleMakeVisible

carouselView.ScrollTo(monkey, position: ScrollToPosition.MakeVisible);

NOTENOTE

 StartStart

carouselView.ScrollTo(monkey, position: ScrollToPosition.Start);

 CenterCenter

carouselViewView.ScrollTo(monkey, position: ScrollToPosition.Center);

 EndEnd

The ScrollToRequested event is fired when the ScrollTo method is invoked.

A scrolling animation is displayed when moving between items in a CarouselView . This animation occurs both

for user initiated scrolls, and for programmatic scrolls. Setting the IsScrollAnimated property to false will

disable the animation for both scrolling categories.

Alternatively, the animate argument of the ScrollTo method can be set to false to disable the scrolling

animation on programmatic scrolls:

When scrolling an item into view, the exact position of the item after the scroll has completed can be specified

with the position argument of the ScrollTo methods. This argument accepts a ScrollToPosition

enumeration member.

The ScrollToPosition.MakeVisible member indicates that the item should be scrolled until it's visible in the view:

This example code results in the minimal scrolling required to scroll the item into view.

The ScrollToPosition.MakeVisible member is used by default, if the position argument is not specified when

calling the ScrollTo method.

The ScrollToPosition.Start member indicates that the item should be scrolled to the start of the view:

This example code results in the item being scrolled to the start of the view.

The ScrollToPosition.Center member indicates that the item should be scrolled to the center of the view:

This example code results in the item being scrolled to the center of the view.

The ScrollToPosition.End member indicates that the item should be scrolled to the end of the view:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrolltorequested
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition

carouselViewView.ScrollTo(monkey, position: ScrollToPosition.End);

 Control scroll position when new items are added

<CarouselView ItemsUpdatingScrollMode="KeepLastItemInView">
 ...
</CarouselView>

CarouselView carouselView = new CarouselView
{
 ItemsUpdatingScrollMode = ItemsUpdatingScrollMode.KeepLastItemInView
};

 Scroll bar visibility

 Snap points

This example code results in the item being scrolled to the end of the view.

CarouselView defines a ItemsUpdatingScrollMode property, which is backed by a bindable property. This

property gets or sets a ItemsUpdatingScrollMode enumeration value that represents the scrolling behavior of the

CarouselView when new items are added to it. The ItemsUpdatingScrollMode enumeration defines the following

members:

KeepItemsInView keeps the first item in the list displayed when new items are added.

KeepScrollOffset ensures that the current scroll position is maintained when new items are added.

KeepLastItemInView adjusts the scroll offset to keep the last item in the list displayed when new items are

added.

The default value of the ItemsUpdatingScrollMode property is KeepItemsInView . Therefore, when new items are

added to a CarouselView the first item in the list will remain displayed. To ensure that the last item in the list is

displayed when new items are added, set the ItemsUpdatingScrollMode property to KeepLastItemInView :

The equivalent C# code is:

CarouselView defines HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties, which are

backed by bindable properties. These properties get or set a ScrollBarVisibility enumeration value that

represents when the horizontal, or vertical, scroll bar is visible. The ScrollBarVisibility enumeration defines

the following members:

Default indicates the default scroll bar behavior for the platform, and is the default value for the

HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties.

Always indicates that scroll bars will be visible, even when the content fits in the view.

Never indicates that scroll bars will not be visible, even if the content doesn't fit in the view.

When a user swipes to initiate a scroll, the end position of the scroll can be controlled so that items are fully

displayed. This feature is known as snapping, because items snap to position when scrolling stops, and is

controlled by the following properties from the ItemsLayout class:

SnapPointsType , of type SnapPointsType , specifies the behavior of snap points when scrolling.

SnapPointsAlignment , of type SnapPointsAlignment , specifies how snap points are aligned with items.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointsalignment

NOTENOTE

 Snap points typeSnap points type

 Snap points alignmentSnap points alignment

IMPORTANTIMPORTANT

 StartStart

<CarouselView ItemsSource="{Binding Monkeys}"
 PeekAreaInsets="100">
 <CarouselView.ItemsLayout>
 <LinearItemsLayout Orientation="Horizontal"
 SnapPointsType="MandatorySingle"
 SnapPointsAlignment="Start" />
 </CarouselView.ItemsLayout>
 ...
</CarouselView>

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

When snapping occurs, it will occur in the direction that produces the least amount of motion.

The SnapPointsType enumeration defines the following members:

None indicates that scrolling does not snap to items.

Mandatory indicates that content always snaps to the closest snap point to where scrolling would naturally

stop, along the direction of inertia.

MandatorySingle indicates the same behavior as Mandatory , but only scrolls one item at a time.

By default on a CarouselView , the SnapPointsType property is set to SnapPointsType.MandatorySingle , which

ensures that scrolling only scrolls one item at a time.

The following screenshots show a CarouselView with snapping turned off:

The SnapPointsAlignment enumeration defines Start , Center , and End members.

The value of the SnapPointsAlignment property is only respected when the SnapPointsType property is set to

Mandatory , or MandatorySingle .

The SnapPointsAlignment.Start member indicates that snap points are aligned with the leading edge of items.

The following XAML example shows how to set this enumeration member:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/scrolling-images/snappoints-none-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype

CarouselView carouselView = new CarouselView
{
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Horizontal)
 {
 SnapPointsType = SnapPointsType.MandatorySingle,
 SnapPointsAlignment = SnapPointsAlignment.Start
 },
 // ...
};

 CenterCenter

<CarouselView ItemsSource="{Binding Monkeys}"
 PeekAreaInsets="100">
 <CarouselView.ItemsLayout>
 <LinearItemsLayout Orientation="Horizontal"
 SnapPointsType="MandatorySingle"
 SnapPointsAlignment="Center" />
 </CarouselView.ItemsLayout>
 ...
</CarouselView>

CarouselView carouselView = new CarouselView
{
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Horizontal)
 {
 SnapPointsType = SnapPointsType.MandatorySingle,
 SnapPointsAlignment = SnapPointsAlignment.Center
 },
 // ...
};

When a user swipes to initiate a scroll in a horizontally scrolling CarouselView , the left item will be aligned with

the left of the view:

The SnapPointsAlignment.Center member indicates that snap points are aligned with the center of items.

By default on a CarouselView , the SnapPointsAlignment property is set to Center . However, for completeness,

the following XAML example shows how to set this enumeration member:

The equivalent C# code is:

When a user swipes to initiate a scroll in a horizontally scrolling CarouselView , the center item will be aligned

with the center of the view:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/scrolling-images/snappoints-start-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview

 EndEnd

<CarouselView ItemsSource="{Binding Monkeys}"
 PeekAreaInsets="100">
 <CarouselView.ItemsLayout>
 <LinearItemsLayout Orientation="Horizontal"
 SnapPointsType="MandatorySingle"
 SnapPointsAlignment="End" />
 </CarouselView.ItemsLayout>
 ...
</CarouselView>

CarouselView carouselView = new CarouselView
{
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Horizontal)
 {
 SnapPointsType = SnapPointsType.MandatorySingle,
 SnapPointsAlignment = SnapPointsAlignment.End
 },
 // ...
};

 Related links

The SnapPointsAlignment.End member indicates that snap points are aligned with the trailing edge of items. The

following XAML example shows how to set this enumeration member:

The equivalent C# code is:

When a user swipes to initiate a scroll in a horizontally scrolling CarouselView , the right item will be aligned

with the right of the view.

CarouselView (sample)

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/scrolling-images/snappoints-center-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/carouselview/scrolling-images/snappoints-end-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-carouselviewdemos/

Xamarin.Forms CollectionView
 11/2/2020 • 2 minutes to read • Edit Online

 Introduction

 Data

 Layout

 Selection

 Empty views

 Scrolling

 Grouping

The CollectionView is a flexible and performant view for presenting lists of data using different layout

specifications.

A CollectionView is populated with data by setting its ItemsSource property to any collection that implements

IEnumerable . The appearance of each item in the list can be defined by setting the ItemTemplate property to a

DataTemplate .

By default, a CollectionView will display its items in a vertical list. However, vertical and horizontal lists and

grids can be specified.

By default, CollectionView selection is disabled. However, single and multiple selection can be enabled.

In CollectionView , an empty view can be specified that provides feedback to the user when no data is available

for display. The empty view can be a string, a view, or multiple views.

When a user swipes to initiate a scroll, the end position of the scroll can be controlled so that items are fully

displayed. In addition, CollectionView defines two ScrollTo methods, that programmatically scroll items into

view. One of the overloads scrolls the item at the specified index into view, while the other scrolls the specified

item into view.

CollectionView can display correctly grouped data by setting its IsGrouped property to true .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

Xamarin.Forms CollectionView Introduction
 7/8/2021 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

 CollectionView and ListView differences

 Move from ListView to CollectionView

 Download the sample

CollectionView is a view for presenting lists of data using different layout specifications. It aims to provide a

more flexible, and performant alternative to ListView . For example, the following screenshots show a

CollectionView that uses a two column vertical grid, and which allows multiple selection:

CollectionView should be used for presenting lists of data that require scrolling or selection. A bindable layout

can be used when the data to be displayed doesn't require scrolling or selection. For more information, see

Bindable Layouts in Xamarin.Forms.

CollectionView is available from Xamarin.Forms 4.3.

CollectionView is available on iOS and Android, but is only partially available on the Universal Windows Platform.

While the CollectionView and ListView APIs are similar, there are some notable differences:

CollectionView has a flexible layout model, which allows data to be presented vertically or horizontally, in a

list or a grid.

CollectionView supports single and multiple selection.

CollectionView has no concept of cells. Instead, a data template is used to define the appearance of each

item of data in the list.

CollectionView automatically utilizes the virtualization provided by the underlying native controls.

CollectionView reduces the API surface of ListView . Many properties and events from ListView are not

present in CollectionView .

CollectionView does not include built-in separators.

CollectionView will throw an exception if its ItemsSource is updated off the UI thread.

ListView implementations in existing Xamarin.Forms applications can be migrated to CollectionView

implementations with the help of the following table:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/introduction.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/introduction-images/verticalgrid-multipleselection-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://gist.github.com/hartez/7d0edd4182dbc7de65cebc6c67f72e14
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

C O N C EP TC O N C EP T L IST VIEW A P IL IST VIEW A P I C O L L EC T IO N VIEWC O L L EC T IO N VIEW

Data ItemsSource A CollectionView is populated with

data by setting its ItemsSource

property. For more information, see
Populate a CollectionView with data.

Item appearance ItemTemplate The appearance of each item in a
CollectionView can be defined by

setting the ItemTemplate property

to a DataTemplate . For more

information, see Define item
appearance.

Cells TextCell , ImageCell , ViewCell CollectionView has no concept of

cells, and therefore no concept of
disclosure indicators. Instead, a data
template is used to define the
appearance of each item of data in the
list.

Row separators SeparatorColor ,

SeparatorVisibility

CollectionView does not include

built-in separators. These can be
provided, if desired, in the item
template.

Selection SelectionMode , SelectedItem CollectionView supports single and

multiple selection. For more
information, see Xamarin.Forms
CollectionView Selection.

Row height HasUnevenRows , RowHeight In a CollectionView , the row height

of each item is determined by the
ItemSizingStrategy property. For

more information, see Item sizing.

Caching CachingStrategy CollectionView automatically uses

the virtualization provided by the
underlying native controls.

Headers and footers Header , HeaderElement ,

HeaderTemplate , Footer ,

FooterElement , FooterTemplate

CollectionView can present a

header and footer that scroll with the
items in the list, via the Header ,

Footer , HeaderTemplate , and

FooterTemplate properties. For

more information, see Headers and
footers.

Grouping GroupDisplayBinding ,

GroupHeaderTemplate ,

GroupShortNameBinding ,

IsGroupingEnabled

CollectionView displays correctly

grouped data by setting its
IsGrouped property to true .

Group headers and group footers can
be customized by setting the
GroupHeaderTemplate and

GroupFooterTemplate properties to

DataTemplate objects. For more

information, see Xamarin.Forms
CollectionView Grouping.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

Pull to refresh IsPullToRefreshEnabled ,

IsRefreshing , RefreshAllowed ,

RefreshCommand ,

RefreshControlColor ,

BeginRefresh() , EndRefresh()

Pull to refresh functionality is
supported by setting a
CollectionView as the child of a

RefreshView . For more information,

see Pull to refresh.

Context menu items ContextActions Context menu items are supported by
setting a SwipeView as the root view

in the DataTemplate that defines the

appearance of each item of data in the
CollectionView . For more

information, see Context menus.

Scrolling ScrollTo() CollectionView defines ScrollTo

methods, that scroll items into view.
For more information, see Scrolling.

C O N C EP TC O N C EP T L IST VIEW A P IL IST VIEW A P I C O L L EC T IO N VIEWC O L L EC T IO N VIEW

 Related links
CollectionView (sample)

Bindable Layouts in Xamarin.Forms

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/

Xamarin.Forms CollectionView Data
 7/8/2021 • 8 minutes to read • Edit Online

NOTENOTE

 Populate a CollectionView with data

IMPORTANTIMPORTANT

<CollectionView ItemsSource="{Binding Monkeys}" />

CollectionView collectionView = new CollectionView();
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

 Download the sample

CollectionView includes the following properties that define the data to be displayed, and its appearance:

ItemsSource , of type IEnumerable , specifies the collection of items to be displayed, and has a default value of

null .

ItemTemplate , of type DataTemplate , specifies the template to apply to each item in the collection of items to

be displayed.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

CollectionView defines a ItemsUpdatingScrollMode property that represents the scrolling behavior of the

CollectionView when new items are added to it. For more information about this property, see Control scroll position

when new items are added.

CollectionView supports incremental data virtualization as the user scrolls. For more information, see Load

data incrementally.

A CollectionView is populated with data by setting its ItemsSource property to any collection that implements

IEnumerable . By default, CollectionView displays items in a vertical list.

If the CollectionView is required to refresh as items are added, removed, or changed in the underlying collection, the

underlying collection should be an IEnumerable collection that sends property change notifications, such as

ObservableCollection .

CollectionView can be populated with data by using data binding to bind its ItemsSource property to an

IEnumerable collection. In XAML, this is achieved with the Binding markup extension:

The equivalent C# code is:

In this example, the ItemsSource property data binds to the Monkeys property of the connected viewmodel.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/populate-data.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource

NOTENOTE

WARNINGWARNING

 Define item appearance

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2"
 Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 ...
</CollectionView>

Compiled bindings can be enabled to improve data binding performance in Xamarin.Forms applications. For more

information, see Compiled Bindings.

For information on how to change the CollectionView layout, see Xamarin.Forms CollectionView Layout. For

information on how to define the appearance of each item in the CollectionView , see Define item appearance.

For more information about data binding, see Xamarin.Forms Data Binding.

CollectionView will throw an exception if its ItemsSource is updated off the UI thread.

The appearance of each item in the CollectionView can be defined by setting the CollectionView.ItemTemplate

property to a DataTemplate :

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

CollectionView collectionView = new CollectionView();
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

collectionView.ItemTemplate = new DataTemplate(() =>
{
 Grid grid = new Grid { Padding = 10 };
 grid.RowDefinitions.Add(new RowDefinition { Height = GridLength.Auto });
 grid.RowDefinitions.Add(new RowDefinition { Height = GridLength.Auto });
 grid.ColumnDefinitions.Add(new ColumnDefinition { Width = GridLength.Auto });
 grid.ColumnDefinitions.Add(new ColumnDefinition { Width = GridLength.Auto });

 Image image = new Image { Aspect = Aspect.AspectFill, HeightRequest = 60, WidthRequest = 60 };
 image.SetBinding(Image.SourceProperty, "ImageUrl");

 Label nameLabel = new Label { FontAttributes = FontAttributes.Bold };
 nameLabel.SetBinding(Label.TextProperty, "Name");

 Label locationLabel = new Label { FontAttributes = FontAttributes.Italic, VerticalOptions =
LayoutOptions.End };
 locationLabel.SetBinding(Label.TextProperty, "Location");

 Grid.SetRowSpan(image, 2);

 grid.Children.Add(image);
 grid.Children.Add(nameLabel, 1, 0);
 grid.Children.Add(locationLabel, 1, 1);

 return grid;
});

public class Monkey
{
 public string Name { get; set; }
 public string Location { get; set; }
 public string Details { get; set; }
 public string ImageUrl { get; set; }
}

The elements specified in the DataTemplate define the appearance of each item in the list. In the example, layout

within the DataTemplate is managed by a Grid . The Grid contains an Image object, and two Label objects,

that all bind to properties of the Monkey class:

The following screenshots show the result of templating each item in the list:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/populate-data-images/datatemplate-large.png#lightbox

 Choose item appearance at runtime

<ContentPage ...
 xmlns:controls="clr-namespace:CollectionViewDemos.Controls">
 <ContentPage.Resources>
 <DataTemplate x:Key="AmericanMonkeyTemplate">
 ...
 </DataTemplate>

 <DataTemplate x:Key="OtherMonkeyTemplate">
 ...
 </DataTemplate>

 <controls:MonkeyDataTemplateSelector x:Key="MonkeySelector"
 AmericanMonkey="{StaticResource AmericanMonkeyTemplate}"
 OtherMonkey="{StaticResource OtherMonkeyTemplate}" />
 </ContentPage.Resources>

 <CollectionView ItemsSource="{Binding Monkeys}"
 ItemTemplate="{StaticResource MonkeySelector}" />
</ContentPage>

CollectionView collectionView = new CollectionView
{
 ItemTemplate = new MonkeyDataTemplateSelector { ... }
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

public class MonkeyDataTemplateSelector : DataTemplateSelector
{
 public DataTemplate AmericanMonkey { get; set; }
 public DataTemplate OtherMonkey { get; set; }

 protected override DataTemplate OnSelectTemplate(object item, BindableObject container)
 {
 return ((Monkey)item).Location.Contains("America") ? AmericanMonkey : OtherMonkey;
 }
}

For more information about data templates, see Xamarin.Forms Data Templates.

The appearance of each item in the CollectionView can be chosen at runtime, based on the item value, by

setting the CollectionView.ItemTemplate property to a DataTemplateSelector object:

The equivalent C# code is:

The ItemTemplate property is set to a MonkeyDataTemplateSelector object. The following example shows the

MonkeyDataTemplateSelector class:

The MonkeyDataTemplateSelector class defines AmericanMonkey and OtherMonkey DataTemplate properties that

are set to different data templates. The OnSelectTemplate override returns the AmericanMonkey template, which

displays the monkey name and location in teal, when the monkey name contains "America". When the monkey

name doesn't contain "America", the OnSelectTemplate override returns the OtherMonkey template, which

displays the monkey name and location in silver :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

IMPORTANTIMPORTANT

 Context menus

For more information about data template selectors, see Create a Xamarin.Forms DataTemplateSelector.

When using CollectionView , never set the root element of your DataTemplate objects to a ViewCell . This will result

in an exception being thrown because CollectionView has no concept of cells.

CollectionView supports context menus for items of data through the SwipeView , which reveals the context

menu with a swipe gesture. The SwipeView is a container control that wraps around an item of content, and

provides context menu items for that item of content. Therefore, context menus are implemented for a

CollectionView by creating a SwipeView that defines the content that the SwipeView wraps around, and the

context menu items that are revealed by the swipe gesture. This is achieved by setting the SwipeView as the root

view in the DataTemplate that defines the appearance of each item of data in the CollectionView :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/populate-data-images/datatemplateselector-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

<CollectionView x:Name="collectionView"
 ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <SwipeView>
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Favorite"
 IconImageSource="favorite.png"
 BackgroundColor="LightGreen"
 Command="{Binding Source={x:Reference collectionView},
Path=BindingContext.FavoriteCommand}"
 CommandParameter="{Binding}" />
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Command="{Binding Source={x:Reference collectionView},
Path=BindingContext.DeleteCommand}"
 CommandParameter="{Binding}" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <Grid BackgroundColor="White"
 Padding="10">
 <!-- Define item appearance -->
 </Grid>
 </SwipeView>
 </DataTemplate>
 </CollectionView.ItemTemplate>
</CollectionView>

The equivalent C# code is:

CollectionView collectionView = new CollectionView();
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

collectionView.ItemTemplate = new DataTemplate(() =>
{
 // Define item appearance
 Grid grid = new Grid { Padding = 10, BackgroundColor = Color.White };
 // ...

 SwipeView swipeView = new SwipeView();
 SwipeItem favoriteSwipeItem = new SwipeItem
 {
 Text = "Favorite",
 IconImageSource = "favorite.png",
 BackgroundColor = Color.LightGreen
 };
 favoriteSwipeItem.SetBinding(MenuItem.CommandProperty, new Binding("BindingContext.FavoriteCommand",
source: collectionView));
 favoriteSwipeItem.SetBinding(MenuItem.CommandParameterProperty, ".");

 SwipeItem deleteSwipeItem = new SwipeItem
 {
 Text = "Delete",
 IconImageSource = "delete.png",
 BackgroundColor = Color.LightPink
 };
 deleteSwipeItem.SetBinding(MenuItem.CommandProperty, new Binding("BindingContext.DeleteCommand", source:
collectionView));
 deleteSwipeItem.SetBinding(MenuItem.CommandParameterProperty, ".");

 swipeView.LeftItems = new SwipeItems { favoriteSwipeItem, deleteSwipeItem };
 swipeView.Content = grid;
 return swipeView;
});

 Pull to refresh

In this example, the SwipeView content is a Grid that defines the appearance of each item in the

CollectionView . The swipe items are used to perform actions on the SwipeView content, and are revealed when

the control is swiped from the left side:

SwipeView supports four different swipe directions, with the swipe direction being defined by the directional

SwipeItems collection the SwipeItems objects are added to. By default, a swipe item is executed when it's tapped

by the user. In addition, once a swipe item has been executed the swipe items are hidden and the SwipeView

content is re-displayed. However, these behaviors can be changed.

For more information about the SwipeView control, see Xamarin.Forms SwipeView.

CollectionView supports pull to refresh functionality through the RefreshView , which enables the data being

displayed to be refreshed by pulling down on the list of items. The RefreshView is a container control that

provides pull to refresh functionality to its child, provided that the child supports scrollable content. Therefore,

pull to refresh is implemented for a CollectionView by setting it as the child of a RefreshView :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/populate-data-images/swipeview-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<RefreshView IsRefreshing="{Binding IsRefreshing}"
 Command="{Binding RefreshCommand}">
 <CollectionView ItemsSource="{Binding Animals}">
 ...
 </CollectionView>
</RefreshView>

RefreshView refreshView = new RefreshView();
ICommand refreshCommand = new Command(() =>
{
 // IsRefreshing is true
 // Refresh data here
 refreshView.IsRefreshing = false;
});
refreshView.Command = refreshCommand;

CollectionView collectionView = new CollectionView();
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Animals");
refreshView.Content = collectionView;
// ...

 Load data incrementally

The equivalent C# code is:

When the user initiates a refresh, the ICommand defined by the Command property is executed, which should

refresh the items being displayed. A refresh visualization is shown while the refresh occurs, which consists of an

animated progress circle:

The value of the RefreshView.IsRefreshing property indicates the current state of the RefreshView . When a

refresh is triggered by the user, this property will automatically transition to true . Once the refresh completes,

you should reset the property to false .

For more information about RefreshView , see Xamarin.Forms RefreshView.

CollectionView supports incremental data virtualization as the user scrolls. This enables scenarios such as

asynchronously loading a page of data from a web service, as the user scrolls. In addition, the point at which

more data is loaded is configurable so that users don't see blank space, or are stopped from scrolling.

CollectionView defines the following properties to control incremental loading of data:

RemainingItemsThreshold , of type int , the threshold of items not yet visible in the list at which the

RemainingItemsThresholdReached event will be fired.

RemainingItemsThresholdReachedCommand , of type ICommand , which is executed when the

RemainingItemsThreshold is reached.

RemainingItemsThresholdReachedCommandParameter , of type object , which is the parameter that's passed to the

RemainingItemsThresholdReachedCommand .

CollectionView also defines a RemainingItemsThresholdReached event that is fired when the CollectionView is

scrolled far enough that RemainingItemsThreshold items have not been displayed. This event can be handled to

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/populate-data-images/pull-to-refresh-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

NOTENOTE

<CollectionView ItemsSource="{Binding Animals}"
 RemainingItemsThreshold="5"
 RemainingItemsThresholdReached="OnCollectionViewRemainingItemsThresholdReached">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 RemainingItemsThreshold = 5
};
collectionView.RemainingItemsThresholdReached += OnCollectionViewRemainingItemsThresholdReached;
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Animals");

void OnCollectionViewRemainingItemsThresholdReached(object sender, EventArgs e)
{
 // Retrieve more data here and add it to the CollectionView's ItemsSource collection.
}

NOTENOTE

 Related links

load more items. In addition, when the RemainingItemsThresholdReached event is fired, the

RemainingItemsThresholdReachedCommand is executed, enabling incremental data loading to take place in a

viewmodel.

The default value of the RemainingItemsThreshold property is -1, which indicates that the

RemainingItemsThresholdReached event will never be fired. When the property value is 0, the

RemainingItemsThresholdReached event will be fired when the final item in the ItemsSource is displayed. For

values greater than 0, the RemainingItemsThresholdReached event will be fired when the ItemsSource contains

that number of items not yet scrolled to.

CollectionView validates the RemainingItemsThreshold property so that its value is always greater than or equal to -

1.

The following XAML example shows a CollectionView that loads data incrementally:

The equivalent C# code is:

In this code example, the RemainingItemsThresholdReached event fires when there are 5 items not yet scrolled to,

and in response executes the OnCollectionViewRemainingItemsThresholdReached event handler :

Data can also be loaded incrementally by binding the RemainingItemsThresholdReachedCommand to an ICommand

implementation in the viewmodel.

CollectionView (sample)

Xamarin.Forms RefreshView

Xamarin.Forms SwipeView

Xamarin.Forms Data Binding

Xamarin.Forms Data Templates

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/

Create a Xamarin.Forms DataTemplateSelector

Xamarin.Forms CollectionView Layout
 7/8/2021 • 11 minutes to read • Edit Online

 Download the sample

CollectionView defines the following properties that control layout:

ItemsLayout , of type IItemsLayout , specifies the layout to be used.

ItemSizingStrategy , of type ItemSizingStrategy , specifies the item measure strategy to be used.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

By default, a CollectionView will display its items in a vertical list. However, any of the following layouts can be

used:

Vertical list – a single column list that grows vertically as new items are added.

Horizontal list – a single row list that grows horizontally as new items are added.

Vertical grid – a multi-column grid that grows vertically as new items are added.

Horizontal grid – a multi-row grid that grows horizontally as new items are added.

These layouts can be specified by setting the ItemsLayout property to class that derives from the ItemsLayout

class. This class defines the following properties:

Orientation , of type ItemsLayoutOrientation , specifies the direction in which the CollectionView expands as

items are added.

SnapPointsAlignment , of type SnapPointsAlignment , specifies how snap points are aligned with items.

SnapPointsType , of type SnapPointsType , specifies the behavior of snap points when scrolling.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings. For more information about snap points, see Snap points in the Xamarin.Forms CollectionView

Scrolling guide.

The ItemsLayoutOrientation enumeration defines the following members:

Vertical indicates that the CollectionView will expand vertically as items are added.

Horizontal indicates that the CollectionView will expand horizontally as items are added.

The LinearItemsLayout class inherits from the ItemsLayout class, and defines an ItemSpacing property, of type

double , that represents the empty space around each item. The default value of this property is 0, and its value

must always be greater than or equal to 0. The LinearItemsLayout class also defines static Vertical and

Horizontal members. These members can be used to create vertical or horizontal lists, respectively.

Alternatively, a LinearItemsLayout object can be created, specifying an ItemsLayoutOrientation enumeration

member as an argument.

The GridItemsLayout class inherits from the ItemsLayout class, and defines the following properties:

VerticalItemSpacing , of type double , that represents the vertical empty space around each item. The default

value of this property is 0, and its value must always be greater than or equal to 0.

HorizontalItemSpacing , of type double , that represents the horizontal empty space around each item. The

default value of this property is 0, and its value must always be greater than or equal to 0.

Span , of type int , that represents the number of columns or rows to display in the grid. The default value

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/layout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iitemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemsizingstrategy#xamarin_forms_structureditemsview_itemsizingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsizingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.orientation#xamarin_forms_itemslayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.griditemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout

NOTENOTE

 Vertical list

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2"
 Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
</CollectionView>

<CollectionView ItemsSource="{Binding Monkeys}"
 ItemsLayout="VerticalList">
 ...
</CollectionView>

of this property is 1, and its value must always be greater than or equal to 1.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

CollectionView uses the native layout engines to perform layout.

By default, CollectionView will display its items in a vertical list layout. Therefore, it's not necessary to set the

ItemsLayout property to use this layout:

However, for completeness, in XAML a CollectionView can be set to display its items in a vertical list by setting

its ItemsLayout property to VerticalList :

Alternatively, this can also be accomplished by setting the ItemsLayout property to a LinearItemsLayout object,

specifying the Vertical ItemsLayoutOrientation enumeration member as the Orientation property value:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ...
 ItemsLayout = LinearItemsLayout.Vertical
};

 Horizontal list

The equivalent C# code is:

This results in a single column list, which grows vertically as new items are added:

In XAML, a CollectionView can display its items in a horizontal list by setting its ItemsLayout property to

HorizontalList :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/vertical-list-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout

<CollectionView ItemsSource="{Binding Monkeys}"
 ItemsLayout="HorizontalList">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="35" />
 <RowDefinition Height="35" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="70" />
 <ColumnDefinition Width="140" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2"
 Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold"
 LineBreakMode="TailTruncation" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}"
 LineBreakMode="TailTruncation"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
</CollectionView>

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Horizontal" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ...
 ItemsLayout = LinearItemsLayout.Horizontal
};

Alternatively, this layout can also be accomplished by setting the ItemsLayout property to a LinearItemsLayout

object, specifying the Horizontal ItemsLayoutOrientation enumeration member as the Orientation property

value:

The equivalent C# code is:

This results in a single row list, which grows horizontally as new items are added:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayoutorientation
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/horizontal-list-large.png#lightbox

 Vertical grid

<CollectionView ItemsSource="{Binding Monkeys}"
 ItemsLayout="VerticalGrid, 2">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="35" />
 <RowDefinition Height="35" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="70" />
 <ColumnDefinition Width="80" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2"
 Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold"
 LineBreakMode="TailTruncation" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}"
 LineBreakMode="TailTruncation"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
</CollectionView>

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <GridItemsLayout Orientation="Vertical"
 Span="2" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ...
 ItemsLayout = new GridItemsLayout(2, ItemsLayoutOrientation.Vertical)
};

In XAML, a CollectionView can display its items in a vertical grid by setting its ItemsLayout property to

VerticalGrid :

Alternatively, this layout can also be accomplished by setting the ItemsLayout property to a GridItemsLayout

object whose Orientation property is set to Vertical :

The equivalent C# code is:

By default, a vertical GridItemsLayout will display items in a single column. However, this example sets the

GridItemsLayout.Span property to 2. This results in a two-column grid, which grows vertically as new items are

added:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.griditemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.orientation#xamarin_forms_itemslayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.griditemslayout

 Horizontal grid

<CollectionView ItemsSource="{Binding Monkeys}"
 ItemsLayout="HorizontalGrid, 4">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="35" />
 <RowDefinition Height="35" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="70" />
 <ColumnDefinition Width="140" />
 </Grid.ColumnDefinitions>
 <Image Grid.RowSpan="2"
 Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold"
 LineBreakMode="TailTruncation" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}"
 LineBreakMode="TailTruncation"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
</CollectionView>

In XAML, a CollectionView can display its items in a horizontal grid by setting its ItemsLayout property to

HorizontalGrid :

Alternatively, this layout can also be accomplished by setting the ItemsLayout property to a GridItemsLayout

object whose Orientation property is set to Horizontal :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/vertical-grid-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.griditemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.orientation#xamarin_forms_itemslayout_orientation

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <GridItemsLayout Orientation="Horizontal"
 Span="4" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ...
 ItemsLayout = new GridItemsLayout(4, ItemsLayoutOrientation.Horizontal)
};

 Headers and footers

The equivalent C# code is:

By default, a horizontal GridItemsLayout will display items in a single row. However, this example sets the

GridItemsLayout.Span property to 4. This results in a four-row grid, which grows horizontally as new items are

added:

CollectionView can present a header and footer that scroll with the items in the list. The header and footer can

be strings, views, or DataTemplate objects.

CollectionView defines the following properties for specifying the header and footer :

Header , of type object , specifies the string, binding, or view that will be displayed at the start of the list.

HeaderTemplate , of type DataTemplate , specifies the DataTemplate to use to format the Header .

Footer , of type object , specifies the string, binding, or view that will be displayed at the end of the list.

FooterTemplate , of type DataTemplate , specifies the DataTemplate to use to format the Footer .

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

When a header is added to a layout that grows horizontally, from left to right, the header is displayed to the left

of the list. Similarly, when a footer is added to a layout that grows horizontally, from left to right, the footer is

displayed to the right of the list.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.griditemslayout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/horizontal-grid-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

 Display strings in the header and footerDisplay strings in the header and footer

<CollectionView ItemsSource="{Binding Monkeys}"
 Header="Monkeys"
 Footer="2019">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 Header = "Monkeys",
 Footer = "2019"
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

 Display views in the header and footerDisplay views in the header and footer

The Header and Footer properties can be set to string values, as shown in the following example:

The equivalent C# code is:

This code results in the following screenshots, with the header shown in the iOS screenshot, and the footer

shown in the Android screenshot:

The Header and Footer properties can each be set to a view. This can be a single view, or a view that contains

multiple child views. The following example shows the Header and Footer properties each set to a

StackLayout object that contains a Label object:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/header-footer-string-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.Header>
 <StackLayout BackgroundColor="LightGray">
 <Label Margin="10,0,0,0"
 Text="Monkeys"
 FontSize="Small"
 FontAttributes="Bold" />
 </StackLayout>
 </CollectionView.Header>
 <CollectionView.Footer>
 <StackLayout BackgroundColor="LightGray">
 <Label Margin="10,0,0,0"
 Text="Friends of Xamarin Monkey"
 FontSize="Small"
 FontAttributes="Bold" />
 </StackLayout>
 </CollectionView.Footer>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 Header = new StackLayout
 {
 Children =
 {
 new Label { Text = "Monkeys", ... }
 }
 },
 Footer = new StackLayout
 {
 Children =
 {
 new Label { Text = "Friends of Xamarin Monkey", ... }
 }
 }
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

The equivalent C# code is:

This code results in the following screenshots, with the header shown in the iOS screenshot, and the footer

shown in the Android screenshot:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/header-footer-view-large.png#lightbox

 Display a templated header and footerDisplay a templated header and footer

<CollectionView ItemsSource="{Binding Monkeys}"
 Header="{Binding .}"
 Footer="{Binding .}">
 <CollectionView.HeaderTemplate>
 <DataTemplate>
 <StackLayout BackgroundColor="LightGray">
 <Label Margin="10,0,0,0"
 Text="Monkeys"
 FontSize="Small"
 FontAttributes="Bold" />
 </StackLayout>
 </DataTemplate>
 </CollectionView.HeaderTemplate>
 <CollectionView.FooterTemplate>
 <DataTemplate>
 <StackLayout BackgroundColor="LightGray">
 <Label Margin="10,0,0,0"
 Text="Friends of Xamarin Monkey"
 FontSize="Small"
 FontAttributes="Bold" />
 </StackLayout>
 </DataTemplate>
 </CollectionView.FooterTemplate>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 HeaderTemplate = new DataTemplate(() =>
 {
 return new StackLayout { };
 }),
 FooterTemplate = new DataTemplate(() =>
 {
 return new StackLayout { };
 })
};
collectionView.SetBinding(ItemsView.HeaderProperty, ".");
collectionView.SetBinding(ItemsView.FooterProperty, ".");
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

The HeaderTemplate and FooterTemplate properties can be set to DataTemplate objects that are used to format

the header and footer. In this scenario, the Header and Footer properties must bind to the current source for

the templates to be applied, as shown in the following example:

The equivalent C# code is:

This code results in the following screenshots, with the header shown in the iOS screenshot, and the footer

shown in the Android screenshot:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

 Item spacing

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 ItemSpacing="20" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

NOTENOTE

CollectionView collectionView = new CollectionView
{
 ...
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Vertical)
 {
 ItemSpacing = 20
 }
};

By default, there is no space between each item in a CollectionView . This behavior can be changed by setting

properties on the items layout used by the CollectionView .

When a CollectionView sets its ItemsLayout property to a LinearItemsLayout object, the

LinearItemsLayout.ItemSpacing property can be set to a double value that represents the space between items:

The LinearItemsLayout.ItemSpacing property has a validation callback set, which ensures that the value of the

property is always greater than or equal to 0.

The equivalent C# code is:

This code results in a vertical single column list, that has a spacing of 20 between items:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/header-footer-template-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <GridItemsLayout Orientation="Vertical"
 Span="2"
 VerticalItemSpacing="20"
 HorizontalItemSpacing="30" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

NOTENOTE

CollectionView collectionView = new CollectionView
{
 ...
 ItemsLayout = new GridItemsLayout(2, ItemsLayoutOrientation.Vertical)
 {
 VerticalItemSpacing = 20,
 HorizontalItemSpacing = 30
 }
};

 Item sizing

When a CollectionView sets its ItemsLayout property to a GridItemsLayout object, the

GridItemsLayout.VerticalItemSpacing and GridItemsLayout.HorizontalItemSpacing properties can be set to

double values that represent the empty space vertically and horizontally between items:

The GridItemsLayout.VerticalItemSpacing and GridItemsLayout.HorizontalItemSpacing properties have

validation callbacks set, which ensure that the values of the properties are always greater than or equal to 0.

The equivalent C# code is:

This code results in a vertical two-column grid, that has a vertical spacing of 20 between items, and a horizontal

spacing of 30 between items:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/vertical-list-spacing-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemslayout#xamarin_forms_structureditemsview_itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.griditemslayout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/vertical-grid-spacing-large.png#lightbox

IMPORTANTIMPORTANT

<CollectionView ...
 ItemSizingStrategy="MeasureFirstItem">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ...
 ItemSizingStrategy = ItemSizingStrategy.MeasureFirstItem
};

 Dynamic resizing of items

void OnImageTapped(object sender, EventArgs e)
{
 Image image = sender as Image;
 image.HeightRequest = image.WidthRequest = image.HeightRequest.Equals(60) ? 100 : 60;
}

 Right-to-left layout

By default, each item in a CollectionView is individually measured and sized, provided that the UI elements in

the DataTemplate don't specify fixed sizes. This behavior, which can be changed, is specified by the

CollectionView.ItemSizingStrategy property value. This property value can be set to one of the

ItemSizingStrategy enumeration members:

MeasureAllItems – each item is individually measured. This is the default value.

MeasureFirstItem – only the first item is measured, with all subsequent items being given the same size as

the first item.

The MeasureFirstItem sizing strategy will result in increased performance when used in situations where the item size is

intended to be uniform across all items.

The following code example shows setting the ItemSizingStrategy property:

The equivalent C# code is:

Items in a CollectionView can be dynamically resized at runtime by changing layout related properties of

elements within the DataTemplate . For example, the following code example changes the HeightRequest and

WidthRequest properties of an Image object:

The OnImageTapped event handler is executed in response to an Image object being tapped, and changes the

dimensions of the image so that it's more easily viewed:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemsizingstrategy#xamarin_forms_structureditemsview_itemsizingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsizingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.structureditemsview.itemsizingstrategy#xamarin_forms_structureditemsview_itemsizingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/runtime-resizing-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="CollectionViewDemos.Views.VerticalListFlowDirectionPage"
 Title="Vertical list (RTL FlowDirection)"
 FlowDirection="RightToLeft">
 <StackLayout Margin="20">
 <CollectionView ItemsSource="{Binding Monkeys}">
 ...
 </CollectionView>
 </StackLayout>
</ContentPage>

 Related links

CollectionView can layout its content in a right-to-left flow direction by setting its FlowDirection property to

RightToLeft . However, the FlowDirection property should ideally be set on a page or root layout, which causes

all the elements within the page, or root layout, to respond to the flow direction:

The default FlowDirection for an element with a parent is MatchParent . Therefore, the CollectionView inherits

the FlowDirection property value from the StackLayout , which in turn inherits the FlowDirection property

value from the ContentPage . This results in the right-to-left layout shown in the following screenshots:

For more information about flow direction, see Right-to-left localization.

CollectionView (sample)

Right-to-left localization

Xamarin.Forms CollectionView Scrolling

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_righttoleft
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_matchparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/layout-images/vertical-list-rtl-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/

Xamarin.Forms CollectionView Selection
 7/8/2021 • 6 minutes to read • Edit Online

 Single selection

 Download the sample

CollectionView defines the following properties that control item selection:

SelectionMode , of type SelectionMode , the selection mode.

SelectedItem , of type object , the selected item in the list. This property has a default binding mode of

TwoWay , and has a null value when no item is selected.

SelectedItems , of type IList<object> , the selected items in the list. This property has a default binding

mode of OneWay , and has a null value when no items are selected.

SelectionChangedCommand , of type ICommand , which is executed when the selected item changes.

SelectionChangedCommandParameter , of type object , which is the parameter that's passed to the

SelectionChangedCommand .

All of these properties are backed by BindableProperty objects, which means that the properties can be targets

of data bindings.

By default, CollectionView selection is disabled. However, this behavior can be changed by setting the

SelectionMode property value to one of the SelectionMode enumeration members:

None – indicates that items cannot be selected. This is the default value.

Single – indicates that a single item can be selected, with the selected item being highlighted.

Multiple – indicates that multiple items can be selected, with the selected items being highlighted.

CollectionView defines a SelectionChanged event that is fired when the SelectedItem property changes, either

due to the user selecting an item from the list, or when an application sets the property. In addition, this event is

also fired when the SelectedItems property changes. The SelectionChangedEventArgs object that accompanies

the SelectionChanged event has two properties, both of type IReadOnlyList<object> :

PreviousSelection – the list of items that were selected, before the selection changed.

CurrentSelection – the list of items that are selected, after the selection change.

In addition, CollectionView has a UpdateSelectedItems method that updates the SelectedItems property with a

list of selected items, while only firing a single change notification.

When the SelectionMode property is set to Single , a single item in the CollectionView can be selected. When

an item is selected, the SelectedItem property will be set to the value of the selected item. When this property

changes, the SelectionChangedCommand is executed (with the value of the SelectionChangedCommandParameter

being passed to the ICommand), and the SelectionChanged event fires.

The following XAML example shows a CollectionView that can respond to single item selection:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/selection.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditems#xamarin_forms_selectableitemsview_selecteditems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchangedcommand#xamarin_forms_selectableitemsview_selectionchangedcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchangedcommandparameter#xamarin_forms_selectableitemsview_selectionchangedcommandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditems#xamarin_forms_selectableitemsview_selecteditems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectionchangedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditems#xamarin_forms_selectableitemsview_selecteditems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchangedcommand#xamarin_forms_selectableitemsview_selectionchangedcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchangedcommandparameter#xamarin_forms_selectableitemsview_selectionchangedcommandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<CollectionView ItemsSource="{Binding Monkeys}"
 SelectionMode="Single"
 SelectionChanged="OnCollectionViewSelectionChanged">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 SelectionMode = SelectionMode.Single
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
collectionView.SelectionChanged += OnCollectionViewSelectionChanged;

void OnCollectionViewSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 string previous = (e.PreviousSelection.FirstOrDefault() as Monkey)?.Name;
 string current = (e.CurrentSelection.FirstOrDefault() as Monkey)?.Name;
 ...
}

IMPORTANTIMPORTANT

 Multiple selection

The equivalent C# code is:

In this code example, the OnCollectionViewSelectionChanged event handler is executed when the

SelectionChanged event fires, with the event handler retrieving the previously selected item, and the current

selected item:

The SelectionChanged event can be fired by changes that occur as a result of changing the SelectionMode property.

The following screenshots show single item selection in a CollectionView :

When the SelectionMode property is set to Multiple , multiple items in the CollectionView can be selected.

When items are selected, the SelectedItems property will be set to the selected items. When this property

changes, the SelectionChangedCommand is executed (with the value of the SelectionChangedCommandParameter

being passed to the ICommand), and the SelectionChanged event fires.

The following XAML example shows a CollectionView that can respond to multiple item selection:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/selection-images/single-selection-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditems#xamarin_forms_selectableitemsview_selecteditems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchangedcommand#xamarin_forms_selectableitemsview_selectionchangedcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchangedcommandparameter#xamarin_forms_selectableitemsview_selectionchangedcommandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<CollectionView ItemsSource="{Binding Monkeys}"
 SelectionMode="Multiple"
 SelectionChanged="OnCollectionViewSelectionChanged">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 SelectionMode = SelectionMode.Multiple
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
collectionView.SelectionChanged += OnCollectionViewSelectionChanged;

void OnCollectionViewSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 var previous = e.PreviousSelection;
 var current = e.CurrentSelection;
 ...
}

IMPORTANTIMPORTANT

 Single pre-selection

The equivalent C# code is:

In this code example, the OnCollectionViewSelectionChanged event handler is executed when the

SelectionChanged event fires, with the event handler retrieving the previously selected items, and the current

selected items:

The SelectionChanged event can be fired by changes that occur as a result of changing the SelectionMode property.

The following screenshots show multiple item selection in a CollectionView :

When the SelectionMode property is set to Single , a single item in the CollectionView can be pre-selected by

setting the SelectedItem property to the item. The following XAML example shows a CollectionView that pre-

selects a single item:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/selection-images/multiple-selection-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem

<CollectionView ItemsSource="{Binding Monkeys}"
 SelectionMode="Single"
 SelectedItem="{Binding SelectedMonkey}">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 SelectionMode = SelectionMode.Single
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
collectionView.SetBinding(SelectableItemsView.SelectedItemProperty, "SelectedMonkey");

NOTENOTE

public class MonkeysViewModel : INotifyPropertyChanged
{
 ...
 public ObservableCollection<Monkey> Monkeys { get; private set; }

 Monkey selectedMonkey;
 public Monkey SelectedMonkey
 {
 get
 {
 return selectedMonkey;
 }
 set
 {
 if (selectedMonkey != value)
 {
 selectedMonkey = value;
 }
 }
 }

 public MonkeysViewModel()
 {
 ...
 selectedMonkey = Monkeys.Skip(3).FirstOrDefault();
 }
 ...
}

The equivalent C# code is:

The SelectedItem property has a default binding mode of TwoWay .

The SelectedItem property data binds to the SelectedMonkey property of the connected view model, which is of

type Monkey . By default, a TwoWay binding is used so that if the user changes the selected item, the value of the

SelectedMonkey property will be set to the selected Monkey object. The SelectedMonkey property is defined in

the MonkeysViewModel class, and is set to the fourth item of the Monkeys collection:

Therefore, when the CollectionView appears, the fourth item in the list is pre-selected:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

 Multiple pre-selection

<CollectionView x:Name="collectionView"
 ItemsSource="{Binding Monkeys}"
 SelectionMode="Multiple"
 SelectedItems="{Binding SelectedMonkeys}">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 SelectionMode = SelectionMode.Multiple
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");
collectionView.SetBinding(SelectableItemsView.SelectedItemsProperty, "SelectedMonkeys");

NOTENOTE

When the SelectionMode property is set to Multiple , multiple items in the CollectionView can be pre-selected.

The following XAML example shows a CollectionView that will enable the pre-selection of multiple items:

The equivalent C# code is:

The SelectedItems property has a default binding mode of OneWay .

The SelectedItems property data binds to the SelectedMonkeys property of the connected view model, which is

of type ObservableCollection<object> . The SelectedMonkeys property is defined in the MonkeysViewModel class,

and is set to the second, fourth, and fifth items in the Monkeys collection:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/selection-images/single-pre-selection-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditems#xamarin_forms_selectableitemsview_selecteditems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditems#xamarin_forms_selectableitemsview_selecteditems

namespace CollectionViewDemos.ViewModels
{
 public class MonkeysViewModel : INotifyPropertyChanged
 {
 ...
 ObservableCollection<object> selectedMonkeys;
 public ObservableCollection<object> SelectedMonkeys
 {
 get
 {
 return selectedMonkeys;
 }
 set
 {
 if (selectedMonkeys != value)
 {
 selectedMonkeys = value;
 }
 }
 }

 public MonkeysViewModel()
 {
 ...
 SelectedMonkeys = new ObservableCollection<object>()
 {
 Monkeys[1], Monkeys[3], Monkeys[4]
 };
 }
 ...
 }
}

 Clear selections

 Change selected item color

Therefore, when the CollectionView appears, the second, fourth, and fifth items in the list are pre-selected:

The SelectedItem and SelectedItems properties can be cleared by setting them, or the objects they bind to, to

null .

CollectionView has a Selected VisualState that can be used to initiate a visual change to the selected item in

the CollectionView . A common use case for this VisualState is to change the background color of the selected

item, which is shown in the following XAML example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/selection-images/multiple-pre-selection-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditems#xamarin_forms_selectableitemsview_selecteditems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

<ContentPage ...>
 <ContentPage.Resources>
 <Style TargetType="Grid">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="Selected">
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="LightSkyBlue" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>
 </ContentPage.Resources>
 <StackLayout Margin="20">
 <CollectionView ItemsSource="{Binding Monkeys}"
 SelectionMode="Single">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 ...
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </StackLayout>
</ContentPage>

IMPORTANTIMPORTANT

 Disable selection

<CollectionView ...
 SelectionMode="None" />

The Style that contains the Selected VisualState must have a TargetType property value that's the type of the

root element of the DataTemplate , which is set as the ItemTemplate property value.

In this example, the Style.TargetType property value is set to Grid because the root element of the

ItemTemplate is a Grid . The Selected VisualState specifies that when an item in the CollectionView is

selected, the BackgroundColor of the item will be set to LightSkyBlue :

For more information about visual states, see Xamarin.Forms Visual State Manager.

CollectionView selection is disabled by default. However, if a CollectionView has selection enabled, it can be

disabled by setting the SelectionMode property to None :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/selection-images/single-selection-color-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode

CollectionView collectionView = new CollectionView
{
 ...
 SelectionMode = SelectionMode.None
};

NOTENOTE

 Related links

The equivalent C# code is:

When the SelectionMode property is set to None , items in the CollectionView cannot be selected, the

SelectedItem property will remain null , and the SelectionChanged event will not be fired.

When an item has been selected and the SelectionMode property is changed from Single to None , the

SelectedItem property will be set to null and the SelectionChanged event will be fired with an empty

CurrentSelection property.

CollectionView (sample)

Xamarin.Forms Visual State Manager

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionmode#xamarin_forms_selectableitemsview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selecteditem#xamarin_forms_selectableitemsview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selectableitemsview.selectionchanged
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/

Xamarin.Forms CollectionView EmptyView
 7/8/2021 • 6 minutes to read • Edit Online

NOTENOTE

 Display a string when data is unavailable

<CollectionView ItemsSource="{Binding EmptyMonkeys}"
 EmptyView="No items to display" />

CollectionView collectionView = new CollectionView
{
 EmptyView = "No items to display"
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "EmptyMonkeys");

 Download the sample

CollectionView defines the following properties that can be used to provide user feedback when there's no data

to display:

EmptyView , of type object , the string, binding, or view that will be displayed when the ItemsSource

property is null , or when the collection specified by the ItemsSource property is null or empty. The

default value is null .

EmptyViewTemplate , of type DataTemplate , the template to use to format the specified EmptyView . The default

value is null .

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

The main usage scenarios for setting the EmptyView property are displaying user feedback when a filtering

operation on a CollectionView yields no data, and displaying user feedback while data is being retrieved from a

web service.

The EmptyView property can be set to a view that includes interactive content if required.

For more information about data templates, see Xamarin.Forms Data Templates.

The EmptyView property can be set to a string, which will be displayed when the ItemsSource property is null ,

or when the collection specified by the ItemsSource property is null or empty. The following XAML shows an

example of this scenario:

The equivalent C# code is:

The result is that, because the data bound collection is null , the string set as the EmptyView property value is

displayed:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/emptyview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview

 Display views when data is unavailable

<StackLayout Margin="20">
 <SearchBar x:Name="searchBar"
 SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={x:Reference searchBar}, Path=Text}"
 Placeholder="Filter" />
 <CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 ...
 </DataTemplate>
 </CollectionView.ItemTemplate>
 <CollectionView.EmptyView>
 <ContentView>
 <StackLayout HorizontalOptions="CenterAndExpand"
 VerticalOptions="CenterAndExpand">
 <Label Text="No results matched your filter."
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 <Label Text="Try a broader filter?"
 FontAttributes="Italic"
 FontSize="12"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </StackLayout>
 </ContentView>
 </CollectionView.EmptyView>
 </CollectionView>
</StackLayout>

The EmptyView property can be set to a view, which will be displayed when the ItemsSource property is null ,

or when the collection specified by the ItemsSource property is null or empty. This can be a single view, or a

view that contains multiple child views. The following XAML example shows the EmptyView property set to a

view that contains multiple child views:

In this example, what looks like a redundant ContentView has been added as the root element of the EmptyView .

This is because internally, the EmptyView is added to a native container that doesn't provide any context for

Xamarin.Forms layout. Therefore, to position the views that comprise your EmptyView , you must add a root

layout, whose child is a layout that can position itself within the root layout.

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/emptyview-images/null-itemssource-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview

SearchBar searchBar = new SearchBar { ... };
CollectionView collectionView = new CollectionView
{
 EmptyView = new ContentView
 {
 Content = new StackLayout
 {
 Children =
 {
 new Label { Text = "No results matched your filter.", ... },
 new Label { Text = "Try a broader filter?", ... }
 }
 }
 }
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

 Display a templated custom type when data is unavailable

When the SearchBar executes the FilterCommand , the collection displayed by the CollectionView is filtered for

the search term stored in the SearchBar.Text property. If the filtering operation yields no data, the StackLayout

set as the EmptyView property value is displayed:

The EmptyView property can be set to a custom type, whose template is displayed when the ItemsSource

property is null , or when the collection specified by the ItemsSource property is null or empty. The

EmptyViewTemplate property can be set to a DataTemplate that defines the appearance of the EmptyView . The

following XAML shows an example of this scenario:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/emptyview-images/filter-multiple-views-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemssource#xamarin_forms_itemsview_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

<StackLayout Margin="20">
 <SearchBar x:Name="searchBar"
 SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={x:Reference searchBar}, Path=Text}"
 Placeholder="Filter" />
 <CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 ...
 </DataTemplate>
 </CollectionView.ItemTemplate>
 <CollectionView.EmptyView>
 <views:FilterData Filter="{Binding Source={x:Reference searchBar}, Path=Text}" />
 </CollectionView.EmptyView>
 <CollectionView.EmptyViewTemplate>
 <DataTemplate>
 <Label Text="{Binding Filter, StringFormat='Your filter term of {0} did not match any
records.'}"
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </DataTemplate>
 </CollectionView.EmptyViewTemplate>
 </CollectionView>
</StackLayout>

SearchBar searchBar = new SearchBar { ... };
CollectionView collectionView = new CollectionView
{
 EmptyView = new FilterData { Filter = searchBar.Text },
 EmptyViewTemplate = new DataTemplate(() =>
 {
 return new Label { ... };
 })
};

public class FilterData : BindableObject
{
 public static readonly BindableProperty FilterProperty = BindableProperty.Create(nameof(Filter),
typeof(string), typeof(FilterData), null);

 public string Filter
 {
 get { return (string)GetValue(FilterProperty); }
 set { SetValue(FilterProperty, value); }
 }
}

The equivalent C# code is:

The FilterData type defines a Filter property, and a corresponding BindableProperty :

The EmptyView property is set to a FilterData object, and the Filter property data binds to the

SearchBar.Text property. When the SearchBar executes the FilterCommand , the collection displayed by the

CollectionView is filtered for the search term stored in the Filter property. If the filtering operation yields no

data, the Label defined in the DataTemplate , that's set as the EmptyViewTemplate property value, is displayed:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate

NOTENOTE

 Choose an EmptyView at runtime

When displaying a templated custom type when data is unavailable, the EmptyViewTemplate property can be set to a

view that contains multiple child views.

Views that will be displayed as an EmptyView when data is unavailable, can be defined as ContentView objects in

a ResourceDictionary . The EmptyView property can then be set to a specific ContentView , based on some

business logic, at runtime. The following XAML shows an example of this scenario:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/emptyview-images/emptyviewtemplate-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="CollectionViewDemos.Views.EmptyViewSwapPage"
 Title="EmptyView (swap)">
 <ContentPage.Resources>
 <ContentView x:Key="BasicEmptyView">
 <StackLayout>
 <Label Text="No items to display."
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </StackLayout>
 </ContentView>
 <ContentView x:Key="AdvancedEmptyView">
 <StackLayout>
 <Label Text="No results matched your filter."
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 <Label Text="Try a broader filter?"
 FontAttributes="Italic"
 FontSize="12"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </StackLayout>
 </ContentView>
 </ContentPage.Resources>

 <StackLayout Margin="20">
 <SearchBar x:Name="searchBar"
 SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={x:Reference searchBar}, Path=Text}"
 Placeholder="Filter" />
 <StackLayout Orientation="Horizontal">
 <Label Text="Toggle EmptyViews" />
 <Switch Toggled="OnEmptyViewSwitchToggled" />
 </StackLayout>
 <CollectionView x:Name="collectionView"
 ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 ...
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </StackLayout>
</ContentPage>

void ToggleEmptyView(bool isToggled)
{
 collectionView.EmptyView = isToggled ? Resources["BasicEmptyView"] : Resources["AdvancedEmptyView"];
}

This XAML defines two ContentView objects in the page-level ResourceDictionary , with the Switch object

controlling which ContentView object will be set as the EmptyView property value. When the Switch is toggled,

the OnEmptyViewSwitchToggled event handler executes the ToggleEmptyView method:

The ToggleEmptyView method sets the EmptyView property of the collectionView object to one of the two

ContentView objects stored in the ResourceDictionary , based on the value of the Switch.IsToggled property.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.istoggled#xamarin_forms_switch_istoggled

 Choose an EmptyViewTemplate at runtime

<ContentPage ...
 xmlns:controls="clr-namespace:CollectionViewDemos.Controls">
 <ContentPage.Resources>
 <DataTemplate x:Key="AdvancedTemplate">
 ...
 </DataTemplate>

 <DataTemplate x:Key="BasicTemplate">
 ...
 </DataTemplate>

 <controls:SearchTermDataTemplateSelector x:Key="SearchSelector"
 DefaultTemplate="{StaticResource AdvancedTemplate}"
 OtherTemplate="{StaticResource BasicTemplate}" />
 </ContentPage.Resources>

 <StackLayout Margin="20">
 <SearchBar x:Name="searchBar"
 SearchCommand="{Binding FilterCommand}"
 SearchCommandParameter="{Binding Source={x:Reference searchBar}, Path=Text}"
 Placeholder="Filter" />
 <CollectionView ItemsSource="{Binding Monkeys}"
 EmptyView="{Binding Source={x:Reference searchBar}, Path=Text}"
 EmptyViewTemplate="{StaticResource SearchSelector}" />
 </StackLayout>
</ContentPage>

SearchBar searchBar = new SearchBar { ... };
CollectionView collectionView = new CollectionView
{
 EmptyView = searchBar.Text,
 EmptyViewTemplate = new SearchTermDataTemplateSelector { ... }
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Monkeys");

When the SearchBar executes the FilterCommand , the collection displayed by the CollectionView is filtered for

the search term stored in the SearchBar.Text property. If the filtering operation yields no data, the ContentView

object set as the EmptyView property is displayed:

For more information about resource dictionaries, see Xamarin.Forms Resource Dictionaries.

The appearance of the EmptyView can be chosen at runtime, based on its value, by setting the

CollectionView.EmptyViewTemplate property to a DataTemplateSelector object:

The equivalent C# code is:

The EmptyView property is set to the SearchBar.Text property, and the EmptyViewTemplate property is set to a

SearchTermDataTemplateSelector object.

When the SearchBar executes the FilterCommand , the collection displayed by the CollectionView is filtered for

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/emptyview-images/swap-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyview#xamarin_forms_itemsview_emptyview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

public class SearchTermDataTemplateSelector : DataTemplateSelector
{
 public DataTemplate DefaultTemplate { get; set; }
 public DataTemplate OtherTemplate { get; set; }

 protected override DataTemplate OnSelectTemplate(object item, BindableObject container)
 {
 string query = (string)item;
 return query.ToLower().Equals("xamarin") ? OtherTemplate : DefaultTemplate;
 }
}

 Related links

the search term stored in the SearchBar.Text property. If the filtering operation yields no data, the

DataTemplate chosen by the SearchTermDataTemplateSelector object is set as the EmptyViewTemplate property

and displayed.

The following example shows the SearchTermDataTemplateSelector class:

The SearchTermTemplateSelector class defines DefaultTemplate and OtherTemplate DataTemplate properties

that are set to different data templates. The OnSelectTemplate override returns DefaultTemplate , which displays

a message to the user, when the search query isn't equal to "xamarin". When the search query is equal to

"xamarin", the OnSelectTemplate override returns OtherTemplate , which displays a basic message to the user :

For more information about data template selectors, see Create a Xamarin.Forms DataTemplateSelector.

CollectionView (sample)

Xamarin.Forms Data Templates

Xamarin.Forms Resource Dictionaries

Create a Xamarin.Forms DataTemplateSelector

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.text#xamarin_forms_inputview_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.emptyviewtemplate#xamarin_forms_itemsview_emptyviewtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/emptyview-images/datatemplateselector-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/

Xamarin.Forms CollectionView Scrolling
 7/8/2021 • 8 minutes to read • Edit Online

 Detect scrolling

 Download the sample

CollectionView defines two ScrollTo methods, that scroll items into view. One of the overloads scrolls the item

at the specified index into view, while the other scrolls the specified item into view. Both overloads have

additional arguments that can be specified to indicate the group the item belongs to, the exact position of the

item after the scroll has completed, and whether to animate the scroll.

CollectionView defines a ScrollToRequested event that is fired when one of the ScrollTo methods is invoked.

The ScrollToRequestedEventArgs object that accompanies the ScrollToRequested event has many properties,

including IsAnimated , Index , Item , and ScrollToPosition . These properties are set from the arguments

specified in the ScrollTo method calls.

In addition, CollectionView defines a Scrolled event that is fired to indicate that scrolling occurred. The

ItemsViewScrolledEventArgs object that accompanies the Scrolled event has many properties. For more

information, see Detect scrolling.

CollectionView also defines a ItemsUpdatingScrollMode property that represents the scrolling behavior of the

CollectionView when new items are added to it. For more information about this property, see Control scroll

position when new items are added.

When a user swipes to initiate a scroll, the end position of the scroll can be controlled so that items are fully

displayed. This feature is known as snapping, because items snap to position when scrolling stops. For more

information, see Snap points.

CollectionView can also load data incrementally as the user scrolls. For more information, see Load data

incrementally.

CollectionView defines a Scrolled event which is fired to indicate that scrolling occurred. The

ItemsViewScrolledEventArgs class, which represents the object that accompanies the Scrolled event, defines

the following properties:

HorizontalDelta , of type double , represents the change in the amount of horizontal scrolling. This is a

negative value when scrolling left, and a positive value when scrolling right.

VerticalDelta , of type double , represents the change in the amount of vertical scrolling. This is a negative

value when scrolling upwards, and a positive value when scrolling downwards.

HorizontalOffset , of type double , defines the amount by which the list is horizontally offset from its origin.

VerticalOffset , of type double , defines the amount by which the list is vertically offset from its origin.

FirstVisibleItemIndex , of type int , is the index of the first item that's visible in the list.

CenterItemIndex , of type int , is the index of the the center item that's visible in the list.

LastVisibleItemIndex , of type int , is the index of the last item that's visible in the list.

The following XAML example shows a CollectionView that sets an event handler for the Scrolled event:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/scrolling.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrolltorequested
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltorequestedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<CollectionView Scrolled="OnCollectionViewScrolled">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView();
collectionView.Scrolled += OnCollectionViewScrolled;

void OnCollectionViewScrolled(object sender, ItemsViewScrolledEventArgs e)
{
 // Custom logic
}

IMPORTANTIMPORTANT

 Scroll an item at an index into view

collectionView.ScrollTo(12);

// Items and groups are indexed from zero.
collectionView.ScrollTo(2, 1);

NOTENOTE

 Scroll an item into view

MonkeysViewModel viewModel = BindingContext as MonkeysViewModel;
Monkey monkey = viewModel.Monkeys.FirstOrDefault(m => m.Name == "Proboscis Monkey");
collectionView.ScrollTo(monkey);

The equivalent C# code is:

In this code example, the OnCollectionViewScrolled event handler is executed when the Scrolled event fires:

The Scrolled event is fired for user initiated scrolls, and for programmatic scrolls.

The first ScrollTo method overload scrolls the item at the specified index into view. Given a CollectionView

object named collectionView , the following example shows how to scroll the item at index 12 into view:

Alternatively, an item in grouped data can be scrolled into view by specifying the item and group indexes. The

following example shows how to scroll the third item in the second group into view:

The ScrollToRequested event is fired when the ScrollTo method is invoked.

The second ScrollTo method overload scrolls the specified item into view. Given a CollectionView object

named collectionView , the following example shows how to scroll the Proboscis Monkey item into view:

Alternatively, an item in grouped data can be scrolled into view by specifying the item and the group. The

following example shows how to scroll the Proboscis Monkey item in the Monkeys group into view:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrolltorequested
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

GroupedAnimalsViewModel viewModel = BindingContext as GroupedAnimalsViewModel;
AnimalGroup group = viewModel.Animals.FirstOrDefault(a => a.Name == "Monkeys");
Animal monkey = group.FirstOrDefault(m => m.Name == "Proboscis Monkey");
collectionView.ScrollTo(monkey, group);

NOTENOTE

 Disable scroll animation

collectionView.ScrollTo(monkey, animate: false);

 Control scroll position

 MakeVisibleMakeVisible

collectionView.ScrollTo(monkey, position: ScrollToPosition.MakeVisible);

NOTENOTE

The ScrollToRequested event is fired when the ScrollTo method is invoked.

A scrolling animation is displayed when scrolling an item into view. However, this animation can be disabled by

setting the animate argument of the ScrollTo method to false :

When scrolling an item into view, the exact position of the item after the scroll has completed can be specified

with the position argument of the ScrollTo methods. This argument accepts a ScrollToPosition

enumeration member.

The ScrollToPosition.MakeVisible member indicates that the item should be scrolled until it's visible in the view:

This example code results in the minimal scrolling required to scroll the item into view:

The ScrollToPosition.MakeVisible member is used by default, if the position argument is not specified when

calling the ScrollTo method.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrolltorequested
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.scrollto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/scrolltoposition-makevisible-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition

 StartStart

collectionView.ScrollTo(monkey, position: ScrollToPosition.Start);

 CenterCenter

collectionView.ScrollTo(monkey, position: ScrollToPosition.Center);

 EndEnd

collectionView.ScrollTo(monkey, position: ScrollToPosition.End);

The ScrollToPosition.Start member indicates that the item should be scrolled to the start of the view:

This example code results in the item being scrolled to the start of the view:

The ScrollToPosition.Center member indicates that the item should be scrolled to the center of the view:

This example code results in the item being scrolled to the center of the view:

The ScrollToPosition.End member indicates that the item should be scrolled to the end of the view:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/scrolltoposition-start-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/scrolltoposition-center-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition

 Control scroll position when new items are added

<CollectionView ItemsUpdatingScrollMode="KeepLastItemInView">
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ItemsUpdatingScrollMode = ItemsUpdatingScrollMode.KeepLastItemInView
};

 Scroll bar visibility

This example code results in the item being scrolled to the end of the view:

CollectionView defines a ItemsUpdatingScrollMode property, which is backed by a bindable property. This

property gets or sets a ItemsUpdatingScrollMode enumeration value that represents the scrolling behavior of the

CollectionView when new items are added to it. The ItemsUpdatingScrollMode enumeration defines the

following members:

KeepItemsInView keeps the first item in the list displayed when new items are added.

KeepScrollOffset ensures that the current scroll position is maintained when new items are added.

KeepLastItemInView adjusts the scroll offset to keep the last item in the list displayed when new items are

added.

The default value of the ItemsUpdatingScrollMode property is KeepItemsInView . Therefore, when new items are

added to a CollectionView the first item in the list will remain displayed. To ensure that the last item in the list is

displayed when new items are added, set the ItemsUpdatingScrollMode property to KeepLastItemInView :

The equivalent C# code is:

CollectionView defines HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties, which are

backed by bindable properties. These properties get or set a ScrollBarVisibility enumeration value that

represents when the horizontal, or vertical, scroll bar is visible. The ScrollBarVisibility enumeration defines

the following members:

Default indicates the default scroll bar behavior for the platform, and is the default value for the

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/scrolltoposition-end-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility

 Snap points

NOTENOTE

 Snap points typeSnap points type

 Snap points alignmentSnap points alignment

HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties.

Always indicates that scroll bars will be visible, even when the content fits in the view.

Never indicates that scroll bars will not be visible, even if the content doesn't fit in the view.

When a user swipes to initiate a scroll, the end position of the scroll can be controlled so that items are fully

displayed. This feature is known as snapping, because items snap to position when scrolling stops, and is

controlled by the following properties from the ItemsLayout class:

SnapPointsType , of type SnapPointsType , specifies the behavior of snap points when scrolling.

SnapPointsAlignment , of type SnapPointsAlignment , specifies how snap points are aligned with items.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

When snapping occurs, it will occur in the direction that produces the least amount of motion.

The SnapPointsType enumeration defines the following members:

None indicates that scrolling does not snap to items.

Mandatory indicates that content always snaps to the closest snap point to where scrolling would naturally

stop, along the direction of inertia.

MandatorySingle indicates the same behavior as Mandatory , but only scrolls one item at a time.

By default, the SnapPointsType property is set to SnapPointsType.None , which ensures that scrolling does not

snap items, as shown in the following screenshots:

The SnapPointsAlignment enumeration defines Start , Center , and End members.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/snappoints-none-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.snappointsalignment

IMPORTANTIMPORTANT

 StartStart

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 SnapPointsType="MandatorySingle"
 SnapPointsAlignment="Start" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Vertical)
 {
 SnapPointsType = SnapPointsType.MandatorySingle,
 SnapPointsAlignment = SnapPointsAlignment.Start
 },
 // ...
};

 CenterCenter

The value of the SnapPointsAlignment property is only respected when the SnapPointsType property is set to

Mandatory , or MandatorySingle .

The SnapPointsAlignment.Start member indicates that snap points are aligned with the leading edge of items.

By default, the SnapPointsAlignment property is set to SnapPointsAlignment.Start . However, for completeness,

the following XAML example shows how to set this enumeration member:

The equivalent C# code is:

When a user swipes to initiate a scroll, the top item will be aligned with the top of the view:

The SnapPointsAlignment.Center member indicates that snap points are aligned with the center of items. The

following XAML example shows how to set this enumeration member:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointstype#xamarin_forms_itemslayout_snappointstype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemslayout.snappointsalignment#xamarin_forms_itemslayout_snappointsalignment
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/snappoints-start-large.png#lightbox

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 SnapPointsType="MandatorySingle"
 SnapPointsAlignment="Center" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

CollectionView collectionView = new CollectionView
{
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Vertical)
 {
 SnapPointsType = SnapPointsType.MandatorySingle,
 SnapPointsAlignment = SnapPointsAlignment.Center
 },
 // ...
};

 EndEnd

<CollectionView ItemsSource="{Binding Monkeys}">
 <CollectionView.ItemsLayout>
 <LinearItemsLayout Orientation="Vertical"
 SnapPointsType="MandatorySingle"
 SnapPointsAlignment="End" />
 </CollectionView.ItemsLayout>
 ...
</CollectionView>

The equivalent C# code is:

When a user swipes to initiate a scroll, the top item will be center aligned at the top of the view:

The SnapPointsAlignment.End member indicates that snap points are aligned with the trailing edge of items. The

following XAML example shows how to set this enumeration member:

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/snappoints-center-large.png#lightbox

CollectionView collectionView = new CollectionView
{
 ItemsLayout = new LinearItemsLayout(ItemsLayoutOrientation.Vertical)
 {
 SnapPointsType = SnapPointsType.MandatorySingle,
 SnapPointsAlignment = SnapPointsAlignment.End
 },
 // ...
};

 Related links

When a user swipes to initiate a scroll, the bottom item will be aligned with the bottom of the view:

CollectionView (sample)

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/scrolling-images/snappoints-end-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/

Xamarin.Forms CollectionView Grouping
 7/8/2021 • 5 minutes to read • Edit Online

 Group data

 ExampleExample

 Download the sample

Large data sets can often become unwieldy when presented in a continually scrolling list. In this scenario,

organizing the data into groups can improve the user experience by making it easier to navigate the data.

CollectionView supports displaying grouped data, and defines the following properties that control how it will

be presented:

IsGrouped , of type bool , indicates whether the underlying data should be displayed in groups. The default

value of this property is false .

GroupHeaderTemplate , of type DataTemplate , the template to use for the header of each group.

GroupFooterTemplate , of type DataTemplate , the template to use for the footer of each group.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings.

The following screenshots show a CollectionView displaying grouped data:

For more information about data templates, see Xamarin.Forms Data Templates.

Data must be grouped before it can be displayed. This can be accomplished by creating a list of groups, where

each group is a list of items. The list of groups should be an IEnumerable<T> collection, where T defines two

pieces of data:

A group name.

An IEnumerable collection that defines the items belonging to the group.

The process for grouping data, therefore, is to:

Create a type that models a single item.

Create a type that models a single group of items.

Create an IEnumerable<T> collection, where T is the type that models a single group of items. This collection

is therefore a collection of groups, which stores the grouped data.

Add data to the IEnumerable<T> collection.

When grouping data, the first step is to create a type that models a single item. The following example shows

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/collectionview/grouping.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/grouping-images/grouped-data-large.png#lightbox

public class Animal
{
 public string Name { get; set; }
 public string Location { get; set; }
 public string Details { get; set; }
 public string ImageUrl { get; set; }
}

public class AnimalGroup : List<Animal>
{
 public string Name { get; private set; }

 public AnimalGroup(string name, List<Animal> animals) : base(animals)
 {
 Name = name;
 }
}

public List<AnimalGroup> Animals { get; private set; } = new List<AnimalGroup>();

the Animal class from the sample application:

The Animal class models a single item. A type that models a group of items can then be created. The following

example shows the AnimalGroup class from the sample application:

The AnimalGroup class inherits from the List<T> class and adds a Name property that represents the group

name.

An IEnumerable<T> collection of groups can then be created:

This code defines a collection named Animals , where each item in the collection is an AnimalGroup object. Each

AnimalGroup object comprises a name, and a List<Animal> collection that defines the Animal objects in the

group.

Grouped data can then be added to the Animals collection:

Animals.Add(new AnimalGroup("Bears", new List<Animal>
{
 new Animal
 {
 Name = "American Black Bear",
 Location = "North America",
 Details = "Details about the bear go here.",
 ImageUrl = "https://upload.wikimedia.org/wikipedia/commons/0/08/01_Schwarzbär.jpg"
 },
 new Animal
 {
 Name = "Asian Black Bear",
 Location = "Asia",
 Details = "Details about the bear go here.",
 ImageUrl =
"https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Ursus_thibetanus_3_%28Wroclaw_zoo%29.JPG/180px-
Ursus_thibetanus_3_%28Wroclaw_zoo%29.JPG"
 },
 // ...
}));

Animals.Add(new AnimalGroup("Monkeys", new List<Animal>
{
 new Animal
 {
 Name = "Baboon",
 Location = "Africa & Asia",
 Details = "Details about the monkey go here.",
 ImageUrl =
"https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Papio_anubis_%28Serengeti%2C_2009%29.jpg/200px-
Papio_anubis_%28Serengeti%2C_2009%29.jpg"
 },
 new Animal
 {
 Name = "Capuchin Monkey",
 Location = "Central & South America",
 Details = "Details about the monkey go here.",
 ImageUrl = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Capuchin_Costa_Rica.jpg/200px-
Capuchin_Costa_Rica.jpg"
 },
 new Animal
 {
 Name = "Blue Monkey",
 Location = "Central and East Africa",
 Details = "Details about the monkey go here.",
 ImageUrl = "https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/BlueMonkey.jpg/220px-
BlueMonkey.jpg"
 },
 // ...
}));

 Display grouped data

This code creates two groups in the Animals collection. The first AnimalGroup is named Bears , and contains a

List<Animal> collection of bear details. The second AnimalGroup is named Monkeys , and contains a

List<Animal> collection of monkey details.

CollectionView will display grouped data, provided that the data has been grouped correctly, by setting the

IsGrouped property to true :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

<CollectionView ItemsSource="{Binding Animals}"
 IsGrouped="true">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 ...
 <Image Grid.RowSpan="2"
 Source="{Binding ImageUrl}"
 Aspect="AspectFill"
 HeightRequest="60"
 WidthRequest="60" />
 <Label Grid.Column="1"
 Text="{Binding Name}"
 FontAttributes="Bold" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}"
 FontAttributes="Italic"
 VerticalOptions="End" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
</CollectionView>

CollectionView collectionView = new CollectionView
{
 IsGrouped = true
};
collectionView.SetBinding(ItemsView.ItemsSourceProperty, "Animals");
// ...

NOTENOTE

 Customize the group header

<CollectionView ItemsSource="{Binding Animals}"
 IsGrouped="true">
 ...
 <CollectionView.GroupHeaderTemplate>
 <DataTemplate>
 <Label Text="{Binding Name}"
 BackgroundColor="LightGray"
 FontSize="Large"
 FontAttributes="Bold" />
 </DataTemplate>
 </CollectionView.GroupHeaderTemplate>
</CollectionView>

The equivalent C# code is:

The appearance of each item in the CollectionView is defined by setting the CollectionView.ItemTemplate

property to a DataTemplate . For more information, see Define item appearance.

By default, CollectionView will display the group name in the group header and footer. This behavior can be changed

by customizing the group header and group footer.

The appearance of each group header can be customized by setting the CollectionView.GroupHeaderTemplate

property to a DataTemplate :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

 Customize the group footer

<CollectionView ItemsSource="{Binding Animals}"
 IsGrouped="true">
 ...
 <CollectionView.GroupFooterTemplate>
 <DataTemplate>
 <Label Text="{Binding Count, StringFormat='Total animals: {0:D}'}"
 Margin="0,0,0,10" />
 </DataTemplate>
 </CollectionView.GroupFooterTemplate>
</CollectionView>

 Empty groups

NOTENOTE

 Group without templates

In this example, each group header is set to a Label that displays the group name, and that has other

appearance properties set. The following screenshots show the customized group header :

The appearance of each group footer can be customized by setting the CollectionView.GroupFooterTemplate

property to a DataTemplate :

In this example, each group footer is set to a Label that displays the number of items in the group. The

following screenshots show the customized group footer :

When a CollectionView displays grouped data, it will display any groups that are empty. Such groups will be

displayed with a group header and footer, indicating that the group is empty. The following screenshots show an

empty group:

On iOS 10 and lower, group headers and footers for empty groups may all be displayed at the top of the

CollectionView .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/grouping-images/customized-header-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/grouping-images/customized-footer-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/collectionview/grouping-images/empty-group-large.png#lightbox

<CollectionView ItemsSource="{Binding Animals}"
 IsGrouped="true" />

 Related links

CollectionView can display correctly grouped data without setting the CollectionView.ItemTemplate property to

a DataTemplate :

In this scenario, meaningful data can be displayed by overriding the ToString method in the type that models a

single item, and the type that models a single group of items.

CollectionView (sample)

Xamarin.Forms Data Templates

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview.itemtemplate#xamarin_forms_itemsview_itemtemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-collectionviewdemos/

Xamarin.Forms IndicatorView
 7/8/2021 • 3 minutes to read • Edit Online

 Create an IndicatorView

 Download the sample

The IndicatorView is a control that displays indicators that represent the number of items, and current position,

in a CarouselView :

IndicatorView defines the following properties:

Count , of type int , the number of indicators.

HideSingle , of type bool , indicates whether the indicator should be hidden when only one exists. The

default value is true .

IndicatorColor , of type Color , the color of the indicators.

IndicatorSize , of type double , the size of the indicators. The default value is 6.0.

IndicatorLayout , of type Layout<View> , defines the layout class used to render the IndicatorView . This

property is set by Xamarin.Forms, and does not typically need to be set by developers.

IndicatorTemplate , of type DataTemplate , the template that defines the appearance of each indicator.

IndicatorsShape , of type IndicatorShape , the shape of each indicator.

ItemsSource , of type IEnumerable , the collection that indicators will be displayed for. This property will

automatically be set when the CarouselView.IndicatorView property is set.

MaximumVisible , of type int , the maximum number of visible indicators. The default value is int.MaxValue .

Position , of type int , the currently selected indicator index. This property uses a TwoWay binding. This

property will automatically be set when the CarouselView.IndicatorView property is set.

SelectedIndicatorColor , of type Color , the color of the indicator that represents the current item in the

CarouselView .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/indicatorview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-indicatorviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/indicatorview-images/circles-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<StackLayout>
 <CarouselView ItemsSource="{Binding Monkeys}"
 IndicatorView="indicatorView">
 <CarouselView.ItemTemplate>
 <!-- DataTemplate that defines item appearance -->
 </CarouselView.ItemTemplate>
 </CarouselView>
 <IndicatorView x:Name="indicatorView"
 IndicatorColor="LightGray"
 SelectedIndicatorColor="DarkGray"
 HorizontalOptions="Center" />
</StackLayout>

IMPORTANTIMPORTANT

 Change indicator shape

<IndicatorView x:Name="indicatorView"
 IndicatorsShape="Square"
 IndicatorColor="LightGray"
 SelectedIndicatorColor="DarkGray" />

 Change indicator size

<IndicatorView x:Name="indicatorView"
 IndicatorSize="18" />

 Limit the number of indicators displayed

The following example shows how to instantiate an IndicatorView in XAML:

In this example, the IndicatorView is rendered beneath the CarouselView , with an indicator for each item in the

CarouselView . The IndicatorView is populated with data by setting the CarouselView.IndicatorView property to

the IndicatorView object. Each indicator is a light gray circle, while the indicator that represents the current item

in the CarouselView is dark gray.

Setting the CarouselView.IndicatorView property results in the IndicatorView.Position property binding to the

CarouselView.Position property, and the IndicatorView.ItemsSource property binding to the

CarouselView.ItemsSource property.

The IndicatorView class has an IndicatorsShape property, which determines the shape of the indicators. This

property can be set to one of the IndicatorShape enumeration members:

Circle specifies that the indicator shapes will be circular. This is the default value of the

IndicatorView.IndicatorsShape property.

Square indicates that the indicator shapes will be square.

The following example shows an IndicatorView configured to use square indicators:

The IndicatorView class has an IndicatorSize property, of type double , which determines the size of the

indicators in device-independent units. The default value of this property is 6.0.

The following example shows an IndicatorView configured to display larger indicators:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.carouselview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview

<IndicatorView x:Name="indicatorView"
 MaximumVisible="6" />

 Define indicator appearance

<StackLayout>
 <CarouselView ItemsSource="{Binding Monkeys}"
 IndicatorView="indicatorView">
 <CarouselView.ItemTemplate>
 <!-- DataTemplate that defines item appearance -->
 </CarouselView.ItemTemplate>
 </CarouselView>
 <IndicatorView x:Name="indicatorView"
 Margin="0,0,0,40"
 IndicatorColor="Transparent"
 SelectedIndicatorColor="Transparent"
 HorizontalOptions="Center">
 <IndicatorView.IndicatorTemplate>
 <DataTemplate>
 <Label Text=""
 FontFamily="{OnPlatform iOS=Ionicons, Android=ionicons.ttf#}, Size=12}" />
 </DataTemplate>
 </IndicatorView.IndicatorTemplate>
 </IndicatorView>
</StackLayout>

 Set visual states

The IndicatorView class has a MaximumVisible property, of type int , which determines the maximum number

of visible indicators.

The following example shows an IndicatorView configured to display a maximum of six indicators:

The appearance of each indicator can be defined by setting the IndicatorView.IndicatorTemplate property to a

DataTemplate :

The elements specified in the DataTemplate define the appearance of each indicator. In this example, each

indicator is a Label that displays a font icon.

The following screenshots show indicators rendered using a font icon:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/indicatorview-images/templated-large.png#lightbox

<ContentPage ...>
 <ContentPage.Resources>
 <Style x:Key="IndicatorLabelStyle"
 TargetType="Label">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="TextColor"
 Value="LightGray" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Selected">
 <VisualState.Setters>
 <Setter Property="TextColor"
 Value="Black" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>
 </ContentPage.Resources>

 <StackLayout>
 ...
 <IndicatorView x:Name="indicatorView"
 Margin="0,0,0,40"
 IndicatorColor="Transparent"
 SelectedIndicatorColor="Transparent"
 HorizontalOptions="Center">
 <IndicatorView.IndicatorTemplate>
 <DataTemplate>
 <Label Text=""
 FontFamily="{OnPlatform iOS=Ionicons, Android=ionicons.ttf#}, Size=12}"
 Style="{StaticResource IndicatorLabelStyle}" />
 </DataTemplate>
 </IndicatorView.IndicatorTemplate>
 </IndicatorView>
 </StackLayout>
</ContentPage>

 Related links

IndicatorView has a Selected visual state that can be used to initiate a visual change to the indicator for the

current position in the IndicatorView . A common use case for this VisualState is to change the color of the

indicator that represents the current position:

In this example, the Selected visual state specifies that the indicator that represents the current position will

have its TextColor set to black. Otherwise the TextColor of the indicator will be light gray:

For more information about visual states, see Xamarin.Forms Visual State Manager.

IndicatorView (sample)

Xamarin.Forms CarouselView

Xamarin.Forms Visual State Manager

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.indicatorview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-indicatorviewdemos/

Xamarin.Forms ListView
 7/8/2021 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Use cases

 Components

 Headers and footersHeaders and footers

 GroupsGroups

 Download the sample

ListView is a view for presenting lists of data, especially long lists that require scrolling.

CollectionView is a view for presenting lists of data using different layout specifications. It aims to provide a more

flexible, and performant alternative to ListView . For more information, see Xamarin.Forms CollectionView.

A ListView control can be used in any situation where you're displaying scrollable lists of data. The ListView

class supports context actions and data binding.

The ListView control shouldn't be confused with the TableView control. The TableView control is a better

option whenever you have a non-bound list of options or data because it allows predefined options to be

specified in XAML. For example, the iOS settings app, which has a mostly predefined set of options, is better

suited to use a TableView than a ListView .

The ListView class doesn't support defining list items in XAML, you must use the ItemsSource property or data

binding with an ItemTemplate to define items in the list.

A ListView is best suited for a collections consisting of a single data type. This requirement is because only one

type of cell can be used for each row in the list. The TableView control can support multiple cell types, so it is a

better option when you need to display multiple data types.

For more information about binding data to a ListView instance, see ListView data sources.

The ListView control has a number of components available to exercise the native functionality of each

platform. These components are defined in the following sections.

Header and footer components display at the beginning and end of a list, separate from list's data. Headers and

footers can be bound to a separate data source from the ListView's data source.

Data in a ListView can be grouped for easier navigation. Groups are typically data bound. The following

screenshot shows a ListView with grouped data:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/listview/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithlistview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 CellsCells

 Functionality

Data items in a ListView are called cells. Each cell corresponds to a row of data. There are built-in cells to

choose from, or you can define your own custom cell. Both built-in and custom cells can be used/defined in

XAML or code.

Built-in cells, such as the TextCell and ImageCell , correspond to native controls and are especially

performant.

Custom cells are used to present complex data. For example, a custom cell could be used to present a list of

songs that includes the album and artist.

A TextCell displays a string of text, optionally with detail text. Detail text is rendered as a second line

in a smaller font with an accent color.

An ImageCell displays an image with text. Appears as a TextCell with an image on the left.

The following screenshot shows a ListView with ImageCell items:

To learn more about customizing cells in a ListView , see Customizing ListView Cell Appearance.

The ListView class supports a number of interaction styles.

Pull-to-refresh allows the user to pull the ListView down to refresh the contents.

Context actions allow the developer to specify custom actions on individual list items. For example, you can

implement swipe-to-action on iOS, or long-tap actions on Android.

Selection allow the developer to attach functionality to selection and deselection events on list items.

The following screenshot shows a ListView with context actions:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/listview/images/grouping-depth.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/listview/images/image-cell-default.png#lightbox

 Related links

To learn more about the interactivity features of ListView , see Actions & Interactivity with ListView.

Working With ListView (sample)

Two Way Binding (sample)

Built In Cells (sample)

Custom Cells (sample)

Grouping (sample)

Custom Renderer View (sample)

ListView Interactivity (sample)

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/listview/images/context-default.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithlistview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-switchentrytwobinding
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-builtincells
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-customcells
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-grouping
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithlistviewnative/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-interactivity

ListView Data Sources
 7/8/2021 • 3 minutes to read • Edit Online

 ItemsSource

<ListView>
 <ListView.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>mono</x:String>
 <x:String>monodroid</x:String>
 <x:String>monotouch</x:String>
 <x:String>monorail</x:String>
 <x:String>monodevelop</x:String>
 <x:String>monotone</x:String>
 <x:String>monopoly</x:String>
 <x:String>monomodal</x:String>
 <x:String>mononucleosis</x:String>
 </x:Array>
 </ListView.ItemsSource>
</ListView>

var listView = new ListView();
listView.ItemsSource = new string[]
{
 "mono",
 "monodroid",
 "monotouch",
 "monorail",
 "monodevelop",
 "monotone",
 "monopoly",
 "monomodal",
 "mononucleosis"
};

 Download the sample

A Xamarin.Forms ListView is used for displaying lists of data. This article explains how to populate a ListView

with data and how to bind data to the selected item.

A ListView is populated with data using the ItemsSource property, which can accept any collection

implementing IEnumerable . The simplest way to populate a ListView involves using an array of strings:

The equivalent C# code is:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/listview/data-and-databinding.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-switchentrytwobinding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemsview-1.itemssource#xamarin_forms_itemsview_1_itemssource

ObservableCollection<Employee> employees = new ObservableCollection<Employee>();
listView.ItemsSource = employees;

//Mr. Mono will be added to the ListView because it uses an ObservableCollection
employees.Add(new Employee(){ DisplayName="Mr. Mono"});

 Data Binding

 Binding CellsBinding Cells

This approach will populate the ListView with a list of strings. By default, ListView will call ToString and

display the result in a TextCell for each row. To customize how data is displayed, see Cell Appearance.

Because ItemsSource has been sent to an array, the content will not update as the underlying list or array

changes. If you want the ListView to automatically update as items are added, removed and changed in the

underlying list, you'll need to use an ObservableCollection . ObservableCollection is defined in

System.Collections.ObjectModel and is just like List , except that it can notify ListView of any changes:

Data binding is the "glue" that binds the properties of a user interface object to the properties of some CLR

object, such as a class in your viewmodel. Data binding is useful because it simplifies the development of user

interfaces by replacing a lot of boring boilerplate code.

Data binding works by keeping objects in sync as their bound values change. Instead of having to write event

handlers for every time a control's value changes, you establish the binding and enable binding in your

viewmodel.

For more information on data binding, see Data Binding Basics which is part four of the Xamarin.Forms XAML

Basics article series.

Properties of cells (and children of cells) can be bound to properties of objects in the ItemsSource . For example,

https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.observablecollection-1

public class Employee
{
 public string DisplayName {get; set;}
}

ObservableCollection<Employee> employees = new ObservableCollection<Employee>();
public ObservableCollection<Employee> Employees { get { return employees; }}

public EmployeeListPage()
{
 EmployeeView.ItemsSource = employees;

 // ObservableCollection allows items to be added after ItemsSource
 // is set and the UI will react to changes
 employees.Add(new Employee{ DisplayName="Rob Finnerty"});
 employees.Add(new Employee{ DisplayName="Bill Wrestler"});
 employees.Add(new Employee{ DisplayName="Dr. Geri-Beth Hooper"});
 employees.Add(new Employee{ DisplayName="Dr. Keith Joyce-Purdy"});
 employees.Add(new Employee{ DisplayName="Sheri Spruce"});
 employees.Add(new Employee{ DisplayName="Burt Indybrick"});
}

WARNINGWARNING

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:constants="clr-namespace:XamarinFormsSample;assembly=XamarinFormsXamlSample"
 x:Class="XamarinFormsXamlSample.Views.EmployeeListPage"
 Title="Employee List">
 <ListView x:Name="EmployeeView"
 ItemsSource="{Binding Employees}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding DisplayName}" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</ContentPage>

a ListView could be used to present a list of employees.

The employee class:

An ObservableCollection<Employee> is created, set as the ListView ItemsSource , and the list is populated with

data:

While a ListView will update in response to changes in its underlying ObservableCollection , a ListView will not

update if a different ObservableCollection instance is assigned to the original ObservableCollection reference (e.g.

employees = otherObservableCollection;).

The following snippet demonstrates a ListView bound to a list of employees:

This XAML example defines a ContentPage that contains a ListView . The data source of the ListView is set via

the ItemsSource attribute. The layout of each row in the ItemsSource is defined within the

ListView.ItemTemplate element. This results in the following screenshots:

WARNINGWARNING

 Binding SelectedItemBinding SelectedItem

<ListView x:Name="listView"
 SelectedItem="{Binding Source={x:Reference SomeLabel},
 Path=Text}">
 …
</ListView>

 Related Links

ObservableCollection is not thread safe. Modifying an ObservableCollection causes UI updates to happen on the

same thread that performed the modifications. If the thread is not the primary UI thread, it will cause an exception.

Often you'll want to bind to the selected item of a ListView , rather than use an event handler to respond to

changes. To do this in XAML, bind the SelectedItem property:

Assuming listView 's ItemsSource is a list of strings, SomeLabel will have its Text property bound to the

SelectedItem .

Two Way Binding (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-switchentrytwobinding

Customizing ListView Cell Appearance
 7/8/2021 • 6 minutes to read • Edit Online

 Built in Cells

 TextCellTextCell

 Download the sample

The Xamarin.Forms ListView class is used to present scrollable lists, which can be customized through the use

of ViewCell elements. A ViewCell element can display text and images, indicate a true/false state, and receive

user input.

Xamarin.Forms comes with built-in cells that work for many applications:

TextCell controls are used for displaying text with an optional second line for detail text.

ImageCell controls are similar to TextCell s but include an image to the left of the text.

SwitchCell controls are used to present and capture on/off or true/false states.

EntryCell controls are used to present text data that the user can edit.

The SwitchCell and EntryCell controls are more commonly used in the context of a TableView .

TextCell is a cell for displaying text, optionally with a second line as detail text. The following screenshot shows

TextCell items on iOS and Android:

TextCells are rendered as native controls at runtime, so performance is very good compared to a custom

ViewCell . TextCells are customizable, allowing you to set the following properties:

Text – the text that is shown on the first line, in large font.

Detail – the text that is shown underneath the first line, in a smaller font.

TextColor – the color of the text.

DetailColor – the color of the detail text

The following screenshot shows TextCell items with customized color properties:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/listview/customizing-cell-appearance.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-customcells
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textcell

 ImageCellImageCell

 Custom Cells

ImageCell , like TextCell , can be used for displaying text and secondary detail text, and it offers great

performance by using each platform's native controls. ImageCell differs from TextCell in that it displays an

image to the left of the text.

The following screenshot shows ImageCell items on iOS and Android:

ImageCell is useful when you need to display a list of data with a visual aspect, such as a list of contacts or

movies. ImageCell s are customizable, allowing you to set:

Text – the text that is shown on the first line, in large font

Detail – the text that is shown underneath the first line, in a smaller font

TextColor – the color of the text

DetailColor – the color of the detail text

ImageSource – the image to display next to the text

The following screenshot shows ImageCell items with customized color properties:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagecell

 XAMLXAML

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="demoListView.ImageCellPage">
 <ContentPage.Content>
 <ListView x:Name="listView">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <StackLayout BackgroundColor="#eee"
 Orientation="Vertical">
 <StackLayout Orientation="Horizontal">
 <Image Source="{Binding image}" />
 <Label Text="{Binding title}"
 TextColor="#f35e20" />
 <Label Text="{Binding subtitle}"
 HorizontalOptions="EndAndExpand"
 TextColor="#503026" />
 </StackLayout>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </ContentPage.Content>
</ContentPage>

Custom cells allow you to create cell layouts that aren't supported by the built-in cells. For example, you may

want to present a cell with two labels that have equal weight. A TextCell would be insufficient because the

TextCell has one label that is smaller. Most cell customizations add additional read-only data (such as

additional labels, images or other display information).

All custom cells must derive from ViewCell , the same base class that all of the built-in cell types use.

Xamarin.Forms offers a caching behavior on the ListView control which can improve scrolling performance for

some types of custom cells.

The following screenshot shows an example of a custom cell:

The custom cell shown in the previous screenshot can be created with the following XAML:

The XAML works as follows:

The custom cell is nested inside a DataTemplate , which is inside ListView.ItemTemplate . This is the same

process as using any built-in cell.

ViewCell is the type of the custom cell. The child of the DataTemplate element must be of, or derive from,

the ViewCell class.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

NOTENOTE

 CodeCode

public class CustomCell : ViewCell
 {
 public CustomCell()
 {
 //instantiate each of our views
 var image = new Image ();
 StackLayout cellWrapper = new StackLayout ();
 StackLayout horizontalLayout = new StackLayout ();
 Label left = new Label ();
 Label right = new Label ();

 //set bindings
 left.SetBinding (Label.TextProperty, "title");
 right.SetBinding (Label.TextProperty, "subtitle");
 image.SetBinding (Image.SourceProperty, "image");

 //Set properties for desired design
 cellWrapper.BackgroundColor = Color.FromHex ("#eee");
 horizontalLayout.Orientation = StackOrientation.Horizontal;
 right.HorizontalOptions = LayoutOptions.EndAndExpand;
 left.TextColor = Color.FromHex ("#f35e20");
 right.TextColor = Color.FromHex ("503026");

 //add views to the view hierarchy
 horizontalLayout.Children.Add (image);
 horizontalLayout.Children.Add (left);
 horizontalLayout.Children.Add (right);
 cellWrapper.Children.Add (horizontalLayout);
 View = cellWrapper;
 }
 }

public partial class ImageCellPage : ContentPage
 {
 public ImageCellPage ()
 {
 InitializeComponent ();
 listView.ItemTemplate = new DataTemplate (typeof(CustomCell));
 }
 }

 Binding Context ChangesBinding Context Changes

Inside the ViewCell , layout can be managed by any Xamarin.Forms layout. In this example, layout is

managed by a StackLayout , which allows the background color to be customized.

Any property of StackLayout that is bindable can be bound inside a custom cell. However, this capability is not shown

in the XAML example.

A custom cell can also be created in code. First, a custom class that derives from ViewCell must be created:

In the page constructor, the ListView's ItemTemplate property is set to a DataTemplate with the CustomCell type

specified:

When binding to a custom cell type's BindableProperty instances, the UI controls displaying the

BindableProperty values should use the OnBindingContextChanged override to set the data to be displayed in

each cell, rather than the cell constructor, as demonstrated in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.onbindingcontextchanged#xamarin_forms_cell_onbindingcontextchanged

public class CustomCell : ViewCell
{
 Label nameLabel, ageLabel, locationLabel;

 public static readonly BindableProperty NameProperty =
 BindableProperty.Create ("Name", typeof(string), typeof(CustomCell), "Name");
 public static readonly BindableProperty AgeProperty =
 BindableProperty.Create ("Age", typeof(int), typeof(CustomCell), 0);
 public static readonly BindableProperty LocationProperty =
 BindableProperty.Create ("Location", typeof(string), typeof(CustomCell), "Location");

 public string Name
 {
 get { return(string)GetValue (NameProperty); }
 set { SetValue (NameProperty, value); }
 }

 public int Age
 {
 get { return(int)GetValue (AgeProperty); }
 set { SetValue (AgeProperty, value); }
 }

 public string Location
 {
 get { return(string)GetValue (LocationProperty); }
 set { SetValue (LocationProperty, value); }
 }
 ...

 protected override void OnBindingContextChanged ()
 {
 base.OnBindingContextChanged ();

 if (BindingContext != null)
 {
 nameLabel.Text = Name;
 ageLabel.Text = Age.ToString ();
 locationLabel.Text = Location;
 }
 }
}

NOTENOTE

The OnBindingContextChanged override will be called when the BindingContextChanged event fires, in response to

the value of the BindingContext property changing. Therefore, when the BindingContext changes, the UI

controls displaying the BindableProperty values should set their data. Note that the BindingContext should be

checked for a null value, as this can be set by Xamarin.Forms for garbage collection, which in turn will result in

the OnBindingContextChanged override being called.

Alternatively, UI controls can bind to the BindableProperty instances to display their values, which removes the

need to override the OnBindingContextChanged method.

When overriding OnBindingContextChanged , ensure that the base class's OnBindingContextChanged method is called

so that registered delegates receive the BindingContextChanged event.

In XAML, binding the custom cell type to data can be achieved as shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.onbindingcontextchanged#xamarin_forms_cell_onbindingcontextchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontextchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<ListView x:Name="listView">
 <ListView.ItemTemplate>
 <DataTemplate>
 <local:CustomCell Name="{Binding Name}" Age="{Binding Age}" Location="{Binding Location}" />
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

var customCell = new DataTemplate (typeof(CustomCell));
customCell.SetBinding (CustomCell.NameProperty, "Name");
customCell.SetBinding (CustomCell.AgeProperty, "Age");
customCell.SetBinding (CustomCell.LocationProperty, "Location");

var listView = new ListView
{
 ItemsSource = people,
 ItemTemplate = customCell
};

 Related Links

This binds the Name , Age , and Location bindable properties in the CustomCell instance, to the Name , Age ,

and Location properties of each object in the underlying collection.

The equivalent binding in C# is shown in the following code example:

On iOS and Android, if the ListView is recycling elements and the custom cell uses a custom renderer, the

custom renderer must correctly implement property change notification. When cells are reused their property

values will change when the binding context is updated to that of an available cell, with PropertyChanged events

being raised. For more information, see Customizing a ViewCell. For more information about cell recycling, see

Caching Strategy.

Built in Cells (sample)

Custom Cells (sample)

Binding Context Changed (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-builtincells
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-customcells
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-bindingcontextchanged

ListView appearance
 7/8/2021 • 6 minutes to read • Edit Online

 Grouping

public class PageTypeGroup : List<PageModel>
 {
 public string Title { get; set; }
 public string ShortName { get; set; } //will be used for jump lists
 public string Subtitle { get; set; }
 private PageTypeGroup(string title, string shortName)
 {
 Title = title;
 ShortName = shortName;
 }

 public static IList<PageTypeGroup> All { private set; get; }
 }

 Download the sample

The Xamarin.Forms ListView allows you to customize the presentation of the list, in addition to the ViewCell

instances for each row in the list.

Large sets of data can become unwieldy when presented in a continuously scrolling list. Enabling grouping can

improve the user experience in these cases by better organizing the content and activating platform-specific

controls that make navigating data easier.

When grouping is activated for a ListView , a header row is added for each group.

To enable grouping:

Create a list of lists (a list of groups, each group being a list of elements).

Set the ListView 's ItemsSource to that list.

Set IsGroupingEnabled to true.

Set GroupDisplayBinding to bind to the property of the groups that is being used as the title of the group.

[Optional] Set GroupShortNameBinding to bind to the property of the groups that is being used as the short

name for the group. The short name is used for the jump lists (right-side column on iOS).

Start by creating a class for the groups:

In the above code, All is the list that will be given to our ListView as the binding source. Title and ShortName

are the properties that will be used for group headings.

At this stage, All is an empty list. Add a static constructor so that the list will be populated at program start:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/listview/customizing-list-appearance.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-grouping
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.groupdisplaybinding#xamarin_forms_listview_groupdisplaybinding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.groupshortnamebinding#xamarin_forms_listview_groupshortnamebinding

static PageTypeGroup()
{
 List<PageTypeGroup> Groups = new List<PageTypeGroup> {
 new PageTypeGroup ("Alpha", "A"){
 new PageModel("Amelia", "Cedar", new switchCellPage(),""),
 new PageModel("Alfie", "Spruce", new switchCellPage(), "grapefruit.jpg"),
 new PageModel("Ava", "Pine", new switchCellPage(), "grapefruit.jpg"),
 new PageModel("Archie", "Maple", new switchCellPage(), "grapefruit.jpg")
 },
 new PageTypeGroup ("Bravo", "B"){
 new PageModel("Brooke", "Lumia", new switchCellPage(),""),
 new PageModel("Bobby", "Xperia", new switchCellPage(), "grapefruit.jpg"),
 new PageModel("Bella", "Desire", new switchCellPage(), "grapefruit.jpg"),
 new PageModel("Ben", "Chocolate", new switchCellPage(), "grapefruit.jpg")
 }
 };
 All = Groups; //set the publicly accessible list
}

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DemoListView.GroupingViewPage"
 <ContentPage.Content>
 <ListView x:Name="GroupedView"
 GroupDisplayBinding="{Binding Title}"
 GroupShortNameBinding="{Binding ShortName}"
 IsGroupingEnabled="true">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding Title}"
 Detail="{Binding Subtitle}" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </ContentPage.Content>
</ContentPage>

In the above code, we can also call Add on elements of Groups , which are instances of type PageTypeGroup . This

method is possible because PageTypeGroup inherits from List<PageModel> .

Here is the XAML for displaying the grouped list:

This XAML performs the following actions:

Set GroupShortNameBinding to the ShortName property defined in our group class

Set GroupDisplayBinding to the Title property defined in our group class

Set IsGroupingEnabled to true

Changed the ListView 's ItemsSource to the grouped list

This following screenshot shows the resulting UI:

 Customizing groupingCustomizing grouping
If grouping has been enabled in the list, the group header can also be customized.

Similar to how the ListView has an ItemTemplate for defining how rows are displayed, ListView has a

GroupHeaderTemplate .

An example of customizing the group header in XAML is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DemoListView.GroupingViewPage">
 <ContentPage.Content>
 <ListView x:Name="GroupedView"
 GroupDisplayBinding="{Binding Title}"
 GroupShortNameBinding="{Binding ShortName}"
 IsGroupingEnabled="true">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding Title}"
 Detail="{Binding Subtitle}"
 TextColor="#f35e20"
 DetailColor="#503026" />
 </DataTemplate>
 </ListView.ItemTemplate>
 <!-- Group Header Customization-->
 <ListView.GroupHeaderTemplate>
 <DataTemplate>
 <TextCell Text="{Binding Title}"
 Detail="{Binding ShortName}"
 TextColor="#f35e20"
 DetailColor="#503026" />
 </DataTemplate>
 </ListView.GroupHeaderTemplate>
 <!-- End Group Header Customization -->
 </ListView>
 </ContentPage.Content>
</ContentPage>

 Headers and footers

ListView HeaderList = new ListView()
{
 Header = "Header",
 Footer = "Footer"
};

<ListView x:Name="HeaderList"
 Header="Header"
 Footer="Footer">
 ...
</ListView>

It is possible for a ListView to present a header and footer that scroll with the elements of the list. The header

and footer can be strings of text or a more complicated layout. This behavior is separate from section groups.

You can set the Header and/or Footer to a string value, or you can set them to a more complex layout. There

are also HeaderTemplate and FooterTemplate properties that let you create more complex layouts for the header

and footer that support data binding.

To create a basic header/footer, just set the Header or Footer properties to the text you want to display. In code:

In XAML:

<ListView.Header>
 <StackLayout Orientation="Horizontal">
 <Label Text="Header"
 TextColor="Olive"
 BackgroundColor="Red" />
 </StackLayout>
</ListView.Header>
<ListView.Footer>
 <StackLayout Orientation="Horizontal">
 <Label Text="Footer"
 TextColor="Gray"
 BackgroundColor="Blue" />
 </StackLayout>
</ListView.Footer>

To create a customized header and footer, define the Header and Footer views:

 Scrollbar visibility

 Row separators

SeparatorDemoListView.SeparatorVisibility = SeparatorVisibility.Default;

The ListView class has HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties, which get

or set a ScrollBarVisibility value that represents when the horizontal, or vertical, scroll bar is visible. Both

properties can be set to the following values:

Default indicates the default scroll bar behavior for the platform, and is the default value for the

HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties.

Always indicates that scroll bars will be visible, even when the content fits in the view.

Never indicates that scroll bars will not be visible, even if the content doesn't fit in the view.

Separator lines are displayed between ListView elements by default on iOS and Android. If you'd prefer to hide

the separator lines on iOS and Android, set the SeparatorVisibility property on your ListView. The options for

SeparatorVisibility are:

DefaultDefault - shows a separator line on iOS and Android.

NoneNone - hides the separator on all platforms.

Default Visibility:

C#:

XAML:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollbarvisibility

<ListView x:Name="SeparatorDemoListView" SeparatorVisibility="Default" />

SeparatorDemoListView.SeparatorVisibility = SeparatorVisibility.None;

<ListView x:Name="SeparatorDemoListView" SeparatorVisibility="None" />

None:

C#:

XAML:

SeparatorDemoListView.SeparatorColor = Color.Green;

<ListView x:Name="SeparatorDemoListView" SeparatorColor="Green" />

You can also set the color of the separator line via the SeparatorColor property:

C#:

XAML:

NOTENOTE

 Row height

 Custom fixed row heightCustom fixed row height

RowHeightDemoListView.RowHeight = 100;

<ListView x:Name="RowHeightDemoListView" RowHeight="100" />

Setting either of these properties on Android after loading the ListView incurs a large performance penalty.

All rows in a ListView have the same height by default. ListView has two properties that can be used to change

that behavior :

HasUnevenRows – true / false value, rows have varying heights if set to true . Defaults to false .

RowHeight – sets the height of each row when HasUnevenRows is false .

You can set the height of all rows by setting the RowHeight property on the ListView .

C#:

XAML:

 Uneven rowsUneven rows

RowHeightDemoListView.HasUnevenRows = true;

<ListView x:Name="RowHeightDemoListView" HasUnevenRows="true" />

If you'd like individual rows to have different heights, you can set the HasUnevenRows property to true . Row

heights don't have to be manually set once HasUnevenRows has been set to true , because the heights will be

automatically calculated by Xamarin.Forms.

C#:

XAML:

 Resize rows at runtimeResize rows at runtime

void OnImageTapped (object sender, EventArgs args)
{
 var image = sender as Image;
 var viewCell = image.Parent.Parent as ViewCell;

 if (image.HeightRequest < 250) {
 image.HeightRequest = image.Height + 100;
 viewCell.ForceUpdateSize ();
 }
}

Individual ListView rows can be programmatically resized at runtime, provided that the HasUnevenRows

property is set to true . The Cell.ForceUpdateSize method updates a cell's size, even when it isn't currently

visible, as demonstrated in the following code example:

The OnImageTapped event handler is executed in response to an Image in a cell being tapped, and increases the

size of the Image displayed in the cell so that it's easily viewed.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.forceupdatesize#xamarin_forms_cell_forceupdatesize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

WARNINGWARNING

 Related links

Overuse of runtime row resizing can cause performance degradation.

Grouping (sample)

Custom Renderer View (sample)

Dynamic Resizing of Rows (sample)

1.4 release notes

1.3 release notes

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-grouping
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithlistviewnative
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-dynamicunevenlistcells
https://forums.xamarin.com/discussion/35451/xamarin-forms-1-4-0-released/
https://forums.xamarin.com/discussion/29934/xamarin-forms-1-3-0-released/

ListView interactivity
 7/8/2021 • 5 minutes to read • Edit Online

 Selection and taps

NOTENOTE

 Download the sample

The Xamarin.Forms ListView class supports user interaction with the data it presents.

The ListView selection mode is controlled by setting the ListView.SelectionMode property to a value of the

ListViewSelectionMode enumeration:

Single indicates that a single item can be selected, with the selected item being highlighted. This is the

default value.

None indicates that items cannot be selected.

When a user taps an item, two events are fired:

ItemSelected fires when a new item is selected.

ItemTapped fires when an item is tapped.

Tapping the same item twice will fire two ItemTapped events, but will only fire a single ItemSelected event.

The ItemTappedEventArgs class, which contains the event arguments for the ItemTapped event, has Group and

Item properties, and an ItemIndex property whose value represents the index in the ListView of the tapped item.

Similarly, the SelectedItemChangedEventArgs class, which contains the event arguments for the ItemSelected event,

has a SelectedItem property, and a SelectedItemIndex property whose value represents the index in the ListView

of the selected item.

When the SelectionMode property is set to Single , items in the ListView can be selected, the ItemSelected

and ItemTapped events will be fired, and the SelectedItem property will be set to the value of the selected item.

When the SelectionMode property is set to None , items in the ListView cannot be selected, the ItemSelected

event will not be fired, and the SelectedItem property will remain null . However, ItemTapped events will still

be fired and the tapped item will be briefly highlighted during the tap.

When an item has been selected and the SelectionMode property is changed from Single to None , the

SelectedItem property will be set to null and the ItemSelected event will be fired with a null item.

The following screenshots show a ListView with the default selection mode:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/listview/interactivity.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-interactivity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selectionmode#xamarin_forms_listview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode#xamarin_forms_listviewselectionmode_single
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode#xamarin_forms_listviewselectionmode_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemtapped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemtapped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemtappedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemtapped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemtappedeventargs.group#xamarin_forms_itemtappedeventargs_group
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.itemtappedeventargs.item#xamarin_forms_itemtappedeventargs_item
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selecteditemchangedeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.selecteditemchangedeventargs.selecteditem#xamarin_forms_selecteditemchangedeventargs_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selectionmode#xamarin_forms_listview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode#xamarin_forms_listviewselectionmode_single
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemtapped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selecteditem#xamarin_forms_listview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selectionmode#xamarin_forms_listview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode#xamarin_forms_listviewselectionmode_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selecteditem#xamarin_forms_listview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemtapped
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selectionmode#xamarin_forms_listview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode#xamarin_forms_listviewselectionmode_single
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode#xamarin_forms_listviewselectionmode_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selecteditem#xamarin_forms_listview_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.itemselected
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Disable selectionDisable selection

<ListView ... SelectionMode="None" />

var listView = new ListView { ... SelectionMode = ListViewSelectionMode.None };

 Context actions

To disable ListView selection set the SelectionMode property to None :

Often, users will want to take action on an item in a ListView . For example, consider a list of emails in the Mail

app. On iOS, you can swipe to delete a message:

Context actions can be implemented in C# and XAML. Below you'll find specific guides for both, but first let's

take a look at some key implementation details for both.

Context Actions are created using MenuItem elements. Tap events for MenuItems objects are raised by the

MenuItem itself, not the ListView . This is different from how tap events are handled for cells, where the

ListView raises the event rather than the cell. Because the ListView is raising the event, its event handler is

given key information, like which item was selected or tapped.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.selectionmode#xamarin_forms_listview_selectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewselectionmode#xamarin_forms_listviewselectionmode_none

 XAMLXAML

<ListView x:Name="ContextDemoList">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Clicked="OnMore"
 CommandParameter="{Binding .}"
 Text="More" />
 <MenuItem Clicked="OnDelete"
 CommandParameter="{Binding .}"
 Text="Delete" IsDestructive="True" />
 </ViewCell.ContextActions>
 <StackLayout Padding="15,0">
 <Label Text="{Binding title}" />
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

public void OnMore (object sender, EventArgs e)
{
 var mi = ((MenuItem)sender);
 DisplayAlert("More Context Action", mi.CommandParameter + " more context action", "OK");
}

public void OnDelete (object sender, EventArgs e)
{
 var mi = ((MenuItem)sender);
 DisplayAlert("Delete Context Action", mi.CommandParameter + " delete context action", "OK");
}

NOTENOTE

 CodeCode

By default, a MenuItem has no way of knowing which cell it belongs to. The CommandParameter property is

available on MenuItem to store objects, such as the object behind the MenuItem 's ViewCell . The

CommandParameter property can be set in both XAML and C#.

MenuItem elements can be created in a XAML collection. The XAML below demonstrates a custom cell with two

context actions implemented:

In the code-behind file, ensure the Clicked methods are implemented:

The NavigationPageRenderer for Android has an overridable UpdateMenuItemIcon method that can be used to load

icons from a custom Drawable . This override makes it possible to use SVG images as icons on MenuItem instances on

Android.

Context actions can be implemented in any Cell subclass (as long as it isn't being used as a group header) by

creating MenuItem instances and adding them to the ContextActions collection for the cell. You have the

following properties can be configured for the context action:

TextText – the string that appears in the menu item.

ClickedClicked – the event when the item is clicked.

IsDestructiveIsDestructive – (optional) when true the item is rendered differently on iOS.

var moreAction = new MenuItem { Text = "More" };
moreAction.SetBinding (MenuItem.CommandParameterProperty, new Binding ("."));
moreAction.Clicked += async (sender, e) =>
{
 var mi = ((MenuItem)sender);
 Debug.WriteLine("More Context Action clicked: " + mi.CommandParameter);
};

var deleteAction = new MenuItem { Text = "Delete", IsDestructive = true }; // red background
deleteAction.SetBinding (MenuItem.CommandParameterProperty, new Binding ("."));
deleteAction.Clicked += async (sender, e) =>
{
 var mi = ((MenuItem)sender);
 Debug.WriteLine("Delete Context Action clicked: " + mi.CommandParameter);
};
// add to the ViewCell's ContextActions property
ContextActions.Add (moreAction);
ContextActions.Add (deleteAction);

 Pull to refresh

<ListView ...
 IsPullToRefreshEnabled="true" />

listView.IsPullToRefreshEnabled = true;

<ListView ...
 IsPullToRefreshEnabled="true"
 RefreshControlColor="Red" />

listView.RefreshControlColor = Color.Red;

Multiple context actions can be added to a cell, however only one should have IsDestructive set to true . The

following code demonstrates how context actions would be added to a ViewCell :

Users have come to expect that pulling down on a list of data will refresh that list. The ListView control

supports this out-of-the-box. To enable pull-to-refresh functionality, set IsPullToRefreshEnabled to true :

The equivalent C# code is:

A spinner appears during the refresh, which is black by default. However, the spinner color can be changed on

iOS and Android by setting the RefreshControlColor property to a Color :

The equivalent C# code is:

The following screenshots show pull-to-refresh as the user is pulling:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.ispulltorefreshenabled#xamarin_forms_listview_ispulltorefreshenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

NOTENOTE

 Detect scrolling

The following screenshots show pull-to-refresh after the user has released the pull, with the spinner being

shown while the ListView is updating:

ListView fires the Refreshing event to initiate the refresh, and the IsRefreshing property will be set to true .

Whatever code is required to refresh the contents of the ListView should then be executed by the event

handler for the Refreshing event, or by the method executed by the RefreshCommand . Once the ListView is

refreshed, the IsRefreshing property should be set to false , or the EndRefresh method should be called, to

indicate that the refresh is complete.

When defining a RefreshCommand , the CanExecute method of the command can be specified to enable or disable the

command.

ListView defines a Scrolled event that's fired to indicate that scrolling occurred. The following XAML example

shows a ListView that sets an event handler for the Scrolled event:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.refreshing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.isrefreshing#xamarin_forms_listview_isrefreshing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.refreshcommand#xamarin_forms_listview_refreshcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.endrefresh#xamarin_forms_listview_endrefresh
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview.refreshcommand#xamarin_forms_listview_refreshcommand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

<ListView Scrolled="OnListViewScrolled">
 ...
</ListView>

ListView listView = new ListView();
listView.Scrolled += OnListViewScrolled;

void OnListViewScrolled(object sender, ScrolledEventArgs e)
{
 Debug.WriteLine("ScrollX: " + e.ScrollX);
 Debug.WriteLine("ScrollY: " + e.ScrollY);
}

 Related links

The equivalent C# code is:

In this code example, the OnListViewScrolled event handler is executed when the Scrolled event fires:

The OnListViewScrolled event handler outputs the values of the ScrolledEventArgs object that accompanies the

event.

ListView Interactivity (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-listview-interactivity

ListView performance
 7/8/2021 • 7 minutes to read • Edit Online

 Caching strategy

public enum ListViewCachingStrategy
{
 RetainElement, // the default value
 RecycleElement,
 RecycleElementAndDataTemplate
}

NOTENOTE

 RetainElementRetainElement

 Download the sample

When writing mobile applications, performance matters. Users have come to expect smooth scrolling and fast

load times. Failing to meet your users' expectations will cost you ratings in the application store, or in the case of

a line-of-business application, cost your organization time and money.

The Xamarin.Forms ListView is a powerful view for displaying data, but it has some limitations. Scrolling

performance can suffer when using custom cells, especially when they contain deeply nested view hierarchies or

use certain layouts that require complex measurement. Fortunately, there are techniques you can use to avoid

poor performance.

ListViews are often used to display much more data than fits onscreen. For example, a music app might have a

library of songs with thousands of entries. Creating an item for every entry would waste valuable memory and

perform poorly. Creating and destroying rows constantly would require the application to instantiate and

cleanup objects constantly, which would also perform poorly.

To conserve memory, the native ListView equivalents for each platform have built-in features for reusing rows.

Only the cells visible on screen are loaded in memory and the contentcontent is loaded into existing cells. This pattern

prevents the application from instantiating thousands of objects, saving time and memory.

Xamarin.Forms permits ListView cell reuse through the ListViewCachingStrategy enumeration, which has the

following values:

The Universal Windows Platform (UWP) ignores the RetainElement caching strategy, because it always uses caching to

improve performance. Therefore, by default it behaves as if the RecycleElement caching strategy is applied.

The RetainElement caching strategy specifies that the ListView will generate a cell for each item in the list, and

is the default ListView behavior. It should be used in the following circumstances:

Each cell has a large number of bindings (20-30+).

The cell template changes frequently.

Testing reveals that the RecycleElement caching strategy results in a reduced execution speed.

It's important to recognize the consequences of the RetainElement caching strategy when working with custom

cells. Any cell initialization code will need to run for each cell creation, which may be multiple times per second.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/listview/performance.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithlistviewnative
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_retainelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_retainelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_retainelement

 RecycleElementRecycleElement

public class CustomCell : ViewCell
{
 Image image = null;

 public CustomCell ()
 {
 image = new Image();
 View = image;
 }

 protected override void OnBindingContextChanged ()
 {
 base.OnBindingContextChanged ();

 var item = BindingContext as ImageItem;
 if (item != null) {
 image.Source = item.ImageUrl;
 }
 }
}

 RecycleElement with a DataTemplateSelectorRecycleElement with a DataTemplateSelector

In this circumstance, layout techniques that were fine on a page, like using multiple nested StackLayout

instances, become performance bottlenecks when they're set up and destroyed in real time as the user scrolls.

The RecycleElement caching strategy specifies that the ListView will attempt to minimize its memory footprint

and execution speed by recycling list cells. This mode doesn't always offer a performance improvement, and

testing should be performed to determine any improvements. However, it's the preferred choice, and should be

used in the following circumstances:

Each cell has a small to moderate number of bindings.

Each cell's BindingContext defines all of the cell data.

Each cell is largely similar, with the cell template unchanging.

During virtualization the cell will have its binding context updated, and so if an application uses this mode it

must ensure that binding context updates are handled appropriately. All data about the cell must come from the

binding context or consistency errors may occur. This problem can be avoided by using data binding to display

cell data. Alternatively, cell data should be set in the OnBindingContextChanged override, rather than in the custom

cell's constructor, as demonstrated in the following code example:

For more information, see Binding Context Changes.

On iOS and Android, if cells use custom renderers, they must ensure that property change notification is

correctly implemented. When cells are reused their property values will change when the binding context is

updated to that of an available cell, with PropertyChanged events being raised. For more information, see

Customizing a ViewCell.

When a ListView uses a DataTemplateSelector to select a DataTemplate , the RecycleElement caching strategy

does not cache DataTemplate s. Instead, a DataTemplate is selected for each item of data in the list.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement

NOTENOTE

 RecycleElementAndDataTemplateRecycleElementAndDataTemplate

NOTENOTE

 Set the caching strategySet the caching strategy

var listView = new ListView(ListViewCachingStrategy.RecycleElement);

<ListView CachingStrategy="RecycleElement">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 ...
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

 Set the caching strategy in a subclassed ListViewSet the caching strategy in a subclassed ListView

The RecycleElement caching strategy has a pre-requisite, introduced in Xamarin.Forms 2.4, that when a

DataTemplateSelector is asked to select a DataTemplate that each DataTemplate must return the same ViewCell

type. For example, given a ListView with a DataTemplateSelector that can return either MyDataTemplateA (where

MyDataTemplateA returns a ViewCell of type MyViewCellA), or MyDataTemplateB (where MyDataTemplateB

returns a ViewCell of type MyViewCellB), when MyDataTemplateA is returned it must return MyViewCellA or an

exception will be thrown.

The RecycleElementAndDataTemplate caching strategy builds on the RecycleElement caching strategy by

additionally ensuring that when a ListView uses a DataTemplateSelector to select a DataTemplate ,

DataTemplate s are cached by the type of item in the list. Therefore, DataTemplate s are selected once per item

type, instead of once per item instance.

The RecycleElementAndDataTemplate caching strategy has a pre-requisite that the DataTemplate s returned by the

DataTemplateSelector must use the DataTemplate constructor that takes a Type .

The ListViewCachingStrategy enumeration value is specified with a ListView constructor overload, as shown in

the following code example:

In XAML, set the CachingStrategy attribute as shown in the XAML below:

This method has the same effect as setting the caching strategy argument in the constructor in C#.

Setting the CachingStrategy attribute from XAML on a subclassed ListView will not produce the desired

behavior, because there's no CachingStrategy property on ListView . In addition, if XAMLC is enabled, the

following error message will be produced: No proper ty, bindable proper ty, or event found forNo proper ty, bindable proper ty, or event found for

'CachingStrategy''CachingStrategy'

The solution to this issue is to specify a constructor on the subclassed ListView that accepts a

ListViewCachingStrategy parameter and passes it into the base class:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelementanddatatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy#xamarin_forms_listviewcachingstrategy_recycleelementanddatatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate.-ctor#xamarin_forms_datatemplate__ctor_system_type_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy

public class CustomListView : ListView
{
 public CustomListView (ListViewCachingStrategy strategy) : base (strategy)
 {
 }
 ...
}

<local:CustomListView>
 <x:Arguments>
 <ListViewCachingStrategy>RecycleElement</ListViewCachingStrategy>
 </x:Arguments>
</local:CustomListView>

 ListView performance suggestions

Then the ListViewCachingStrategy enumeration value can be specified from XAML by using the x:Arguments

syntax:

There are many techniques for improving the performance of a ListView . The following suggestions may

improve the performance of your ListView

Bind the ItemsSource property to an IList<T> collection instead of an IEnumerable<T> collection, because

IEnumerable<T> collections don't support random access.

Use the built-in cells (like TextCell / SwitchCell) instead of ViewCell whenever you can.

Use fewer elements. For example, consider using a single FormattedString label instead of multiple labels.

Replace the ListView with a TableView when displaying non-homogenous data – that is, data of different

types.

Limit the use of the Cell.ForceUpdateSize method. If overused, it will degrade performance.

On Android, avoid setting a ListView 's row separator visibility or color after it has been instantiated, as it

results in a large performance penalty.

Avoid changing the cell layout based on the BindingContext . Changing layout incurs large measurement and

initialization costs.

Avoid deeply nested layout hierarchies. Use AbsoluteLayout or Grid to help reduce nesting.

Avoid specific LayoutOptions other than Fill (Fill is the cheapest to compute).

Avoid placing a ListView inside a ScrollView for the following reasons:

Consider a custom renderer if you need a specific, complex design presented in your cells.

The ListView implements its own scrolling.

The ListView will not receive any gestures, as they will be handled by the parent ScrollView .

The ListView can present a customized header and footer that scrolls with the elements of the list,

potentially offering the functionality that the ScrollView was used for. For more information, see

Headers and Footers.

AbsoluteLayout has the potential to perform layouts without a single measure call, making it highly performant.

If AbsoluteLayout cannot be used, consider RelativeLayout . If using RelativeLayout , passing Constraints

directly will be considerably faster than using the expression API. This method is faster because the expression

API uses JIT, and on iOS the tree has to be interpreted, which is slower. The expression API is suitable for page

layouts where it only required on initial layout and rotation, but in ListView , where it's run constantly during

scrolling, it hurts performance.

Building a custom renderer for a ListView or its cells is one approach to reducing the effect of layout

calculations on scrolling performance. For more information, see Customizing a ListView and Customizing a

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.forceupdatesize#xamarin_forms_cell_forceupdatesize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Related links

ViewCell.

Custom Renderer View (sample)

Custom Renderer ViewCell (sample)

ListViewCachingStrategy

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithlistviewnative
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/customrenderers-viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listviewcachingstrategy

Xamarin.Forms Picker
 7/8/2021 • 2 minutes to read • Edit Online

The Picker view is a control for selecting a text item from a list of data.

The Xamarin.Forms Picker displays a short list of items, from which the user can select an item. Picker

defines the following properties:

CharacterSpacing , of type double , is the spacing between characters of the item displayed by the Picker .

FontAttributes of type FontAttributes , which defaults to FontAtributes.None .

FontFamily of type string , which defaults to null .

FontSize of type double , which defaults to -1.0.

HorizontalTextAlignment , of type TextAlignment , is the horizontal alignment of the text displayed by the

Picker .

ItemsSource of type IList , the source list of items to display, which defaults to null .

SelectedIndex of type int , the index of the selected item, which defaults to -1.

SelectedItem of type object , the selected item, which defaults to null .

TextColor of type Color , the color used to display the text, which defaults to Color.Default .

Title of type string , which defaults to null .

TitleColor of type Color , the color used to display the Title text.

VerticalTextAlignment , of type TextAlignment , is the vertical alignment of the text displayed by the Picker .

All of the properties are backed by BindableProperty objects, which means that they can be styled, and the

properties can be targets of data bindings. The SelectedIndex and SelectedItem properties have a default

binding mode of BindingMode.TwoWay , which means that they can be targets of data bindings in an application

that uses the Model-View-ViewModel (MVVM) architecture. For information about setting font properties, see

Fonts.

A Picker doesn't show any data when it's first displayed. Instead, the value of its Title property is shown as a

placeholder on the iOS and Android platforms:

When the Picker gains focus, its data is displayed and the user can select an item:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/picker/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.characterspacing#xamarin_forms_picker_characterspacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.fontattributes#xamarin_forms_picker_fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.fontattributes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.fontattributes#xamarin_forms_fontattributes_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.fontfamily#xamarin_forms_picker_fontfamily
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.fontsize#xamarin_forms_picker_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.textcolor#xamarin_forms_picker_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.default#xamarin_forms_color_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.title#xamarin_forms_picker_title
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.titlecolor#xamarin_forms_picker_titlecolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.title#xamarin_forms_picker_title
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/picker/images/picker-initial-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker

 Related links

The Picker fires a SelectedIndexChanged event when the user selects an item. Following selection, the selected

item is displayed by the Picker :

There are two techniques for populating a Picker with data:

Setting the ItemsSource property to the data to be displayed. This is the recommended technique. For more

information, see Setting a Picker's ItemsSource Property.

Adding the data to be displayed to the Items collection. This technique was the original process for

populating a Picker with data. For more information, see Adding Data to a Picker's Items Collection.

Picker

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/picker/images/picker-selection-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindexchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.items#xamarin_forms_picker_items
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker

Setting a Picker's ItemsSource Property
 7/8/2021 • 4 minutes to read • Edit Online

 Populating a Picker with data

<Picker x:Name="picker"
 Title="Select a monkey"
 TitleColor="Red">
 <Picker.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Baboon</x:String>
 <x:String>Capuchin Monkey</x:String>
 <x:String>Blue Monkey</x:String>
 <x:String>Squirrel Monkey</x:String>
 <x:String>Golden Lion Tamarin</x:String>
 <x:String>Howler Monkey</x:String>
 <x:String>Japanese Macaque</x:String>
 </x:Array>
 </Picker.ItemsSource>
</Picker>

NOTENOTE

var monkeyList = new List<string>();
monkeyList.Add("Baboon");
monkeyList.Add("Capuchin Monkey");
monkeyList.Add("Blue Monkey");
monkeyList.Add("Squirrel Monkey");
monkeyList.Add("Golden Lion Tamarin");
monkeyList.Add("Howler Monkey");
monkeyList.Add("Japanese Macaque");

var picker = new Picker { Title = "Select a monkey", TitleColor = Color.Red };
picker.ItemsSource = monkeyList;

 Download the sample

The Picker view is a control for selecting a text item from a list of data. This article explains how to populate a

Picker with data by setting the ItemsSource property, and how to respond to item selection by the user.

Xamarin.Forms 2.3.4 has enhanced the Picker view by adding the ability to populate it with data by setting its

ItemsSource property, and to retrieve the selected item from the SelectedItem property. In addition, the color

of the text for the selected item can be changed by setting the TextColor property to a Color .

A Picker can be populated with data by setting its ItemsSource property to an IList collection. Each item in

the collection must be of, or derived from, type object . Items can be added in XAML by initializing the

ItemsSource property from an array of items:

Note that the x:Array element requires a Type attribute indicating the type of the items in the array.

The equivalent C# code is shown below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/picker/populating-itemssource.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-monkeyapppicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.textcolor#xamarin_forms_picker_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource

Responding to item selection

NOTENOTE

<Label Text="{Binding Source={x:Reference picker}, Path=SelectedItem}" />

var monkeyNameLabel = new Label();
monkeyNameLabel.SetBinding(Label.TextProperty, new Binding("SelectedItem", source: picker));

void OnPickerSelectedIndexChanged(object sender, EventArgs e)
{
 var picker = (Picker)sender;
 int selectedIndex = picker.SelectedIndex;

 if (selectedIndex != -1)
 {
 monkeyNameLabel.Text = (string)picker.ItemsSource[selectedIndex];
 }
}

NOTENOTE

 Populating a Picker with data using data binding

A Picker supports selection of one item at a time. When a user selects an item, the SelectedIndexChanged event

fires, the SelectedIndex property is updated to an integer representing the index of the selected item in the list,

and the SelectedItem property is updated to the object representing the selected item. The SelectedIndex

property is a zero-based number indicating the item the user selected. If no item is selected, which is the case

when the Picker is first created and initialized, SelectedIndex will be -1.

Item selection behavior in a Picker can be customized on iOS with a platform-specific. For more information, see

Controlling Picker Item Selection.

The following code example shows how to retrieve the SelectedItem property value from the Picker in XAML:

The equivalent C# code is shown below:

In addition, an event handler can be executed when the SelectedIndexChanged event fires:

This method obtains the SelectedIndex property value, and uses the value to retrieve the selected item from the

ItemsSource collection. This is functionally equivalent to retrieving the selected item from the SelectedItem

property. Note that each item in the ItemsSource collection is of type object , and so must be cast to a string

for display.

A Picker can be initialized to display a specific item by setting the SelectedIndex or SelectedItem properties.

However, these properties must be set after initializing the ItemsSource collection.

A Picker can be also populated with data by using data binding to bind its ItemsSource property to an IList

collection. In XAML this is achieved with the Binding markup extension:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindexchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindexchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.bindingextension

<Picker Title="Select a monkey"
 TitleColor="Red"
 ItemsSource="{Binding Monkeys}"
 ItemDisplayBinding="{Binding Name}" />

var picker = new Picker { Title = "Select a monkey", TitleColor = Color.Red };
picker.SetBinding(Picker.ItemsSourceProperty, "Monkeys");
picker.ItemDisplayBinding = new Binding("Name");

public class Monkey
{
 public string Name { get; set; }
 public string Location { get; set; }
 public string Details { get; set; }
 public string ImageUrl { get; set; }
}

 Responding to item selectionResponding to item selection

<Picker Title="Select a monkey"
 TitleColor="Red"
 ItemsSource="{Binding Monkeys}"
 ItemDisplayBinding="{Binding Name}"
 SelectedItem="{Binding SelectedMonkey}" />
<Label Text="{Binding SelectedMonkey.Name}" ... />
<Label Text="{Binding SelectedMonkey.Location}" ... />
<Image Source="{Binding SelectedMonkey.ImageUrl}" ... />
<Label Text="{Binding SelectedMonkey.Details}" ... />

var picker = new Picker { Title = "Select a monkey", TitleColor = Color.Red };
picker.SetBinding(Picker.ItemsSourceProperty, "Monkeys");
picker.SetBinding(Picker.SelectedItemProperty, "SelectedMonkey");
picker.ItemDisplayBinding = new Binding("Name");

var nameLabel = new Label { ... };
nameLabel.SetBinding(Label.TextProperty, "SelectedMonkey.Name");

var locationLabel = new Label { ... };
locationLabel.SetBinding(Label.TextProperty, "SelectedMonkey.Location");

var image = new Image { ... };
image.SetBinding(Image.SourceProperty, "SelectedMonkey.ImageUrl");

var detailsLabel = new Label();
detailsLabel.SetBinding(Label.TextProperty, "SelectedMonkey.Details");

The equivalent C# code is shown below:

The ItemsSource property data binds to the Monkeys property of the connected view model, which returns an

IList<Monkey> collection. The following code example shows the Monkey class, which contains four properties:

When binding to a list of objects, the Picker must be told which property to display from each object. This is

achieved by setting the ItemDisplayBinding property to the required property from each object. In the code

examples above, the Picker is set to display each Monkey.Name property value.

Data binding can be used to set an object to the SelectedItem property value when it changes:

The equivalent C# code is shown below:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemssource#xamarin_forms_picker_itemssource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.itemdisplaybinding#xamarin_forms_picker_itemdisplaybinding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem

NOTENOTE

 Related links

The SelectedItem property data binds to the SelectedMonkey property of the connected view model, which is of

type Monkey . Therefore, when the user selects an item in the Picker , the SelectedMonkey property will be set to

the selected Monkey object. The SelectedMonkey object data is displayed in the user interface by Label and

Image views:

Note that the SelectedItem and SelectedIndex properties both support two-way bindings by default.

Picker Demo (sample)

Monkey App (sample)

Bindable Picker (sample)

Picker API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selecteditem#xamarin_forms_picker_selecteditem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-pickerdemo
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-monkeyapppicker
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-bindablepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker

Adding Data to a Picker's Items Collection
 7/8/2021 • 2 minutes to read • Edit Online

 Populating a Picker with data

<Picker Title="Select a monkey"
 TitleColor="Red">
 <Picker.Items>
 <x:String>Baboon</x:String>
 <x:String>Capuchin Monkey</x:String>
 <x:String>Blue Monkey</x:String>
 <x:String>Squirrel Monkey</x:String>
 <x:String>Golden Lion Tamarin</x:String>
 <x:String>Howler Monkey</x:String>
 <x:String>Japanese Macaque</x:String>
 </Picker.Items>
</Picker>

var picker = new Picker { Title = "Select a monkey", TitleColor = Color.Red };
picker.Items.Add("Baboon");
picker.Items.Add("Capuchin Monkey");
picker.Items.Add("Blue Monkey");
picker.Items.Add("Squirrel Monkey");
picker.Items.Add("Golden Lion Tamarin");
picker.Items.Add("Howler Monkey");
picker.Items.Add("Japanese Macaque");

 Responding to item selection

NOTENOTE

 Download the sample

The Picker view is a control for selecting a text item from a list of data. This article explains how to populate a

Picker with data by adding it to the Items collection, and how to respond to item selection by the user.

Prior to Xamarin.Forms 2.3.4, the process for populating a Picker with data was to add the data to be displayed

to the read-only Items collection, which is of type IList<string> . Each item in the collection must be of type

string . Items can be added in XAML by initializing the Items property with a list of x:String items:

The equivalent C# code is shown below:

In addition to adding data using the Items.Add method, data can also be inserted into the collection by using

the Items.Insert method.

A Picker supports selection of one item at a time. When a user selects an item, the SelectedIndexChanged event

fires, and the SelectedIndex property is updated to an integer representing the index of the selected item in the

list. The SelectedIndex property is a zero-based number indicating the item that the user selected. If no item is

selected, which is the case when the Picker is first created and initialized, SelectedIndex will be -1.

Item selection behavior in a Picker can be customized on iOS with a platform-specific. For more information, see

Controlling Picker Item Selection.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/picker/populating-items.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-pickerdemo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.items#xamarin_forms_picker_items
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindexchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker

void OnPickerSelectedIndexChanged(object sender, EventArgs e)
{
 var picker = (Picker)sender;
 int selectedIndex = picker.SelectedIndex;

 if (selectedIndex != -1)
 {
 monkeyNameLabel.Text = picker.Items[selectedIndex];
 }
}

NOTENOTE

 Related links

The following code example shows the OnPickerSelectedIndexChanged event handler method, which is executed

when the SelectedIndexChanged event fires:

This method obtains the SelectedIndex property value, and uses the value to retrieve the selected item from the

Items collection. Because each item in the Items collection is a string , they can be displayed by a Label

without requiring a cast.

A Picker can be initialized to display a specific item by setting the SelectedIndex property. However, the

SelectedIndex property must be set after initializing the Items collection.

Picker Demo (sample)

Picker

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindexchanged
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.items#xamarin_forms_picker_items
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.selectedindex#xamarin_forms_picker_selectedindex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker.items#xamarin_forms_picker_items
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-pickerdemo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker

Xamarin.Forms TableView
 7/8/2021 • 5 minutes to read • Edit Online

 Use cases

 Structure

<TableView Intent="Settings">
 <TableRoot>
 <TableSection Title="Ring">
 <SwitchCell Text="New Voice Mail" />
 <SwitchCell Text="New Mail" On="true" />
 </TableSection>
 </TableRoot>
</TableView>

 Download the sample

TableView is a view for displaying scrollable lists of data or choices where there are rows that don't share the

same template. Unlike ListView, TableView does not have the concept of an ItemsSource , so items must be

manually added as children.

TableView is useful when:

presenting a list of settings,

collecting data in a form, or

showing data that is presented differently from row to row (e.g. numbers, percentages and images).

TableView handles scrolling and laying out rows in attractive sections, a common need for the above scenarios.

The TableView control uses each platform's underlying equivalent view when available, creating a native look

for each platform.

Elements in a TableView are organized into sections. At the root of the TableView is the TableRoot , which is

parent to one or more TableSection instances. Each TableSection consists of a heading and one or more

ViewCell instances:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/tableview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableroot
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tablesection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tablesection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

Content = new TableView
{
 Root = new TableRoot
 {
 new TableSection("Ring")
 {
 // TableSection constructor takes title as an optional parameter
 new SwitchCell { Text = "New Voice Mail" },
 new SwitchCell { Text = "New Mail", On = true }
 }
 },
 Intent = TableIntent.Settings
};

 Appearance

 Built-in cells

 SwitchCellSwitchCell

The equivalent C# code is:

TableView exposes the Intent property, which can be set to any of the TableIntent enumeration members:

Data – for use when displaying data entries. Note that ListView may be a better option for scrolling lists of

data.

Form – for use when the TableView is acting as a Form.

Menu – for use when presenting a menu of selections.

Settings – for use when displaying a list of configuration settings.

The TableIntent value you choose may impact how the TableView appears on each platform. Even if there are

not clear differences, it is a best practice to select the TableIntent that most closely matches how you intend to

use the table.

In addition, the color of the text displayed for each TableSection can be changed by setting the TextColor

property to a Color .

Xamarin.Forms comes with built-in cells for collecting and displaying information. Although ListView and

TableView can use all of the same cells, SwitchCell and EntryCell are the most relevant for a TableView

scenario.

See ListView Cell Appearance for a detailed description of TextCell and ImageCell.

SwitchCell is the control to use for presenting and capturing an on/off or true / false state. It defines the

following properties:

Text – text to display beside the switch.

On – whether the switch is displayed as on or off.

OnColor – the Color of the switch when it's in the on position.

All of these properties are bindable.

SwitchCell also exposes the OnChanged event, allowing you to respond to changes in the cell's state.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview.intent#xamarin_forms_tableview_intent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableintent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableintent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tablesection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switchcell

 EntryCellEntryCell
EntryCell is useful when you need to display text data that the user can edit. It defines the following properties:

Keyboard – The keyboard to display while editing. There are options for things like numeric values, email,

phone numbers, etc. See the API docs.

Label – The label text to display to the left of the text entry field.

LabelColor – The color of the label text.

Placeholder – Text to display in the entry field when it is null or empty. This text disappears when text entry

begins.

Text – The text in the entry field.

HorizontalTextAlignment – The horizontal alignment of the text. Values are center, left, or right aligned. See

the API docs.

VerticalTextAlignment – The vertical alignment of the text. Values are Start , Center , or End .

EntryCell also exposes the Completed event, which is fired when the user hits the 'done' button on the

keyboard while editing text.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.keyboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.textalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entrycell

 Custom cells
When the built-in cells aren't enough, custom cells can be used to present and capture data in the way that

makes sense for your app. For example, you may want to present a slider to allow a user to choose the opacity

of an image.

All custom cells must derive from ViewCell , the same base class that all of the built-in cell types use.

This is an example of a custom cell:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DemoTableView.TablePage"
 Title="TableView">
 <TableView Intent="Settings">
 <TableRoot>
 <TableSection Title="Getting Started">
 <ViewCell>
 <StackLayout Orientation="Horizontal">
 <Image Source="bulb.png" />
 <Label Text="left"
 TextColor="#f35e20" />
 <Label Text="right"
 HorizontalOptions="EndAndExpand"
 TextColor="#503026" />
 </StackLayout>
 </ViewCell>
 </TableSection>
 </TableRoot>
 </TableView>
</ContentPage>

The following example shows the XAML used to create the TableView in the screenshots above:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview

var table = new TableView();
table.Intent = TableIntent.Settings;
var layout = new StackLayout() { Orientation = StackOrientation.Horizontal };
layout.Children.Add (new Image() { Source = "bulb.png"});
layout.Children.Add (new Label()
{
 Text = "left",
 TextColor = Color.FromHex("#f35e20"),
 VerticalOptions = LayoutOptions.Center
});
layout.Children.Add (new Label ()
{
 Text = "right",
 TextColor = Color.FromHex ("#503026"),
 VerticalOptions = LayoutOptions.Center,
 HorizontalOptions = LayoutOptions.EndAndExpand
});
table.Root = new TableRoot ()
{
 new TableSection("Getting Started")
 {
 new ViewCell() {View = layout}
 }
};
Content = table;

NOTENOTE

 Row height

The root element under the TableView is the TableRoot , and there is a TableSection immediately underneath

the TableRoot . The ViewCell is defined directly under the TableSection , and a StackLayout is used to manage

the layout of the custom cell, although any layout could be used here.

Unlike ListView , TableView does not require that custom (or any) cells are defined in an ItemTemplate .

The TableView class has two properties that can be used to change the row height of cells:

RowHeight – sets the height of each row to an int .

HasUnevenRows – rows have varying heights if set to true . Note that when setting this property to true ,

row heights will automatically be calculated and applied by Xamarin.Forms.

When the height of content in a cell in a TableView is changed, the row height is implicitly updated on Android

and the Universal Windows Platform (UWP). However, on iOS it must be forced to update by setting the

HasUnevenRows property to true and by calling the Cell.ForceUpdateSize method.

The following XAML example shows a TableView that contains a ViewCell :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableroot
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tablesection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview.rowheight#xamarin_forms_tableview_rowheight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview.hasunevenrows#xamarin_forms_tableview_hasunevenrows
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview.hasunevenrows#xamarin_forms_tableview_hasunevenrows
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.forceupdatesize#xamarin_forms_cell_forceupdatesize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

<ContentPage ...>
 <TableView ...
 HasUnevenRows="true">
 <TableRoot>
 ...
 <TableSection ...>
 ...
 <ViewCell x:Name="_viewCell"
 Tapped="OnViewCellTapped">
 <Grid Margin="15,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Label Text="Tap this cell." />
 <Label x:Name="_target"
 Grid.Row="1"
 Text="The cell has changed size."
 IsVisible="false" />
 </Grid>
 </ViewCell>
 </TableSection>
 </TableRoot>
 </TableView>
</ContentPage>

void OnViewCellTapped(object sender, EventArgs e)
{
 _target.IsVisible = !_target.IsVisible;
 _viewCell.ForceUpdateSize();
}

IMPORTANTIMPORTANT

 Related links

When the ViewCell is tapped, the OnViewCellTapped event handler is executed:

The OnViewCellTapped event handler shows or hides the second Label in the ViewCell , and explicitly updates

the cell's size by calling the Cell.ForceUpdateSize method.

The following screenshots show the cell prior to being tapped upon:

The following screenshots show the cell after being tapped upon:

There is a strong possibility of performance degradation if this feature is overused.

TableView (sample)

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell.forceupdatesize#xamarin_forms_cell_forceupdatesize
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-tableview

Xamarin.Forms MenuItem
 7/8/2021 • 5 minutes to read • Edit Online

 Create a MenuItem

 Download the sample

The Xamarin.Forms MenuItem class defines menu items for menus such as ListView item context menus and

Shell application flyout menus.

The following screenshots show MenuItem objects in a ListView context menu on iOS and Android:

The MenuItem class defines the following properties:

Command is an ICommand that allows binding user actions, such as finger taps or clicks, to commands defined

on a viewmodel.

CommandParameter is an object that specifies the parameter that should be passed to the Command .

IconImageSource is an ImageSource value that defines the display icon.

IsDestructive is a bool value that indicates whether the MenuItem removes its associated UI element from

the list.

IsEnabled is a bool value that indicates whether this object responds to user input.

Text is a string value that specifies the display text.

These properties are backed by BindableProperty objects so the MenuItem instance can be the target of data

bindings.

MenuItem objects can be used within a context menu on a ListView object's items. The most common pattern is

to create MenuItem objects within a ViewCell instance, which is used as the DataTemplate object for the

ListView s ItemTemplate . When the ListView object is populated it will create each item using the

DataTemplate , exposing the MenuItem choices when the context menu is activated for an item.

The following example shows MenuItem instantiation within the context of a ListView object:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/menuitem.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-menuitemdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/menuitem-images/menuitem-demo-full.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.command#xamarin_forms_menuitem_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.commandparameter#xamarin_forms_menuitem_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.iconimagesource#xamarin_forms_menuitem_iconimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.isdestructive#xamarin_forms_menuitem_isdestructive
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.isenabled#xamarin_forms_menuitem_isenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.text#xamarin_forms_menuitem_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<ListView>
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Text="Context Menu Option" />
 </ViewCell.ContextActions>
 <Label Text="{Binding .}" />
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

// A function returns a ViewCell instance that
// is used as the template for each list item
DataTemplate dataTemplate = new DataTemplate(() =>
{
 // A Label displays the list item text
 Label label = new Label();
 label.SetBinding(Label.TextProperty, ".");

 // A ViewCell serves as the DataTemplate
 ViewCell viewCell = new ViewCell
 {
 View = label
 };

 // Add a MenuItem instance to the ContextActions
 MenuItem menuItem = new MenuItem
 {
 Text = "Context Menu Option"
 };
 viewCell.ContextActions.Add(menuItem);

 // The function returns the custom ViewCell
 // to the DataTemplate constructor
 return viewCell;
});

// Finally, the dataTemplate is provided to
// the ListView object
ListView listView = new ListView
{
 ...
 ItemTemplate = dataTemplate
};

 Define MenuItem behavior with events

<MenuItem ...
 Clicked="OnItemClicked" />

A MenuItem can also be created in code:

The MenuItem class exposes a Clicked event. An event handler can be attached to this event to react to taps or

clicks on the MenuItem instance in XAML:

An event handler can also be attached in code:

MenuItem item = new MenuItem { ... }
item.Clicked += OnItemClicked;

void OnItemClicked(object sender, EventArgs e)
{
 // The sender is the menuItem
 MenuItem menuItem = sender as MenuItem;

 // Access the list item through the BindingContext
 var contextItem = menuItem.BindingContext;

 // Do something with the contextItem here
}

 Define MenuItem behavior with MVVM

<ContentPage.BindingContext>
 <viewmodels:ListPageViewModel />
</ContentPage.BindingContext>

<StackLayout>
 <Label Text="{Binding Message}" ... />
 <ListView ItemsSource="{Binding Items}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Text="Edit"
 IconImageSource="icon.png"
 Command="{Binding Source={x:Reference contentPage},
Path=BindingContext.EditCommand}"
 CommandParameter="{Binding .}"/>
 <MenuItem Text="Delete"
 Command="{Binding Source={x:Reference contentPage},
Path=BindingContext.DeleteCommand}"
 CommandParameter="{Binding .}"/>
 </ViewCell.ContextActions>
 <Label Text="{Binding .}" />
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</StackLayout>

Previous examples referenced an OnItemClicked event handler. The following code shows an example

implementation:

The MenuItem class supports the Model-View-ViewModel (MVVM) pattern through BindableProperty objects

and the ICommand interface. The following XAML shows MenuItem instances bound to commands defined on a

viewmodel:

In the previous example, two MenuItem objects are defined with their Command and CommandParameter properties

bound to commands on the viewmodel. The viewmodel contains the commands referenced in the XAML:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

public class ListPageViewModel : INotifyPropertyChanged
{
 ...

 public ICommand EditCommand => new Command<string>((string item) =>
 {
 Message = $"Edit command was called on: {item}";
 });

 public ICommand DeleteCommand => new Command<string>((string item) =>
 {
 Message = $"Delete command was called on: {item}";
 });
}

public MenuItemXamlMvvmPage()
{
 InitializeComponent();
 BindingContext = new ListPageViewModel(DataService.GetListItems());
}

 MenuItem icons

WARNINGWARNING

 Enable or disable a MenuItem at runtime

IMPORTANTIMPORTANT

The sample application includes a DataService class used to get a list of items for populating the ListView

objects. A viewmodel is instantiated, with items from the DataService class, and set as the BindingContext in

the code-behind:

MenuItem objects only display icons on Android. On other platforms, only the text specified by the Text property will

be displayed.

Icons are specified using the IconImageSource property. If an icon is specified, the text specified by the Text

property will not be displayed. The following screenshot shows a MenuItem with an icon on Android:

For more information on using images in Xamarin.Forms, see Images in Xamarin.Forms.

To enable of disable a MenuItem at runtime, bind its Command property to an ICommand implementation, and

ensure that a canExecute delegate enables and disables the ICommand as appropriate.

Do not bind the IsEnabled property to another property when using the Command property to enable or disable the

MenuItem .

The following example shows a MenuItem whose Command property binds to an ICommand named MyCommand :

<MenuItem Text="My menu item"
 Command="{Binding MyCommand}" />

public class MyViewModel : INotifyPropertyChanged
{
 bool isMenuItemEnabled = false;
 public bool IsMenuItemEnabled
 {
 get { return isMenuItemEnabled; }
 set
 {
 isMenuItemEnabled = value;
 MyCommand.ChangeCanExecute();
 }
 }

 public Command MyCommand { get; private set; }

 public MyViewModel()
 {
 MyCommand = new Command(() =>
 {
 // Execute logic here
 },
 () => IsMenuItemEnabled);
 }
}

 Cross-platform context menu behavior

The ICommand implementation requires a canExecute delegate that returns the value of a bool property to

enable and disable the MenuItem :

In this example, the MenuItem is disabled until the IsMenuItemEnabled property is set. When this occurs, the

Command.ChangeCanExecute method is called which causes the canExecute delegate for MyCommand to be re-

evaluated.

Context menus are accessed and displayed differently on each platform.

On Android, the context menu is activated by long-press on a list item. The context menu replaces the title and

navigation bar area and MenuItem options are displayed as horizontal buttons.

On iOS, the context menu is activated by swiping on a list item. The context menu is displayed on the list item

and MenuItems are displayed as horizontal buttons.

 Related links

On UWP, the context menu is activated by right-clicking on a list item. The context menu is displayed near the

cursor as a vertical list.

MenuItem Demos

Images in Xamarin.Forms

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-menuitemdemos/

Xamarin.Forms ToolbarItem
 7/8/2021 • 3 minutes to read • Edit Online

NOTENOTE

 Create a ToolbarItem

 Download the sample

The Xamarin.Forms ToolbarItem class is a special type of button that can be added to a Page object's

ToolbarItems collection. Each ToolbarItem object will appear as a button in the application's navigation bar. A

ToolbarItem instance can have an icon and appear as a primary or secondary menu item. The ToolbarItem

class inherits from MenuItem .

The following screenshots show ToolbarItem objects in the navigation bar on iOS and Android:

The ToolbarItem class defines the following properties:

Order is a ToolbarItemOrder enum value that determines whether the ToolbarItem instance displays in the

primary or secondary menu.

Priority is an integer value that determines the display order of items in a Page object's ToolbarItems

collection.

The ToolbarItem class inherits the following typically-used properties from the MenuItem class:

Command is an ICommand that allows binding user actions, such as finger taps or clicks, to commands defined

on a viewmodel.

CommandParameter is an object that specifies the parameter that should be passed to the Command .

IconImageSource is an ImageSource value that determines the display icon on a ToolbarItem object.

Text is a string that determines the display text on a ToolbarItem object.

These properties are backed by BindableProperty objects so a ToolbarItem instance can be the target of data

bindings.

An alternative to creating a toolbar from ToolbarItem objects is to set the NavigationPage.TitleView attached

property to a layout class that contains multiple views. For more information, see Displaying Views in the Navigation Bar.

A ToolbarItem object can be instantiated in XAML. The Text and IconImageSource properties can be set to

determine how the button is displayed in the navigation bar. The following example shows how to instantiate a

ToolbarItem with some common properties set, and add it to a ContentPage 's ToolbarItems collection:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/toolbaritem.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-toolbaritem/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem.order#xamarin_forms_toolbaritem_order
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem.priority#xamarin_forms_toolbaritem_priority
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.command#xamarin_forms_menuitem_command
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.commandparameter#xamarin_forms_menuitem_commandparameter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.iconimagesource#xamarin_forms_menuitem_iconimagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.menuitem.text#xamarin_forms_menuitem_text
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.toolbaritem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage.titleviewproperty

<ContentPage.ToolbarItems>
 <ToolbarItem Text="Example Item"
 IconImageSource="example_icon.png"
 Order="Primary"
 Priority="0" />
</ContentPage.ToolbarItems>

ToolbarItem item = new ToolbarItem
{
 Text = "Example Item",
 IconImageSource = ImageSource.FromFile("example_icon.png"),
 Order = ToolbarItemOrder.Primary,
 Priority = 0
};

// "this" refers to a Page object
this.ToolbarItems.Add(item);

NOTENOTE

 Define button behavior

<ToolbarItem ...
 Clicked="OnItemClicked" />

ToolbarItem item = new ToolbarItem { ... }
item.Clicked += OnItemClicked;

void OnItemClicked(object sender, EventArgs e)
{
 ToolbarItem item = (ToolbarItem)sender;
 messageLabel.Text = $"You clicked the \"{item.Text}\" toolbar item.";
}

This example will result in a ToolbarItem object that has text, an icon and appears first in the primary navigation

bar area. A ToolbarItem can also be created in code and added to the ToolbarItems collection:

The file represented by the string , provided as the IconImageSource property, must exist in each platform

project.

Image assets are handled differently on each platform. An ImageSource can come from sources including a local file or

embedded resource, a URI, or a stream. For more information about setting the IconImageSource property and Images

in Xamarin.Forms, see Images in Xamarin.Forms.

The ToolbarItem class inherits the Clicked event from the MenuItem class. An event handler can be attached to

the Clicked event to react to taps or clicks on ToolbarItem instances in XAML:

An event handler can also be attached in code:

Previous examples referenced an OnItemClicked event handler. The following code shows an example

implementation:

ToolbarItem objects can also use the Command and CommandParameter properties to react to user input without

event handlers. For more information about the ICommand interface and MVVM data-binding, see

 Enable or disable a ToolbarItem at runtime

 Primary and secondary menus

WARNINGWARNING

 Related links

Xamarin.Forms MenuItem MVVM Behavior.

To enable of disable a ToolbarItem at runtime, bind its Command property to an ICommand implementation, and

ensure that a canExecute delegate enables and disables the ICommand as appropriate.

For more information, see Enable or disable a MenuItem at runtime.

The ToolbarItemOrder enum has Default , Primary , and Secondary values.

When the Order property is set to Primary , the ToolbarItem object will appear in the main navigation bar on

all platforms. ToolbarItem objects are prioritized over the page title, which will be truncated to make room for

the items. The following screenshots show ToolbarItem objects in the primary menu on iOS and Android:

When the Order property is set to Secondary , behavior varies across platforms. On UWP and Android, the

Secondary items menu appears as three dots that can be tapped or clicked to reveal items in a vertical list. On

iOS, the Secondary items menu appears below the navigation bar as a horizontal list. The following screenshots

show a secondary menu on iOS and Android:

Icon behavior in ToolbarItem objects that have their Order property set to Secondary is inconsistent across

platforms. Avoid setting the IconImageSource property on items that appear in the secondary menu.

ToolbarItem Demos

Images in Xamarin.Forms

Xamarin.Forms MenuItem

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-toolbaritem/

Animation in Xamarin.Forms
 11/2/2020 • 2 minutes to read • Edit Online

 Simple Animations

 Easing Functions

 Custom Animations

Xamarin.Forms includes its own animation infrastructure that's straightforward for creating simple animations,

while also being versatile enough to create complex animations.

The Xamarin.Forms animation classes target different properties of visual elements, with a typical animation

progressively changing a property from one value to another over a period of time. Note that there is no XAML

interface for the Xamarin.Forms animation classes. However, animations can be encapsulated in behaviors and

then referenced from XAML.

The ViewExtensions class provides extension methods that can be used to construct simple animations that

rotate, scale, translate, and fade VisualElement instances. This article demonstrates creating and canceling

animations using the ViewExtensions class.

Xamarin.Forms includes an Easing class that allows you to specify a transfer function that controls how

animations speed up or slow down as they're running. This article demonstrates how to consume the pre-

defined easing functions, and how to create custom easing functions.

The Animation class is the building block of all Xamarin.Forms animations, with the extension methods in the

ViewExtensions class creating one or more Animation objects. This article demonstrates how to use the

Animation class to create and cancel animations, synchronize multiple animations, and create custom

animations that animate properties that aren't animated by the existing animation methods.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/animation/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions

Simple Animations in Xamarin.Forms
 7/8/2021 • 9 minutes to read • Edit Online

NOTENOTE

 Download the sample

The ViewExtensions class provides extension methods that can be used to construct simple animations. This

article demonstrates creating and canceling animations using the ViewExtensions class.

The ViewExtensions class provides the following extension methods that can be used to create simple

animations:

CancelAnimations cancels any animations.

FadeTo animates the Opacity property of a VisualElement .

RelScaleTo applies an animated incremental increase or decrease to the Scale property of a VisualElement

.

RotateTo animates the Rotation property of a VisualElement .

RelRotateTo applies an animated incremental increase or decrease to the Rotation property of a

VisualElement .

RotateXTo animates the RotationX property of a VisualElement .

RotateYTo animates the RotationY property of a VisualElement .

ScaleTo animates the Scale property of a VisualElement .

ScaleXTo animates the ScaleX property of a VisualElement .

ScaleYTo animates the ScaleY property of a VisualElement .

TranslateTo animates the TranslationX and TranslationY properties of a VisualElement .

By default, each animation will take 250 milliseconds. However, a duration for each animation can be specified

when creating the animation.

The ViewExtensions class provides a LayoutTo extension method. However, this method is intended to be used by

layouts to animate transitions between layout states that contain size and position changes. Therefore, it should only be

used by Layout subclasses.

The animation extension methods in the ViewExtensions class are all asynchronous and return a Task<bool>

object. The return value is false if the animation completes, and true if the animation is cancelled. Therefore,

the animation methods should typically be used with the await operator, which makes it possible to easily

determine when an animation has completed. In addition, it then becomes possible to create sequential

animations with subsequent animation methods executing after the previous method has completed. For more

information, see Compound Animations.

If there's a requirement to let an animation complete in the background, then the await operator can be

omitted. In this scenario, the animation extension methods will quickly return after initiating the animation, with

the animation occurring in the background. This operation can be taken advantage of when creating composite

animations. For more information, see Composite Animations.

For more information about the await operator, see Async Support Overview.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/animation/simple.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-animation-basic
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.cancelanimations#xamarin_forms_viewextensions_cancelanimations_xamarin_forms_visualelement_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.fadeto#xamarin_forms_viewextensions_fadeto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.opacity#xamarin_forms_visualelement_opacity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.relscaleto#xamarin_forms_viewextensions_relscaleto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.relrotateto#xamarin_forms_viewextensions_relrotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotatexto#xamarin_forms_viewextensions_rotatexto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotationx#xamarin_forms_visualelement_rotationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateyto#xamarin_forms_viewextensions_rotateyto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotationy#xamarin_forms_visualelement_rotationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.scaleto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scalex#xamarin_forms_visualelement_scalex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scaley#xamarin_forms_visualelement_scaley
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.translateto#xamarin_forms_viewextensions_translateto_xamarin_forms_visualelement_system_double_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.layoutto#xamarin_forms_viewextensions_layoutto_xamarin_forms_visualelement_xamarin_forms_rectangle_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async

Single Animations

 RotationRotation

await image.RotateTo (360, 2000);
image.Rotation = 0;

NOTENOTE

 Relative RotationRelative Rotation

Each extension method in the ViewExtensions implements a single animation operation that progressively

changes a property from one value to another value over a period of time. This section explores each animation

operation.

The following code example demonstrates using the RotateTo method to animate the Rotation property of an

Image :

This code animates the Image instance by rotating up to 360 degrees over 2 seconds (2000 milliseconds). The

RotateTo method obtains the current Rotation property value for the start of the animation, and then rotates

from that value to its first argument (360). Once the animation is complete, the image's Rotation property is

reset to 0. This ensures that the Rotation property doesn't remain at 360 after the animation concludes, which

would prevent additional rotations.

The following screenshots show the rotation in progress on each platform:

In addition to the RotateTo method, there are also RotateXTo and RotateYTo methods that animate the

RotationX and RotationY properties, respectively.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotatexto#xamarin_forms_viewextensions_rotatexto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateyto#xamarin_forms_viewextensions_rotateyto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotationx#xamarin_forms_visualelement_rotationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotationy#xamarin_forms_visualelement_rotationy

await image.RelRotateTo (360, 2000);

 ScalingScaling

await image.ScaleTo (2, 2000);

The following code example demonstrates using the RelRotateTo method to incrementally increase or decrease

the Rotation property of an Image :

This code animates the Image instance by rotating 360 degrees from its starting position over 2 seconds (2000

milliseconds). The RelRotateTo method obtains the current Rotation property value for the start of the

animation, and then rotates from that value to the value plus its first argument (360). This ensures that each

animation will always be a 360 degrees rotation from the starting position. Therefore, if a new animation is

invoked while an animation is already in progress, it will start from the current position and may end at a

position that is not an increment of 360 degrees.

The following screenshots show the relative rotation in progress on each platform:

The following code example demonstrates using the ScaleTo method to animate the Scale property of an

Image :

This code animates the Image instance by scaling up to twice its size over 2 seconds (2000 milliseconds). The

ScaleTo method obtains the current Scale property value (default value of 1) for the start of the animation,

and then scales from that value to its first argument (2). This has the effect of expanding the size of the image to

twice its size.

The following screenshots show the scaling in progress on each platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.relrotateto#xamarin_forms_viewextensions_relrotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.relrotateto#xamarin_forms_viewextensions_relrotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.scaleto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.scaleto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale

NOTENOTE

 Relative ScalingRelative Scaling

await image.RelScaleTo (2, 2000);

 Scaling and Rotation with AnchorsScaling and Rotation with Anchors

double radius = Math.Min(absoluteLayout.Width, absoluteLayout.Height) / 2;
image.AnchorY = radius / image.Height;
await image.RotateTo(360, 2000);

In addition to the ScaleTo method, there are also ScaleXTo and ScaleYTo methods that animate the ScaleX and

ScaleY properties, respectively.

The following code example demonstrates using the RelScaleTo method to animate the Scale property of an

Image :

This code animates the Image instance by scaling up to twice its size over 2 seconds (2000 milliseconds). The

RelScaleTo method obtains the current Scale property value for the start of the animation, and then scales

from that value to the value plus its first argument (2). This ensures that each animation will always be a scaling

of 2 from the starting position.

The AnchorX and AnchorY properties set the center of scaling or rotation for the Rotation and Scale

properties. Therefore, their values also affect the RotateTo and ScaleTo methods.

Given an Image that has been placed at the center of a layout, the following code example demonstrates

rotating the image around the center of the layout by setting its AnchorY property:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.scaleto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scalex#xamarin_forms_visualelement_scalex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scaley#xamarin_forms_visualelement_scaley
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.relscaleto#xamarin_forms_viewextensions_relscaleto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.relscaleto#xamarin_forms_viewextensions_relscaleto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.anchorx#xamarin_forms_visualelement_anchorx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.anchory#xamarin_forms_visualelement_anchory
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.scaleto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.anchory#xamarin_forms_visualelement_anchory

 TranslationTranslation

await image.TranslateTo (-100, -100, 1000);

To rotate the Image instance around the center of the layout, the AnchorX and AnchorY properties must be set

to values that are relative to the width and height of the Image . In this example, the center of the Image is

defined to be at the center of the layout, and so the default AnchorX value of 0.5 does not require changing.

However, the AnchorY property is redefined to be a value from the top of the Image to the center point of the

layout. This ensures that the Image makes a full rotation of 360 degrees around the center point of the layout,

as shown in the following screenshots:

The following code example demonstrates using the TranslateTo method to animate the TranslationX and

TranslationY properties of an Image :

This code animates the Image instance by translating it horizontally and vertically over 1 second (1000

milliseconds). The TranslateTo method simultaneously translates the image 100 pixels to the left, and 100

pixels upwards. This is because the first and second arguments are both negative numbers. Providing positive

numbers would translate the image to the right, and down.

The following screenshots show the translation in progress on each platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.anchorx#xamarin_forms_visualelement_anchorx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.anchory#xamarin_forms_visualelement_anchory
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.translateto#xamarin_forms_viewextensions_translateto_xamarin_forms_visualelement_system_double_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.translateto#xamarin_forms_viewextensions_translateto_xamarin_forms_visualelement_system_double_system_double_system_uint32_xamarin_forms_easing_

NOTENOTE

 FadingFading

image.Opacity = 0;
await image.FadeTo (1, 4000);

If an element is initially laid out off screen and then translated onto the screen, after translation the element's input layout

remains off screen and the user can't interact with it. Therefore, it's recommended that a view should be laid out in its final

position, and then any required translations performed.

The following code example demonstrates using the FadeTo method to animate the Opacity property of an

Image :

This code animates the Image instance by fading it in over 4 seconds (4000 milliseconds). The FadeTo method

obtains the current Opacity property value for the start of the animation, and then fades in from that value to

its first argument (1).

The following screenshots show the fade in progress on each platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.fadeto#xamarin_forms_viewextensions_fadeto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.opacity#xamarin_forms_visualelement_opacity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.fadeto#xamarin_forms_viewextensions_fadeto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.opacity#xamarin_forms_visualelement_opacity

 Compound Animations

await image.TranslateTo (-100, 0, 1000); // Move image left
await image.TranslateTo (-100, -100, 1000); // Move image diagonally up and left
await image.TranslateTo (100, 100, 2000); // Move image diagonally down and right
await image.TranslateTo (0, 100, 1000); // Move image left
await image.TranslateTo (0, 0, 1000); // Move image up

 Composite Animations

image.RotateTo (360, 4000);
await image.ScaleTo (2, 2000);
await image.ScaleTo (1, 2000);

A compound animation is a sequential combination of animations, and can be created with the await operator,

as demonstrated in the following code example:

In this example, the Image is translated over 6 seconds (6000 milliseconds). The translation of the Image uses

five animations, with the await operator indicating that each animation executes sequentially. Therefore,

subsequent animation methods execute after the previous method has completed.

A composite animation is a combination of animations where two or more animations run simultaneously.

Composite animations can be created by mixing awaited and non-awaited animations, as demonstrated in the

following code example:

In this example, the Image is scaled and simultaneously rotated over 4 seconds (4000 milliseconds). The scaling

of the Image uses two sequential animations that occur at the same time as the rotation. The RotateTo method

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_

 Running Multiple Asynchronous Methods ConcurrentlyRunning Multiple Asynchronous Methods Concurrently

await Task.WhenAny<bool>
(
 image.RotateTo (360, 4000),
 image.ScaleTo (2, 2000)
);
await image.ScaleTo (1, 2000);

// 10 minute animation
uint duration = 10 * 60 * 1000;

await Task.WhenAll (
 image.RotateTo (307 * 360, duration),
 image.RotateXTo (251 * 360, duration),
 image.RotateYTo (199 * 360, duration)
);

executes without an await operator and returns immediately, with the first ScaleTo animation then beginning.

The await operator on the first ScaleTo method call delays the second ScaleTo method call until the first

ScaleTo method call has completed. At this point the RotateTo animation is half way completed and the Image

will be rotated 180 degrees. During the final 2 seconds (2000 milliseconds), the second ScaleTo animation and

the RotateTo animation both complete.

The static Task.WhenAny and Task.WhenAll methods are used to run multiple asynchronous methods

concurrently, and therefore can be used to create composite animations. Both methods return a Task object

and accept a collection of methods that each return a Task object. The Task.WhenAny method completes when

any method in its collection completes execution, as demonstrated in the following code example:

In this example, the Task.WhenAny method call contains two tasks. The first task rotates the image over 4

seconds (4000 milliseconds), and the second task scales the image over 2 seconds (2000 milliseconds). When

the second task completes, the Task.WhenAny method call completes. However, even though the RotateTo

method is still running, the second ScaleTo method can begin.

The Task.WhenAll method completes when all the methods in its collection have completed, as demonstrated in

the following code example:

In this example, the Task.WhenAll method call contains three tasks, each of which executes over 10 minutes.

Each Task makes a different number of 360 degree rotations – 307 rotations for RotateTo , 251 rotations for

RotateXTo , and 199 rotations for RotateYTo . These values are prime numbers, therefore ensuring that the

rotations aren't synchronized and hence won't result in repetitive patterns.

The following screenshots show the multiple rotations in progress on each platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.scaleto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.scaleto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateto#xamarin_forms_viewextensions_rotateto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotatexto#xamarin_forms_viewextensions_rotatexto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateyto#xamarin_forms_viewextensions_rotateyto_xamarin_forms_visualelement_system_double_system_uint32_xamarin_forms_easing_

 Canceling Animations

image.CancelAnimations();

 Summary

 Related Links

An application can cancel one or more animations with a call to the CancelAnimations extension method, as

demonstrated in the following code example:

This will immediately cancel all animations that are currently running on the Image instance.

This article demonstrated creating and canceling animations using the ViewExtensions class. This class provides

extension methods that can be used to construct simple animations that rotate, scale, translate, and fade

VisualElement instances.

Async Support Overview

Basic Animation (sample)

ViewExtensions

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.cancelanimations#xamarin_forms_viewextensions_cancelanimations_xamarin_forms_visualelement_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-animation-basic
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions

Easing Functions in Xamarin.Forms
 7/8/2021 • 4 minutes to read • Edit Online

 Consuming an Easing Function

await image.TranslateTo(0, 200, 2000, Easing.BounceIn);
await image.ScaleTo(2, 2000, Easing.CubicIn);
await image.RotateTo(360, 2000, Easing.SinInOut);
await image.ScaleTo(1, 2000, Easing.CubicOut);
await image.TranslateTo(0, -200, 2000, Easing.BounceOut);

 Download the sample

Xamarin.Forms includes an Easing class that allows you to specify a transfer function that controls how

animations speed up or slow down as they're running. This article demonstrates how to consume the pre-

defined easing functions, and how to create custom easing functions.

The Easing class defines a number of easing functions that can be consumed by animations:

The BounceIn easing function bounces the animation at the beginning.

The BounceOut easing function bounces the animation at the end.

The CubicIn easing function slowly accelerates the animation.

The CubicInOut easing function accelerates the animation at the beginning, and decelerates the animation at

the end.

The CubicOut easing function quickly decelerates the animation.

The Linear easing function uses a constant velocity, and is the default easing function.

The SinIn easing function smoothly accelerates the animation.

The SinInOut easing function smoothly accelerates the animation at the beginning, and smoothly

decelerates the animation at the end.

The SinOut easing function smoothly decelerates the animation.

The SpringIn easing function causes the animation to very quickly accelerate towards the end.

The SpringOut easing function causes the animation to quickly decelerate towards the end.

The In and Out suffixes indicate if the effect provided by the easing function is noticeable at the beginning of

the animation, at the end, or both.

In addition, custom easing functions can be created. For more information, see Custom Easing Functions.

The animation extension methods in the ViewExtensions class allow an easing function to be specified as the

final method parameter, as demonstrated in the following code example:

By specifying an easing function for an animation, the animation velocity becomes non-linear and produces the

effect provided by the easing function. Omitting an easing function when creating an animation causes the

animation to use the default Linear easing function, which produces a linear velocity.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/animation/easing.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-animation-easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.bouncein
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.bounceout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.cubicin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.cubicinout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.cubicout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.linear
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.sinin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.sininout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.sinout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.springin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.springout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.linear

NOTENOTE

 Custom Easing Functions

 Custom Easing MethodCustom Easing Method

double CustomEase (double t)
{
 return t == 0 || t == 1 ? t : (int)(5 * t) / 5.0;
}

await image.TranslateTo(0, 200, 2000, (Easing)CustomEase);

 Custom Easing FuncCustom Easing Func

Func<double, double> CustomEaseFunc = t => 9 * t * t * t - 13.5 * t * t + 5.5 * t;
await image.TranslateTo(0, 200, 2000, CustomEaseFunc);

 Custom Easing ConstructorCustom Easing Constructor

Xamarin.Forms 5.0 includes a type converter that converts a string representation of an easing function to the

appropriate Easing enumeration member. This type converter is automatically invoked on any properties of type

Easing that are set in XAML.

For more information about using the animation extension methods in the ViewExtensions class, see Simple

Animations. Easing functions can also be consumed by the Animation class. For more information, see Custom

Animations.

There are three main approaches to creating a custom easing function:

1. Create a method that takes a double argument, and returns a double result.

2. Create a Func<double, double> .

3. Specify the easing function as the argument to the Easing constructor.

In all three cases, the custom easing function should return 0 for an argument of 0, and 1 for an argument of 1.

However, any value can be returned between the argument values of 0 and 1. Each approach will now be

discussed in turn.

A custom easing function can be defined as a method that takes a double argument, and returns a double

result, as demonstrated in the following code example:

The CustomEase method truncates the incoming value to the values 0, 0.2, 0.4, 0.6, 0.8, and 1. Therefore, the

Image instance is translated in discrete jumps, rather than smoothly.

A custom easing function can also be defined as a Func<double, double> , as demonstrated in the following code

example:

The CustomEaseFunc represents an easing function that starts off fast, slows down and reverses course, and then

reverses course again to accelerate quickly towards the end. Therefore, while the overall movement of the

Image instance is downwards, it also temporarily reverses course halfway through the animation.

A custom easing function can also be defined as the argument to the Easing constructor, as demonstrated in

the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing

await image.TranslateTo (0, 200, 2000, new Easing (t => 1 - Math.Cos (10 * Math.PI * t) * Math.Exp (-5 *
t)));

 Summary

 Related Links

The custom easing function is specified as a lambda function argument to the Easing constructor, and uses the

Math.Cos method to create a slow drop effect that's dampened by the Math.Exp method. Therefore, the Image

instance is translated so that it appears to drop to its final resting place.

This article demonstrated how to consume the pre-defined easing functions, and how to create custom easing

functions. Xamarin.Forms includes an Easing class that allows you to specify a transfer function that controls

how animations speed up or slow down as they're running.

Async Support Overview

Easing Functions (sample)

Easing

ViewExtensions

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-animation-easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions

Custom Animations in Xamarin.Forms
 7/8/2021 • 10 minutes to read • Edit Online

 Create an animation

var animation = new Animation (v => image.Scale = v, 1, 2);

animation.Commit (this, "SimpleAnimation", 16, 2000, Easing.Linear, (v, c) => image.Scale = 1, () => true);

 Download the sample

The Animation class is the building block of all Xamarin.Forms animations, with the extension methods in the

ViewExtensions class creating one or more Animation objects. This article demonstrates how to use the

Animation class to create and cancel animations, synchronize multiple animations, and create custom

animations that animate properties that aren't animated by the existing animation methods.

A number of parameters must be specified when creating an Animation object, including start and end values

of the property being animated, and a callback that changes the value of the property. An Animation object can

also maintain a collection of child animations that can be run and synchronized. For more information, see Child

Animations.

Running an animation created with the Animation class, which may or may not include child animations, is

achieved by calling the Commit method. This method specifies the duration of the animation, and amongst other

items, a callback that controls whether to repeat the animation.

In addition, the Animation class has an IsEnabled property that can be examined to determine if animations

have been disabled by the operating system, such as when power saving mode is activated.

When creating an Animation object, typically, a minimum of three parameters are required, as demonstrated in

the following code example:

This code defines an animation of the Scale property of an Image instance from a value of 1 to a value of 2.

The animated value, which is derived by Xamarin.Forms, is passed to the callback specified as the first argument,

where it's used to change the value of the Scale property.

The animation is started with a call to the Commit method, as demonstrated in the following code example:

Note that the Commit method does not return a Task object. Instead, notifications are provided through

callback methods.

The following arguments are specified in the Commit method:

The first argument (owner) identifies the owner of the animation. This can be the visual element on which the

animation is applied, or another visual element, such as the page.

The second argument (name) identifies the animation with a name. The name is combined with the owner to

uniquely identify the animation. This unique identification can then be used to determine whether the

animation is running (AnimationIsRunning), or to cancel it (AbortAnimation).

The third argument (rate) indicates the number of milliseconds between each call to the callback method

defined in the Animation constructor.

The fourth argument (length) indicates the duration of the animation, in milliseconds.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/animation/custom.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-animation-custom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation.commit#xamarin_forms_animation_commit_xamarin_forms_ianimatable_system_string_system_uint32_system_uint32_xamarin_forms_easing_system_action_system_double_system_boolean__system_func_system_boolean__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation.commit#xamarin_forms_animation_commit_xamarin_forms_ianimatable_system_string_system_uint32_system_uint32_xamarin_forms_easing_system_action_system_double_system_boolean__system_func_system_boolean__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation.commit#xamarin_forms_animation_commit_xamarin_forms_ianimatable_system_string_system_uint32_system_uint32_xamarin_forms_easing_system_action_system_double_system_boolean__system_func_system_boolean__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animationextensions.animationisrunning#xamarin_forms_animationextensions_animationisrunning_xamarin_forms_ianimatable_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animationextensions.abortanimation#xamarin_forms_animationextensions_abortanimation_xamarin_forms_ianimatable_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation

NOTENOTE

 Child animationsChild animations

var parentAnimation = new Animation ();
var scaleUpAnimation = new Animation (v => image.Scale = v, 1, 2, Easing.SpringIn);
var rotateAnimation = new Animation (v => image.Rotation = v, 0, 360);
var scaleDownAnimation = new Animation (v => image.Scale = v, 2, 1, Easing.SpringOut);

parentAnimation.Add (0, 0.5, scaleUpAnimation);
parentAnimation.Add (0, 1, rotateAnimation);
parentAnimation.Add (0.5, 1, scaleDownAnimation);

parentAnimation.Commit (this, "ChildAnimations", 16, 4000, null, (v, c) => SetIsEnabledButtonState (true,
false));

new Animation {
 { 0, 0.5, new Animation (v => image.Scale = v, 1, 2) },
 { 0, 1, new Animation (v => image.Rotation = v, 0, 360) },
 { 0.5, 1, new Animation (v => image.Scale = v, 2, 1) }
 }.Commit (this, "ChildAnimations", 16, 4000, null, (v, c) => SetIsEnabledButtonState (true, false));

The fifth argument (easing) defines the easing function to be used in the animation. Alternatively, the easing

function can be specified as an argument to the Animation constructor. For more information about easing

functions, see Easing Functions.

The sixth argument (finished) is a callback that will be executed when the animation has completed. This

callback takes two arguments, with the first argument indicating a final value, and the second argument

being a bool that's set to true if the animation was canceled. Alternatively, the finished callback can be

specified as an argument to the Animation constructor. However, with a single animation, if finished callbacks

are specified in both the Animation constructor and the Commit method, only the callback specified in the

Commit method will be executed.

The seventh argument (repeat) is a callback that allows the animation to be repeated. It's called at the end of

the animation, and returning true indicates that the animation should be repeated.

The overall effect is to create an animation that increases the Scale property of an Image from 1 to 2, over 2

seconds (2000 milliseconds), using the Linear easing function. Each time the animation completes, its Scale

property is reset to 1 and the animation repeats.

Concurrent animations, that run independently of each other can be constructed by creating an Animation object for

each animation, and then calling the Commit method on each animation.

The Animation class also supports child animations, which involves creating an Animation object to which

other Animation objects are added. This enables a series of animations to be run and synchronized. The

following code example demonstrates creating and running child animations:

Alternatively, the code example can be written more concisely, as demonstrated in the following code example:

In both code examples, a parent Animation object is created, to which additional Animation objects are then

added. The first two arguments to the Add method specify when to begin and finish the child animation. The

argument values must be between 0 and 1, and represent the relative period within the parent animation that

the specified child animation will be active. Therefore, in this example the scaleUpAnimation will be active for the

first half of the animation, the scaleDownAnimation will be active for the second half of the animation, and the

rotateAnimation will be active for the entire duration.

The overall effect is that the animation occurs over 4 seconds (4000 milliseconds). The scaleUpAnimation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.linear
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation.add#xamarin_forms_animation_add_system_double_system_double_xamarin_forms_animation_

 Cancel an animation

this.AbortAnimation ("SimpleAnimation");

 Create a custom animation

new Animation (callback: v => BackgroundColor = Color.FromHsla (v, 1, 0.5),
 start: 0,
 end: 1).Commit (this, "Animation", 16, 4000, Easing.Linear, (v, c) => BackgroundColor = Color.Default);

animates the Scale property from 1 to 2, over 2 seconds. The scaleDownAnimation then animates the Scale

property from 2 to 1, over 2 seconds. While both scale animations are occurring, the rotateAnimation animates

the Rotation property from 0 to 360, over 4 seconds. Note that the scaling animations also use easing

functions. The SpringIn easing function causes the Image to initially shrink before getting larger, and the

SpringOut easing function causes the Image to become smaller than its actual size towards the end of the

complete animation.

There are a number of differences between an Animation object that uses child animations, and one that

doesn't:

When using child animations, the finished callback on a child animation indicates when the child has

completed, and the finished callback passed to the Commit method indicates when the entire animation has

completed.

When using child animations, returning true from the repeat callback on the Commit method will not cause

the animation to repeat, but the animation will continue to run without new values.

When including an easing function in the Commit method, and the easing function returns a value greater

than 1, the animation will be terminated. If the easing function returns a value less than 0, the value is

clamped to 0. To use an easing function that returns a value less than 0 or greater than 1, it must specified in

one of the child animations, rather than in the Commit method.

The Animation class also includes WithConcurrent methods that can be used to add child animations to a parent

Animation object. However, their begin and finish argument values aren't restricted to 0 to 1, but only that part

of the child animation that corresponds to a range of 0 to 1 will be active. For example, if a WithConcurrent

method call defines a child animation that targets a Scale property from 1 to 6, but with begin and finish

values of -2 and 3, the begin value of -2 corresponds to a Scale value of 1, and the finish value of 3

corresponds to a Scale value of 6. Because values outside the range of 0 and 1 play no part in an animation,

the Scale property will only be animated from 3 to 6.

An application can cancel an animation with a call to the AbortAnimation extension method, as demonstrated in

the following code example:

Note that animations are uniquely identified by a combination of the animation owner, and the animation name.

Therefore, the owner and name specified when running the animation must be specified to cancel the

animation. Therefore, the code example will immediately cancel the animation named SimpleAnimation that's

owned by the page.

The examples shown here so far have demonstrated animations that could equally be achieved with the

methods in the ViewExtensions class. However, the advantage of the Animation class is that it has access to the

callback method, which is executed when the animated value changes. This allows the callback to implement any

desired animation. For example, the following code example animates the BackgroundColor property of a page

by setting it to Color values created by the Color.FromHsla method, with hue values ranging from 0 to 1:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.springin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.easing.springout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation.withconcurrent#xamarin_forms_animation_withconcurrent_xamarin_forms_animation_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animationextensions.abortanimation#xamarin_forms_animationextensions_abortanimation_xamarin_forms_ianimatable_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhsla#xamarin_forms_color_fromhsla_system_double_system_double_system_double_system_double_

 Create a custom animation extension method

public static class ViewExtensions
{
 public static Task<bool> ColorTo(this VisualElement self, Color fromColor, Color toColor, Action<Color>
callback, uint length = 250, Easing easing = null)
 {
 Func<double, Color> transform = (t) =>
 Color.FromRgba(fromColor.R + t * (toColor.R - fromColor.R),
 fromColor.G + t * (toColor.G - fromColor.G),
 fromColor.B + t * (toColor.B - fromColor.B),
 fromColor.A + t * (toColor.A - fromColor.A));
 return ColorAnimation(self, "ColorTo", transform, callback, length, easing);
 }

 public static void CancelAnimation(this VisualElement self)
 {
 self.AbortAnimation("ColorTo");
 }

 static Task<bool> ColorAnimation(VisualElement element, string name, Func<double, Color> transform,
Action<Color> callback, uint length, Easing easing)
 {
 easing = easing ?? Easing.Linear;
 var taskCompletionSource = new TaskCompletionSource<bool>();

 element.Animate<Color>(name, transform, callback, 16, length, easing, (v, c) =>
taskCompletionSource.SetResult(c));
 return taskCompletionSource.Task;
 }
}

The resulting animation provides the appearance of advancing the page background through the colors of the

rainbow.

For more examples of creating complex animations, including a Bezier curve animation, see Chapter 22 of

Creating Mobile Apps with Xamarin.Forms.

The extension methods in the ViewExtensions class animate a property from its current value to a specified

value. This makes it difficult to create, for example, a ColorTo animation method that can be used to animate a

color from one value to another, because:

The only Color property defined by the VisualElement class is BackgroundColor , which isn't always the

desired Color property to animate.

Often the current value of a Color property is Color.Default , which isn't a real color, and which can't be

used in interpolation calculations.

The solution to this problem is to not have the ColorTo method target a particular Color property. Instead, it

can be written with a callback method that passes the interpolated Color value back to the caller. In addition,

the method will take start and end Color arguments.

The ColorTo method can be implemented as an extension method that uses the Animate method in the

AnimationExtensions class to provide its functionality. This is because the Animate method can be used to target

properties that aren't of type double , as demonstrated in the following code example:

The Animate method requires a transform argument, which is a callback method. The input to this callback is

always a double ranging from 0 to 1. Therefore, the ColorTo method defines its own transform Func that

accepts a double ranging from 0 to 1, and that returns a Color value corresponding to that value. The Color

value is calculated by interpolating the R , G , B , and A values of the two supplied Color arguments. The

https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch22-Apr2016.pdf
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.default#xamarin_forms_color_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animationextensions.animate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animationextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animationextensions.animate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.r#xamarin_forms_color_r
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.g#xamarin_forms_color_g
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.b#xamarin_forms_color_b
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.a#xamarin_forms_color_a

await Task.WhenAll(
 label.ColorTo(Color.Red, Color.Blue, c => label.TextColor = c, 5000),
 label.ColorTo(Color.Blue, Color.Red, c => label.BackgroundColor = c, 5000));
await this.ColorTo(Color.FromRgb(0, 0, 0), Color.FromRgb(255, 255, 255), c => BackgroundColor = c, 5000);
await boxView.ColorTo(Color.Blue, Color.Red, c => boxView.Color = c, 4000);

 Related links

Color value is then passed to the callback method for application to a particular property.

This approach allows the ColorTo method to animate any Color property, as demonstrated in the following

code example:

In this code example, the ColorTo method animates the TextColor and BackgroundColor properties of a Label

, the BackgroundColor property of a page, and the Color property of a BoxView .

Custom Animations (sample)

Animation API

AnimationExtensions API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview.color#xamarin_forms_boxview_color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-animation-custom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animationextensions

Xamarin.Forms Brushes
 3/5/2021 • 2 minutes to read • Edit Online

NOTENOTE

A brush enables you to paint an area, such as the background of a control, using different approaches. Brush

support in Xamarin.Forms is available in the Xamarin.Forms namespace on iOS, Android, macOS, the Universal

Windows Platform (UWP), and the Windows Presentation Foundation (WPF).

The Brush class is an abstract class that paints an area with its output. Classes that derive from Brush describe

different ways of painting an area. The following list describes the different brush types available in

Xamarin.Forms:

SolidColorBrush , which paints an area with a solid color. For more information, see Xamarin.Forms Brushes:

Solid colors.

LinearGradientBrush , which paints an area with a linear gradient. For more information, see Xamarin.Forms

Brushes: Linear gradients.

RadialGradientBrush , which paints an area with a radial gradient. For more information, see Xamarin.Forms

Brushes: Radial gradients.

Instances of these brush types can be assigned to the Stroke and Fill properties of a Shape , and the

Background property of a VisualElement .

The VisualElement.Background property enables brushes to be used as the background in any control.

The Brush class also has an IsNullOrEmpty method that returns a bool that represents whether the brush is

defined or not.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/brushes/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

Xamarin.Forms Brushes: Solid colors
 7/8/2021 • 2 minutes to read • Edit Online

 Create a SolidColorBrush

 Use a predefined ColorUse a predefined Color

<Frame Background="DarkBlue"
 BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120" />

 Download the sample

The SolidColorBrush class derives from the Brush class, and is used to paint an area with a solid color. There

are a variety of approaches to specifying the color of a SolidColorBrush . For example, you can specify its color

with a Color value or by using one of the predefined SolidColorBrush objects provided by the Brush class.

The SolidColorBrush class defines the Color property, of type Color , which represents the color of the brush.

This property is backed by a BindableProperty object, which means that it can be the target of data bindings,

and styled.

The SolidColorBrush class also has an IsEmpty method that returns a bool that represents whether the brush

has been assigned a color.

There are three main techniques for creating a SolidColorBrush . You can create a SolidColorBrush from a

Color , use a predefined brush, or create a SolidColorBrush using hexadecimal notation.

Xamarin.Forms includes a type converter that creates a SolidColorBrush from a Color value. In XAML, this

enables a SolidColorBrush to be created from a predefined Color value:

In this example, the background of the Frame is painted with a dark blue SolidColorBrush :

Alternatively, the Color value can be specified using property tag syntax:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/brushes/solidcolor.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

<Frame BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120">
 <Frame.Background>
 <SolidColorBrush Color="DarkBlue" />
 </Frame.Background>
</Frame>

 Use a predefined BrushUse a predefined Brush

<Frame Background="{x:Static Brush.Indigo}"
 BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120" />

Frame frame = new Frame
{
 Background = Brush.Indigo,
 BorderColor = Color.LightGray,
 // ...
};

 Use hexadecimal notationUse hexadecimal notation

In this example, the background of the Frame is painted with a SolidColorBrush whose color is specified by

setting the SolidColorBrush.Color property.

The Brush class defines a set of commonly used SolidColorBrush objects. The following example uses one of

these predefined SolidColorBrush objects:

The equivalent C# code is:

In this example, the background of the Frame is painted with an indigo SolidColorBrush :

For a list of predefined SolidColorBrush objects provided by the Brush class, see Solid color brushes.

SolidColorBrush objects can also be created using hexadecimal notation. With this approach, a color is specified

in terms of the amount of red, green, and blue to combine into a single color. The main format for specifying a

color using hexadecimal notation is #rrggbb , where:

rr is a two-digit hexadecimal number specifying the relative amount of red.

gg is a two-digit hexadecimal number specifying the relative amount of green.

bb is a two-digit hexadecimal number specifying the relative amount of blue.

In addition, a color can be specified as #aarrggbb where aa specifies the alpha value, or transparency, of the

color. This approach enables you to create colors that are partially transparent.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

<Frame Background="#FF9988"
 BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120" />

 Solid color brushes

 Related links

The following example sets the color value of a SolidColorBrush using hexadecimal notation:

In this example, the background of the Frame is painted with a salmon-colored SolidColorBrush :

For other ways of describing color, see Colors in Xamarin.Forms.

For convenience, the Brush class provides a set of commonly used SolidColorBrush objects, such as AliceBlue

and YellowGreen . The following image shows the color of each predefined brush, its name, and its hexadecimal

value:

BrushesDemos (sample)

Colors in Xamarin.Forms

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/brushes/solidcolor-images/solidcolorbrushes-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/

Xamarin.Forms Brushes: Gradients
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Gradient stops

IMPORTANTIMPORTANT

 Download the sample

The GradientBrush class derives from the Brush class, and is an abstract class that describes a gradient, which

is composed of gradient stops. A gradient brush paints an area with multiple colors that blend into each other

along an axis. Classes that derive from GradientBrush describe different ways of interpreting gradient stops, and

Xamarin.Forms provides the following gradient brushes:

LinearGradientBrush , which paints an area with a linear gradient. For more information, see Xamarin.Forms

Brushes: Linear gradients.

RadialGradientBrush , which paints an area with a radial gradient. For more information, see Xamarin.Forms

Brushes: Radial gradients.

The GradientBrush class defines the GradientStops property, of type GradientStopsCollection , which

represents the brush's gradient stops, each of which specifies a color and an offset along the brush's gradient

axis. A GradientStopsCollection is an ObservableCollection of GradientStop objects. The GradientStops

property is backed by a BindableProperty object, which means that it can be the target of data bindings, and

styled.

The GradientStops property is the ContentProperty of the GradientBrush class, and so does not need to be

explicitly set from XAML.

Gradient stops are the building blocks of a gradient brush, and specify the colors in the gradient and their

location along the gradient axis. Gradient stops are specified using GradientStop objects.

The GradientStop class defines the following properties:

Color , of type Color , which represents the color of the gradient stop. The default value of this property is

Color.Default .

Offset , of type float , which represents the location of the gradient stop within the gradient vector. The

default value of this property is 0, and valid values are in the range 0.0-1.0. The closer this value is to 0, the

closer the color is to the start of the gradient. Similarly, the closer this value is to 1, the closer the color is to

the end of the gradient.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The coordinate system used by gradients is relative to a bounding box for the output area. 0 indicates 0 percent of the

bounding box, and 1 indicates 100 percent of the bounding box. Therefore, (0.5,0.5) describes a point in the middle of the

bounding box, and (1,1) describes a point at the bottom right of the bounding box.

The following XAML example creates a diagonal LinearGradientBrush with four colors:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/brushes/gradient.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

<LinearGradientBrush StartPoint="0,0"
 EndPoint="1,1">
 <GradientStop Color="Yellow"
 Offset="0.0" />
 <GradientStop Color="Red"
 Offset="0.25" />
 <GradientStop Color="Blue"
 Offset="0.75" />
 <GradientStop Color="LimeGreen"
 Offset="1.0" />
</LinearGradientBrush>

 Related links

The color of each point between gradient stops is interpolated as a combination of the color specified by the two

bounding gradient stops. The following diagram shows the gradient stops from the previous example:

In this diagram, the circles mark the position of gradient stops, and the dashed line shows the gradient axis. The

first gradient stop specifies the color yellow at an offset of 0.0. The second gradient stop specifies the color red

at an offset of 0.25. The points between these two gradient stops gradually change from yellow to red as you

move from left to right along the gradient axis. The third gradient stop specifies the color blue at an offset of

0.75. The points between the second and third gradient stops gradually change from red to blue. The fourth

gradient stop specifies the color lime green at at offset of 1.0. The points between the third and fourth gradient

stops gradually change from blue to lime green.

BrushesDemos (sample)

Xamarin.Forms Brushes: Linear gradients

Xamarin.Forms Brushes: Radial gradients

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/

Xamarin.Forms Brushes: Linear gradients
 7/8/2021 • 3 minutes to read • Edit Online

NOTENOTE

 Create a LinearGradientBrush

 Download the sample

The LinearGradientBrush class derives from the GradientBrush class, and paints an area with a linear gradient,

which blends two or more colors along a line known as the gradient axis. GradientStop objects are used to

specify the colors in the gradient and their positions. For more information about GradientStop objects, see

Xamarin.Forms Brushes: Gradients.

The LinearGradientBrush class defines the following properties:

StartPoint , of type Point , which represents the starting two-dimensional coordinates of the linear

gradient. The default value of this property is (0,0).

EndPoint , of type Point , which represents the ending two-dimensional coordinates of the linear gradient.

The default value of this property is (1,1).

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The LinearGradientBrush class also as an IsEmpty method that returns a bool that represents whether the

brush has been assigned any GradientStop objects.

Linear gradients can also be created with the linear-gradient() CSS function.

A linear gradient brush's gradient stops are positioned along the gradient axis. The orientation and size of the

gradient axis can be changed using the brush's StartPoint and EndPoint properties. By manipulating these

properties, you can create horizontal, vertical, and diagonal gradients, reverse the gradient direction, condense

the gradient spread, and more.

The StartPoint and EndPoint properties are relative to the area being painted. (0,0) represents the top-left

corner of the area being painted, and (1,1) represents the bottom-right corner of the area being painted. The

following diagram shows the gradient axis for a diagonal linear gradient brush:

In this diagram, the dashed line shows the gradient axis, which highlights the interpolation path of the gradient

from the start point to the end point.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/brushes/lineargradient.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

Create a horizontal linear gradientCreate a horizontal linear gradient

<Frame BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120">
 <Frame.Background>
 <!-- StartPoint defaults to (0,0) -->
 <LinearGradientBrush EndPoint="1,0">
 <GradientStop Color="Yellow"
 Offset="0.1" />
 <GradientStop Color="Green"
 Offset="1.0" />
 </LinearGradientBrush>
 </Frame.Background>
</Frame>

 Create a vertical linear gradientCreate a vertical linear gradient

<Frame BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120">
 <Frame.Background>
 <!-- StartPoint defaults to (0,0) -->
 <LinearGradientBrush EndPoint="0,1">
 <GradientStop Color="Yellow"
 Offset="0.1" />
 <GradientStop Color="Green"
 Offset="1.0" />
 </LinearGradientBrush>
 </Frame.Background>
</Frame>

To create a horizontal linear gradient, create a LinearGradientBrush object and set its StartPoint to (0,0) and its

EndPoint to (1,0). Then, add two or more GradientStop objects to the LinearGradientBrush.GradientStops

collection, that specify the colors in the gradient and their positions.

The following XAML example shows a horizontal LinearGradientBrush that's set as the Background of a Frame :

In this example, the background of the Frame is painted with a LinearGradientBrush that interpolates from

yellow to green horizontally:

To create a vertical linear gradient, create a LinearGradientBrush object and set its StartPoint to (0,0) and its

EndPoint to (0,1). Then, add two or more GradientStop objects to the LinearGradientBrush.GradientStops

collection, that specify the colors in the gradient and their positions.

The following XAML example shows a vertical LinearGradientBrush that's set as the Background of a Frame :

In this example, the background of the Frame is painted with a LinearGradientBrush that interpolates from

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

 Create a diagonal linear gradientCreate a diagonal linear gradient

<Frame BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120">
 <Frame.Background>
 <!-- StartPoint defaults to (0,0)
 Endpoint defaults to (1,1) -->
 <LinearGradientBrush>
 <GradientStop Color="Yellow"
 Offset="0.1" />
 <GradientStop Color="Green"
 Offset="1.0" />
 </LinearGradientBrush>
 </Frame.Background>
</Frame>

 Related links

yellow to green vertically:

To create a diagonal linear gradient, create a LinearGradientBrush object and set its StartPoint to (0,0) and its

EndPoint to (1,1). Then, add two or more GradientStop objects to the LinearGradientBrush.GradientStops

collection, that specify the colors in the gradient and their positions.

The following XAML example shows a diagonal LinearGradientBrush that's set as the Background of a Frame :

In this example, the background of the Frame is painted with a LinearGradientBrush that interpolates from

yellow to green diagonally:

BrushesDemos (sample)

Xamarin.Forms Brushes: Gradients

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/

Xamarin.Forms Brushes: Radial gradients
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Create a RadialGradientBrush

 Download the sample

The RadialGradientBrush class derives from the GradientBrush class, and paints an area with a radial gradient,

which blends two or more colors across a circle. GradientStop objects are used to specify the colors in the

gradient and their positions. For more information about GradientStop objects, see Xamarin.Forms Brushes:

Gradients.

The RadialGradientBrush class defines the following properties:

Center , of type Point , which represents the center point of the circle for the radial gradient. The default

value of this property is (0.5,0.5).

Radius , of type double , which represents the radius of the circle for the radial gradient. The default value of

this property is 0.5.

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

The RadialGradientBrush class also has an IsEmpty method that returns a bool that represents whether the

brush has been assigned any GradientStop objects.

Radial gradients can also be created with the radial-gradient() CSS function.

A radial gradient brush's gradient stops are positioned along a gradient axis defined by a circle. The gradient axis

radiates from the center of the circle to its circumference. The position and size of the circle can be changed

using the brush's Center and Radius properties. The circle defines the end point of the gradient. Therefore, a

gradient stop at 1.0 defines the color at the circle's circumference. A gradient stop at 0.0 defines the color at the

center of the circle.

To create a radial gradient, create a RadialGradientBrush object and set its Center and Radius properties. Then,

add two or more GradientStop objects to the RadialGradientBrush.GradientStops collection, that specify the

colors in the gradient and their positions.

The following XAML example shows a RadialGradientBrush that's set as the Background of a Frame :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/brushes/radialgradient.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

<Frame BorderColor="LightGray"
 HasShadow="True"
 CornerRadius="12"
 HeightRequest="120"
 WidthRequest="120">
 <Frame.Background>
 <!-- Center defaults to (0.5,0.5)
 Radius defaults to (0.5) -->
 <RadialGradientBrush>
 <GradientStop Color="Red"
 Offset="0.1" />
 <GradientStop Color="DarkBlue"
 Offset="1.0" />
 </RadialGradientBrush>
 </Frame.Background>
</Frame>

<!-- Radius defaults to (0.5) -->
<RadialGradientBrush Center="0.0,0.0">
 <GradientStop Color="Red"
 Offset="0.1" />
 <GradientStop Color="DarkBlue"
 Offset="1.0" />
</RadialGradientBrush>

In this example, the background of the Frame is painted with a RadialGradientBrush that interpolates from red

to dark blue. The center of the radial gradient is positioned in the center of the Frame :

The following XAML example moves the center of the radial gradient to the top-left corner of the Frame :

In this example, the background of the Frame is painted with a RadialGradientBrush that interpolates from red

to dark blue. The center of the radial gradient is positioned in the top-left of the Frame :

The following XAML example moves the center of the radial gradient to the bottom-right corner of the Frame :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

<!-- Radius defaults to (0.5) -->
<RadialGradientBrush Center="1.0,1.0">
 <GradientStop Color="Red"
 Offset="0.1" />
 <GradientStop Color="DarkBlue"
 Offset="1.0" />
</RadialGradientBrush>

 Related links

In this example, the background of the Frame is painted with a RadialGradientBrush that interpolates from red

to dark blue. The center of the radial gradient is positioned in the bottom-right of the Frame :

BrushesDemos (sample)

Xamarin.Forms Brushes: Gradients

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-brushdemos/

Colors in Xamarin.Forms
 7/8/2021 • 3 minutes to read • Edit Online

 Named colors

 Color.Accent

 Download the sample

The Color structure lets you specify colors as Red-Green-Blue (RGB) values, Hue-Saturation-Luminosity (HSL)

values, Hue-Saturation-Value (HSV) values, or with a color name. An Alpha channel is also available to indicate

transparency.

Color objects can be created with the Color constructors, which can be used to specify a gray shade, an RGB

value, or an RGB value with transparency. In all cases, arguments are double values ranging from 0 to 1.

You can also use static methods to create Color objects:

Color.FromRgb for double RGB values from 0 to 1.

Color.FromRgb for integer RGB values from 0 to 255.

Color.FromRgba for double RGB values with transparency.

Color.FromRgba for integer RGB values with transparency.

Color.FromHsla for double HSL values with transparency.

Color.FromHsv for double HSV values from 0 to 1.

Color.FromHsv for integer HSV values from 0 to 255.

Color.FromHsva for double HSV values with transparency.

Color.FromHsva for integer HSV values with transparency.

Color.FromUint for a uint value calculated as (B + 256 * (G + 256 * (R + 256 * A))).

Color.FromHex for a string format of hexadecimal digits in the form "#AARRGGBB" or "#RRGGBB" or

"#ARGB" or "#RGB", where each letter corresponds to a hexadecimal digit for the alpha, red, green, and blue

channels.

Once created, a Color object is immutable. The characteristics of the color can be obtained from the following

properties:

R , which represents the red channel of the color.

G , which represents the green channel of the color.

B , which represents the blue channel of the color.

A , which represents the alpha channel of the color.

Hue , which represents the hue channel of the color.

Saturation , which represents the saturation channel of the color.

Luminosity , which represents the luminosity channel of the color.

These properties are all double values ranging from 0 to 1.

The Color structure also defines 240 public static read-only fields for common colors, such as AliceBlue .

The Color.Accent value results in a platform-specific (and sometimes user-selectable) color that is visible on

either a dark or light background.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/colors.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithcolors
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.-ctor#xamarin_forms_color__ctor_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.-ctor#xamarin_forms_color__ctor_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.-ctor#xamarin_forms_color__ctor_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromrgb#xamarin_forms_color_fromrgb_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromrgb#xamarin_forms_color_fromrgb_system_int32_system_int32_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromrgba#xamarin_forms_color_fromrgba_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromrgba#xamarin_forms_color_fromrgba_system_int32_system_int32_system_int32_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhsla#xamarin_forms_color_fromhsla_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhsv#xamarin_forms_color_fromhsv_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhsv#xamarin_forms_color_fromhsv_system_int32_system_int32_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhsva#xamarin_forms_color_fromhsva_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhsva#xamarin_forms_color_fromhsva_system_int32_system_int32_system_int32_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromuint#xamarin_forms_color_fromuint_system_uint32_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.fromhex#xamarin_forms_color_fromhex_system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.r#xamarin_forms_color_r
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.g#xamarin_forms_color_g
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.b#xamarin_forms_color_b
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.a#xamarin_forms_color_a
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.hue#xamarin_forms_color_hue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.saturation#xamarin_forms_color_saturation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.luminosity#xamarin_forms_color_luminosity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.aliceblue
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.accent#xamarin_forms_color_accent

 Color.Default

 Color.Transparent

 Modify a color

 Implicit conversions

Xamarin.Forms.Color xfColor = Xamarin.Forms.Color.FromRgb(0, 72, 255);
System.Drawing.Color sdColor = System.Drawing.Color.FromArgb(38, 127, 0);

// Implicity convert from a Xamarin.Forms.Color to a System.Drawing.Color
System.Drawing.Color sdColor2 = xfColor;

// Implicitly convert from a System.Drawing.Color to a Xamarin.Forms.Color
Xamarin.Forms.Color xfColor2 = sdColor;

 Examples

<Label Text="Sea color"
 TextColor="Aqua" />
<Label Text="RGB"
 TextColor="#00FF00" />
<Label Text="Alpha plus RGB"
 TextColor="#CC00FF00" />
<Label Text="Tiny RGB"
 TextColor="#0F0" />
<Label Text="Tiny Alpha plus RGB"
 TextColor="#C0F0" />

The Color.Default value defines a Color with all channels set to -1, and is intended to enforce the platform's

color scheme. Consequently, it has a different meaning in different contexts on different platforms. By default

the platform color schemes are:

iOS: dark text on a light background.

Android: dark text on a light background.

Windows: dark text on a light background.

The Color.Transparent value defines a Color with all channels set to zero.

Several instance methods allow modifying an existing color to create a new color :

AddLuminosity returns a Color by modifying the luminosity by the supplied delta.

MultiplyAlpha returns a Color by modifying the alpha, multiplying it by the supplied alpha value.

ToHex returns a hexadecimal string representation of a Color .

WithHue returns a Color , replacing the hue with the value supplied.

WithLuminosity returns a Color , replacing the luminosity with the value supplied.

WithSaturation returns a Color , replacing the saturation with the value supplied.

Implicit conversion between the Xamarin.Forms.Color and System.Drawing.Color types can be performed:

In XAML, colors are typically referenced using their named values, or with their Hex representations:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.default#xamarin_forms_color_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.transparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.addluminosity#xamarin_forms_color_addluminosity_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.multiplyalpha#xamarin_forms_color_multiplyalpha_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.tohex
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.withhue#xamarin_forms_color_withhue_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.withluminosity#xamarin_forms_color_withluminosity_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.withsaturation#xamarin_forms_color_withsaturation_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

NOTENOTE

Label red = new Label { Text = "Red", TextColor = Color.Red };
Label orange = new Label { Text = "Orange", TextColor = Color.FromHex("FF6A00") };
Label yellow = new Label { Text = "Yellow", TextColor = Color.FromHsla(0.167, 1.0, 0.5, 1.0) };
Label green = new Label { Text = "Green", TextColor = Color.FromRgb (38, 127, 0) };
Label blue = new Label { Text = "Blue", TextColor = Color.FromRgba(0, 38, 255, 255) };
Label indigo = new Label { Text = "Indigo", TextColor = Color.FromRgb (0, 72, 255) };
Label violet = new Label { Text = "Violet", TextColor = Color.FromHsla(0.82, 1, 0.25, 1) };

<ActivityIndicator Color="{OnPlatform iOS=Black, Default=Default}"
 IsRunning="True" />

ActivityIndicator activityIndicator = new ActivityIndicator
{
 Color = Device.RuntimePlatform == Device.iOS ? Color.Black : Color.Default,
 IsRunning = true
};

 Related links

When using XAML compilation, color names are case insensitive and therefore can be written in lowercase. For more

information about XAML compilation, see XAML Compilation.

In C#, colors are typically referenced using their named values, or with their static methods:

The following example uses the OnPlatform markup extension to selectively set the color of an

ActivityIndicator :

The equivalent C# code is:

ColorsSample

Bindable Picker (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithcolors
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-bindablepicker

Display Pop-ups
 7/8/2021 • 4 minutes to read • Edit Online

 Display an alert

await DisplayAlert ("Alert", "You have been alerted", "OK");

async void OnAlertYesNoClicked (object sender, EventArgs e)
{
 bool answer = await DisplayAlert ("Question?", "Would you like to play a game", "Yes", "No");
 Debug.WriteLine ("Answer: " + answer);
}

 Download the sample

Displaying an alert, asking a user to make a choice, or displaying a prompt is a common UI task. Xamarin.Forms

has three methods on the Page class for interacting with the user via a pop-up: DisplayAlert ,

DisplayActionSheet , and DisplayPromptAsync . They are rendered with appropriate native controls on each

platform.

All Xamarin.Forms-supported platforms have a modal pop-up to alert the user or ask simple questions of them.

To display these alerts in Xamarin.Forms, use the DisplayAlert method on any Page . The following line of code

shows a simple message to the user :

This example does not collect information from the user. The alert displays modally and once dismissed the user

continues interacting with the application.

The DisplayAlert method can also be used to capture a user's response by presenting two buttons and

returning a boolean . To get a response from an alert, supply text for both buttons and await the method. After

the user selects one of the options the answer will be returned to your code. Note the async and await

keywords in the sample code below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/pop-ups.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-pop-ups
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayalert
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayactionsheet
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayalert
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/pop-ups-images/simple-alert-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayalert

WARNINGWARNING

 Guide users through tasks

async void OnActionSheetSimpleClicked (object sender, EventArgs e)
{
 string action = await DisplayActionSheet ("ActionSheet: Send to?", "Cancel", null, "Email", "Twitter",
"Facebook");
 Debug.WriteLine ("Action: " + action);
}

The DisplayAlert method also has overloads that accept a FlowDirection argument that specifies the direction

in which UI elements flow within the alert. For more information about flow direction, see Right-to-left

localization.

By default on UWP, when an alert is displayed any access keys that are defined on the page behind the alert can still be

activated. For more information, see VisualElement Access Keys on Windows.

The UIActionSheet is a common UI element in iOS. The Xamarin.Forms DisplayActionSheet method lets you

include this control in cross-platforms apps, rendering native alternatives in Android and UWP.

To display an action sheet, await DisplayActionSheet in any Page , passing the message and button labels as

strings. The method returns the string label of the button that was clicked by the user. A simple example is

shown here:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/pop-ups-images/two-button-alert.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayalert
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection
https://developer.apple.com/library/ios/documentation/uikit/reference/uiactionsheet_class/Reference/Reference.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayactionsheet
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayactionsheet
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page

async void OnActionSheetCancelDeleteClicked (object sender, EventArgs e)
{
 string action = await DisplayActionSheet ("ActionSheet: SavePhoto?", "Cancel", "Delete", "Photo Roll",
"Email");
 Debug.WriteLine ("Action: " + action);
}

 Display a prompt

string result = await DisplayPromptAsync("Question 1", "What's your name?");

The destroy button is rendered differently to the other buttons on iOS, and can be left null or specified as the

third string parameter. The following example uses the destroy button:

The DisplayActionSheet method also has an overload that accepts a FlowDirection argument that specifies the

direction in which UI elements flow within the action sheet. For more information about flow direction, see

Right-to-left localization.

To display a prompt, call the DisplayPromptAsync in any Page , passing a title and message as string

arguments:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/pop-ups-images/simple-actionsheet-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/pop-ups-images/actionsheet-destroy-button-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.displayactionsheet
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page

string result = await DisplayPromptAsync("Question 2", "What's 5 + 5?", initialValue: "10", maxLength: 2,
keyboard: Keyboard.Numeric);

The prompt is displayed modally:

If the OK button is tapped, the entered response is returned as a string . If the Cancel button is tapped, null is

returned.

The full argument list for the DisplayPromptAsync method is:

title , of type string , is the title to display in the prompt.

message , of type string , is the message to display in the prompt.

accept , of type string , is the text for the accept button. This is an optional argument, whose default value is

OK.

cancel , of type string , is the text for the cancel button. This is an optional argument, whose default value is

Cancel.

placeholder , of type string , is the placeholder text to display in the prompt. This is an optional argument,

whose default value is null .

maxLength , of type int , is the maximum length of the user response. This is an optional argument, whose

default value is -1.

keyboard , of type Keyboard , is the keyboard type to use for the user response. This is an optional argument,

whose default value is Keyboard.Default .

initialValue , of type string , is a pre-defined response that will be displayed, and which can be edited. This

is an optional argument, whose default value is an empty string .

The following example shows setting some of the optional arguments:

This code displays a predefined response of 10, limits the number of characters that can be input to 2, and

displays the numeric keyboard for user input:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/pop-ups-images/simple-prompt-large.png#lightbox

WARNINGWARNING

 Related links

By default on UWP, when a prompt is displayed any access keys that are defined on the page behind the prompt can still

be activated. For more information, see VisualElement Access Keys on Windows.

PopupsSample

Right-to-left localization

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/pop-ups-images/keyboard-prompt-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/navigation-pop-ups

Fonts in Xamarin.Forms
 7/8/2021 • 6 minutes to read • Edit Online

 Set font attributes

<Label Text="Italics"
 FontAttributes="Italic" />
<Label Text="Bold and italics"
 FontAttributes="Bold, Italic" />

Label label1 = new Label
{
 Text = "Italics",
 FontAttributes = FontAttributes.Italic
};

Label label2 = new Label
{
 Text = "Bold and italics",
 FontAttributes = FontAttributes.Bold | FontAttributes.Italic
};

 Set the font size

<Label Text="Font size 24"
 FontSize="24" />
<Label Text="Large font size"
 FontSize="Large" />

 Download the sample

By default, Xamarin.Forms uses a system font defined by each platform. However, controls that display text

define properties that you can use to change this font:

FontAttributes , of type FontAttributes , which is an enumeration with three members: None , Bold , and

Italic . The default value of this property is None .

FontSize , of type double .

FontFamily , of type string .

These properties are backed by BindableProperty objects, which means that they can be targets of data

bindings, and styled.

Controls that display text can set the FontAttributes property to specify font attributes:

The equivalent C# code is:

Controls that display text can set the FontSize property to specify the font size. The FontSize property can be

set to a double value directly, or by a NamedSize enumeration value:

The equivalent C# code is:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/text/fonts.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithfonts
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.namedsize

Label label1 = new Label
{
 Text = "Font size 24",
 FontSize = 24
};

Label label2 = new Label
{
 Text = "Large font size",
 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))
};

Label myLabel = new Label
{
 Text = "Large font size",
};
myLabel.FontSize = Device.GetNamedSize(NamedSize.Large, myLabel);

NOTENOTE

 Set the font family

using Xamarin.Forms;

[assembly: ExportFont("Lobster-Regular.ttf", Alias = "Lobster")]

Alternatively, the Device.GetNamedSize method has an override that specifies the second argument as an

Element :

The FontSize value, when specified as a double , is measured in device-independent units. For more information, see

Units of Measurement.

For more information about named font sizes, see Understand named font sizes.

Controls that display text can set the FontFamily property to a font family name, such as "Times Roman".

However, this will only work if that font family is supported on the particular platform.

There are a number of techniques that can be used to attempt to derive the fonts that are available on a

platform. However, the presence of a TTF (True Type Format) font file does not necessarily imply a font family,

and TTFs are often included that are not intended for use in applications. In addition, the fonts installed on a

platform can change with platform version. Therefore, the most reliable approach for specifying a font family is

to use a custom font.

Custom fonts can be added to your Xamarin.Forms shared project and consumed by platform projects without

any additional work. The process for accomplishing this is as follows:

1. Add the font to your Xamarin.Forms shared project as an embedded resource (Build Action:Build Action:

EmbeddedResourceEmbeddedResource).

2. Register the font file with the assembly, in a file such as AssemblyInfo.csAssemblyInfo.cs , using the ExportFont attribute.

An optional alias can also be specified.

The following example shows the Lobster-Regular font being registered with the assembly, along with an alias:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element

NOTENOTE

<!-- Use font name -->
<Label Text="Hello Xamarin.Forms"
 FontFamily="Lobster-Regular" />

<!-- Use font alias -->
<Label Text="Hello Xamarin.Forms"
 FontFamily="Lobster" />

// Use font name
Label label1 = new Label
{
 Text = "Hello Xamarin.Forms!",
 FontFamily = "Lobster-Regular"
};

// Use font alias
Label label2 = new Label
{
 Text = "Hello Xamarin.Forms!",
 FontFamily = "Lobster"
};

IMPORTANTIMPORTANT

 Set font properties per platform

The font can reside in any folder in the shared project, without having to specify the folder name when registering the

font with the assembly.

On Windows, the font file name and font name may be different. To discover the font name on Windows, right-click the

.ttf file and select PreviewPreview. The font name can then be determined from the preview window.

The font can then be consumed on each platform by referencing its name, without the file extension:

Alternatively, it can be consumed on each platform by referencing its alias:

The equivalent C# code is:

The following screenshots show the custom font:

For release builds on Windows, ensure the assembly containing the custom font is passed as an argument in the

Forms.Init method call. For more information, see Troubleshooting.

The OnPlatform and On classes can be used in XAML to set font properties per platform. The example below

sets different font families and sizes on each platform:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/text/fonts-images/custom.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on

<Label Text="Different font properties on different platforms"
 FontSize="{OnPlatform iOS=20, Android=Medium, UWP=24}">
 <Label.FontFamily>
 <OnPlatform x:TypeArguments="x:String">
 <On Platform="iOS" Value="MarkerFelt-Thin" />
 <On Platform="Android" Value="Lobster-Regular" />
 <On Platform="UWP" Value="ArimaMadurai-Black" />
 </OnPlatform>
 </Label.FontFamily>
</Label>

Label label = new Label
{
 Text = "Different font properties on different platforms"
};

label.FontSize = Device.RuntimePlatform == Device.iOS ? 20 :
 Device.RuntimePlatform == Device.Android ? Device.GetNamedSize(NamedSize.Medium, label) : 24;
label.FontFamily = Device.RuntimePlatform == Device.iOS ? "MarkerFelt-Thin" :
 Device.RuntimePlatform == Device.Android ? "Lobster-Regular" : "ArimaMadurai-Black";

 Understand named font sizes

M EM B ERM EM B ER IO SIO S A N DRO IDA N DRO ID UW PUW P

Default 17 14 14

Micro 12 10 15.667

Small 14 14 18.667

Medium 17 17 22.667

Large 22 22 32

Body 17 16 14

Header 17 96 46

Title 28 24 24

Subtitle 22 16 20

Caption 12 12 12

The Device.RuntimePlatform property can be used in code to set font properties per platform

For more information about providing platform-specific values, see Provide platform-specific values. For

information about the OnPlatform markup extension, see OnPlatform markup extension.

Xamarin.Forms defines fields in the NamedSize enumeration that represent specific font sizes. The following

table shows the NamedSize members, and their default sizes on iOS, Android, and the Universal Windows

Platform (UWP):

The size values are measured in device-independent units. For more information, see Units of Measurement.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.namedsize

NOTENOTE

 Display font icons

IMPORTANTIMPORTANT

<Image BackgroundColor="#D1D1D1">
 <Image.Source>
 <FontImageSource Glyph=""
 FontFamily="{OnPlatform iOS=Ionicons, Android=ionicons.ttf#}"
 Size="44" />
 </Image.Source>
</Image>

Image image = new Image { BackgroundColor = Color.FromHex("#D1D1D1") };
image.Source = new FontImageSource
{
 Glyph = "\uf30c",
 FontFamily = Device.RuntimePlatform == Device.iOS ? "Ionicons" : "ionicons.ttf#",
 Size = 44
};

On iOS and Android, named font sizes will autoscale based on operating system accessibility options. This behavior can be

disabled on iOS with a platform-specific. For more information, see Accessibility Scaling for Named Font Sizes on iOS.

Font icons can be displayed by Xamarin.Forms applications by specifying the font icon data in a

FontImageSource object. This class, which derives from the ImageSource class, has the following properties:

Glyph – the unicode character value of the font icon, specified as a string .

Size – a double value that indicates the size, in device-independent units, of the rendered font icon. The

default value is 30. In addition, this property can be set to a named font size.

FontFamily – a string representing the font family to which the font icon belongs.

Color – an optional Color value to be used when displaying the font icon.

This data is used to create a PNG, which can be displayed by any view that can display an ImageSource . This

approach permits font icons, such as emojis, to be displayed by multiple views, as opposed to limiting font icon

display to a single text presenting view, such as a Label .

Font icons can only currently be specified by their unicode character representation.

The following XAML example has a single font icon being displayed by an Image view:

This code displays an XBox icon, from the Ionicons font family, in an Image view. Note that while the unicode

character for this icon is \uf30c , it has to be escaped in XAML and so becomes  . The equivalent C#

code is:

The following screenshots, from the Bindable Layouts sample, show several font icons being displayed by a

bindable layout:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-bindablelayouts

 Related links
FontsSample

Text (sample)

Bindable Layouts (sample)

Provide platform-specific values

OnPlatform markup extension

Bindable Layouts

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithfonts
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-text
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-bindablelayouts

SkiaSharp Graphics in Xamarin.Forms
 7/8/2021 • 2 minutes to read • Edit Online

 SkiaSharp Preliminaries

IMPORTANTIMPORTANT

 SkiaSharp Drawing Basics

 SkiaSharp Lines and Paths

 Download the sample

Use SkiaSharp for 2D graphics in your Xamarin.Forms applications

SkiaSharp is a 2D graphics system for .NET and C# powered by the open-source Skia graphics engine that is

used extensively in Google products. You can use SkiaSharp in your Xamarin.Forms applications to draw 2D

vector graphics, bitmaps, and text.

This guide assumes that you are familiar with Xamarin.Forms programming.

Webinar : SkiaSharp for Xamarin.FormsWebinar : SkiaSharp for Xamarin.Forms

SkiaSharp for Xamarin.Forms is packaged as a NuGet package. After you've created a Xamarin.Forms solution in

Visual Studio or Visual Studio for Mac, you can use the NuGet package manager to search for the

SkiaSharp.Views.FormsSkiaSharp.Views.Forms package and add it to your solution. If you check the ReferencesReferences section of each

project after adding SkiaSharp, you can see that various SkiaSharpSkiaSharp libraries have been added to each of the

projects in the solution.

If your Xamarin.Forms application targets iOS, edit its Info.plistInfo.plist file to change the minimum deployment target

to iOS 8.0.

In any C# page that uses SkiaSharp you'll want to include a using directive for the SkiaSharp namespace,

which encompasses all the SkiaSharp classes, structures, and enumerations that you'll use in your graphics

programming. You'll also want a using directive for the SkiaSharp.Views.Forms namespace for the classes

specific to Xamarin.Forms. This is a much smaller namespace, with the most important class being

SKCanvasView . This class derives from the Xamarin.Forms View class and hosts your SkiaSharp graphics output.

The SkiaSharp.Views.Forms namespace also contains an SKGLView class that derives from View but uses OpenGL

for rendering graphics. For purposes of simplicity, this guide restricts itself to SKCanvasView , but using SKGLView

instead is quite similar.

Some of the simplest graphics figures you can draw with SkiaSharp are circles, ovals, and rectangles. In

displaying these figures, you will learn about SkiaSharp coordinates, sizes, and colors. The display of text and

bitmaps is more complex, but these articles also introduce those techniques.

A graphics path is a series of connected straight lines and curves. Paths can be stroked, filled, or both. This article

encompasses many aspects of line drawing, including stroke ends and joins, and dashed and dotted lines, but

stops short of curve geometries.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/graphics/skiasharp/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/skiasharpforms-demos
https://channel9.msdn.com/Events/Xamarin/Xamarin-University-Presents-Webinar-Series/SkiaSharp-Graphics-for-XamarinForms/player?nocookie=true
https://docs.microsoft.com/en-us/dotnet/api/skiasharp
https://docs.microsoft.com/en-us/dotnet/api/skiasharp.views.forms
https://docs.microsoft.com/en-us/dotnet/api/skiasharp.views.forms.skcanvasview
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/basics/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/paths/index

 SkiaSharp Transforms

 SkiaSharp Curves and Paths

 SkiaSharp Bitmaps

 SkiaSharp Effects

 Related Links

Transforms allow graphics objects to be uniformly translated, scaled, rotated, or skewed. This article also shows

how you can use a standard 3-by-3 transform matrix for creating non-affine transforms and applying

transforms to paths.

The exploration of paths continues with adding curves to a path objects, and exploiting other powerful path

features. You'll see how you can specify an entire path in a concise text string, how to use path effects, and how

to dig into path internals.

Bitmaps are rectangular arrays of bits corresponding to the pixels of a display device. This series of articles

shows how to load, save, display, create, draw on, animate, and access the bits of SkiaSharp bitmaps.

Effects are properties that alter the normal display of graphics, including linear and circular gradients, bitmap

tiling, blend modes, blur, and others.

SkiaSharp APIs

SkiaSharpFormsDemos (sample)

SkiaSharp with Xamarin.Forms Webinar (video)

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/transforms/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/bitmaps/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/effects/index
https://docs.microsoft.com/en-us/dotnet/api/skiasharp
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/skiasharpforms-demos
https://channel9.msdn.com/Events/Xamarin/Xamarin-University-Presents-Webinar-Series/SkiaSharp-Graphics-for-XamarinForms

Xamarin.Forms splash screen
 7/8/2021 • 2 minutes to read • Edit Online

 Xamarin.Forms Android splash screen

 Xamarin.Forms iOS splash screen

 Xamarin.Forms UWP splash screen

Applications often have a startup delay while the application completes its initialization process. Developers may

want to offer a branded experience, typically called a splash screen, while the application is starting. This article

explains how to create splash screens for Xamarin.Forms applications.

Xamarin.Forms is initialized on each platform after the native startup sequence has completed. Xamarin.Forms is

initialized:

In the OnCreate method of the MainActivity class on Android.

In the FinishedLaunching method of the AppDelegate class on iOS.

In the OnLaunched method of the App class on UWP.

The splash screen should be shown as soon as possible when the application is launched, but Xamarin.Forms is

not initialized until late in the startup sequence, which means that the splash screen must be implemented

outside of Xamarin.Forms on each platform. The following sections explain how to create a splash screens on

each platform.

Creating a splash screen on Android requires creating a splash Activity as the MainLauncher with a special

theme. As soon as the splash Activity is started, it launches the main Activity with the normal application

theme.

For more information about splash screens on Xamarin.Android, see Xamarin.Android splash screen.

A splash screen on iOS is referred to as a Launch Screen. Creating a Launch Screen on iOS requires creating a

Storyboard that defines the UI of the launch screen, and then setting the Storyboard as the Launch Screen in the

Info.plistInfo.plist.

For more information about Launch Screens on Xamarin.iOS, see Xamarin.iOS Launch Screen.

On UWP, the Package.appxmanifestPackage.appxmanifest contains a Visual AssetsVisual Assets tab with a Splash ScreenSplash Screen submenu. The

splash screen graphics can be specified in this menu:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/splashscreen.md
https://docs.microsoft.com/en-us/xamarin/android/user-interface/splash-screen
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/launch-screens
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/splashscreen-images/uwp-splashscreen.png#lightbox

 Related links
Xamarin.Android splash screen

Xamarin.iOS Launch Screen

https://docs.microsoft.com/en-us/xamarin/android/user-interface/splash-screen
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/launch-screens

Styling Xamarin.Forms Apps
 11/2/2020 • 2 minutes to read • Edit Online

 Styling Xamarin.Forms Apps using XAML Styles

 Styling Xamarin.Forms Apps using Cascading Style Sheets

Styling a Xamarin.Forms app is traditionally accomplished by using the Style class to group a collection of

property values into one object that can then be applied to multiple visual element instances. This helps to

reduce repetitive markup, and allows an apps appearance to be more easily changed.

Xamarin.Forms supports styling visual elements using Cascading Style Sheets (CSS). A style sheet consists of a

list of rules, with each rule consisting of one or more selectors, and a declaration block.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style

Styling Xamarin.Forms Apps using XAML Styles
 11/2/2020 • 2 minutes to read • Edit Online

 Introduction

 Explicit Styles

 Implicit Styles

 Global Styles

 Style Inheritance

 Dynamic Styles

 Device Styles

 Style Classes

Xamarin.Forms applications often contain multiple controls that have an identical appearance. Setting the

appearance of each individual control can be repetitive and error prone. Instead, styles can be created that

customize control appearance by grouping and setting properties available on the control type.

An explicit style is one that is selectively applied to controls by setting their Style properties.

An implicit style is one that's used by all controls of the same TargetType , without requiring each control to

reference the style.

Styles can be made available globally by adding them to the application's ResourceDictionary . This helps to

avoid duplication of styles across pages or controls.

Styles can inherit from other styles to reduce duplication and enable reuse.

Styles do not respond to property changes, and remain unchanged for the duration of an application. However,

applications can respond to style changes dynamically at runtime by using dynamic resources.

Xamarin.Forms includes six dynamic styles, known as device styles, in the Devices.Styles class. All six styles can

be applied to Label instances only.

Xamarin.Forms style classes enable multiple styles to be applied to a control, without resorting to style

inheritance.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

Introduction to Xamarin.Forms Styles
 7/8/2021 • 4 minutes to read • Edit Online

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Styles.NoStylesPage"
 Title="No Styles"
 IconImageSource="xaml.png">
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <Label Text="These labels"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 FontSize="Large" />
 <Label Text="are not"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 FontSize="Large" />
 <Label Text="using styles"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand"
 FontSize="Large" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

Styles allow the appearance of visual elements to be customized. Styles are defined for a specific type and

contain values for the properties available on that type.

Xamarin.Forms applications often contain multiple controls that have an identical appearance. For example, an

application may have multiple Label instances that have the same font options and layout options, as shown in

the following XAML code example:

The following code example shows the equivalent page created in C#:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/introduction.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

public class NoStylesPageCS : ContentPage
{
 public NoStylesPageCS ()
 {
 Title = "No Styles";
 IconImageSource = "csharp.png";
 Padding = new Thickness (0, 20, 0, 0);

 Content = new StackLayout {
 Children = {
 new Label {
 Text = "These labels",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand,
 FontSize = Device.GetNamedSize (NamedSize.Large, typeof(Label))
 },
 new Label {
 Text = "are not",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand,
 FontSize = Device.GetNamedSize (NamedSize.Large, typeof(Label))
 },
 new Label {
 Text = "using styles",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.CenterAndExpand,
 FontSize = Device.GetNamedSize (NamedSize.Large, typeof(Label))
 }
 }
 };
 }
}

 Create a style

Each Label instance has identical property values for controlling the appearance of the text displayed by the

Label . This results in the appearance shown in the following screenshots:

Setting the appearance of each individual control can be repetitive and error prone. Instead, a style can be

created that defines the appearance, and then applied to the required controls.

The Style class groups a collection of property values into one object that can then be applied to multiple

visual element instances. This helps to reduce repetitive markup, and allows an applications appearance to be

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/introduction-images/no-styles-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style

<Style x:Key="labelStyle" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 <Setter Property="FontSize" Value="Large" />
</Style>

<Label Text="Demonstrating an explicit style" Style="{StaticResource labelStyle}" />

more easily changed.

Although styles were designed primarily for XAML-based applications, they can also be created in C#:

Style instances created in XAML are typically defined in a ResourceDictionary that's assigned to the

Resources collection of a control, page, or to the Resources collection of the application.

Style instances created in C# are typically defined in the page's class, or in a class that can be globally

accessed.

Choosing where to define a Style impacts where it can be used:

Style instances defined at the control level can only be applied to the control and to its children.

Style instances defined at the page level can only be applied to the page and to its children.

Style instances defined at the application level can be applied throughout the application.

Each Style instance contains a collection of one or more Setter objects, with each Setter having a Property

and a Value . The Property is the name of the bindable property of the element the style is applied to, and the

Value is the value that is applied to the property.

Each Style instance can be explicit, or implicit:

An explicit Style instance is defined by specifying a TargetType and an x:Key value, and by setting the

target element's Style property to the x:Key reference. For more information about explicit styles, see

Explicit Styles.

An implicit Style instance is defined by specifying only a TargetType . The Style instance will then

automatically be applied to all elements of that type. Note that subclasses of the TargetType do not

automatically have the Style applied. For more information about implicit styles, see Implicit Styles.

When creating a Style , the TargetType property is always required. The following code example shows an

explicit style (note the x:Key) created in XAML:

To apply a Style , the target object must be a VisualElement that matches the TargetType property value of the

Style , as shown in the following XAML code example:

Styles lower in the view hierarchy take precedence over those defined higher up. For example, setting a Style

that sets Label.TextColor to Red at the application level will be overridden by a page level style that sets

Label.TextColor to Green . Similarly, a page level style will be overridden by a control level style. In addition, if

Label.TextColor is set directly on a control property, this takes precedence over any styles.

The articles in this section demonstrate and explain how to create and apply explicit and implicit styles, how to

create global styles, style inheritance, how to respond to style changes at runtime, and how to use the in-built

styles included in Xamarin.Forms.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application.resources#xamarin_forms_application_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter.property#xamarin_forms_setter_property
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter.value#xamarin_forms_setter_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/explicit.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/implicit.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor

NOTENOTE

 Related links

What is StyleId?What is StyleId?

Prior to Xamarin.Forms 2.2, the StyleId property was used to identify individual elements in an application for

identification in UI testing, and in theme engines such as Pixate. However, Xamarin.Forms 2.2 introduced the

AutomationId property, which has superseded the StyleId property.

XAML Markup Extensions

Style

Setter

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.styleid#xamarin_forms_element_styleid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.automationid#xamarin_forms_element_automationid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.styleid#xamarin_forms_element_styleid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter

Explicit Styles in Xamarin.Forms
 7/8/2021 • 4 minutes to read • Edit Online

 Create an explicit style in XAML

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.ExplicitStylesPage" Title="Explicit"
IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="labelRedStyle" TargetType="Label">
 <Setter Property="HorizontalOptions"
 Value="Center" />
 <Setter Property="VerticalOptions"
 Value="CenterAndExpand" />
 <Setter Property="FontSize" Value="Large" />
 <Setter Property="TextColor" Value="Red" />
 </Style>
 <Style x:Key="labelGreenStyle" TargetType="Label">
 ...
 <Setter Property="TextColor" Value="Green" />
 </Style>
 <Style x:Key="labelBlueStyle" TargetType="Label">
 ...
 <Setter Property="TextColor" Value="Blue" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <Label Text="These labels"
 Style="{StaticResource labelRedStyle}" />
 <Label Text="are demonstrating"
 Style="{StaticResource labelGreenStyle}" />
 <Label Text="explicit styles,"
 Style="{StaticResource labelBlueStyle}" />
 <Label Text="and an explicit style override"
 Style="{StaticResource labelBlueStyle}"
 TextColor="Teal" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Download the sample

An explicit style is one that is selectively applied to controls by setting their Style properties.

To declare a Style at the page level, a ResourceDictionary must be added to the page and then one or more

Style declarations can be included in the ResourceDictionary . A Style is made explicit by giving its

declaration an x:Key attribute, which gives it a descriptive key in the ResourceDictionary . Explicit styles must

then be applied to specific visual elements by setting their Style properties.

The following code example shows explicit styles declared in XAML in a page's ResourceDictionary and applied

to the page's Label instances:

The ResourceDictionary defines three explicit styles that are applied to the page's Label instances. Each Style

is used to display text in a different color, while also setting the font size and horizontal and vertical layout

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/explicit.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

 Create an explicit style at the control levelCreate an explicit style at the control level

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.ExplicitStylesPage" Title="Explicit"
IconImageSource="xaml.png">
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <StackLayout.Resources>
 <ResourceDictionary>
 <Style x:Key="labelRedStyle" TargetType="Label">
 ...
 </Style>
 ...
 </ResourceDictionary>
 </StackLayout.Resources>
 <Label Text="These labels" Style="{StaticResource labelRedStyle}" />
 ...
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Create an explicit style in C#

options. Each Style is applied to a different Label by setting its Style properties using the StaticResource

markup extension. This results in the appearance shown in the following screenshots:

In addition, the final Label has a Style applied to it, but also overrides the TextColor property to a different

Color value.

In addition to creating explicit styles at the page level, they can also be created at the control level, as shown in

the following code example:

In this example, the explicit Style instances are assigned to the Resources collection of the StackLayout

control. The styles can then be applied to the control and its children.

For information about creating styles in an application's ResourceDictionary , see Global Styles.

Style instances can be added to a page's Resources collection in C# by creating a new ResourceDictionary ,

and then by adding the Style instances to the ResourceDictionary , as shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/explicit-images/explicit-styles-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.textcolor#xamarin_forms_label_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/application.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

public class ExplicitStylesPageCS : ContentPage
{
 public ExplicitStylesPageCS ()
 {
 var labelRedStyle = new Style (typeof(Label)) {
 Setters = {
 ...
 new Setter { Property = Label.TextColorProperty, Value = Color.Red }
 }
 };
 var labelGreenStyle = new Style (typeof(Label)) {
 Setters = {
 ...
 new Setter { Property = Label.TextColorProperty, Value = Color.Green }
 }
 };
 var labelBlueStyle = new Style (typeof(Label)) {
 Setters = {
 ...
 new Setter { Property = Label.TextColorProperty, Value = Color.Blue }
 }
 };

 Resources = new ResourceDictionary ();
 Resources.Add ("labelRedStyle", labelRedStyle);
 Resources.Add ("labelGreenStyle", labelGreenStyle);
 Resources.Add ("labelBlueStyle", labelBlueStyle);
 ...

 Content = new StackLayout {
 Children = {
 new Label { Text = "These labels",
 Style = (Style)Resources ["labelRedStyle"] },
 new Label { Text = "are demonstrating",
 Style = (Style)Resources ["labelGreenStyle"] },
 new Label { Text = "explicit styles,",
 Style = (Style)Resources ["labelBlueStyle"] },
 new Label { Text = "and an explicit style override",
 Style = (Style)Resources ["labelBlueStyle"], TextColor = Color.Teal }
 }
 };
 }
}

The constructor defines three explicit styles that are applied to the page's Label instances. Each explicit Style

is added to the ResourceDictionary using the Add method, specifying a key string to refer to the Style

instance. Each Style is applied to a different Label by setting their Style properties.

However, there is no advantage to using a ResourceDictionary here. Instead, Style instances can be assigned

directly to the Style properties of the required visual elements, and the ResourceDictionary can be removed,

as shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.add#xamarin_forms_resourcedictionary_add_system_string_system_object_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style

public class ExplicitStylesPageCS : ContentPage
{
 public ExplicitStylesPageCS ()
 {
 var labelRedStyle = new Style (typeof(Label)) {
 ...
 };
 var labelGreenStyle = new Style (typeof(Label)) {
 ...
 };
 var labelBlueStyle = new Style (typeof(Label)) {
 ...
 };
 ...
 Content = new StackLayout {
 Children = {
 new Label { Text = "These labels", Style = labelRedStyle },
 new Label { Text = "are demonstrating", Style = labelGreenStyle },
 new Label { Text = "explicit styles,", Style = labelBlueStyle },
 new Label { Text = "and an explicit style override", Style = labelBlueStyle,
 TextColor = Color.Teal }
 }
 };
 }
}

 Related links

The constructor defines three explicit styles that are applied to the page's Label instances. Each Style is used

to display text in a different color, while also setting the font size and horizontal and vertical layout options. Each

Style is applied to a different Label by setting its Style properties. In addition, the final Label has a Style

applied to it, but also overrides the TextColor property to a different Color value.

XAML Markup Extensions

Basic Styles (sample)

Working with Styles (sample)

ResourceDictionary

Style

Setter

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter

Implicit Styles in Xamarin.Forms
 7/8/2021 • 4 minutes to read • Edit Online

 Create an implicit style in XAML

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:local="clr-namespace:Styles;assembly=Styles"
x:Class="Styles.ImplicitStylesPage" Title="Implicit" IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Entry">
 <Setter Property="HorizontalOptions" Value="Fill" />
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 <Setter Property="BackgroundColor" Value="Yellow" />
 <Setter Property="FontAttributes" Value="Italic" />
 <Setter Property="TextColor" Value="Blue" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <Entry Text="These entries" />
 <Entry Text="are demonstrating" />
 <Entry Text="implicit styles," />
 <Entry Text="and an implicit style override" BackgroundColor="Lime" TextColor="Red" />
 <local:CustomEntry Text="Subclassed Entry is not receiving the style" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Download the sample

An implicit style is one that's used by all controls of the same TargetType, without requiring each control to

reference the style.

To declare a Style at the page level, a ResourceDictionary must be added to the page and then one or more

Style declarations can be included in the ResourceDictionary . A Style is made implicit by not specifying an

x:Key attribute. The style will then be applied to visual elements that match the TargetType exactly, but not to

elements that are derived from the TargetType value.

The following code example shows an implicit style declared in XAML in a page's ResourceDictionary , and

applied to the page's Entry instances:

The ResourceDictionary defines a single implicit style that's applied to the page's Entry instances. The Style is

used to display blue text on a yellow background, while also setting other appearance options. The Style is

added to the page's ResourceDictionary without specifying an x:Key attribute. Therefore, the Style is applied

to all the Entry instances implicitly as they match the TargetType property of the Style exactly. However, the

Style is not applied to the CustomEntry instance, which is a subclassed Entry . This results in the appearance

shown in the following screenshots:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/implicit.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype

 Create an implicit style at the control levelCreate an implicit style at the control level

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:local="clr-namespace:Styles;assembly=Styles"
x:Class="Styles.ImplicitStylesPage" Title="Implicit" IconImageSource="xaml.png">
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <StackLayout.Resources>
 <ResourceDictionary>
 <Style TargetType="Entry">
 <Setter Property="HorizontalOptions" Value="Fill" />
 ...
 </Style>
 </ResourceDictionary>
 </StackLayout.Resources>
 <Entry Text="These entries" />
 ...
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Create an implicit style in C#

In addition, the fourth Entry overrides the BackgroundColor and TextColor properties of the implicit style to

different Color values.

In addition to creating implicit styles at the page level, they can also be created at the control level, as shown in

the following code example:

In this example, the implicit Style is assigned to the Resources collection of the StackLayout control. The

implicit style can then be applied to the control and its children.

For information about creating styles in an application's ResourceDictionary , see Global Styles.

Style instances can be added to a page's Resources collection in C# by creating a new ResourceDictionary ,

and then by adding the Style instances to the ResourceDictionary , as shown in the following code example:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/implicit-images/implicit-styles-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview.textcolor#xamarin_forms_inputview_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/application.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

public class ImplicitStylesPageCS : ContentPage
{
 public ImplicitStylesPageCS ()
 {
 var entryStyle = new Style (typeof(Entry)) {
 Setters = {
 ...
 new Setter { Property = Entry.TextColorProperty, Value = Color.Blue }
 }
 };

 ...
 Resources = new ResourceDictionary ();
 Resources.Add (entryStyle);

 Content = new StackLayout {
 Children = {
 new Entry { Text = "These entries" },
 new Entry { Text = "are demonstrating" },
 new Entry { Text = "implicit styles," },
 new Entry { Text = "and an implicit style override", BackgroundColor = Color.Lime, TextColor
= Color.Red },
 new CustomEntry { Text = "Subclassed Entry is not receiving the style" }
 }
 };
 }
}

 Apply a style to derived types

<Style TargetType="Button"
 ApplyToDerivedTypes="True">
 <Setter Property="BackgroundColor"
 Value="Red" />
</Style>

The constructor defines a single implicit style that's applied to the page's Entry instances. The Style is used to

display blue text on a yellow background, while also setting other appearance options. The Style is added to

the page's ResourceDictionary without specifying a key string. Therefore, the Style is applied to all the Entry

instances implicitly as they match the TargetType property of the Style exactly. However, the Style is not

applied to the CustomEntry instance, which is a subclassed Entry .

The Style.ApplyToDerivedTypes property enables a style to be applied to controls that are derived from the base

type referenced by the TargetType property. Therefore, setting this property to true enables a single style to

target multiple types, provided that the types derive from the base type specified in the TargetType property.

The following example shows an implicit style that sets the background color of Button instances to red:

Placing this style in a page-level ResourceDictionary will result in it being applied to all Button instances on the

page, and also to any controls that derive from Button . However, if the ApplyToDerivedTypes property remained

unset, the style would only be applied to Button instances.

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.applytoderivedtypes#xamarin_forms_style_applytoderivedtypes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.applytoderivedtypes#xamarin_forms_style_applytoderivedtypes

var buttonStyle = new Style(typeof(Button))
{
 ApplyToDerivedTypes = true,
 Setters =
 {
 new Setter
 {
 Property = VisualElement.BackgroundColorProperty,
 Value = Color.Red
 }
 }
};

Resources = new ResourceDictionary { buttonStyle };

 Related links
XAML Markup Extensions

Basic Styles (sample)

Working with Styles (sample)

ResourceDictionary

Style

Setter

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter

Global Styles in Xamarin.Forms
 7/8/2021 • 3 minutes to read • Edit Online

 Create a global style in XAML

<Application xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.App">
 <Application.Resources>
 <ResourceDictionary>
 <Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 <Setter Property="BorderColor" Value="Lime" />
 <Setter Property="BorderRadius" Value="5" />
 <Setter Property="BorderWidth" Value="5" />
 <Setter Property="WidthRequest" Value="200" />
 <Setter Property="TextColor" Value="Teal" />
 </Style>
 </ResourceDictionary>
 </Application.Resources>
</Application>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.ApplicationStylesPage"
Title="Application" IconImageSource="xaml.png">
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <Button Text="These buttons" Style="{StaticResource buttonStyle}" />
 <Button Text="are demonstrating" Style="{StaticResource buttonStyle}" />
 <Button Text="application style overrides" Style="{StaticResource buttonStyle}" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Download the sample

Styles can be made available globally by adding them to the application's resource dictionary. This helps to avoid

duplication of styles across pages or controls.

By default, all Xamarin.Forms applications created from a template use the AppApp class to implement the

Application subclass. To declare a Style at the application level, in the application's ResourceDictionary using

XAML, the default AppApp class must be replaced with a XAML AppApp class and associated code-behind. For more

information, see Working with the App Class.

The following code example shows a Style declared at the application level:

This ResourceDictionary defines a single explicit style, buttonStyle , which will be used to set the appearance of

Button instances. However, global styles can be explicit or implicit.

The following code example shows a XAML page applying the buttonStyle to the page's Button instances:

This results in the appearance shown in the following screenshots:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/application.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

 Override stylesOverride styles

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.ApplicationStylesPage"
Title="Application" IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="buttonStyle" TargetType="Button">
 ...
 <Setter Property="TextColor" Value="Red" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <StackLayout.Resources>
 <ResourceDictionary>
 <Style x:Key="buttonStyle" TargetType="Button">
 ...
 <Setter Property="TextColor" Value="Blue" />
 </Style>
 </ResourceDictionary>
 </StackLayout.Resources>
 <Button Text="These buttons" Style="{StaticResource buttonStyle}" />
 <Button Text="are demonstrating" Style="{StaticResource buttonStyle}" />
 <Button Text="application style overrides" Style="{StaticResource buttonStyle}" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

For information about creating styles in a page's ResourceDictionary , see Explicit Styles and Implicit Styles.

Styles lower in the view hierarchy take precedence over those defined higher up. For example, setting a Style

that sets Button.TextColor to Red at the application level will be overridden by a page level style that sets

Button.TextColor to Green . Similarly, a page level style will be overridden by a control level style. In addition, if

Button.TextColor is set directly on a control property, this will take precedence over any styles. This precedence

is demonstrated in the following code example:

The original buttonStyle , defined at application level, is overridden by the buttonStyle instance defined at

page level. In addition, the page level style is overridden by the control level buttonStyle . Therefore, the Button

instances are displayed with blue text, as shown in the following screenshots:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/application-images/application-styles-1-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/explicit.html
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/implicit.html
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.textcolor#xamarin_forms_button_textcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

 Create a global style in C#

public class App : Application
{
 public App ()
 {
 var buttonStyle = new Style (typeof(Button)) {
 Setters = {
 ...
 new Setter { Property = Button.TextColorProperty, Value = Color.Teal }
 }
 };

 Resources = new ResourceDictionary ();
 Resources.Add ("buttonStyle", buttonStyle);
 ...
 }
 ...
}

Style instances can be added to the application's Resources collection in C# by creating a new

ResourceDictionary , and then by adding the Style instances to the ResourceDictionary , as shown in the

following code example:

The constructor defines a single explicit style for applying to Button instances throughout the application.

Explicit Style instances are added to the ResourceDictionary using the Add method, specifying a key string

to refer to the Style instance. The Style instance can then be applied to any controls of the correct type in the

application. However, global styles can be explicit or implicit.

The following code example shows a C# page applying the buttonStyle to the page's Button instances:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/application-images/application-styles-2-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.resources#xamarin_forms_visualelement_resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.add#xamarin_forms_resourcedictionary_add_system_string_system_object_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

public class ApplicationStylesPageCS : ContentPage
{
 public ApplicationStylesPageCS ()
 {
 ...
 Content = new StackLayout {
 Children = {
 new Button { Text = "These buttons", Style = (Style)Application.Current.Resources
["buttonStyle"] },
 new Button { Text = "are demonstrating", Style = (Style)Application.Current.Resources
["buttonStyle"] },
 new Button { Text = "application styles", Style = (Style)Application.Current.Resources
["buttonStyle"]
 }
 }
 };
 }
}

 Related links

The buttonStyle is applied to the Button instances by setting their Style properties, and controls the

appearance of the Button instances.

XAML Markup Extensions

Basic Styles (sample)

Working with Styles (sample)

ResourceDictionary

Style

Setter

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter

Style Inheritance in Xamarin.Forms
 7/8/2021 • 3 minutes to read • Edit Online

 Style inheritance in XAML

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.StyleInheritancePage"
Title="Inheritance" IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="baseStyle" TargetType="View">
 <Setter Property="HorizontalOptions"
 Value="Center" />
 <Setter Property="VerticalOptions"
 Value="CenterAndExpand" />
 </Style>
 <Style x:Key="labelStyle" TargetType="Label"
 BasedOn="{StaticResource baseStyle}">
 ...
 <Setter Property="TextColor" Value="Teal" />
 </Style>
 <Style x:Key="buttonStyle" TargetType="Button"
 BasedOn="{StaticResource baseStyle}">
 <Setter Property="BorderColor" Value="Lime" />
 ...
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <Label Text="These labels"
 Style="{StaticResource labelStyle}" />
 ...
 <Button Text="So is the button"
 Style="{StaticResource buttonStyle}" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Download the sample

Styles can inherit from other styles to reduce duplication and enable reuse.

Style inheritance is performed by setting the Style.BasedOn property to an existing Style . In XAML, this is

achieved by setting the BasedOn property to a StaticResource markup extension that references a previously

created Style . In C#, this is achieved by setting the BasedOn property to a Style instance.

Styles that inherit from a base style can include Setter instances for new properties, or use them to override

styles from the base style. In addition, styles that inherit from a base style must target the same type, or a type

that derives from the type targeted by the base style. For example, if a base style targets View instances, styles

that are based on the base style can target View instances or types that derive from the View class, such as

Label and Button instances.

The following code demonstrates explicit style inheritance in a XAML page:

The baseStyle targets View instances, and sets the HorizontalOptions and VerticalOptions properties. The

baseStyle is not set directly on any controls. Instead, labelStyle and buttonStyle inherit from it, setting

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/inheritance.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.basedon#xamarin_forms_style_basedon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions

NOTENOTE

 Respecting the inheritance chainRespecting the inheritance chain

additional bindable property values. The labelStyle and buttonStyle are then applied to the Label instances

and Button instance, by setting their Style properties. This results in the appearance shown in the following

screenshots:

An implicit style can be derived from an explicit style, but an explicit style can't be derived from an implicit style.

A style can only inherit from styles at the same level, or above, in the view hierarchy. This means that:

An application level resource can only inherit from other application level resources.

A page level resource can inherit from application level resources, and other page level resources.

A control level resource can inherit from application level resources, page level resources, and other control

level resources.

This inheritance chain is demonstrated in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/inheritance-images/style-inheritance-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.StyleInheritancePage"
Title="Inheritance" IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="baseStyle" TargetType="View">
 ...
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <StackLayout.Resources>
 <ResourceDictionary>
 <Style x:Key="labelStyle" TargetType="Label" BasedOn="{StaticResource baseStyle}">
 ...
 </Style>
 <Style x:Key="buttonStyle" TargetType="Button" BasedOn="{StaticResource baseStyle}">
 ...
 </Style>
 </ResourceDictionary>
 </StackLayout.Resources>
 ...
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Style inheritance in C#

In this example, labelStyle and buttonStyle are control level resources, while baseStyle is a page level

resource. However, while labelStyle and buttonStyle inherit from baseStyle , it's not possible for baseStyle

to inherit from labelStyle or buttonStyle , due to their respective locations in the view hierarchy.

The equivalent C# page, where Style instances are assigned directly to the Style properties of the required

controls, is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style

public class StyleInheritancePageCS : ContentPage
{
 public StyleInheritancePageCS ()
 {
 var baseStyle = new Style (typeof(View)) {
 Setters = {
 new Setter {
 Property = View.HorizontalOptionsProperty, Value = LayoutOptions.Center },
 ...
 }
 };

 var labelStyle = new Style (typeof(Label)) {
 BasedOn = baseStyle,
 Setters = {
 ...
 new Setter { Property = Label.TextColorProperty, Value = Color.Teal }
 }
 };

 var buttonStyle = new Style (typeof(Button)) {
 BasedOn = baseStyle,
 Setters = {
 new Setter { Property = Button.BorderColorProperty, Value = Color.Lime },
 ...
 }
 };
 ...

 Content = new StackLayout {
 Children = {
 new Label { Text = "These labels", Style = labelStyle },
 ...
 new Button { Text = "So is the button", Style = buttonStyle }
 }
 };
 }
}

 Related links

The baseStyle targets View instances, and sets the HorizontalOptions and VerticalOptions properties. The

baseStyle is not set directly on any controls. Instead, labelStyle and buttonStyle inherit from it, setting

additional bindable property values. The labelStyle and buttonStyle are then applied to the Label instances

and Button instance, by setting their Style properties.

XAML Markup Extensions

Basic Styles (sample)

Working with Styles (sample)

ResourceDictionary

Style

Setter

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter

Dynamic Styles in Xamarin.Forms
 7/8/2021 • 4 minutes to read • Edit Online

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.DynamicStylesPage" Title="Dynamic"
IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="baseStyle" TargetType="View">
 ...
 </Style>
 <Style x:Key="blueSearchBarStyle"
 TargetType="SearchBar"
 BasedOn="{StaticResource baseStyle}">
 ...
 </Style>
 <Style x:Key="greenSearchBarStyle"
 TargetType="SearchBar">
 ...
 </Style>
 ...
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <SearchBar Placeholder="These SearchBar controls"
 Style="{DynamicResource searchBarStyle}" />
 ...
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Download the sample

Styles do not respond to property changes, and remain unchanged for the duration of an application. For

example, after assigning a Style to a visual element, if one of the Setter instances is modified, removed, or a new

Setter instance added, the changes won't be applied to the visual element. However, applications can respond to

style changes dynamically at runtime by using dynamic resources.

The DynamicResource markup extension is similar to the StaticResource markup extension in that both use a

dictionary key to fetch a value from a ResourceDictionary . However, while the StaticResource performs a single

dictionary lookup, the DynamicResource maintains a link to the dictionary key. Therefore, if the dictionary entry

associated with the key is replaced, the change is applied to the visual element. This enables runtime style

changes to be made in an application.

The following code example demonstrates dynamic styles in a XAML page:

The SearchBar instances use the DynamicResource markup extension to reference a Style named

searchBarStyle , which is not defined in the XAML. However, because the Style properties of the SearchBar

instances are set using a DynamicResource , the missing dictionary key doesn't result in an exception being

thrown.

Instead, in the code-behind file, the constructor creates a ResourceDictionary entry with the key searchBarStyle

, as shown in the following code example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/dynamic.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-dynamicstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

public partial class DynamicStylesPage : ContentPage
{
 bool originalStyle = true;

 public DynamicStylesPage ()
 {
 InitializeComponent ();
 Resources ["searchBarStyle"] = Resources ["blueSearchBarStyle"];
 }

 void OnButtonClicked (object sender, EventArgs e)
 {
 if (originalStyle) {
 Resources ["searchBarStyle"] = Resources ["greenSearchBarStyle"];
 originalStyle = false;
 } else {
 Resources ["searchBarStyle"] = Resources ["blueSearchBarStyle"];
 originalStyle = true;
 }
 }
}

When the OnButtonClicked event handler is executed, searchBarStyle will switch between blueSearchBarStyle

and greenSearchBarStyle . This results in the appearance shown in the following screenshots:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/dynamic-images/dynamic-style-blue-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/dynamic-images/dynamic-style-green-large.png#lightbox

public class DynamicStylesPageCS : ContentPage
{
 bool originalStyle = true;

 public DynamicStylesPageCS ()
 {
 ...
 var baseStyle = new Style (typeof(View)) {
 ...
 };
 var blueSearchBarStyle = new Style (typeof(SearchBar)) {
 ...
 };
 var greenSearchBarStyle = new Style (typeof(SearchBar)) {
 ...
 };
 ...
 var searchBar1 = new SearchBar { Placeholder = "These SearchBar controls" };
 searchBar1.SetDynamicResource (VisualElement.StyleProperty, "searchBarStyle");
 ...
 Resources = new ResourceDictionary ();
 Resources.Add ("blueSearchBarStyle", blueSearchBarStyle);
 Resources.Add ("greenSearchBarStyle", greenSearchBarStyle);
 Resources ["searchBarStyle"] = Resources ["blueSearchBarStyle"];

 Content = new StackLayout {
 Children = { searchBar1, searchBar2, searchBar3, searchBar4, button }
 };
 }
 ...
}

 Dynamic style inheritance

The following code example demonstrates the equivalent page in C#:

In C#, the SearchBar instances use the SetDynamicResource method to reference searchBarStyle . The

OnButtonClicked event handler code is identical to the XAML example, and when executed, searchBarStyle will

switch between blueSearchBarStyle and greenSearchBarStyle .

Deriving a style from a dynamic style can't be achieved using the Style.BasedOn property. Instead, the Style

class includes the BaseResourceKey property, which can be set to a dictionary key whose value might

dynamically change.

The following code example demonstrates dynamic style inheritance in a XAML page:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.setdynamicresource
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.basedon#xamarin_forms_style_basedon
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.baseresourcekey#xamarin_forms_style_baseresourcekey

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.DynamicStylesInheritancePage"
Title="Dynamic Inheritance" IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="baseStyle" TargetType="View">
 ...
 </Style>
 <Style x:Key="blueSearchBarStyle" TargetType="SearchBar" BasedOn="{StaticResource baseStyle}">
 ...
 </Style>
 <Style x:Key="greenSearchBarStyle" TargetType="SearchBar">
 ...
 </Style>
 <Style x:Key="tealSearchBarStyle" TargetType="SearchBar" BaseResourceKey="searchBarStyle">
 ...
 </Style>
 ...
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <SearchBar Text="These SearchBar controls" Style="{StaticResource tealSearchBarStyle}" />
 ...
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

The SearchBar instances use the StaticResource markup extension to reference a Style named

tealSearchBarStyle . This Style sets some additional properties and uses the BaseResourceKey property to

reference searchBarStyle . The DynamicResource markup extension is not required because tealSearchBarStyle

will not change, except for the Style it derives from. Therefore, tealSearchBarStyle maintains a link to

searchBarStyle and is altered when the base style changes.

In the code-behind file, the constructor creates a ResourceDictionary entry with the key searchBarStyle , as per

the previous example that demonstrated dynamic styles. When the OnButtonClicked event handler is executed,

searchBarStyle will switch between blueSearchBarStyle and greenSearchBarStyle . This results in the

appearance shown in the following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.baseresourcekey#xamarin_forms_style_baseresourcekey
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/dynamic-images/dynamic-style-inheritance-blue-large.png#lightbox

public class DynamicStylesInheritancePageCS : ContentPage
{
 bool originalStyle = true;

 public DynamicStylesInheritancePageCS ()
 {
 ...
 var baseStyle = new Style (typeof(View)) {
 ...
 };
 var blueSearchBarStyle = new Style (typeof(SearchBar)) {
 ...
 };
 var greenSearchBarStyle = new Style (typeof(SearchBar)) {
 ...
 };
 var tealSearchBarStyle = new Style (typeof(SearchBar)) {
 BaseResourceKey = "searchBarStyle",
 ...
 };
 ...
 Resources = new ResourceDictionary ();
 Resources.Add ("blueSearchBarStyle", blueSearchBarStyle);
 Resources.Add ("greenSearchBarStyle", greenSearchBarStyle);
 Resources ["searchBarStyle"] = Resources ["blueSearchBarStyle"];

 Content = new StackLayout {
 Children = {
 new SearchBar { Text = "These SearchBar controls", Style = tealSearchBarStyle },
 ...
 }
 };
 }
 ...
}

The following code example demonstrates the equivalent page in C#:

The tealSearchBarStyle is assigned directly to the Style property of the SearchBar instances. This Style sets

some additional properties, and uses the BaseResourceKey property to reference searchBarStyle . The

SetDynamicResource method isn't required here because tealSearchBarStyle will not change, except for the

Style it derives from. Therefore, tealSearchBarStyle maintains a link to searchBarStyle and is altered when

the base style changes.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/dynamic-images/dynamic-style-inheritance-green-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.baseresourcekey#xamarin_forms_style_baseresourcekey
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.setdynamicresource

 Related links

 Related video

XAML Markup Extensions

Dynamic Styles (sample)

Working with Styles (sample)

ResourceDictionary

Style

Setter

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-dynamicstyles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter
https://channel9.msdn.com/Shows/XamarinShow/XamarinForms-101-Dynamic-Resources/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Device Styles in Xamarin.Forms
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="Styles.DeviceStylesPage" Title="Device"
IconImageSource="xaml.png">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="myBodyStyle" TargetType="Label"
 BaseResourceKey="BodyStyle">
 <Setter Property="TextColor" Value="Accent" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout Padding="0,20,0,0">
 <Label Text="Title style"
 Style="{DynamicResource TitleStyle}" />
 <Label Text="Subtitle text style"
 Style="{DynamicResource SubtitleStyle}" />
 <Label Text="Body style"
 Style="{DynamicResource BodyStyle}" />
 <Label Text="Caption style"
 Style="{DynamicResource CaptionStyle}" />
 <Label Text="List item detail text style"
 Style="{DynamicResource ListItemDetailTextStyle}" />
 <Label Text="List item text style"
 Style="{DynamicResource ListItemTextStyle}" />
 <Label Text="No style" />
 <Label Text="My body style"
 Style="{StaticResource myBodyStyle}" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

 Download the sample

Xamarin.Forms includes six dynamic styles, known as device styles, in the Device.Styles class.

The device styles are:

BodyStyle

CaptionStyle

ListItemDetailTextStyle

ListItemTextStyle

SubtitleStyle

TitleStyle

All six styles can only be applied to Label instances. For example, a Label that's displaying the body of a

paragraph might set its Style property to BodyStyle .

The following code example demonstrates using the device styles in a XAML page:

The device styles are bound to using the DynamicResource markup extension. The dynamic nature of the styles

can be seen in iOS by changing the AccessibilityAccessibility settings for text size. The appearance of the device styles is

different on each platform, as shown in the following screenshots:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/device.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-dynamicstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.bodystyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.captionstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.listitemdetailtextstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.listitemtextstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.subtitlestyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.titlestyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.bodystyle

public class DeviceStylesPageCS : ContentPage
{
 public DeviceStylesPageCS ()
 {
 var myBodyStyle = new Style (typeof(Label)) {
 BaseResourceKey = Device.Styles.BodyStyleKey,
 Setters = {
 new Setter {
 Property = Label.TextColorProperty,
 Value = Color.Accent
 }
 }
 };

 Title = "Device";
 IconImageSource = "csharp.png";
 Padding = new Thickness (0, 20, 0, 0);

 Content = new StackLayout {
 Children = {
 new Label { Text = "Title style", Style = Device.Styles.TitleStyle },
 new Label { Text = "Subtitle style", Style = Device.Styles.SubtitleStyle },
 new Label { Text = "Body style", Style = Device.Styles.BodyStyle },
 new Label { Text = "Caption style", Style = Device.Styles.CaptionStyle },
 new Label { Text = "List item detail text style",
 Style = Device.Styles.ListItemDetailTextStyle },
 new Label { Text = "List item text style", Style = Device.Styles.ListItemTextStyle },
 new Label { Text = "No style" },
 new Label { Text = "My body style", Style = myBodyStyle }
 }
 };
 }
}

 Accessibility

Device styles can also be derived from by setting the BaseResourceKey property to the key name for the device

style. In the code example above, myBodyStyle inherits from BodyStyle and sets an accented text color. For

more information about dynamic style inheritance, see Dynamic Style Inheritance.

The following code example demonstrates the equivalent page in C#:

The Style property of each Label instance is set to the appropriate property from the Devices.Styles class.

The device styles respect accessibility preferences, so font sizes will change as the accessibility preferences are

altered on each platform. Therefore, to support accessible text, ensure that the device styles are used as the basis

for any text styles within your application.

The following screenshots demonstrate the device styles on each platform, with the smallest accessible font size:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.baseresourcekey#xamarin_forms_style_baseresourcekey
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles.bodystyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.style#xamarin_forms_navigableelement_style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles

 Related links

The following screenshots demonstrate the device styles on each platform, with the largest accessible font size:

Text Styles

XAML Markup Extensions

Dynamic Styles (sample)

Working with Styles (sample)

Device.Styles

ResourceDictionary

Style

Setter

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/xaml/device-images/minimum-size-large.png#lightbox
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/styles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-dynamicstyles
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter

Xamarin.Forms Style Classes
 7/8/2021 • 3 minutes to read • Edit Online

 Create style classes

IMPORTANTIMPORTANT

 Download the sample

Xamarin.Forms style classes enable multiple styles to be applied to a control, without resorting to style

inheritance.

A style class can be created by setting the Class property on a Style to a string that represents the class

name. The advantage this offers, over defining an explicit style using the x:Key attribute, is that multiple style

classes can be applied to a VisualElement .

Multiple styles can share the same class name, provided they target different types. This enables multiple style classes,

that are identically named, to target different types.

The following example shows three BoxView style classes, and a VisualElement style class:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/xaml/style-class.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.class#xamarin_forms_style_class
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

<ContentPage ...>
 <ContentPage.Resources>
 <Style TargetType="BoxView"
 Class="Separator">
 <Setter Property="BackgroundColor"
 Value="#CCCCCC" />
 <Setter Property="HeightRequest"
 Value="1" />
 </Style>

 <Style TargetType="BoxView"
 Class="Rounded">
 <Setter Property="BackgroundColor"
 Value="#1FAECE" />
 <Setter Property="HorizontalOptions"
 Value="Start" />
 <Setter Property="CornerRadius"
 Value="10" />
 </Style>

 <Style TargetType="BoxView"
 Class="Circle">
 <Setter Property="BackgroundColor"
 Value="#1FAECE" />
 <Setter Property="WidthRequest"
 Value="100" />
 <Setter Property="HeightRequest"
 Value="100" />
 <Setter Property="HorizontalOptions"
 Value="Start" />
 <Setter Property="CornerRadius"
 Value="50" />
 </Style>

 <Style TargetType="VisualElement"
 Class="Rotated"
 ApplyToDerivedTypes="true">
 <Setter Property="Rotation"
 Value="45" />
 </Style>
 </ContentPage.Resources>
</ContentPage>

var separatorBoxViewStyle = new Style(typeof(BoxView))
{
 Class = "Separator",
 Setters =
 {
 new Setter
 {
 Property = VisualElement.BackgroundColorProperty,
 Value = Color.FromHex("#CCCCCC")
 },
 new Setter
 {
 Property = VisualElement.HeightRequestProperty,

The Separator , Rounded , and Circle style classes each set BoxView properties to specific values.

The Rotated style class has a TargetType of VisualElement , which means it can only be applied to

VisualElement instances. However, its ApplyToDerivedTypes property is set to true , which ensures that it can be

applied to any controls that derive from VisualElement , such as BoxView . For more information about applying

a style to a derived type, see Apply a style to derived types.

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.applytoderivedtypes#xamarin_forms_style_applytoderivedtypes
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview

 Property = VisualElement.HeightRequestProperty,
 Value = 1
 }
 }
};

var roundedBoxViewStyle = new Style(typeof(BoxView))
{
 Class = "Rounded",
 Setters =
 {
 new Setter
 {
 Property = VisualElement.BackgroundColorProperty,
 Value = Color.FromHex("#1FAECE")
 },
 new Setter
 {
 Property = View.HorizontalOptionsProperty,
 Value = LayoutOptions.Start
 },
 new Setter
 {
 Property = BoxView.CornerRadiusProperty,
 Value = 10
 }
 }
};

var circleBoxViewStyle = new Style(typeof(BoxView))
{
 Class = "Circle",
 Setters =
 {
 new Setter
 {
 Property = VisualElement.BackgroundColorProperty,
 Value = Color.FromHex("#1FAECE")
 },
 new Setter
 {
 Property = VisualElement.WidthRequestProperty,
 Value = 100
 },
 new Setter
 {
 Property = VisualElement.HeightRequestProperty,
 Value = 100
 },
 new Setter
 {
 Property = View.HorizontalOptionsProperty,
 Value = LayoutOptions.Start
 },
 new Setter
 {
 Property = BoxView.CornerRadiusProperty,
 Value = 50
 }
 }
};

var rotatedVisualElementStyle = new Style(typeof(VisualElement))
{
 Class = "Rotated",
 ApplyToDerivedTypes = true,
 Setters =
 {
 new Setter
 {

 {
 Property = VisualElement.RotationProperty,
 Value = 45
 }
 }
};

Resources = new ResourceDictionary
{
 separatorBoxViewStyle,
 roundedBoxViewStyle,
 circleBoxViewStyle,
 rotatedVisualElementStyle
};

 Consume style classes

<ContentPage ...>
 <ContentPage.Resources>
 ...
 </ContentPage.Resources>
 <StackLayout Margin="20">
 <BoxView StyleClass="Separator" />
 <BoxView WidthRequest="100"
 HeightRequest="100"
 HorizontalOptions="Center"
 StyleClass="Rounded, Rotated" />
 <BoxView HorizontalOptions="Center"
 StyleClass="Circle" />
 </StackLayout>
</ContentPage>

IMPORTANTIMPORTANT

Style classes can be consumed by setting the StyleClass property of the control, which is of type

IList<string> , to a list of style class names. The style classes will be applied, provided that the type of the

control matches the TargetType of the style classes.

The following example shows three BoxView instances, each set to different style classes:

In this example, the first BoxView is styled to be a line separator, while the third BoxView is circular. The second

BoxView has two style classes applied to it, which give it rounded corners and rotate it 45 degrees:

Multiple style classes can be applied to a control because the StyleClass property is of type IList<string> . When

this occurs, style classes are applied in ascending list order. Therefore, when multiple style classes set identical properties,

the property in the style class that's in the highest list position will take precedence.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.styleclass#xamarin_forms_navigableelement_styleclass
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style.targettype#xamarin_forms_style_targettype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.styleclass#xamarin_forms_navigableelement_styleclass

...
Content = new StackLayout
{
 Children =
 {
 new BoxView { StyleClass = new [] { "Separator" } },
 new BoxView { WidthRequest = 100, HeightRequest = 100, HorizontalOptions = LayoutOptions.Center,
StyleClass = new [] { "Rounded", "Rotated" } },
 new BoxView { HorizontalOptions = LayoutOptions.Center, StyleClass = new [] { "Circle" } }
 }
};

 Related links

The equivalent C# code is:

Basic Styles (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-basicstyles

Styling Xamarin.Forms apps using Cascading Style
Sheets (CSS)

 7/8/2021 • 14 minutes to read • Edit Online

 Download the sample

Xamarin.Forms supports styling visual elements using Cascading Style Sheets (CSS).

Xamarin.Forms applications can be styled using CSS. A style sheet consists of a list of rules, with each rule

consisting of one or more selectors and a declaration block. A declaration block consists of a list of declarations

in braces, with each declaration consisting of a property, a colon, and a value. When there are multiple

declarations in a block, a semi-colon is inserted as a separator. The following code example shows some

Xamarin.Forms compliant CSS:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/styles/css/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-monkeyappcss

navigationpage {
 -xf-bar-background-color: lightgray;
}

^contentpage {
 background-color: lightgray;
}

#listView {
 background-color: lightgray;
}

stacklayout {
 margin: 20;
}

.mainPageTitle {
 font-style: bold;
 font-size: medium;
}

.mainPageSubtitle {
 margin-top: 15;
}

.detailPageTitle {
 font-style: bold;
 font-size: medium;
 text-align: center;
}

.detailPageSubtitle {
 text-align: center;
 font-style: italic;
}

listview image {
 height: 60;
 width: 60;
}

stacklayout>image {
 height: 200;
 width: 200;
}

NOTENOTE

In Xamarin.Forms, CSS style sheets are parsed and evaluated at runtime, rather than compile time, and style

sheets are re-parsed on use.

Currently, all of the styling that's possible with XAML styling cannot be performed with CSS. However, XAML styles can be

used to supplement CSS for properties that are currently unsupported by Xamarin.Forms. For more information about

XAML styles, see Styling Xamarin.Forms Apps using XAML Styles.

The MonkeyAppCSS sample demonstrates using CSS to style a simple app, and is shown in the following

screenshots:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-monkeyappcss

 Consuming a style sheet

 Loading a style sheetLoading a style sheet

NOTENOTE

 XAMLXAML

The process for adding a style sheet to a solution is as follows:

1. Add an empty CSS file to your .NET Standard library project.

2. Set the build action of the CSS file to EmbeddedResourceEmbeddedResource.

There are a number of approaches that can be used to load a style sheet.

It's not currently possible to change a style sheet at runtime and have the new style sheet applied.

A style sheet can be loaded and parsed with the StyleSheet class before being added to a ResourceDictionary :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/css/css-images/monkeyappmainpage-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/styles/css/css-images/monkeyappdetailpage-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stylesheets.stylesheet
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<Application ...>
 <Application.Resources>
 <StyleSheet Source="/Assets/styles.css" />
 </Application.Resources>
</Application>

WARNINGWARNING

<ContentPage ...>
 <ContentPage.Resources>
 <StyleSheet>
 <![CDATA[
 ^contentpage {
 background-color: lightgray;
 }
]]>
 </StyleSheet>
 </ContentPage.Resources>
 ...
</ContentPage>

 C#C#

public partial class MyPage : ContentPage
{
 public MyPage()
 {
 InitializeComponent();

 using (var reader = new StringReader("^contentpage { background-color: lightgray; }"))
 {
 this.Resources.Add(StyleSheet.FromReader(reader));
 }
 }
}

 Selecting elements and applying properties

The StyleSheet.Source property specifies the style sheet as a URI relative to the location of the enclosing XAML

file, or relative to the project root if the URI starts with a / .

The CSS file will fail to load if its build action is not set to EmbeddedResourceEmbeddedResource.

Alternatively, a style sheet can be loaded and parsed with the StyleSheet class, before being added to a

ResourceDictionary , by inlining it in a CDATA section:

For more information about resource dictionaries, see Resource Dictionaries.

In C#, a style sheet can be loaded from a StringReader and added to a ResourceDictionary :

The argument to the StyleSheet.FromReader method is the TextReader that has read the style sheet.

CSS uses selectors to determine which elements to target. Styles with matching selectors are applied

consecutively, in definition order. Styles defined on a specific item are always applied last. For more information

about supported selectors, see Selector Reference.

CSS uses properties to style a selected element. Each property has a set of possible values, and some properties

can affect any type of element, while others apply to groups of elements. For more information about supported

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.xaml.stylesheetextension.source#xamarin_forms_xaml_stylesheetextension_source
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stylesheets.stylesheet
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

IMPORTANTIMPORTANT

 Selecting elements by typeSelecting elements by type

stacklayout {
 margin: 20;
}

NOTENOTE

 Selecting elements by base classSelecting elements by base class

^contentpage {
 background-color: lightgray;
}

NOTENOTE

 Selecting an element by nameSelecting an element by name

#listView {
 background-color: lightgray;
}

properties, see Property Reference.

Child stylesheets always override parent stylesheets if they set the same properties. Therefore, the following

precedence rules are followed when applying styles that set the same properties:

A style defined in the application resources will be overwritten by a style defined in the page resources, if

they set the same properties.

A style defined in page resources will be overwritten by a style defined in the control resources, if they set

the same properties.

A style defined in the application resources will be overwritten by a style defined in the control resources, if

they set the same properties.

CSS variables are unsupported.

Elements in the visual tree can be selected by type with the case insensitive element selector :

This selector identifies any StackLayout elements on pages that consume the style sheet, and sets their margins

to a uniform thickness of 20.

The element selector does not identify subclasses of the specified type.

Elements in the visual tree can be selected by base class with the case insensitive ^base selector :

This selector identifies any ContentPage elements that consume the style sheet, and sets their background color

to lightgray .

The ^base selector is specific to Xamarin.Forms, and isn't part of the CSS specification.

Individual elements in the visual tree can be selected with the case sensitive #id selector :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

<ContentPage ...>
 <ContentPage.Resources>
 <StyleSheet Source="/Assets/styles.css" />
 </ContentPage.Resources>
 <StackLayout>
 <ListView x:Name="listView" ...>
 ...
 </ListView>
 </StackLayout>
</ContentPage>

 Selecting elements with a specific class attributeSelecting elements with a specific class attribute

.detailPageTitle {
 font-style: bold;
 font-size: medium;
 text-align: center;
}

.detailPageSubtitle {
 text-align: center;
 font-style: italic;
}

<ContentPage ...>
 <ContentPage.Resources>
 <StyleSheet Source="/Assets/styles.css" />
 </ContentPage.Resources>
 <ScrollView>
 <StackLayout>
 <Label ... StyleClass="detailPageTitle" />
 <Label ... StyleClass="detailPageSubtitle"/>
 ...
 </StackLayout>
 </ScrollView>
</ContentPage>

 Selecting child elementsSelecting child elements

listview image {
 height: 60;
 width: 60;
}

This selector identifies the element whose StyleId property is set to listView . However, if the StyleId

property is not set, the selector will fall back to using the x:Name of the element. Therefore, in the following

XAML example, the #listView selector will identify the ListView whose x:Name attribute is set to listView ,

and will set it's background color to lightgray .

Elements with a specific class attribute can be selected with the case sensitive .class selector :

A CSS class can be assigned to a XAML element by setting the StyleClass property of the element to the CSS

class name. Therefore, in the following XAML example, the styles defined by the .detailPageTitle class are

assigned to the first Label , while the styles defined by the .detailPageSubtitle class are assigned to the

second Label .

Child elements in the visual tree can be selected with the case insensitive element element selector :

This selector identifies any Image elements that are children of ListView elements, and sets their height and

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.styleid#xamarin_forms_element_styleid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigableelement.styleclass#xamarin_forms_navigableelement_styleclass
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

<ContentPage ...>
 <ContentPage.Resources>
 <StyleSheet Source="/Assets/styles.css" />
 </ContentPage.Resources>
 <StackLayout>
 <ListView ...>
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid>
 ...
 <Image ... />
 ...
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
</ContentPage>

NOTENOTE

 Selecting direct child elementsSelecting direct child elements

stacklayout>image {
 height: 200;
 width: 200;
}

<ContentPage ...>
 <ContentPage.Resources>
 <StyleSheet Source="/Assets/styles.css" />
 </ContentPage.Resources>
 <ScrollView>
 <StackLayout>
 ...
 <Image ... />
 ...
 </StackLayout>
 </ScrollView>
</ContentPage>

NOTENOTE

width to 60. Therefore, in the following XAML example, the listview image selector will identify the Image

that's a child of the ListView , and sets its height and width to 60.

The element element selector does not require the child element to be a direct child of the parent – the child element

may have a different parent. Selection occurs provided that an ancestor is the specified first element.

Direct child elements in the visual tree can be selected with the case insensitive element>element selector :

This selector identifies any Image elements that are direct children of StackLayout elements, and sets their

height and width to 200. Therefore, in the following XAML example, the stacklayout>image selector will identify

the Image that's a direct child of the StackLayout , and sets its height and width to 200.

The element>element selector requires that the child element is a direct child of the parent.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

 Selector reference

SEL EC TO RSEL EC TO R EXA M P L EEXA M P L E DESC RIP T IO NDESC RIP T IO N

.class .header Selects all elements with the
StyleClass property containing

'header'. Note that this selector is case
sensitive.

#id #email Selects all elements with StyleId set

to email . If StyleId is not set,

fallback to x:Name . When using

XAML, x:Name is preferred over

StyleId . Note that this selector is

case sensitive.

* * Selects all elements.

element label Selects all elements of type Label ,

but not subclasses. Note that this
selector is case insensitive.

^base ^contentpage Selects all elements with
ContentPage as the base class,

including ContentPage itself. Note

that this selector is case insensitive and
isn't part of the CSS specification.

element,element label,button Selects all Button elements and all

Label elements. Note that this

selector is case insensitive.

element element stacklayout label Selects all Label elements inside a

StackLayout . Note that this selector

is case insensitive.

element>element stacklayout>label Selects all Label elements with

StackLayout as a direct parent. Note

that this selector is case insensitive.

element+element label+entry Selects all Entry elements directly

after a Label . Note that this selector

is case insensitive.

element~element label~entry Selects all Entry elements preceded

by a Label . Note that this selector is

case insensitive.

The following CSS selectors are supported by Xamarin.Forms:

Styles with matching selectors are applied consecutively, in definition order. Styles defined on a specific item are

always applied last.

TIPTIP

NOTENOTE

 Property reference

P RO P ERT YP RO P ERT Y A P P L IES TOA P P L IES TO VA L UESVA L UES EXA M P L EEXA M P L E

align-content FlexLayout stretch | center |

start | end |

spacebetween |

spacearound |

spaceevenly |

flex-start | flex-end |

space-between |

space-around | initial

align-content: space-
between;

align-items FlexLayout stretch | center |

start | end |

flex-start | flex-end |

initial

align-items: flex-
start;

align-self VisualElement auto | stretch |

center | start | end |

flex-start | flex-end |

initial

align-self: flex-end;

background-color VisualElement color | initial background-color:
springgreen;

background-image Page string | initial background-image:
bg.png;

border-color Button , Frame ,

ImageButton

color | initial border-color: #9acd32;

border-radius BoxView , Button ,

Frame , ImageButton

double | initial border-radius: 10;

border-width Button , ImageButton double | initial border-width: .5;

Selectors can be combined without limitation, such as StackLayout>ContentView>label.email .

The following selectors are currently unsupported:

[attribute]

@media and @supports

: and ::

Specificity, and specificity overrides are unsupported.

The following CSS properties are supported by Xamarin.Forms (in the ValuesValues column, types are italic, while

string literals are gray):

color ActivityIndicator ,

BoxView , Button ,

CheckBox , DatePicker ,

Editor , Entry , Label ,

Picker , ProgressBar ,

SearchBar , Switch ,

TimePicker

color | initial color: rgba(255, 0, 0,
0.3);

column-gap Grid double | initial column-gap: 9;

direction VisualElement ltr | rtl | inherit |

initial

direction: rtl;

flex-direction FlexLayout column | columnreverse

| row | rowreverse |

row-reverse |

column-reverse |

initial

flex-direction:
column-reverse;

flex-basis VisualElement float | auto | initial . In

addition, a percentage in
the range 0% to 100% can
be specified with the %

sign.

flex-basis: 25%;

flex-grow VisualElement float | initial flex-grow: 1.5;

flex-shrink VisualElement float | initial flex-shrink: 1;

flex-wrap VisualElement nowrap | wrap |

reverse | wrap-reverse

| initial

flex-wrap: wrap-
reverse;

font-family Button , DatePicker ,

Editor , Entry , Label ,

Picker , SearchBar ,

TimePicker , Span

string | initial font-family: Consolas;

font-size Button , DatePicker ,

Editor , Entry , Label ,

Picker , SearchBar ,

TimePicker , Span

double | namedsize |
initial

font-size: 12;

font-style Button , DatePicker ,

Editor , Entry , Label ,

Picker , SearchBar ,

TimePicker , Span

bold | italic |

initial

font-style: bold;

height VisualElement double | initial min-height: 250;

P RO P ERT YP RO P ERT Y A P P L IES TOA P P L IES TO VA L UESVA L UES EXA M P L EEXA M P L E

justify-content FlexLayout start | center | end |

spacebetween |

spacearound |

spaceevenly |

flex-start | flex-end |

space-between |

space-around | initial

justify-content: flex-
end;

letter-spacing Button , DatePicker ,

Editor , Entry , Label ,

Picker , SearchBar ,

SearchHandler , Span ,

TimePicker

double | initial letter-spacing: 2.5;

line-height Label , Span double | initial line-height: 1.8;

margin View thickness | initial margin: 6 12;

margin-left View thickness | initial margin-left: 3;

margin-top View thickness | initial margin-top: 2;

margin-right View thickness | initial margin-right: 1;

margin-bottom View thickness | initial margin-bottom: 6;

max-lines Label int | initial max-lines: 2;

min-height VisualElement double | initial min-height: 50;

min-width VisualElement double | initial min-width: 112;

opacity VisualElement double | initial opacity: .3;

order VisualElement int | initial order: -1;

padding Button , ImageButton ,

Layout , Page

thickness | initial padding: 6 12 12;

padding-left Button , ImageButton ,

Layout , Page

double | initial padding-left: 3;

padding-top Button , ImageButton ,

Layout , Page

double | initial padding-top: 4;

padding-right Button , ImageButton ,

Layout , Page

double | initial padding-right: 2;

padding-bottom Button , ImageButton ,

Layout , Page

double | initial padding-bottom: 6;

P RO P ERT YP RO P ERT Y A P P L IES TOA P P L IES TO VA L UESVA L UES EXA M P L EEXA M P L E

position FlexLayout relative | absolute |

initial

position: absolute;

row-gap Grid double | initial row-gap: 12;

text-align Entry , EntryCell ,

Label , SearchBar

left | top | right |

bottom | start |

center | middle | end |

initial . left and

right should be avoided

in right-to-left
environments.

text-align: right;

text-decoration Label , Span none | underline |

strikethrough |

line-through | initial

text-decoration:
underline, line-
through;

text-transform Button , Editor , Entry ,

Label , SearchBar ,

SearchHandler

none | default |

uppercase | lowercase |

initial

text-transform:
uppercase;

transform VisualElement none , rotate , rotateX ,

rotateY , scale ,

scaleX , scaleY ,

translate , translateX ,

translateY , initial

transform:
rotate(180),
scaleX(2.5);

transform-origin VisualElement double, double | initial transform-origin: 7.5,
12.5;

vertical-align Label left | top | right |

bottom | start |

center | middle | end |

initial

vertical-align:
bottom;

visibility VisualElement true | visible | false

| hidden | collapse |

initial

visibility: hidden;

width VisualElement double | initial min-width: 320;

P RO P ERT YP RO P ERT Y A P P L IES TOA P P L IES TO VA L UESVA L UES EXA M P L EEXA M P L E

NOTENOTE
initial is a valid value for all properties. It clears the value (resets to default) that was set from another style.

The following properties are currently unsupported:

all: initial .

Layout properties (box, or grid).

Shorthand properties, such as font , and border .

In addition, there's no inherit value and so inheritance isn't supported. Therefore you can't, for example, set the

 Xamarin.Forms specific propertiesXamarin.Forms specific properties

P RO P ERT YP RO P ERT Y A P P L IES TOA P P L IES TO VA L UESVA L UES EXA M P L EEXA M P L E

-xf-bar-background-
color

NavigationPage ,

TabbedPage

color | initial -xf-bar-background-
color: teal;

-xf-bar-text-color NavigationPage ,

TabbedPage

color | initial -xf-bar-text-color:
gray

-xf-horizontal-scroll-
bar-visibility

ScrollView default | always |

never | initial

-xf-horizontal-scroll-
bar-visibility: never;

-xf-max-length Entry , Editor ,

SearchBar

int | initial -xf-max-length: 20;

-xf-max-track-color Slider color | initial -xf-max-track-color:
red;

-xf-min-track-color Slider color | initial -xf-min-track-color:
yellow;

-xf-orientation ScrollView ,

StackLayout

horizontal | vertical |

both | initial . both is

only supported on a
ScrollView .

-xf-orientation:
horizontal;

-xf-placeholder Entry , Editor ,

SearchBar

quoted text | initial -xf-placeholder: Enter
name;

-xf-placeholder-color Entry , Editor ,

SearchBar

color | initial -xf-placeholder-color:
green;

-xf-spacing StackLayout double | initial -xf-spacing: 8;

-xf-thumb-color Slider , Switch color | initial -xf-thumb-color:
limegreen;

-xf-vertical-scroll-
bar-visibility

ScrollView default | always |

never | initial

-xf-vertical-scroll-
bar-visibility:
always;

-xf-vertical-text-
alignment

Label start | center | end |

initial

-xf-vertical-text-
alignment: end;

font-size property on a layout and expect all the Label instances in the layout to inherit the value. The one

exception is the direction property, which has a default value of inherit .

Targeting Span elements has a known issue preventing spans from being the target of CSS styles by both

element and name (using the # symbol). The Span element derives from GestureElement , which does not

have the StyleClass property so spans do not support CSS class targeting. For more information, see Not able

to apply CSS styling to Span control.

The following Xamarin.Forms specific CSS properties are also supported (in the ValuesValues column, types are italic,

while string literals are gray):

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://github.com/xamarin/Xamarin.Forms/issues/5979

-xf-visual VisualElement string | initial -xf-visual: material;

P RO P ERT YP RO P ERT Y A P P L IES TOA P P L IES TO VA L UESVA L UES EXA M P L EEXA M P L E

 Xamarin.Forms Shell specific propertiesXamarin.Forms Shell specific properties

P RO P ERT YP RO P ERT Y A P P L IES TOA P P L IES TO VA L UESVA L UES EXA M P L EEXA M P L E

-xf-flyout-background Shell color | initial -xf-flyout-background:
red;

-xf-shell-background Element color | initial -xf-shell-background:
green;

-xf-shell-disabled Element color | initial -xf-shell-disabled:
blue;

-xf-shell-foreground Element color | initial -xf-shell-foreground:
yellow;

-xf-shell-tabbar-
background

Element color | initial -xf-shell-tabbar-
background: white;

-xf-shell-tabbar-
disabled

Element color | initial -xf-shell-tabbar-
disabled: black;

-xf-shell-tabbar-
foreground

Element color | initial -xf-shell-tabbar-
foreground: gray;

-xf-shell-tabbar-title Element color | initial -xf-shell-tabbar-
title: lightgray;

-xf-shell-tabbar-
unselected

Element color | initial -xf-shell-tabbar-
unselected: cyan;

-xf-shell-title Element color | initial -xf-shell-title: teal;

-xf-shell-unselected Element color | initial -xf-shell-unselected:
limegreen;

 ColorColor

 ThicknessThickness

The following Xamarin.Forms Shell specific CSS properties are also supported (in the ValuesValues column, types are

italic, while string literals are gray):

The following color values are supported:

X11 colors, which match CSS colors, UWP pre-defined colors, and Xamarin.Forms colors. Note that these

color values are case insensitive.

hex colors: #rgb , #argb , #rrggbb , #aarrggbb

rgb colors: rgb(255,0,0) , rgb(100%,0%,0%) . Values are in the range 0-255, or 0%-100%.

rgba colors: rgba(255, 0, 0, 0.8) , rgba(100%, 0%, 0%, 0.8) . The opacity value is in the range 0.0-1.0.

hsl colors: hsl(120, 100%, 50%) . The h value is in the range 0-360, while s and l are in the range 0%-100%.

hsla colors: hsla(120, 100%, 50%, .8) . The opacity value is in the range 0.0-1.0.

https://en.wikipedia.org/wiki/X11_color_names

NOTENOTE

 NamedSizeNamedSize

 Functions

 CSS in Xamarin.Forms with Xamarin.University

 Related Links

One, two, three, or four thickness values are supported, each separated by white space:

A single value indicates uniform thickness.

Two values indicate vertical then horizontal thickness.

Three values indicate top, then horizontal (left and right), then bottom thickness.

Four values indicate top, then right, then bottom, then left thickness.

CSS thickness values differ from XAML Thickness values. For example, in XAML a two-value Thickness indicates

horizontal then vertical thickness, while a four-value Thickness indicates left, then top, then right, then bottom

thickness. In addition, XAML Thickness values are comma delimited.

The following case insensitive namedsize values are supported:

default

micro

small

medium

large

The exact meaning of each namedsize value is platform-dependent and view-dependent.

Linear and radial gradients can be specified using the linear-gradient() and radial-gradient() CSS functions,

respectively. The result of these functions should be assigned to the background property of a control.

Xamarin.Forms 3.0 CSS videoXamarin.Forms 3.0 CSS video

MonkeyAppCSS (sample)

Resource Dictionaries

Styling Xamarin.Forms Apps using XAML Styles

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://www.youtube-nocookie.com/embed/va-Vb7vtan8
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-styles-monkeyappcss

Theming a Xamarin.Forms application
 11/2/2020 • 2 minutes to read • Edit Online

 Theme an application

 Respond to system theme changes

Theming can be implemented in Xamarin.Forms applications by creating a ResourceDictionary for each theme,

and then loading the resources with the DynamicResource markup extension.

Devices typically include light and dark themes, which each refer to a broad set of appearance preferences that

can be set at the operating system level. Applications should respect these system themes, and respond

immediately when the system theme changes.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/theming/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

Theme a Xamarin.Forms Application
 7/8/2021 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Download the sample

Xamarin.Forms applications can respond to style changes dynamically at runtime by using the DynamicResource

markup extension. This markup extension is similar to the StaticResource markup extension, in that both use a

dictionary key to fetch a value from a ResourceDictionary . However, while the StaticResource markup

extension performs a single dictionary lookup, the DynamicResource markup extension maintains a link to the

dictionary key. Therefore, if the value associated with the key is replaced, the change is applied to the

VisualElement . This enables runtime theming to be implemented in Xamarin.Forms applications.

The process for implementing runtime theming in a Xamarin.Forms application is as follows:

1. Define the resources for each theme in a ResourceDictionary .

2. Consume theme resources in the application, using the DynamicResource markup extension.

3. Set a default theme in the application's App.xamlApp.xaml file.

4. Add code to load a theme at runtime.

Use the StaticResource markup extension if you don't need to change the app theme at runtime.

The following screenshots show themed pages, with the iOS application using a light theme and the Android

application using a dark theme:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/theming/theming.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-theming/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/theming/theming-images/main-page-both-themes-large.png#lightbox

NOTENOTE

 Define themes

<ResourceDictionary xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ThemingDemo.LightTheme">
 <Color x:Key="PageBackgroundColor">White</Color>
 <Color x:Key="NavigationBarColor">WhiteSmoke</Color>
 <Color x:Key="PrimaryColor">WhiteSmoke</Color>
 <Color x:Key="SecondaryColor">Black</Color>
 <Color x:Key="PrimaryTextColor">Black</Color>
 <Color x:Key="SecondaryTextColor">White</Color>
 <Color x:Key="TertiaryTextColor">Gray</Color>
 <Color x:Key="TransparentColor">Transparent</Color>
</ResourceDictionary>

<ResourceDictionary xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ThemingDemo.DarkTheme">
 <Color x:Key="PageBackgroundColor">Black</Color>
 <Color x:Key="NavigationBarColor">Teal</Color>
 <Color x:Key="PrimaryColor">Teal</Color>
 <Color x:Key="SecondaryColor">White</Color>
 <Color x:Key="PrimaryTextColor">White</Color>
 <Color x:Key="SecondaryTextColor">White</Color>
 <Color x:Key="TertiaryTextColor">WhiteSmoke</Color>
 <Color x:Key="TransparentColor">Transparent</Color>
</ResourceDictionary>

Changing a theme at runtime requires the use of XAML styles, and is not currently possible using CSS.

A theme is defined as a collection of resource objects stored in a ResourceDictionary .

The following example shows the LightTheme from the sample application:

The following example shows the DarkTheme from the sample application:

Each ResourceDictionary contains Color resources that define their respective themes, with each

ResourceDictionary using identical key values. For more information about resource dictionaries, see Resource

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/theming/theming-images/detail-page-both-themes-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

IMPORTANTIMPORTANT

 Set a default theme

<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ThemingDemo.App">
 <Application.Resources>
 <ResourceDictionary Source="Themes/LightTheme.xaml" />
 </Application.Resources>
</Application>

 Consume theme resources

Dictionaries.

A code behind file is required for each ResourceDictionary , which calls the InitializeComponent method. This is

necessary so that a CLR object representing the chosen theme can be created at runtime.

An application requires a default theme, so that controls have values for the resources they consume. A default

theme can be set by merging the theme's ResourceDictionary into the application-level ResourceDictionary

that's defined in App.xamlApp.xaml :

For more information about merging resource dictionaries, see Merged resource dictionaries.

When an application wants to consume a resource that's stored in a ResourceDictionary that represents a

theme, it should do so with the DynamicResource markup extension. This ensures that if a different theme is

selected at runtime, the values from the new theme will be applied.

The following example shows three styles from the sample application that can be applied to Label objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ThemingDemo.App">
 <Application.Resources>

 <Style x:Key="LargeLabelStyle"
 TargetType="Label">
 <Setter Property="TextColor"
 Value="{DynamicResource SecondaryTextColor}" />
 <Setter Property="FontSize"
 Value="30" />
 </Style>

 <Style x:Key="MediumLabelStyle"
 TargetType="Label">
 <Setter Property="TextColor"
 Value="{DynamicResource PrimaryTextColor}" />
 <Setter Property="FontSize"
 Value="25" />
 </Style>

 <Style x:Key="SmallLabelStyle"
 TargetType="Label">
 <Setter Property="TextColor"
 Value="{DynamicResource TertiaryTextColor}" />
 <Setter Property="FontSize"
 Value="15" />
 </Style>

 </Application.Resources>
</Application>

These styles are defined in the application-level resource dictionary, so that they can be consumed by multiple

pages. Each style consumes theme resources with the DynamicResource markup extension.

These styles are then consumed by pages:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ThemingDemo"
 x:Class="ThemingDemo.UserSummaryPage"
 Title="User Summary"
 BackgroundColor="{DynamicResource PageBackgroundColor}">
 ...
 <ScrollView>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="200" />
 <RowDefinition Height="120" />
 <RowDefinition Height="70" />
 </Grid.RowDefinitions>
 <Grid BackgroundColor="{DynamicResource PrimaryColor}">
 <Label Text="Face-Palm Monkey"
 VerticalOptions="Center"
 Margin="15"
 Style="{StaticResource MediumLabelStyle}" />
 ...
 </Grid>
 <StackLayout Grid.Row="1"
 Margin="10">
 <Label Text="This monkey reacts appropriately to ridiculous assertions and actions."
 Style="{StaticResource SmallLabelStyle}" />
 <Label Text=" • Cynical but not unfriendly."
 Style="{StaticResource SmallLabelStyle}" />
 <Label Text=" • Seven varieties of grimaces."
 Style="{StaticResource SmallLabelStyle}" />
 <Label Text=" • Doesn't laugh at your jokes."
 Style="{StaticResource SmallLabelStyle}" />
 </StackLayout>
 ...
 </Grid>
 </ScrollView>
</ContentPage>

 Load a theme at runtime

When a theme resource is consumed directly, it should be consumed with the DynamicResource markup

extension. However, when a style that uses the DynamicResource markup extension is consumed, it should be

consumed with the StaticResource markup extension.

For more information about styling, see Styling Xamarin.Forms Apps using XAML Styles. For more information

about the DynamicResource markup extension, see Dynamic Styles in Xamarin.Forms.

When a theme is selected at runtime, the application should:

1. Remove the current theme from the application. This is achieved by clearing the MergedDictionaries

property of the application-level ResourceDictionary .

2. Load the selected theme. This is achieved by adding an instance of the selected theme to the

MergedDictionaries property of the application-level ResourceDictionary .

Any VisualElement objects that set properties with the DynamicResource markup extension will then apply the

new theme values. This occurs because the DynamicResource markup extension maintains a link to dictionary

keys. Therefore, when the values associated with keys are replaced, the changes are applied to the

VisualElement objects.

In the sample application, a theme is selected via a modal page that contains a Picker . The following code

shows the OnPickerSelectionChanged method, which is executed when the selected theme changes:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary.mergeddictionaries#xamarin_forms_resourcedictionary_mergeddictionaries
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker

void OnPickerSelectionChanged(object sender, EventArgs e)
{
 Picker picker = sender as Picker;
 Theme theme = (Theme)picker.SelectedItem;

 ICollection<ResourceDictionary> mergedDictionaries = Application.Current.Resources.MergedDictionaries;
 if (mergedDictionaries != null)
 {
 mergedDictionaries.Clear();

 switch (theme)
 {
 case Theme.Dark:
 mergedDictionaries.Add(new DarkTheme());
 break;
 case Theme.Light:
 default:
 mergedDictionaries.Add(new LightTheme());
 break;
 }
 }
}

 Related links
Theming (sample)

Respond to system theme changes

Resource Dictionaries

Dynamic Styles in Xamarin.Forms

Styling Xamarin.Forms Apps using XAML Styles

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-theming/

Respond to system theme changes in
Xamarin.Forms applications

 7/8/2021 • 4 minutes to read • Edit Online

 Download the sample

Devices typically include light and dark themes, which each refer to a broad set of appearance preferences that

can be set at the operating system level. Applications should respect these system themes, and respond

immediately when the system theme changes.

The system theme may change for a variety of reasons, depending on the device configuration. This includes the

system theme being explicitly changed by the user, it changing due to the time of day, and it changing due to

environmental factors such as low light.

Xamarin.Forms applications can respond to system theme changes by consuming resources with the

AppThemeBinding markup extension, and the SetAppThemeColor and SetOnAppTheme<T> extension methods.

The following requirements must be met for Xamarin.Forms to respond to a system theme change:

Xamarin.Forms 4.6.0.967 or greater.

iOS 13 or greater.

Android 10 (API 29) or greater.

UWP build 14393 or greater.

macOS 10.14 or greater.

The following screenshots show themed pages, for light and dark system themes on iOS and Android:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/theming/system-theme-changes.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-systemthemesdemo/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/theming/system-theme-changes-images/main-page-both-themes-large.png#lightbox

 Define and consume theme resources

 AppThemeBinding markup extensionAppThemeBinding markup extension

<ContentPage ...>
 <StackLayout Margin="20">
 <Label Text="This text is green in light mode, and red in dark mode."
 TextColor="{AppThemeBinding Light=Green, Dark=Red}" />
 <Image Source="{AppThemeBinding Light=lightlogo.png, Dark=darklogo.png}" />
 </StackLayout>
</ContentPage>

Resources for light and dark themes can be consumed with the AppThemeBinding markup extension, and the

SetAppThemeColor and SetOnAppTheme<T> extension methods. With these approaches, resources are

automatically applied based on the value of the current system theme. In addition, objects that consume these

resources are automatically updated if the system theme changes while an app is running.

The AppThemeBinding markup extension enables you to consume a resource, such as an image or color, based on

the current system theme:

In this example, the text color of the first Label is set to green when the device is using its light theme, and is

set to red when the device is using its dark theme. Similarly, the Image displays a different image file based

upon the current system theme.

In addition, resources defined in a ResourceDictionary can be consumed with the StaticResource markup

extension:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/theming/system-theme-changes-images/detail-page-both-themes-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<ContentPage ...>
 <ContentPage.Resources>

 <!-- Light colors -->
 <Color x:Key="LightPrimaryColor">WhiteSmoke</Color>
 <Color x:Key="LightSecondaryColor">Black</Color>

 <!-- Dark colors -->
 <Color x:Key="DarkPrimaryColor">Teal</Color>
 <Color x:Key="DarkSecondaryColor">White</Color>

 <Style x:Key="ButtonStyle"
 TargetType="Button">
 <Setter Property="BackgroundColor"
 Value="{AppThemeBinding Light={StaticResource LightPrimaryColor}, Dark={StaticResource
DarkPrimaryColor}}" />
 <Setter Property="TextColor"
 Value="{AppThemeBinding Light={StaticResource LightSecondaryColor}, Dark={StaticResource
DarkSecondaryColor}}" />
 </Style>

 </ContentPage.Resources>

 <Grid BackgroundColor="{AppThemeBinding Light={StaticResource LightPrimaryColor}, Dark={StaticResource
DarkPrimaryColor}}">
 <Button Text="MORE INFO"
 Style="{StaticResource ButtonStyle}" />
 </Grid>
</ContentPage>

 Extension methodsExtension methods

Label label = new Label();
label.SetAppThemeColor(Label.TextColorProperty, Color.Green, Color.Red);

Image image = new Image();
image.SetOnAppTheme<FileImageSource>(Image.SourceProperty, "lightlogo.png", "darklogo.png");

 Detect the current system theme

In this example, the background color of the Grid and the Button style changes based on whether the device is

using its light theme or dark theme.

For more information about the AppThemeBinding markup extension, see AppThemeBinding markup extension.

Xamarin.Forms includes SetAppThemeColor and SetOnAppTheme<T> extension methods that enable VisualElement

objects to respond to system theme changes.

The SetAppThemeColor method enables Color objects to be specified that will be set on a target property based

on the current system theme:

In this example, the text color of the Label is set to green when the device is using its light theme, and is set to

red when the device is using its dark theme.

The SetOnAppTheme<T> method enables objects of type T to be specified that will be set on a target property

based on the current system theme:

In this example, the Image displays lightlogo.png when the device is using its light theme, and darklogo.png

when the device is using its dark theme.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

OSAppTheme currentTheme = Application.Current.RequestedTheme;

 Set the current user theme

Application.Current.UserAppTheme = OSAppTheme.Dark;

NOTENOTE

 React to theme changes

Application.Current.RequestedThemeChanged += (s, a) =>
{
 // Respond to the theme change
};

IMPORTANTIMPORTANT

 Related links

The current system theme can be detected by getting the value of the Application.RequestedTheme property:

The RequestedTheme property returns an OSAppTheme enumeration member. The OSAppTheme enumeration

defines the following members:

Unspecified , which indicates that the device is using an unspecified theme.

Light , which indicates that the device is using its light theme.

Dark , which indicates that the device is using its dark theme.

The theme used by the application can be set with the Application.UserAppTheme property, which is of type

OSAppTheme , regardless of which system theme is currently operational:

In this example, the application is set to use the theme defined for the system dark mode, regardless of which

system theme is currently operational.

Set the UserAppTheme property to OSAppTheme.Unspecified to default to the operational system theme.

The system theme on a device may change for a variety of reasons, depending on how the device is configured.

Xamarin.Forms apps can be notified when the system theme changes by handling the

Application.RequestedThemeChanged event:

The AppThemeChangedEventArgs object, which accompanies the RequestedThemeChanged event, has a single

property named RequestedTheme , of type OSAppTheme . This property can be examined to detect the requested

system theme.

To respond to theme changes on Android you must include the ConfigChanges.UiMode flag in the Activity attribute

of your MainActivity class.

SystemThemes (sample)

AppThemeBinding markup extension

Resource Dictionaries

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-systemthemesdemo/

Styling Xamarin.Forms Apps using XAML Styles

Xamarin.Forms Visual
 11/2/2020 • 2 minutes to read • Edit Online

 Xamarin.Forms Material Visual

 Create a Xamarin.Forms Visual Renderer

Xamarin.Forms Material Visual can be used to create Xamarin.Forms applications that look identical, or largely

identical, on iOS and Android.

Xamarin.Forms Visual enables renderers to be selectively applied to VisualElement objects, without having to

subclass Xamarin.Forms views.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/visual/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

Xamarin.Forms Material Visual
 7/8/2021 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Download the sample

Material Design is an opinionated design system created by Google, that prescribes the size, color, spacing, and

other aspects of how views and layouts should look and behave.

Xamarin.Forms Material Visual can be used to apply Material Design rules to Xamarin.Forms applications,

creating applications that look largely identical on iOS and Android. When Material Visual is enabled, supported

views adopt the same design cross-platform, creating a unified look and feel.

The process for enabling Xamarin.Forms Material Visual in your application is:

1. Add the Xamarin.Forms.Visual.Material NuGet package to your iOS and Android platform projects. This

NuGet package delivers optimized Material Design renderers on iOS and Android. On iOS, the package

provides the transitive dependency to Xamarin.iOS.MaterialComponents, which is a C# binding to Google's

Material Components for iOS. On Android, the package provides build targets to ensure that your

TargetFramework is correctly set up.

2. Initialize Material Visual in each platform project. For more information, see Initialize Material Visual.

3. Create Material Visual controls by setting the Visual property to Material on any pages that should adopt

the Material Design rules. For more information, see Consume Material renderers.

4. [optional] Customize Material controls. For more information, see Customize Material controls.

On Android, Material Visual requires a minimum version of 5.0 (API 21) or greater, and a TargetFramework of version 9.0

(API 28). In addition, your platform project requires Android support libraries 28.0.0 or greater, and its theme needs to

inherit from a Material Components theme or continue to inherit from an AppCompat theme. For more information, see

Getting started with Material Components for Android.

Material Visual currently supports the following controls:

ActivityIndicator

Button

CheckBox

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/visual/material-visual.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-visualdemos
https://material.io
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/visual/material-visual-images/material-visual.png#lightbox
https://www.nuget.org/packages/Xamarin.Forms.Visual.Material/
https://www.nuget.org/packages/Xamarin.iOS.MaterialComponents
https://material.io/develop/ios/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://github.com/material-components/material-components-android/blob/master/docs/getting-started.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.activityindicator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.checkbox

 Initialize Material Visual

global::Xamarin.Forms.Forms.Init();
global::Xamarin.Forms.FormsMaterial.Init();

global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
global::Xamarin.Forms.FormsMaterial.Init(this, savedInstanceState);

 Apply Material Visual

<ContentPage Visual="Material"
 ...>
 ...
</ContentPage>

ContentPage contentPage = new ContentPage();
contentPage.Visual = VisualMarker.Material;

DatePicker

Editor

Entry

Frame

Picker

ProgressBar

Slider

Stepper

TimePicker

Material controls are realized by Material renderers, which apply the Material Design rules. Functionally, Material

renderers are no different to the default renderers. For more information, see Customize Material Visual.

After installing the Xamarin.Forms.Visual.Material NuGet package, the Material renderers must be initialized in

each platform project.

On iOS, this should occur in AppDelegate.csAppDelegate.cs by invoking the Xamarin.Forms.FormsMaterial.Init method after

the Xamarin.Forms.Forms.Init method:

On Android, this should occur in MainActivity.csMainActivity.cs by invoking the Xamarin.Forms.FormsMaterial.Init method

after the Xamarin.Forms.Forms.Init method:

Applications can enable Material Visual by setting the VisualElement.Visual property on a page, layout, or view,

to Material :

The equivalent C# code is:

Setting the VisualElement.Visual property to Material directs your application to use the Material Visual

renderers instead of the default renderers. The Visual property can be set to any type that implements

IVisual , with the VisualMarker class providing the following IVisual properties:

Default – indicates that the view should render using the default renderer.

MatchParent – indicates that the view should use the same renderer as its direct parent.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stepper
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://www.nuget.org/packages/Xamarin.Forms.Visual.Material/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualmarker

IMPORTANTIMPORTANT

Material – indicates that the view should render using a Material renderer.

The Visual property is defined in the VisualElement class, with views inheriting the Visual property value from

their parents. Therefore, setting the Visual property on a ContentPage ensures that any supported views in the page

will use that Visual. In addition, the Visual property can be overridden on a view.

The following screenshots show a user interface rendered using the default renderers:

The following screenshots show the same user interface rendered using the Material renderers:

The main visible differences between the default renderers and Material renderers, shown here, are that the

Material renderers capitalize Button text, and round the corners of Frame borders. However, Material renderers

use native controls, and therefore there may still be user interface differences between platforms for areas such

as fonts, shadows, colors, and elevation.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/visual/material-visual-images/default-renderers-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/visual/material-visual-images/material-renderers-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

NOTENOTE

 Customize Material Visual

using Xamarin.Forms.Material.Android;

[assembly: ExportRenderer(typeof(ProgressBar), typeof(CustomMaterialProgressBarRenderer), new[] {
typeof(VisualMarker.MaterialVisual) })]
namespace MyApp.Android
{
 public class CustomMaterialProgressBarRenderer : MaterialProgressBarRenderer
 {
 //...
 }
}

Material Design components adhere closely to Google's guidelines. As a result, Material Design renderers are biased

towards that sizing and behavior. When you require greater control of styles or behavior, you can still create your own

Effect, Behavior, or Custom Renderer to achieve the detail you require.

The Material Visual NuGet package is a collection of renderers that realize the Xamarin.Forms controls.

Customizing Material Visual controls is identical to customizing default controls.

Effects are the recommended technique when the goal is to customize an existing control. If a Material Visual

renderer exists, it is less work to customize the control with an effect than it is to subclass the renderer. For more

information about effects see Xamarin.Forms effects.

Custom renderers are the recommended technique when a Material renderer does not exist. The following

renderer classes are included with Material Visual:

MaterialButtonRenderer

MaterialCheckBoxRenderer

MaterialEntryRenderer

MaterialFrameRenderer

MaterialProgressBarRenderer

MaterialDatePickerRenderer

MaterialTimePickerRenderer

MaterialPickerRenderer

MaterialActivityIndicatorRenderer

MaterialEditorRenderer

MaterialSliderRenderer

MaterialStepperRenderer

Subclassing a Material renderer is almost identical to non-Material renderers. However, when exporting a

renderer that subclasses a Material renderer, you must provide a third argument to the ExportRenderer attribute

that specifies the VisualMarker.MaterialVisual type:

In this example, the ExportRendererAttribute specifies that the CustomMaterialProgressBarRenderer class will be

used to render the ProgressBar view, with the IVisual type registered as the third argument.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.progressbar

NOTENOTE

 Related links

A renderer that specifies an IVisual type, as part of its ExportRendererAttribute , will be used to render opted in

views, rather than the default renderer. At renderer selection time, the Visual property of the view is inspected and

included in the renderer selection process.

For more information about custom renderers, see Custom Renderers.

Material Visual (sample)

Create a Xamarin.Forms Visual Renderer

Xamarin.Forms Effects

Custom Renderers

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-visualdemos

Create a Xamarin.Forms Visual Renderer
 7/8/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Create platform renderers

 iOSiOS

 Download the sample

Xamarin.Forms Visual enables renderers to be created and selectively applied to VisualElement objects, without

having to subclass Xamarin.Forms views. A renderer that specifies an IVisual type, as part of its

ExportRendererAttribute , will be used to render opted in views, rather than the default renderer. At renderer

selection time, the Visual property of the view is inspected and included in the renderer selection process.

Currently the Visual property cannot be changed after the view has been rendered, but this will change in a future

release.

The process for creating and consuming a Xamarin.Forms Visual renderer is:

1. Create platform renderers for the required view. For more information, see Create renderers.

2. Create a type that derives from IVisual . For more information, see Create an IVisual type.

3. Register the IVisual type as part of the ExportRendererAttribute that decorates the renderers. For more

information, see Register the IVisual type.

4. Consume the Visual renderer by setting the Visual property on the view to the IVisual name. For more

information, see Consume the Visual renderer.

5. [optional] Register a name for the IVisual type. For more information, see Register a name for the IVisual

type.

For information about creating a renderer class, see Custom Renderers. However, note that a Xamarin.Forms

Visual renderer is applied to a view without having to subclass the view.

The renderer classes outlined here implement a custom Button that displays its text with a shadow.

The following code example shows the button renderer for iOS:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/visual/create.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-visualdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

public class CustomButtonRenderer : ButtonRenderer
{
 protected override void OnElementChanged(ElementChangedEventArgs<Button> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 // Cleanup
 }

 if (e.NewElement != null)
 {
 Control.TitleShadowOffset = new CoreGraphics.CGSize(1, 1);
 Control.SetTitleShadowColor(Color.Black.ToUIColor(), UIKit.UIControlState.Normal);
 }
 }
}

 AndroidAndroid

public class CustomButtonRenderer : Xamarin.Forms.Platform.Android.AppCompat.ButtonRenderer
{
 public CustomButtonRenderer(Context context) : base(context)
 {
 }

 protected override void OnElementChanged(ElementChangedEventArgs<Button> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement != null)
 {
 // Cleanup
 }

 if (e.NewElement != null)
 {
 Control.SetShadowLayer(5, 3, 3, Color.Black.ToAndroid());
 }
 }
}

 Create an IVisual type

public class CustomVisual : IVisual
{
}

 Register the IVisual type

The following code example shows the button renderer for Android:

In your cross-platform library, create a type that derives from IVisual :

The CustomVisual type can then be registered against the renderer classes, permitting Button objects to opt

into using the renderers.

In the platform projects, add the ExportRendererAttribute at the assembly level:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

[assembly: ExportRenderer(typeof(Xamarin.Forms.Button), typeof(CustomButtonRenderer), new[] {
typeof(CustomVisual) })]
namespace VisualDemos.iOS
{
 public class CustomButtonRenderer : ButtonRenderer
 {
 protected override void OnElementChanged(ElementChangedEventArgs<Button> e)
 {
 // ...
 }
 }
}

 Consume the Visual renderer

<Button Visual="Custom"
 Text="CUSTOM BUTTON"
 BackgroundColor="{StaticResource PrimaryColor}"
 TextColor="{StaticResource SecondaryTextColor}"
 HorizontalOptions="FillAndExpand" />

NOTENOTE

Button button = new Button { Text = "CUSTOM BUTTON", ... };
button.Visual = new CustomVisual();

 Register a name for the IVisual type

In this example for the iOS platform project, the ExportRendererAttribute specifies that the

CustomButtonRenderer class will be used to render consuming Button objects, with the IVisual type registered

as the third argument. A renderer that specifies an IVisual type, as part of its ExportRendererAttribute , will be

used to render opted in views, rather than the default renderer.

A Button object can opt into using the renderer classes by setting its Visual property to Custom :

In XAML, a type converter removes the need to include the "Visual" suffix in the Visual property value. However, the

full type name can also be specified.

The equivalent C# code is:

At renderer selection time, the Visual property of the Button is inspected and included in the renderer

selection process. If a renderer isn't located, the Xamarin.Forms default renderer will be used.

The following screenshots show the rendered Button , which displays its text with a shadow:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.visual#xamarin_forms_visualelement_visual
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/visual/material-visual-images/custom-button-large.png#lightbox

[assembly: Visual("MyVisual", typeof(CustomVisual))]

<Button Visual="MyVisual"
 ... />

NOTENOTE

 Related links

The VisualAttribute can be used to optionally register a different name for the IVisual type. This approach

can be used to resolve naming conflicts between different Visual libraries, or in situations where you just want

to refer to a Visual by a different name than its type name.

The VisualAttribute should be defined at the assembly level in either the cross-platform library, or in the

platform project:

The IVisual type can then be consumed through its registered name:

When consuming a Visual through its registered name, any "Visual" suffix must be included.

Material Visual (sample)

Xamarin.Forms Material Visual

Custom Renderers

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualattribute
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-visualdemos

Xamarin.Forms Visual State Manager
 7/8/2021 • 18 minutes to read • Edit Online

NOTENOTE

 Common states

 Download the sample

Use the Visual State Manager to make changes to XAML elements based on visual states set from code.

The Visual State Manager (VSM) provides a structured way to make visual changes to the user interface from

code. In most cases, the user interface of the application is defined in XAML, and this XAML includes markup

describing how the Visual State Manager affects the visuals of the user interface.

The VSM introduces the concept of visual states. A Xamarin.Forms view such as a Button can have several

different visual appearances depending on its underlying state — whether it's disabled, or pressed, or has input

focus. These are the button's states.

Visual states are collected in visual state groups. All the visual states within a visual state group are mutually

exclusive. Both visual states and visual state groups are identified by simple text strings.

The Xamarin.Forms Visual State Manager defines one visual state group named "CommonStates" with the

following visual states:

"Normal"

"Disabled"

"Focused"

"Selected"

This visual state group is supported for all classes that derive from VisualElement , which is the base class for

View and Page .

You can also define your own visual state groups and visual states, as this article will demonstrate.

Xamarin.Forms developers familiar with triggers are aware that triggers can also make changes to visuals in the user

interface based on changes in a view's properties or the firing of events. However, using triggers to deal with various

combinations of these changes can become quite confusing. Historically, the Visual State Manager was introduced in

Windows XAML-based environments to alleviate the confusion resulting from combinations of visual states. With the

VSM, the visual states within a visual state group are always mutually exclusive. At any time, only one state in each group

is the current state.

The Visual State Manager allows you to include markup in your XAML file that can change the visual appearance

of a view if the view is normal, or disabled, or has the input focus. These are known as the common states.

For example, suppose you have an Entry view on your page, and you want the visual appearance of the Entry

to change in the following ways:

The Entry should have a pink background when the Entry is disabled.

The Entry should have a lime background normally.

The Entry should expand to twice its normal height when it has input focus.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/visual-state-manager.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-vsmdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page

 VSM markup on a viewVSM markup on a view

<Entry FontSize="18">

</Entry>

<Entry FontSize="18">
 <VisualStateManager.VisualStateGroups>

 </VisualStateManager.VisualStateGroups>
</Entry>

<Entry FontSize="18">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">

 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Entry>

<VisualStateGroup Name="CommonStates">

You can attach the VSM markup to an individual view, or you can define it in a style if it applies to multiple views.

The next two sections describe these approaches.

To attach VSM markup to an Entry view, first separate the Entry into start and end tags:

It's given an explicit font size because one of the states will use the FontSize property to double the size of the

text in the Entry .

Next, insert VisualStateManager.VisualStateGroups tags between those tags:

VisualStateGroups is an attached bindable property defined by the VisualStateManager class. (For more

information on attached bindable properties, see the article Attached properties.) This is how the

VisualStateGroups property is attached to the Entry object.

The VisualStateGroups property is of type VisualStateGroupList , which is a collection of VisualStateGroup

objects. Within the VisualStateManager.VisualStateGroups tags, insert a pair of VisualStateGroup tags for each

group of visual states you wish to include:

Notice that the VisualStateGroup tag has an x:Name attribute indicating the name of the group. The

VisualStateGroup class defines a Name property that you can use instead:

You can use either x:Name or Name but not both in the same element.

The VisualStateGroup class defines a property named States , which is a collection of VisualState objects.

States is the content property of VisualStateGroups so you can include the VisualState tags directly between

the VisualStateGroup tags. (Content properties are discussed in the article Essential XAML Syntax.)

The next step is to include a pair of tags for every visual state in that group. These also can be identified using

x:Name or Name :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstatemanager.visualstategroupsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstatemanager
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstategrouplist
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstategroup
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstategroup.states#xamarin_forms_visualstategroup_states
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

<Entry FontSize="18">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">

 </VisualState>

 <VisualState x:Name="Focused">

 </VisualState>

 <VisualState x:Name="Disabled">

 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Entry>

<Entry FontSize="18">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>

 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="Focused">
 <VisualState.Setters>

 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="Disabled">
 <VisualState.Setters>

 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Entry>

VisualState defines a property named Setters , which is a collection of Setter objects. These are the same

Setter objects that you use in a Style object.

Setters is not the content property of VisualState , so it is necessary to include property element tags for the

Setters property:

You can now insert one or more Setter objects between each pair of Setters tags. These are the Setter

objects that define the visual states described earlier :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate.setters#xamarin_forms_visualstate_setters
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style

<Entry FontSize="18">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Lime" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="Focused">
 <VisualState.Setters>
 <Setter Property="FontSize" Value="36" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="Disabled">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Pink" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Entry>

Each Setter tag indicates the value of a particular property when that state is current. Any property referenced

by a Setter object must be backed by a bindable property.

Markup similar to this is the basis of the VSM on ViewVSM on View page in the VsmDemosVsmDemos sample program. The page

includes three Entry views, but only the second one has the VSM markup attached to it:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-vsmdemos

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:VsmDemos"
 x:Class="VsmDemos.MainPage"
 Title="VSM Demos">

 <StackLayout>
 <StackLayout.Resources>
 <Style TargetType="Entry">
 <Setter Property="Margin" Value="20, 0" />
 <Setter Property="FontSize" Value="18" />
 </Style>

 <Style TargetType="Label">
 <Setter Property="Margin" Value="20, 30, 20, 0" />
 <Setter Property="FontSize" Value="Large" />
 </Style>
 </StackLayout.Resources>

 <Label Text="Normal Entry:" />
 <Entry />
 <Label Text="Entry with VSM: " />
 <Entry>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Lime" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Focused">
 <VisualState.Setters>
 <Setter Property="FontSize" Value="36" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Disabled">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Pink" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <Entry.Triggers>
 <DataTrigger TargetType="Entry"
 Binding="{Binding Source={x:Reference entry3},
 Path=Text.Length}"
 Value="0">
 <Setter Property="IsEnabled" Value="False" />
 </DataTrigger>
 </Entry.Triggers>
 </Entry>
 <Label Text="Entry to enable 2nd Entry:" />
 <Entry x:Name="entry3"
 Text=""
 Placeholder="Type something to enable 2nd Entry" />
 </StackLayout>
</ContentPage>

Notice that the second Entry also has a DataTrigger as part of its Trigger collection. This causes the Entry

to be disabled until something is typed into the third Entry . Here's the page at startup running on iOS, Android,

and the Universal Windows Platform (UWP):

The current visual state is "Disabled" so the background of the second Entry is pink on the iOS and Android

screens. The UWP implementation of Entry does not allow setting the background color when the Entry is

disabled.

When you enter some text into the third Entry , the second Entry switches into the "Normal" state, and the

background is now lime:

When you touch the second Entry , it gets the input focus. It switches to the "Focused" state and expands to

twice its height:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmonviewdisabled-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmonviewnormal-large.png#lightbox

<VisualState x:Name="Focused">
 <VisualState.Setters>
 <Setter Property="FontSize" Value="36" />
 <Setter Property="BackgroundColor" Value="Lime" />
 </VisualState.Setters>
</VisualState>

<VisualState x:Name="Normal" />

 Visual State Manager markup in a styleVisual State Manager markup in a style

<Style TargetType="Entry">
 <Setter Property="Margin" Value="20, 0" />
 <Setter Property="FontSize" Value="18" />
</Style>

Notice that the Entry does not retain the lime background when it gets the input focus. As the Visual State

Manager switches between the visual states, the properties set by the previous state are unset. Keep in mind

that the visual states are mutually exclusive. The "Normal" state does not mean solely that the Entry is enabled.

It means that the Entry is enabled and does not have input focus.

If you want the Entry to have a lime background in the "Focused" state, add another Setter to that visual

state:

In order for these Setter objects to work properly, a VisualStateGroup must contain VisualState objects for

all the states in that group. If there is a visual state that does not have any Setter objects, include it anyway as

an empty tag:

It's often necessary to share the same Visual State Manager markup among two or more views. In this case,

you'll want to put the markup in a Style definition.

Here's the existing implicit Style for the Entry elements in the VSM On ViewVSM On View page:

Add Setter tags for the VisualStateManager.VisualStateGroups attached bindable property:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmonviewfocused-large.png#lightbox

<Style TargetType="Entry">
 <Setter Property="Margin" Value="20, 0" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="VisualStateManager.VisualStateGroups">

 </Setter>
</Style>

<Style TargetType="Entry">
 <Setter Property="Margin" Value="20, 0" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>

 </VisualStateGroupList>
 </Setter>
</Style>

<Style TargetType="Entry">
 <Setter Property="Margin" Value="20, 0" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">

 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>

The content property for Setter is Value , so the value of the Value property can be specified directly within

those tags. That property is of type VisualStateGroupList :

Within those tags you can include one of more VisualStateGroup objects:

The remainder of the VSM markup is the same as before.

Here's the VSM in StyleVSM in Style page showing the complete VSM markup:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="VsmDemos.VsmInStylePage"
 Title="VSM in Style">
 <StackLayout>
 <StackLayout.Resources>
 <Style TargetType="Entry">
 <Setter Property="Margin" Value="20, 0" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Lime" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Focused">
 <VisualState.Setters>
 <Setter Property="FontSize" Value="36" />
 <Setter Property="BackgroundColor" Value="Lime" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Disabled">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Pink" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>

 <Style TargetType="Label">
 <Setter Property="Margin" Value="20, 30, 20, 0" />
 <Setter Property="FontSize" Value="Large" />
 </Style>
 </StackLayout.Resources>

 <Label Text="Normal Entry:" />
 <Entry />
 <Label Text="Entry with VSM: " />
 <Entry>
 <Entry.Triggers>
 <DataTrigger TargetType="Entry"
 Binding="{Binding Source={x:Reference entry3},
 Path=Text.Length}"
 Value="0">
 <Setter Property="IsEnabled" Value="False" />
 </DataTrigger>
 </Entry.Triggers>
 </Entry>
 <Label Text="Entry to enable 2nd Entry:" />
 <Entry x:Name="entry3"
 Text=""
 Placeholder="Type something to enable 2nd Entry" />
 </StackLayout>
</ContentPage>

Now all the Entry views on this page respond the same way to their visual states. Notice also that the

"Focused" state now includes a second Setter that gives each Entry a lime background also when it has input

focus:

 Visual states in Xamarin.Forms

C L A SSC L A SS STAT ESSTAT ES M O RE IN F O RM AT IO NM O RE IN F O RM AT IO N

Button Pressed Button visual states

CheckBox IsChecked CheckBox visual states

CarouselView DefaultItem , CurrentItem ,

PreviousItem , NextItem

CarouselView visual states

ImageButton Pressed ImageButton visual states

RadioButton Checked , Unchecked RadioButton visual states

Switch On , Off Switch visual states

VisualElement Normal , Disabled , Focused ,

Selected

Common states

 Set state on multiple elements

The following table lists the visual states that are defined in Xamarin.Forms:

Each of these states can be accessed through the visual state group named CommonStates .

In addition, the CollectionView implements the Selected state. For more information, see Change selected

item color.

In the previous examples, visual states were attached to and operated on single elements. However, it's also

possible to create visual states that are attached to a single element, but that set properties on other elements

within the same scope. This avoids having to repeat visual states on each element the states operate on.

The Setter type has a TargetName property, of type string , that represents the target element that the

Setter for a visual state will manipulate. When the TargetName property is defined, the Setter sets the

Property of the element defined in TargetName to Value :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsminstyle-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.setter

<Setter TargetName="label"
 Property="Label.TextColor"
 Value="Red" />

NOTENOTE

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="VsmDemos.VsmSetterTargetNamePage"
 Title="VSM with Setter TargetName">
 <StackLayout Margin="10">
 <Label Text="What is the capital of France?" />
 <Entry x:Name="entry"
 Placeholder="Enter answer" />
 <Button Text="Reveal answer">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="Pressed">
 <VisualState.Setters>
 <Setter Property="Scale"
 Value="0.8" />
 <Setter TargetName="entry"
 Property="Entry.Text"
 Value="Paris" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Button>
 </StackLayout>
</ContentPage>

In this example, a Label named label will have its TextColor property set to Red . When setting the

TargetName property you must specify the full path to the property in Property . Therefore, to set the

TextColor property on a Label , Property is specified as Label.TextColor .

Any property referenced by a Setter object must be backed by a bindable property.

The VSM with Setter TargetNameVSM with Setter TargetName page in the VsmDemosVsmDemos sample shows how to set state on multiple

elements, from a single visual state group. The XAML file consists of a StackLayout containing a Label element,

an Entry , and a Button :

VSM markup is attached to the StackLayout . There are two mutually-exclusive states, named "Normal" and

"Pressed", with each state containing VisualState tags.

The "Normal" state is active when the Button isn't pressed, and a response to the question can be entered:

The "Pressed" state becomes active when the Button is pressed:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-vsmdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmsettertargetnamenormal-large.png#lightbox

IMPORTANTIMPORTANT

 Define your own visual states

VisualStateManager.GoToState(this, "Focused");

The "Pressed" VisualState specifies that when the Button is pressed, its Scale property will be changed from

the default value of 1 to 0.8. In addition, the Entry named entry will have its Text property set to Paris.

Therefore, the result is that when the Button is pressed it's rescaled to be slightly smaller, and the Entry

displays Paris. Then, when the Button is released it's rescaled to its default value of 1 ,and the Entry displays

any previously entered text.

Property paths are currently unsupported in Setter elements that specify the TargetName property.

Every class that derives from VisualElement supports the common states "Normal", "Focused", and "Disabled".

In addition, the CollectionView class supports the "Selected" state. Internally, the VisualElement class detects

when it's becoming enabled or disabled, or focused or unfocused, and calls the static

VisualStateManager.GoToState method:

This is the only Visual State Manager code that you'll find in the VisualElement class. Because GoToState is

called for every object based on every class that derives from VisualElement , you can use the Visual State

Manager with any VisualElement object to respond to these changes.

Interestingly, the name of the visual state group "CommonStates" is not explicitly referenced in VisualElement .

The group name is not part of the API for the Visual State Manager. Within one of the two sample program

shown so far, you can change the name of the group from "CommonStates" to anything else, and the program

will still work. The group name is merely a general description of the states in that group. It is implicitly

understood that the visual states in any group are mutually exclusive: One state and only one state is current at

any time.

If you want to implement your own visual states, you'll need to call VisualStateManager.GoToState from code.

Most often you'll make this call from the code-behind file of your page class.

The VSM ValidationVSM Validation page in the VsmDemosVsmDemos sample shows how to use the Visual State Manager in

connection with input validation. The XAML file consists of a StackLayout containing two Label elements, an

Entry , and a Button :

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmsettertargetnamepressed-large.png#lightbox
https://github.com/xamarin/Xamarin.Forms/blob/master/Xamarin.Forms.Core/VisualElement.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstatemanager.gotostate#xamarin_forms_visualstatemanager_gotostate_xamarin_forms_visualelement_system_string_
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-vsmdemos

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="VsmDemos.VsmValidationPage"
 Title="VSM Validation">
 <StackLayout x:Name="stackLayout"
 Padding="10, 10">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="ValidityStates">
 <VisualState Name="Valid">
 <VisualState.Setters>
 <Setter TargetName="helpLabel"
 Property="Label.TextColor"
 Value="Transparent" />
 <Setter TargetName="entry"
 Property="Entry.BackgroundColor"
 Value="Lime" />
 </VisualState.Setters>
 </VisualState>
 <VisualState Name="Invalid">
 <VisualState.Setters>
 <Setter TargetName="entry"
 Property="Entry.BackgroundColor"
 Value="Pink" />
 <Setter TargetName="submitButton"
 Property="Button.IsEnabled"
 Value="False" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Label Text="Enter a U.S. phone number:"
 FontSize="Large" />
 <Entry x:Name="entry"
 Placeholder="555-555-5555"
 FontSize="Large"
 Margin="30, 0, 0, 0"
 TextChanged="OnTextChanged" />
 <Label x:Name="helpLabel"
 Text="Phone number must be of the form 555-555-5555, and not begin with a 0 or 1" />
 <Button x:Name="submitButton"
 Text="Submit"
 FontSize="Large"
 Margin="0, 20"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 </StackLayout>
</ContentPage>

VSM markup is attached to the StackLayout (named stackLayout). There are two mutually-exclusive states,

named "Valid" and "Invalid", with each state containing VisualState tags.

If the Entry does not contain a valid phone number, then the current state is "Invalid", and so the Entry has a

pink background, the second Label is visible, and the Button is disabled:

When a valid phone number is entered, then the current state becomes "Valid". The Entry gets a lime

background, the second Label disappears, and the Button is now enabled:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmvalidationinvalid-large.png#lightbox

public partial class VsmValidationPage : ContentPage
{
 public VsmValidationPage()
 {
 InitializeComponent();

 GoToState(false);
 }

 void OnTextChanged(object sender, TextChangedEventArgs args)
 {
 bool isValid = Regex.IsMatch(args.NewTextValue, @"^[2-9]\d{2}-\d{3}-\d{4}$");
 GoToState(isValid);
 }

 void GoToState(bool isValid)
 {
 string visualState = isValid ? "Valid" : "Invalid";
 VisualStateManager.GoToState(stackLayout, visualState);
 }
}

 Visual state triggers

The code-behind file is responsible for handling the TextChanged event from the Entry . The handler uses a

regular expression to determine if the input string is valid or not. The method in the code-behind file named

GoToState calls the static VisualStateManager.GoToState method for stackLayout :

Notice also that the GoToState method is called from the constructor to initialize the state. There should always

be a current state. But nowhere in the code is there any reference to the name of the visual state group, although

it's referenced in the XAML as "ValidationStates" for purposes of clarity.

Notice that the code-behind file only needs to take account of the object on the page that defines the visual

states, and to call VisualStateManager.GoToState for this object. This is because both visual states target multiple

objects on the page.

You might wonder: If the code-behind file must reference the object on the page that defines the visual states,

why can't the code-behind file simply access this and other objects directly? It surely could. However, the

advantage of using the VSM is that you can control how visual elements react to different state entirely in XAML,

which keeps all of the UI design in one location. This avoids setting visual appearance by accessing visual

elements directly from the code-behind.

Visual states support state triggers, which are a specialized group of triggers that define the conditions under

which a VisualState should be applied.

State triggers are added to the StateTriggers collection of a VisualState . This collection can contain a single

state trigger, or multiple state triggers. A VisualState will be applied when any state triggers in the collection

are active.

When using state triggers to control visual states, Xamarin.Forms uses the following precedence rules to

determine which trigger (and corresponding VisualState) will be active:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmvalidationvalid-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate.statetriggers#xamarin_forms_visualstate_statetriggers
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstate

 Use the Visual State Manager for adaptive layout

1. Any trigger that derives from StateTriggerBase .

2. An AdaptiveTrigger activated due to the MinWindowWidth condition being met.

3. An AdaptiveTrigger activated due to the MinWindowHeight condition being met.

If multiple triggers are simultaneously active (for example, two custom triggers) then the first trigger declared in

the markup takes precedence.

For more information about state triggers, see State triggers.

A Xamarin.Forms application running on a phone can usually be viewed in a portrait or landscape aspect ratio,

and a Xamarin.Forms program running on the desktop can be resized to assume many different sizes and

aspect ratios. A well-designed application might display its content differently for these various page or window

form factors.

This technique is sometimes known as adaptive layout. Because adaptive layout solely involves a program's

visuals, it is an ideal application of the Visual State Manager.

A simple example is an application that displays a small collection of buttons that affect the application's content.

In portrait mode, these buttons might be displayed in a horizontal row on the top of the page:

In landscape mode, the array of buttons might be moved to one side, and displayed in a column:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.statetriggerbase
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowwidth#xamarin_forms_adaptivetrigger_minwindowwidth
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.adaptivetrigger.minwindowheight#xamarin_forms_adaptivetrigger_minwindowheight
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmadaptivelayoutportrait-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="VsmDemos.VsmAdaptiveLayoutPage"
 Title="VSM Adaptive Layout">

 <StackLayout x:Name="mainStack">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="OrientationStates">
 <VisualState Name="Portrait">
 <VisualState.Setters>
 <Setter Property="Orientation" Value="Vertical" />
 </VisualState.Setters>
 </VisualState>
 <VisualState Name="Landscape">
 <VisualState.Setters>
 <Setter Property="Orientation" Value="Horizontal" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <ScrollView x:Name="menuScroll">

From top to bottom, the program is running on the Universal Windows Platform, Android, and iOS.

The VSM Adaptive LayoutVSM Adaptive Layout page in the VsmDemos sample defines a group named "OrientationStates" with

two visual states named "Portrait" and "Landscape". (A more complex approach might be based on several

different page or window widths.)

VSM markup occurs in four places in the XAML file. The StackLayout named mainStack contains both the menu

and the content, which is an Image element. This StackLayout should have a vertical orientation in portrait

mode and a horizontal orientation in landscape mode:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/vsm-images/vsmadaptivelayoutlandscape-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-vsmdemos

 <ScrollView x:Name="menuScroll">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="OrientationStates">
 <VisualState Name="Portrait">
 <VisualState.Setters>
 <Setter Property="Orientation" Value="Horizontal" />
 </VisualState.Setters>
 </VisualState>
 <VisualState Name="Landscape">
 <VisualState.Setters>
 <Setter Property="Orientation" Value="Vertical" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <StackLayout x:Name="menuStack">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="OrientationStates">
 <VisualState Name="Portrait">
 <VisualState.Setters>
 <Setter Property="Orientation" Value="Horizontal" />
 </VisualState.Setters>
 </VisualState>
 <VisualState Name="Landscape">
 <VisualState.Setters>
 <Setter Property="Orientation" Value="Vertical" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <StackLayout.Resources>
 <Style TargetType="Button">
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup Name="OrientationStates">
 <VisualState Name="Portrait">
 <VisualState.Setters>
 <Setter Property="HorizontalOptions" Value="CenterAndExpand" />
 <Setter Property="Margin" Value="10, 5" />
 </VisualState.Setters>
 </VisualState>
 <VisualState Name="Landscape">
 <VisualState.Setters>
 <Setter Property="VerticalOptions" Value="CenterAndExpand" />
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="Margin" Value="10" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
 </Style>
 </StackLayout.Resources>

 <Button Text="Banana"
 Command="{Binding SelectedCommand}"
 CommandParameter="Banana.jpg" />
 <Button Text="Face Palm"
 Command="{Binding SelectedCommand}"
 CommandParameter="FacePalm.jpg" />
 <Button Text="Monkey"
 Command="{Binding SelectedCommand}"
 CommandParameter="monkey.png" />
 <Button Text="Seated Monkey"
 Command="{Binding SelectedCommand}"
 CommandParameter="SeatedMonkey.jpg" />
 </StackLayout>
 </ScrollView>

 </ScrollView>

 <Image x:Name="image"
 VerticalOptions="FillAndExpand"
 HorizontalOptions="FillAndExpand" />
 </StackLayout>
</ContentPage>

public partial class VsmAdaptiveLayoutPage : ContentPage
{
 public VsmAdaptiveLayoutPage ()
 {
 InitializeComponent ();

 SizeChanged += (sender, args) =>
 {
 string visualState = Width > Height ? "Landscape" : "Portrait";
 VisualStateManager.GoToState(mainStack, visualState);
 VisualStateManager.GoToState(menuScroll, visualState);
 VisualStateManager.GoToState(menuStack, visualState);

 foreach (View child in menuStack.Children)
 {
 VisualStateManager.GoToState(child, visualState);
 }
 };

 SelectedCommand = new Command<string>((filename) =>
 {
 image.Source = ImageSource.FromResource("VsmDemos.Images." + filename);
 });

 menuStack.BindingContext = this;
 }

 public ICommand SelectedCommand { private set; get; }
}

 Visual State Manager with Xamarin.University

The inner ScrollView named menuScroll and the StackLayout named menuStack implement the menu of

buttons. The orientation of these layouts is opposite of mainStack . The menu should be horizontal in portrait

mode and vertical in landscape mode.

The fourth section of VSM markup is in an implicit style for the buttons themselves. This markup sets

VerticalOptions , HorizontalOptions , and Margin properties specific to the portrait and landscape orientations.

The code-behind file sets the BindingContext property of menuStack to implement Button commanding, and

also attaches a handler to the SizeChanged event of the page:

The SizeChanged handler calls VisualStateManager.GoToState for the two StackLayout and ScrollView

elements, and then loops through the children of menuStack to call VisualStateManager.GoToState for the

Button elements.

It may seem as if the code-behind file can handle orientation changes more directly by setting properties of

elements in the XAML file, but the Visual State Manager is definitely a more structured approach. All the visuals

are kept in the XAML file, where they become easier to examine, maintain, and modify.

Xamarin.Forms 3.0 Visual State Manager videoXamarin.Forms 3.0 Visual State Manager video

https://www.youtube-nocookie.com/embed/qhUHbVP5mIQ

Related links
VsmDemos

State triggers

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-vsmdemos

Choose a Xamarin.Forms Layout
 7/8/2021 • 8 minutes to read • Edit Online

 StackLayout

<StackLayout Margin="20,35,20,25">
 <Label Text="The StackLayout has its Margin property set, to control the rendering position of the
StackLayout." />
 <Label Text="The Padding property can be set to specify the distance between the StackLayout and its
children." />
 <Label Text="The Spacing property can be set to specify the distance between views in the StackLayout."
/>
</StackLayout>

 Download the sample

Xamarin.Forms layout classes allow you to arrange and group UI controls in your application. Choosing a layout

class requires knowledge of how the layout positions its child elements, and how the layout sizes its child

elements. In addition, it may be necessary to nest layouts to create your desired layout.

The following image shows typical layouts that can be achieved with the main Xamarin.Forms layout classes:

A StackLayout organizes elements in a one-dimensional stack, either horizontally or vertically. The Orientation

property specifies the direction of the elements, and the default orientation is Vertical . StackLayout is

typically used to arrange a subsection of the UI on a page.

The following XAML shows how to create a vertical StackLayout containing three Label objects:

In a StackLayout , if an element's size is not explicitly set, it expands to fill the available width, or height if the

Orientation property is set to Horizontal .

A StackLayout is often used as a parent layout, which contains other child layouts. However, a StackLayout

should not be used to reproduce a Grid layout by using a combination of StackLayout objects. The following

code shows an example of this bad practice:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/choose-layout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/images/layouts-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.orientation#xamarin_forms_stacklayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stackorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.orientation#xamarin_forms_stacklayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stackorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Details.HomePage"
 Padding="0,20,0,0">
 <StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Name:" />
 <Entry Placeholder="Enter your name" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Age:" />
 <Entry Placeholder="Enter your age" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Occupation:" />
 <Entry Placeholder="Enter your occupation" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Address:" />
 <Entry Placeholder="Enter your address" />
 </StackLayout>
 </StackLayout>
</ContentPage>

TIPTIP

 Grid

NOTENOTE

This is wasteful because unnecessary layout calculations are performed. Instead, the desired layout can be better

achieved by using a Grid .

When using a StackLayout , ensure that only one child element is set to LayoutOptions.Expands . This property

ensures that the specified child will occupy the largest space that the StackLayout can give to it, and it is wasteful to

perform these calculations more than once.

For more information, see Xamarin.Forms StackLayout.

A Grid is used for displaying elements in rows and columns, which can have proportional or absolute sizes. A

grid's rows and columns are specified with the RowDefinitions and ColumnDefinitions properties.

To position elements in specific Grid cells, use the Grid.Column and Grid.Row attached properties. To make

elements span across multiple rows and columns, use the Grid.RowSpan and Grid.ColumnSpan attached

properties.

A Grid layout should not be confused with tables, and is not intended to present tabular data. Unlike HTML tables, a

Grid is intended for laying out content. For displaying tabular data, consider using a ListView, CollectionView, or

TableView.

The following XAML shows how to create a Grid with two rows and two columns:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.expands#xamarin_forms_layoutoptions_expands
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowdefinitions#xamarin_forms_grid_rowdefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columndefinitions#xamarin_forms_grid_columndefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Label Text="Column 0, Row 0"
 WidthRequest="200" />
 <Label Grid.Column="1"
 Text="Column 1, Row 0" />
 <Label Grid.Row="1"
 Text="Column 0, Row 1" />
 <Label Grid.Column="1"
 Grid.Row="1"
 Text="Column 1, Row 1" />
</Grid>

C a u t i o nC a u t i o n

 FlexLayout

<FlexLayout Direction="Column"
 AlignItems="Center"
 JustifyContent="SpaceEvenly">
 <Label Text="FlexLayout in Action" />
 <Button Text="Button" />
 <Label Text="Another Label" />
</FlexLayout>

In this example, sizing works as follows:

Each row has an explicit height of 50 device-independent units.

The width of the first column is set to Auto , and is therefore as wide as required for its children. In this case,

it's 200 device-independent units wide to accommodate the width of the first Label .

Space can be distributed within a column or row by using auto sizing, which lets columns and rows size to fit

their content. This is achieved by setting the height of a RowDefinition , or the width of a ColumnDefinition , to

Auto . Proportional sizing can also be used to distribute available space among the rows and columns of the

grid by weighted proportions. This is achieved by setting the height of a RowDefinition , or the width of a

ColumnDefinition , to a value that uses the * operator.

Try to ensure that as few rows and columns as possible are set to Auto size. Each auto-sized row or column will

cause the layout engine to perform additional layout calculations. Instead, use fixed size rows and columns if

possible. Alternatively, set rows and columns to occupy a proportional amount of space with the

GridUnitType.Star enumeration value.

For more information, see Xamarin.Forms Grid.

A FlexLayout is similar to a StackLayout in that it displays child elements either horizontally or vertically in a

stack. However, a FlexLayout can also wrap its children if there are too many to fit in a single row or column,

and also enables more granular control of the size, orientation, and alignment of its child elements.

The following XAML shows how to create a FlexLayout that displays its views in a single column:

In this example, layout works as follows:

The Direction property is set to Column , which causes the children of the FlexLayout to be arranged in a

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength.auto#xamarin_forms_gridlength_auto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength.auto#xamarin_forms_gridlength_auto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength.auto#xamarin_forms_gridlength_auto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridunittype#xamarin_forms_gridunittype_star
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.direction#xamarin_forms_flexlayout_direction

 RelativeLayout

NOTENOTE

<RelativeLayout>
 <BoxView Color="Blue"
 HeightRequest="50"
 WidthRequest="50"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent, Property=Width,
Factor=0}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Factor=0}" />
 <BoxView Color="Red"
 HeightRequest="50"
 WidthRequest="50"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent, Property=Width,
Factor=.85}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Factor=0}" />
 <BoxView x:Name="pole"
 Color="Gray"
 WidthRequest="15"
 RelativeLayout.HeightConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Factor=.75}"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent, Property=Width,
Factor=.45}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Factor=.25}" />
 <BoxView Color="Green"
 RelativeLayout.HeightConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Factor=.10, Constant=10}"
 RelativeLayout.WidthConstraint="{ConstraintExpression Type=RelativeToParent, Property=Width,
Factor=.2, Constant=20}"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToView, ElementName=pole,
Property=X, Constant=15}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToView, ElementName=pole,
Property=Y, Constant=0}" />
</RelativeLayout>

single column of items.

The AlignItems property is set to Center , which causes each item to be horizontally centered.

The JustifyContent property is set to SpaceEvenly , which allocates all leftover vertical space equally

between all the items, and above the first item, and below the last item.

For more information, see Xamarin.Forms FlexLayout.

A RelativeLayout is used to position and size elements relative to properties of the layout or sibling elements.

By default, an element is positioned in the upper left corner of the layout. A RelativeLayout can be used to

create UIs that scale proportionally across device sizes.

Within a RelativeLayout , positions and sizes are specified as constraints. Constraints have Factor and

Constant properties, which can be used to define positions and sizes as multiples (or fractions) of properties of

other objects, plus a constant. In addition, constants can be negative.

A RelativeLayout supports positioning elements outside of its own bounds.

The following XAML shows how to arrange elements in a RelativeLayout :

In this example, layout works as follows:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.alignitems#xamarin_forms_flexlayout_alignitems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.justifycontent#xamarin_forms_flexlayout_justifycontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression.factor#xamarin_forms_constraintexpression_factor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression.constant#xamarin_forms_constraintexpression_constant
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout

WARNINGWARNING

 AbsoluteLayout

IMPORTANTIMPORTANT

<AbsoluteLayout Margin="40">
 <BoxView Color="Red"
 AbsoluteLayout.LayoutFlags="PositionProportional"
 AbsoluteLayout.LayoutBounds="0.5, 0, 100, 100"
 Rotation="30" />
 <BoxView Color="Green"
 AbsoluteLayout.LayoutFlags="PositionProportional"
 AbsoluteLayout.LayoutBounds="0.5, 0, 100, 100"
 Rotation="60" />
 <BoxView Color="Blue"
 AbsoluteLayout.LayoutFlags="PositionProportional"
 AbsoluteLayout.LayoutBounds="0.5, 0, 100, 100" />
</AbsoluteLayout>

The blue BoxView is given an explicit size of 50x50 device-independent units. It's placed in the upper left

corner of the layout, which is the default position.

The red BoxView is given an explicit size of 50x50 device-independent units. It's placed in the upper right

corner of the layout.

The gray BoxView is given an explicit width of 15 device-independent units, and it's height is set to be 75% of

the height of its parent.

The green BoxView isn't given an explicit size. Its position is set relative to the BoxView named pole .

Avoid using a RelativeLayout whenever possible. It will result in the CPU having to perform significantly more work.

For more information, see Xamarin.Forms RelativeLayout.

An AbsoluteLayout is used to position and size elements using explicit values, or values relative to the size of the

layout. The position is specified by the upper-left corner of the child relative to the upper-left corner of the

AbsoluteLayout .

An AbsoluteLayout should be regarded as a special-purpose layout to be used only when you can impose a size

on children, or when the element's size doesn't affect the positioning of other children. A standard use of this

layout is to create an overlay, which covers the page with other controls, perhaps to protect the user from

interacting with the normal controls on the page.

The HorizontalOptions and VerticalOptions properties have no effect on children of an AbsoluteLayout .

Within an AbsoluteLayout , the AbsoluteLayout.LayoutBounds attached property is used to specify the horizontal

position, vertical position, width and height of an element. In addition, the AbsoluteLayout.LayoutFlags attached

property specifies how the layout bounds will be interpreted.

The following XAML shows how to arrange elements in an AbsoluteLayout :

In this example, layout works as follows:

Each BoxView is given an explicit size of 100x100, and is displayed in the same position, horizontally

centered.

The red BoxView is rotated 30 degrees, and the green BoxView is rotated 60 degrees.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview

C a u t i o nC a u t i o n

 Input transparency

 Layout performance

 Related links

On each BoxView , the AbsoluteLayout.LayoutFlags attached property is set to PositionProportional ,

indicating that the position is proportional to the remaining space after width and height are accounted for.

Avoid using the AbsoluteLayout.AutoSize property whenever possible, as it will cause the layout engine to

perform additional layout calculations.

For more information, see Xamarin.Forms AbsoluteLayout.

Each visual element has an InputTransparent property that's used to define whether the element receives input.

Its default value is false , ensuring that the element receives input.

When this property is set on a layout class, its value transfers to child elements. Therefore, setting the

InputTransparent property to true on a layout class will result in all elements within the layout not receiving

input.

To obtain the best possible layout performance, follow the guidelines at Optimize layout performance.

In addition, page rendering performance can also be improved by using layout compression, which removes

specified layouts from the visual tree. For more information, see Layout compression.

Layout (sample)

Xamarin.Forms Layouts (video)

Xamarin.Forms StackLayout

Xamarin.Forms Grid

Xamarin.Forms FlexLayout

Xamarin.Forms AbsoluteLayout

Xamarin.Forms RelativeLayout

Optimize layout performance

Layout compression

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.autosize#xamarin_forms_absolutelayout_autosize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.inputtransparent#xamarin_forms_visualelement_inputtransparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.inputtransparent#xamarin_forms_visualelement_inputtransparent
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
https://youtu.be/4HlLjTZQzjM

Xamarin.Forms AbsoluteLayout
 7/8/2021 • 8 minutes to read • Edit Online

TIPTIP

 Position and size children

 Download the sample

An AbsoluteLayout is used to position and size children using explicit values. The position is specified by the

upper-left corner of the child relative to the upper-left corner of the AbsoluteLayout , in device-independent

units. AbsoluteLayout also implements a proportional positioning and sizing feature. In addition, unlike some

other layout classes, AbsoluteLayout is able to position children so that they overlap.

An AbsoluteLayout should be regarded as a special-purpose layout to be used only when you can impose a size

on children, or when the element's size doesn't affect the positioning of other children.

The AbsoluteLayout class defines the following properties:

LayoutBounds , of type Rectangle , which is an attached property that represents the position and size of a

child. The default value of this property is (0,0,AutoSize,AutoSize).

LayoutFlags , of type AbsoluteLayoutFlags , which is an attached property that indicates whether properties

of the layout bounds used to position and size the child are interpreted proportionally. The default value of

this property is AbsoluteLayoutFlags.None .

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings and styled. For more information about attached properties, see Xamarin.Forms Attached

Properties.

The AbsoluteLayout class derives from the Layout<T> class, which defines a Children property of type

IList<T> . The Children property is the ContentProperty of the Layout<T> class, and therefore does not need

to be explicitly set from XAML.

To obtain the best possible layout performance, follow the guidelines at Optimize layout performance.

The position and size of children in an AbsoluteLayout is defined by setting the AbsoluteLayout.LayoutBounds

attached property of each child, using absolute values or proportional values. Absolute and proportional values

can be mixed for children when the position should scale, but the size should stay fixed, or vice versa. For

information about absolute values, see Absolute positioning and sizing. For information about proportional

values, see Proportional positioning and sizing.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/absolutelayout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-absolutelayoutdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/absolutelayout-images/layouts-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayoutflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty

IMPORTANTIMPORTANT

 Absolute positioning and sizing

WARNINGWARNING

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="AbsoluteLayoutDemos.Views.StylishHeaderDemoPage"
 Title="Stylish header demo">
 <AbsoluteLayout Margin="20">
 <BoxView Color="Silver"
 AbsoluteLayout.LayoutBounds="0, 10, 200, 5" />
 <BoxView Color="Silver"
 AbsoluteLayout.LayoutBounds="0, 20, 200, 5" />
 <BoxView Color="Silver"
 AbsoluteLayout.LayoutBounds="10, 0, 5, 65" />
 <BoxView Color="Silver"
 AbsoluteLayout.LayoutBounds="20, 0, 5, 65" />
 <Label Text="Stylish Header"
 FontSize="24"
 AbsoluteLayout.LayoutBounds="30, 25" />
 </AbsoluteLayout>
</ContentPage>

The AbsoluteLayout.LayoutBounds attached property can be set using two formats, regardless of whether

absolute or proportional values are used:

x, y . With this format, the x and y values indicate the position of the upper-left corner of the child

relative to its parent. The child is unconstrained and sizes itself.

x, y, width, height . With this format, the x and y values indicate the position of the upper-left corner of

the child relative to its parent, while the width and height values indicate the child's size.

To specify that a child sizes itself horizontally or vertically, or both, set the width and/or height values to the

AbsoluteLayout.AutoSize property. However, overuse of this property can harm application performance, as it

causes the layout engine to perform additional layout calculations.

The HorizontalOptions and VerticalOptions properties have no effect on children of an AbsoluteLayout .

By default, an AbsoluteLayout positions and sizes children using absolute values, specified in device-

independent units, which explicitly define where children should be placed in the layout. This is achieved by

adding children to the Children collection of an AbsoluteLayout and setting the AbsoluteLayout.LayoutBounds

attached property on each child to absolute position and/or size values.

Using absolute values for positioning and sizing children can be problematic, because different devices have different

screen sizes and resolutions. Therefore, the coordinates for the center of the screen on one device may be offset on other

devices.

The following XAML shows an AbsoluteLayout whose children are positioned using absolute values:

In this example, the position of each BoxView object is defined using the first two absolute values that are

specified in the AbsoluteLayout.LayoutBounds attached property. The size of each BoxView is defined using the

third and forth values. The position of the Label object is defined using the two absolute values that are

specified in the AbsoluteLayout.LayoutBounds attached property. Size values are not specified for the Label , and

so it's unconstrained and sizes itself. In all cases, the absolute values represent device-independent units.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.autosize#xamarin_forms_absolutelayout_autosize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

public class StylishHeaderDemoPageCS : ContentPage
{
 public StylishHeaderDemoPageCS()
 {
 AbsoluteLayout absoluteLayout = new AbsoluteLayout
 {
 Margin = new Thickness(20)
 };

 absoluteLayout.Children.Add(new BoxView
 {
 Color = Color.Silver,
 }, new Rectangle(0, 10, 200, 5));
 absoluteLayout.Children.Add(new BoxView
 {
 Color = Color.Silver
 }, new Rectangle(0, 20, 200, 5));
 absoluteLayout.Children.Add(new BoxView
 {
 Color = Color.Silver
 }, new Rectangle(10, 0, 5, 65));
 absoluteLayout.Children.Add(new BoxView
 {
 Color = Color.Silver
 }, new Rectangle(20, 0, 5, 65));

 absoluteLayout.Children.Add(new Label
 {
 Text = "Stylish Header",
 FontSize = 24
 }, new Point(30,25));

 Title = "Stylish header demo";
 Content = absoluteLayout;
 }
}

NOTENOTE

 Proportional positioning and sizing

The following screenshot shows the resulting layout:

The equivalent C# code is shown below:

In this example, the position and size of each BoxView is defined using a Rectangle object. The position of the

Label is defined using a Point object.

In C#, it's also possible to set the position and size of a child of an AbsoluteLayout after it has been added to the

Children collection, using the AbsoluteLayout.SetLayoutBounds method. The first argument to this method is the

child, and the second is a Rectangle object.

An AbsoluteLayout that uses absolute values can position and size children so that they don't fit within the bounds of

the layout.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.point
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.setlayoutbounds
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout

TIPTIP

An AbsoluteLayout can position and size children using proportional values. This is achieved by adding children

to the Children collection of the AbsoluteLayout , and by setting the AbsoluteLayout.LayoutBounds attached

property on each child to proportional position and/or size values in the range 0-1. Position and size values are

made proportional by setting the AbsoluteLayout.LayoutFlags attached property on each child.

The AbsoluteLayout.LayoutFlags attached property, of type AbsoluteLayoutFlags , allows you to set a flag that

indicates that the layout bounds position and size values for a child are proportional to the size of the

AbsoluteLayout . When laying out a child, AbsoluteLayout scales the position and size values appropriately, to

any device size.

The AbsoluteLayoutFlags enumeration defines the following members:

None , indicates that values will be interpreted as absolute. This is the default value of the

AbsoluteLayout.LayoutFlags attached property.

XProportional , indicates that the x value will be interpreted as proportional, while treating all other values

as absolute.

YProportional , indicates that the y value will be interpreted as proportional, while treating all other values

as absolute.

WidthProportional , indicates that the width value will be interpreted as proportional, while treating all other

values as absolute.

HeightProportional , indicates that the height value will be interpreted as proportional, while treating all

other values as absolute.

PositionProportional , indicates that the x and y values will be interpreted as proportional, while the size

values are interpreted as absolute.

SizeProportional , indicates that the width and height values will be interpreted as proportional, while the

position values are interpreted as absolute.

All , indicates that all values will be interpreted as proportional.

The AbsoluteLayoutFlags enumeration is a Flags enumeration, which means that enumeration members can be

combined. This is accomplished in XAML with a comma-separated list, and in C# with the bitwise OR operator.

For example, if you use the SizeProportional flag and set the width of a child to 0.25 and the height to 0.1, the

child will be one-quarter of the width of the AbsoluteLayout and one-tenth the height. The

PositionProportional flag is similar. A position of (0,0) puts the child in the upper-left corner, while a position of

(1,1) puts the child in the lower-right corner, and a position of (0.5,0.5) centers the child within the

AbsoluteLayout .

The following XAML shows an AbsoluteLayout whose children are positioned using proportional values:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayoutflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayoutflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayoutflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="AbsoluteLayoutDemos.Views.ProportionalDemoPage"
 Title="Proportional demo">
 <AbsoluteLayout>
 <BoxView Color="Blue"
 AbsoluteLayout.LayoutBounds="0.5,0,100,25"
 AbsoluteLayout.LayoutFlags="PositionProportional" />
 <BoxView Color="Green"
 AbsoluteLayout.LayoutBounds="0,0.5,25,100"
 AbsoluteLayout.LayoutFlags="PositionProportional" />
 <BoxView Color="Red"
 AbsoluteLayout.LayoutBounds="1,0.5,25,100"
 AbsoluteLayout.LayoutFlags="PositionProportional" />
 <BoxView Color="Black"
 AbsoluteLayout.LayoutBounds="0.5,1,100,25"
 AbsoluteLayout.LayoutFlags="PositionProportional" />
 <Label Text="Centered text"
 AbsoluteLayout.LayoutBounds="0.5,0.5,110,25"
 AbsoluteLayout.LayoutFlags="PositionProportional" />
 </AbsoluteLayout>
</ContentPage>

In this example, each child is positioned using proportional values but sized using absolute values. This is

accomplished by setting the AbsoluteLayout.LayoutFlags attached property of each child to

PositionProportional . The first two values that are specified in the AbsoluteLayout.LayoutBounds attached

property, for each child, define the position using proportional values. The size of each child is defined with the

third and forth absolute values, using device-independent units.

The following screenshot shows the resulting layout:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutflagsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.layoutboundsproperty

public class ProportionalDemoPageCS : ContentPage
{
 public ProportionalDemoPageCS()
 {
 BoxView blue = new BoxView { Color = Color.Blue };
 AbsoluteLayout.SetLayoutBounds(blue, new Rectangle(0.5, 0, 100, 25));
 AbsoluteLayout.SetLayoutFlags(blue, AbsoluteLayoutFlags.PositionProportional);

 BoxView green = new BoxView { Color = Color.Green };
 AbsoluteLayout.SetLayoutBounds(green, new Rectangle(0, 0.5, 25, 100));
 AbsoluteLayout.SetLayoutFlags(green, AbsoluteLayoutFlags.PositionProportional);

 BoxView red = new BoxView { Color = Color.Red };
 AbsoluteLayout.SetLayoutBounds(red, new Rectangle(1, 0.5, 25, 100));
 AbsoluteLayout.SetLayoutFlags(red, AbsoluteLayoutFlags.PositionProportional);

 BoxView black = new BoxView { Color = Color.Black };
 AbsoluteLayout.SetLayoutBounds(black, new Rectangle(0.5, 1, 100, 25));
 AbsoluteLayout.SetLayoutFlags(black, AbsoluteLayoutFlags.PositionProportional);

 Label label = new Label { Text = "Centered text" };
 AbsoluteLayout.SetLayoutBounds(label, new Rectangle(0.5, 0.5, 110, 25));
 AbsoluteLayout.SetLayoutFlags(label, AbsoluteLayoutFlags.PositionProportional);

 Title = "Proportional demo";
 Content = new AbsoluteLayout
 {
 Children = { blue, green, red, black, label }
 };
 }
}

NOTENOTE

 Related links

The equivalent C# code is shown below:

In this example, the position and size of each child is set with the AbsoluteLayout.SetLayoutBounds method. The

first argument to the method is the child, and the second is a Rectangle object. The position of each child is set

with proportional values, while the size of each child is set with absolute values, using device-independent units.

An AbsoluteLayout that uses proportional values can position and size children so that they don't fit within the bounds

of the layout by using values outside the 0-1 range.

AbsoluteLayout demos (sample)

Xamarin.Forms Attached Properties

Choose a Xamarin.Forms Layout

Improve Xamarin.Forms App Performance

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.setlayoutbounds
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rectangle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-absolutelayoutdemos

The Xamarin.Forms FlexLayout
 7/8/2021 • 23 minutes to read • Edit Online

 Common usage scenarios

 Using FlexLayout for a simple stackUsing FlexLayout for a simple stack

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:FlexLayoutDemos"
 x:Class="FlexLayoutDemos.SimpleStackPage"
 Title="Simple Stack">

 <FlexLayout Direction="Column"
 AlignItems="Center"
 JustifyContent="SpaceEvenly">

 <Label Text="FlexLayout in Action"
 FontSize="Large" />

 <Image Source="{local:ImageResource FlexLayoutDemos.Images.SeatedMonkey.jpg}" />

 <Button Text="Do-Nothing Button" />

 <Label Text="Another Label" />
 </FlexLayout>
</ContentPage>

 Download the sample

Use FlexLayout for stacking or wrapping a collection of child views.

The Xamarin.Forms FlexLayout is new in Xamarin.Forms version 3.0. It is based on the CSS Flexible Box Layout

Module, commonly known as flex layout or flex-box, so called because it includes many flexible options to

arrange children within the layout.

FlexLayout is similar to the Xamarin.Forms StackLayout in that it can arrange its children horizontally and

vertically in a stack. However, the FlexLayout is also capable of wrapping its children if there are too many to fit

in a single row or column, and also has many options for orientation, alignment, and adapting to various screen

sizes.

FlexLayout derives from Layout<View> and inherits a Children property of type IList<View> .

FlexLayout defines six public bindable properties and five attached bindable properties that affect the size,

orientation, and alignment of its child elements. (If you're not familiar with attached bindable properties, see the

article Attached proper tiesAttached proper ties .) These properties are described in detail in the sections below on The bindableThe bindable

proper ties in detailproper ties in detail and The attached bindable proper ties in detailThe attached bindable proper ties in detail . However, this article begins with a

section on some Common usage scenariosCommon usage scenarios of FlexLayout that describes many of these properties more

informally. Towards the end of the article, you'll see how to combine FlexLayout with CSS style sheets.

The FlexLayoutDemosFlexLayoutDemos sample program contains several pages that demonstrate some common uses of

FlexLayout and allows you to experiment with its properties.

The S imple StackSimple Stack page shows how FlexLayout can substitute for a StackLayout but with simpler markup.

Everything in this sample is defined in the XAML page. The FlexLayout contains four children:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/flex-layout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://www.w3.org/TR/css-flexbox-1/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1.children#xamarin_forms_layout_1_children
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos

 Using FlexLayout for wrapping itemsUsing FlexLayout for wrapping items

Here's that page running on iOS, Android, and the Universal Windows Platform:

Three properties of FlexLayout are shown in the S impleStackPage.xamlSimpleStackPage.xaml file:

<Label Text="FlexLayout in Action"
 FontSize="Large"
 FlexLayout.AlignSelf="Start" />

The Direction property is set to a value of the FlexDirection enumeration. The default is Row . Setting

the property to Column causes the children of the FlexLayout to be arranged in a single column of items.

When items in a FlexLayout are arranged in a column, the FlexLayout is said to have a vertical main

axis and a horizontal cross axis.

The AlignItems property is of type FlexAlignItems and specifies how items are aligned on the cross axis.

The Center option causes each item to be horizontally centered.

If you were using a StackLayout rather than a FlexLayout for this task, you would center all the items by

assigning the HorizontalOptions property of each item to Center . The HorizontalOptions property

doesn't work for children of a FlexLayout , but the single AlignItems property accomplishes the same

goal. If you need to, you can use the AlignSelf attached bindable property to override the AlignItems

property for individual items:

With that change, this one Label is positioned at the left edge of the FlexLayout when the reading order

is left-to-right.

The JustifyContent property is of type FlexJustify , and specifies how items are arranged on the main

axis. The SpaceEvenly option allocates all leftover vertical space equally between all the items, and above

the first item, and below the last item.

If you were using a StackLayout , you would need to assign the VerticalOptions property of each item to

CenterAndExpand to achieve a similar effect. But the CenterAndExpand option would allocate twice as much

space between each item than before the first item and after the last item. You can mimic the

CenterAndExpand option of VerticalOptions by setting the JustifyContent property of FlexLayout to

SpaceAround .

These FlexLayout properties are discussed in more detail in the section The bindable proper ties in detailThe bindable proper ties in detail

below.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/simplestack-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.direction#xamarin_forms_flexlayout_direction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.alignitems#xamarin_forms_flexlayout_alignitems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexalignitems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.justifycontent#xamarin_forms_flexlayout_justifycontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexjustify

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FlexLayoutDemos.PhotoWrappingPage"
 Title="Photo Wrapping">
 <Grid>
 <ScrollView>
 <FlexLayout x:Name="flexLayout"
 Wrap="Wrap"
 JustifyContent="SpaceAround" />
 </ScrollView>

 <ActivityIndicator x:Name="activityIndicator"
 IsRunning="True"
 VerticalOptions="Center" />
 </Grid>
</ContentPage>

The Photo WrappingPhoto Wrapping page of the FlexLayoutDemosFlexLayoutDemos sample demonstrates how FlexLayout can wrap its

children to additional rows or columns. The XAML file instantiates the FlexLayout and assigns two properties of

it:

The Direction property of this FlexLayout is not set, so it has the default setting of Row , meaning that the

children are arranged in rows and the main axis is horizontal.

The Wrap property is of an enumeration type FlexWrap . If there are too many items to fit on a row, then this

property setting causes the items to wrap to the next row.

Notice that the FlexLayout is a child of a ScrollView . If there are too many rows to fit on the page, then the

ScrollView has a default Orientation property of Vertical and allows vertical scrolling.

The JustifyContent property allocates leftover space on the main axis (the horizontal axis) so that each item is

surrounded by the same amount of blank space.

The code-behind file accesses a collection of sample photos and adds them to the Children collection of the

FlexLayout :

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.wrap#xamarin_forms_flexlayout_wrap
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexwrap

public partial class PhotoWrappingPage : ContentPage
{
 // Class for deserializing JSON list of sample bitmaps
 [DataContract]
 class ImageList
 {
 [DataMember(Name = "photos")]
 public List<string> Photos = null;
 }

 public PhotoWrappingPage ()
 {
 InitializeComponent ();

 LoadBitmapCollection();
 }

 async void LoadBitmapCollection()
 {
 using (WebClient webClient = new WebClient())
 {
 try
 {
 // Download the list of stock photos
 Uri uri = new Uri("https://raw.githubusercontent.com/xamarin/docs-
archive/master/Images/stock/small/stock.json");
 byte[] data = await webClient.DownloadDataTaskAsync(uri);

 // Convert to a Stream object
 using (Stream stream = new MemoryStream(data))
 {
 // Deserialize the JSON into an ImageList object
 var jsonSerializer = new DataContractJsonSerializer(typeof(ImageList));
 ImageList imageList = (ImageList)jsonSerializer.ReadObject(stream);

 // Create an Image object for each bitmap
 foreach (string filepath in imageList.Photos)
 {
 Image image = new Image
 {
 Source = ImageSource.FromUri(new Uri(filepath))
 };
 flexLayout.Children.Add(image);
 }
 }
 }
 catch
 {
 flexLayout.Children.Add(new Label
 {
 Text = "Cannot access list of bitmap files"
 });
 }
 }

 activityIndicator.IsRunning = false;
 activityIndicator.IsVisible = false;
 }
}

Here's the program running, progressively scrolled from top to bottom:

 Page layout with FlexLayoutPage layout with FlexLayout
There is a standard layout in web design called the holy grail because it's a layout format that is very desirable,

but often hard to realize with perfection. The layout consists of a header at the top of the page and a footer at

the bottom, both extending to the full width of the page. Occupying the center of the page is the main content,

but often with a columnar menu to the left of the content and supplementary information (sometimes called an

aside area) at the right. Section 5.4.1 of the CSS Flexible Box Layout specification describes how the holy grail

layout can be realized with a flex box.

The Holy Grail LayoutHoly Grail Layout page of the FlexLayoutDemosFlexLayoutDemos sample shows a simple implementation of this layout

using one FlexLayout nested in another. Because this page is designed for a phone in portrait mode, the areas

to the left and right of the content area are only 50 pixels wide:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/photowrapping-large.png#lightbox
https://en.wikipedia.org/wiki/Holy_grail_(web_design)
https://www.w3.org/TR/css-flexbox-1/#order-accessibility
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FlexLayoutDemos.HolyGrailLayoutPage"
 Title="Holy Grail Layout">

 <FlexLayout Direction="Column">

 <!-- Header -->
 <Label Text="HEADER"
 FontSize="Large"
 BackgroundColor="Aqua"
 HorizontalTextAlignment="Center" />

 <!-- Body -->
 <FlexLayout FlexLayout.Grow="1">

 <!-- Content -->
 <Label Text="CONTENT"
 FontSize="Large"
 BackgroundColor="Gray"
 HorizontalTextAlignment="Center"
 VerticalTextAlignment="Center"
 FlexLayout.Grow="1" />

 <!-- Navigation items-->
 <BoxView FlexLayout.Basis="50"
 FlexLayout.Order="-1"
 Color="Blue" />

 <!-- Aside items -->
 <BoxView FlexLayout.Basis="50"
 Color="Green" />

 </FlexLayout>

 <!-- Footer -->
 <Label Text="FOOTER"
 FontSize="Large"
 BackgroundColor="Pink"
 HorizontalTextAlignment="Center" />
 </FlexLayout>
</ContentPage>

Here it is running:

The navigation and aside areas are rendered with a BoxView on the left and right.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/holygraillayout-large.png#lightbox

 Catalog items with FlexLayoutCatalog items with FlexLayout

The first FlexLayout in the XAML file has a vertical main axis and contains three children arranged in a column.

These are the header, the body of the page, and the footer. The nested FlexLayout has a horizontal main axis

with three children arranged in a row.

Three attached bindable properties are demonstrated in this program:

The Order attached bindable property is set on the first BoxView . This property is an integer with a

default value of 0. You can use this property to change the layout order. Generally developers prefer the

content of the page to appear in markup prior to the navigation items and aside items. Setting the Order

property on the first BoxView to a value less than its other siblings causes it to appear as the first item in

the row. Similarly, you can ensure that an item appears last by setting the Order property to a value

greater than its siblings.

The Basis attached bindable property is set on the two BoxView items to give them a width of 50 pixels.

This property is of type FlexBasis , a structure that defines a static property of type FlexBasis named

Auto , which is the default. You can use Basis to specify a pixel size or a percentage that indicates how

much space the item occupies on the main axis. It is called a basis because it specifies an item size that is

the basis of all subsequent layout.

The Grow property is set on the nested Layout and on the Label child representing the content. This

property is of type float and has a default value of 0. When set to a positive value, all the remaining

space along the main axis is allocated to that item and to siblings with positive values of Grow . The space

is allocated proportionally to the values, somewhat like the star specification in a Grid .

The first Grow attached property is set on the nested FlexLayout , indicating that this FlexLayout is to

occupy all the unused vertical space within the outer FlexLayout . The second Grow attached property is

set on the Label representing the content, indicating that this content is to occupy all the unused

horizontal space within the inner FlexLayout .

There is also a similar Shrink attached bindable property that you can use when the size of children

exceeds the size of the FlexLayout but wrapping is not desired.

The Catalog ItemsCatalog Items page in the FlexLayoutDemosFlexLayoutDemos sample is similar to Example 1 in Section 1.1 of the CSS

Flex Layout Box specification except that it displays a horizontally scrollable series of pictures and descriptions of

three monkeys:

Each of the three monkeys is a FlexLayout contained in a Frame that is given an explicit height and width, and

which is also a child of a larger FlexLayout . In this XAML file, most of the properties of the FlexLayout children

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos
https://www.w3.org//TR/css-flexbox-1/#overview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/catalogitems-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:FlexLayoutDemos"
 x:Class="FlexLayoutDemos.CatalogItemsPage"
 Title="Catalog Items">
 <ContentPage.Resources>
 <Style TargetType="Frame">
 <Setter Property="BackgroundColor" Value="LightYellow" />
 <Setter Property="BorderColor" Value="Blue" />
 <Setter Property="Margin" Value="10" />
 <Setter Property="CornerRadius" Value="15" />
 </Style>

 <Style TargetType="Label">
 <Setter Property="Margin" Value="0, 4" />
 </Style>

 <Style x:Key="headerLabel" TargetType="Label">
 <Setter Property="Margin" Value="0, 8" />
 <Setter Property="FontSize" Value="Large" />
 <Setter Property="TextColor" Value="Blue" />
 </Style>

 <Style TargetType="Image">
 <Setter Property="FlexLayout.Order" Value="-1" />
 <Setter Property="FlexLayout.AlignSelf" Value="Center" />
 </Style>

 <Style TargetType="Button">
 <Setter Property="Text" Value="LEARN MORE" />
 <Setter Property="FontSize" Value="Large" />
 <Setter Property="TextColor" Value="White" />
 <Setter Property="BackgroundColor" Value="Green" />
 <Setter Property="BorderRadius" Value="20" />
 </Style>
 </ContentPage.Resources>

 <ScrollView Orientation="Both">
 <FlexLayout>
 <Frame WidthRequest="300"
 HeightRequest="480">

 <FlexLayout Direction="Column">
 <Label Text="Seated Monkey"
 Style="{StaticResource headerLabel}" />
 <Label Text="This monkey is laid back and relaxed, and likes to watch the world go by."
/>
 <Label Text=" • Doesn't make a lot of noise" />
 <Label Text=" • Often smiles mysteriously" />
 <Label Text=" • Sleeps sitting up" />
 <Image Source="{local:ImageResource FlexLayoutDemos.Images.SeatedMonkey.jpg}"
 WidthRequest="180"
 HeightRequest="180" />
 <Label FlexLayout.Grow="1" />
 <Button />
 </FlexLayout>
 </Frame>

 <Frame WidthRequest="300"
 HeightRequest="480">

 <FlexLayout Direction="Column">
 <Label Text="Banana Monkey"
 Style="{StaticResource headerLabel}" />
 <Label Text="Watch this monkey eat a giant banana." />
 <Label Text=" • More fun than a barrel of monkeys" />

are specified in styles, all but one of which is an implicit style:

 <Label Text=" • More fun than a barrel of monkeys" />
 <Label Text=" • Banana not included" />
 <Image Source="{local:ImageResource FlexLayoutDemos.Images.Banana.jpg}"
 WidthRequest="240"
 HeightRequest="180" />
 <Label FlexLayout.Grow="1" />
 <Button />
 </FlexLayout>
 </Frame>

 <Frame WidthRequest="300"
 HeightRequest="480">

 <FlexLayout Direction="Column">
 <Label Text="Face-Palm Monkey"
 Style="{StaticResource headerLabel}" />
 <Label Text="This monkey reacts appropriately to ridiculous assertions and actions." />
 <Label Text=" • Cynical but not unfriendly" />
 <Label Text=" • Seven varieties of grimaces" />
 <Label Text=" • Doesn't laugh at your jokes" />
 <Image Source="{local:ImageResource FlexLayoutDemos.Images.FacePalm.jpg}"
 WidthRequest="180"
 HeightRequest="180" />
 <Label FlexLayout.Grow="1" />
 <Button />
 </FlexLayout>
 </Frame>
 </FlexLayout>
 </ScrollView>
</ContentPage>

<Style TargetType="Image">
 <Setter Property="FlexLayout.Order" Value="-1" />
 <Setter Property="FlexLayout.AlignSelf" Value="Center" />
</Style>

 The bindable properties in detail

The implicit style for the Image includes settings of two attached bindable properties of Flexlayout :

The Order setting of –1 causes the Image element to be displayed first in each of the nested FlexLayout views

regardless of its position within the children collection. The AlignSelf property of Center causes the Image to

be centered within the FlexLayout . This overrides the setting of the AlignItems property, which has a default

value of Stretch , meaning that the Label and Button children are stretched to the full width of the

FlexLayout .

Within each of the three FlexLayout views, a blank Label precedes the Button , but it has a Grow setting of 1.

This means that all the extra vertical space is allocated to this blank Label , which effectively pushes the Button

to the bottom.

Now that you've seen some common applications of FlexLayout , the properties of FlexLayout can be explored

in more detail. FlexLayout defines six bindable properties that you set on the FlexLayout itself, either in code

or XAML, to control orientation and alignment. (One of these properties, Position , is not covered in this article.)

You can experiment with the five remaining bindable properties using the ExperimentExperiment page of the

FlexLayoutDemosFlexLayoutDemos sample. This page allows you to add or remove children from a FlexLayout and to set

combinations of the five bindable properties. All the children of the FlexLayout are Label views of various

colors and sizes, with the Text property set to a number corresponding to its position in the Children

collection.

When the program starts up, five Picker views display the default values of these five FlexLayout properties.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.position#xamarin_forms_flexlayout_position
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos

 The Direction propertyThe Direction property

The FlexLayout towards the bottom of the screen contains three children:

Each of the Label views has a gray background that shows the space allocated to that Label within the

FlexLayout . The background of the FlexLayout itself is Alice Blue. It occupies the entire bottom area of the page

except for a little margin at the left and right.

The Direction property is of type FlexDirection , an enumeration with four members:

Column

ColumnReverse (or "column-reverse" in XAML)

Row , the default

RowReverse (or "row-reverse" in XAML)

In XAML, you can specify the value of this property using the enumeration member names in lowercase,

uppercase, or mixed case, or you can use two additional strings shown in parentheses that are the same as the

CSS indicators. (The "column-reverse" and "row-reverse" strings are defined in the FlexDirectionTypeConverter

class used by the XAML parser.)

Here's the ExperimentExperiment page showing (from left to right), the Row direction, Column direction, and

ColumnReverse direction:

Notice that for the Reverse options, the items start at the right or bottom.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/experimentdefault-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.direction#xamarin_forms_flexlayout_direction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexdirectiontypeconverter
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/experimentdirection-large.png#lightbox

 The Wrap propertyThe Wrap property

 The JustifyContent propertyThe JustifyContent property

The Wrap property is of type FlexWrap , an enumeration with three members:

NoWrap , the default

Wrap

Reverse (or "wrap-reverse" in XAML)

From left to right, these screens show the NoWrap , Wrap and Reverse options for 12 children:

When the Wrap property is set to NoWrap and the main axis is constrained (as in this program), and the main

axis is not wide or tall enough to fit all the children, the FlexLayout attempts to make the items smaller, as the

iOS screenshot demonstrates. You can control the shrinkness of the items with the Shrink attached bindable

property.

The JustifyContent property is of type FlexJustify , an enumeration with six members:

Start (or "flex-start" in XAML), the default

Center

End (or "flex-end" in XAML)

SpaceBetween (or "space-between" in XAML)

SpaceAround (or "space-around" in XAML)

SpaceEvenly

This property specifies how the items are spaced on the main axis, which is the horizontal axis in this example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.wrap#xamarin_forms_flexlayout_wrap
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexwrap
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/experimentwrap-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.justifycontent#xamarin_forms_flexlayout_justifycontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexjustify

 The AlignItems propertyThe AlignItems property

In all three screenshots, the Wrap property is set to Wrap . The Start default is shown in the previous Android

screenshot. The iOS screenshot here shows the Center option: all the items are moved to the center. The three

other options beginning with the word Space allocate the extra space not occupied by the items. SpaceBetween

allocates the space equally between the items; SpaceAround puts equal space around each item, while

SpaceEvenly puts equal space between each item, and before the first item and after the last item on the row.

The AlignItems property is of type FlexAlignItems , an enumeration with four members:

Stretch , the default

Center

Start (or "flex-start" in XAML)

End (or "flex-end" in XAML)

This is one of two properties (the other being AlignContent) that indicates how children are aligned on the

cross axis. Within each row, the children are stretched (as shown in the previous screenshot), or aligned on the

start, center, or end of each item, as shown in the following three screenshots:

In the iOS screenshot, the tops of all the children are aligned. In the Android screenshots, the items are vertically

centered based on the tallest child. In the UWP screenshot, the bottoms of all the items are aligned.

For any individual item, the AlignItems setting can be overridden with the AlignSelf attached bindable

property.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/experimentjustifycontent-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.alignitems#xamarin_forms_flexlayout_alignitems
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexalignitems
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/experimentalignitems-large.png#lightbox

 The AlignContent propertyThe AlignContent property

 The attached bindable properties in detail

The AlignContent property is of type FlexAlignContent , an enumeration with seven members:

Stretch , the default

Center

Start (or "flex-start" in XAML)

End (or "flex-end" in XAML)

SpaceBetween (or "space-between" in XAML)

SpaceAround (or "space-around" in XAML)

SpaceEvenly

Like AlignItems , the AlignContent property also aligns children on the cross axis, but affects entire rows or

columns:

In the iOS screenshot, both rows are at the top; in the Android screenshot they're in the center ; and in the UWP

screenshot they're at the bottom. The rows can also be spaced in various ways:

The AlignContent has no effect when there is only one row or column.

FlexLayout defines five attached bindable properties. These properties are set on children of the FlexLayout

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.aligncontent#xamarin_forms_flexlayout_aligncontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexaligncontent
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/experimentaligncontent-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/experimentaligncontent2-large.png#lightbox

 The AlignSelf PropertyThe AlignSelf Property

FlexLayout.SetAlignSelf(label, FlexAlignSelf.Center);

<Label ... FlexLayout.AlignSelf="Center" ... />

 The Order PropertyThe Order Property

 The Basis PropertyThe Basis Property

FlexLayout.SetBasis(label, new FlexBasis(40, false));

FlexLayout.SetBasis(label, new FlexBasis(40));

and pertain only to that particular child.

The AlignSelf attached bindable property is of type FlexAlignSelf , an enumeration with five members:

Auto , the default

Stretch

Center

Start (or "flex-start" in XAML)

End (or "flex-end" in XAML)

For any individual child of the FlexLayout , this property setting overrides the AlignItems property set on the

FlexLayout itself. The default setting of Auto means to use the AlignItems setting.

For a Label element named label (or example), you can set the AlignSelf property in code like this:

Notice that there is no reference to the FlexLayout parent of the Label . In XAML, you set the property like this:

The Order property is of type int . The default value is 0.

The Order property allows you to change the order that the children of the FlexLayout are arranged. Usually,

the children of a FlexLayout are arranged is the same order that they appear in the Children collection. You

can override this order by setting the Order attached bindable property to a non-zero integer value on one or

more children. The FlexLayout then arranges its children based on the setting of the Order property on each

child, but children with the same Order setting are arranged in the order that they appear in the Children

collection.

The Basis attached bindable property indicates the amount of space that is allocated to a child of the

FlexLayout on the main axis. The size specified by the Basis property is the size along the main axis of the

parent FlexLayout . Therefore, Basis indicates the width of a child when the children are arranged in rows, or

the height when the children are arranged in columns.

The Basis property is of type FlexBasis , a structure. The size can be specified in either device-independent

units or as a percentage of the size of the FlexLayout . The default value of the Basis property is the static

property FlexBasis.Auto , which means that the child's requested width or height is used.

In code, you can set the Basis property for a Label named label to 40 device-independent units like this:

The second argument to the FlexBasis constructor is named isRelative and indicates whether the size is

relative (true) or absolute (false). The argument has a default value of false , so you can also use the

following code:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.alignselfproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexaligncontent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.orderproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.basisproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexbasis

FlexLayout.SetBasis(label, 40);

FlexLayout.SetBasis(label, new FlexBasis(0.25f, true));

<Label ... FlexLayout.Basis="40" ... />

<Label ... FlexLayout.Basis="25%" ... />

 The Grow PropertyThe Grow Property

An implicit conversion from float to FlexBasis is defined, so you can simplify it even further :

You can set the size to 25% of the FlexLayout parent like this:

This fractional value must be in the range of 0 to 1.

In XAML, you can use a number for a size in device-independent units:

Or you can specify a percentage in the range of 0% to 100%:

The Basis ExperimentBasis Experiment page of the FlexLayoutDemosFlexLayoutDemos sample allows you to experiment with the Basis

property. The page displays a wrapped column of five Label elements with alternating background and

foreground colors. Two Slider elements let you specify Basis values for the second and fourth Label :

The iOS screenshot at the left shows the two Label elements being given heights in device-independent units.

The Android screen shows them being given heights that are a fraction of the total height of the FlexLayout . If

the Basis is set at 100%, then the child is the height of the FlexLayout , and will wrap to the next column and

occupy the entire height of that column, as the UWP screenshot demonstrates: It appears as if the five children

are arranged in a row, but they're actually arranged in five columns.

The Grow attached bindable property is of type int . The default value is 0, and the value must be greater than

or equal to 0.

The Grow property plays a role when the Wrap property is set to NoWrap and the row of children has a total

width less than the width of the FlexLayout , or the column of children has a shorter height than the FlexLayout

. The Grow property indicates how to apportion the leftover space among the children.

In the Grow ExperimentGrow Experiment page, five Label elements of alternating colors are arranged in a column, and two

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/basisexperiment-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.growproperty

 The Shrink PropertyThe Shrink Property

Slider elements allow you to adjust the Grow property of the second and fourth Label . The iOS screenshot at

the far left shows the default Grow properties of 0:

If any one child is given a positive Grow value, then that child takes up all the remaining space, as the Android

screenshot demonstrates. This space can also be allocated among two or more children. In the UWP screenshot,

the Grow property of the second Label is set to 0.5, while the Grow property of the fourth Label is 1.5, which

gives the fourth Label three times as much of the leftover space as the second Label .

How the child view uses that space depends on the particular type of child. For a Label , the text can be

positioned within the total space of the Label using the properties HorizontalTextAlignment and

VerticalTextAlignment .

The Shrink attached bindable property is of type int . The default value is 1, and the value must be greater

than or equal to 0.

The Shrink property plays a role when the Wrap property is set to NoWrap and the aggregate width of a row of

children is greater than the width of the FlexLayout , or the aggregate height of a single column of children is

greater than the height of the FlexLayout . Normally the FlexLayout will display these children by constricting

their sizes. The Shrink property can indicate which children are given priority in being displayed at their full

sizes.

The Shrink ExperimentShrink Experiment page creates a FlexLayout with a single row of five Label children that require more

space than the FlexLayout width. The iOS screenshot at the left shows all the Label elements with default

values of 1:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/growexperiment-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout.shrinkproperty

 CSS styling with FlexLayout

In the Android screenshot, the Shrink value for the second Label is set to 0, and that Label is displayed in its

full width. Also, the fourth Label is given a Shrink value greater than one, and it has shrunk. The UWP

screenshot shows both Label elements being given a Shrink value of 0 to allow them to be displayed in their

full size, if that is possible.

You can set both the Grow and Shrink values to accommodate situations where the aggregate child sizes

might sometimes be less than or sometimes greater than the size of the FlexLayout .

You can use the CSS styling feature introduced with Xamarin.Forms 3.0 in connection with FlexLayout . The CSSCSS

Catalog ItemsCatalog Items page of the FlexLayoutDemosFlexLayoutDemos sample duplicates the layout of the Catalog ItemsCatalog Items page, but

with a CSS style sheet for many of the styles:

The original CatalogItemsPage.xamlCatalogItemsPage.xaml file has five Style definitions in its Resources section with 15 Setter

objects. In the CssCatalogItemsPage.xamlCssCatalogItemsPage.xaml file, that has been reduced to two Style definitions with just four

Setter objects. These styles supplement the CSS style sheet for properties that the Xamarin.Forms CSS styling

feature currently doesn't support:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/shrinkexperiment-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/flex-layout-images/csscatalogitems-large.png#lightbox

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:FlexLayoutDemos"
 x:Class="FlexLayoutDemos.CssCatalogItemsPage"
 Title="CSS Catalog Items">
 <ContentPage.Resources>
 <StyleSheet Source="CatalogItemsStyles.css" />

 <Style TargetType="Frame">
 <Setter Property="BorderColor" Value="Blue" />
 <Setter Property="CornerRadius" Value="15" />
 </Style>

 <Style TargetType="Button">
 <Setter Property="Text" Value="LEARN MORE" />
 <Setter Property="BorderRadius" Value="20" />
 </Style>
 </ContentPage.Resources>

 <ScrollView Orientation="Both">
 <FlexLayout>
 <Frame>
 <FlexLayout Direction="Column">
 <Label Text="Seated Monkey" StyleClass="header" />
 <Label Text="This monkey is laid back and relaxed, and likes to watch the world go by."
/>
 <Label Text=" • Doesn't make a lot of noise" />
 <Label Text=" • Often smiles mysteriously" />
 <Label Text=" • Sleeps sitting up" />
 <Image Source="{local:ImageResource FlexLayoutDemos.Images.SeatedMonkey.jpg}" />
 <Label StyleClass="empty" />
 <Button />
 </FlexLayout>
 </Frame>

 <Frame>
 <FlexLayout Direction="Column">
 <Label Text="Banana Monkey" StyleClass="header" />
 <Label Text="Watch this monkey eat a giant banana." />
 <Label Text=" • More fun than a barrel of monkeys" />
 <Label Text=" • Banana not included" />
 <Image Source="{local:ImageResource FlexLayoutDemos.Images.Banana.jpg}" />
 <Label StyleClass="empty" />
 <Button />
 </FlexLayout>
 </Frame>

 <Frame>
 <FlexLayout Direction="Column">
 <Label Text="Face-Palm Monkey" StyleClass="header" />
 <Label Text="This monkey reacts appropriately to ridiculous assertions and actions." />
 <Label Text=" • Cynical but not unfriendly" />
 <Label Text=" • Seven varieties of grimaces" />
 <Label Text=" • Doesn't laugh at your jokes" />
 <Image Source="{local:ImageResource FlexLayoutDemos.Images.FacePalm.jpg}" />
 <Label StyleClass="empty" />
 <Button />
 </FlexLayout>
 </Frame>
 </FlexLayout>
 </ScrollView>
</ContentPage>

The CSS style sheet is referenced in the first line of the Resources section:

<StyleSheet Source="CatalogItemsStyles.css" />

<Label Text="Seated Monkey" StyleClass="header" />
···
<Label StyleClass="empty" />

frame {
 width: 300;
 height: 480;
 background-color: lightyellow;
 margin: 10;
}

label {
 margin: 4 0;
}

label.header {
 margin: 8 0;
 font-size: large;
 color: blue;
}

label.empty {
 flex-grow: 1;
}

image {
 height: 180;
 order: -1;
 align-self: center;
}

button {
 font-size: large;
 color: white;
 background-color: green;
}

 FlexLayout with Xamarin.University

Notice also that two elements in each of the three items include StyleClass settings:

These refer to selectors in the CatalogItemsStyles.cssCatalogItemsStyles.css style sheet:

Several FlexLayout attached bindable properties are referenced here. In the label.empty selector, you'll see the

flex-grow attribute, which styles an empty Label to provide some blank space above the Button . The image

selector contains an order attribute and an align-self attribute, both of which correspond to FlexLayout

attached bindable properties.

You've seen that you can set properties directly on the FlexLayout and you can set attached bindable properties

on the children of a FlexLayout . Or, you can set these properties indirectly using traditional XAML-based styles

or CSS styles. What's important is to know and understand these properties. These properties are what makes

the FlexLayout truly flexible.

Xamarin.Forms 3.0 Flex Layout videoXamarin.Forms 3.0 Flex Layout video

https://www.youtube-nocookie.com/embed/Ng3sel_5D_0

Related links
FlexLayoutDemos

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-flexlayoutdemos

Xamarin.Forms Grid
 7/8/2021 • 15 minutes to read • Edit Online

 Download the sample

The Grid is a layout that organizes its children into rows and columns, which can have proportional or absolute

sizes. By default, a Grid contains one row and one column. In addition, a Grid can be used as a parent layout

that contains other child layouts.

The Grid layout should not be confused with tables, and is not intended to present tabular data. Unlike HTML

tables, a Grid is intended for laying out content. For displaying tabular data, consider using a ListView,

CollectionView, or TableView.

The Grid class defines the following properties:

Column , of type int , which is an attached property that indicates the column alignment of a view within a

parent Grid . The default value of this property is 0. A validation callback ensures that when the property is

set, its value is greater than or equal to 0.

ColumnDefinitions , of type ColumnDefinitionCollection , is a list of ColumnDefinition objects that define the

width of the grid columns.

ColumnSpacing , of type double , indicates the distance between grid columns. The default value of this

property is 6 device-independent units.

ColumnSpan , of type int , which is an attached property that indicates the total number of columns that a

view spans within a parent Grid . The default value of this property is 1. A validation callback ensures that

when the property is set, its value is greater than or equal to 1.

Row , of type int , which is an attached property that indicates the row alignment of a view within a parent

Grid . The default value of this property is 0. A validation callback ensures that when the property is set, its

value is greater than or equal to 0.

RowDefinitions , of type RowDefinitionCollection , is a list of RowDefintion objects that define the height of

the grid rows.

RowSpacing , of type double , indicates the distance between grid rows. The default value of this property is 6

device-independent units.

RowSpan , of type int , which is an attached property that indicates the total number of rows that a view

spans within a parent Grid . The default value of this property is 1. A validation callback ensures that when

the property is set, its value is greater than or equal to 1.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings and styled.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/grid.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-griddemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/grid-images/layouts-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columndefinitions#xamarin_forms_grid_columndefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinitioncollection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnspacing#xamarin_forms_grid_columnspacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowdefinitions#xamarin_forms_grid_rowdefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinitioncollection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowspacing#xamarin_forms_grid_rowspacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

TIPTIP

 Rows and columns

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="GridTutorial.MainPage">
 <Grid Margin="20,35,20,20">
 <Label Text="By default, a Grid contains one row and one column." />
 </Grid>
</ContentPage>

C a u t i o nC a u t i o n

The Grid class derives from the Layout<T> class, which defines a Children property of type IList<T> . The

Children property is the ContentProperty of the Layout<T> class, and therefore does not need to be explicitly

set from XAML.

To obtain the best possible layout performance, follow the guidelines at Optimize layout performance.

By default, a Grid contains one row and one column:

In this example, the Grid contains a single child Label that's automatically positioned in a single location:

The layout behavior of a Grid can be defined with the RowDefinitions and ColumnDefinitions properties,

which are collections of RowDefinition and ColumnDefinition objects, respectively. These collections define the

row and column characteristics of a Grid , and should contain one RowDefinition object for each row in the

Grid , and one ColumnDefinition object for each column in the Grid .

The RowDefinition class defines a Height property, of type GridLength , and the ColumnDefinition class

defines a Width property, of type GridLength . The GridLength struct specifies a row height or a column width

in terms of the GridUnitType enumeration, which has three members:

Absolute – the row height or column width is a value in device-independent units (a number in XAML).

Auto – the row height or column width is autosized based on the cell contents (Auto in XAML).

Star – leftover row height or column width is allocated proportionally (a number followed by * in XAML).

A Grid row with a Height property of Auto constrains the height of views in that row in the same way as a

vertical StackLayout . Similarly, a column with a Width property of Auto works much like a horizontal

StackLayout .

Try to ensure that as few rows and columns as possible are set to Auto size. Each auto-sized row or column will

cause the layout engine to perform additional layout calculations. Instead, use fixed size rows and columns if

possible. Alternatively, set rows and columns to occupy a proportional amount of space with the

GridUnitType.Star enumeration value.

The following XAML shows how to create a Grid with three rows and two columns:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/grid-images/default-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowdefinitions#xamarin_forms_grid_rowdefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columndefinitions#xamarin_forms_grid_columndefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition.height#xamarin_forms_rowdefinition_height
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition.width#xamarin_forms_columndefinition_width
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridunittype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength.auto#xamarin_forms_gridlength_auto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridunittype#xamarin_forms_gridunittype_star
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="GridDemos.Views.BasicGridPage"
 Title="Basic Grid demo">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="100" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 ...
 </Grid>
</ContentPage>

IMPORTANTIMPORTANT

In this example, the Grid has an overall height that is the height of the page. The Grid knows that the height of

the third row is 100 device-independent units. It subtracts that height from its own height, and allocates the

remaining height proportionally between the first and second rows based on the number before the star. In this

example, the height of the first row is twice that of the second row.

The two ColumnDefinition objects both set the Width to * , which is the same as 1* , meaning that the width

of the screen is divided equally beneath the two columns.

The default value of the RowDefinition.Height property is * . Similarly, the default value of the

ColumnDefinition.Width property is * . Therefore, it's not necessary to set these properties in cases where these

defaults are acceptable.

Child views can be positioned in specific Grid cells with the Grid.Column and Grid.Row attached properties. In

addition, to make child views span across multiple rows and columns, use the Grid.RowSpan and

Grid.ColumnSpan attached properties.

The following XAML shows the same Grid definition, and also positions child views in specific Grid cells:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition.width#xamarin_forms_columndefinition_width
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition.height#xamarin_forms_rowdefinition_height
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition.width#xamarin_forms_columndefinition_width
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnspanproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="GridDemos.Views.BasicGridPage"
 Title="Basic Grid demo">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition />
 <RowDefinition Height="100" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <BoxView Color="Green" />
 <Label Text="Row 0, Column 0"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <BoxView Grid.Column="1"
 Color="Blue" />
 <Label Grid.Column="1"
 Text="Row 0, Column 1"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <BoxView Grid.Row="1"
 Color="Teal" />
 <Label Grid.Row="1"
 Text="Row 1, Column 0"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <BoxView Grid.Row="1"
 Grid.Column="1"
 Color="Purple" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="Row1, Column 1"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <BoxView Grid.Row="2"
 Grid.ColumnSpan="2"
 Color="Red" />
 <Label Grid.Row="2"
 Grid.ColumnSpan="2"
 Text="Row 2, Columns 0 and 1"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 </Grid>
</ContentPage>

NOTENOTE
The Grid.Row and Grid.Column properties are both indexed from 0, and so Grid.Row="2" refers to the third row

while Grid.Column="1" refers to the second column. In addition, both of these properties have a default value of 0, and

so don't need to be set on child views that occupy the first row or first column of a Grid .

In this example, all three Grid rows are occupied by BoxView and Label views. The third row is 100 device-

independent units high, with the first two rows occupying the remaining space (the first row is twice as high as

the second row). The two columns are equal in width and divide the Grid in half. The BoxView in the third row

spans both columns.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

public class BasicGridPageCS : ContentPage
{
 public BasicGridPageCS()
 {
 Grid grid = new Grid
 {
 RowDefinitions =
 {
 new RowDefinition { Height = new GridLength(2, GridUnitType.Star) },
 new RowDefinition(),
 new RowDefinition { Height = new GridLength(100) }
 },
 ColumnDefinitions =
 {
 new ColumnDefinition(),
 new ColumnDefinition()
 }
 };

 // Row 0
 // The BoxView and Label are in row 0 and column 0, and so only needs to be added to the
 // Grid.Children collection to get default row and column settings.
 grid.Children.Add(new BoxView
 {
 Color = Color.Green
 });
 grid.Children.Add(new Label
 {
 Text = "Row 0, Column 0",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 });

 // This BoxView and Label are in row 0 and column 1, which are specified as arguments
 // to the Add method.
 grid.Children.Add(new BoxView
 {
 Color = Color.Blue
 }, 1, 0);

In addition, child views in a Grid can share cells. The order that the children appear in the XAML is the order

that the children are placed in the Grid . In the previous example, the Label objects are only visible because

they are rendered on top of the BoxView objects. The Label objects would not be visible if the BoxView objects

were rendered on top of them.

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/grid-images/basic-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview

 }, 1, 0);
 grid.Children.Add(new Label
 {
 Text = "Row 0, Column 1",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 }, 1, 0);

 // Row 1
 // This BoxView and Label are in row 1 and column 0, which are specified as arguments
 // to the Add method overload.
 grid.Children.Add(new BoxView
 {
 Color = Color.Teal
 }, 0, 1, 1, 2);
 grid.Children.Add(new Label
 {
 Text = "Row 1, Column 0",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 }, 0, 1, 1, 2); // These arguments indicate that that the child element goes in the column starting
at 0 but ending before 1.
 // They also indicate that the child element goes in the row starting at 1 but
ending before 2.

 grid.Children.Add(new BoxView
 {
 Color = Color.Purple
 }, 1, 2, 1, 2);
 grid.Children.Add(new Label
 {
 Text = "Row1, Column 1",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 }, 1, 2, 1, 2);

 // Row 2
 // Alternatively, the BoxView and Label can be positioned in cells with the Grid.SetRow
 // and Grid.SetColumn methods.
 BoxView boxView = new BoxView { Color = Color.Red };
 Grid.SetRow(boxView, 2);
 Grid.SetColumnSpan(boxView, 2);
 Label label = new Label
 {
 Text = "Row 2, Column 0 and 1",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 };
 Grid.SetRow(label, 2);
 Grid.SetColumnSpan(label, 2);

 grid.Children.Add(boxView);
 grid.Children.Add(label);

 Title = "Basic Grid demo";
 Content = grid;
 }
}

In code, to specify the height of a RowDefinition object, and the width of a ColumnDefinition object, you use

values of the GridLength structure, often in combination with the GridUnitType enumeration.

The example code above also shows several different approaches to adding children to the Grid , and specifying

the cells in which they reside. When using the Add overload that specifies left, right, top, and bottom

arguments, while the left and top arguments will always refer to cells within the Grid , the right and bottom

arguments appear to refer to cells that are outside the Grid . This is because the right argument must always be

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridunittype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

// left, top
grid.Children.Add(topLeft, 0, 0); // first column, first row
grid.Children.Add(topRight, 1, 0); // second column, first tow
grid.Children.Add(bottomLeft, 0, 1); // first column, second row
grid.Children.Add(bottomRight, 1, 1); // second column, second row

// left, right, top, bottom
grid.Children.Add(topLeft, 0, 1, 0, 1); // first column, first row
grid.Children.Add(topRight, 1, 2, 0, 1); // second column, first tow
grid.Children.Add(bottomLeft, 0, 1, 1, 2); // first column, second row
grid.Children.Add(bottomRight, 1, 2, 1, 2); // second column, second row

NOTENOTE

 Simplify row and column definitionsSimplify row and column definitions

<Grid RowDefinitions="1*, Auto, 25, 14, 20"
 ColumnDefinitions="*, 2*, Auto, 300">
 ...
</Grid>

 Space between rows and columns

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="GridDemos.Views.GridSpacingPage"
 Title="Grid spacing demo">
 <Grid RowSpacing="0"
 ColumnSpacing="0">
 ..
 </Grid>
</ContentPage>

greater than the left argument, and the bottom argument must always be greater than the top argument. The

following example, which assumes a 2x2 Grid , shows equivalent code using both Add overloads:

In addition, child views can be added to a Grid with the AddHorizontal and AddVertical methods, which add

children to a single row or single column Grid . The Grid then expands in rows or columns as these calls are made, as

well as automatically positioning children in the correct cells.

In XAML, the row and column characteristics of a Grid can be specified using a simplified syntax that avoids

having to define RowDefinition and ColumnDefinition objects for each row and column. Instead, the

RowDefinitions and ColumnDefinitions properties can be set to strings containing comma-delimited

GridUnitType values, from which type converters built into Xamarin.Forms create RowDefinition and

ColumnDefinition objects:

In this example, the Grid has five rows and four columns. The third, forth, and fifth rows are set to absolute

heights, with the second row auto-sizing to its content. The remaining height is then allocated to the first row.

The forth column is set to an absolute width, with the third column auto-sizing to its content. The remaining

width is allocated proportionally between the first and second columns based on the number before the star. In

this example, the width of the second column is twice that of the first column (because * is identical to 1*).

By default, Grid rows are separated by 6 device-independent units of space. Similarly, Grid columns are

separated by 6 device-independent units of space. These defaults can be changed by setting the RowSpacing and

ColumnSpacing properties, respectively:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.igridlist-1.addhorizontal
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.igridlist-1.addvertical
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.rowdefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.columndefinition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowdefinitions#xamarin_forms_grid_rowdefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columndefinitions#xamarin_forms_grid_columndefinitions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridunittype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowspacing#xamarin_forms_grid_rowspacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnspacing#xamarin_forms_grid_columnspacing

TIPTIP

public GridSpacingPageCS()
{
 Grid grid = new Grid
 {
 RowSpacing = 0,
 ColumnSpacing = 0,
 // ...
 };
 // ...

 Content = grid;
}

 Alignment

IMPORTANTIMPORTANT

This example creates a Grid that has no spacing between its rows and columns:

The RowSpacing and ColumnSpacing properties can be set to negative values to make cell contents overlap.

The equivalent C# code is:

Child views in a Grid can be positioned within their cells by the HorizontalOptions and VerticalOptions

properties. These properties can be set to the following fields from the LayoutOptions struct:

Start

Center

End

Fill

The AndExpands fields in the LayoutOptions struct are only applicable to StackLayout objects.

The following XAML creates a Grid with nine equal-size cells, and places a Label in each cell with a different

alignment:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/grid-images/spacing-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.rowspacing#xamarin_forms_grid_rowspacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid.columnspacing#xamarin_forms_grid_columnspacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.start
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.center
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.end
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="GridDemos.Views.GridAlignmentPage"
 Title="Grid alignment demo">
 <Grid RowSpacing="0"
 ColumnSpacing="0">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <BoxView Color="AliceBlue" />
 <Label Text="Upper left"
 HorizontalOptions="Start"
 VerticalOptions="Start" />
 <BoxView Grid.Column="1"
 Color="LightSkyBlue" />
 <Label Grid.Column="1"
 Text="Upper center"
 HorizontalOptions="Center"
 VerticalOptions="Start"/>
 <BoxView Grid.Column="2"
 Color="CadetBlue" />
 <Label Grid.Column="2"
 Text="Upper right"
 HorizontalOptions="End"
 VerticalOptions="Start" />
 <BoxView Grid.Row="1"
 Color="CornflowerBlue" />
 <Label Grid.Row="1"
 Text="Center left"
 HorizontalOptions="Start"
 VerticalOptions="Center" />
 <BoxView Grid.Row="1"
 Grid.Column="1"
 Color="DodgerBlue" />
 <Label Grid.Row="1"
 Grid.Column="1"
 Text="Center center"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <BoxView Grid.Row="1"
 Grid.Column="2"
 Color="DarkSlateBlue" />
 <Label Grid.Row="1"
 Grid.Column="2"
 Text="Center right"
 HorizontalOptions="End"
 VerticalOptions="Center" />
 <BoxView Grid.Row="2"
 Color="SteelBlue" />
 <Label Grid.Row="2"
 Text="Lower left"
 HorizontalOptions="Start"
 VerticalOptions="End" />
 <BoxView Grid.Row="2"
 Grid.Column="1"
 Color="LightBlue" />
 <Label Grid.Row="2"
 Grid.Column="1"
 Text="Lower center"
 HorizontalOptions="Center"

 HorizontalOptions="Center"
 VerticalOptions="End" />
 <BoxView Grid.Row="2"
 Grid.Column="2"
 Color="BlueViolet" />
 <Label Grid.Row="2"
 Grid.Column="2"
 Text="Lower right"
 HorizontalOptions="End"
 VerticalOptions="End" />
 </Grid>
</ContentPage>

public class GridAlignmentPageCS : ContentPage
{
 public GridAlignmentPageCS()
 {
 Grid grid = new Grid
 {
 RowSpacing = 0,
 ColumnSpacing = 0,
 RowDefinitions =
 {
 new RowDefinition(),
 new RowDefinition(),
 new RowDefinition()
 },
 ColumnDefinitions =
 {
 new ColumnDefinition(),
 new ColumnDefinition(),
 new ColumnDefinition()
 }
 };

 // Row 0
 grid.Children.Add(new BoxView
 {
 Color = Color.AliceBlue
 });

In this example, the Label objects in each row are all identically aligned vertically, but use different horizontal

alignments. Alternatively, this can be thought of as the Label objects in each column being identically aligned

horizontally, but using different vertical alignments:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/grid-images/alignment-large.png#lightbox

 grid.Children.Add(new Label
 {
 Text = "Upper left",
 HorizontalOptions = LayoutOptions.Start,
 VerticalOptions = LayoutOptions.Start
 });

 grid.Children.Add(new BoxView
 {
 Color = Color.LightSkyBlue
 }, 1, 0);
 grid.Children.Add(new Label
 {
 Text = "Upper center",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Start
 }, 1, 0);

 grid.Children.Add(new BoxView
 {
 Color = Color.CadetBlue
 }, 2, 0);
 grid.Children.Add(new Label
 {
 Text = "Upper right",
 HorizontalOptions = LayoutOptions.End,
 VerticalOptions = LayoutOptions.Start
 }, 2, 0);

 // Row 1
 grid.Children.Add(new BoxView
 {
 Color = Color.CornflowerBlue
 }, 0, 1);
 grid.Children.Add(new Label
 {
 Text = "Center left",
 HorizontalOptions = LayoutOptions.Start,
 VerticalOptions = LayoutOptions.Center
 }, 0, 1);

 grid.Children.Add(new BoxView
 {
 Color = Color.DodgerBlue
 }, 1, 1);
 grid.Children.Add(new Label
 {
 Text = "Center center",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 }, 1, 1);

 grid.Children.Add(new BoxView
 {
 Color = Color.DarkSlateBlue
 }, 2, 1);
 grid.Children.Add(new Label
 {
 Text = "Center right",
 HorizontalOptions = LayoutOptions.End,
 VerticalOptions = LayoutOptions.Center
 }, 2, 1);

 // Row 2
 grid.Children.Add(new BoxView
 {
 Color = Color.SteelBlue
 }, 0, 2);
 grid.Children.Add(new Label

 grid.Children.Add(new Label
 {
 Text = "Lower left",
 HorizontalOptions = LayoutOptions.Start,
 VerticalOptions = LayoutOptions.End
 }, 0, 2);

 grid.Children.Add(new BoxView
 {
 Color = Color.LightBlue
 }, 1, 2);
 grid.Children.Add(new Label
 {
 Text = "Lower center",
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.End
 }, 1, 2);

 grid.Children.Add(new BoxView
 {
 Color = Color.BlueViolet
 }, 2, 2);
 grid.Children.Add(new Label
 {
 Text = "Lower right",
 HorizontalOptions = LayoutOptions.End,
 VerticalOptions = LayoutOptions.End
 }, 2, 2);

 Title = "Grid alignment demo";
 Content = grid;
 }
}

 Nested Grid objects
A Grid can be used as a parent layout that contains nested child Grid objects, or other child layouts. When

nesting Grid objects, the Grid.Row , Grid.Column , Grid.RowSpan , and Grid.ColumnSpan attached properties

always refer to the position of views within their parent Grid .

The following XAML shows an example of nesting Grid objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:converters="clr-namespace:GridDemos.Converters"
 x:Class="GridDemos.Views.ColorSlidersGridPage"
 Title="Nested Grids demo">

 <ContentPage.Resources>
 <converters:DoubleToIntConverter x:Key="doubleToInt" />

 <Style TargetType="Label">
 <Setter Property="HorizontalTextAlignment"
 Value="Center" />
 </Style>
 </ContentPage.Resources>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <BoxView x:Name="boxView"
 Color="Black" />
 <Grid Grid.Row="1"
 Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Slider x:Name="redSlider"
 ValueChanged="OnSliderValueChanged" />
 <Label Grid.Row="1"
 Text="{Binding Source={x:Reference redSlider},
 Path=Value,
 Converter={StaticResource doubleToInt},
 ConverterParameter=255,
 StringFormat='Red = {0}'}" />
 <Slider x:Name="greenSlider"
 Grid.Row="2"
 ValueChanged="OnSliderValueChanged" />
 <Label Grid.Row="3"
 Text="{Binding Source={x:Reference greenSlider},
 Path=Value,
 Converter={StaticResource doubleToInt},
 ConverterParameter=255,
 StringFormat='Green = {0}'}" />
 <Slider x:Name="blueSlider"
 Grid.Row="4"
 ValueChanged="OnSliderValueChanged" />
 <Label Grid.Row="5"
 Text="{Binding Source={x:Reference blueSlider},
 Path=Value,
 Converter={StaticResource doubleToInt},
 ConverterParameter=255,
 StringFormat='Blue = {0}'}" />
 </Grid>
 </Grid>
</ContentPage>

In this example, the root Grid layout contains a BoxView in its first row, and a child Grid in its second row. The

child Grid contains Slider objects that manipulate the color displayed by the BoxView , and Label objects

that display the value of each Slider :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

IMPORTANTIMPORTANT

public class ColorSlidersGridPageCS : ContentPage
{
 BoxView boxView;
 Slider redSlider;
 Slider greenSlider;
 Slider blueSlider;

 public ColorSlidersGridPageCS()
 {
 // Create an implicit style for the Labels
 Style labelStyle = new Style(typeof(Label))
 {
 Setters =
 {
 new Setter { Property = Label.HorizontalTextAlignmentProperty, Value = TextAlignment.Center
}
 }
 };
 Resources.Add(labelStyle);

 // Root page layout
 Grid rootGrid = new Grid
 {
 RowDefinitions =
 {
 new RowDefinition(),
 new RowDefinition()
 }
 };

 boxView = new BoxView { Color = Color.Black };
 rootGrid.Children.Add(boxView);

 // Child page layout
 Grid childGrid = new Grid
 {
 Margin = new Thickness(20),
 RowDefinitions =

The deeper you nest Grid objects and other layouts, the more the nested layouts will impact performance. For more

information, see Choose the correct layout.

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/grid-images/nesting-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid

 RowDefinitions =
 {
 new RowDefinition(),
 new RowDefinition(),
 new RowDefinition(),
 new RowDefinition(),
 new RowDefinition(),
 new RowDefinition()
 }
 };

 DoubleToIntConverter doubleToInt = new DoubleToIntConverter();

 redSlider = new Slider();
 redSlider.ValueChanged += OnSliderValueChanged;
 childGrid.Children.Add(redSlider);

 Label redLabel = new Label();
 redLabel.SetBinding(Label.TextProperty, new Binding("Value", converter: doubleToInt,
converterParameter: "255", stringFormat: "Red = {0}", source: redSlider));
 Grid.SetRow(redLabel, 1);
 childGrid.Children.Add(redLabel);

 greenSlider = new Slider();
 greenSlider.ValueChanged += OnSliderValueChanged;
 Grid.SetRow(greenSlider, 2);
 childGrid.Children.Add(greenSlider);

 Label greenLabel = new Label();
 greenLabel.SetBinding(Label.TextProperty, new Binding("Value", converter: doubleToInt,
converterParameter: "255", stringFormat: "Green = {0}", source: greenSlider));
 Grid.SetRow(greenLabel, 3);
 childGrid.Children.Add(greenLabel);

 blueSlider = new Slider();
 blueSlider.ValueChanged += OnSliderValueChanged;
 Grid.SetRow(blueSlider, 4);
 childGrid.Children.Add(blueSlider);

 Label blueLabel = new Label();
 blueLabel.SetBinding(Label.TextProperty, new Binding("Value", converter: doubleToInt,
converterParameter: "255", stringFormat: "Blue = {0}", source: blueSlider));
 Grid.SetRow(blueLabel, 5);
 childGrid.Children.Add(blueLabel);

 // Place the child Grid in the root Grid
 rootGrid.Children.Add(childGrid, 0, 1);

 Title = "Nested Grids demo";
 Content = rootGrid;
 }

 void OnSliderValueChanged(object sender, ValueChangedEventArgs e)
 {
 boxView.Color = new Color(redSlider.Value, greenSlider.Value, blueSlider.Value);
 }
}

 Related links
Grid demos (sample)

Layout Options in Xamarin.Forms

Choose a Xamarin.Forms Layout

Improve Xamarin.Forms App Performance

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-griddemos

Xamarin.Forms RelativeLayout
 7/8/2021 • 10 minutes to read • Edit Online

NOTENOTE

TIPTIP

 Download the sample

A RelativeLayout is used to position and size children relative to properties of the layout or sibling elements.

This allows UIs to be created that scale proportionally across device sizes. In addition, unlike some other layout

classes, RelativeLayout is able to position children so that overlap.

The RelativeLayout class defines the following properties:

XConstraint , of type Constraint , which is an attached property that represents the constraint on the X

position of the child.

YConstraint , of type Constraint , which is an attached property that represents the constraint on the Y

position of the child.

WidthConstraint , of type Constraint , which is an attached property that represents the constraint on the

width of the child.

HeightConstraint , of type Constraint , which is an attached property that represents the constraint on the

height of the child.

BoundsConstraint , of type BoundsConstraint , which is an attached property that represents the constraint on

the position and size of the child. This property can't be easily consumed from XAML.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings and styled. For more information about attached properties, see Xamarin.Forms Attached

Properties.

The width and height of a child in a RelativeLayout can also be specified through the child's WidthRequest and

HeightRequest properties, instead of the WidthConstraint and HeightConstraint attached properties.

The RelativeLayout class derives from the Layout<T> class, which defines a Children property of type

IList<T> . The Children property is the ContentProperty of the Layout<T> class, and therefore does not need

to be explicitly set from XAML.

Avoid using a RelativeLayout whenever possible. It will result in the CPU having to perform significantly more work.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/relativelayout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-relativelayoutdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/relativelayout-images/layouts-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.xconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.yconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.widthconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.heightconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.boundsconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boundsconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.widthconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.heightconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout

 Constraints

XA M LXA M L C #C #

Absolute valuesAbsolute values Absolute constraints are specified by
setting the RelativeLayout attached

properties to double values.

Absolute constraints are specified by
the Constraint.Constant method,

or by using the Children.Add

overload that requires a
Func<Rectangle> argument.

Relative valuesRelative values Relative constraints are specified by
setting the RelativeLayout attached

properties to Constraint objects

that are returned by the
ConstraintExpression markup

extension.

Relative constraints are specified by
Constraint objects that are returned

by methods of the Constraint class.

 Absolute positioning and sizing

WARNINGWARNING

Within a RelativeLayout , the position and size of children are specified as constraints using absolute values or

relative values. When constraints aren't specified, a child will be positioned in the upper left corner of the layout.

The following table shows how to specify constraints in XAML and C#:

For more information about specifying constraints using absolute values, see Absolute positioning and sizing.

For more information about specifying constraints using relative values, see Relative positioning and sizing.

In C#, children can be added to RelativeLayout by three Add overloads. The first overload requires a

Expression<Func<Rectangle>> to specify the position and size of a child. The second overload requires optional

Expression<Func<double>> objects for the x , y , width , and height arguments. The third overload requires

optional Constraint objects for the x , y , width , and height arguments.

It's possible to change the position and size of a child in a RelativeLayout with the SetXConstraint ,

SetYConstraint , SetWidthConstraint , and SetHeightConstraint methods. The first argument to each of these

methods is the child, and the second is a Constraint object. In addition, the SetBoundsConstraint method can

also be used to change the position and size of a child. The first argument to this method is the child, and the

second is a BoundsConstraint object.

A RelativeLayout can position and size children using absolute values, specified in device-independent units,

which explicitly define where children should be placed in the layout. This is achieved by adding children to the

Children collection of a RelativeLayout and setting the XConstraint , YConstraint , WidthConstraint , and

HeightConstraint attached properties on each child to absolute position and/or size values.

Using absolute values for positioning and sizing children can be problematic, because different devices have different

screen sizes and resolutions. Therefore, the coordinates for the center of the screen on one device may be offset on other

devices.

The following XAML shows a RelativeLayout whose children are positioned using absolute values:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint.constant
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.setxconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.setyconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.setwidthconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.setheightconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.setboundsconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boundsconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.xconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.yconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.widthconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.heightconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="RelativeLayoutDemos.Views.StylishHeaderDemoPage"
 Title="Stylish header demo">
 <RelativeLayout Margin="20">
 <BoxView Color="Silver"
 RelativeLayout.XConstraint="0"
 RelativeLayout.YConstraint="10"
 RelativeLayout.WidthConstraint="200"
 RelativeLayout.HeightConstraint="5" />
 <BoxView Color="Silver"
 RelativeLayout.XConstraint="0"
 RelativeLayout.YConstraint="20"
 RelativeLayout.WidthConstraint="200"
 RelativeLayout.HeightConstraint="5" />
 <BoxView Color="Silver"
 RelativeLayout.XConstraint="10"
 RelativeLayout.YConstraint="0"
 RelativeLayout.WidthConstraint="5"
 RelativeLayout.HeightConstraint="65" />
 <BoxView Color="Silver"
 RelativeLayout.XConstraint="20"
 RelativeLayout.YConstraint="0"
 RelativeLayout.WidthConstraint="5"
 RelativeLayout.HeightConstraint="65" />
 <Label Text="Stylish header"
 FontSize="24"
 RelativeLayout.XConstraint="30"
 RelativeLayout.YConstraint="25" />
 </RelativeLayout>
</ContentPage>

In this example, the position of each BoxView object is defined using the values specified in the XConstraint

and YConstraint attached properties. The size of each BoxView is defined using the values specified in the

WidthConstraint and HeightConstraint attached properties. The position of the Label object is also defined

using the values specified in the XConstraint and YConstraint attached properties. However, size values are

not specified for the Label , and so it's unconstrained and sizes itself. In all cases, the absolute values represent

device-independent units.

The following screenshots show the resulting layout:

The equivalent C# code is shown below:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.xconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.yconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.widthconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.heightconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

public class StylishHeaderDemoPageCS : ContentPage
{
 public StylishHeaderDemoPageCS()
 {
 RelativeLayout relativeLayout = new RelativeLayout
 {
 Margin = new Thickness(20)
 };

 relativeLayout.Children.Add(new BoxView
 {
 Color = Color.Silver
 }, () => new Rectangle(0, 10, 200, 5));

 relativeLayout.Children.Add(new BoxView
 {
 Color = Color.Silver
 }, () => new Rectangle(0, 20, 200, 5));

 relativeLayout.Children.Add(new BoxView
 {
 Color = Color.Silver
 }, () => new Rectangle(10, 0, 5, 65));

 relativeLayout.Children.Add(new BoxView
 {
 Color = Color.Silver
 }, () => new Rectangle(20, 0, 5, 65));

 relativeLayout.Children.Add(new Label
 {
 Text = "Stylish Header",
 FontSize = 24
 }, Constraint.Constant(30), Constraint.Constant(25));

 Title = "Stylish header demo";
 Content = relativeLayout;
 }
}

NOTENOTE

 Relative positioning and sizing

In this example, BoxView objects are added to the RelativeLayout using an Add overload that requires a

Expression<Func<Rectangle>> to specify the position and size of each child. The position of the Label is defined

using an Add overload that requires optional Constraint objects, in this case created by the

Constraint.Constant method.

A RelativeLayout that uses absolute values can position and size children so that they don't fit within the bounds of

the layout.

A RelativeLayout can position and size children using values that are relative to properties of the layout, or

sibling elements. This is achieved by adding children to the Children collection of the RelativeLayout and

setting the XConstraint , YConstraint , WidthConstraint , and HeightConstraint attached properties on each

child to relative values using Constraint objects.

Constraints can be a constant, relative to a parent, or relative to a sibling. The type of constraint is represented

by the ConstraintType enumeration, which defines the following members:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint.constant
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.xconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.yconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.widthconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.heightconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constrainttype

 Constraint markup extensionConstraint markup extension

RelativeToParent , which indicates a constraint that is relative to a parent.

RelativeToView , which indicates a constraint that is relative to a view (or sibling).

Constant , which indicates a constant constraint.

In XAML, a Constraint object can be created by the ConstraintExpression markup extension. This markup

extension is typically used to relate the position and size of a child within a RelativeLayout to its parent, or to a

sibling.

The ConstraintExpression class defines the following properties:

Constant , of type double , which represents the constraint constant value.

ElementName , of type string , which represents the name of a source element against which to calculate the

constraint.

Factor , of type double , which represents the factor by which to scale a constrained dimension, relative to

the source element. This property defaults to 1.

Property , of type string , which represents the name of the property on the source element to use in the

constraint calculation.

Type , of type ConstraintType , which represents the type of the constraint.

For more information about Xamarin.Forms markup extensions, see XAML Markup Extensions.

The following XAML shows a RelativeLayout whose children are constrained by the ConstraintExpression

markup extension:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression.constant#xamarin_forms_constraintexpression_constant
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression.elementname#xamarin_forms_constraintexpression_elementname
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression.factor#xamarin_forms_constraintexpression_factor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression.property#xamarin_forms_constraintexpression_property
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression.type#xamarin_forms_constraintexpression_type
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constrainttype
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraintexpression

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="RelativeLayoutDemos.Views.RelativePositioningAndSizingDemoPage"
 Title="RelativeLayout demo">
 <RelativeLayout>
 <BoxView Color="Red"
 RelativeLayout.XConstraint="{ConstraintExpression Type=Constant, Constant=0}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=Constant, Constant=0}" />
 <BoxView Color="Green"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent, Property=Width,
Constant=-40}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=Constant, Constant=0}" />
 <BoxView Color="Blue"
 RelativeLayout.XConstraint="{ConstraintExpression Type=Constant, Constant=0}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Constant=-40}" />
 <BoxView Color="Yellow"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent, Property=Width,
Constant=-40}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Constant=-40}" />

 <!-- Centered and 1/3 width and height of parent -->
 <BoxView x:Name="oneThird"
 Color="Silver"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent, Property=Width,
Factor=0.33}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent, Property=Height,
Factor=0.33}"
 RelativeLayout.WidthConstraint="{ConstraintExpression Type=RelativeToParent,
Property=Width, Factor=0.33}"
 RelativeLayout.HeightConstraint="{ConstraintExpression Type=RelativeToParent,
Property=Height, Factor=0.33}" />

 <!-- 1/3 width and height of previous -->
 <BoxView Color="Black"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToView,
ElementName=oneThird, Property=X}"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToView,
ElementName=oneThird, Property=Y}"
 RelativeLayout.WidthConstraint="{ConstraintExpression Type=RelativeToView,
ElementName=oneThird, Property=Width, Factor=0.33}"
 RelativeLayout.HeightConstraint="{ConstraintExpression Type=RelativeToView,
ElementName=oneThird, Property=Height, Factor=0.33}" />
 </RelativeLayout>
</ContentPage>

NOTENOTE

In this example, the position of each BoxView object is defined by setting the XConstraint and YConstraint

attached properties. The first BoxView has its XConstraint and YConstraint attached properties set to

constants, which are absolute values. The remaining BoxView objects all have their position set by using at least

one relative value. For example, the yellow BoxView object sets the XConstraint attached property to the width

of its parent (the RelativeLayout) minus 40. Similarly, this BoxView sets the YConstraint attached property to

the height of its parent minus 40. This ensures that the yellow BoxView appears in the lower-right corner of the

screen.

BoxView objects that don't specify a size are automatically sized to 40x40 by Xamarin.Forms.

The silver BoxView named oneThird is positioned centrally, relative to its parent. It's also sized relative to its

parent, being one third of its width and height. This is achieved by setting the XConstraint and WidthConstraint

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.xconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.yconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.xconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.widthconstraintproperty

 Constraint objectsConstraint objects

public class RelativePositioningAndSizingDemoPageCS : ContentPage
{
 public RelativePositioningAndSizingDemoPageCS()

attached properties to the width of the parent (the RelativeLayout), multiplied by 0.33. Similarly, the

YConstraint and HeightConstraint attached properties are set to the height of the parent, multiplied by 0.33.

The black BoxView is positioned and sized relative to the oneThird BoxView . This is achieved by setting its

XConstraint and YConstraint attached properties to the X and Y values, respectively, of the sibling element.

Similarly, its size is set to one third of the width and height of its sibling element. This is achieved by setting its

WidthConstraint and HeightConstraint attached properties to the Width and Height values of the sibling

element, respectively, which are then multiplied by 0.33.

The following screenshot shows the resulting layout:

The Constraint class defines the following public static methods, which return Constraint objects:

Constant , which constrains a child to a size specified with a double .

FromExpression , which constrains a child using a lambda expression.

RelativeToParent , which constrains a child relative to its parent's size.

RelativeToView , which constrains a child relative to the size of a view.

In addition, the BoundsConstraint class defines a single method, FromExpression , which returns a

BoundsConstraint that constrains a child's position and size with a Expression<Func<Rectangle>> . This method

can be used to set the BoundsConstraint attached property.

The following C# code shows a RelativeLayout whose children are constrained by Constraint objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.yconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.heightconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.xconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.yconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.widthconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.heightconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint.constant
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint.fromexpression
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint.relativetoparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint.relativetoview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boundsconstraint
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boundsconstraint.fromexpression
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout.boundsconstraintproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.constraint

 public RelativePositioningAndSizingDemoPageCS()
 {
 RelativeLayout relativeLayout = new RelativeLayout();

 // Four BoxView's
 relativeLayout.Children.Add(
 new BoxView { Color = Color.Red },
 Constraint.Constant(0),
 Constraint.Constant(0));

 relativeLayout.Children.Add(
 new BoxView { Color = Color.Green },
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Width - 40;
 }), Constraint.Constant(0));

 relativeLayout.Children.Add(
 new BoxView { Color = Color.Blue },
 Constraint.Constant(0),
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Height - 40;
 }));

 relativeLayout.Children.Add(
 new BoxView { Color = Color.Yellow },
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Width - 40;
 }),
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Height - 40;
 }));

 // Centered and 1/3 width and height of parent
 BoxView silverBoxView = new BoxView { Color = Color.Silver };
 relativeLayout.Children.Add(
 silverBoxView,
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Width * 0.33;
 }),
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Height * 0.33;
 }),
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Width * 0.33;
 }),
 Constraint.RelativeToParent((parent) =>
 {
 return parent.Height * 0.33;
 }));

 // 1/3 width and height of previous
 relativeLayout.Children.Add(
 new BoxView { Color = Color.Black },
 Constraint.RelativeToView(silverBoxView, (parent, sibling) =>
 {
 return sibling.X;
 }),
 Constraint.RelativeToView(silverBoxView, (parent, sibling) =>
 {
 return sibling.Y;
 }),
 Constraint.RelativeToView(silverBoxView, (parent, sibling) =>
 {

 {
 return sibling.Width * 0.33;
 }),
 Constraint.RelativeToView(silverBoxView, (parent, sibling) =>
 {
 return sibling.Height * 0.33;
 }));

 Title = "RelativeLayout demo";
 Content = relativeLayout;
 }
}

NOTENOTE

 Related links

In this example, children are added to the RelativeLayout using the Add overload that requires an optional

Constraint object for the x , y , width , and height arguments.

A RelativeLayout that uses relative values can position and size children so that they don't fit within the bounds of the

layout.

RelativeLayout demos (sample)

Xamarin.Forms Attached Properties

XAML Markup Extensions

Choose a Xamarin.Forms Layout

Improve Xamarin.Forms App Performance

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-relativelayoutdemos

Xamarin.Forms StackLayout
 7/8/2021 • 9 minutes to read • Edit Online

TIPTIP

 Vertical orientation

 Download the sample

A StackLayout organizes child views in a one-dimensional stack, either horizontally or vertically. By default, a

StackLayout is oriented vertically. In addition, a StackLayout can be used as a parent layout that contains other

child layouts.

The StackLayout class defines the following properties:

Orientation , of type StackOrientation , represents the direction in which child views are positioned. The

default value of this property is Vertical .

Spacing , of type double , indicates the amount of space between each child view. The default value of this

property is six device-independent units.

These properties are backed by BindableProperty objects, which means that the properties can be targets of

data bindings and styled.

The StackLayout class derives from the Layout<T> class, which defines a Children property of type IList<T> .

The Children property is the ContentProperty of the Layout<T> class, and therefore does not need to be

explicitly set from XAML.

To obtain the best possible layout performance, follow the guidelines at Optimize layout performance.

The following XAML shows how to create a vertically oriented StackLayout that contains different child views:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/stacklayout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-stacklayoutdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/stacklayout-images/layouts-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.orientation#xamarin_forms_stacklayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stackorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.spacing#xamarin_forms_stacklayout_spacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StackLayoutDemos.Views.VerticalStackLayoutPage"
 Title="Vertical StackLayout demo">
 <StackLayout Margin="20">
 <Label Text="Primary colors" />
 <BoxView Color="Red" />
 <BoxView Color="Yellow" />
 <BoxView Color="Blue" />
 <Label Text="Secondary colors" />
 <BoxView Color="Green" />
 <BoxView Color="Orange" />
 <BoxView Color="Purple" />
 </StackLayout>
</ContentPage>

public class VerticalStackLayoutPageCS : ContentPage
{
 public VerticalStackLayoutPageCS()
 {
 Title = "Vertical StackLayout demo";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children =
 {
 new Label { Text = "Primary colors" },
 new BoxView { Color = Color.Red },
 new BoxView { Color = Color.Yellow },
 new BoxView { Color = Color.Blue },
 new Label { Text = "Secondary colors" },
 new BoxView { Color = Color.Green },
 new BoxView { Color = Color.Orange },
 new BoxView { Color = Color.Purple }
 }
 };
 }
}

NOTENOTE

This example creates a vertical StackLayout containing Label and BoxView objects. By default, there are six

device-independent units of space between the child views:

The equivalent C# code is:

The value of the Margin property represents the distance between an element and its adjacent elements. For more

information, see Margin and Padding.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/stacklayout-images/vertical-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin

Horizontal orientation

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StackLayoutDemos.Views.HorizontalStackLayoutPage"
 Title="Horizontal StackLayout demo">
 <StackLayout Margin="20"
 Orientation="Horizontal"
 HorizontalOptions="Center">
 <BoxView Color="Red" />
 <BoxView Color="Yellow" />
 <BoxView Color="Blue" />
 <BoxView Color="Green" />
 <BoxView Color="Orange" />
 <BoxView Color="Purple" />
 </StackLayout>
</ContentPage>

The following XAML shows how to create a horizontally oriented StackLayout by setting its Orientation

property to Horizontal :

This example creates a horizontal StackLayout containing BoxView objects, with six device-independent units of

space between the child views:

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.orientation#xamarin_forms_stacklayout_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/stacklayout-images/horizontal-large.png#lightbox

public HorizontalStackLayoutPageCS()
{
 Title = "Horizontal StackLayout demo";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Orientation = StackOrientation.Horizontal,
 HorizontalOptions = LayoutOptions.Center,
 Children =
 {
 new BoxView { Color = Color.Red },
 new BoxView { Color = Color.Yellow },
 new BoxView { Color = Color.Blue },
 new BoxView { Color = Color.Green },
 new BoxView { Color = Color.Orange },
 new BoxView { Color = Color.Purple }
 }
 };
}

 Space between child views

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StackLayoutDemos.Views.StackLayoutSpacingPage"
 Title="StackLayout Spacing demo">
 <StackLayout Margin="20"
 Spacing="0">
 <Label Text="Primary colors" />
 <BoxView Color="Red" />
 <BoxView Color="Yellow" />
 <BoxView Color="Blue" />
 <Label Text="Secondary colors" />
 <BoxView Color="Green" />
 <BoxView Color="Orange" />
 <BoxView Color="Purple" />
 </StackLayout>
</ContentPage>

TIPTIP

The spacing between child views in a StackLayout can be changed by setting the Spacing property to a double

value:

This example creates a vertical StackLayout containing Label and BoxView objects that have no spacing

between them:

The Spacing property can be set to negative values to make child views overlap.

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.spacing#xamarin_forms_stacklayout_spacing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/stacklayout-images/spacing-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout.spacing#xamarin_forms_stacklayout_spacing

public class StackLayoutSpacingPageCS : ContentPage
{
 public StackLayoutSpacingPageCS()
 {
 Title = "StackLayout Spacing demo";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Spacing = 0,
 Children =
 {
 new Label { Text = "Primary colors" },
 new BoxView { Color = Color.Red },
 new BoxView { Color = Color.Yellow },
 new BoxView { Color = Color.Blue },
 new Label { Text = "Secondary colors" },
 new BoxView { Color = Color.Green },
 new BoxView { Color = Color.Orange },
 new BoxView { Color = Color.Purple }
 }
 };
 }
}

 Position and size of child views

TIPTIP

 AlignmentAlignment

The size and position of child views within a StackLayout depends upon the values of the child views'

HeightRequest and WidthRequest properties, and the values of their HorizontalOptions and VerticalOptions

properties. In a vertical StackLayout , child views expand to fill the available width when their size isn't explicitly

set. Similarly, in a horizontal StackLayout , child views expand to fill the available height when their size isn't

explicitly set.

The HorizontalOptions and VerticalOptions properties of a StackLayout , and its child views, can be set to

fields from the LayoutOptions struct, which encapsulates two layout preferences:

Alignment determines the position and size of a child view within its parent layout.

Expansion indicates if the child view should use extra space, if it's available.

Don't set the HorizontalOptions and VerticalOptions properties of a StackLayout unless you need to. The default

values of LayoutOptions.Fill and LayoutOptions.FillAndExpand allow for the best layout optimization. Changing

these properties has a cost and consumes memory, even when setting them back to the default values.

The following XAML example sets alignment preferences on each child view in the StackLayout :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StackLayoutDemos.Views.AlignmentPage"
 Title="Alignment demo">
 <StackLayout Margin="20">
 <Label Text="Start"
 BackgroundColor="Gray"
 HorizontalOptions="Start" />
 <Label Text="Center"
 BackgroundColor="Gray"
 HorizontalOptions="Center" />
 <Label Text="End"
 BackgroundColor="Gray"
 HorizontalOptions="End" />
 <Label Text="Fill"
 BackgroundColor="Gray"
 HorizontalOptions="Fill" />
 </StackLayout>
</ContentPage>

In this example, alignment preferences are set on the Label objects to control their position within the

StackLayout . The Start , Center , End , and Fill fields are used to define the alignment of the Label objects

within the parent StackLayout :

A StackLayout only respects the alignment preferences on child views that are in the opposite direction to the

StackLayout orientation. Therefore, the Label child views within the vertically oriented StackLayout set their

HorizontalOptions properties to one of the alignment fields:

Start , which positions the Label on the left-hand side of the StackLayout .

Center , which centers the Label in the StackLayout .

End , which positions the Label on the right-hand side of the StackLayout .

Fill , which ensures that the Label fills the width of the StackLayout .

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.start
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.center
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.end
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/stacklayout-images/alignment-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.start
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.center
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.end
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

public class AlignmentPageCS : ContentPage
{
 public AlignmentPageCS()
 {
 Title = "Alignment demo";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children =
 {
 new Label { Text = "Start", BackgroundColor = Color.Gray, HorizontalOptions =
LayoutOptions.Start },
 new Label { Text = "Center", BackgroundColor = Color.Gray, HorizontalOptions =
LayoutOptions.Center },
 new Label { Text = "End", BackgroundColor = Color.Gray, HorizontalOptions =
LayoutOptions.End },
 new Label { Text = "Fill", BackgroundColor = Color.Gray, HorizontalOptions =
LayoutOptions.Fill }
 }
 };
 }
}

 ExpansionExpansion

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StackLayoutDemos.Views.ExpansionPage"
 Title="Expansion demo">
 <StackLayout Margin="20">
 <BoxView BackgroundColor="Red"
 HeightRequest="1" />
 <Label Text="Start"
 BackgroundColor="Gray"
 VerticalOptions="StartAndExpand" />
 <BoxView BackgroundColor="Red"
 HeightRequest="1" />
 <Label Text="Center"
 BackgroundColor="Gray"
 VerticalOptions="CenterAndExpand" />
 <BoxView BackgroundColor="Red"
 HeightRequest="1" />
 <Label Text="End"
 BackgroundColor="Gray"
 VerticalOptions="EndAndExpand" />
 <BoxView BackgroundColor="Red"
 HeightRequest="1" />
 <Label Text="Fill"
 BackgroundColor="Gray"
 VerticalOptions="FillAndExpand" />
 <BoxView BackgroundColor="Red"
 HeightRequest="1" />
 </StackLayout>
</ContentPage>

The following XAML example sets expansion preferences on each Label in the StackLayout :

In this example, expansion preferences are set on the Label objects to control their size within the StackLayout .

The StartAndExpand , CenterAndExpand , EndAndExpand , and FillAndExpand fields are used to define the alignment

preference, and whether the Label will occupy more space if available within the parent StackLayout :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.startandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.centerandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.endandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fillandexpand

TIPTIP

public ExpansionPageCS()
{
 Title = "Expansion demo";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children =
 {
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "StartAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.StartAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "CenterAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.CenterAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "EndAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.EndAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "FillAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.FillAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 }
 }
 };
}

A StackLayout can only expand child views in the direction of its orientation. Therefore, the vertically oriented

StackLayout can expand Label child views that set their VerticalOptions properties to one of the expansion

fields. This means that, for vertical alignment, each Label occupies the same amount of space within the

StackLayout . However, only the final Label , which sets its VerticalOptions property to FillAndExpand has a

different size.

When using a StackLayout , ensure that only one child view is set to LayoutOptions.Expands . This property ensures

that the specified child will occupy the largest space that the StackLayout can give to it, and it is wasteful to perform

these calculations more than once.

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/stacklayout-images/expansion-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fillandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.expands#xamarin_forms_layoutoptions_expands

IMPORTANTIMPORTANT

 Nested StackLayout objects

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="StackLayoutDemos.Views.CombinedStackLayoutPage"
 Title="Combined StackLayouts demo">
 <StackLayout Margin="20">
 ...
 <Frame BorderColor="Black"
 Padding="5">
 <StackLayout Orientation="Horizontal"
 Spacing="15">
 <BoxView Color="Red" />
 <Label Text="Red"
 FontSize="Large"
 VerticalOptions="Center" />
 </StackLayout>
 </Frame>
 <Frame BorderColor="Black"
 Padding="5">
 <StackLayout Orientation="Horizontal"
 Spacing="15">
 <BoxView Color="Yellow" />
 <Label Text="Yellow"
 FontSize="Large"
 VerticalOptions="Center" />
 </StackLayout>
 </Frame>
 <Frame BorderColor="Black"
 Padding="5">
 <StackLayout Orientation="Horizontal"
 Spacing="15">
 <BoxView Color="Blue" />
 <Label Text="Blue"
 FontSize="Large"
 VerticalOptions="Center" />
 </StackLayout>
 </Frame>
 ...
 </StackLayout>
</ContentPage>

When all the space in a StackLayout is used, expansion preferences have no effect.

For more information about alignment and expansion, see Layout Options in Xamarin.Forms.

A StackLayout can be used as a parent layout that contains nested child StackLayout objects, or other child

layouts.

The following XAML shows an example of nesting StackLayout objects:

In this example, the parent StackLayout contains nested StackLayout objects inside Frame objects. The parent

StackLayout is oriented vertically, while the child StackLayout objects are oriented horizontally:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame

IMPORTANTIMPORTANT
The deeper you nest StackLayout objects and other layouts, the more the nested layouts will impact performance. For

more information, see Choose the correct layout.

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/stacklayout-images/combined-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

public class CombinedStackLayoutPageCS : ContentPage
{
 public CombinedStackLayoutPageCS()
 {
 Title = "Combined StackLayouts demo";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children =
 {
 new Label { Text = "Primary colors" },
 new Frame
 {
 BorderColor = Color.Black,
 Padding = new Thickness(5),
 Content = new StackLayout
 {
 Orientation = StackOrientation.Horizontal,
 Spacing = 15,
 Children =
 {
 new BoxView { Color = Color.Red },
 new Label { Text = "Red", FontSize = Device.GetNamedSize(NamedSize.Large,
typeof(Label)), VerticalOptions = LayoutOptions.Center }
 }
 }
 },
 new Frame
 {
 BorderColor = Color.Black,
 Padding = new Thickness(5),
 Content = new StackLayout
 {
 Orientation = StackOrientation.Horizontal,
 Spacing = 15,
 Children =
 {
 new BoxView { Color = Color.Yellow },
 new Label { Text = "Yellow", FontSize = Device.GetNamedSize(NamedSize.Large,
typeof(Label)), VerticalOptions = LayoutOptions.Center }
 }
 }
 },
 new Frame
 {
 BorderColor = Color.Black,
 Padding = new Thickness(5),
 Content = new StackLayout
 {
 Orientation = StackOrientation.Horizontal,
 Spacing = 15,
 Children =
 {
 new BoxView { Color = Color.Blue },
 new Label { Text = "Blue", FontSize = Device.GetNamedSize(NamedSize.Large,
typeof(Label)), VerticalOptions = LayoutOptions.Center }
 }
 }
 },
 // ...
 }
 };
 }
}

Related links
StackLayout demos (sample)

Layout Options in Xamarin.Forms

Choose a Xamarin.Forms Layout

Improve Xamarin.Forms App Performance

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-stacklayoutdemos

Xamarin.Forms ContentView
 7/8/2021 • 4 minutes to read • Edit Online

 Create a custom control

NOTENOTE

 Create code-behind propertiesCreate code-behind properties

 Download the sample

The Xamarin.Forms ContentView class is a type of Layout that contains a single child element and is typically

used to create custom, reusable controls. The ContentView class inherits from TemplatedView . This article, and

associated sample, explain how to create a custom CardView control based on the ContentView class.

The following screenshot shows a CardView control that derives from the ContentView class:

The ContentView class defines a single property:

Content is a View object. This property is backed by a BindableProperty object so it can be the target of

data bindings.

The ContentView also inherits a property from the TemplatedView class:

ControlTemplate is a ControlTemplate that can define or override the appearance of the control.

For more information about the ControlTemplate property, see Customize appearance with a ControlTemplate.

The ContentView class offers little functionality by itself but can be used to create a custom control. The sample

project defines a CardView control - a UI element that displays an image, title, and description in a card-like

layout.

The process for creating a custom control is to:

1. Create a new class using the ContentView template in Visual Studio 2019.

2. Define any unique properties or events in the code-behind file for the new custom control.

3. Create the UI for the custom control.

It's possible to create a custom control whose layout is defined in code instead of XAML. For simplicity, the sample

application only defines a single CardView class with a XAML layout. However, the sample application contains a

CardViewCodePageCardViewCodePage class that shows the process of consuming the custom control in code.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/contentview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-contentviewdemos/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/contentview-images/cardview-list.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview.content#xamarin_forms_contentview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.templatedview.controltemplate#xamarin_forms_templatedview_controltemplate

NOTENOTE

public static readonly BindableProperty CardTitleProperty = BindableProperty.Create(
 "CardTitle", // the name of the bindable property
 typeof(string), // the bindable property type
 typeof(CardView), // the parent object type
 string.Empty); // the default value for the property

public string CardTitle
{
 get => (string)GetValue(CardView.CardTitleProperty);
 set => SetValue(CardView.CardTitleProperty, value);
}

 Define UIDefine UI

The CardView custom control defines the following properties:

CardTitle : a string object that represents the title shown on the card.

CardDescription : a string object that represents the description shown on the card.

IconImageSource : an ImageSource object that represents the image shown on the card.

IconBackgroundColor : a Color object that represents the background color for the image shown on the card.

BorderColor : a Color object that represents the color of the card border, image border, and divider line.

CardColor : a Color object that represents the background color of the card.

The BorderColor property affects multiple items for the purposes of demonstration. This property could be broken out

into three properties if needed.

Each property is backed by a BindableProperty instance. The backing BindableProperty allows each property to

be styled, and bound, using the MVVM pattern.

The following example shows how to create a backing BindableProperty :

The custom property uses the GetValue and SetValue methods to get and set the BindableProperty object

values:

For more information about BindableProperty objects, see Bindable Properties.

The custom control UI uses a ContentView as the root element for the CardView control. The following example

shows the CardView XAML:

<ContentView ...
 x:Name="this"
 x:Class="CardViewDemo.Controls.CardView">
 <Frame BindingContext="{x:Reference this}"
 BackgroundColor="{Binding CardColor}"
 BorderColor="{Binding BorderColor}"
 ...>
 <Grid>
 ...
 <Frame BorderColor="{Binding BorderColor, FallbackValue='Black'}"
 BackgroundColor="{Binding IconBackgroundColor, FallbackValue='Grey'}"
 ...>
 <Image Source="{Binding IconImageSource}"
 .. />
 </Frame>
 <Label Text="{Binding CardTitle, FallbackValue='Card Title'}"
 ... />
 <BoxView BackgroundColor="{Binding BorderColor, FallbackValue='Black'}"
 ... />
 <Label Text="{Binding CardDescription, FallbackValue='Card description text.'}"
 ... />
 </Grid>
 </Frame>
</ContentView>

NOTENOTE

 Instantiate a custom control

<ContentPage ...
 xmlns:controls="clr-namespace:CardViewDemo.Controls" >

<controls:CardView BorderColor="DarkGray"
 CardTitle="Slavko Vlasic"
 CardDescription="Lorem ipsum dolor sit..."
 IconBackgroundColor="SlateGray"
 IconImageSource="user.png"/>

The ContentView element sets the x:Name property to thisthis , which can be used to access the object bound to the

CardView instance. Elements in the layout set bindings on their properties to values defined on the bound

object.

For more information about data binding, see Xamarin.Forms Data Binding.

The FallbackValue property provides a default value in case the binding is null . This also allows the XAML Previewer

in Visual Studio to render the CardView control.

A reference to the custom control namespace must be added to a page that instantiates the custom control. The

following example shows a namespace reference called controlscontrols added to a ContentPage instance in XAML:

Once the reference has been added the CardView can be instantiated in XAML, and its properties defined:

A CardView can also be instantiated in code:

CardView card = new CardView
{
 BorderColor = Color.DarkGray,
 CardTitle = "Slavko Vlasic",
 CardDescription = "Lorem ipsum dolor sit...",
 IconBackgroundColor = Color.SlateGray,
 IconImageSource = ImageSource.FromFile("user.png")
};

 Customize appearance with a ControlTemplate

<ContentPage.Resources>
 <ResourceDictionary>
 <ControlTemplate x:Key="CardViewCompressed">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="100" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100*" />
 </Grid.ColumnDefinitions>
 <Image Grid.Row="0"
 Grid.Column="0"
 Source="{TemplateBinding IconImageSource}"
 BackgroundColor="{TemplateBinding IconBackgroundColor}"
 WidthRequest="100"
 HeightRequest="100"
 Aspect="AspectFill"
 HorizontalOptions="Center"
 VerticalOptions="Center"/>
 <StackLayout Grid.Row="0"
 Grid.Column="1">
 <Label Text="{TemplateBinding CardTitle}"
 FontAttributes="Bold" />
 <Label Text="{TemplateBinding CardDescription}" />
 </StackLayout>
 </Grid>
 </ControlTemplate>
 </ResourceDictionary>
</ContentPage.Resources>

<controls:CardView ControlTemplate="{StaticResource CardViewCompressed}"/>

A custom control that derives from the ContentView class can define appearance using XAML, code, or may not

define appearance at all. Regardless of how appearance is defined, a ControlTemplate object can override the

appearance with a custom layout.

The CardView layout might occupy too much space for some use cases. A ControlTemplate can override the

CardView layout to provide a more compact view, suitable for a condensed list:

Data binding in a ControlTemplate uses the TemplateBinding markup extension to specify bindings. The

ControlTemplate property can then be set to the defined ControlTemplate object, by using its x:Key value. The

following example shows the ControlTemplate property set on a CardView instance:

The following screenshots show a standard CardView instance and CardView whose ControlTemplate has been

overridden:

 Related links

For more information about control templates, see Xamarin.Forms Control Templates.

ContentView sample application

Xamarin.Forms Data Binding

Bindable Properties.

Xamarin.Forms Control Templates

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/contentview-images/cardview-controltemplates.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-contentviewdemos/

Xamarin.Forms Frame
 7/8/2021 • 3 minutes to read • Edit Online

NOTENOTE

 Create a Frame

<Frame>
 <Label Text="Example" />
</Frame>

 Download the sample

The Xamarin.Forms Frame class is a layout used to wrap a view with a border that can be configured with color,

shadow, and other options. Frames are commonly used to create borders around controls but can be used to

create more complex UI. For more information, see Advanced Frame usage.

The following screenshot shows Frame controls on iOS and Android:

The Frame class defines the following properties:

BorderColor is a Color value that determines the color of the Frame border.

CornerRadius is a float value that determines the rounded radius of the corner.

HasShadow is a bool value that determines whether the frame has a drop shadow.

These properties are backed by BindableProperty objects, which means the Frame can be the target of data

bindings.

The HasShadow property behavior is platform-dependent. The default value is true on all platforms. However, on UWP

drop shadows are not rendered. Drop shadows are rendered on both Android and iOS but drop shadows on iOS are

darker and occupy more space.

A Frame can be instantiated in XAML. The default Frame object has a white background, a drop shadow, and no

border. A Frame object typically wraps another control. The following example shows a default Frame wrapping

a Label object:

A Frame can also be created in code:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/frame.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-frame/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/frame-images/frame-full.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame.bordercolor#xamarin_forms_frame_bordercolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame.cornerradius#xamarin_forms_frame_cornerradius
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame.hasshadow#xamarin_forms_frame_hasshadow
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty

Frame defaultFrame = new Frame
{
 Content = new Label { Text = "Example" }
};

<Frame BorderColor="Orange"
 CornerRadius="10"
 HasShadow="True">
 <Label Text="Example" />
</Frame>

Frame frame = new Frame
{
 BorderColor = Color.Orange,
 CornerRadius = 10,
 HasShadow = true,
 Content = new Label { Text = "Example" }
};

 Advanced Frame usage

 Create a card with a FrameCreate a card with a Frame

<Frame BorderColor="Gray"
 CornerRadius="5"
 Padding="8">
 <StackLayout>
 <Label Text="Card Example"
 FontSize="Medium"
 FontAttributes="Bold" />
 <BoxView Color="Gray"
 HeightRequest="2"
 HorizontalOptions="Fill" />
 <Label Text="Frames can wrap more complex layouts to create more complex UI components, such as this
card!"/>
 </StackLayout>
</Frame>

Frame objects can be customized with rounded corners, colorized borders, and drop shadows by setting

properties in the XAML. The following example shows a customized Frame object:

These instance properties can also be set in code:

The Frame class inherits from ContentView , which means it can contain any type of View object including

Layout objects. This ability allows the Frame to be used to create complex UI objects such as cards.

Combining a Frame object with a Layout object such as a StackLayout object allows the creation of more

complex UI. The following screenshot shows an example card, created using a Frame object:

The following XAML shows how to create a card with the Frame class:

A card can also be created in code:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/frame-images/frame-full.png#lightbox

Frame cardFrame = new Frame
{
 BorderColor = Color.Gray,
 CornerRadius = 5,
 Padding = 8,
 Content = new StackLayout
 {
 Children =
 {
 new Label
 {
 Text = "Card Example",
 FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label)),
 FontAttributes = FontAttributes.Bold
 },
 new BoxView
 {
 Color = Color.Gray,
 HeightRequest = 2,
 HorizontalOptions = LayoutOptions.Fill
 },
 new Label
 {
 Text = "Frames can wrap more complex layouts to create more complex UI components, such as
this card!"
 }
 }
 }
};

 Round elementsRound elements

<Frame Margin="10"
 BorderColor="Black"
 CornerRadius="50"
 HeightRequest="60"
 WidthRequest="60"
 IsClippedToBounds="True"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Image Source="outdoors.jpg"
 Aspect="AspectFill"
 Margin="-20"
 HeightRequest="100"
 WidthRequest="100" />
</Frame>

The CornerRadius property of the Frame control can be used to create a circle image. The following screenshot

shows an example of a round image, created using a Frame object:

The following XAML shows how to create a circle image in XAML:

A circle image can also be created in code:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/frame-images/frame-full.png#lightbox

Frame circleImageFrame = new Frame
{
 Margin = 10,
 BorderColor = Color.Black,
 CornerRadius = 50,
 HeightRequest = 60,
 WidthRequest = 60,
 IsClippedToBounds = true,
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center,
 Content = new Image
 {
 Source = ImageSource.FromFile("outdoors.jpg"),
 Aspect = Aspect.AspectFill,
 Margin = -20,
 HeightRequest = 100,
 WidthRequest = 100
 }
};

NOTENOTE

 Related links

The outdoors.jpgoutdoors.jpg image must be added to each platform project, and how this is achieved varies by platform.

For more information, see Images in Xamarin.Forms.

Rounded corners behave slightly differently across platforms. The Image object's Margin should be half of the

difference between the image width and the parent frame width, and should be negative to center the image evenly

within the Frame object. However, the width and height requested are not guaranteed, so the Margin ,

HeightRequest and WidthRequest properties may need to be altered based on your image size and other layout

choices.

Frame Demos

Images in Xamarin.Forms

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-frame/

Xamarin.Forms ScrollView
 7/8/2021 • 9 minutes to read • Edit Online

WARNINGWARNING

TIPTIP

 Download the sample

ScrollView is a layout that's capable of scrolling its content. The ScrollView class derives from the Layout

class, and by default scrolls its content vertically. A ScrollView can only have a single child, although this can be

other layouts.

ScrollView objects should not be nested. In addition, ScrollView objects should not be nested with other controls

that provide scrolling, such as CollectionView , ListView , and WebView .

ScrollView defines the following properties:

Content , of type View , represents the content to display in the ScrollView .

ContentSize , of type Size , represents the size of the content. This is a read-only property.

HorizontalScrollBarVisibility , of type ScrollBarVisibility , represents when the horizontal scroll bar is

visible.

Orientation , of type ScrollOrientation , represents the scrolling direction of the ScrollView . The default

value of this property is Vertical .

ScrollX , of type double , indicates the current X scroll position. The default value of this read-only property

is 0.

ScrollY , of type double , indicates the current Y scroll position. The default value of this read-only property

is 0.

VerticalScrollBarVisibility , of type ScrollBarVisibility , represents when the vertical scroll bar is visible.

These properties are backed by BindableProperty objects, with the exception of the Content property, which

means that they can be targets of data bindings and styled.

The Content property is the ContentProperty of the ScrollView class, and therefore does not need to be

explicitly set from XAML.

To obtain the best possible layout performance, follow the guidelines at Optimize layout performance.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/scrollview.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-scrollviewdemos
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/scrollview-images/layouts-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.content#xamarin_forms_scrollview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.size
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.horizontalscrollbarvisibility#xamarin_forms_scrollview_horizontalscrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.orientation#xamarin_forms_scrollview_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrollx#xamarin_forms_scrollview_scrollx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolly#xamarin_forms_scrollview_scrolly
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.horizontalscrollbarvisibility#xamarin_forms_scrollview_horizontalscrollbarvisibility
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.content#xamarin_forms_scrollview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.content#xamarin_forms_scrollview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpropertyattribute
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview

ScrollView as a root layout

C a u t i o nC a u t i o n

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ScrollViewDemos"
 x:Class="ScrollViewDemos.Views.ColorListPage"
 Title="ScrollView demo">
 <ScrollView>
 <StackLayout BindableLayout.ItemsSource="{x:Static local:NamedColor.All}">
 <BindableLayout.ItemTemplate>
 <DataTemplate>
 <StackLayout Orientation="Horizontal">
 <BoxView Color="{Binding Color}"
 HeightRequest="32"
 WidthRequest="32"
 VerticalOptions="Center" />
 <Label Text="{Binding FriendlyName}"
 FontSize="24"
 VerticalOptions="Center" />
 </StackLayout>
 </DataTemplate>
 </BindableLayout.ItemTemplate>
 </StackLayout>
 </ScrollView>
</ContentPage>

A ScrollView can only have a single child, which can be other layouts. It's therefore common for a ScrollView

to be the root layout on a page. To scroll its child content, ScrollView computes the difference between the

height of its content and its own height. That difference is the amount that the ScrollView can scroll its content.

A StackLayout will often be the child of a ScrollView . In this scenario, the ScrollView causes the StackLayout

to be as tall as the sum of the heights of its children. Then the ScrollView can determine the amount that its

content can be scrolled. For more information about the StackLayout , see Xamarin.Forms StackLayout.

In a vertical ScrollView , avoid setting the VerticalOptions property to Start , Center , or End . Doing so tells

the ScrollView to be only as tall as it needs to be, which could be zero. While Xamarin.Forms protects against

this eventuality, it's best to avoid code that suggests something you don't want to happen.

The following XAML example has a ScrollView as a root layout on a page:

In this example, the ScrollView has its content set to a StackLayout that uses a bindable layout to display the

Color fields defined by Xamarin.Forms. By default, a ScrollView scrolls vertically, which reveals more content:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

public class ColorListPageCode : ContentPage
{
 public ColorListPageCode()
 {
 DataTemplate dataTemplate = new DataTemplate(() =>
 {
 BoxView boxView = new BoxView
 {
 HeightRequest = 32,
 WidthRequest = 32,
 VerticalOptions = LayoutOptions.Center
 };
 boxView.SetBinding(BoxView.ColorProperty, "Color");

 Label label = new Label
 {
 FontSize = 24,
 VerticalOptions = LayoutOptions.Center
 };
 label.SetBinding(Label.TextProperty, "FriendlyName");

 StackLayout horizontalStackLayout = new StackLayout
 {
 Orientation = StackOrientation.Horizontal,
 Children = { boxView, label }
 };
 return horizontalStackLayout;
 });

 StackLayout stackLayout = new StackLayout();
 BindableLayout.SetItemsSource(stackLayout, NamedColor.All);
 BindableLayout.SetItemTemplate(stackLayout, dataTemplate);

 ScrollView scrollView = new ScrollView { Content = stackLayout };

 Title = "ScrollView demo";
 Content = scrollView;
 }
}

The equivalent C# code is:

For more information about bindable layouts, see Bindable Layouts in Xamarin.Forms.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/scrollview-images/root-layout-large.png#lightbox

ScrollView as a child layout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ScrollViewDemos.Views.BlackCatPage"
 Title="ScrollView as a child layout demo">
 <StackLayout Margin="20">
 <Label Text="THE BLACK CAT by Edgar Allan Poe"
 FontSize="Medium"
 FontAttributes="Bold"
 HorizontalOptions="Center" />
 <ScrollView VerticalOptions="FillAndExpand">
 <StackLayout>
 <Label Text="FOR the most wild, yet most homely narrative which I am about to pen, I neither
expect nor solicit belief. Mad indeed would I be to expect it, in a case where my very senses reject their
own evidence. Yet, mad am I not -- and very surely do I not dream. But to-morrow I die, and to-day I would
unburthen my soul. My immediate purpose is to place before the world, plainly, succinctly, and without
comment, a series of mere household events. In their consequences, these events have terrified -- have
tortured -- have destroyed me. Yet I will not attempt to expound them. To me, they have presented little but
Horror -- to many they will seem less terrible than barroques. Hereafter, perhaps, some intellect may be
found which will reduce my phantasm to the common-place -- some intellect more calm, more logical, and far
less excitable than my own, which will perceive, in the circumstances I detail with awe, nothing more than
an ordinary succession of very natural causes and effects." />
 <!-- More Label objects go here -->
 </StackLayout>
 </ScrollView>
 </StackLayout>
</ContentPage>

A ScrollView can be a child layout to a different parent layout.

A ScrollView will often be the child of a StackLayout . A ScrollView requires a specific height to compute the

difference between the height of its content and its own height, with the difference being the amount that the

ScrollView can scroll its content. When a ScrollView is the child of a StackLayout , it doesn't receive a specific

height. The StackLayout wants the ScrollView to be as short as possible, which is either the height of the

ScrollView contents or zero. To handle this scenario, the VerticalOptions property of the ScrollView should

be set to FillAndExpand . This will cause the StackLayout to give the ScrollView all the extra space not required

by the other children, and the ScrollView will then have a specific height.

The following XAML example has a ScrollView as a child layout to a StackLayout :

In this example, there are two StackLayout objects. The first StackLayout is the root layout object, which has a

Label object and a ScrollView as its children. The ScrollView has a StackLayout as its content, with the

StackLayout containing multiple Label objects. This arrangement ensures that the first Label is always on-

screen, while text displayed by the other Label objects can be scrolled:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview

public class BlackCatPageCS : ContentPage
{
 public BlackCatPageCS()
 {
 Label titleLabel = new Label
 {
 Text = "THE BLACK CAT by Edgar Allan Poe",
 // More properties set here to define the Label appearance
 };

 ScrollView scrollView = new ScrollView
 {
 VerticalOptions = LayoutOptions.FillAndExpand,
 Content = new StackLayout
 {
 Children =
 {
 new Label
 {
 Text = "FOR the most wild, yet most homely narrative which I am about to pen, I
neither expect nor solicit belief. Mad indeed would I be to expect it, in a case where my very senses reject
their own evidence. Yet, mad am I not -- and very surely do I not dream. But to-morrow I die, and to-day I
would unburthen my soul. My immediate purpose is to place before the world, plainly, succinctly, and without
comment, a series of mere household events. In their consequences, these events have terrified -- have
tortured -- have destroyed me. Yet I will not attempt to expound them. To me, they have presented little but
Horror -- to many they will seem less terrible than barroques. Hereafter, perhaps, some intellect may be
found which will reduce my phantasm to the common-place -- some intellect more calm, more logical, and far
less excitable than my own, which will perceive, in the circumstances I detail with awe, nothing more than
an ordinary succession of very natural causes and effects.",
 },
 // More Label objects go here
 }
 }
 };

 Title = "ScrollView as a child layout demo";
 Content = new StackLayout
 {
 Margin = new Thickness(20),
 Children = { titleLabel, scrollView }
 };
 }
}

The equivalent C# code is:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/scrollview-images/child-layout-large.png#lightbox

 Orientation

TIPTIP

 Detect scrolling

IMPORTANTIMPORTANT

<ScrollView Scrolled="OnScrollViewScrolled">
 ...
</ScrollView>

ScrollView scrollView = new ScrollView();
scrollView.Scrolled += OnScrollViewScrolled;

void OnScrollViewScrolled(object sender, ScrolledEventArgs e)
{
 Console.WriteLine($"ScrollX: {e.ScrollX}, ScrollY: {e.ScrollY}");
}

NOTENOTE

ScrollView has an Orientation property, which represents the scrolling direction of the ScrollView . This

property is of type ScrollOrientation , which defines the following members:

Vertical indicates that the ScrollView will scroll vertically. This member is the default value of the

Orientation property.

Horizontal indicates that the ScrollView will scroll horizontally.

Both indicates that the ScrollView will scroll horizontally and vertically.

Neither indicates that the ScrollView won't scroll.

Scrolling can be disabled by setting the Orientation property to Neither .

ScrollView defines a Scrolled event that is fired to indicate that scrolling occurred. The ScrolledEventArgs

object that accompanies the Scrolled event has ScrollX and ScrollY properties, both of type double .

The ScrolledEventArgs.ScrollX and ScrolledEventArgs.ScrollY properties can have negative values, due to the

bounce effect that occurs when scrolling back to the start of a ScrollView .

The following XAML example shows a ScrollView that sets an event handler for the Scrolled event:

The equivalent C# code is:

In this example, the OnScrollViewScrolled event handler is executed when the Scrolled event fires:

In this example, the OnScrollViewScrolled event handler outputs the values of the ScrolledEventArgs object that

accompanies the event.

The Scrolled event is fired for user initiated scrolls, and for programmatic scrolls.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.orientation#xamarin_forms_scrollview_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollorientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.orientation#xamarin_forms_scrollview_orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.orientationproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolledeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolledeventargs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolled

Scroll programmatically

IMPORTANTIMPORTANT

 Scroll a position into viewScroll a position into view

await scrollView.ScrollToAsync(0, 150, true);

 Scroll an element into viewScroll an element into view

await scrollView.ScrollToAsync(label, ScrollToPosition.End, true);

 Scroll bar visibility

ScrollView defines two ScrollToAsync methods, that asynchronously scroll the ScrollView . One of the

overloads scrolls to a specified position in the ScrollView , while the other scrolls a specified element into view.

Both overloads have an additional argument that can be used to indicate whether to animate the scroll.

The ScrollToAsync methods will not result in scrolling when the ScrollView.Orientation property is set to

Neither .

A position within a ScrollView can be scrolled to with the ScrollToAsync method that accepts double x and

y arguments. Given a vertical ScrollView object named scrollView , the following example shows how to

scroll to 150 device-independent units from the top of the ScrollView :

The third argument to the ScrollToAsync is the animated argument, which determines whether a scrolling

animation is displayed when programmatically scrolling a ScrollView .

An element within a ScrollView can be scrolled into view with the ScrollToAsync method that accepts Element

and ScrollToPosition arguments. Given a vertical ScrollView named scrollView , and a Label named label ,

the following example shows how to scroll an element into view:

The third argument to the ScrollToAsync is the animated argument, which determines whether a scrolling

animation is displayed when programmatically scrolling a ScrollView .

When scrolling an element into view, the exact position of the element after the scroll has completed can be set

with the second argument, position , of the ScrollToAsync method. This argument accepts a ScrollToPosition

enumeration member:

MakeVisible indicates that the element should be scrolled until it's visible in the ScrollView .

Start indicates that the element should be scrolled to the start of the ScrollView .

Center indicates that the element should be scrolled to the center of the ScrollView .

End indicates that the element should be scrolled to the end of the ScrollView .

ScrollView defines HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties, which are

backed by bindable properties. These properties get or set a ScrollBarVisibility enumeration value that

represents whether the horizontal, or vertical, scroll bar is visible. The ScrollBarVisibility enumeration defines

the following members:

Default indicates the default scroll bar behavior for the platform, and is the default value of the

HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties.

Always indicates that scroll bars will be visible, even when the content fits in the view.

Never indicates that scroll bars will not be visible, even if the content doesn't fit in the view.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolltoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolltoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.orientationproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolltoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolltoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolltoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolltoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.scrolltoasync
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrolltoposition
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview.horizontalscrollbarvisibility#xamarin_forms_scrollview_horizontalscrollbarvisibility

 Related links
ScrollView demos (sample)

Xamarin.Forms StackLayout

Bindable Layouts in Xamarin.Forms

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-scrollviewdemos

Bindable Layouts in Xamarin.Forms
 7/8/2021 • 7 minutes to read • Edit Online

NOTENOTE

NOTENOTE

 Download the sample

Bindable layouts enable any layout class that derives from the Layout<T> class to generate its content by

binding to a collection of items, with the option to set the appearance of each item with a DataTemplate .

Bindable layouts are provided by the BindableLayout class, which exposes the following attached properties:

ItemsSource – specifies the collection of IEnumerable items to be displayed by the layout.

ItemTemplate – specifies the DataTemplate to apply to each item in the collection of items displayed by the

layout.

ItemTemplateSelector – specifies the DataTemplateSelector that will be used to choose a DataTemplate for

an item at runtime.

The ItemTemplate property takes precedence when both the ItemTemplate and ItemTemplateSelector properties

are set.

In addition, the BindableLayout class exposes the following bindable properties:

EmptyView – specifies the string or view that will be displayed when the ItemsSource property is null , or

when the collection specified by the ItemsSource property is null or empty. The default value is null .

EmptyViewTemplate – specifies the DataTemplate that will be displayed when the ItemsSource property is

null , or when the collection specified by the ItemsSource property is null or empty. The default value is

null .

The EmptyViewTemplate property takes precedence when both the EmptyView and EmptyViewTemplate properties

are set.

All of these properties can be attached to the AbsoluteLayout , FlexLayout , Grid , RelativeLayout , and

StackLayout classes, which all derive from the Layout<T> class.

The Layout<T> class exposes a Children collection, to which the child elements of a layout are added. When the

BinableLayout.ItemsSource property is set to a collection of items and attached to a Layout<T> -derived class,

each item in the collection is added to the Layout<T>.Children collection for display by the layout. The

Layout<T> -derived class will then update its child views when the underlying collection changes. For more

information about the Xamarin.Forms layout cycle, see Creating a Custom Layout.

Bindable layouts should only be used when the collection of items to be displayed is small, and scrolling and

selection isn't required. While scrolling can be provided by wrapping a bindable layout in a ScrollView , this is

not recommended as bindable layouts lack UI virtualization. When scrolling is required, a scrollable view that

includes UI virtualization, such as ListView or CollectionView , should be used. Failure to observe this

recommendation can lead to performance issues.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/bindable-layouts.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-bindablelayouts
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flexlayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1.children#xamarin_forms_layout_1_children
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview

IMPORTANTIMPORTANT

 Populate a bindable layout with data

<Grid BindableLayout.ItemsSource="{Binding Items}" />

IEnumerable<string> items = ...;
var grid = new Grid();
BindableLayout.SetItemsSource(grid, items);

 Define item appearance

<StackLayout BindableLayout.ItemsSource="{Binding User.TopFollowers}"
 Orientation="Horizontal"
 ...>
 <BindableLayout.ItemTemplate>
 <DataTemplate>
 <controls:CircleImage Source="{Binding}"
 Aspect="AspectFill"
 WidthRequest="44"
 HeightRequest="44"
 ... />
 </DataTemplate>
 </BindableLayout.ItemTemplate>
</StackLayout>

While it's technically possible to attach a bindable layout to any layout class that derives from the Layout<T> class, it's

not always practical to do so, particularly for the AbsoluteLayout , Grid , and RelativeLayout classes. For example,

consider the scenario of wanting to display a collection of data in a Grid using a bindable layout, where each item in the

collection is an object containing multiple properties. Each row in the Grid should display an object from the collection,

with each column in the Grid displaying one of the object's properties. Because the DataTemplate for the bindable

layout can only contain a single object, it's necessary for that object to be a layout class containing multiple views that

each display one of the object's properties in a specific Grid column. While this scenario can be realised with bindable

layouts, it results in a parent Grid containing a child Grid for each item in the bound collection, which is a highly

inefficient and problematic use of the Grid layout.

A bindable layout is populated with data by setting its ItemsSource property to any collection that implements

IEnumerable , and attaching it to a Layout<T> -derived class:

The equivalent C# code is:

When the BindableLayout.ItemsSource attached property is set on a layout, but the BindableLayout.ItemTemplate

attached property isn't set, every item in the IEnumerable collection will be displayed by a Label that's created

by the BindableLayout class.

The appearance of each item in the bindable layout can be defined by setting the BindableLayout.ItemTemplate

attached property to a DataTemplate :

The equivalent C# code is:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

DataTemplate circleImageTemplate = ...;
var stackLayout = new StackLayout();
BindableLayout.SetItemsSource(stackLayout, viewModel.User.TopFollowers);
BindableLayout.SetItemTemplate(stackLayout, circleImageTemplate);

 Choose item appearance at runtime

<FlexLayout BindableLayout.ItemsSource="{Binding User.FavoriteTech}"
 BindableLayout.ItemTemplateSelector="{StaticResource TechItemTemplateSelector}"
 ... />

DataTemplateSelector dataTemplateSelector = new TechItemTemplateSelector { ... };
var flexLayout = new FlexLayout();
BindableLayout.SetItemsSource(flexLayout, viewModel.User.FavoriteTech);
BindableLayout.SetItemTemplateSelector(flexLayout, dataTemplateSelector);

public class TechItemTemplateSelector : DataTemplateSelector
{
 public DataTemplate DefaultTemplate { get; set; }
 public DataTemplate XamarinFormsTemplate { get; set; }

 protected override DataTemplate OnSelectTemplate(object item, BindableObject container)
 {
 return (string)item == "Xamarin.Forms" ? XamarinFormsTemplate : DefaultTemplate;
 }
}

In this example, every item in the TopFollowers collection will be displayed by a CircleImage view defined in

the DataTemplate :

For more information about data templates, see Xamarin.Forms Data Templates.

The appearance of each item in the bindable layout can be chosen at runtime, based on the item value, by

setting the BindableLayout.ItemTemplateSelector attached property to a DataTemplateSelector :

The equivalent C# code is:

The DataTemplateSelector used in the sample application is shown in the following example:

The TechItemTemplateSelector class defines DefaultTemplate and XamarinFormsTemplate DataTemplate

properties that are set to different data templates. The OnSelectTemplate method returns the

XamarinFormsTemplate , which displays an item in dark red with a heart next to it, when the item is equal to

"Xamarin.Forms". When the item isn't equal to "Xamarin.Forms", the OnSelectTemplate method returns the

DefaultTemplate , which displays an item using the default color of a Label :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

 Display a string when data is unavailable

<StackLayout BindableLayout.ItemsSource="{Binding UserWithoutAchievements.Achievements}"
 BindableLayout.EmptyView="No achievements">
 ...
</StackLayout>

 Display views when data is unavailable

<StackLayout BindableLayout.ItemsSource="{Binding UserWithoutAchievements.Achievements}">
 <BindableLayout.EmptyView>
 <StackLayout>
 <Label Text="None."
 FontAttributes="Italic"
 FontSize="{StaticResource smallTextSize}" />
 <Label Text="Try harder and return later?"
 FontAttributes="Italic"
 FontSize="{StaticResource smallTextSize}" />
 </StackLayout>
 </BindableLayout.EmptyView>
 ...
</StackLayout>

For more information about data template selectors, see Creating a Xamarin.Forms DataTemplateSelector.

The EmptyView property can be set to a string, which will be displayed by a Label when the ItemsSource

property is null , or when the collection specified by the ItemsSource property is null or empty. The

following XAML shows an example of this scenario:

The result is that when the data bound collection is null , the string set as the EmptyView property value is

displayed:

The EmptyView property can be set to a view, which will be displayed when the ItemsSource property is null ,

or when the collection specified by the ItemsSource property is null or empty. This can be a single view, or a

view that contains multiple child views. The following XAML example shows the EmptyView property set to a

view that contains multiple child views:

The result is that when the data bound collection is null , the StackLayout and its child views are displayed.

Similarly, the EmptyViewTemplate can be set to a DataTemplate , which will be displayed when the ItemsSource

property is null , or when the collection specified by the ItemsSource property is null or empty. The

DataTemplate can contain a single view, or a view that contains multiple child views. In addition, the

BindingContext of the EmptyViewTemplate will be inherited from the BindingContext of the BindableLayout . The

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/bindable-layouts-images/emptyview-string-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/bindable-layouts-images/emptyview-views-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate

<StackLayout BindableLayout.ItemsSource="{Binding UserWithoutAchievements.Achievements}">
 <BindableLayout.EmptyViewTemplate>
 <DataTemplate>
 <Label Text="{Binding Source={x:Reference usernameLabel}, Path=Text, StringFormat='{0} has no
achievements.'}" />
 </DataTemplate>
 </BindableLayout.EmptyViewTemplate>
 ...
</StackLayout>

NOTENOTE

 Choose an EmptyView at runtime

following XAML example shows the EmptyViewTemplate property set to a DataTemplate that contains a single

view:

The result is that when the data bound collection is null , the Label in the DataTemplate is displayed:

The EmptyViewTemplate property can't be set via a DataTemplateSelector .

Views that will be displayed as an EmptyView when data is unavailable, can be defined as ContentView objects in

a ResourceDictionary . The EmptyView property can then be set to a specific ContentView , based on some

business logic, at runtime. The following XAML shows an example of this scenario:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/bindable-layouts-images/emptyviewtemplate-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary

<ContentPage ...>
 <ContentPage.Resources>
 ...
 <ContentView x:Key="BasicEmptyView">
 <StackLayout>
 <Label Text="No achievements."
 FontSize="14" />
 </StackLayout>
 </ContentView>
 <ContentView x:Key="AdvancedEmptyView">
 <StackLayout>
 <Label Text="None."
 FontAttributes="Italic"
 FontSize="14" />
 <Label Text="Try harder and return later?"
 FontAttributes="Italic"
 FontSize="14" />
 </StackLayout>
 </ContentView>
 </ContentPage.Resources>

 <StackLayout>
 ...
 <Switch Toggled="OnEmptyViewSwitchToggled" />

 <StackLayout x:Name="stackLayout"
 BindableLayout.ItemsSource="{Binding UserWithoutAchievements.Achievements}">
 ...
 </StackLayout>
 </StackLayout>
</ContentPage>

void ToggleEmptyView(bool isToggled)
{
 object view = isToggled ? Resources["BasicEmptyView"] : Resources["AdvancedEmptyView"];
 BindableLayout.SetEmptyView(stackLayout, view);
}

 Related links

The XAML defines two ContentView objects in the page-level ResourceDictionary , with the Switch object

controlling which ContentView object will be set as the EmptyView property value. When the Switch is toggled,

the OnEmptyViewSwitchToggled event handler executes the ToggleEmptyView method:

The ToggleEmptyView method sets the EmptyView property of the stackLayout object to one of the two

ContentView objects stored in the ResourceDictionary , based on the value of the Switch.IsToggled property.

Then, when the data bound collection is null , the ContentView object set as the EmptyView property is

displayed:

Bindable Layout Demo (sample)

Creating a Custom Layout

Xamarin.Forms Data Templates

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch.istoggled#xamarin_forms_switch_istoggled
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/bindable-layouts-images/emptyview-runtime-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-bindablelayouts

Creating a Xamarin.Forms DataTemplateSelector

Create a Custom Layout in Xamarin.Forms
 7/8/2021 • 14 minutes to read • Edit Online

 Layout

 Download the sample

Xamarin.Forms defines five layout classes – StackLayout, AbsoluteLayout, RelativeLayout, Grid, and FlexLayout,

and each arranges its children in a different way. However, sometimes it's necessary to organize page content

using a layout not provided by Xamarin.Forms. This article explains how to write a custom layout class, and

demonstrates an orientation-sensitive WrapLayout class that arranges its children horizontally across the page,

and then wraps the display of subsequent children to additional rows.

In Xamarin.Forms, all layout classes derive from the Layout<T> class and constrain the generic type to View

and its derived types. In turn, the Layout<T> class derives from the Layout class, which provides the

mechanism for positioning and sizing child elements.

Every visual element is responsible for determining its own preferred size, which is known as the requested size.

Page , Layout , and Layout<View> derived types are responsible for determining the location and size of their

child, or children, relative to themselves. Therefore, layout involves a parent-child relationship, where the parent

determines what the size of its children should be, but will attempt to accommodate the requested size of the

child.

A thorough understanding of the Xamarin.Forms layout and invalidation cycles is required to create a custom

layout. These cycles will now be discussed.

Layout begins at the top of the visual tree with a page, and it proceeds through all branches of the visual tree to

encompass every visual element on a page. Elements that are parents to other elements are responsible for

sizing and positioning their children relative to themselves.

The VisualElement class defines a Measure method that measures an element for layout operations, and a

Layout method that specifies the rectangular area the element will be rendered within. When an application

starts and the first page is displayed, a layout cycle consisting first of Measure calls, and then Layout calls,

starts on the Page object:

1. During the layout cycle, every parent element is responsible for calling the Measure method on its children.

2. After the children have been measured, every parent element is responsible for calling the Layout method

on its children.

This cycle ensures that every visual element on the page receives calls to the Measure and Layout methods.

The process is shown in the following diagram:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/custom.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-customlayout-wraplayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.layout#xamarin_forms_visualelement_layout_xamarin_forms_rectangle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page

NOTENOTE

NOTENOTE

 Invalidation

Note that layout cycles can also occur on a subset of the visual tree if something changes to affect the layout. This

includes items being added or removed from a collection such as in a StackLayout , a change in the IsVisible

property of an element, or a change in the size of an element.

Every Xamarin.Forms class that has a Content or a Children property has an overridable LayoutChildren

method. Custom layout classes that derive from Layout<View> must override this method and ensure that the

Measure and Layout methods are called on all the element's children, to provide the desired custom layout.

In addition, every class that derives from Layout or Layout<View> must override the OnMeasure method, which

is where a layout class determines the size that it needs to be by making calls to the Measure methods of its

children.

Elements determine their size based on constraints, which indicate how much space is available for an element within the

element's parent. Constraints passed to the Measure and OnMeasure methods can range from 0 to

Double.PositiveInfinity . An element is constrained, or fully constrained, when it receives a call to its Measure

method with non-infinite arguments - the element is constrained to a particular size. An element is unconstrained, or

partially constrained, when it receives a call to its Measure method with at least one argument equal to

Double.PositiveInfinity – the infinite constraint can be thought of as indicating autosizing.

Invalidation is the process by which a change in an element on a page triggers a new layout cycle. Elements are

considered invalid when they no longer have the correct size or position. For example, if the FontSize property

of a Button changes, the Button is said to be invalid because it will no longer have the correct size. Resizing the

Button may then have a ripple effect of changes in layout through the rest of a page.

Elements invalidate themselves by invoking the InvalidateMeasure method, generally when a property of the

element changes that might result in a new size of the element. This method fires the MeasureInvalidated event,

which the element's parent handles to trigger a new layout cycle.

The Layout class sets a handler for the MeasureInvalidated event on every child added to its Content property

or Children collection, and detaches the handler when the child is removed. Therefore, every element in the

visual tree that has children is alerted whenever one of its children changes size. The following diagram

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isvisible#xamarin_forms_visualelement_isvisible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.layoutchildren#xamarin_forms_layout_layoutchildren_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.layout#xamarin_forms_visualelement_layout_xamarin_forms_rectangle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.fontsize#xamarin_forms_button_fontsize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.invalidatemeasure#xamarin_forms_visualelement_invalidatemeasure
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measureinvalidated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measureinvalidated

 Create a Custom Layout

illustrates how a change in the size of an element in the visual tree can cause changes that ripple up the tree:

However, the Layout class attempts to restrict the impact of a change in a child's size on the layout of a page. If

the layout is size constrained, then a child size change does not affect anything higher than the parent layout in

the visual tree. However, usually a change in the size of a layout affects how the layout arranges its children.

Therefore, any change in a layout's size will start a layout cycle for the layout, and the layout will receive calls to

its OnMeasure and LayoutChildren methods.

The Layout class also defines an InvalidateLayout method that has a similar purpose to the InvalidateMeasure

method. The InvalidateLayout method should be invoked whenever a change is made that affects how the

layout positions and sizes its children. For example, the Layout class invokes the InvalidateLayout method

whenever a child is added to or removed from a layout.

The InvalidateLayout can be overridden to implement a cache to minimize repetitive invocations of the

Measure methods of the layout's children. Overriding the InvalidateLayout method will provide a notification

of when children are added to or removed from the layout. Similarly, the OnChildMeasureInvalidated method

can be overridden to provide a notification when one of the layout's children changes size. For both method

overrides, a custom layout should respond by clearing the cache. For more information, see Calculate and Cache

Layout Data.

The process for creating a custom layout is as follows:

1. Create a class that derives from the Layout<View> class. For more information, see Create a WrapLayout.

2. [optional] Add properties, backed by bindable properties, for any parameters that should be set on the

layout class. For more information, see Add Properties Backed by Bindable Properties.

3. Override the OnMeasure method to invoke the Measure method on all the layout's children, and return a

requested size for the layout. For more information, see Override the OnMeasure Method.

4. Override the LayoutChildren method to invoke the Layout method on all the layout's children. Failure to

invoke the Layout method on each child in a layout will result in the child never receiving a correct size

or position, and hence the child will not become visible on the page. For more information, see Override

the LayoutChildren Method.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.layoutchildren#xamarin_forms_layout_layoutchildren_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.invalidatelayout#xamarin_forms_layout_invalidatelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.invalidatemeasure#xamarin_forms_visualelement_invalidatemeasure
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.invalidatelayout#xamarin_forms_layout_invalidatelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.onchildmeasureinvalidated#xamarin_forms_layout_onchildmeasureinvalidated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.layoutchildren#xamarin_forms_layout_layoutchildren_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.layout#xamarin_forms_visualelement_layout_xamarin_forms_rectangle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.layout#xamarin_forms_visualelement_layout_xamarin_forms_rectangle_

NOTENOTE

 Create a WrapLayoutCreate a WrapLayout

public class WrapLayout : Layout<View>
{
 Dictionary<Size, LayoutData> layoutDataCache = new Dictionary<Size, LayoutData>();
 ...
}

 Calculate and Cache Layout DataCalculate and Cache Layout Data

NOTENOTE
When enumerating children in the OnMeasure and LayoutChildren overrides, skip any child whose

IsVisible property is set to false . This will ensure that the custom layout won't leave space for invisible

children.

5. [optional] Override the InvalidateLayout method to be notified when children are added to or removed

from the layout. For more information, see Override the InvalidateLayout Method.

6. [optional] Override the OnChildMeasureInvalidated method to be notified when one of the layout's

children changes size. For more information, see Override the OnChildMeasureInvalidated Method.

Note that the OnMeasure override won't be invoked if the size of the layout is governed by its parent, rather than its

children. However, the override will be invoked if one or both of the constraints are infinite, or if the layout class has non-

default HorizontalOptions or VerticalOptions property values. For this reason, the LayoutChildren override can't

rely on child sizes obtained during the OnMeasure method call. Instead, LayoutChildren must invoke the Measure

method on the layout's children, before invoking the Layout method. Alternatively, the size of the children obtained in

the OnMeasure override can be cached to avoid later Measure invocations in the LayoutChildren override, but the

layout class will need to know when the sizes need to be obtained again. For more information, see Calculate and Cache

Layout Data.

The layout class can then be consumed by adding it to a Page , and by adding children to the layout. For more

information, see Consume the WrapLayout.

The sample application demonstrates an orientation-sensitive WrapLayout class that arranges its children

horizontally across the page, and then wraps the display of subsequent children to additional rows.

The WrapLayout class allocates the same amount of space for each child, known as the cell size, based on the

maximum size of the children. Children smaller than the cell size can be positioned within the cell based on their

HorizontalOptions and VerticalOptions property values.

The WrapLayout class definition is shown in the following code example:

The LayoutData structure stores data about a collection of children in a number of properties:

VisibleChildCount – the number of children that are visible in the layout.

CellSize – the maximum size of all the children, adjusted to the size of the layout.

Rows – the number of rows.

Columns – the number of columns.

The layoutDataCache field is used to store multiple LayoutData values. When the application starts, two

LayoutData objects will be cached into the layoutDataCache dictionary for the current orientation – one for the

constraint arguments to the OnMeasure override, and one for the width and height arguments to the

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.layoutchildren#xamarin_forms_layout_layoutchildren_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isvisible#xamarin_forms_visualelement_isvisible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.invalidatelayout#xamarin_forms_layout_invalidatelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.onchildmeasureinvalidated#xamarin_forms_layout_onchildmeasureinvalidated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.layoutchildren#xamarin_forms_layout_layoutchildren_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.layout#xamarin_forms_visualelement_layout_xamarin_forms_rectangle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions

LayoutData GetLayoutData(double width, double height)
{
 Size size = new Size(width, height);

 // Check if cached information is available.
 if (layoutDataCache.ContainsKey(size))
 {
 return layoutDataCache[size];
 }

 int visibleChildCount = 0;
 Size maxChildSize = new Size();
 int rows = 0;
 int columns = 0;
 LayoutData layoutData = new LayoutData();

 // Enumerate through all the children.
 foreach (View child in Children)
 {
 // Skip invisible children.
 if (!child.IsVisible)
 continue;

 // Count the visible children.
 visibleChildCount++;

 // Get the child's requested size.
 SizeRequest childSizeRequest = child.Measure(Double.PositiveInfinity, Double.PositiveInfinity);

 // Accumulate the maximum child size.
 maxChildSize.Width = Math.Max(maxChildSize.Width, childSizeRequest.Request.Width);
 maxChildSize.Height = Math.Max(maxChildSize.Height, childSizeRequest.Request.Height);
 }

 if (visibleChildCount != 0)
 {
 // Calculate the number of rows and columns.
 if (Double.IsPositiveInfinity(width))
 {
 columns = visibleChildCount;
 rows = 1;
 }
 else
 {
 columns = (int)((width + ColumnSpacing) / (maxChildSize.Width + ColumnSpacing));
 columns = Math.Max(1, columns);
 rows = (visibleChildCount + columns - 1) / columns;
 }

 // Now maximize the cell size based on the layout size.
 Size cellSize = new Size();

 if (Double.IsPositiveInfinity(width))
 cellSize.Width = maxChildSize.Width;
 else
 cellSize.Width = (width - ColumnSpacing * (columns - 1)) / columns;

 if (Double.IsPositiveInfinity(height))
 cellSize.Height = maxChildSize.Height;

LayoutChildren override. When rotating the device into landscape orientation, the OnMeasure override and the

LayoutChildren override will again be invoked, which will result in another two LayoutData objects being

cached into the dictionary. However, when returning the device to portrait orientation, no further calculations

are required because the layoutDataCache already has the required data.

The following code example shows the GetLayoutData method, which calculates the properties of the

LayoutData structured based on a particular size:

 cellSize.Height = maxChildSize.Height;
 else
 cellSize.Height = (height - RowSpacing * (rows - 1)) / rows;

 layoutData = new LayoutData(visibleChildCount, cellSize, rows, columns);
 }

 layoutDataCache.Add(size, layoutData);
 return layoutData;
}

 Add Properties Backed by Bindable PropertiesAdd Properties Backed by Bindable Properties

public static readonly BindableProperty ColumnSpacingProperty = BindableProperty.Create(
 "ColumnSpacing",
 typeof(double),
 typeof(WrapLayout),
 5.0,
 propertyChanged: (bindable, oldvalue, newvalue) =>
 {
 ((WrapLayout)bindable).InvalidateLayout();
 });

public static readonly BindableProperty RowSpacingProperty = BindableProperty.Create(
 "RowSpacing",
 typeof(double),
 typeof(WrapLayout),
 5.0,
 propertyChanged: (bindable, oldvalue, newvalue) =>
 {
 ((WrapLayout)bindable).InvalidateLayout();
 });

 Override the OnMeasure MethodOverride the OnMeasure Method

The GetLayoutData method performs the following operations:

It determines whether a calculated LayoutData value is already in the cache and returns it if it's available.

Otherwise, it enumerates through all the children, invoking the Measure method on each child with an

infinite width and height, and determines the maximum child size.

Provided that there's at least one visible child, it calculates the number of rows and columns required, and

then calculates a cell size for the children based on the dimensions of the WrapLayout . Note that the cell size

is usually slightly wider than the maximum child size, but that it could also be smaller if the WrapLayout isn't

wide enough for the widest child or tall enough for the tallest child.

It stores the new LayoutData value in the cache.

The WrapLayout class defines ColumnSpacing and RowSpacing properties, whose values are used to separate the

rows and columns in the layout, and which are backed by bindable properties. The bindable properties are

shown in the following code example:

The property-changed handler of each bindable property invokes the InvalidateLayout method override to

trigger a new layout pass on the WrapLayout . For more information, see Override the InvalidateLayout Method

and Override the OnChildMeasureInvalidated Method.

The OnMeasure override is shown in the following code example:

protected override SizeRequest OnMeasure(double widthConstraint, double heightConstraint)
{
 LayoutData layoutData = GetLayoutData(widthConstraint, heightConstraint);
 if (layoutData.VisibleChildCount == 0)
 {
 return new SizeRequest();
 }

 Size totalSize = new Size(layoutData.CellSize.Width * layoutData.Columns + ColumnSpacing *
(layoutData.Columns - 1),
 layoutData.CellSize.Height * layoutData.Rows + RowSpacing * (layoutData.Rows - 1));
 return new SizeRequest(totalSize);
}

IMPORTANTIMPORTANT

 Override the LayoutChildren MethodOverride the LayoutChildren Method

The override invokes the GetLayoutData method and constructs a SizeRequest object from the returned data,

while also taking into account the RowSpacing and ColumnSpacing property values. For more information about

the GetLayoutData method, see Calculate and Cache Layout Data.

The Measure and OnMeasure methods should never request an infinite dimension by returning a SizeRequest value

with a property set to Double.PositiveInfinity . However, at least one of the constraint arguments to OnMeasure can

be Double.PositiveInfinity .

The LayoutChildren override is shown in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.measure#xamarin_forms_visualelement_measure_system_double_system_double_xamarin_forms_measureflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.onmeasure#xamarin_forms_visualelement_onmeasure_system_double_system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.sizerequest

protected override void LayoutChildren(double x, double y, double width, double height)
{
 LayoutData layoutData = GetLayoutData(width, height);

 if (layoutData.VisibleChildCount == 0)
 {
 return;
 }

 double xChild = x;
 double yChild = y;
 int row = 0;
 int column = 0;

 foreach (View child in Children)
 {
 if (!child.IsVisible)
 {
 continue;
 }

 LayoutChildIntoBoundingRegion(child, new Rectangle(new Point(xChild, yChild), layoutData.CellSize));
 if (++column == layoutData.Columns)
 {
 column = 0;
 row++;
 xChild = x;
 yChild += RowSpacing + layoutData.CellSize.Height;
 }
 else
 {
 xChild += ColumnSpacing + layoutData.CellSize.Width;
 }
 }
}

NOTENOTE

 Override the InvalidateLayout MethodOverride the InvalidateLayout Method

protected override void InvalidateLayout()
{
 base.InvalidateLayout();
 layoutInfoCache.Clear();
}

The override begins with a call to the GetLayoutData method, and then enumerates all of the children to size and

position them within each child's cell. This is achieved by invoking the LayoutChildIntoBoundingRegion method,

which is used to position a child within a rectangle based on its HorizontalOptions and VerticalOptions

property values. This is equivalent to making a call to the child's Layout method.

Note that the rectangle passed to the LayoutChildIntoBoundingRegion method includes the whole area in which the

child can reside.

For more information about the GetLayoutData method, see Calculate and Cache Layout Data.

The InvalidateLayout override is invoked when children are added to or removed from the layout, or when one

of the WrapLayout properties changes value, as shown in the following code example:

The override invalidates the layout and discards all the cached layout information.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.layoutchildintoboundingregion#xamarin_forms_layout_layoutchildintoboundingregion_xamarin_forms_visualelement_xamarin_forms_rectangle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.layout#xamarin_forms_visualelement_layout_xamarin_forms_rectangle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.invalidatelayout#xamarin_forms_layout_invalidatelayout

NOTENOTE

 Override the OnChildMeasureInvalidated MethodOverride the OnChildMeasureInvalidated Method

protected override void OnChildMeasureInvalidated()
{
 base.OnChildMeasureInvalidated();
 layoutInfoCache.Clear();
}

 Consume the WrapLayoutConsume the WrapLayout

<ContentPage ... xmlns:local="clr-namespace:ImageWrapLayout">
 <ScrollView Margin="0,20,0,20">
 <local:WrapLayout x:Name="wrapLayout" />
 </ScrollView>
</ContentPage>

public class ImageWrapLayoutPageCS : ContentPage
{
 WrapLayout wrapLayout;

 public ImageWrapLayoutPageCS()
 {
 wrapLayout = new WrapLayout();

 Content = new ScrollView
 {
 Margin = new Thickness(0, 20, 0, 20),
 Content = wrapLayout
 };
 }
 ...
}

To stop the Layout class invoking the InvalidateLayout method whenever a child is added to or removed from a

layout, override the ShouldInvalidateOnChildAdded and ShouldInvalidateOnChildRemoved methods, and return

false . The layout class can then implement a custom process when children are added or removed.

The OnChildMeasureInvalidated override is invoked when one of the layout's children changes size, and is shown

in the following code example:

The override invalidates the child layout, and discards all of the cached layout information.

The WrapLayout class can be consumed by placing it on a Page derived type, as demonstrated in the following

XAML code example:

The equivalent C# code is shown below:

Children can then be added to the WrapLayout as required. The following code example shows Image elements

being added to the WrapLayout :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.invalidatelayout#xamarin_forms_layout_invalidatelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.shouldinvalidateonchildadded#xamarin_forms_layout_shouldinvalidateonchildadded_xamarin_forms_view_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.shouldinvalidateonchildremoved#xamarin_forms_layout_shouldinvalidateonchildremoved_xamarin_forms_view_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.onchildmeasureinvalidated#xamarin_forms_layout_onchildmeasureinvalidated
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

protected override async void OnAppearing()
{
 base.OnAppearing();

 var images = await GetImageListAsync();
 if (images != null)
 {
 foreach (var photo in images.Photos)
 {
 var image = new Image
 {
 Source = ImageSource.FromUri(new Uri(photo))
 };
 wrapLayout.Children.Add(image);
 }
 }
}

async Task<ImageList> GetImageListAsync()
{
 try
 {
 string requestUri = "https://raw.githubusercontent.com/xamarin/docs-
archive/master/Images/stock/small/stock.json";
 string result = await _client.GetStringAsync(requestUri);
 return JsonConvert.DeserializeObject<ImageList>(result);
 }
 catch (Exception ex)
 {
 Debug.WriteLine($"\tERROR: {ex.Message}");
 }

 return null;
}

When the page containing the WrapLayout appears, the sample application asynchronously accesses a remote

JSON file containing a list of photos, creates an Image element for each photo, and adds it to the WrapLayout .

This results in the appearance shown in the following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

The following screenshots show the WrapLayout after it's been rotated to landscape orientation:

 Related links

The number of columns in each row depends on the photo size, the screen width, and the number of pixels per

device-independent unit. The Image elements asynchronously load the photos, and therefore the WrapLayout

class will receive frequent calls to its LayoutChildren method as each Image element receives a new size based

on the loaded photo.

WrapLayout (sample)

Custom Layouts

Creating Custom Layouts in Xamarin.Forms (video)

Layout<T>

Layout

VisualElement

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.layoutchildren#xamarin_forms_layout_layoutchildren_system_double_system_double_system_double_system_double_
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-customlayout-wraplayout
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter26
https://www.youtube.com/watch?v=sxjOqNZFhKU
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

Device Orientation
 7/8/2021 • 9 minutes to read • Edit Online

 Controlling Orientation

 iOSiOS

 AndroidAndroid

 Download the sample

It is important to consider how your application will be used and how landscape orientation can be incorporated

to improve the user experience. Individual layouts can be designed to accommodate multiple orientations and

best use the available space. At the application level, rotation can be disabled or enabled.

When using Xamarin.Forms, the supported method of controlling device orientation is to use the settings for

each individual project.

On iOS, device orientation is configured for applications using the Info.plistInfo.plist file. Use the IDE options at the top

of this document to select which instructions you'd like to see:

Visual Studio

Visual Studio for Mac

In Visual Studio, open the iOS project and open Info.plistInfo.plist. The file will open into a configuration panel, starting

with the iPhone Deployment Info tab:

To control the orientation on Android, open MainActivity.csMainActivity.cs and set the orientation using the attribute

decorating the MainActivity class:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/device-orientation.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-responsivelayout

namespace MyRotatingApp.Droid
{
 [Activity (Label = "MyRotatingApp.Droid", Icon = "@drawable/icon", Theme = "@style/MainTheme",
MainLauncher = true, ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation,
ScreenOrientation = ScreenOrientation.Landscape)] //This is what controls orientation
 public class MainActivity : FormsAppCompatActivity
 {
 protected override void OnCreate (Bundle bundle)
...

 Universal Windows platformUniversal Windows platform

 Reacting to Changes in Orientation

Xamarin.Android supports several options for specifying orientation:

LandscapeLandscape – forces the application orientation to be landscape, regardless of sensor data.

Por traitPor trait – forces the application orientation to be portrait, regardless of sensor data.

UserUser – causes the application to be presented using the user's preferred orientation.

BehindBehind – causes the application's orientation to be the same as the orientation of the activity behind it.

SensorSensor – causes the application's orientation to be determined by the sensor, even if the user has disabled

automatic rotation.

SensorLandscapeSensorLandscape – causes the application to use landscape orientation while using sensor data to change

the direction the screen is facing (so that the screen isn't seen as upside down).

SensorPor traitSensorPor trait – causes the application to use portrait orientation while using sensor data to change the

direction the screen is facing (so that the screen isn't seen as upside down).

ReverseLandscapeReverseLandscape – causes the application to use landscape orientation, facing the opposite direction from

usual, so as to appear "upside down."

ReversePor traitReversePor trait – causes the application to use portrait orientation, facing the opposite direction from

usual, so as to appear "upside down."

FullSensorFullSensor – causes the application to rely on sensor data to select the correct orientation (out of the

possible 4).

FullUserFullUser – causes the application to use the user's orientation preferences. If automatic rotation is enabled,

then all 4 orientations can be used.

UserLandscapeUserLandscape – [Not Supported] causes the application to use landscape orientation, unless the user has

automatic rotation enabled, in which case it will use the sensor to determine orientation. This option will

break compilation.

UserPor traitUserPor trait – [Not Supported] causes the application to use portrait orientation, unless the user has

automatic rotation enabled, in which case it will use the sensor to determine orientation. This option will

break compilation.

LockedLocked – [Not Supported] causes the application to use the screen orientation, whatever it is at launch,

without responding to changes in the device's physical orientation. This option will break compilation.

Note that the native Android APIs provide a lot of control over how orientation is managed, including options

that explicitly contradict the user's expressed preferences.

On the Universal Windows Platform (UWP), supported orientations are set in the Package.appxmanifestPackage.appxmanifest file.

Opening the manifest will reveal a configuration panel where supported orientations can be selected.

Xamarin.Forms does not offer any native events for notifying your app of orientation changes in shared code.

However,Xamarin.Essentials contains a [DeviceDisplay] class that provides notifications of orientation changes.

To detect orientations without Xamarin.Essentials, monitor the SizeChanged event of the Page , which fires when

either the width or height of the Page changes. When the width of the Page is greater than the height, the

https://docs.microsoft.com/en-us/dotnet/api/android.app.activity

protected override void OnSizeAllocated(double width, double height)
{
 base.OnSizeAllocated(width, height); //must be called
}

private double width = 0;
private double height = 0;

protected override void OnSizeAllocated(double width, double height)
{
 base.OnSizeAllocated(width, height); //must be called
 if (this.width != width || this.height != height)
 {
 this.width = width;
 this.height = height;
 //reconfigure layout
 }
}

device is in landscape mode. For more information, see Display an Image based on Screen Orientation.

Alternatively, it's possible to override the OnSizeAllocated method on a Page , inserting any layout change logic

there. The OnSizeAllocated method is called whenever a Page is allocated a new size, which happens whenever

the device is rotated. Note that the base implementation of OnSizeAllocated performs important layout

functions, so it is important to call the base implementation in the override:

Failure to take that step will result in a non-functioning page.

Note that the OnSizeAllocated method may be called many times when a device is rotated. Changing your

layout each time is wasteful of resources and can lead to flickering. Consider using an instance variable within

your page to track whether the orientation is in landscape or portrait, and only redraw when there is a change:

Once a change in device orientation has been detected, you may want to add or remove additional views

to/from your user interface to react to the change in available space. For example, consider the built-in calculator

on each platform in portrait:

https://github.com/xamarin/recipes/tree/master/Recipes/xamarin-forms/Controls/screen-orientation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onsizeallocated

and landscape:

 Responsive Layout

NOTENOTE

 StackLayoutStackLayout

Notice that the apps take advantage of the available space by adding more functionality in landscape.

It is possible to design interfaces using the built-in layouts so that they transition gracefully when the device is

rotated. When designing interfaces that will continue to be appealing when responding to changes in

orientation consider the following general rules:

Pay attention to ratiosPay attention to ratios – changes in orientation can cause problems when certain assumptions are made

with regards to ratios. For example, a view that would have plenty of space in 1/3 of the vertical space of a

screen in portrait may not fit into 1/3 of the vertical space in landscape.

Be careful with absolute valuesBe careful with absolute values – absolute (pixel) values that make sense in portrait may not make sense

in landscape. When absolute values are necessary, use nested layouts to isolate their impact. For example, it

would be reasonable to use absolute values in a TableView ItemTemplate when the item template has a

guaranteed uniform height.

The above rules also apply when implementing interfaces for multiple screen sizes and are generally considered

best-practice. The rest of this guide will explain specific examples of responsive layouts using each of the

primary layouts in Xamarin.Forms.

For clarity, the following sections demonstrate how to implement responsive layouts using just one type of Layout at a

time. In practice, it is often simpler to mix Layout s to achieve a desired layout using the simpler or most intuitive

Layout for each component.

Consider the following application, displayed in portrait:

and landscape:

That is accomplished with the following XAML:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="ResponsiveLayout.StackLayoutPageXaml"
Title="Stack Photo Editor - XAML">
 <ContentPage.Content>
 <StackLayout Spacing="10" Padding="5" Orientation="Vertical"
 x:Name="outerStack"> <!-- can change orientation to make responsive -->
 <ScrollView>
 <StackLayout Spacing="5" HorizontalOptions="FillAndExpand"
 WidthRequest="1000">
 <StackLayout Orientation="Horizontal">
 <Label Text="Name: " WidthRequest="75"
 HorizontalOptions="Start" />
 <Entry Text="deer.jpg"
 HorizontalOptions="FillAndExpand" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Date: " WidthRequest="75"
 HorizontalOptions="Start" />
 <Entry Text="07/05/2015"
 HorizontalOptions="FillAndExpand" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Tags:" WidthRequest="75"
 HorizontalOptions="Start" />
 <Entry Text="deer, tiger"
 HorizontalOptions="FillAndExpand" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Button Text="Save" HorizontalOptions="FillAndExpand" />
 </StackLayout>
 </StackLayout>
 </ScrollView>
 <Image Source="deer.jpg" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

protected override void OnSizeAllocated (double width, double height){
 base.OnSizeAllocated (width, height);
 if (width != this.width || height != this.height) {
 this.width = width;
 this.height = height;
 if (width > height) {
 outerStack.Orientation = StackOrientation.Horizontal;
 } else {
 outerStack.Orientation = StackOrientation.Vertical;
 }
 }
}

 AbsoluteLayoutAbsoluteLayout

Some C# is used to change the orientation of outerStack based on the orientation of the device:

Note the following:

outerStack is adjusted to present the image and controls as a horizontal or vertical stack depending on

orientation, to best take advantage of the available space.

Consider the following application, displayed in portrait:

and landscape:

That is accomplished with the following XAML:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="ResponsiveLayout.AbsoluteLayoutPageXaml"
Title="AbsoluteLayout - XAML" BackgroundImageSource="deer.jpg">
 <ContentPage.Content>
 <AbsoluteLayout>
 <ScrollView AbsoluteLayout.LayoutBounds="0,0,1,1"
 AbsoluteLayout.LayoutFlags="PositionProportional,SizeProportional">
 <AbsoluteLayout>
 <Image Source="deer.jpg"
 AbsoluteLayout.LayoutBounds=".5,0,300,300"
 AbsoluteLayout.LayoutFlags="PositionProportional" />
 <BoxView Color="#CC1A7019" AbsoluteLayout.LayoutBounds=".5
 300,.7,50" AbsoluteLayout.LayoutFlags="XProportional
 WidthProportional" />
 <Label Text="deer.jpg" AbsoluteLayout.LayoutBounds = ".5
 310,1, 50" AbsoluteLayout.LayoutFlags="XProportional
 WidthProportional" HorizontalTextAlignment="Center" TextColor="White" />
 </AbsoluteLayout>
 </ScrollView>
 <Button Text="Previous" AbsoluteLayout.LayoutBounds="0,1,.5,60"
 AbsoluteLayout.LayoutFlags="PositionProportional
 WidthProportional"
 BackgroundColor="White" TextColor="Green" BorderRadius="0" />
 <Button Text="Next" AbsoluteLayout.LayoutBounds="1,1,.5,60"
 AbsoluteLayout.LayoutFlags="PositionProportional
 WidthProportional" BackgroundColor="White"
 TextColor="Green" BorderRadius="0" />
 </AbsoluteLayout>
 </ContentPage.Content>
</ContentPage>

 RelativeLayoutRelativeLayout

Note the following:

Because of the way the page has been laid out, there is no need for procedural code to introduce

responsiveness.

The ScrollView is being used to allow the label to be visible even when the height of the screen is less than

the sum of the fixed heights of the buttons and the image.

Consider the following application, displayed in portrait:

and landscape:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="ResponsiveLayout.RelativeLayoutPageXaml"
Title="RelativeLayout - XAML"
BackgroundImageSource="deer.jpg">
 <ContentPage.Content>
 <RelativeLayout x:Name="outerLayout">
 <BoxView BackgroundColor="#AA1A7019"
 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=1}"
 RelativeLayout.HeightConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=1}"
 RelativeLayout.XConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=0,Constant=0}"
 RelativeLayout.YConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=0,Constant=0}" />
 <ScrollView
 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=1}"
 RelativeLayout.HeightConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=1,Constant=-60}"
 RelativeLayout.XConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=0,Constant=0}"
 RelativeLayout.YConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=0,Constant=0}">
 <RelativeLayout>
 <Image Source="deer.jpg" x:Name="imageDeer"
 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=.8}"
 RelativeLayout.XConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=.1}"
 RelativeLayout.YConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=0,Constant=10}" />
 <Label Text="deer.jpg" HorizontalTextAlignment="Center"
 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=1}"
 RelativeLayout.HeightConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=0,Constant=75}"
 RelativeLayout.XConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=0,Constant=0}"
 RelativeLayout.YConstraint="{ConstraintExpression
 Type=RelativeToView,ElementName=imageDeer,Property=Height,Factor=1,Constant=20}"
/>
 </RelativeLayout>

 </ScrollView>

 <Button Text="Previous" BackgroundColor="White" TextColor="Green" BorderRadius="0"
 RelativeLayout.YConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=1,Constant=-60}"
 RelativeLayout.XConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=0,Constant=0}"
 RelativeLayout.HeightConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=0,Constant=60}"
 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=.5}"
 />
 <Button Text="Next" BackgroundColor="White" TextColor="Green" BorderRadius="0"
 RelativeLayout.XConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=.5}"
 RelativeLayout.YConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=1,Constant=-60}"
 RelativeLayout.HeightConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=0,Constant=60}"
 RelativeLayout.WidthConstraint="{ConstraintExpression

That is accomplished with the following XAML:

 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=.5}"
 />
 </RelativeLayout>
 </ContentPage.Content>
</ContentPage>

 GridGrid

Note the following:

Because of the way the page has been laid out, there is no need for procedural code to introduce

responsiveness.

The ScrollView is being used to allow the label to be visible even when the height of the screen is less than

the sum of the fixed heights of the buttons and the image.

Consider the following application, displayed in portrait:

and landscape:

That is accomplished with the following XAML:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="ResponsiveLayout.GridPageXaml"
Title="Grid - XAML">
 <ContentPage.Content>
 <Grid x:Name="outerGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="60" />
 </Grid.RowDefinitions>
 <Grid x:Name="innerGrid" Grid.Row="0" Padding="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Image Source="deer.jpg" Grid.Row="0" Grid.Column="0" HeightRequest="300" WidthRequest="300"
/>
 <Grid x:Name="controlsGrid" Grid.Row="0" Grid.Column="1" >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Text="Name:" Grid.Row="0" Grid.Column="0" />
 <Label Text="Date:" Grid.Row="1" Grid.Column="0" />
 <Label Text="Tags:" Grid.Row="2" Grid.Column="0" />
 <Entry Grid.Row="0" Grid.Column="1" />
 <Entry Grid.Row="1" Grid.Column="1" />
 <Entry Grid.Row="2" Grid.Column="1" />
 </Grid>
 </Grid>
 <Grid x:Name="buttonsGrid" Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Button Text="Previous" Grid.Column="0" />
 <Button Text="Save" Grid.Column="1" />
 <Button Text="Next" Grid.Column="2" />
 </Grid>
 </Grid>
 </ContentPage.Content>
</ContentPage>

Along with the following procedural code to handle rotation changes:

private double width;
private double height;

protected override void OnSizeAllocated (double width, double height){
 base.OnSizeAllocated (width, height);
 if (width != this.width || height != this.height) {
 this.width = width;
 this.height = height;
 if (width > height) {
 innerGrid.RowDefinitions.Clear();
 innerGrid.ColumnDefinitions.Clear ();
 innerGrid.RowDefinitions.Add (new RowDefinition{ Height = new GridLength (1, GridUnitType.Star)
});
 innerGrid.ColumnDefinitions.Add (new ColumnDefinition { Width = new GridLength (1,
GridUnitType.Star) });
 innerGrid.ColumnDefinitions.Add (new ColumnDefinition { Width = new GridLength (1,
GridUnitType.Star) });
 innerGrid.Children.Remove (controlsGrid);
 innerGrid.Children.Add (controlsGrid, 1, 0);
 } else {
 innerGrid.RowDefinitions.Clear();
 innerGrid.ColumnDefinitions.Clear ();
 innerGrid.ColumnDefinitions.Add (new ColumnDefinition{ Width = new GridLength (1,
GridUnitType.Star) });
 innerGrid.RowDefinitions.Add (new RowDefinition { Height = new GridLength (1, GridUnitType.Auto)
});
 innerGrid.RowDefinitions.Add (new RowDefinition { Height = new GridLength (1, GridUnitType.Star)
});
 innerGrid.Children.Remove (controlsGrid);
 innerGrid.Children.Add (controlsGrid, 0, 1);
 }
 }
}

 Related Links

Note the following:

Because of the way the page has been laid out, there is a method to change the grid placement of the

controls.

Layout (sample)

BusinessTumble Example (sample)

Responsive Layout (sample)

Display an Image based on Screen Orientation

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-businesstumble
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-responsivelayout
https://github.com/xamarin/recipes/tree/master/Recipes/xamarin-forms/Controls/screen-orientation

Layout Options in Xamarin.Forms
 7/8/2021 • 5 minutes to read • Edit Online

 Overview

NOTENOTE

 Alignment

 Download the sample

Every Xamarin.Forms view has HorizontalOptions and VerticalOptions properties, of type LayoutOptions. This

article explains the effect that each LayoutOptions value has on the alignment and expansion of a view.

The LayoutOptions structure encapsulates two layout preferences:

AlignmentAlignment – the view's preferred alignment, which determines its position and size within its parent layout.

ExpansionExpansion – used only by a StackLayout , and indicates if the view should use extra space, if it's available.

These layout preferences can be applied to a View , relative to its parent, by setting the HorizontalOptions or

VerticalOptions property of the View to one of the public fields from the LayoutOptions structure. The public

fields are as follows:

Start

Center

End

Fill

StartAndExpand

CenterAndExpand

EndAndExpand

FillAndExpand

The Start , Center , End , and Fill fields are used to define the view's alignment within the parent layout:

For horizontal alignment, Start positions the View on the left hand side of the parent layout, and for

vertical alignment, it positions the View at the top of the parent layout.

For horizontal and vertical alignment, Center horizontally or vertically centers the View .

For horizontal alignment, End positions the View on the right hand side of the parent layout, and for

vertical alignment, it positions the View at the bottom of the parent layout.

For horizontal alignment, Fill ensures that the View fills the width of the parent layout, and for vertical

alignment, it ensures that the View fills the height of the parent layout.

The StartAndExpand , CenterAndExpand , EndAndExpand , and FillAndExpand values are used to define the

alignment preference, and whether the view will occupy more space if available within the parent StackLayout .

The default value of a view's HorizontalOptions and VerticalOptions properties is LayoutOptions.Fill .

Alignment controls how a view is positioned within its parent layout when the parent layout contains unused

space (that is, the parent layout is larger than the combined size of all its children).

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/layout-options.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.start
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.center
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.end
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.startandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.centerandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.endandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fillandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.start
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.center
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.end
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill

NOTENOTE

<StackLayout Margin="0,20,0,0">
 ...
 <Label Text="Start" BackgroundColor="Gray" HorizontalOptions="Start" />
 <Label Text="Center" BackgroundColor="Gray" HorizontalOptions="Center" />
 <Label Text="End" BackgroundColor="Gray" HorizontalOptions="End" />
 <Label Text="Fill" BackgroundColor="Gray" HorizontalOptions="Fill" />
</StackLayout>

Content = new StackLayout
{
 Margin = new Thickness(0, 20, 0, 0),
 Children = {
 ...
 new Label { Text = "Start", BackgroundColor = Color.Gray, HorizontalOptions = LayoutOptions.Start },
 new Label { Text = "Center", BackgroundColor = Color.Gray, HorizontalOptions = LayoutOptions.Center },
 new Label { Text = "End", BackgroundColor = Color.Gray, HorizontalOptions = LayoutOptions.End },
 new Label { Text = "Fill", BackgroundColor = Color.Gray, HorizontalOptions = LayoutOptions.Fill }
 }
};

A StackLayout only respects the Start , Center , End , and Fill LayoutOptions fields on child views that are

in the opposite direction to the StackLayout orientation. Therefore, child views within a vertically oriented

StackLayout can set their HorizontalOptions properties to one of the Start , Center , End , or Fill fields.

Similarly, child views within a horizontally oriented StackLayout can set their VerticalOptions properties to

one of the Start , Center , End , or Fill fields.

A StackLayout does not respect the Start , Center , End , and Fill LayoutOptions fields on child views that

are in the same direction as the StackLayout orientation. Therefore, a vertically oriented StackLayout ignores

the Start , Center , End , or Fill fields if they are set on the VerticalOptions properties of child views.

Similarly, a horizontally oriented StackLayout ignores the Start , Center , End , or Fill fields if they are set

on the HorizontalOptions properties of child views.

LayoutOptions.Fill generally overrides size requests specified using the HeightRequest and WidthRequest

properties.

The following XAML code example demonstrates a vertically oriented StackLayout where each child Label sets

its HorizontalOptions property to one of the four alignment fields from the LayoutOptions structure:

The equivalent C# code is shown below:

The code results in the layout shown in the following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.heightrequest#xamarin_forms_visualelement_heightrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.widthrequest#xamarin_forms_visualelement_widthrequest
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions

 Expansion

NOTENOTE

Expansion controls whether a view will occupy more space, if available, within a StackLayout . If the StackLayout

contains unused space (that is, the StackLayout is larger than the combined size of all of its children), the

unused space is shared equally by all child views that request expansion by setting their HorizontalOptions or

VerticalOptions properties to a LayoutOptions field that uses the AndExpand suffix. Note that when all the

space in the StackLayout is used, the expansion options have no effect.

A StackLayout can only expand child views in the direction of its orientation. Therefore, a vertically oriented

StackLayout can expand child views that set their VerticalOptions properties to one of the StartAndExpand ,

CenterAndExpand , EndAndExpand , or FillAndExpand fields, if the StackLayout contains unused space. Similarly, a

horizontally oriented StackLayout can expand child views that set their HorizontalOptions properties to one of

the StartAndExpand , CenterAndExpand , EndAndExpand , or FillAndExpand fields, if the StackLayout contains

unused space.

A StackLayout can't expand child views in the direction opposite to its orientation. Therefore, on a vertically

oriented StackLayout , setting the HorizontalOptions property on a child view to StartAndExpand has the same

effect as setting the property to Start .

Note that enabling expansion doesn't change the size of a view unless it uses LayoutOptions.FillAndExpand .

The following XAML code example demonstrates a vertically oriented StackLayout where each child Label sets

its VerticalOptions property to one of the four expansion fields from the LayoutOptions structure:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/layout-options-images/alignment-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.horizontaloptions#xamarin_forms_view_horizontaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.startandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.start
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fillandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions

<StackLayout Margin="0,20,0,0">
 ...
 <BoxView BackgroundColor="Red" HeightRequest="1" />
 <Label Text="Start" BackgroundColor="Gray" VerticalOptions="StartAndExpand" />
 <BoxView BackgroundColor="Red" HeightRequest="1" />
 <Label Text="Center" BackgroundColor="Gray" VerticalOptions="CenterAndExpand" />
 <BoxView BackgroundColor="Red" HeightRequest="1" />
 <Label Text="End" BackgroundColor="Gray" VerticalOptions="EndAndExpand" />
 <BoxView BackgroundColor="Red" HeightRequest="1" />
 <Label Text="Fill" BackgroundColor="Gray" VerticalOptions="FillAndExpand" />
 <BoxView BackgroundColor="Red" HeightRequest="1" />
</StackLayout>

Content = new StackLayout
{
 Margin = new Thickness(0, 20, 0, 0),
 Children = {
 ...
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "StartAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.StartAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "CenterAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.CenterAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "EndAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.EndAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 },
 new Label { Text = "FillAndExpand", BackgroundColor = Color.Gray, VerticalOptions =
LayoutOptions.FillAndExpand },
 new BoxView { BackgroundColor = Color.Red, HeightRequest = 1 }
 }
};

The equivalent C# code is shown below:

The code results in the layout shown in the following screenshots:

 Summary

 Related Links

Each Label occupies the same amount of space within the StackLayout . However, only the final Label , which

sets its VerticalOptions property to FillAndExpand has a different size. In addition, each Label is separated by

a small red BoxView , which enables the space the Label occupies to be easily viewed.

This article explained the effect that each LayoutOptions structure value has on the alignment and expansion of

a view, relative to its parent. The Start , Center , End , and Fill fields are used to define the view's alignment

within the parent layout, and the StartAndExpand , CenterAndExpand , EndAndExpand , and FillAndExpand fields are

used to define the alignment preference, and to determine whether the view will occupy more space, if available,

within a StackLayout .

LayoutOptions (sample)

LayoutOptions

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/layout-options-images/expansion-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fillandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layoutoptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions

Layout Compression
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

<ContentView ...>
 <StackLayout>
 <StackLayout ...>
 <AbsoluteLayout ...>
 <Button ... />
 <Image ... />
 <Image ... />
 <BoxView ... />
 <Label ... />
 <Button ... />
 </AbsoluteLayout>
 </StackLayout>
 <Label ... />
 </StackLayout>
</ContentView>

 Download the sample

Layout compression removes specified layouts from the visual tree in an attempt to improve page rendering

performance. This article explains how to enable layout compression and the benefits it can bring.

Xamarin.Forms performs layout using two series of recursive method calls:

Layout begins at the top of the visual tree with a page, and it proceeds through all branches of the visual tree

to encompass every visual element on a page. Elements that are parents to other elements are responsible

for sizing and positioning their children relative to themselves.

Invalidation is the process by which a change in an element on a page triggers a new layout cycle. Elements

are considered invalid when they no longer have the correct size or position. Every element in the visual tree

that has children is alerted whenever one of its children changes sizes. Therefore, a change in the size of an

element in the visual tree can cause changes that ripple up the tree.

For more information about how Xamarin.Forms performs layout, see Creating a Custom Layout.

The result of the layout process is a hierarchy of native controls. However, this hierarchy includes additional

container renderers and wrappers for platform renderers, further inflating the view hierarchy nesting. The

deeper the level of nesting, the greater the amount of work that Xamarin.Forms has to perform to display a

page. For complex layouts, the view hierarchy can be both deep and broad, with multiple levels of nesting.

For example, consider the following button from the sample application for logging into Facebook:

This button is specified as a custom control with the following XAML view hierarchy:

The resulting nested view hierarchy can be examined with the Live Visual Tree. On Android, the nested view

hierarchy contains 17 views:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/layout-compression.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layoutcompression

NOTENOTE

 Layout Compression

<StackLayout CompressedLayout.IsHeadless="true">
 ...
</StackLayout>

CompressedLayout.SetIsHeadless(stackLayout, true);

IMPORTANTIMPORTANT

Layout compression, which is available for Xamarin.Forms applications on the iOS and Android platforms, aims

to flatten the view nesting by removing specified layouts from the visual tree, which can improve page-

rendering performance. The performance benefit that's delivered varies depending on the complexity of a page,

the version of the operating system being used, and the device on which the application is running. However, the

biggest performance gains will be seen on older devices.

While this article focuses on the results of applying layout compression on Android, it's equally applicable to iOS.

In XAML, layout compression can be enabled by setting the CompressedLayout.IsHeadless attached property to

true on a layout class:

Alternatively, it can be enabled in C# by specifying the layout instance as the first argument to the

CompressedLayout.SetIsHeadless method:

Since layout compression removes a layout from the visual tree, it's not suitable for layouts that have a visual appearance,

or that obtain touch input. Therefore, layouts that set VisualElement properties (such as BackgroundColor ,

IsVisible , Rotation , Scale , TranslationX and TranslationY or that accept gestures, are not candidates for

layout compression. However, enabling layout compression on a layout that sets visual appearance properties, or that

accepts gestures, will not result in a build or runtime error. Instead, layout compression will be applied and visual

appearance properties, and gesture recognition, will silently fail.

For the Facebook button, layout compression can be enabled on the three layout classes:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.backgroundcolor#xamarin_forms_visualelement_backgroundcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isvisible#xamarin_forms_visualelement_isvisible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.rotation#xamarin_forms_visualelement_rotation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.scale#xamarin_forms_visualelement_scale
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy

<StackLayout CompressedLayout.IsHeadless="true">
 <StackLayout CompressedLayout.IsHeadless="true" ...>
 <AbsoluteLayout CompressedLayout.IsHeadless="true" ...>
 ...
 </AbsoluteLayout>
 </StackLayout>
 ...
</StackLayout>

 Fast RenderersFast Renderers

 Summary

On Android, this results in a nested view hierarchy of 14 views:

Compared to the original nested view hierarchy of 17 views, this represents a reduction in the number of views

of 17%. While this reduction may appear insignificant, the view reduction over an entire page can be more

significant.

Fast renderers reduce the inflation and rendering costs of Xamarin.Forms controls on Android by flattening the

resulting native view hierarchy. This further improves performance by creating fewer objects, which in turn

results in a less complex visual tree and less memory use. For more information about fast renderers, see Fast

Renderers.

For the Facebook button in the sample application, combining layout compression and fast renderers produces

a nested view hierarchy of 8 views:

Compared to the original nested view hierarchy of 17 views, this represents a reduction of 52%.

The sample application contains a page extracted from a real application. Without layout compression and fast

renderers, the page produces a nested view hierarchy of 130 views on Android. Enabling fast renderers and

layout compression on appropriate layout classes reduces the nested view hierarchy to 70 views, a reduction of

46%.

Layout compression removes specified layouts from the visual tree in an attempt to improve page rendering

performance. The performance benefit that this delivers varies depending on the complexity of a page, the

version of the operating system being used, and the device on which the application is running. However, the

 Related Links

biggest performance gains will be seen on older devices.

Creating a Custom Layout

Fast Renderers

LayoutCompression (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-layoutcompression

Margin and Padding
 7/8/2021 • 2 minutes to read • Edit Online

 Overview

 Specifying a Thickness

The Margin and Padding properties control layout behavior when an element is rendered in the user interface.

This article demonstrates the difference between the two properties, and how to set them.

Margin and padding are related layout concepts:

The Margin property represents the distance between an element and its adjacent elements, and is used to

control the element's rendering position, and the rendering position of its neighbors. Margin values can be

specified on layout and view classes.

The Padding property represents the distance between an element and its child elements, and is used to

separate the control from its own content. Padding values can be specified on layout classes.

The following diagram illustrates the two concepts:

Note that Margin values are additive. Therefore, if two adjacent elements specify a margin of 20 pixels, the

distance between the elements will be 40 pixels. In addition, margin and padding are additive when both are

applied, in that the distance between an element and any content will be the margin plus padding.

The Margin and Padding properties are both of type Thickness . There are three possibilities when creating a

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/margin-and-padding.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.padding#xamarin_forms_layout_padding
file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/margin-and-padding-images/margins-and-padding.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.padding#xamarin_forms_layout_padding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness

<StackLayout Padding="0,20,0,0">
 <Label Text="Xamarin.Forms" Margin="20" />
 <Label Text="Xamarin.iOS" Margin="10, 15" />
 <Label Text="Xamarin.Android" Margin="0, 20, 15, 5" />
</StackLayout>

var stackLayout = new StackLayout {
 Padding = new Thickness(0,20,0,0),
 Children = {
 new Label { Text = "Xamarin.Forms", Margin = new Thickness (20) },
 new Label { Text = "Xamarin.iOS", Margin = new Thickness (10, 25) },
 new Label { Text = "Xamarin.Android", Margin = new Thickness (0, 20, 15, 5) }
 }
};

NOTENOTE

 Summary

 Related Links

Thickness structure:

Create a Thickness structure defined by a single uniform value. The single value is applied to the left, top,

right, and bottom sides of the element.

Create a Thickness structure defined by horizontal and vertical values. The horizontal value is symmetrically

applied to the left and right sides of the element, with the vertical value being symmetrically applied to the

top and bottom sides of the element.

Create a Thickness structure defined by four distinct values that are applied to the left, top, right, and

bottom sides of the element.

The following XAML code example shows all three possibilities:

The equivalent C# code is shown in the following code example:

Thickness values can be negative, which typically clips or overdraws the content.

This article demonstrated the difference between the Margin and Padding properties, and how to set them. The

properties control layout behavior when an element is rendered in the user interface.

Margin

Padding

Thickness

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.padding#xamarin_forms_layout_padding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout.padding#xamarin_forms_layout_padding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness

Layout for Tablet and Desktop apps
 7/8/2021 • 2 minutes to read • Edit Online

 Device Types

 iPads (iOS)iPads (iOS)

Xamarin.Forms supports all device types available on the supported platforms, so in addition to phones, apps

can also run on:

iPads,

Android tablets,

Windows tablets and desktop computers (running Windows 10).

This page briefly discusses:

the supported device types, and

how to optimize layouts for tablets versus phones.

Larger screen devices are available for all of the platforms supported by Xamarin.Forms.

The Xamarin.Forms template automatically includes iPad support by configuring the Info.plist > DevicesInfo.plist > Devices

setting to UniversalUniversal (which means both iPhone and iPad are supported).

To provide a pleasant startup experience, and ensure the full screen resolution is used on all devices, you should

make sure an iPad-specific launch screen (using a storyboard) is provided. This ensures the app is rendered

correctly on iPad mini, iPad, and iPad Pro devices.

Prior to iOS 9 all apps took up the full screen on the device, but some iPads can now perform split screen

multitasking. This means your app could take up just a slim column on the side of the screen, 50% of the width

of the screen, or the entire screen.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/layouts/tablet.md
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/images-icons/launch-screens
https://docs.microsoft.com/en-us/xamarin/ios/platform/multitasking

 Android TabletsAndroid Tablets

 Windows Tablets and DesktopsWindows Tablets and Desktops

Split-screen functionality means you should design your app to work well with as little as 320 pixels wide, or as

much as 1366 pixels wide.

The Android ecosystem has a myriad of supported screen sizes, from small phones up to large tablets.

Xamarin.Forms can support all screen sizes, but as with the other platforms you might want to adjust your user

interface for larger devices.

When supporting many different screen resolutions, you can provide your native image resources in different

sizes to optimize the user experience. Review the Android resources documentation (and in particular creating

resources for varying screen sizes) for more information on how to structure the folders and filenames in your

Android app project to include optimized image resources in your app.

To support tablets and desktop computers running Windows, you'll need to use Windows UWP support, which

builds universal apps that run on Windows 10.

Apps running on Windows tablets and desktops can be resized to arbitrary dimensions in addition to running

full-screen.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/tablet-images/ipad.png#lightbox
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/resources-in-android/index
https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/resources-in-android/resources-for-varying-screens

 Optimize for Tablet and Desktop

 Device.IdiomDevice.Idiom

if (Device.Idiom == TargetIdiom.Phone)
{
 HeroImage.Source = ImageSource.FromFile("hero.jpg");
} else {
 HeroImage.Source = ImageSource.FromFile("herotablet.jpg");
}

 Leverage FlyoutPageLeverage FlyoutPage

 Related Links

You can adjust your Xamarin.Forms user interface depending on whether a phone or tablet/desktop device is

being used. This means you can optimize the user-experience for large-screen devices such as tablets and

desktop computers.

You can use the Device class to change the behavior of your app or user interface. Using the Device.Idiom

enumeration you can

This approach can be expanded to make significant changes to individual page layouts, or even to render

entirely different pages on larger screens.

The FlyoutPage is ideal for larger screens, especially on the iPad where it uses the UISplitViewController to

provide a native iOS experience.

Review this Xamarin blog post to see how you can adapt your user interface so that phones use one layout and

larger screens can use another (with the FlyoutPage).

Xamarin Blog

MyShoppe sample

file:///T:/c1uy/wq21/xamarin/xamarin-forms/user-interface/layouts/tablet-images/splitscreen.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/uikit.uisplitviewcontroller
https://devblogs.microsoft.com/xamarin/bringing-xamarin-forms-apps-to-tablets/
https://devblogs.microsoft.com/xamarin/bringing-xamarin-forms-apps-to-tablets/
https://github.com/jamesmontemagno/myshoppe

Android Platform Features
 7/8/2021 • 2 minutes to read • Edit Online

 Platform-specifics

Developing Xamarin.Forms applications for Android requires Visual Studio. The supported platforms page

contains more information about the pre-requisites.

Platform-specifics allow you to consume functionality that's only available on a specific platform, without

implementing custom renderers or effects.

The following platform-specific functionality is provided for Xamarin.Forms views, pages, and layouts on

Android:

Controlling the Z-order of visual elements to determine drawing order. For more information, see

VisualElement Elevation on Android.

Disabling legacy color mode on a supported VisualElement . For more information, see VisualElement

Legacy Color Mode on Android.

The following platform-specific functionality is provided for Xamarin.Forms views on Android:

Using the default padding and shadow values of Android buttons. For more information, see Button Padding

and Shadows on Android.

Setting the input method editor options for the soft keyboard for an Entry . For more information, see Entry

Input Method Editor Options on Android.

Enabling a drop shadow on a ImageButton . For more information, see ImageButton Drop Shadows on

Android.

Enabling fast scrolling in a ListView . For more information, see ListView Fast Scrolling on Android.

Controlling the transition that's used when opening a SwipeView . For more information, see SwipeView

Swipe Transition Mode.

Controlling whether a WebView can display mixed content. For more information, see WebView Mixed

Content on Android.

Enabling zoom on a WebView . For more information, see WebView Zoom on Android.

The following platform-specific functionality is provided for Xamarin.Forms cells on Android:

Enabling ViewCell context actions legacy mode, so that the context actions menu is not updated when the

selected item in a ListView changes. For more information, see ViewCell Context Actions on Android.

The following platform-specific functionality is provided for Xamarin.Forms pages on Android:

Setting the height of the navigation bar on a NavigationPage . For more information, see NavigationPage Bar

Height on Android.

Disabling transition animations when navigating through pages in a TabbedPage . For more information, see

TabbedPage Page Transition Animations on Android.

Enabling swiping between pages in a TabbedPage . For more information, see TabbedPage Page Swiping on

Android.

Setting the toolbar placement and color on a TabbedPage . For more information, see TabbedPage Toolbar

Placement and Color on Android.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage

 Platform support

 Material design via AppCompat

The following platform-specific functionality is provided for the Xamarin.Forms Application class on Android:

Setting the operating mode of a soft keyboard. For more information, see Soft Keyboard Input Mode on

Android.

Disabling the Disappearing and Appearing page lifecycle events on pause and resume respectively, for

applications that use AppCompat. For more information, see Page Lifecycle Events on Android.

Originally, the default Xamarin.Forms Android project used an older style of control rendering that was common

prior to Android 5.0. Applications built using the template have FormsApplicationActivity as the base class of

their main activity.

Xamarin.Forms Android projects now use FormsAppCompatActivity as the base class of their main activity. This

class uses AppCompatAppCompat features provided by Android to implement Material Design themes.

Here is the TodoTodo sample with the default FormsApplicationActivity :

And this is the same code after upgrading the project to use FormsAppCompatActivity (and adding the additional

theme information):

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/images/before-appcompat.png#lightbox

NOTENOTE

 AndroidX Migration

When using FormsAppCompatActivity , the base classes for some Android custom renderers will be different.

AndroidX replaces the Android Support Library. To learn about AndroidX and how to migrate a Xamarin.Forms

app to use AndroidX libraries, see AndroidX migration in Xamarin.Forms.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/images/post-appcompat.png#lightbox

AndroidX migration in Xamarin.Forms
 3/5/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 History of AndroidX

 Automatic migration in Xamarin.Forms

AndroidX replaces the Android Support Library. This article explains why AndroidX exists, how it impacts

Xamarin.Forms, and how to migrate your application to use the AndroidX libraries.

If you are migrating an app to Xamarin.Forms 5.0, see How do I migrate my app to Xamarin.Forms 5.0?.

The Android Support Library was created to provide newer features on older versions of Android. It is a

compatibility layer that allows developers to use functionality that may not exist on all versions of the Android

operating system and have graceful fallbacks for older versions. The Support Library also includes convenience

and helper classes, debugging and utility tools, and sophisticated classes that depend on other Support Library

classes to function.

While the Support Library was originally a single binary, it has grown and evolved into a suite of libraries, which

are almost essential for modern app development. These are some commonly used features from the Support

Library:

The Fragment support class.

The RecyclerView , used for managing long lists.

Multidex support for apps with over 65,536 methods.

The ActivityCompat class.

AndroidX is a replacement for the Support Library, which is no longer maintained - all new library development

will occur in the AndroidX library. AndroidX is a redesigned library that uses semantic versioning, clearer

package names, and better support for common application architecture patterns. AndroidX version 1.0.0 is the

binary equivalent to Support Library version 28.0.0. For a complete list of class mappings from Support Library

to AndroidX, see Support Library class mappings on developer.android.com.

Google created a migration process called the Jetifier with AndroidX. The Jetifier inspects the jar bytecode

during the build process and remaps Support Library references, both in app code and in dependencies, to their

AndroidX equivalent.

In a Xamarin.Forms app, just as in an Android Java app, the jar dependencies must be migrated to AndroidX.

However, the Xamarin bindings must also be migrated to point to the correct, underlying jar files.

Xamarin.Forms added support for automatic AndroidX migration in version 4.5.

For more information about AndroidX, see AndroidX overview on developer.android.com.

To automatically migrate to AndroidX, a Xamarin.Forms Android platform project must:

Target Android API version 29 or greater.

Use Xamarin.Forms version 4.5 or greater.

Have direct or transitive dependencies on Android support libraries.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/androidx-migration.md
https://developer.android.com/jetpack/androidx/migrate/class-mappings
https://developer.android.com/jetpack/androidx

IMPORTANTIMPORTANT

Could not find 37 AndroidX assemblies, make sure to install the following NuGet packages:
- Xamarin.AndroidX.Lifecycle.LiveData
- Xamarin.AndroidX.Browser
- Xamarin.Google.Android.Material
- Xamarin.AndroidX.Legacy.Supportv4
You can also copy and paste the following snippit into your .csproj file:
 <PackageReference Include="Xamarin.AndroidX.Lifecycle.LiveData" Version="2.1.0-rc1" />
 <PackageReference Include="Xamarin.AndroidX.Browser" Version="1.0.0-rc1" />
 <PackageReference Include="Xamarin.Google.Android.Material" Version="1.0.0-rc1" />
 <PackageReference Include="Xamarin.AndroidX.Legacy.Support.V4" Version="1.0.0-rc1" />

NOTENOTE

 Related links

Once you have confirmed these settings in your project, build the Android app in Visual Studio 2019. During the

build process, the Intermediate Language (IL) is inspected and Support Library dependencies and bindings are

swapped with AndroidX dependencies. If your application has all of the AndroidX dependencies required to

build, you will notice no differences in the build process.

Manual migration to AndroidX will result in the fastest build process for your app, and is the recommended approach for

AndroidX migration. This involves replacing support library dependencies with AndroidX dependencies, and updating your

code to consume AndroidX types. For more information, see Use AndroidX types.

If AndroidX dependencies are detected that are not part of the project, a build error is reported that indicates

which AndroidX packages are missing. An example build error is shown below:

The missing NuGet packages can either be installed via the NuGet Package Manager in Visual Studio, or installed

by editing your Android .csproj file to include the PackageReference XML items listed in the error.

Once the missing packages are resolved, rebuilding the project loads the missing packages and your project is

compiled using AndroidX dependencies instead of Support Library dependencies.

If your project, and project dependencies, do not reference Android Support Libraries, the migration process does nothing

and is not executed.

How do I migrate my app to Xamarin.Forms 5.0?

Android Support Library overview on developer.android.com

AndroidX overview on developer.android.com

AndroidX class mappings

AndroidX assemblies

https://developer.android.com/topic/libraries/support-library/index
https://developer.android.com/jetpack/androidx
https://github.com/xamarin/AndroidX/blob/master/mappings/androidx-class-mapping.csv
https://github.com/xamarin/AndroidX/blob/master/mappings/androidx-assemblies.csv

Button Padding and Shadows on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 ...
 <Button ...
 android:Button.UseDefaultPadding="true"
 android:Button.UseDefaultShadow="true" />
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

button.On<Android>().SetUseDefaultPadding(true).SetUseDefaultShadow(true);

 Related links

 Download the sample

This Android platform-specific controls whether Xamarin.Forms buttons use the default padding and shadow

values of Android buttons. It's consumed in XAML by setting the Button.UseDefaultPadding and

Button.UseDefaultShadow attached properties to boolean values:

Alternatively, it can be consumed from C# using the fluent API:

The Button.On<Android> method specifies that this platform-specific will only run on Android. The

Button.SetUseDefaultPadding and Button.SetUseDefaultShadow methods, in the

Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace, are used to control whether Xamarin.Forms

buttons use the default padding and shadow values of Android buttons. In addition, the

Button.UseDefaultPadding and Button.UseDefaultShadow methods can be used to return whether a button uses

the default padding value and default shadow value, respectively.

The result is that Xamarin.Forms buttons can use the default padding and shadow values of Android buttons:

Note that in the screenshot above each Button has identical definitions, except that the right-hand Button uses

the default padding and shadow values of Android buttons.

PlatformSpecifics (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/button-padding-shadow.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.button.usedefaultpaddingproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.button.usedefaultshadowproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.button.setusedefaultpadding#xamarin_forms_platformconfiguration_androidspecific_button_setusedefaultpadding_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_button__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.button.setusedefaultshadow#xamarin_forms_platformconfiguration_androidspecific_button_setusedefaultshadow_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_button__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.button.usedefaultpadding#xamarin_forms_platformconfiguration_androidspecific_button_usedefaultpadding_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_button__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.button.usedefaultshadow#xamarin_forms_platformconfiguration_androidspecific_button_usedefaultshadow_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_button__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

Entry Input Method Editor Options on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout ...>
 <Entry ... android:Entry.ImeOptions="Send" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

entry.On<Android>().SetImeOptions(ImeFlags.Send);

 Download the sample

This Android platform-specific sets the input method editor (IME) options for the soft keyboard for an Entry .

This includes setting the user action button in the bottom corner of the soft keyboard, and the interactions with

the Entry . It's consumed in XAML by setting the Entry.ImeOptions attached property to a value of the

ImeFlags enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The Entry.On<Android> method specifies that this platform-specific will only run on Android. The

Entry.SetImeOptions method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace, is used

to set the input method action option for the soft keyboard for the Entry , with the ImeFlags enumeration

providing the following values:

Default – indicates that no specific action key is required, and that the underlying control will produce its

own if it can. This will either be Next or Done .

None – indicates that no action key will be made available.

Go – indicates that the action key will perform a "go" operation, taking the user to the target of the text they

typed.

Search – indicates that the action key performs a "search" operation, taking the user to the results of

searching for the text they have typed.

Send – indicates that the action key will perform a "send" operation, delivering the text to its target.

Next – indicates that the action key will perform a "next" operation, taking the user to the next field that will

accept text.

Done – indicates that the action key will perform a "done" operation, closing the soft keyboard.

Previous – indicates that the action key will perform a "previous" operation, taking the user to the previous

field that will accept text.

ImeMaskAction – the mask to select action options.

NoPersonalizedLearning – indicates that the spellchecker will neither learn from the user, nor suggest

corrections based on what the user has previously typed.

NoFullscreen – indicates that the UI should not go fullscreen.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/entry-ime-options.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.entry.imeoptionsproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.entry.setimeoptions#xamarin_forms_platformconfiguration_androidspecific_entry_setimeoptions_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_entry__xamarin_forms_platformconfiguration_androidspecific_imeflags_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_go
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_search
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_send
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_next
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_done
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_previous
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_imemaskaction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_nopersonalizedlearning
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_nofullscreen

 Related links

NoExtractUi – indicates that no UI will be shown for extracted text.

NoAccessoryAction – indicates that no UI will be displayed for custom actions.

The result is that a specified ImeFlags value is applied to the soft keyboard for the Entry , which sets the input

method editor options:

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_noextractui
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags#xamarin_forms_platformconfiguration_androidspecific_imeflags_noaccessoryaction
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.imeflags
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/entry-ime-options-images/entry-imeoptions-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

ImageButton Drop Shadows on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <ImageButton ...
 Source="XamarinLogo.png"
 BackgroundColor="GhostWhite"
 android:ImageButton.IsShadowEnabled="true"
 android:ImageButton.ShadowColor="Gray"
 android:ImageButton.ShadowRadius="12">
 <android:ImageButton.ShadowOffset>
 <Size>
 <x:Arguments>
 <x:Double>10</x:Double>
 <x:Double>10</x:Double>
 </x:Arguments>
 </Size>
 </android:ImageButton.ShadowOffset>
 </ImageButton>
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

var imageButton = new Xamarin.Forms.ImageButton { Source = "XamarinLogo.png", BackgroundColor =
Color.GhostWhite, ... };
imageButton.On<Android>()
 .SetIsShadowEnabled(true)
 .SetShadowColor(Color.Gray)
 .SetShadowOffset(new Size(10, 10))
 .SetShadowRadius(12);

IMPORTANTIMPORTANT

 Download the sample

This Android platform-specific is used to enable a drop shadow on a ImageButton . It's consumed in XAML by

setting the ImageButton.IsShadowEnabled bindable property to true , along with a number of additional optional

bindable properties that control the drop shadow:

Alternatively, it can be consumed from C# using the fluent API:

A drop shadow is drawn as part of the ImageButton background, and the background is only drawn if the

BackgroundColor property is set. Therefore, a drop shadow will not be drawn if the ImageButton.BackgroundColor

property isn't set.

The ImageButton.On<Android> method specifies that this platform-specific will only run on Android. The

ImageButton.SetIsShadowEnabled method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/imagebutton-drop-shadow.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific

NOTENOTE

 Related links

namespace, is used to control whether a drop shadow is enabled on the ImageButton . In addition, the following

methods can be invoked to control the drop shadow:

SetShadowColor – sets the color of the drop shadow. The default color is Color.Default .

SetShadowOffset – sets the offset of the drop shadow. The offset changes the direction the shadow is cast,

and is specified as a Size value. The Size structure values are expressed in device-independent units, with

the first value being the distance to the left (negative value) or right (positive value), and the second value

being the distance above (negative value) or below (positive value). The default value of this property is (0.0,

0.0), which results in the shadow being cast around every side of the ImageButton .

SetShadowRadius – sets the blur radius used to render the drop shadow. The default radius value is 10.0.

The state of a drop shadow can be queried by calling the GetIsShadowEnabled , GetShadowColor , GetShadowOffset ,

and GetShadowRadius methods.

The result is that a drop shadow can be enabled on a ImageButton :

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.size
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

ListView Fast Scrolling on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 ...
 <ListView ItemsSource="{Binding GroupedEmployees}"
 GroupDisplayBinding="{Binding Key}"
 IsGroupingEnabled="true"
 android:ListView.IsFastScrollEnabled="true">
 ...
 </ListView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

var listView = new Xamarin.Forms.ListView { IsGroupingEnabled = true, ... };
listView.SetBinding(ItemsView<Cell>.ItemsSourceProperty, "GroupedEmployees");
listView.GroupDisplayBinding = new Binding("Key");
listView.On<Android>().SetIsFastScrollEnabled(true);

listView.On<Android>().SetIsFastScrollEnabled(!listView.On<Android>().IsFastScrollEnabled());

 Download the sample

This Android platform-specific is used to enable fast scrolling through data in a ListView . It's consumed in

XAML by setting the ListView.IsFastScrollEnabled attached property to a boolean value:

Alternatively, it can be consumed from C# using the fluent API:

The ListView.On<Android> method specifies that this platform-specific will only run on Android. The

ListView.SetIsFastScrollEnabled method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific

namespace, is used to enable fast scrolling through data in a ListView . In addition, the SetIsFastScrollEnabled

method can be used to toggle fast scrolling by calling the IsFastScrollEnabled method to return whether fast

scrolling is enabled:

The result is that fast scrolling through data in a ListView can be enabled, which changes the size of the scroll

thumb:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/listview-fast-scrolling.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/listview-fast-scrolling-images/fastscroll-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

NavigationPage Bar Height on Android
 7/8/2021 • 2 minutes to read • Edit Online

<NavigationPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific.AppCompat;assembly=Xamarin.Forms.Core"
 android:NavigationPage.BarHeight="450">
 ...
</NavigationPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific.AppCompat;
...

public class AndroidNavigationPageCS : Xamarin.Forms.NavigationPage
{
 public AndroidNavigationPageCS()
 {
 On<Android>().SetBarHeight(450);
 }
}

 Download the sample

This Android platform-specific sets the height of the navigation bar on a NavigationPage . It's consumed in XAML

by setting the NavigationPage.BarHeight bindable property to an integer value:

Alternatively, it can be consumed from C# using the fluent API:

The NavigationPage.On<Android> method specifies that this platform-specific will only run on app compat

Android. The NavigationPage.SetBarHeight method, in the

Xamarin.Forms.PlatformConfiguration.AndroidSpecific.AppCompat namespace, is used to set the height of the

navigation bar on a NavigationPage . In addition, the NavigationPage.GetBarHeight method can be used to return

the height of the navigation bar in the NavigationPage .

The result is that the height of the navigation bar on a NavigationPage can be set:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/navigationpage-bar-height.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.navigationpage.barheightproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.navigationpage.setbarheight#xamarin_forms_platformconfiguration_androidspecific_appcompat_navigationpage_setbarheight_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_navigationpage__system_int32_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.navigationpage.getbarheight#xamarin_forms_platformconfiguration_androidspecific_appcompat_navigationpage_getbarheight_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_navigationpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

Page Lifecycle Events on Android
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

<Application ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core"
xmlns:androidAppCompat="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific.AppCompat;assembly=Xamarin.Forms.Core"
 android:Application.WindowSoftInputModeAdjust="Resize"
 androidAppCompat:Application.SendDisappearingEventOnPause="false"
 androidAppCompat:Application.SendAppearingEventOnResume="false"
 androidAppCompat:Application.ShouldPreserveKeyboardOnResume="true">
 ...
</Application>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific.AppCompat;
...

Xamarin.Forms.Application.Current.On<Android>()
 .UseWindowSoftInputModeAdjust(WindowSoftInputModeAdjust.Resize)
 .SendDisappearingEventOnPause(false)
 .SendAppearingEventOnResume(false)
 .ShouldPreserveKeyboardOnResume(true);

 Download the sample

This Android platform-specific is used to disable the Disappearing and Appearing page events on application

pause and resume respectively, for applications that use AppCompat. In addition, it includes the ability to control

whether the soft keyboard is displayed on resume, if it was displayed on pause, provided that the operating

mode of the soft keyboard is set to WindowSoftInputModeAdjust.Resize .

Note that these events are enabled by default to preserve existing behavior for applications that rely on the events.

Disabling these events makes the AppCompat event cycle match the pre-AppCompat event cycle.

This platform-specific can be consumed in XAML by setting the Application.SendDisappearingEventOnPause ,

Application.SendAppearingEventOnResume , and Application.ShouldPreserveKeyboardOnResume attached properties

to boolean values:

Alternatively, it can be consumed from C# using the fluent API:

The Application.Current.On<Android> method specifies that this platform-specific will only run on Android. The

Application.SendDisappearingEventOnPause method, in the

Xamarin.Forms.PlatformConfiguration.AndroidSpecific.AppCompat namespace, is used to enable or disable firing

the Disappearing page event, when the application enters the background. The

Application.SendAppearingEventOnResume method is used to enable or disable firing the Appearing page event,

when the application resumes from the background. The Application.ShouldPreserveKeyboardOnResume method is

used control whether the soft keyboard is displayed on resume, if it was displayed on pause, provided that the

operating mode of the soft keyboard is set to WindowSoftInputModeAdjust.Resize .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/page-lifecycle-events.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.windowsoftinputmodeadjust#xamarin_forms_platformconfiguration_androidspecific_windowsoftinputmodeadjust_resize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.application.senddisappearingeventonpauseproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.application.sendappearingeventonresumeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.application.shouldpreservekeyboardonresumeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.application.senddisappearingeventonpause#xamarin_forms_platformconfiguration_androidspecific_appcompat_application_senddisappearingeventonpause_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_application__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.application.sendappearingeventonresume#xamarin_forms_platformconfiguration_androidspecific_appcompat_application_sendappearingeventonresume_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_application__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat.application.shouldpreservekeyboardonresume#xamarin_forms_platformconfiguration_androidspecific_appcompat_application_shouldpreservekeyboardonresume_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_application__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.windowsoftinputmodeadjust#xamarin_forms_platformconfiguration_androidspecific_windowsoftinputmodeadjust_resize

 Related links

The result is that the Disappearing and Appearing page events won't be fired on application pause and resume

respectively, and that if the soft keyboard was displayed when the application was paused, it will also be

displayed when the application resumes:

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/page-lifecycle-events-images/keyboard-on-resume-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

Soft Keyboard Input Mode on Android
 7/8/2021 • 2 minutes to read • Edit Online

<Application ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core"
 android:Application.WindowSoftInputModeAdjust="Resize">
 ...
</Application>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

App.Current.On<Android>().UseWindowSoftInputModeAdjust(WindowSoftInputModeAdjust.Resize);

 Download the sample

This Android platform-specific is used to set the operating mode for a soft keyboard input area, and is

consumed in XAML by setting the Application.WindowSoftInputModeAdjust attached property to a value of the

WindowSoftInputModeAdjust enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The Application.On<Android> method specifies that this platform-specific will only run on Android. The

Application.UseWindowSoftInputModeAdjust method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific

namespace, is used to set the soft keyboard input area operating mode, with the WindowSoftInputModeAdjust

enumeration providing two values: Pan and Resize . The Pan value uses the AdjustPan adjustment option,

which doesn't resize the window when an input control has focus. Instead, the contents of the window are

panned so that the current focus isn't obscured by the soft keyboard. The Resize value uses the AdjustResize

adjustment option, which resizes the window when an input control has focus, to make room for the soft

keyboard.

The result is that the soft keyboard input area operating mode can be set when an input control has focus:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/soft-keyboard-input-mode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.application.windowsoftinputmodeadjustproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.windowsoftinputmodeadjust
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.application.usewindowsoftinputmodeadjust#xamarin_forms_platformconfiguration_androidspecific_application_usewindowsoftinputmodeadjust_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_application__xamarin_forms_platformconfiguration_androidspecific_windowsoftinputmodeadjust_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.windowsoftinputmodeadjust
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.windowsoftinputmodeadjust#xamarin_forms_platformconfiguration_androidspecific_windowsoftinputmodeadjust_pan
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.windowsoftinputmodeadjust#xamarin_forms_platformconfiguration_androidspecific_windowsoftinputmodeadjust_resize
https://docs.microsoft.com/en-us/dotnet/api/android.views.softinput#android_views_softinput_adjustpan
https://docs.microsoft.com/en-us/dotnet/api/android.views.softinput#android_views_softinput_adjustresize

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/soft-keyboard-input-mode-images/pan-resize-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

SwipeView Swipe Transition Mode on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core" >
 <StackLayout>
 <SwipeView android:SwipeView.SwipeTransitionMode="Drag">
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Invoked="OnDeleteSwipeItemInvoked" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
 </SwipeView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

SwipeView swipeView = new Xamarin.Forms.SwipeView();
swipeView.On<Android>().SetSwipeTransitionMode(SwipeTransitionMode.Drag);
// ...

 Download the sample

This Android platform-specific controls the transition that's used when opening a SwipeView . It's consumed in

XAML by setting the SwipeView.SwipeTransitionMode bindable property to a value of the SwipeTransitionMode

enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The SwipeView.On<Android> method specifies that this platform-specific will only run on Android. The

SwipeView.SetSwipeTransitionMode method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace,

is used to control the transition that's used when opening a SwipeView . The SwipeTransitionMode enumeration

provides two possible values:

Reveal indicates that the swipe items will be revealed as the SwipeView content is swiped, and is the default

value of the SwipeView.SwipeTransitionMode property.

Drag indicates that the swipe items will be dragged into view as the SwipeView content is swiped.

In addition, the SwipeView.GetSwipeTransitionMode method can be used to return the SwipeTransitionMode that's

applied to the SwipeView .

The result is that a specified SwipeTransitionMode value is applied to the SwipeView , which controls the

transition that's used when opening the SwipeView :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/swipeview-swipetransitionmode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/swipeview-swipetransitionmode-images/swipetransitionmode-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific

TabbedPage Page Swiping on Android
 7/8/2021 • 2 minutes to read • Edit Online

<TabbedPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core"
 android:TabbedPage.OffscreenPageLimit="2"
 android:TabbedPage.IsSwipePagingEnabled="true">
 ...
</TabbedPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

On<Android>().SetOffscreenPageLimit(2)
 .SetIsSwipePagingEnabled(true);

 Related links

 Download the sample

This Android platform-specific is used to enable swiping with a horizontal finger gesture between pages in a

TabbedPage . It's consumed in XAML by setting the TabbedPage.IsSwipePagingEnabled attached property to a

boolean value:

Alternatively, it can be consumed from C# using the fluent API:

The TabbedPage.On<Android> method specifies that this platform-specific will only run on Android. The

TabbedPage.SetIsSwipePagingEnabled method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific

namespace, is used to enable swiping between pages in a TabbedPage . In addition, the TabbedPage class in the

Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace also has a EnableSwipePaging method that

enables this platform-specific, and a DisableSwipePaging method that disables this platform-specific. The

TabbedPage.OffscreenPageLimit attached property, and SetOffscreenPageLimit method, are used to set the

number of pages that should be retained in an idle state on either side of the current page.

The result is that swipe paging through the pages displayed by a TabbedPage is enabled:

PlatformSpecifics (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/tabbedpage-page-swiping.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.isswipepagingenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.setisswipepagingenabled#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_setisswipepagingenabled_xamarin_forms_bindableobject_system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.enableswipepaging#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_enableswipepaging_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.disableswipepaging#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_disableswipepaging_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.offscreenpagelimitproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.setoffscreenpagelimit#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_setoffscreenpagelimit_xamarin_forms_bindableobject_system_int32_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

TabbedPage Page Transition Animations on Android
 7/8/2021 • 2 minutes to read • Edit Online

<TabbedPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core"
 android:TabbedPage.IsSmoothScrollEnabled="false">
 ...
</TabbedPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

On<Android>().SetIsSmoothScrollEnabled(false);

 Related links

 Download the sample

This Android platform-specific is used to disable transition animations when navigating through pages, either

programmatically or when using the tab bar, in a TabbedPage . It's consumed in XAML by setting the

TabbedPage.IsSmoothScrollEnabled bindable property to false :

Alternatively, it can be consumed from C# using the fluent API:

The TabbedPage.On<Android> method specifies that this platform-specific will only run on Android. The

TabbedPage.SetIsSmoothScrollEnabled method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific

namespace, is used to control whether transition animations will be displayed when navigating between pages

in a TabbedPage . In addition, the TabbedPage class in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific

namespace also has the following methods:

IsSmoothScrollEnabled , which is used to retrieve whether transition animations will be displayed when

navigating between pages in a TabbedPage .

EnableSmoothScroll , which is used to enable transition animations when navigating between pages in a

TabbedPage .

DisableSmoothScroll , which is used to disable transition animations when navigating between pages in a

TabbedPage .

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/tabbedpage-transition-animations.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

TabbedPage Toolbar Placement and Color on
Android

 7/8/2021 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

<TabbedPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core"
 android:TabbedPage.ToolbarPlacement="Bottom"
 android:TabbedPage.BarItemColor="Black"
 android:TabbedPage.BarSelectedItemColor="Red">
 ...
</TabbedPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

On<Android>().SetToolbarPlacement(ToolbarPlacement.Bottom)
 .SetBarItemColor(Color.Black)
 .SetBarSelectedItemColor(Color.Red);

 Download the sample

The platform-specifics that set the color of the toolbar on a TabbedPage are now obsolete and have been replaced by

the SelectedTabColor and UnselectedTabColor properties. For more information, see Create a TabbedPage.

These platform-specifics are used to set the placement and color of the toolbar on a TabbedPage . They are

consumed in XAML by setting the TabbedPage.ToolbarPlacement attached property to a value of the

ToolbarPlacement enumeration, and the TabbedPage.BarItemColor and TabbedPage.BarSelectedItemColor

attached properties to a Color :

Alternatively, they can be consumed from C# using the fluent API:

The TabbedPage.On<Android> method specifies that these platform-specifics will only run on Android. The

TabbedPage.SetToolbarPlacement method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific

namespace, is used to set the toolbar placement on a TabbedPage , with the ToolbarPlacement enumeration

providing the following values:

Default – indicates that the toolbar is placed at the default location on the page. This is the top of the page

on phones, and the bottom of the page on other device idioms.

Top – indicates that the toolbar is placed at the top of the page.

Bottom – indicates that the toolbar is placed at the bottom of the page.

In addition, the TabbedPage.SetBarItemColor and TabbedPage.SetBarSelectedItemColor methods are used to set

the color of toolbar items and selected toolbar items, respectively.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/tabbedpage-toolbar-placement-color.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage.selectedtabcolor#xamarin_forms_tabbedpage_selectedtabcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage.unselectedtabcolor#xamarin_forms_tabbedpage_unselectedtabcolor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.toolbarplacementproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.toolbarplacement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.baritemcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.barselecteditemcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.settoolbarplacement#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_settoolbarplacement_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__xamarin_forms_platformconfiguration_androidspecific_toolbarplacement_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.toolbarplacement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.toolbarplacement#xamarin_forms_platformconfiguration_androidspecific_toolbarplacement_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.toolbarplacement#xamarin_forms_platformconfiguration_androidspecific_toolbarplacement_top
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.toolbarplacement#xamarin_forms_platformconfiguration_androidspecific_toolbarplacement_bottom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.setbaritemcolor#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_setbaritemcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__xamarin_forms_color_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.setbarselecteditemcolor#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_setbarselecteditemcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__xamarin_forms_color_

NOTENOTE

 Related links

The GetToolbarPlacement , GetBarItemColor , and GetBarSelectedItemColor methods can be used to retrieve the

placement and color of the TabbedPage toolbar.

The result is that the toolbar placement, the color of toolbar items, and the color of the selected toolbar item can

be set on a TabbedPage :

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.gettoolbarplacement#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_gettoolbarplacement_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.getbaritemcolor#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_getbaritemcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.tabbedpage.getbarselecteditemcolor#xamarin_forms_platformconfiguration_androidspecific_tabbedpage_getbarselecteditemcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_tabbedpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

ViewCell Context Actions on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <ListView ItemsSource="{Binding Items}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell android:ViewCell.IsContextActionsLegacyModeEnabled="true">
 <ViewCell.ContextActions>
 <MenuItem Text="{Binding Item1Text}" />
 <MenuItem Text="{Binding Item2Text}" />
 </ViewCell.ContextActions>
 <Label Text="{Binding Text}" />
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

viewCell.On<Android>().SetIsContextActionsLegacyModeEnabled(true);

 Download the sample

By default from Xamarin.Forms 4.3, when a ViewCell in an Android application defines context actions for each

item in a ListView , the context actions menu is updated when the selected item in the ListView changes.

However, in previous versions of Xamarin.Forms the context actions menu was not updated, and this behavior is

referred to as the ViewCell legacy mode. This legacy mode can result in incorrect behavior if a ListView uses a

DataTemplateSelector to set its ItemTemplate from DataTemplate objects that define different context actions.

This Android platform-specific enables the ViewCell context actions menu legacy mode, for backwards

compatibility, so that the context actions menu is not updated when the selected item in a ListView changes. It's

consumed in XAML by setting the ViewCell.IsContextActionsLegacyModeEnabled bindable property to true :

Alternatively, it can be consumed from C# using the fluent API:

The ViewCell.On<Android> method specifies that this platform-specific will only run on Android. The

ViewCell.SetIsContextActionsLegacyModeEnabled method, in the

Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace, is used to enable the ViewCell context

actions menu legacy mode, so that the context actions menu is not updated when the selected item in a

ListView changes. In addition, the ViewCell.GetIsContextActionsLegacyModeEnabled method can be used to

return whether the context actions legacy mode is enabled.

The following screenshots show ViewCell context actions legacy mode enabled:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/viewcell-context-actions.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplateselector
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datatemplate
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell

 Related links

In this mode, the displayed context action menu items are identical for cell 1 and cell 2, despite different context

menu items being defined for cell 2.

The following screenshots show ViewCell context actions legacy mode disabled, which is the default

Xamarin.Forms behavior :

In this mode, the correct context action menu items are displayed for cell 1 and cell 2.

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewcell
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

VisualElement Elevation on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core"
 Title="Elevation">
 <StackLayout>
 <Grid>
 <Button Text="Button Beneath BoxView" />
 <BoxView Color="Red" Opacity="0.2" HeightRequest="50" />
 </Grid>
 <Grid Margin="0,20,0,0">
 <Button Text="Button Above BoxView - Click Me" android:VisualElement.Elevation="10"/>
 <BoxView Color="Red" Opacity="0.2" HeightRequest="50" />
 </Grid>
 </StackLayout>
</ContentPage>

 Download the sample

This Android platform-specific is used to control the elevation, or Z-order, of visual elements on applications that

target API 21 or greater. The elevation of a visual element determines its drawing order, with visual elements

with higher Z values occluding visual elements with lower Z values. It's consumed in XAML by setting the

VisualElement.Elevation attached property to a boolean value:

Alternatively, it can be consumed from C# using the fluent API:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/visualelement-elevation.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

public class AndroidElevationPageCS : ContentPage
{
 public AndroidElevationPageCS()
 {
 ...
 var aboveButton = new Button { Text = "Button Above BoxView - Click Me" };
 aboveButton.On<Android>().SetElevation(10);

 Content = new StackLayout
 {
 Children =
 {
 new Grid
 {
 Children =
 {
 new Button { Text = "Button Beneath BoxView" },
 new BoxView { Color = Color.Red, Opacity = 0.2, HeightRequest = 50 }
 }
 },
 new Grid
 {
 Margin = new Thickness(0,20,0,0),
 Children =
 {
 aboveButton,
 new BoxView { Color = Color.Red, Opacity = 0.2, HeightRequest = 50 }
 }
 }
 }
 };
 }
}

The Button.On<Android> method specifies that this platform-specific will only run on Android. The

VisualElement.SetElevation method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace, is

used to set the elevation of the visual element to a nullable float . In addition, the VisualElement.GetElevation

method can be used to retrieve the elevation value of a visual element.

The result is that the elevation of visual elements can be controlled so that visual elements with higher Z values

occlude visual elements with lower Z values. Therefore, in this example the second Button is rendered above

the BoxView because it has a higher elevation value:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

VisualElement Legacy Color Mode on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 ...
 <Button Text="Button"
 TextColor="Blue"
 BackgroundColor="Bisque"
 android:VisualElement.IsLegacyColorModeEnabled="False" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

_legacyColorModeDisabledButton.On<Android>().SetIsLegacyColorModeEnabled(false);

 Download the sample

Some of the Xamarin.Forms views feature a legacy color mode. In this mode, when the IsEnabled property of

the view is set to false , the view will override the colors set by the user with the default native colors for the

disabled state. For backwards compatibility, this legacy color mode remains the default behavior for supported

views.

This Android platform-specific disables this legacy color mode, so that colors set on a view by the user remain

even when the view is disabled. It's consumed in XAML by setting the VisualElement.IsLegacyColorModeEnabled

attached property to false :

Alternatively, it can be consumed from C# using the fluent API:

The VisualElement.On<Android> method specifies that this platform-specific will only run on Android. The

VisualElement.SetIsLegacyColorModeEnabled method, in the

Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace, is used to control whether the legacy color

mode is disabled. In addition, the VisualElement.GetIsLegacyColorModeEnabled method can be used to return

whether the legacy color mode is disabled.

The result is that the legacy color mode can be disabled, so that colors set on a view by the user remain even

when the view is disabled:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/legacy-color-mode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isenabled#xamarin_forms_visualelement_isenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.visualelement.islegacycolormodeenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.visualelement.setislegacycolormodeenabled#xamarin_forms_platformconfiguration_androidspecific_visualelement_setislegacycolormodeenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_visualelement__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.visualelement.getislegacycolormodeenabled#xamarin_forms_platformconfiguration_androidspecific_visualelement_getislegacycolormodeenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_visualelement__

NOTENOTE

 Related links

When setting a VisualStateGroup on a view, the legacy color mode is completely ignored. For more information about

visual states, see The Xamarin.Forms Visual State Manager.

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstategroup
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

WebView Mixed Content on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <WebView ... android:WebView.MixedContentMode="AlwaysAllow" />
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

webView.On<Android>().SetMixedContentMode(MixedContentHandling.AlwaysAllow);

 Download the sample

This Android platform-specific controls whether a WebView can display mixed content in applications that target

API 21 or greater. Mixed content is content that's initially loaded over an HTTPS connection, but which loads

resources (such as images, audio, video, stylesheets, scripts) over an HTTP connection. It's consumed in XAML by

setting the WebView.MixedContentMode attached property to a value of the MixedContentHandling enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The WebView.On<Android> method specifies that this platform-specific will only run on Android. The

WebView.SetMixedContentMode method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace,

is used to control whether mixed content can be displayed, with the MixedContentHandling enumeration

providing three possible values:

AlwaysAllow – indicates that the WebView will allow an HTTPS origin to load content from an HTTP origin.

NeverAllow – indicates that the WebView will not allow an HTTPS origin to load content from an HTTP origin.

CompatibilityMode – indicates that the WebView will attempt to be compatible with the approach of the latest

device web browser. Some HTTP content may be allowed to be loaded by an HTTPS origin and other types of

content will be blocked. The types of content that are blocked or allowed may change with each operating

system release.

The result is that a specified MixedContentHandling value is applied to the WebView , which controls whether

mixed content can be displayed:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/webview-mixed-content.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.webview.mixedcontentmodeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.mixedcontenthandling
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.webview.setmixedcontentmode#xamarin_forms_platformconfiguration_androidspecific_webview_setmixedcontentmode_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_android_xamarin_forms_webview__xamarin_forms_platformconfiguration_androidspecific_mixedcontenthandling_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.mixedcontenthandling
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.mixedcontenthandling#xamarin_forms_platformconfiguration_androidspecific_mixedcontenthandling_alwaysallow
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.mixedcontenthandling#xamarin_forms_platformconfiguration_androidspecific_mixedcontenthandling_neverallow
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.mixedcontenthandling#xamarin_forms_platformconfiguration_androidspecific_mixedcontenthandling_compatibilitymode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.mixedcontenthandling
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/webview-mixed-content-images/webview-mixedcontent-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

WebView Zoom on Android
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:android="clr-
namespace:Xamarin.Forms.PlatformConfiguration.AndroidSpecific;assembly=Xamarin.Forms.Core">
 <WebView Source="https://www.xamarin.com"
 android:WebView.EnableZoomControls="true"
 android:WebView.DisplayZoomControls="true" />
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.AndroidSpecific;
...

webView.On<Android>()
 .EnableZoomControls(true)
 .DisplayZoomControls(true);

 Download the sample

This Android platform-specific enables pinch-to-zoom and a zoom control on a WebView . It's consumed in XAML

by setting the WebView.EnableZoomControls and WebView.DisplayZoomControls bindable properties to boolean

values:

The WebView.EnableZoomControls bindable property controls whether pinch-to-zoom is enabled on the WebView ,

and the WebView.DisplayZoomControls bindable property controls whether zoom controls are overlaid on the

WebView .

Alternatively, the platform-specific can be consumed from C# using the fluent API:

The WebView.On<Android> method specifies that this platform-specific will only run on Android. The

WebView.EnableZoomControls method, in the Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace, is

used to control whether pinch-to-zoom is enabled on the WebView . The WebView.DisplayZoomControls method, in

the same namespace, is used to control whether zoom controls are overlaid on the WebView . In addition, the

WebView.ZoomControlsEnabled and WebView.ZoomControlsDisplayed methods can be used to return whether pinch-

to-zoom and zoom controls are enabled, respectively.

The result is that pinch-to-zoom can be enabled on a WebView , and zoom controls can be overlaid on the

WebView :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/android/webview-zoom-controls.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

IMPORTANTIMPORTANT

 Related links

Zoom controls must be both enabled and displayed, via the respective bindable properties or methods, to be overlaid on

a WebView .

PlatformSpecifics (sample)

Creating Platform-Specifics

AndroidSpecific API

AndroidSpecific.AppCompat API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/android/webview-zoom-controls-images/webview-zoom-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat

iOS platform features in Xamarin.Forms
 7/8/2021 • 3 minutes to read • Edit Online

 Platform-specifics

Developing Xamarin.Forms applications for iOS requires Visual Studio. The supported platforms page contains

more information about the pre-requisites.

Platform-specifics allow you to consume functionality that's only available on a specific platform, without

implementing custom renderers or effects.

The following platform-specific functionality is provided for Xamarin.Forms views, pages, and layouts on iOS:

Blur support for any VisualElement . For more information, see VisualElement Blur on iOS.

Disabling legacy color mode on a supported VisualElement . For more information, see VisualElement

Legacy Color Mode on iOS.

Enabling a drop shadow on a VisualElement . For more information, see VisualElement Drop Shadows on

iOS.

Enabling a VisualElement object to become the first responder to touch events. For more information, see

VisualElement First Responder.

The following platform-specific functionality is provided for Xamarin.Forms views on iOS:

Setting the Cell background color. For more information, see Cell Background Color on iOS.

Controlling when item selection occurs in a DatePicker . For more information, see DatePicker Item Selection

on iOS.

Ensuring that inputted text fits into an Entry by adjusting the font size. For more information, see Entry Font

Size on iOS.

Setting the cursor color in a Entry . For more information, see Entry Cursor Color on iOS.

Controlling whether ListView header cells float during scrolling. For more information, see ListView Group

Header Style on iOS.

Controlling whether row animations are disabled when the ListView items collection is being updated. For

more information, see ListView Row Animations on iOS.

Setting the separator style on a ListView . For more information, see ListView Separator Style on iOS.

Controlling when item selection occurs in a Picker . For more information, see Picker Item Selection on iOS.

Controlling whether a SearchBar has a background. For more information, see SearchBar style on iOS.

Enabling the Slider.Value property to be set by tapping on a position on the Slider bar, rather than by

having to drag the Slider thumb. For more information, see Slider Thumb Tap on iOS.

Controlling the transition that's used when opening a SwipeView . For more information, see SwipeView

Swipe Transition Mode.

Controlling when item selection occurs in a TimePicker . For more information, see TimePicker Item Selection

on iOS.

The following platform-specific functionality is provided for Xamarin.Forms pages on iOS:

Controlling whether the detail page of a FlyoutPage has shadow applied to it, when revealing the flyout

page. For more information, see FlyoutPage Shadow.

Hiding the navigation bar separator on a NavigationPage . For more information, see NavigationPage Bar

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.value#xamarin_forms_slider_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

 iOS-specific formatting

 Other iOS features

Separator on iOS.

Controlling whether the navigation bar is translucent. For more information, see Navigation Bar Translucency

on iOS.

Controlling whether the status bar text color on a NavigationPage is adjusted to match the luminosity of the

navigation bar. For more information, see NavigationPage Bar Text Color Mode on iOS.

Controlling whether the page title is displayed as a large title in the page navigation bar. For more

information, see Large Page Titles on iOS.

Setting the visibility of the home indicator on a Page . For more information, see Home Indicator Visibility on

iOS.

Setting the status bar visibility on a Page . For more information, see Page Status Bar Visibility on iOS.

Ensuring that page content is positioned on an area of the screen that is safe for all iOS devices. For more

information, see Safe Area Layout Guide on iOS.

Setting the presentation style of modal pages. For more information, see Modal Page Presentation Style.

Setting the translucency mode of the tab bar on a TabbedPage . For more information, see TabbedPage

Translucent TabBar on iOS.

The following platform-specific functionality is provided for Xamarin.Forms layouts on iOS:

Controlling whether a ScrollView handles a touch gesture or passes it to its content. For more information,

see ScrollView Content Touches on iOS.

The following platform-specific functionality is provided for the Xamarin.Forms Application class on iOS:

Disabling accessibility scaling for named font sizes. For more information, see Accessibility Scaling for

Named Font Sizes on iOS.

Enabling control layout and rendering updates to be performed on the main thread. For more information,

see Main Thread Control Updates on iOS.

Enabling a PanGestureRecognizer in a scrolling view to capture and share the pan gesture with the scrolling

view. For more information, see Simultaneous Pan Gesture Recognition on iOS.

Xamarin.Forms enables cross-platform user interface styles and colors to be set - but there are other options for

setting the theme of your iOS using platform APIs in the iOS project.

Read more about formatting the user interface using iOS-specific APIs, such as Info.plistInfo.plist configuration and the

UIAppearance API.

Using custom renderers, the DependencyService, and the MessagingCenter, it's possible to incorporate a wide

variety of native functionality into Xamarin.Forms applications for iOS.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer

Accessibility Scaling for Named Font Sizes on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<Application ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:Application.EnableAccessibilityScalingForNamedFontSizes="false">
 ...
</Application>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

Xamarin.Forms.Application.Current.On<iOS>().SetEnableAccessibilityScalingForNamedFontSizes(false);

 Related links

 Download the sample

This iOS platform-specific disables accessibility scaling for named font sizes. It's consumed in XAML by setting

the Application.EnableAccessibilityScalingForNamedFontSizes bindable property to false :

Alternatively, it can be consumed from C# using the fluent API:

The Application.On<iOS> method specifies that this platform-specific will only run on iOS. The

Application.SetEnableAccessibilityScalingForNamedFontSizes method, in the

Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used to disable named font sizes being scaled

by the iOS accessibility settings. In addition, the Application.GetEnableAccessibilityScalingForNamedFontSizes

method can be used to return whether named font sizes are scaled by iOS accessibility settings.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/named-font-size-scaling.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Cell Background Color on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <ListView ItemsSource="{Binding GroupedEmployees}"
 IsGroupingEnabled="true">
 <ListView.GroupHeaderTemplate>
 <DataTemplate>
 <ViewCell ios:Cell.DefaultBackgroundColor="Teal">
 <Label Margin="10,10"
 Text="{Binding Key}"
 FontAttributes="Bold" />
 </ViewCell>
 </DataTemplate>
 </ListView.GroupHeaderTemplate>
 ...
 </ListView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

var viewCell = new ViewCell { View = ... };
viewCell.On<iOS>().SetDefaultBackgroundColor(Color.Teal);

 Download the sample

This iOS platform-specific sets the default background color of Cell instances. It's consumed in XAML by

setting the Cell.DefaultBackgroundColor bindable property to a Color :

Alternatively, it can be consumed from C# using the fluent API:

The ListView.On<iOS> method specifies that this platform-specific will only run on iOS. The

Cell.SetDefaultBackgroundColor method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace,

sets the cell background color to a specified Color . In addition, the Cell.DefaultBackgroundColor method can be

used to retrieve the current cell background color.

The result is that the background color in a Cell can be set to a specific Color :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/cell-background-color.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.cell
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/cell-background-color-images/group-header-cell-color-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

DatePicker item selection on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <DatePicker MinimumDate="01/01/2020"
 MaximumDate="12/31/2020"
 ios:DatePicker.UpdateMode="WhenFinished" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

datePicker.On<iOS>().SetUpdateMode(UpdateMode.WhenFinished);

switch (datePicker.On<iOS>().UpdateMode())
{
 case UpdateMode.Immediately:
 datePicker.On<iOS>().SetUpdateMode(UpdateMode.WhenFinished);
 break;
 case UpdateMode.WhenFinished:
 datePicker.On<iOS>().SetUpdateMode(UpdateMode.Immediately);
 break;
}

 Download the sample

This iOS platform-specific controls when item selection occurs in a DatePicker , allowing the user to specify that

item selection occurs when browsing items in the control, or only once the DoneDone button is pressed. It's

consumed in XAML by setting the DatePicker.UpdateMode attached property to a value of the UpdateMode

enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The DatePicker.On<iOS> method specifies that this platform-specific will only run on iOS. The

DatePicker.SetUpdateMode method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used

to control when item selection occurs, with the UpdateMode enumeration providing two possible values:

Immediately – item selection occurs as the user browses items in the DatePicker . This is the default

behavior in Xamarin.Forms.

WhenFinished – item selection only occurs once the user has pressed the DoneDone button in the DatePicker .

In addition, the SetUpdateMode method can be used to toggle the enumeration values by calling the UpdateMode

method, which returns the current UpdateMode :

The result is that a specified UpdateMode is applied to the DatePicker , which controls when item selection

occurs:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/datepicker-selection.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.datepicker

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/datepicker-selection-images/datepicker-updatemode-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Entry Cursor Color on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <Entry ... ios:Entry.CursorColor="LimeGreen" />
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

var entry = new Xamarin.Forms.Entry();
entry.On<iOS>().SetCursorColor(Color.LimeGreen);

 Related links

 Download the sample

This iOS platform-specific sets the cursor color of an Entry to a specified color. It's consumed in XAML by

setting the Entry.CursorColor bindable property to a Color :

Alternatively, it can be consumed from C# using the fluent API:

The Entry.On<iOS> method specifies that this platform-specific will only run on iOS. The Entry.SetCursorColor

method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, sets the cursor color to a specified

Color . In addition, the Entry.GetCursorColor method can be used to retrieve the current cursor color.

The result is that the cursor color in a Entry can be set to a specific Color :

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/entry-cursor-color.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.cursorcolorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.setcursorcolor#xamarin_forms_platformconfiguration_iosspecific_entry_setcursorcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_entry__xamarin_forms_color_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.getcursorcolor#xamarin_forms_platformconfiguration_iosspecific_entry_getcursorcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_entry__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Entry Font Size on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 <StackLayout Margin="20">
 <Entry x:Name="entry"
 Placeholder="Enter text here to see the font size change"
 FontSize="22"
 ios:Entry.AdjustsFontSizeToFitWidth="true" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

entry.On<iOS>().EnableAdjustsFontSizeToFitWidth();

entry.On<iOS>().SetAdjustsFontSizeToFitWidth(!entry.On<iOS>().AdjustsFontSizeToFitWidth());

 Related links

 Download the sample

This iOS platform-specific is used to scale the font size of an Entry to ensure that the inputted text fits in the

control. It's consumed in XAML by setting the Entry.AdjustsFontSizeToFitWidth attached property to a boolean

value:

Alternatively, it can be consumed from C# using the fluent API:

The Entry.On<iOS> method specifies that this platform-specific will only run on iOS. The

Entry.EnableAdjustsFontSizeToFitWidth method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, is used to scale the font size of the inputted text to ensure that it fits in the Entry . In addition, the

Entry class in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace also has a

DisableAdjustsFontSizeToFitWidth method that disables this platform-specific, and a

SetAdjustsFontSizeToFitWidth method which can be used to toggle font size scaling by calling the

AdjustsFontSizeToFitWidth method:

The result is that the font size of the Entry is scaled to ensure that the inputted text fits in the control:

PlatformSpecifics (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/entry-font-size.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.adjustsfontsizetofitwidthproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.enableadjustsfontsizetofitwidth#xamarin_forms_platformconfiguration_iosspecific_entry_enableadjustsfontsizetofitwidth_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_entry__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.disableadjustsfontsizetofitwidth#xamarin_forms_platformconfiguration_iosspecific_entry_disableadjustsfontsizetofitwidth_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_entry__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.setadjustsfontsizetofitwidth#xamarin_forms_platformconfiguration_iosspecific_entry_setadjustsfontsizetofitwidth_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_entry__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.entry.adjustsfontsizetofitwidth#xamarin_forms_platformconfiguration_iosspecific_entry_adjustsfontsizetofitwidth_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_entry__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

FlyoutPage Shadow on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<FlyoutPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:FlyoutPage.ApplyShadow="true">
 ...
</FlyoutPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

public class iOSFlyoutPageCS : FlyoutPage
{
 public iOSFlyoutPageCS(ICommand restore)
 {
 On<iOS>().SetApplyShadow(true);
 // ...
 }
}

 Related links

 Download the sample

This platform-specific controls whether the detail page of a FlyoutPage has shadow applied to it, when

revealing the flyout page. It's consumed in XAML by setting the FlyoutPage.ApplyShadow bindable property to

true :

Alternatively, it can be consumed from C# using the fluent API:

The FlyoutPage.On<iOS> method specifies that this platform-specific will only run on iOS. The

FlyoutPage.SetApplyShadow method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used

to control whether the detail page of a FlyoutPage has shadow applied to it, when revealing the flyout page. In

addition, the GetApplyShadow method can be used to determine whether shadow is applied to the detail page of

a FlyoutPage .

The result is that the detail page of a FlyoutPage can have shadow applied to it, when revealing the flyout page:

PlatformSpecifics (sample)

Creating Platform-Specifics

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/flyoutpage-shadow.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/flyoutpage-shadow-images/shadow-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Adding iOS-specific Formatting
 7/8/2021 • 2 minutes to read • Edit Online

 Customizing Info.plist

var nav = new NavigationPage (new TodoListPage ());
nav.BarBackgroundColor = Color.FromHex("91CA47");
nav.BarTextColor = Color.White;

<key>UIStatusBarStyle</key>
<string>UIStatusBarStyleLightContent</string>
<key>UIViewControllerBasedStatusBarAppearance</key>
<false/>

One way to set iOS-specific formatting is to create a custom renderer for a control and set platform-specific

styles and colors for each platform.

Other options to control the way your Xamarin.Forms iOS app's appearance include:

Configuring display options in Info.plistInfo.plist

Setting control styles via the UIAppearance API

These alternatives are discussed below.

The Info.plistInfo.plist file lets you configure some aspects of an iOS application's renderering, such as how (and

whether) the status bar is shown.

For example, the Todo sample uses the following code to set the navigation bar color and text color on all

platforms:

The result is shown in the screen snippet below. Notice that the status bar items are black (this cannot be set

within Xamarin.Forms because it is a platform-specific feature).

Ideally the status bar would also be white - something we can accomplish directly in the iOS project. Add the

following entries to the Info.plistInfo.plist to force the status bar to be white:

or edit the corresponding Info.plistInfo.plist file directly to include:

Now when the app is run, the navigation bar is green and its text is white (due to Xamarin.Forms formatting)

and the status bar text is also white thanks to iOS-specific configuration:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/formatting.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo

 UIAppearance API

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 // tab bar
 UITabBar.Appearance.SelectedImageTintColor = UIColor.FromRGB(0x91, 0xCA, 0x47); // green
 // switch
 UISwitch.Appearance.OnTintColor = UIColor.FromRGB(0x91, 0xCA, 0x47); // green
 // required Xamarin.Forms code
 Forms.Init ();
 LoadApplication (new App ());
 return base.FinishedLaunching (app, options);
}

 UITabBarUITabBar

UITabBar.Appearance.SelectedImageTintColor = UIColor.FromRGB(0x91, 0xCA, 0x47); // green

 UISwitchUISwitch

UISwitch.Appearance.OnTintColor = UIColor.FromRGB(0x91, 0xCA, 0x47); // green

The UIAppearance API can be used to set visual properties on many iOS controls without having to create a

custom renderer.

Adding a single line of code to the AppDelegate.csAppDelegate.cs FinishedLaunching method can style all controls of a given

type using their Appearance property. The following code contains two examples - globally styling the tab bar

and switch control:

AppDelegate.csAppDelegate.cs in the iOS Project

By default, the selected tab bar icon in a TabbedPage would be blue:

To change this behavior, set the UITabBar.Appearance property:

This causes the selected tab to be green:

Using this API lets you customize the appearance of the Xamarin.Forms TabbedPage on iOS with very little code.

Refer to the Customize Tabs recipe for more details on using a custom renderer to set a specific font for the tab.

The Switch control is another example that can be easily styled:

These two screen captures show the default UISwitch control on the left and the customized version (setting

Appearance) on the right in the Todo sample:

https://docs.microsoft.com/en-us/xamarin/ios/user-interface/ios-ui/introduction-to-the-appearance-api
https://github.com/xamarin/recipes/tree/master/Recipes/xamarin-forms/iOS/customize-tabs
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo

 Other controlsOther controls

 Related Links

Many iOS user interface controls can have their default colors and other attributes set using the UIAppearance

API.

UIAppearance

Customize Tabs

https://docs.microsoft.com/en-us/xamarin/ios/user-interface/ios-ui/introduction-to-the-appearance-api
https://docs.microsoft.com/en-us/xamarin/ios/user-interface/ios-ui/introduction-to-the-appearance-api
https://github.com/xamarin/recipes/tree/master/Recipes/xamarin-forms/iOS/customize-tabs

Modal Page Presentation Style on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:Page.ModalPresentationStyle="OverFullScreen">
 ...
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

public class iOSModalFormSheetPageCS : ContentPage
{
 public iOSModalFormSheetPageCS()
 {
 On<iOS>().SetModalPresentationStyle(UIModalPresentationStyle.OverFullScreen);
 ...
 }
}

 Download the sample

This iOS platform-specific is used to set the presentation style of a modal page, and in addition can be used to

display modal pages that have transparent backgrounds. It's consumed in XAML by setting the

Page.ModalPresentationStyle bindable property to a UIModalPresentationStyle enumeration value:

Alternatively, it can be consumed from C# using the fluent API:

The Page.On<iOS> method specifies that this platform-specific will only run on iOS. The

Page.SetModalPresentationStyle method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is

used to set the modal presentation style on a Page by specifying one of the following

UIModalPresentationStyle enumeration values:

FullScreen , which sets the modal presentation style to encompass the whole screen. By default, modal

pages are displayed using this presentation style.

FormSheet , which sets the modal presentation style to be centered on and smaller than the screen.

Automatic , which sets the modal presentation style to the default chosen by the system. For most view

controllers, UIKit maps this to UIModalPresentationStyle.PageSheet , but some system view controllers may

map it to a different style.

OverFullScreen , which sets the modal presentation style to cover the screen.

PageSheet , which sets the modal presentation style to cover the underlying content.

In addition, the GetModalPresentationStyle method can be used to retrieve the current value of the

UIModalPresentationStyle enumeration that's applied to the Page .

The result is that the modal presentation style on a Page can be set:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/page-presentation-style.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page

NOTENOTE

 Related links

Pages that use this platform-specific to set the modal presentation style must use modal navigation. For more

information, see Xamarin.Forms Modal Pages.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/page-presentation-style-images/modal-presentation-style-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Large Page Titles on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<NavigationPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ...
 ios:NavigationPage.PrefersLargeTitles="true">
 ...
</NavigationPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

var navigationPage = new Xamarin.Forms.NavigationPage(new iOSLargeTitlePageCS());
navigationPage.On<iOS>().SetPrefersLargeTitles(true);

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 Title="Large Title"
 ios:Page.LargeTitleDisplay="Never">
 ...
</ContentPage>

 Download the sample

This iOS platform-specific is used to display the page title as a large title on the navigation bar of a

NavigationPage , for devices that use iOS 11 or greater. A large title is left aligned and uses a larger font, and

transitions to a standard title as the user begins scrolling content, so that the screen real estate is used efficiently.

However, in landscape orientation, the title will return to the center of the navigation bar to optimize content

layout. It's consumed in XAML by setting the NavigationPage.PrefersLargeTitles attached property to a boolean

value:

Alternatively it can be consumed from C# using the fluent API:

The NavigationPage.On<iOS> method specifies that this platform-specific will only run on iOS. The

NavigationPage.SetPrefersLargeTitle method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, controls whether large titles are enabled.

Provided that large titles are enabled on the NavigationPage , all pages in the navigation stack will display large

titles. This behavior can be overridden on pages by setting the Page.LargeTitleDisplay attached property to a

value of the LargeTitleDisplayMode enumeration:

Alternatively, the page behavior can be overridden from C# using the fluent API:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/page-large-title.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

public class iOSLargeTitlePageCS : ContentPage
{
 public iOSLargeTitlePageCS(ICommand restore)
 {
 On<iOS>().SetLargeTitleDisplay(LargeTitleDisplayMode.Never);
 ...
 }
 ...
}

switch (On<iOS>().LargeTitleDisplay())
{
 case LargeTitleDisplayMode.Always:
 On<iOS>().SetLargeTitleDisplay(LargeTitleDisplayMode.Automatic);
 break;
 case LargeTitleDisplayMode.Automatic:
 On<iOS>().SetLargeTitleDisplay(LargeTitleDisplayMode.Never);
 break;
 case LargeTitleDisplayMode.Never:
 On<iOS>().SetLargeTitleDisplay(LargeTitleDisplayMode.Always);
 break;
}

 Related links

The Page.On<iOS> method specifies that this platform-specific will only run on iOS. The

Page.SetLargeTitleDisplay method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace,

controls the large title behavior on the Page , with the LargeTitleDisplayMode enumeration providing three

possible values:

Always – force the navigation bar and font size to use the large format.

Automatic – use the same style (large or small) as the previous item in the navigation stack.

Never – force the use of the regular, small format navigation bar.

In addition, the SetLargeTitleDisplay method can be used to toggle the enumeration values by calling the

LargeTitleDisplay method, which returns the current LargeTitleDisplayMode :

The result is that a specified LargeTitleDisplayMode is applied to the Page , which controls the large title

behavior :

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

ListView Group Header Style on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <ListView ... ios:ListView.GroupHeaderStyle="Grouped">
 ...
 </ListView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

listView.On<iOS>().SetGroupHeaderStyle(GroupHeaderStyle.Grouped);

 Download the sample

This iOS platform-specific controls whether ListView header cells float during scrolling. It's consumed in XAML

by setting the ListView.GroupHeaderStyle bindable property to a value of the GroupHeaderStyle enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The ListView.On<iOS> method specifies that this platform-specific will only run on iOS. The

ListView.SetGroupHeaderStyle method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is

used to control whether ListView header cells float during scrolling. The GroupHeaderStyle enumeration

provides two possible values:

Plain – indicates that header cells float when the ListView is scrolled (default).

Grouped – indicates that header cells do not float when the ListView is scrolled.

In addition, the ListView.GetGroupHeaderStyle method can be used to return the GroupHeaderStyle that's applied

to the ListView .

The result is that a specified GroupHeaderStyle value is applied to the ListView , which controls whether header

cells float during scrolling:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/listview-group-header-style.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/listview-group-header-style-images/group-header-styles-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

ListView Row Animations on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <ListView ... ios:ListView.RowAnimationsEnabled="false">
 ...
 </ListView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

listView.On<iOS>().SetRowAnimationsEnabled(false);

NOTENOTE

 Related links

 Download the sample

This iOS platform-specific controls whether row animations are disabled when the ListView items collection is

being updated. It's consumed in XAML by setting the ListView.RowAnimationsEnabled bindable property to

false :

Alternatively, it can be consumed from C# using the fluent API:

The ListView.On<iOS> method specifies that this platform-specific will only run on iOS. The

ListView.SetRowAnimationsEnabled method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace,

is used to control whether row animations are disabled when the ListView items collection is being updated. In

addition, the ListView.GetRowAnimationsEnabled method can be used to return whether row animations are

disabled on the ListView .

ListView row animations are enabled by default. Therefore, an animation occurs when a new row is inserted into a

ListView .

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/listview-row-animations.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

ListView Separator Style on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <ListView ... ios:ListView.SeparatorStyle="FullWidth">
 ...
 </ListView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

listView.On<iOS>().SetSeparatorStyle(SeparatorStyle.FullWidth);

 Download the sample

This iOS platform-specific controls whether the separator between cells in a ListView uses the full width of the

ListView . It's consumed in XAML by setting the ListView.SeparatorStyle attached property to a value of the

SeparatorStyle enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The ListView.On<iOS> method specifies that this platform-specific will only run on iOS. The

ListView.SetSeparatorStyle method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is

used to control whether the separator between cells in the ListView uses the full width of the ListView , with

the SeparatorStyle enumeration providing two possible values:

Default – indicates the default iOS separator behavior. This is the default behavior in Xamarin.Forms.

FullWidth – indicates that separators will be drawn from one edge of the ListView to the other.

The result is that a specified SeparatorStyle value is applied to the ListView , which controls the width of the

separator between cells:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/listview-separator-style.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.listview.separatorstyleproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.separatorstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.listview.setseparatorstyle#xamarin_forms_platformconfiguration_iosspecific_listview_setseparatorstyle_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_listview__xamarin_forms_platformconfiguration_iosspecific_separatorstyle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.separatorstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.separatorstyle#xamarin_forms_platformconfiguration_iosspecific_separatorstyle_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.separatorstyle#xamarin_forms_platformconfiguration_iosspecific_separatorstyle_fullwidth
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.separatorstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

NOTENOTE

 Related links

Once the separator style has been set to FullWidth , it cannot be changed back to Default at runtime.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Main Thread Control Updates on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<Application ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:Application.HandleControlUpdatesOnMainThread="true">
 ...
</Application>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

Xamarin.Forms.Application.Current.On<iOS>().SetHandleControlUpdatesOnMainThread(true);

 Related links

 Download the sample

This iOS platform-specific enables control layout and rendering updates to be performed on the main thread,

instead of being performed on a background thread. It should be rarely needed, but in some cases may prevent

crashes. Its consumed in XAML by setting the Application.HandleControlUpdatesOnMainThread bindable property

to true :

Alternatively, it can be consumed from C# using the fluent API:

The Application.On<iOS> method specifies that this platform-specific will only run on iOS. The

Application.SetHandleControlUpdatesOnMainThread method, in the

Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used to control whether control layout and

rendering updates are performed on the main thread, instead of being performed on a background thread. In

addition, the Application.GetHandleControlUpdatesOnMainThread method can be used to return whether control

layout and rendering updates are being performed on the main thread.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/main-thread-updates-ui.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

NavigationPage Bar Separator on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<NavigationPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:NavigationPage.HideNavigationBarSeparator="true">

</NavigationPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;

public class iOSTitleViewNavigationPageCS : Xamarin.Forms.NavigationPage
{
 public iOSTitleViewNavigationPageCS()
 {
 On<iOS>().SetHideNavigationBarSeparator(true);
 }
}

 Download the sample

This iOS platform-specific hides the separator line and shadow that is at the bottom of the navigation bar on a

NavigationPage . It's consumed in XAML by setting the NavigationPage.HideNavigationBarSeparator bindable

property to false :

Alternatively, it can be consumed from C# using the fluent API:

The NavigationPage.On<iOS> method specifies that this platform-specific will only run on iOS. The

NavigationPage.SetHideNavigationBarSeparator method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, is used to control whether the navigation bar separator is hidden. In addition, the

NavigationPage.HideNavigationBarSeparator method can be used to return whether the navigation bar separator

is hidden.

The result is that the navigation bar separator on a NavigationPage can be hidden:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/navigation-bar-separator.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.hidenavigationbarseparatorproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.sethidenavigationbarseparator#xamarin_forms_platformconfiguration_iosspecific_navigationpage_sethidenavigationbarseparator_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.hidenavigationbarseparator#xamarin_forms_platformconfiguration_iosspecific_navigationpage_hidenavigationbarseparator_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage

Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

NavigationPage Bar Text Color Mode on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<FlyoutPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ios="clr-namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 x:Class="PlatformSpecifics.iOSStatusBarTextColorModePage">
 <FlyoutPage.Flyout>
 <ContentPage Title="Flyout Page Title" />
 </FlyoutPage.Flyout>
 <FlyoutPage.Detail>
 <NavigationPage BarBackgroundColor="Blue" BarTextColor="White"
 ios:NavigationPage.StatusBarTextColorMode="MatchNavigationBarTextLuminosity">
 <x:Arguments>
 <ContentPage>
 <Label Text="Slide the master page to see the status bar text color mode change." />
 </ContentPage>
 </x:Arguments>
 </NavigationPage>
 </FlyoutPage.Detail>
</FlyoutPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

IsPresentedChanged += (sender, e) =>
{
 var flyoutPage = sender as FlyoutPage;
 if (flyoutPage.IsPresented)
 ((Xamarin.Forms.NavigationPage)flyoutPage.Detail)
 .On<iOS>()
 .SetStatusBarTextColorMode(StatusBarTextColorMode.DoNotAdjust);
 else
 ((Xamarin.Forms.NavigationPage)flyoutPage.Detail)
 .On<iOS>()
 .SetStatusBarTextColorMode(StatusBarTextColorMode.MatchNavigationBarTextLuminosity);
};

 Download the sample

This platform-specific controls whether the status bar text color on a NavigationPage is adjusted to match the

luminosity of the navigation bar. It's consumed in XAML by setting the NavigationPage.StatusBarTextColorMode

attached property to a value of the StatusBarTextColorMode enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The NavigationPage.On<iOS> method specifies that this platform-specific will only run on iOS. The

NavigationPage.SetStatusBarTextColorMode method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, controls whether the status bar text color on the NavigationPage is adjusted to match the

luminosity of the navigation bar, with the StatusBarTextColorMode enumeration providing two possible values:

DoNotAdjust – indicates that the status bar text color should not be adjusted.

MatchNavigationBarTextLuminosity – indicates that the status bar text color should match the luminosity of

the navigation bar.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/status-bar-text-color.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.statusbartextcolormodeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.statusbartextcolormode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.setstatusbartextcolormode#xamarin_forms_platformconfiguration_iosspecific_navigationpage_setstatusbartextcolormode_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__xamarin_forms_platformconfiguration_iosspecific_statusbartextcolormode_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.statusbartextcolormode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.statusbartextcolormode#xamarin_forms_platformconfiguration_iosspecific_statusbartextcolormode_donotadjust
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.statusbartextcolormode#xamarin_forms_platformconfiguration_iosspecific_statusbartextcolormode_matchnavigationbartextluminosity

 Related links

In addition, the GetStatusBarTextColorMode method can be used to retrieve the current value of the

StatusBarTextColorMode enumeration that's applied to the NavigationPage .

The result is that the status bar text color on a NavigationPage can be adjusted to match the luminosity of the

navigation bar. In this example, the status bar text color changes as the user switches between the Flyout and

Detail pages of a FlyoutPage :

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.getstatusbartextcolormode#xamarin_forms_platformconfiguration_iosspecific_navigationpage_getstatusbartextcolormode_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.statusbartextcolormode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.flyout#xamarin_forms_flyoutpage_flyout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

NavigationPage Bar Translucency on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<NavigationPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 BackgroundColor="Blue"
 ios:NavigationPage.IsNavigationBarTranslucent="true">
 ...
</NavigationPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

(App.Current.MainPage as Xamarin.Forms.NavigationPage).BackgroundColor = Color.Blue;
(App.Current.MainPage as Xamarin.Forms.NavigationPage).On<iOS>().EnableTranslucentNavigationBar();

(App.Current.MainPage as Xamarin.Forms.NavigationPage)
 .On<iOS>()
 .SetIsNavigationBarTranslucent(!(App.Current.MainPage as Xamarin.Forms.NavigationPage).On<iOS>
().IsNavigationBarTranslucent());

 Related links

 Download the sample

This iOS platform-specific is used to change the transparency of the navigation bar on a NavigationPage , and is

consumed in XAML by setting the NavigationPage.IsNavigationBarTranslucent attached property to a boolean

value:

Alternatively, it can be consumed from C# using the fluent API:

The NavigationPage.On<iOS> method specifies that this platform-specific will only run on iOS. The

NavigationPage.EnableTranslucentNavigationBar method, in the

Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used to make the navigation bar translucent. In

addition, the NavigationPage class in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace also has

a DisableTranslucentNavigationBar method that restores the navigation bar to its default state, and a

SetIsNavigationBarTranslucent method which can be used to toggle the navigation bar transparency by calling

the IsNavigationBarTranslucent method:

The result is that the transparency of the navigation bar can be changed:

PlatformSpecifics (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/navigation-bar-translucent.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.isnavigationbartranslucentproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.enabletranslucentnavigationbar#xamarin_forms_platformconfiguration_iosspecific_navigationpage_enabletranslucentnavigationbar_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.disabletranslucentnavigationbar#xamarin_forms_platformconfiguration_iosspecific_navigationpage_disabletranslucentnavigationbar_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.setisnavigationbartranslucent#xamarin_forms_platformconfiguration_iosspecific_navigationpage_setisnavigationbartranslucent_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.navigationpage.isnavigationbartranslucent#xamarin_forms_platformconfiguration_iosspecific_navigationpage_isnavigationbartranslucent_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_navigationpage__
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Home Indicator Visibility on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:Page.PrefersHomeIndicatorAutoHidden="true">
 ...
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

On<iOS>().SetPrefersHomeIndicatorAutoHidden(true);

NOTENOTE

 Related links

 Download the sample

This iOS platform-specific sets the visibility of the home indicator on a Page . It's consumed in XAML by setting

the Page.PrefersHomeIndicatorAutoHidden bindable property to a boolean :

Alternatively, it can be consumed from C# using the fluent API:

The Page.On<iOS> method specifies that this platform-specific will only run on iOS. The

Page.SetPrefersHomeIndicatorAutoHidden method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, controls the visibility of the home indicator. In addition, the Page.PrefersHomeIndicatorAutoHidden

method can be used to retrieve the visibility of the home indicator.

The result is that the visibility of the home indicator on a Page can be controlled:

This platform-specific can be applied to ContentPage , FlyoutPage , NavigationPage , and TabbedPage objects.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/page-home-indicator.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.page.prefershomeindicatorautohiddenproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.page.setprefershomeindicatorautohidden#xamarin_forms_platformconfiguration_iosspecific_page_setprefershomeindicatorautohidden_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_page__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.page.prefershomeindicatorautohidden#xamarin_forms_platformconfiguration_iosspecific_page_prefershomeindicatorautohidden_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_page__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.navigationpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Page Status Bar Visibility on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:Page.PrefersStatusBarHidden="True"
 ios:Page.PreferredStatusBarUpdateAnimation="Fade">
 ...
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

On<iOS>().SetPrefersStatusBarHidden(StatusBarHiddenMode.True)
 .SetPreferredStatusBarUpdateAnimation(UIStatusBarAnimation.Fade);

 Download the sample

This iOS platform-specific is used to set the visibility of the status bar on a Page , and it includes the ability to

control how the status bar enters or leaves the Page . It's consumed in XAML by setting the

Page.PrefersStatusBarHidden attached property to a value of the StatusBarHiddenMode enumeration, and

optionally the Page.PreferredStatusBarUpdateAnimation attached property to a value of the

UIStatusBarAnimation enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The Page.On<iOS> method specifies that this platform-specific will only run on iOS. The

Page.SetPrefersStatusBarHidden method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is

used to set the visibility of the status bar on a Page by specifying one of the StatusBarHiddenMode enumeration

values: Default , True , or False . The StatusBarHiddenMode.True and StatusBarHiddenMode.False values set the

status bar visibility regardless of device orientation, and the StatusBarHiddenMode.Default value hides the status

bar in a vertically compact environment.

The result is that the visibility of the status bar on a Page can be set:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/page-status-bar-visibility.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page

NOTENOTE

 Related links

On a TabbedPage , the specified StatusBarHiddenMode enumeration value will also update the status bar on all child

pages. On all other Page -derived types, the specified StatusBarHiddenMode enumeration value will only update the

status bar on the current page.

The Page.SetPreferredStatusBarUpdateAnimation method is used to set how the status bar enters or leaves the

Page by specifying one of the UIStatusBarAnimation enumeration values: None , Fade , or Slide . If the Fade

or Slide enumeration value is specified, a 0.25 second animation executes as the status bar enters or leaves the

Page .

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Picker Item Selection on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <Picker ... Title="Select a monkey" ios:Picker.UpdateMode="WhenFinished">
 ...
 </Picker>
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

picker.On<iOS>().SetUpdateMode(UpdateMode.WhenFinished);

switch (picker.On<iOS>().UpdateMode())
{
 case UpdateMode.Immediately:
 picker.On<iOS>().SetUpdateMode(UpdateMode.WhenFinished);
 break;
 case UpdateMode.WhenFinished:
 picker.On<iOS>().SetUpdateMode(UpdateMode.Immediately);
 break;
}

 Download the sample

This iOS platform-specific controls when item selection occurs in a Picker , allowing the user to specify that

item selection occurs when browsing items in the control, or only once the DoneDone button is pressed. It's

consumed in XAML by setting the Picker.UpdateMode attached property to a value of the UpdateMode

enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The Picker.On<iOS> method specifies that this platform-specific will only run on iOS. The Picker.SetUpdateMode

method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used to control when item

selection occurs, with the UpdateMode enumeration providing two possible values:

Immediately – item selection occurs as the user browses items in the Picker . This is the default behavior in

Xamarin.Forms.

WhenFinished – item selection only occurs once the user has pressed the DoneDone button in the Picker .

In addition, the SetUpdateMode method can be used to toggle the enumeration values by calling the UpdateMode

method, which returns the current UpdateMode :

The result is that a specified UpdateMode is applied to the Picker , which controls when item selection occurs:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/picker-selection.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.picker

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/picker-selection-images/picker-updatemode-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Safe Area Layout Guide on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 Title="Safe Area"
 ios:Page.UseSafeArea="true">
 <StackLayout>
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

On<iOS>().SetUseSafeArea(true);

 Download the sample

This iOS platform-specific is used to ensure that page content is positioned on an area of the screen that is safe

for all devices that use iOS 11 and greater. Specifically, it will help to make sure that content isn't clipped by

rounded device corners, the home indicator, or the sensor housing on an iPhone X. It's consumed in XAML by

setting the Page.UseSafeArea attached property to a boolean value:

Alternatively, it can be consumed from C# using the fluent API:

The Page.On<iOS> method specifies that this platform-specific will only run on iOS. The Page.SetUseSafeArea

method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, controls whether the safe area

layout guide is enabled.

The result is that page content can be positioned on an area of the screen that is safe for all iPhones:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/page-safe-area-layout.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/page-safe-area-images/safe-area-layout-large.png#lightbox

NOTENOTE

protected override void OnAppearing()
{
 base.OnAppearing();

 var safeInsets = On<iOS>().SafeAreaInsets();
 safeInsets.Left = 20;
 Padding = safeInsets;
}

 Related links

The safe area defined by Apple is used in Xamarin.Forms to set the Page.Padding property, and will override any

previous values of this property that have been set.

The safe area can be customized by retrieving its Thickness value with the Page.SafeAreaInsets method from

the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace. It can then be modified as required and re-

assigned to the Padding property in the OnAppearing override:

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.padding#xamarin_forms_page_padding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.thickness
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.onappearing#xamarin_forms_page_onappearing
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

ScrollView Content Touches on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<FlyoutPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <FlyoutPage.Flyout>
 <ContentPage Title="Menu" BackgroundColor="Blue" />
 </FlyoutPage.Flyout>
 <FlyoutPage.Detail>
 <ContentPage>
 <ScrollView x:Name="scrollView" ios:ScrollView.ShouldDelayContentTouches="false">
 <StackLayout Margin="0,20">
 <Slider />
 <Button Text="Toggle ScrollView DelayContentTouches" Clicked="OnButtonClicked" />
 </StackLayout>
 </ScrollView>
 </ContentPage>
 </FlyoutPage.Detail>
</FlyoutPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

scrollView.On<iOS>().SetShouldDelayContentTouches(false);

scrollView.On<iOS>().SetShouldDelayContentTouches(!scrollView.On<iOS>().ShouldDelayContentTouches());

 Download the sample

An implicit timer is triggered when a touch gesture begins in a ScrollView on iOS and the ScrollView decides,

based on the user action within the timer span, whether it should handle the gesture or pass it to its content. By

default, the iOS ScrollView delays content touches, but this can cause problems in some circumstances with the

ScrollView content not winning the gesture when it should. Therefore, this platform-specific controls whether a

ScrollView handles a touch gesture or passes it to its content. It's consumed in XAML by setting the

ScrollView.ShouldDelayContentTouches attached property to a boolean value:

Alternatively, it can be consumed from C# using the fluent API:

The ScrollView.On<iOS> method specifies that this platform-specific will only run on iOS. The

ScrollView.SetShouldDelayContentTouches method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, is used to control whether a ScrollView handles a touch gesture or passes it to its content. In

addition, the SetShouldDelayContentTouches method can be used to toggle delaying content touches by calling

the ShouldDelayContentTouches method to return whether content touches are delayed:

The result is that a ScrollView can disable delaying receiving content touches, so that in this scenario the

Slider receives the gesture rather than the Detail page of the FlyoutPage :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/scrollview-content-touches.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.scrollview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage.detail#xamarin_forms_flyoutpage_detail
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/scrollview-content-touches-images/scrollview-delay-content-touches-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

SearchBar style on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <SearchBar ios:SearchBar.SearchBarStyle="Minimal"
 Placeholder="Enter search term" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

SearchBar searchBar = new SearchBar { Placeholder = "Enter search term" };
searchBar.On<iOS>().SetSearchBarStyle(UISearchBarStyle.Minimal);

 Download the sample

This iOS platform-specific controls whether a SearchBar has a background. It's consumed in XAML by setting

the SearchBar.SearchBarStyle bindable property to a value of the UISearchBarStyle enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The SearchBar.On<iOS> method specifies that this platform-specific will only run on iOS. The

SearchBar.SetSearchBarStyle method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is

used to control whether the SearchBar has a background. The UISearchBarStyle enumeration provides three

possible values:

Default indicates that the SearchBar has the default style. This is the default value of the

SearchBar.SearchBarStyle bindable property.

Prominent indicates that the SearchBar has a translucent background, and the search field is opaque.

Minimal indicates that the SearchBar has no background, and the search field is translucent.

In addition, the SearchBar.GetSearchBarStyle method can be used to return the UISearchBarStyle that's applied

to the SearchBar .

The result is that a specified UISearchBarStyle member is applied to a SearchBar , which controls whether the

SearchBar has a background:

The following screenshots show the UISearchBarStyle members applied to SearchBar objects that have their

BackgroundColor property set:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/searchbar-style.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Simultaneous Pan Gesture Recognition on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<Application ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:Application.PanGestureRecognizerShouldRecognizeSimultaneously="true">
 ...
</Application>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

Xamarin.Forms.Application.Current.On<iOS>().SetPanGestureRecognizerShouldRecognizeSimultaneously(true);

 Related links

 Download the sample

When a PanGestureRecognizer is attached to a view inside a scrolling view, all of the pan gestures are captured

by the PanGestureRecognizer and aren't passed to the scrolling view. Therefore, the scrolling view will no longer

scroll.

This iOS platform-specific enables a PanGestureRecognizer in a scrolling view to capture and share the pan

gesture with the scrolling view. It's consumed in XAML by setting the

Application.PanGestureRecognizerShouldRecognizeSimultaneously attached property to true :

Alternatively, it can be consumed from C# using the fluent API:

The Application.On<iOS> method specifies that this platform-specific will only run on iOS. The

Application.SetPanGestureRecognizerShouldRecognizeSimultaneously method, in the

Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used to control whether a pan gesture

recognizer in a scrolling view will capture the pan gesture, or capture and share the pan gesture with the

scrolling view. In addition, the Application.GetPanGestureRecognizerShouldRecognizeSimultaneously method can be

used to return whether the pan gesture is shared with the scrolling view that contains the PanGestureRecognizer .

Therefore, with this platform-specific enabled, when a ListView contains a PanGestureRecognizer , both the

ListView and the PanGestureRecognizer will receive the pan gesture and process it. However, with this

platform-specific disabled, when a ListView contains a PanGestureRecognizer , the PanGestureRecognizer will

capture the pan gesture and process it, and the ListView won't receive the pan gesture.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/application-pan-gesture.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.application.pangesturerecognizershouldrecognizesimultaneouslyproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.application.setpangesturerecognizershouldrecognizesimultaneously#xamarin_forms_platformconfiguration_iosspecific_application_setpangesturerecognizershouldrecognizesimultaneously_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_application__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.application.getpangesturerecognizershouldrecognizesimultaneously#xamarin_forms_platformconfiguration_iosspecific_application_getpangesturerecognizershouldrecognizesimultaneously_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_application__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.pangesturerecognizer
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Slider Thumb Tap on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout ...>
 <Slider ... ios:Slider.UpdateOnTap="true" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

var slider = new Xamarin.Forms.Slider();
slider.On<iOS>().SetUpdateOnTap(true);

 Related links

 Download the sample

This iOS platform-specific enables the Slider.Value property to be set by tapping on a position on the Slider

bar, rather than by having to drag the Slider thumb. It's consumed in XAML by setting the Slider.UpdateOnTap

bindable property to true :

Alternatively, it can be consumed from C# using the fluent API:

The Slider.On<iOS> method specifies that this platform-specific will only run on iOS. The

Slider.SetUpdateOnTap method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used to

control whether a tap on the Slider bar will set the Slider.Value property. In addition, the

Slider.GetUpdateOnTap method can be used to return whether a tap on the Slider bar will set the

Slider.Value property.

The result is that a tap on the Slider bar can move the Slider thumb and set the Slider.Value property:

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/slider-thumb.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.value#xamarin_forms_slider_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.slider.updateontapproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.slider.setupdateontap#xamarin_forms_platformconfiguration_iosspecific_slider_setupdateontap_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_slider__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.value#xamarin_forms_slider_value
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.slider.getupdateontap#xamarin_forms_platformconfiguration_iosspecific_slider_getupdateontap_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_slider__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.slider.value#xamarin_forms_slider_value
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

SwipeView Swipe Transition Mode on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <SwipeView ios:SwipeView.SwipeTransitionMode="Drag">
 <SwipeView.LeftItems>
 <SwipeItems>
 <SwipeItem Text="Delete"
 IconImageSource="delete.png"
 BackgroundColor="LightPink"
 Invoked="OnDeleteSwipeItemInvoked" />
 </SwipeItems>
 </SwipeView.LeftItems>
 <!-- Content -->
 </SwipeView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

SwipeView swipeView = new Xamarin.Forms.SwipeView();
swipeView.On<iOS>().SetSwipeTransitionMode(SwipeTransitionMode.Drag);
// ...

 Download the sample

This iOS platform-specific controls the transition that's used when opening a SwipeView . It's consumed in XAML

by setting the SwipeView.SwipeTransitionMode bindable property to a value of the SwipeTransitionMode

enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The SwipeView.On<iOS> method specifies that this platform-specific will only run on iOS. The

SwipeView.SetSwipeTransitionMode method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace,

is used to control the transition that's used when opening a SwipeView . The SwipeTransitionMode enumeration

provides two possible values:

Reveal indicates that the swipe items will be revealed as the SwipeView content is swiped, and is the default

value of the SwipeView.SwipeTransitionMode property.

Drag indicates that the swipe items will be dragged into view as the SwipeView content is swiped.

In addition, the SwipeView.GetSwipeTransitionMode method can be used to return the SwipeTransitionMode that's

applied to the SwipeView .

The result is that a specified SwipeTransitionMode value is applied to the SwipeView , which controls the

transition that's used when opening the SwipeView :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/swipeview-swipetransitionmode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/swipeview-swipetransitionmode-images/swipetransitionmode-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

TabbedPage translucent tab bar on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<TabbedPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
 ios:TabbedPage.TranslucencyMode="Opaque">
 ...
</TabbedPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

On<iOS>().SetTranslucencyMode(TranslucencyMode.Opaque);

 Related links

 Download the sample

This iOS platform-specific is used to set the translucency mode of the tab bar on a TabbedPage . It's consumed in

XAML by setting the TabbedPage.TranslucencyMode bindable property to a TranslucencyMode enumeration value:

Alternatively, it can be consumed from C# using the fluent API:

The TabbedPage.On<iOS> method specifies that this platform-specific will only run on iOS. The

TabbedPage.SetTranslucencyMode method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is

used to set the translucency mode of the tab bar on a TabbedPage by specifying one of the following

TranslucencyMode enumeration values:

Default , which sets the tab bar to its default translucency mode. This is the default value of the

TabbedPage.TranslucencyMode property.

Translucent , which sets the tab bar to be translucent.

Opaque , which sets the tab bar to be opaque.

In addition, the GetTranslucencyMode method can be used to retrieve the current value of the TranslucencyMode

enumeration that's applied to the TabbedPage .

The result is that the translucency mode of the tab bar on a TabbedPage can be set:

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/tabbedpage-translucent-tabbar.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

TimePicker item selection on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <TimePicker Time="14:00:00"
 ios:TimePicker.UpdateMode="WhenFinished" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

timePicker.On<iOS>().SetUpdateMode(UpdateMode.WhenFinished);

switch (timePicker.On<iOS>().UpdateMode())
{
 case UpdateMode.Immediately:
 timePicker.On<iOS>().SetUpdateMode(UpdateMode.WhenFinished);
 break;
 case UpdateMode.WhenFinished:
 timePicker.On<iOS>().SetUpdateMode(UpdateMode.Immediately);
 break;
}

 Download the sample

This iOS platform-specific controls when item selection occurs in a TimePicker , allowing the user to specify that

item selection occurs when browsing items in the control, or only once the DoneDone button is pressed. It's

consumed in XAML by setting the TimePicker.UpdateMode attached property to a value of the UpdateMode

enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The TimePicker.On<iOS> method specifies that this platform-specific will only run on iOS. The

TimePicker.SetUpdateMode method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is used

to control when item selection occurs, with the UpdateMode enumeration providing two possible values:

Immediately – item selection occurs as the user browses items in the TimePicker . This is the default

behavior in Xamarin.Forms.

WhenFinished – item selection only occurs once the user has pressed the DoneDone button in the TimePicker .

In addition, the SetUpdateMode method can be used to toggle the enumeration values by calling the UpdateMode

method, which returns the current UpdateMode :

The result is that a specified UpdateMode is applied to the TimePicker , which controls when item selection

occurs:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/timepicker-selection.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.timepicker

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/ios/timepicker-selection-images/timepicker-updatemode-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

VisualElement Blur on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 ...
 <Image Source="monkeyface.png"
 ios:VisualElement.BlurEffect="ExtraLight" />
 ...
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

image.On<iOS>().UseBlurEffect(BlurEffectStyle.ExtraLight);

 Download the sample

This iOS platform-specific is used to blur the content layered beneath it, and can be applied to any

VisualElement . It's consumed in XAML by setting the VisualElement.BlurEffect attached property to a value of

the BlurEffectStyle enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The Image.On<iOS> method specifies that this platform-specific will only run on iOS. The

VisualElement.UseBlurEffect method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace, is

used to apply the blur effect, with the BlurEffectStyle enumeration providing four values:

None

ExtraLight

Light

Dark

The result is that a specified BlurEffectStyle is applied to the Image :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/visualelement-blur.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.blureffectproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.blureffectstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.useblureffect#xamarin_forms_platformconfiguration_iosspecific_visualelement_useblureffect_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__xamarin_forms_platformconfiguration_iosspecific_blureffectstyle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.blureffectstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.blureffectstyle#xamarin_forms_platformconfiguration_iosspecific_blureffectstyle_none
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.blureffectstyle#xamarin_forms_platformconfiguration_iosspecific_blureffectstyle_extralight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.blureffectstyle#xamarin_forms_platformconfiguration_iosspecific_blureffectstyle_light
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.blureffectstyle#xamarin_forms_platformconfiguration_iosspecific_blureffectstyle_dark
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.blureffectstyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image

NOTENOTE

 Related links

When adding a blur effect to a VisualElement , touch events will still be received by the VisualElement .

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

VisualElement Drop Shadows on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout Margin="20">
 <BoxView ...
 ios:VisualElement.IsShadowEnabled="true"
 ios:VisualElement.ShadowColor="Purple"
 ios:VisualElement.ShadowOpacity="0.7"
 ios:VisualElement.ShadowRadius="12">
 <ios:VisualElement.ShadowOffset>
 <Size>
 <x:Arguments>
 <x:Double>10</x:Double>
 <x:Double>10</x:Double>
 </x:Arguments>
 </Size>
 </ios:VisualElement.ShadowOffset>
 </BoxView>
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

var boxView = new BoxView { Color = Color.Aqua, WidthRequest = 100, HeightRequest = 100 };
boxView.On<iOS>()
 .SetIsShadowEnabled(true)
 .SetShadowColor(Color.Purple)
 .SetShadowOffset(new Size(10,10))
 .SetShadowOpacity(0.7)
 .SetShadowRadius(12);

 Download the sample

This iOS platform-specific is used to enable a drop shadow on a VisualElement . It's consumed in XAML by

setting the VisualElement.IsShadowEnabled attached property to true , along with a number of additional

optional attached properties that control the drop shadow:

Alternatively, it can be consumed from C# using the fluent API:

The VisualElement.On<iOS> method specifies that this platform-specific will only run on iOS. The

VisualElement.SetIsShadowEnabled method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace,

is used to control whether a drop shadow is enabled on the VisualElement . In addition, the following methods

can be invoked to control the drop shadow:

SetShadowColor – sets the color of the drop shadow. The default color is Color.Default .

SetShadowOffset – sets the offset of the drop shadow. The offset changes the direction the shadow is cast,

and is specified as a Size value. The Size structure values are expressed in device-independent units, with

the first value being the distance to the left (negative value) or right (positive value), and the second value

being the distance above (negative value) or below (positive value). The default value of this property is (0.0,

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/visualelement-drop-shadow.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.isshadowenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.setisshadowenabled#xamarin_forms_platformconfiguration_iosspecific_visualelement_setisshadowenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.setshadowcolor#xamarin_forms_platformconfiguration_iosspecific_visualelement_setshadowcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__xamarin_forms_color_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color.default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.setshadowoffset#xamarin_forms_platformconfiguration_iosspecific_visualelement_setshadowoffset_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__xamarin_forms_size_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.size

NOTENOTE

 Related links

0.0), which results in the shadow being cast around every side of the VisualElement .

SetShadowOpacity – sets the opacity of the drop shadow, with the value being in the range 0.0 (transparent)

to 1.0 (opaque). The default opacity value is 0.5.

SetShadowRadius – sets the blur radius used to render the drop shadow. The default radius value is 10.0.

The state of a drop shadow can be queried by calling the GetIsShadowEnabled , GetShadowColor , GetShadowOffset ,

GetShadowOpacity , and GetShadowRadius methods.

The result is that a drop shadow can be enabled on a VisualElement :

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.setshadowopacity#xamarin_forms_platformconfiguration_iosspecific_visualelement_setshadowopacity_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.setshadowradius#xamarin_forms_platformconfiguration_iosspecific_visualelement_setshadowradius_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.getisshadowenabled#xamarin_forms_platformconfiguration_iosspecific_visualelement_getisshadowenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.getshadowcolor#xamarin_forms_platformconfiguration_iosspecific_visualelement_getshadowcolor_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.getshadowoffset#xamarin_forms_platformconfiguration_iosspecific_visualelement_getshadowoffset_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.getshadowopacity#xamarin_forms_platformconfiguration_iosspecific_visualelement_getshadowopacity_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.getshadowradius#xamarin_forms_platformconfiguration_iosspecific_visualelement_getshadowradius_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

VisualElement Legacy Color Mode on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 ...
 <Button Text="Button"
 TextColor="Blue"
 BackgroundColor="Bisque"
 ios:VisualElement.IsLegacyColorModeEnabled="False" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

_legacyColorModeDisabledButton.On<iOS>().SetIsLegacyColorModeEnabled(false);

 Download the sample

Some of the Xamarin.Forms views feature a legacy color mode. In this mode, when the IsEnabled property of

the view is set to false , the view will override the colors set by the user with the default native colors for the

disabled state. For backwards compatibility, this legacy color mode remains the default behavior for supported

views.

This iOS platform-specific disables this legacy color mode on a VisualElement , so that colors set on a view by

the user remain even when the view is disabled. It's consumed in XAML by setting the

VisualElement.IsLegacyColorModeEnabled attached property to false :

Alternatively, it can be consumed from C# using the fluent API:

The VisualElement.On<iOS> method specifies that this platform-specific will only run on iOS. The

VisualElement.SetIsLegacyColorModeEnabled method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, is used to control whether the legacy color mode is disabled. In addition, the

VisualElement.GetIsLegacyColorModeEnabled method can be used to return whether the legacy color mode is

disabled.

The result is that the legacy color mode can be disabled, so that colors set on a view by the user remain even

when the view is disabled:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/legacy-color-mode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isenabled#xamarin_forms_visualelement_isenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.islegacycolormodeenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.setislegacycolormodeenabled#xamarin_forms_platformconfiguration_iosspecific_visualelement_setislegacycolormodeenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific.visualelement.getislegacycolormodeenabled#xamarin_forms_platformconfiguration_iosspecific_visualelement_getislegacycolormodeenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_ios_xamarin_forms_visualelement__

NOTENOTE

 Related links

When setting a VisualStateGroup on a view, the legacy color mode is completely ignored. For more information about

visual states, see The Xamarin.Forms Visual State Manager.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstategroup
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

VisualElement first responder on iOS
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <Entry Placeholder="Enter text" />
 <Button ios:VisualElement.CanBecomeFirstResponder="True"
 Text="OK" />
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
...

Entry entry = new Entry { Placeholder = "Enter text" };
Button button = new Button { Text = "OK" };
button.On<iOS>().SetCanBecomeFirstResponder(true);

 Related links

 Download the sample

This iOS platform-specific enables a VisualElement object to become the first responder to touch events, rather

than the page containing the element. It's consumed in XAML by setting the

VisualElement.CanBecomeFirstResponder bindable property to true :

Alternatively, it can be consumed from C# using the fluent API:

The VisualElement.On<iOS> method specifies that this platform-specific will only run on iOS. The

VisualElement.SetCanBecomeFirstResponder method, in the Xamarin.Forms.PlatformConfiguration.iOSSpecific

namespace, is used to set the VisualElement to become the first responder for touch events. In addition, the

VisualElement.CanBecomeFirstResponder method can be used to return whether the VisualElement is the first

responder to touch events.

The result is that a VisualElement can become the first responder for touch events, rather than the page

containing the element. This enables scenarios such as chat applications not dismissing a keyboard when a

Button is tapped.

PlatformSpecifics (sample)

Creating Platform-Specifics

iOSSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/ios/visualelement-first-responder.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific

Windows Platform Features
 7/8/2021 • 2 minutes to read • Edit Online

 Platform-specifics

Developing Xamarin.Forms applications for Windows platforms requires Visual Studio. The supported platforms

page contains more information about the pre-requisites.

Platform-specifics allow you to consume functionality that's only available on a specific platform, without

implementing custom renderers or effects.

The following platform-specific functionality is provided for Xamarin.Forms views, pages, and layouts on the

Universal Windows Platform (UWP):

Setting an access key for a VisualElement . For more information, see VisualElement Access Keys on

Windows.

Disabling legacy color mode on a supported VisualElement . For more information, see VisualElement

Legacy Color Mode on Windows.

The following platform-specific functionality is provided for Xamarin.Forms views on UWP:

Detecting reading order from text content in Entry , Editor , and Label instances. For more information,

see InputView Reading Order on Windows.

Enabling tap gesture support in a ListView . For more information, see ListView SelectionMode on Windows.

Enabling the pull direction of a RefreshView to be changed. For more information, see RefreshView Pull

Direction on Windows.

Enabling a SearchBar to interact with the spell check engine. For more information, see SearchBar Spell

Check on Windows.

Setting the thread on which a WebView hosts its content. For more information, see WebView Execution

Mode on Windows.

Enabling a WebView to display JavaScript alerts in a UWP message dialog. For more information, see

WebView JavaScript Alerts on Windows.

The following platform-specific functionality is provided for Xamarin.Forms pages on UWP:

Collapsing the FlyoutPage navigation bar. For more information, see FlyoutPage Navigation Bar on

Windows.

Setting toolbar placement options. For more information, see Page Toolbar Placement on Windows.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/index.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

 Platform support

NOTENOTE

 Getting started

 Samples

 Related links

Enabling page icons to be displayed on a TabbedPage toolbar. For more information, see TabbedPage Icons

on Windows.

The following platform-specific functionality is provided for the Xamarin.Forms Application class on UWP:

Specifying the directory in the project that image assets will be loaded from. For more information, see

Default Image Directory on Windows.

The Xamarin.Forms templates available in Visual Studio contain a Universal Windows Platform (UWP) project.

Xamarin.Forms 1.x and 2.x support Windows Phone 8 Silverlight, Windows Phone 8.1, and Windows 8.1 application

development. However, these project types have been deprecated.

Go to File > New > ProjectFile > New > Project in Visual Studio and choose one of the Cross-Platform > Blank AppCross-Platform > Blank App

(Xamarin.Forms)(Xamarin.Forms) templates to get started.

Older Xamarin.Forms solutions, or those created on macOS, will not have all the Windows projects listed above

(but they need to be manually added). If the Windows platform you wish to target isn't already in your solution,

visit the setup instructions to add the desired Windows project type/s.

All the samples for Charles Petzold's book Creating Mobile Apps with Xamarin.Forms include Universal

Windows Platform (for Windows 10) projects.

The "Scott Hanselman" demo app is available separately, and also includes Apple Watch and Android Wear

projects (using Xamarin.iOS and Xamarin.Android respectively, Xamarin.Forms does not run on those platforms).

Setup Windows Projects

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.application
https://github.com/xamarin/xamarin-forms-book-preview-2
https://github.com/jamesmontemagno/Hanselman.Forms

Default image directory on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core"
 ...
 windows:Application.ImageDirectory="Assets">
 ...
</Application>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...
Application.Current.On<Windows>().SetImageDirectory("Assets");

 Related links

 Download the sample

This Universal Windows Platform platform-specific defines the directory in the project that image assets will be

loaded from. It's consumed in XAML by setting the Application.ImageDirectory to a string that represents the

project directory that contains image assets:

Alternatively, it can be consumed from C# using the fluent API:

The Application.On<Windows> method specifies that this platform-specific will only run on the Universal

Windows Platform. The Application.SetImageDirectory method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used to specify the project directory that

images will be loaded from. In addition, the GetImageDirectory method can be used to return a string that

represents the project directory that contains the application image assets.

The result is that all images used in an application will be loaded from the specified project directory.

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/default-image-directory.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

FlyoutPage Navigation Bar on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<FlyoutPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core"
 windows:FlyoutPage.CollapseStyle="Partial"
 windows:FlyoutPage.CollapsedPaneWidth="48">
 ...
</FlyoutPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

page.On<Windows>().SetCollapseStyle(CollapseStyle.Partial).CollapsedPaneWidth(148);

 Download the sample

This Universal Windows Platform platform-specific is used to collapse the navigation bar on a FlyoutPage , and

is consumed in XAML by setting the FlyoutPage.CollapseStyle and FlyoutPage.CollapsedPaneWidth attached

properties:

Alternatively, it can be consumed from C# using the fluent API:

The FlyoutPage.On<Windows> method specifies that this platform-specific will only run on Windows. The

Page.SetCollapseStyle method, in the Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used

to specify the collapse style, with the CollapseStyle enumeration providing two values: Full and Partial . The

FlyoutPage.CollapsedPaneWidth method is used to specify the width of a partially collapsed navigation bar.

The result is that a specified CollapseStyle is applied to the FlyoutPage instance, with the width also being

specified:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/flyoutpage-navigation-bar.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.flyoutpage.collapsestyleproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.flyoutpage.collapsedpanewidthproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.flyoutpage.setcollapsestyle#xamarin_forms_platformconfiguration_windowsspecific_flyoutpage_setcollapsestyle_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_flyoutpage__xamarin_forms_platformconfiguration_windowsspecific_collapsestyle_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.collapsestyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.collapsestyle#xamarin_forms_platformconfiguration_windowsspecific_collapsestyle_full
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.collapsestyle#xamarin_forms_platformconfiguration_windowsspecific_collapsestyle_partial
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.flyoutpage.collapsedpanewidth#xamarin_forms_platformconfiguration_windowsspecific_flyoutpage_collapsedpanewidth_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_flyoutpage__system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.collapsestyle
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flyoutpage

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/windows/flyoutpage-navigation-bar-images/collapsed-navigation-bar-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

InputView Reading Order on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <Editor ... windows:InputView.DetectReadingOrderFromContent="true" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

editor.On<Windows>().SetDetectReadingOrderFromContent(true);

editor.On<Windows>().SetDetectReadingOrderFromContent(!editor.On<Windows>
().GetDetectReadingOrderFromContent());

 Download the sample

This Universal Windows Platform platform-specific enables the reading order (left-to-right or right-to-left) of

bidirectional text in Entry , Editor , and Label instances to be detected dynamically. It's consumed in XAML by

setting the InputView.DetectReadingOrderFromContent (for Entry and Editor instances) or

Label.DetectReadingOrderFromContent attached property to a boolean value:

Alternatively, it can be consumed from C# using the fluent API:

The Editor.On<Windows> method specifies that this platform-specific will only run on the Universal Windows

Platform. The InputView.SetDetectReadingOrderFromContent method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used to control whether the reading order

is detected from the content in the InputView . In addition, the InputView.SetDetectReadingOrderFromContent

method can be used to toggle whether the reading order is detected from the content by calling the

InputView.GetDetectReadingOrderFromContent method to return the current value:

The result is that Entry , Editor , and Label instances can have the reading order of their content detected

dynamically:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/inputview-reading-order.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.inputview.detectreadingorderfromcontentproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.label.detectreadingorderfromcontentproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.inputview.setdetectreadingorderfromcontent#xamarin_forms_platformconfiguration_windowsspecific_inputview_setdetectreadingorderfromcontent_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_inputview__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.inputview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.inputview.getdetectreadingorderfromcontent#xamarin_forms_platformconfiguration_windowsspecific_inputview_getdetectreadingorderfromcontent_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_inputview__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.editor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/windows/inputview-reading-order-images/editor-readingorder-large.png#lightbox

NOTENOTE

 Related links

Unlike setting the FlowDirection property, the logic for views that detect the reading order from their text content will

not affect the alignment of text within the view. Instead, it adjusts the order in which blocks of bidirectional text are laid

out.

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

ListView SelectionMode on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <ListView ... windows:ListView.SelectionMode="Inaccessible">
 ...
 </ListView>
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

listView.On<Windows>().SetSelectionMode(ListViewSelectionMode.Inaccessible);

NOTENOTE

 Download the sample

On the Universal Windows Platform, by default the Xamarin.Forms ListView uses the native ItemClick event

to respond to interaction, rather than the native Tapped event. This provides accessibility functionality so that

the Windows Narrator and the keyboard can interact with the ListView . However, it also renders any tap

gestures inside the ListView inoperable.

This Universal Windows Platform platform-specific controls whether items in a ListView can respond to tap

gestures, and hence whether the native ListView fires the ItemClick or Tapped event. It's consumed in XAML

by setting the ListView.SelectionMode attached property to a value of the ListViewSelectionMode enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The ListView.On<Windows> method specifies that this platform-specific will only run on the Universal Windows

Platform. The ListView.SetSelectionMode method, in the Xamarin.Forms.PlatformConfiguration.WindowsSpecific

namespace, is used to control whether items in a ListView can respond to tap gestures, with the

ListViewSelectionMode enumeration providing two possible values:

Accessible – indicates that the ListView will fire the native ItemClick event to handle interaction, and

hence provide accessibility functionality. Therefore, the Windows Narrator and the keyboard can interact with

the ListView . However, items in the ListView can't respond to tap gestures. This is the default behavior for

ListView instances on the Universal Windows Platform.

Inaccessible – indicates that the ListView will fire the native Tapped event to handle interaction. Therefore,

items in the ListView can respond to tap gestures. However, there's no accessibility functionality and hence

the Windows Narrator and the keyboard can't interact with the ListView .

The Accessible and Inaccessible selection modes are mutually exclusive, and you will need to choose between an

accessible ListView or a ListView that can respond to tap gestures.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/listview-selectionmode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listview.selectionmodeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listviewselectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listview.setselectionmode#xamarin_forms_platformconfiguration_windowsspecific_listview_setselectionmode_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_listview__xamarin_forms_platformconfiguration_windowsspecific_listviewselectionmode_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listviewselectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listviewselectionmode#xamarin_forms_platformconfiguration_windowsspecific_listviewselectionmode_accessible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listviewselectionmode#xamarin_forms_platformconfiguration_windowsspecific_listviewselectionmode_inaccessible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Related links

In addition, the GetSelectionMode method can be used to return the current ListViewSelectionMode .

The result is that a specified ListViewSelectionMode is applied to the ListView , which controls whether items in

the ListView can respond to tap gestures, and hence whether the native ListView fires the ItemClick or

Tapped event.

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listview.getselectionmode#xamarin_forms_platformconfiguration_windowsspecific_listview_getselectionmode_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_listview__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listviewselectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.listviewselectionmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

Page Toolbar Placement on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<TabbedPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core"
 windows:Page.ToolbarPlacement="Bottom">
 ...
</TabbedPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

page.On<Windows>().SetToolbarPlacement(ToolbarPlacement.Bottom);

 Download the sample

This Universal Windows Platform platform-specific is used to change the placement of a toolbar on a Page , and

is consumed in XAML by setting the Page.ToolbarPlacement attached property to a value of the

ToolbarPlacement enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The Page.On<Windows> method specifies that this platform-specific will only run on Windows. The

Page.SetToolbarPlacement method, in the Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is

used to set the toolbar placement, with the ToolbarPlacement enumeration providing three values: Default ,

Top , and Bottom .

The result is that the specified toolbar placement is applied to the Page instance:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/page-toolbar-placement.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.page.toolbarplacementproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.toolbarplacement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.page.settoolbarplacement#xamarin_forms_platformconfiguration_windowsspecific_page_settoolbarplacement_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_page__xamarin_forms_platformconfiguration_windowsspecific_toolbarplacement_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.toolbarplacement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.toolbarplacement#xamarin_forms_platformconfiguration_windowsspecific_toolbarplacement_default
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.toolbarplacement#xamarin_forms_platformconfiguration_windowsspecific_toolbarplacement_top
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.toolbarplacement#xamarin_forms_platformconfiguration_windowsspecific_toolbarplacement_bottom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/windows/page-toolbar-placement-images/toolbar-placement-large.png#lightbox

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

Setup Windows Projects
 7/8/2021 • 3 minutes to read • Edit Online

 Add a Universal Windows Platform app

Adding new Windows projects to an existing Xamarin.Forms solution

Older Xamarin.Forms solutions (or those created on macOS) will not have Universal Windows Platform (UWP)

app projects. Therefore, you'll need to manually add a UWP project to build a Windows 10 (UWP) app.

Visual Studio 2019Visual Studio 2019 on Windows 10Windows 10 is recommended to build UWP apps. For more information about the

Universal Windows Platform, see Intro to the Universal Windows Platform.

UWP is available in Xamarin.Forms 2.1 and later, and Xamarin.Forms.Maps is supported in Xamarin.Forms 2.2

and later.

Check the troubleshooting section for helpful tips.

Follow these instructions to add a UWP app that will run on Windows 10 phones, tablets, and desktops:

1 . Right-click on the solution and select Add > New Project...Add > New Project... and add a Blank App (Universal Windows)Blank App (Universal Windows)

project:

2 . In the New Universal Windows Platform ProjectNew Universal Windows Platform Project dialog, select the minimum and target versions of

Windows 10 that the app will run on:

3 . Right-click on the UWP project and select Manage NuGet Packages...Manage NuGet Packages... and add the Xamarin.FormsXamarin.Forms

package. Ensure the other projects in the solution are also updated to the same version of the Xamarin.Forms

package.

4 . Make sure the new UWP project will be built in the Build > Configuration ManagerBuild > Configuration Manager window (this

probably won't have happened by default). Tick the BuildBuild and DeployDeploy boxes for the Universal project:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/installation/index.md
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide/

// under this line
rootFrame.NavigationFailed += OnNavigationFailed;
// add this line
Xamarin.Forms.Forms.Init (e); // requires the `e` parameter

xmlns:forms="using:Xamarin.Forms.Platform.UWP"

<forms:WindowsPage
...
 xmlns:forms="using:Xamarin.Forms.Platform.UWP"
...
</forms:WindowsPage>

public sealed partial class MainPage // REMOVE ": Page"

5 . Right-click on the project and select Add > ReferenceAdd > Reference and create a reference to the Xamarin.Forms

application project (.NET Standard or Shared Project).

6 . In the UWP project, edit App.xaml.csApp.xaml.cs to include the Init method call inside the OnLaunched method around

line 52:

7 . In the UWP project, edit MainPage.xamlMainPage.xaml by removing the Grid contained within the Page element.

8 . In MainPage.xamlMainPage.xaml , add a new xmlns entry for Xamarin.Forms.Platform.UWP :

9 . In MainPage.xamlMainPage.xaml , change the root <Page element to <forms:WindowsPage :

10 . In the UWP project, edit MainPage.xaml.csMainPage.xaml.cs to remove the : Page inheritance specifier for the class name

(since it will now inherit from WindowsPage due to the change made in the previous step):

11 . In MainPage.xaml.csMainPage.xaml.cs , add the LoadApplication call in the MainPage constructor to start the

Xamarin.Forms app:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/windows/installation/universal-images/configuration.png#lightbox

// below this existing line
this.InitializeComponent();
// add this line
LoadApplication(new YOUR_NAMESPACE.App());

NOTENOTE

 Troubleshooting
 "Target Invocation Exception" when using "Compile with .NET Native tool chain""Target Invocation Exception" when using "Compile with .NET Native tool chain"

// You'll need to add `using System.Reflection;`
List<Assembly> assembliesToInclude = new List<Assembly>();

// Now, add in all the assemblies your app uses
assembliesToInclude.Add(typeof (ClassInOtherAssembly).GetTypeInfo().Assembly);

// Also do this for all your other 3rd party libraries
Xamarin.Forms.Forms.Init(e, assembliesToInclude);
// replaces Xamarin.Forms.Forms.Init(e);

 Dependency Services and .NET Native CompilationDependency Services and .NET Native Compilation

Xamarin.Forms.Forms.Init(e, assembliesToInclude);
Xamarin.Forms.DependencyService.Register<ClassInOtherAssembly>(); // add this

The argument to the LoadApplication method is the Xamarin.Forms.Application instance defined in your .NET

standard project.

12 . Add any local resources (eg. image files) from the existing platform projects that are required.

If your UWP app is referencing multiple assemblies (for example third party control libraries, or your app itself is

split into multiple libraries), Xamarin.Forms may be unable to load objects from those assemblies (such as

custom renderers).

This might occur when using the Compile with .NET Native tool chainCompile with .NET Native tool chain which is an option for UWP apps in

the Proper ties > Build > GeneralProper ties > Build > General window for the project.

You can fix this by using a UWP-specific overload of the Forms.Init call in App.xaml.csApp.xaml.cs as shown in the code

below (you should replace ClassInOtherAssembly with an actual class your code references):

Add an entry for each assembly that you have added as a reference in the Solution Explorer, either via a direct

reference or a NuGet.

Release builds using .NET Native compilation can fail to resolve dependency services that are defined outside

the main app executable (such as in a separate project or library).

Use the DependencyService.Register<T>() method to manually register dependency service classes. Based on the

example above, add the register method like this:

RefreshView Pull Direction on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <RefreshView windows:RefreshView.RefreshPullDirection="LeftToRight"
 IsRefreshing="{Binding IsRefreshing}"
 Command="{Binding RefreshCommand}">
 <ScrollView>
 ...
 </ScrollView>
 </RefreshView>
 </ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...
refreshView.On<Windows>().SetRefreshPullDirection(RefreshPullDirection.LeftToRight);

 Download the sample

This Universal Windows Platform platform-specific enables the pull direction of a RefreshView to be changed to

match the orientation of the scrollable control that's displaying data. It's consumed in XAML by setting the

RefreshView.RefreshPullDirection bindable property to a value of the RefreshPullDirection enumeration:

Alternatively, it can be consumed from C# using the fluent API:

The RefreshView.On<Windows> method specifies that this platform-specific will only run on the Universal

Windows Platform. The RefreshView.SetRefreshPullDirection method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used to set the pull direction of the

RefreshView , with the RefreshPullDirection enumeration providing four possible values:

LeftToRight indicates that a pull from left to right initiates a refresh.

TopToBottom indicates that a pull from top to bottom initiates a refresh, and is the default pull direction of a

RefreshView .

RightToLeft indicates that a pull from right to left initiates a refresh.

BottomToTop indicates that a pull from bottom to top initiates a refresh.

In addition, the GetRefreshPullDirection method can be used to return the current RefreshPullDirection of the

RefreshView .

The result is that a specified RefreshPullDirection is applied to the RefreshView , to set the pull direction to

match the orientation of the scrollable control that's displaying data. The following screenshot shows a

RefreshView with a LeftToRight pull direction:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/refreshview-pulldirection.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

NOTENOTE

 Related links

When you change the pull direction, the starting position of the progress circle automatically rotates so that the arrow

starts in the appropriate position for the pull direction.

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/windows/refreshview-pulldirection-images/refreshview-pulldirection-large.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

SearchBar Spell Check on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <SearchBar ... windows:SearchBar.IsSpellCheckEnabled="true" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

searchBar.On<Windows>().SetIsSpellCheckEnabled(true);

searchBar.On<Windows>().SetIsSpellCheckEnabled(!searchBar.On<Windows>().GetIsSpellCheckEnabled());

NOTENOTE

 Download the sample

This Universal Windows Platform platform-specific enables a SearchBar to interact with the spell check engine.

It's consumed in XAML by setting the SearchBar.IsSpellCheckEnabled attached property to a boolean value:

Alternatively, it can be consumed from C# using the fluent API:

The SearchBar.On<Windows> method specifies that this platform-specific will only run on the Universal Windows

Platform. The SearchBar.SetIsSpellCheckEnabled method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, turns the spell checker on and off. In addition,

the SearchBar.SetIsSpellCheckEnabled method can be used to toggle the spell checker by calling the

SearchBar.GetIsSpellCheckEnabled method to return whether the spell checker is enabled:

The result is that text entered into the SearchBar can be spell checked, with incorrect spellings being indicated

to the user :

The SearchBar class in the Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace also has

EnableSpellCheck and DisableSpellCheck methods that can be used to enable and disable the spell checker on the

SearchBar , respectively.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/searchbar-spell-check.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.searchbar.isspellcheckenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.searchbar.setisspellcheckenabled#xamarin_forms_platformconfiguration_windowsspecific_searchbar_setisspellcheckenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_searchbar__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.searchbar.getisspellcheckenabled#xamarin_forms_platformconfiguration_windowsspecific_searchbar_getisspellcheckenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_searchbar__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.searchbar
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.searchbar.enablespellcheck
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.searchbar.disablespellcheck

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

TabbedPage Icons on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<TabbedPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core"
 windows:TabbedPage.HeaderIconsEnabled="true">
 <windows:TabbedPage.HeaderIconsSize>
 <Size>
 <x:Arguments>
 <x:Double>24</x:Double>
 <x:Double>24</x:Double>
 </x:Arguments>
 </Size>
 </windows:TabbedPage.HeaderIconsSize>
 <ContentPage Title="Todo" IconImageSource="todo.png">
 ...
 </ContentPage>
 <ContentPage Title="Reminders" IconImageSource="reminders.png">
 ...
 </ContentPage>
 <ContentPage Title="Contacts" IconImageSource="contacts.png">
 ...
 </ContentPage>
</TabbedPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

public class WindowsTabbedPageIconsCS : Xamarin.Forms.TabbedPage
{
 public WindowsTabbedPageIconsCS()
 {
 On<Windows>().SetHeaderIconsEnabled(true);
 On<Windows>().SetHeaderIconsSize(new Size(24, 24));

 Children.Add(new ContentPage { Title = "Todo", IconImageSource = "todo.png" });
 Children.Add(new ContentPage { Title = "Reminders", IconImageSource = "reminders.png" });
 Children.Add(new ContentPage { Title = "Contacts", IconImageSource = "contacts.png" });
 }
}

 Download the sample

This Universal Windows Platform platform-specific enables page icons to be displayed on a TabbedPage toolbar,

and provides the ability to optionally specify the icon size. It's consumed in XAML by setting the

TabbedPage.HeaderIconsEnabled attached property to true , and by optionally setting the

TabbedPage.HeaderIconsSize attached property to a Size value:

Alternatively, it can be consumed from C# using the fluent API:

The TabbedPage.On<Windows> method specifies that this platform-specific will only run on the Universal Windows

Platform. The TabbedPage.SetHeaderIconsEnabled method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used to turn header icons on or off. The

TabbedPage.SetHeaderIconsSize method optionally specifies the header icon size with a Size value.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/tabbedpage-icons.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.tabbedpage.headericonsenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.tabbedpage.headericonssizeproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.size
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.tabbedpage.setheadericonsenabled#xamarin_forms_platformconfiguration_windowsspecific_tabbedpage_setheadericonsenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_tabbedpage__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.tabbedpage.setheadericonssize#xamarin_forms_platformconfiguration_windowsspecific_tabbedpage_setheadericonssize_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_tabbedpage__xamarin_forms_size_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.size

 Related links

In addition, the TabbedPage class in the Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace also

has a EnableHeaderIcons method that enables header icons, a DisableHeaderIcons method that disables header

icons, and a IsHeaderIconsEnabled method that returns a boolean value that indicates whether header icons are

enabled.

The result is that page icons can be displayed on a TabbedPage toolbar, with the icon size being optionally set to

a desired size:

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.tabbedpage.enableheadericons
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.tabbedpage.disableheadericons
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.tabbedpage.isheadericonsenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

VisualElement Access Keys on Windows
 7/8/2021 • 3 minutes to read • Edit Online

<TabbedPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <ContentPage Title="Page 1"
 windows:VisualElement.AccessKey="1">
 <StackLayout Margin="20">
 ...
 <Switch windows:VisualElement.AccessKey="A" />
 <Entry Placeholder="Enter text here"
 windows:VisualElement.AccessKey="B" />
 ...
 <Button Text="Access key F, placement top with offsets"
 Margin="20"
 Clicked="OnButtonClicked"
 windows:VisualElement.AccessKey="F"
 windows:VisualElement.AccessKeyPlacement="Top"
 windows:VisualElement.AccessKeyHorizontalOffset="20"
 windows:VisualElement.AccessKeyVerticalOffset="20" />
 ...
 </StackLayout>
 </ContentPage>
 ...
</TabbedPage>

 Download the sample

Access keys are keyboard shortcuts that improve the usability and accessibility of apps on the Universal

Windows Platform (UWP) by providing an intuitive way for users to quickly navigate and interact with the app's

visible UI through a keyboard instead of via touch or a mouse. They are combinations of the Alt key and one or

more alphanumeric keys, typically pressed sequentially. Keyboard shortcuts are automatically supported for

access keys that use a single alphanumeric character.

Access key tips are floating badges displayed next to controls that include access keys. Each access key tip

contains the alphanumeric keys that activate the associated control. When a user presses the Alt key, the access

key tips are displayed.

This UWP platform-specific is used to specify an access key for a VisualElement . It's consumed in XAML by

setting the VisualElement.AccessKey attached property to an alphanumeric value, and by optionally setting the

VisualElement.AccessKeyPlacement attached property to a value of the AccessKeyPlacement enumeration, the

VisualElement.AccessKeyHorizontalOffset attached property to a double , and the

VisualElement.AccessKeyVerticalOffset attached property to a double :

Alternatively, it can be consumed from C# using the fluent API:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/visualelement-access-keys.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.accesskeyproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.accesskeyplacementproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.accesskeyhorizontaloffsetproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.accesskeyverticaloffsetproperty

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

var page = new ContentPage { Title = "Page 1" };
page.On<Windows>().SetAccessKey("1");

var switchView = new Switch();
switchView.On<Windows>().SetAccessKey("A");
var entry = new Entry { Placeholder = "Enter text here" };
entry.On<Windows>().SetAccessKey("B");
...

var button4 = new Button { Text = "Access key F, placement top with offsets", Margin = new Thickness(20) };
button4.Clicked += OnButtonClicked;
button4.On<Windows>()
 .SetAccessKey("F")
 .SetAccessKeyPlacement(AccessKeyPlacement.Top)
 .SetAccessKeyHorizontalOffset(20)
 .SetAccessKeyVerticalOffset(20);
...

NOTENOTE

NOTENOTE

The VisualElement.On<Windows> method specifies that this platform-specific will only run on the Universal

Windows Platform. The VisualElement.SetAccessKey method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used to set the access key value for the

VisualElement . The VisualElement.SetAccessKeyPlacement method, optionally specifies the position to use for

displaying the access key tip, with the AccessKeyPlacement enumeration providing the following possible values:

Auto – indicates that the access key tip placement will be determined by the operating system.

Top – indicates that the access key tip will appear above the top edge of the VisualElement .

Bottom – indicates that the access key tip will appear below the lower edge of the VisualElement .

Right – indicates that the access key tip will appear to the right of the right edge of the VisualElement .

Left – indicates that the access key tip will appear to the left of the left edge of the VisualElement .

Center – indicates that the access key tip will appear overlaid on the center of the VisualElement .

Typically, the Auto key tip placement is sufficient, which includes support for adaptive user interfaces.

The VisualElement.SetAccessKeyHorizontalOffset and VisualElement.SetAccessKeyVerticalOffset methods can be

used for more granular control of the access key tip location. The argument to the SetAccessKeyHorizontalOffset

method indicates how far to move the access key tip left or right, and the argument to the

SetAccessKeyVerticalOffset method indicates how far to move the access key tip up or down.

Access key tip offsets can't be set when the access key placement is set Auto .

In addition, the GetAccessKey , GetAccessKeyPlacement , GetAccessKeyHorizontalOffset , and

GetAccessKeyVerticalOffset methods can be used to retrieve an access key value and it's location.

The result is that access key tips can be displayed next to any VisualElement instances that define access keys,

by pressing the Alt key:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.setaccesskey#xamarin_forms_platformconfiguration_windowsspecific_visualelement_setaccesskey_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__system_string_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.setaccesskeyplacement#xamarin_forms_platformconfiguration_windowsspecific_visualelement_setaccesskeyplacement_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__xamarin_forms_accesskeyplacement_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement#xamarin_forms_accesskeyplacement_auto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement#xamarin_forms_accesskeyplacement_top
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement#xamarin_forms_accesskeyplacement_bottom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement#xamarin_forms_accesskeyplacement_right
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement#xamarin_forms_accesskeyplacement_left
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement#xamarin_forms_accesskeyplacement_center
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.accesskeyplacement#xamarin_forms_accesskeyplacement_auto
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.setaccesskeyhorizontaloffset#xamarin_forms_platformconfiguration_windowsspecific_visualelement_setaccesskeyhorizontaloffset_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.setaccesskeyverticaloffset#xamarin_forms_platformconfiguration_windowsspecific_visualelement_setaccesskeyverticaloffset_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__system_double_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.getaccesskey#xamarin_forms_platformconfiguration_windowsspecific_visualelement_getaccesskey_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.getaccesskeyplacement#xamarin_forms_platformconfiguration_windowsspecific_visualelement_getaccesskeyplacement_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.getaccesskeyhorizontaloffset#xamarin_forms_platformconfiguration_windowsspecific_visualelement_getaccesskeyhorizontaloffset_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.getaccesskeyverticaloffset#xamarin_forms_platformconfiguration_windowsspecific_visualelement_getaccesskeyverticaloffset_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement

WARNINGWARNING

 Related links

When a user activates an access key, by pressing the Alt key followed by the access key, the default action for the

VisualElement will be executed. For example, when a user activates the access key on a Switch , the Switch is

toggled. When a user activates the access key on an Entry , the Entry gains focus. When a user activates the

access key on a Button , the event handler for the Clicked event is executed.

By default, when a modal dialog is displayed any access keys that are defined on the page behind the dialog can still be

activated. However, custom logic can be written to disable access keys in this scenario. This can be achieved by handling

the Dispatcher.AcceleratorKeyActivated event in the MainPage class of your UWP project, and in the event handler

setting the Handled property of the event arguments to true when a modal dialog is displayed.

For more information about access keys, see Access keys.

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.switch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.clicked
https://docs.microsoft.com/en-us/windows/uwp/design/input/access-keys
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

VisualElement Legacy Color Mode on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 ...
 <Editor Text="Enter text here"
 TextColor="Blue"
 BackgroundColor="Bisque"
 windows:VisualElement.IsLegacyColorModeEnabled="False" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

_legacyColorModeDisabledEditor.On<Windows>().SetIsLegacyColorModeEnabled(false);

 Download the sample

Some of the Xamarin.Forms views feature a legacy color mode. In this mode, when the IsEnabled property of

the view is set to false , the view will override the colors set by the user with the default native colors for the

disabled state. For backwards compatibility, this legacy color mode remains the default behavior for supported

views.

This Universal Windows Platform platform-specific disables this legacy color mode, so that colors set on a view

by the user remain even when the view is disabled. It's consumed in XAML by setting the

VisualElement.IsLegacyColorModeEnabled attached property to false :

Alternatively, it can be consumed from C# using the fluent API:

The VisualElement.On<Windows> method specifies that this platform-specific will only run on Windows. The

VisualElement.SetIsLegacyColorModeEnabled method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used to control whether the legacy color

mode is disabled. In addition, the VisualElement.GetIsLegacyColorModeEnabled method can be used to return

whether the legacy color mode is disabled.

The result is that the legacy color mode can be disabled, so that colors set on a view by the user remain even

when the view is disabled:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/legacy-color-mode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isenabled#xamarin_forms_visualelement_isenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.islegacycolormodeenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.setislegacycolormodeenabled#xamarin_forms_platformconfiguration_windowsspecific_visualelement_setislegacycolormodeenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.visualelement.getislegacycolormodeenabled#xamarin_forms_platformconfiguration_windowsspecific_visualelement_getislegacycolormodeenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_visualelement__

NOTENOTE

 Related links

When setting a VisualStateGroup on a view, the legacy color mode is completely ignored. For more information about

visual states, see The Xamarin.Forms Visual State Manager.

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualstategroup
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

WebView Execution Mode on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <WebView ... windows:WebView.ExecutionMode="SeparateThread" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

WebView webView = new Xamarin.Forms.WebView();
webView.On<Windows>().SetExecutionMode(WebViewExecutionMode.SeparateThread);

 Related links

 Download the sample

This platform-specific sets the thread on which a WebView hosts its content. It's consumed in XAML by setting

the WebView.ExecutionMode bindable property to a WebViewExecutionMode enumeration value:

Alternatively, it can be consumed from C# using the fluent API:

The WebView.On<Windows> method specifies that this platform-specific will only run on the Universal Windows

Platform. The WebView.SetExecutionMode method, in the Xamarin.Forms.PlatformConfiguration.WindowsSpecific

namespace, is used to set the thread on which a WebView hosts its content, with the WebViewExecutionMode

enumeration providing three possible values:

SameThread indicates that content is hosted on the UI thread. This is the default value for the WebView on

Windows.

SeparateThread indicates that content is hosted on a background thread.

SeparateProcess indicates that content is hosted on a separate process off the app process. There isn't a

separate process per WebView instance, and so all of an app's WebView instances share the same separate

process.

In addition, the GetExecutionMode method can be used to return the current WebViewExecutionMode for the

WebView .

PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/webview-executionmode.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

WebView JavaScript Alerts on Windows
 7/8/2021 • 2 minutes to read • Edit Online

<ContentPage ...
 xmlns:windows="clr-
namespace:Xamarin.Forms.PlatformConfiguration.WindowsSpecific;assembly=Xamarin.Forms.Core">
 <StackLayout>
 <WebView ... windows:WebView.IsJavaScriptAlertEnabled="true" />
 ...
 </StackLayout>
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using Xamarin.Forms.PlatformConfiguration.WindowsSpecific;
...

var webView = new Xamarin.Forms.WebView
{
 Source = new HtmlWebViewSource
 {
 Html = @"<html><body><button onclick=""window.alert('Hello World from JavaScript');"">Click Me</button>
</body></html>"
 }
};
webView.On<Windows>().SetIsJavaScriptAlertEnabled(true);

_webView.On<Windows>().SetIsJavaScriptAlertEnabled(!_webView.On<Windows>().IsJavaScriptAlertEnabled());

 Download the sample

This platform-specific enables a WebView to display JavaScript alerts in a UWP message dialog. It's consumed in

XAML by setting the WebView.IsJavaScriptAlertEnabled attached property to a boolean value:

Alternatively, it can be consumed from C# using the fluent API:

The WebView.On<Windows> method specifies that this platform-specific will only run on the Universal Windows

Platform. The WebView.SetIsJavaScriptAlertEnabled method, in the

Xamarin.Forms.PlatformConfiguration.WindowsSpecific namespace, is used to control whether JavaScript alerts

are enabled. In addition, the WebView.SetIsJavaScriptAlertEnabled method can be used to toggle JavaScript

alerts by calling the IsJavaScriptAlertEnabled method to return whether they are enabled:

The result is that JavaScript alerts can be displayed in a UWP message dialog:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/windows/webview-javascript-alert.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.webview.isjavascriptalertenabledproperty
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.webview.setisjavascriptalertenabled#xamarin_forms_platformconfiguration_windowsspecific_webview_setisjavascriptalertenabled_xamarin_forms_iplatformelementconfiguration_xamarin_forms_platformconfiguration_windows_xamarin_forms_webview__system_boolean_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific.webview.isjavascriptalertenabled

 Related links
PlatformSpecifics (sample)

Creating Platform-Specifics

WindowsSpecific API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific

Platform-Specifics
 7/8/2021 • 6 minutes to read • Edit Online

NOTENOTE

 Creating platform-specifics

 Download the sample

Platform-specifics allow you to consume functionality that's only available on a specific platform, without

implementing custom renderers or effects.

The process for consuming a platform-specific through XAML, or through the fluent code API is as follows:

1. Add a xmlns declaration or using directive for the Xamarin.Forms.PlatformConfiguration namespace.

2. Add a xmlns declaration or using directive for the namespace that contains the platform-specific

functionality:

3. Apply the platform-specific from XAML, or from code with the On<T> fluent API. The value of T can be the

iOS , Android , or Windows types from the Xamarin.Forms.PlatformConfiguration namespace.

a. On iOS, this is the Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace.

b. On Android, this is the Xamarin.Forms.PlatformConfiguration.AndroidSpecific namespace. For Android

AppCompat, this is the Xamarin.Forms.PlatformConfiguration.AndroidSpecific.AppCompat namespace.

c. On the Universal Windows Platform, this is the Xamarin.Forms.PlatformConfiguration.WindowsSpecific

namespace.

Note that attempting to consume a platform-specific on a platform where it is unavailable will not result in an error.

Instead, the code will execute without the platform-specific being applied.

Platform-specifics consumed through the On<T> fluent code API return IPlatformElementConfiguration objects.

This allows multiple platform-specifics to be invoked on the same object with method cascading.

For more information about the platform-specifics provided by Xamarin.Forms, see iOS Platform-Specifics,

Android Platform-Specifics, and Windows Platform-Specifics.

Vendors can create their own platform-specifics with Effects. An Effect provides the specific functionality, which

is then exposed through a platform-specific. The result is an Effect that can be more easily consumed through

XAML, and through a fluent code API.

The process for creating a platform-specific is as follows:

1. Implement the specific functionality as an Effect. For more information, see Creating an Effect.

2. Create a platform-specific class that will expose the Effect. For more information, see Creating a Platform-

Specific Class.

3. In the platform-specific class, implement an attached property to allow the platform-specific to be consumed

through XAML. For more information, see Adding an Attached Property.

4. In the platform-specific class, implement extension methods to allow the platform-specific to be consumed

through a fluent code API. For more information, see Adding Extension Methods.

5. Modify the Effect implementation so that the Effect is only applied if the platform-specific has been invoked

on the same platform as the Effect. For more information, see Creating the Effect.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/platform-specifics/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.iosspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.androidspecific.appcompat
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windowsspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.ios
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.android
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration.windows
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.iplatformelementconfiguration-2

NOTENOTE

 Creating a platform-specific classCreating a platform-specific class

namespace MyCompany.Forms.PlatformConfiguration.iOS
{
 public static Shadow
 {
 ...
 }
}

 Adding an attached propertyAdding an attached property

namespace MyCompany.Forms.PlatformConfiguration.iOS
{
 using System.Linq;
 using Xamarin.Forms;
 using Xamarin.Forms.PlatformConfiguration;
 using FormsElement = Xamarin.Forms.Label;

 public static class Shadow
 {
 const string EffectName = "MyCompany.LabelShadowEffect";

 public static readonly BindableProperty IsShadowedProperty =
 BindableProperty.CreateAttached("IsShadowed",
 typeof(bool),
 typeof(Shadow),
 false,
 propertyChanged: OnIsShadowedPropertyChanged);

The result of exposing an Effect as a platform-specific is that the Effect can be more easily consumed through

XAML and through a fluent code API.

It's envisaged that vendors will use this technique to create their own platform-specifics, for ease of consumption by

users. While users may choose to create their own platform-specifics, it should be noted that it requires more code than

creating and consuming an Effect.

The sample application demonstrates a Shadow platform-specific that adds a shadow to the text displayed by a

Label control:

The sample application implements the Shadow platform-specific on each platform, for ease of understanding.

However, aside from each platform-specific Effect implementation, the implementation of the Shadow class is

largely identical for each platform. Therefore, this guide focusses on the implementation of the Shadow class

and associated Effect on a single platform.

For more information about Effects, see Customizing Controls with Effects.

A platform-specific is created as a public static class:

The following sections discuss the implementation of the Shadow platform-specific and associated Effect.

An attached property must be added to the Shadow platform-specific to allow consumption through XAML:

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shadowplatformspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shadowplatformspecific

 public static bool GetIsShadowed(BindableObject element)
 {
 return (bool)element.GetValue(IsShadowedProperty);
 }

 public static void SetIsShadowed(BindableObject element, bool value)
 {
 element.SetValue(IsShadowedProperty, value);
 }

 ...

 static void OnIsShadowedPropertyChanged(BindableObject element, object oldValue, object newValue)
 {
 if ((bool)newValue)
 {
 AttachEffect(element as FormsElement);
 }
 else
 {
 DetachEffect(element as FormsElement);
 }
 }

 static void AttachEffect(FormsElement element)
 {
 IElementController controller = element;
 if (controller == null || controller.EffectIsAttached(EffectName))
 {
 return;
 }
 element.Effects.Add(Effect.Resolve(EffectName));
 }

 static void DetachEffect(FormsElement element)
 {
 IElementController controller = element;
 if (controller == null || !controller.EffectIsAttached(EffectName))
 {
 return;
 }

 var toRemove = element.Effects.FirstOrDefault(e => e.ResolveId ==
Effect.Resolve(EffectName).ResolveId);
 if (toRemove != null)
 {
 element.Effects.Remove(toRemove);
 }
 }
 }
}

The IsShadowed attached property is used to add the MyCompany.LabelShadowEffect Effect to, and remove it from,

the control that the Shadow class is attached to. This attached property registers the

OnIsShadowedPropertyChanged method that will be executed when the value of the property changes. In turn, this

method calls the AttachEffect or DetachEffect method to add or remove the effect based on the value of the

IsShadowed attached property. The Effect is added to or removed from the control by modifying the control's

Effects collection.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element.effects#xamarin_forms_element_effects

NOTENOTE

 Adding Extension MethodsAdding Extension Methods

namespace MyCompany.Forms.PlatformConfiguration.iOS
{
 using System.Linq;
 using Xamarin.Forms;
 using Xamarin.Forms.PlatformConfiguration;
 using FormsElement = Xamarin.Forms.Label;

 public static class Shadow
 {
 ...
 public static bool IsShadowed(this IPlatformElementConfiguration<iOS, FormsElement> config)
 {
 return GetIsShadowed(config.Element);
 }

 public static IPlatformElementConfiguration<iOS, FormsElement> SetIsShadowed(this
IPlatformElementConfiguration<iOS, FormsElement> config, bool value)
 {
 SetIsShadowed(config.Element, value);
 return config;
 }
 ...
 }
}

 Creating the effectCreating the effect

Note that the Effect is resolved by specifying a value that's a concatenation of the resolution group name and unique

identifier that's specified on the Effect implementation. For more information, see Creating an Effect.

For more information about attached properties, see Attached Properties.

Extension methods must be added to the Shadow platform-specific to allow consumption through a fluent code

API:

The IsShadowed and SetIsShadowed extension methods invoke the get and set accessors for the IsShadowed

attached property, respectively. Each extension method operates on the

IPlatformElementConfiguration<iOS, FormsElement> type, which specifies that the platform-specific can be

invoked on Label instances from iOS.

The Shadow platform-specific adds the MyCompany.LabelShadowEffect to a Label , and removes it. The following

code example shows the LabelShadowEffect implementation for the iOS project:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

[assembly: ResolutionGroupName("MyCompany")]
[assembly: ExportEffect(typeof(LabelShadowEffect), "LabelShadowEffect")]
namespace ShadowPlatformSpecific.iOS
{
 public class LabelShadowEffect : PlatformEffect
 {
 protected override void OnAttached()
 {
 UpdateShadow();
 }

 protected override void OnDetached()
 {
 }

 protected override void OnElementPropertyChanged(PropertyChangedEventArgs args)
 {
 base.OnElementPropertyChanged(args);

 if (args.PropertyName == Shadow.IsShadowedProperty.PropertyName)
 {
 UpdateShadow();
 }
 }

 void UpdateShadow()
 {
 try
 {
 if (((Label)Element).OnThisPlatform().IsShadowed())
 {
 Control.Layer.CornerRadius = 5;
 Control.Layer.ShadowColor = UIColor.Black.CGColor;
 Control.Layer.ShadowOffset = new CGSize(5, 5);
 Control.Layer.ShadowOpacity = 1.0f;
 }
 else if (!((Label)Element).OnThisPlatform().IsShadowed())
 {
 Control.Layer.ShadowOpacity = 0;
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control. Error: ", ex.Message);
 }
 }
 }
}

 Consuming the platform-specificConsuming the platform-specific

The UpdateShadow method sets Control.Layer properties to create the shadow, provided that the IsShadowed

attached property is set to true , and provided that the Shadow platform-specific has been invoked on the same

platform that the Effect is implemented for. This check is performed with the OnThisPlatform method.

If the Shadow.IsShadowed attached property value changes at runtime, the Effect needs to respond by removing

the shadow. Therefore, an overridden version of the OnElementPropertyChanged method is used to respond to the

bindable property change by calling the UpdateShadow method.

For more information about creating an effect, see Creating an Effect and Passing Effect Parameters as Attached

Properties.

The Shadow platform-specific is consumed in XAML by setting the Shadow.IsShadowed attached property to a

boolean value:

<ContentPage xmlns:ios="clr-namespace:MyCompany.Forms.PlatformConfiguration.iOS" ...>
 ...
 <Label Text="Label Shadow Effect" ios:Shadow.IsShadowed="true" ... />
 ...
</ContentPage>

using Xamarin.Forms.PlatformConfiguration;
using MyCompany.Forms.PlatformConfiguration.iOS;

...

shadowLabel.On<iOS>().SetIsShadowed(true);

 Related links

Alternatively, it can be consumed from C# using the fluent API:

PlatformSpecifics (sample)

ShadowPlatformSpecific (sample)

iOS Platform-Specifics

Android Platform-Specifics

Windows Platform-Specifics

Customizing Controls with Effects

Attached Properties

PlatformConfiguration API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-platformspecifics
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-shadowplatformspecific
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.platformconfiguration

Xamarin.Forms Device Class
 7/8/2021 • 6 minutes to read • Edit Online

 Provide platform-specific values

double top;
switch (Device.RuntimePlatform)
{
 case Device.iOS:
 top = 20;
 break;
 case Device.Android:
 case Device.UWP:
 default:
 top = 0;
 break;
}
layout.Margin = new Thickness(5, top, 5, 0);

<StackLayout>
 <StackLayout.Margin>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="0,20,0,0" />
 <On Platform="Android, UWP" Value="0,0,0,0" />
 </OnPlatform>
 </StackLayout.Margin>
 ...
</StackLayout>

 Download the sample

The Device class contains a number of properties and methods to help developers customize layout and

functionality on a per-platform basis.

In addition to methods and properties to target code at specific hardware types and sizes, the Device class

includes methods that can be used to interact with UI controls from background threads. For more information,

see Interact with the UI from background threads.

Prior to Xamarin.Forms 2.3.4, the platform the application was running on could be obtained by examining the

Device.OS property and comparing it to the TargetPlatform.iOS , TargetPlatform.Android ,

TargetPlatform.WinPhone , and TargetPlatform.Windows enumeration values. Similarly, one of the

Device.OnPlatform overloads could be used to provide platform-specific values to a control.

However, since Xamarin.Forms 2.3.4 these APIs have been deprecated and replaced. The Device class now

contains public string constants that identify platforms – Device.iOS , Device.Android , Device.WinPhone

(deprecated), Device.WinRT (deprecated), Device.UWP , and Device.macOS . Similarly, the Device.OnPlatform

overloads have been replaced with the OnPlatform and On APIs.

In C#, platform-specific values can be provided by creating a switch statement on the Device.RuntimePlatform

property, and then providing case statements for the required platforms:

The OnPlatform and On classes provide the same functionality in XAML:

The OnPlatform class is a generic class that must be instantiated with an x:TypeArguments attribute that matches

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/device.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithdevice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.os#xamarin_forms_device_os
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.targetplatform#xamarin_forms_targetplatform_ios
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.targetplatform#xamarin_forms_targetplatform_android
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.targetplatform#xamarin_forms_targetplatform_winphone
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.targetplatform#xamarin_forms_targetplatform_windows
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.onplatform#xamarin_forms_device_onplatform_system_action_system_action_system_action_system_action_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.ios
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.android
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.uwp
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.macos
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.onplatform#xamarin_forms_device_onplatform_system_action_system_action_system_action_system_action_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.runtimeplatform#xamarin_forms_device_runtimeplatform
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1

IMPORTANTIMPORTANT

 Device.Idiom

if (Device.Idiom == TargetIdiom.Phone) {
 // layout views vertically
} else {
 // layout views horizontally for a larger display (tablet or desktop)
}

<StackLayout>
 <StackLayout.Margin>
 <OnIdiom x:TypeArguments="Thickness">
 <OnIdiom.Phone>0,20,0,0</OnIdiom.Phone>
 <OnIdiom.Tablet>0,40,0,0</OnIdiom.Tablet>
 <OnIdiom.Desktop>0,60,0,0</OnIdiom.Desktop>
 </OnIdiom>
 </StackLayout.Margin>
 ...
</StackLayout>

 Device.FlowDirection

the target type. In the On class, the Platform attribute can accept a single string value, or multiple comma-

delimited string values.

Providing an incorrect Platform attribute value in the On class will not result in an error. Instead, the code will execute

without the platform-specific value being applied.

Alternatively, the OnPlatform markup extension can be used in XAML to customize UI appearance on a per-

platform basis. For more information, see OnPlatform Markup Extension.

The Device.Idiom property can be used to alter layouts or functionality depending on the device the application

is running on. The TargetIdiom enumeration contains the following values:

PhonePhone – iPhone, iPod touch, and Android devices narrower than 600 dips^

TabletTablet – iPad, Windows devices, and Android devices wider than 600 dips^

DesktopDesktop – only returned in UWP apps on Windows 10 desktop computers (returns Phone on mobile

Windows devices, including in Continuum scenarios)

TVTV – Tizen TV devices

WatchWatch – Tizen watch devices

Unsuppor tedUnsuppor ted – unused

^ dips is not necessarily the physical pixel count

The Idiom property is especially useful for building layouts that take advantage of larger screens, like this:

The OnIdiom class provides the same functionality in XAML:

The OnIdiom class is a generic class that must be instantiated with an x:TypeArguments attribute that matches

the target type.

Alternatively, the OnIdiom markup extension can be used in XAML to customize UI appearance based on the

idiom of the device the application is running on. For more information, see OnIdiom Markup Extension.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.on.platform#xamarin_forms_on_platform
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.targetidiom
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onidiom-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.onplatform-1

<ContentPage ... FlowDirection="{x:Static Device.FlowDirection}"> />

this.FlowDirection = Device.FlowDirection;

 Device.Styles

 Device.GetNamedSize

myLabel.FontSize = Device.GetNamedSize (NamedSize.Small, myLabel);
someLabel.FontSize = Device.OnPlatform (
 24, // hardcoded size
 Device.GetNamedSize (NamedSize.Medium, someLabel),
 Device.GetNamedSize (NamedSize.Large, someLabel)
);

 Device.GetNamedColor

The Device.FlowDirection value retrieves a FlowDirection enumeration value that represents the current flow

direction being used by the device. Flow direction is the direction in which the UI elements on the page are

scanned by the eye. The enumeration values are:

LeftToRight

RightToLeft

MatchParent

In XAML, the Device.FlowDirection value can be retrieved by using the x:Static markup extension:

The equivalent code in C# is:

For more information about flow direction, see Right-to-left Localization.

The Styles property contains built-in style definitions that can be applied to some controls' (such as Label)

Style property. The available styles are:

BodyStyle

CaptionStyle

ListItemDetailTextStyle

ListItemTextStyle

SubtitleStyle

TitleStyle

GetNamedSize can be used when setting FontSize in C# code:

Xamarin.Forms 4.6 introduces support for named colors. A named color is a color that has a different value

depending on which system mode (for example, light or dark) is active on the device. On Android, named colors

are accessed via the R.Color class. On iOS, named colors are called system colors. On the Universal Windows

Platform, named colors are called XAML theme resources.

The GetNamedColor method can be used to retrieve named colors on Android, iOS, and UWP. The method takes a

string argument and returns a Color :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_lefttoright
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_righttoleft
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.flowdirection#xamarin_forms_flowdirection_matchparent
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.flowdirection#xamarin_forms_visualelement_flowdirection
https://developer.android.com/reference/android/R.color#constants_2
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/color/#system-colors
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/xaml-theme-resources
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.color

// Retrieve an Android named color
Color color = Device.GetNamedColor(NamedPlatformColor.HoloBlueBright);

NOTENOTE

A N DRO IDA N DRO ID IO SIO S M A C O SM A C O S UW PUW P

BackgroundDark Label AlternateSelectedControlTextColorSystemAltHighColor

BackgroundLight Link ControlAccent SystemAltLowColor

Black OpaqueSeparator ControlBackgroundColor SystemAltMediumColor

DarkerGray PlaceholderText ControlColor SystemAltMediumHighColor

HoloBlueBright QuaternaryLabel DisabledControlTextColor SystemAltMediumLowColor

HoloBlueDark SecondaryLabel FindHighlightColor SystemBaseHighColor

HoloBlueLight Separator GridColor SystemBaseLowColor

HoloGreenDark SystemBlue HeaderTextColor SystemBaseMediumColor

HoloGreenLight SystemGray HighlightColor SystemBaseMediumHighColor

HoloOrangeDark SystemGray2 KeyboardFocusIndicatorColor SystemBaseMediumLowColor

HoloOrangeLight SystemGray3 Label SystemChromeAltLowColor

HoloPurple SystemGray4 LabelColor SystemChromeBlackHighColor

HoloRedDark SystemGray5 Link SystemChromeBlackLowColor

HoloRedLight SystemGray6 LinkColor SystemChromeBlackMediumColor

TabIndicatorText SystemGreen PlaceholderText SystemChromeBlackMediumLowColor

Transparent SystemIndigo PlaceholderTextColor SystemChromeDisabledHighColor

White SystemOrange QuaternaryLabel SystemChromeDisabledLowColor

WidgetEditTextDark SystemPink QuaternaryLabelColor SystemChromeHighColor

Color.Default will be returned when a color name cannot be found, or when GetNamedColor is invoked on an

unsupported platform.

Because the GetNamedColor method returns a Color that's specific to a platform, it should typically be used in

conjunction with the Device.RuntimePlatform property.

The NamedPlatformColor class contains the constants that define the named colors for Android, iOS, and UWP:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.runtimeplatform#xamarin_forms_device_runtimeplatform

SystemPurple SecondaryLabel SystemChromeLowColor

SystemRed SecondaryLabelColor SystemChromeMediumColor

SystemTeal SelectedContentBackgroundColorSystemChromeMediumLowColor

SystemYellow SelectedControlColor SystemChromeWhiteColor

TertiaryLabel SelectedControlTextColor SystemListLowColor

SelectedMenuItemTextColor SystemListMediumColor

SelectedTextBackgroundColor

SelectedTextColor

Separator

SeparatorColor

ShadowColor

SystemBlue

SystemGray

SystemGreen

SystemIndigo

SystemOrange

SystemPink

SystemPurple

SystemRed

SystemTeal

SystemYellow

TertiaryLabel

TertiaryLabelColor

TextBackgroundColor

A N DRO IDA N DRO ID IO SIO S M A C O SM A C O S UW PUW P

TextColor

UnderPageBackgroundColor

UnemphasizedSelectedContentBackgroundColor

UnemphasizedSelectedTextBackgroundColor

UnemphasizedSelectedTextColor

WindowBackgroundColor

WindowFrameTextColor

A N DRO IDA N DRO ID IO SIO S M A C O SM A C O S UW PUW P

 Device.StartTimer

Device.StartTimer (new TimeSpan (0, 0, 60), () =>
{
 // do something every 60 seconds
 return true; // runs again, or false to stop
});

NOTENOTE

 Interact with the UI from background threads

The Device class also has a StartTimer method which provides a simple way to trigger time-dependent tasks

that works in Xamarin.Forms common code, including a .NET Standard library. Pass a TimeSpan to set the

interval and return true to keep the timer running or false to stop it after the current invocation.

If the code inside the timer interacts with the user-interface (such as setting the text of a Label or displaying an

alert) it should be done inside a BeginInvokeOnMainThread expression (see below).

The System.Timers.Timer and System.Threading.Timer classes are .NET Standard alternatives to using the

Device.StartTimer method.

Most operating systems, including iOS, Android, and the Universal Windows Platform, use a single-threading

model for code involving the user interface. This thread is often called the main thread or the UI thread. A

consequence of this model is that all code that accesses user interface elements must run on the application's

main thread.

Applications sometimes use background threads to perform potentially long running operations, such as

retrieving data from a web service. If code running on a background thread needs to access user interface

elements, it must run that code on the main thread.

The Device class includes the following static methods that can be used to interact with user interface

elements from backgrounds threads:

M ET H O DM ET H O D A RGUM EN T SA RGUM EN T S RET URN SRET URN S P URP O SEP URP O SE

BeginInvokeOnMainThread Action void Invokes an Action on the

main thread, and doesn't
wait for it to complete.

InvokeOnMainThreadAsync<T> Func<T> Task<T> Invokes a Func<T> on the

main thread, and waits for it
to complete.

InvokeOnMainThreadAsync Action Task Invokes an Action on the

main thread, and waits for it
to complete.

InvokeOnMainThreadAsync<T> Func<Task<T>> Task<T> Invokes a Func<Task<T>>

on the main thread, and
waits for it to complete.

InvokeOnMainThreadAsync Func<Task> Task Invokes a Func<Task> on

the main thread, and waits
for it to complete.

GetMainThreadSynchronizationContextAsync Task<SynchronizationContext>Returns the
SynchronizationContext

for the main thread.

Device.BeginInvokeOnMainThread (() =>
{
 // interact with UI elements
});

 Related links

The following code shows an example of using the BeginInvokeOnMainThread method:

Device Sample

Styles Sample

Device API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithdevice
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithstyles
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device

Xamarin.Forms in Xamarin Native Projects
 7/8/2021 • 14 minutes to read • Edit Online

NOTENOTE

 iOS

 Download the sample

Typically, a Xamarin.Forms application includes one or more pages that derive from ContentPage , and these

pages are shared by all platforms in a .NET Standard library project or Shared Project. However, Native Forms

enables ContentPage -derived pages to be added directly to native Xamarin.iOS, Xamarin.Android, and UWP

applications. Compared to having the native project consume ContentPage -derived pages from a .NET Standard

library project or Shared Project, the advantage of adding pages directly to native projects is that the pages can

be extended with native views. Native views can then be named in XAML with x:Name and referenced from the

code-behind. For more information about native views, see Native Views.

The process for consuming a Xamarin.Forms ContentPage -derived page in a native project is as follows:

1. Add the Xamarin.Forms NuGet package to the native project.

2. Add the ContentPage -derived page, and any dependencies, to the native project.

3. Call the Forms.Init method.

4. Construct an instance of the ContentPage -derived page and convert it to the appropriate native type using

one of the following extension methods: CreateViewController for iOS, CreateSupportFragment for Android,

or CreateFrameworkElement for UWP.

5. Navigate to the native type representation of the ContentPage -derived page using the native navigation API.

Xamarin.Forms must be initialized by calling the Forms.Init method before a native project can construct a

ContentPage -derived page. Choosing when to do this primarily depends on when it's most convenient in your

application flow – it could be performed at application startup, or just before the ContentPage -derived page is

constructed. In this article, and the accompanying sample applications, the Forms.Init method is called at

application startup.

The NativeFormsNativeForms sample application solution does not contain any Xamarin.Forms projects. Instead, it consists of a

Xamarin.iOS project, a Xamarin.Android project, and a UWP project. Each project is a native project that uses Native Forms

to consume ContentPage -derived pages. However, there's no reason why the native projects couldn't consume

ContentPage -derived pages from a .NET Standard library project or Shared Project.

When using Native Forms, Xamarin.Forms features such as DependencyService , MessagingCenter , and the data

binding engine, all still work. However, page navigation must be performed using the native navigation API.

On iOS, the FinishedLaunching override in the AppDelegate class is typically the place to perform application

startup related tasks. It's called after the application has launched, and is usually overridden to configure the

main window and view controller. The following code example shows the AppDelegate class in the sample

application:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/native-forms.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/native2forms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter

[Register("AppDelegate")]
public class AppDelegate : UIApplicationDelegate
{
 public static AppDelegate Instance;
 UIWindow _window;
 AppNavigationController _navigation;

 public static string FolderPath { get; private set; }

 public override bool FinishedLaunching(UIApplication application, NSDictionary launchOptions)
 {
 Forms.Init();

 // Create app-level resource dictionary.
 Xamarin.Forms.Application.Current = new Xamarin.Forms.Application();
 Xamarin.Forms.Application.Current.Resources = new MyDictionary();

 Instance = this;
 _window = new UIWindow(UIScreen.MainScreen.Bounds);

 UINavigationBar.Appearance.SetTitleTextAttributes(new UITextAttributes
 {
 TextColor = UIColor.Black
 });

 FolderPath =
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData));

 NotesPage notesPage = new NotesPage()
 {
 // Set the parent so that the app-level resource dictionary can be located.
 Parent = Xamarin.Forms.Application.Current
 };

 UIViewController notesPageController = notesPage.CreateViewController();
 notesPageController.Title = "Notes";

 _navigation = new AppNavigationController(notesPageController);

 _window.RootViewController = _navigation;
 _window.MakeKeyAndVisible();

 notesPage.Parent = null;
 return true;
 }
 // ...
}

The FinishedLaunching method performs the following tasks:

Xamarin.Forms is initialized by calling the Forms.Init method.

A new Xamarin.Forms.Application is object is created, and its application-level resource dictionary is set to a

ResourceDictionary that's defined in XAML.

A reference to the AppDelegate class is stored in the static Instance field. This is to provide a mechanism

for other classes to call methods defined in the AppDelegate class.

The UIWindow , which is the main container for views in native iOS applications, is created.

The FolderPath property is initialized to a path on the device where note data will be stored.

A NotesPage object is created, which is a Xamarin.Forms ContentPage -derived page defined in XAML, and its

parent is set to the previously created Xamarin.Forms.Application object.

The NotesPage object is converted to a UIViewController using the CreateViewController extension method.

The Title property of the UIViewController is set, which will be displayed on the UINavigationBar .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

IMPORTANTIMPORTANT

void OnNoteAddedClicked(object sender, EventArgs e)
{
 AppDelegate.Instance.NavigateToNoteEntryPage(new Note());
}

public void NavigateToNoteEntryPage(Note note)
{
 NoteEntryPage noteEntryPage = new NoteEntryPage
 {
 BindingContext = note,
 // Set the parent so that the app-level resource dictionary can be located.
 Parent = Xamarin.Forms.Application.Current
 };

 var noteEntryViewController = noteEntryPage.CreateViewController();
 noteEntryViewController.Title = "Note Entry";

 _navigation.PushViewController(noteEntryViewController, true);
 noteEntryPage.Parent = null;
}

A AppNavigationController is created for managing hierarchical navigation. This is a custom navigation

controller class, which derives from UINavigationController . The AppNavigationController object manages a

stack of view controllers, and the UIViewController passed into the constructor will be presented initially

when the AppNavigationController is loaded.

The AppNavigationController object is set as the top-level UIViewController for the UIWindow , and the

UIWindow is set as the key window for the application and is made visible.

The Parent property of the NotesPage object is set to null , to prevent a memory leak.

Once the FinishedLaunching method has executed, the UI defined in the Xamarin.Forms NotesPage class will be

displayed, as shown in the following screenshot:

All ContentPage -derived pages can consume resources defined in the application-level ResourceDictionary , provided

that the Parent property of the page is set to the Application object.

Interacting with the UI, for example by tapping on the ++ Button , will result in the following event handler in the

NotesPage code-behind executing:

The static AppDelegate.Instance field enables the AppDelegate.NavigateToNoteEntryPage method to be

invoked, which is shown in the following code example:

The NavigateToNoteEntryPage method converts the Xamarin.Forms ContentPage -derived page to a

UIViewController with the CreateViewController extension method, and sets the Title property of the

UIViewController . The UIViewController is then pushed onto AppNavigationController by the

PushViewController method. Therefore, the UI defined in the Xamarin.Forms NoteEntryPage class will be

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/native-forms-images/ios-notespage-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

public class AppNavigationController : UINavigationController
{
 //...
 public override UIViewController PopViewController(bool animated)
 {
 UIViewController topView = TopViewController;
 if (topView != null)
 {
 // Dispose of ViewController on back navigation.
 topView.Dispose();
 }
 return base.PopViewController(animated);
 }
}

IMPORTANTIMPORTANT

 Android

displayed, as shown in the following screenshot:

When the NoteEntryPage is displayed, back navigation will pop the UIViewController for the NoteEntryPage

class from the AppNavigationController , returning the user to the UIViewController for the NotesPage class.

However, popping a UIViewController from the iOS native navigation stack does not automatically dispose of

the UIViewController and attached Page object. Therefore, the AppNavigationController class overrides the

PopViewController method, to dispose of view controllers on backwards navigation:

The PopViewController override calls the Dispose method on the UIViewController object that's been popped

from the iOS native navigation stack. Failure to do this will result in the UIViewController and attached Page

object being orphaned.

Orphaned objects can't be garbage collected, and so result in a memory leak.

On Android, the OnCreate override in the MainActivity class is typically the place to perform application

startup related tasks. The following code example shows the MainActivity class in the sample application:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/native-forms-images/ios-noteentrypage-large.png#lightbox

public class MainActivity : AppCompatActivity
{
 public static string FolderPath { get; private set; }

 public static MainActivity Instance;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 Forms.Init(this, bundle);

 // Create app-level resource dictionary.
 Xamarin.Forms.Application.Current = new Xamarin.Forms.Application();
 Xamarin.Forms.Application.Current.Resources = new MyDictionary();

 Instance = this;

 SetContentView(Resource.Layout.Main);
 var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
 SetSupportActionBar(toolbar);
 SupportActionBar.Title = "Notes";

 FolderPath =
Path.Combine(System.Environment.GetFolderPath(System.Environment.SpecialFolder.LocalApplicationData));

 NotesPage notesPage = new NotesPage()
 {
 // Set the parent so that the app-level resource dictionary can be located.
 Parent = Xamarin.Forms.Application.Current
 };
 AndroidX.Fragment.App.Fragment notesPageFragment = notesPage.CreateSupportFragment(this);

 SupportFragmentManager
 .BeginTransaction()
 .Replace(Resource.Id.fragment_frame_layout, mainPage)
 .Commit();
 //...

 notesPage.Parent = null;
 }
 ...
}

The OnCreate method performs the following tasks:

Xamarin.Forms is initialized by calling the Forms.Init method.

A new Xamarin.Forms.Application is object is created, and its application-level resource dictionary is set to a

ResourceDictionary that's defined in XAML.

A reference to the MainActivity class is stored in the static Instance field. This is to provide a mechanism

for other classes to call methods defined in the MainActivity class.

The Activity content is set from a layout resource. In the sample application, the layout consists of a

LinearLayout that contains a Toolbar , and a FrameLayout to act as a fragment container.

The Toolbar is retrieved and set as the action bar for the Activity , and the action bar title is set.

The FolderPath property is initialized to a path on the device where note data will be stored.

A NotesPage object is created, which is a Xamarin.Forms ContentPage -derived page defined in XAML, and its

parent is set to the previously created Xamarin.Forms.Application object.

The NotesPage object is converted to a Fragment using the CreateSupportFragment extension method.

The SupportFragmentManager class creates and commits a transaction that replaces the FrameLayout instance

with the Fragment for the NotesPage class.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

IMPORTANTIMPORTANT

void OnNoteAddedClicked(object sender, EventArgs e)
{
 MainActivity.Instance.NavigateToNoteEntryPage(new Note());
}

public void NavigateToNoteEntryPage(Note note)
{
 NoteEntryPage noteEntryPage = new NoteEntryPage
 {
 BindingContext = note,
 // Set the parent so that the app-level resource dictionary can be located.
 Parent = Xamarin.Forms.Application.Current
 };

 AndroidX.Fragment.App.Fragment noteEntryFragment = noteEntryPage.CreateSupportFragment(this);
 SupportFragmentManager
 .BeginTransaction()
 .AddToBackStack(null)
 .Replace(Resource.Id.fragment_frame_layout, noteEntryFragment)
 .Commit();

 noteEntryPage.Parent = null;
}

The Parent property of the NotesPage object is set to null , to prevent a memory leak.

For more information about Fragments, see Fragments.

Once the OnCreate method has executed, the UI defined in the Xamarin.Forms NotesPage class will be

displayed, as shown in the following screenshot:

All ContentPage -derived pages can consume resources defined in the application-level ResourceDictionary , provided

that the Parent property of the page is set to the Application object.

Interacting with the UI, for example by tapping on the ++ Button , will result in the following event handler in the

NotesPage code-behind executing:

The static MainActivity.Instance field enables the MainActivity.NavigateToNoteEntryPage method to be

invoked, which is shown in the following code example:

The NavigateToNoteEntryPage method converts the Xamarin.Forms ContentPage -derived page to a Fragment

with the CreateSupportFragment extension method, and adds the Fragment to the fragment back stack.

Therefore, the UI defined in the Xamarin.Forms NoteEntryPage will be displayed, as shown in the following

screenshot:

https://docs.microsoft.com/en-us/xamarin/android/platform/fragments/index
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/native-forms-images/android-notespage-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

 Enable back navigation supportEnable back navigation support

SupportFragmentManager.BackStackChanged += (sender, e) =>
{
 bool hasBack = SupportFragmentManager.BackStackEntryCount > 0;
 SupportActionBar.SetHomeButtonEnabled(hasBack);
 SupportActionBar.SetDisplayHomeAsUpEnabled(hasBack);
 SupportActionBar.Title = hasBack ? "Note Entry" : "Notes";
};

public override bool OnOptionsItemSelected(Android.Views.IMenuItem item)
{
 if (item.ItemId == global::Android.Resource.Id.Home && SupportFragmentManager.BackStackEntryCount > 0)
 {
 SupportFragmentManager.PopBackStack();
 return true;
 }
 return base.OnOptionsItemSelected(item);
}

 Multiple activitiesMultiple activities

 Choose a fileChoose a file

When the NoteEntryPage is displayed, tapping the back arrow will pop the Fragment for the NoteEntryPage

from the fragment back stack, returning the user to the Fragment for the NotesPage class.

The SupportFragmentManager class has a BackStackChanged event that fires whenever the content of the fragment

back stack changes. The OnCreate method in the MainActivity class contains an anonymous event handler for

this event:

This event handler displays a back button on the action bar provided that there's one or more Fragment

instances on the fragment back stack. The response to tapping the back button is handled by the

OnOptionsItemSelected override:

The OnOptionsItemSelected override is called whenever an item in the options menu is selected. This

implementation pops the current fragment from the fragment back stack, provided that the back button has

been selected and there are one or more Fragment instances on the fragment back stack.

When an application is composed of multiple activities, ContentPage -derived pages can be embedded into each

of the activities. In this scenario, the Forms.Init method need be called only in the OnCreate override of the

first Activity that embeds a Xamarin.Forms ContentPage . However, this has the following impact:

The value of Xamarin.Forms.Color.Accent will be taken from the Activity that called the Forms.Init

method.

The value of Xamarin.Forms.Application.Current will be associated with the Activity that called the

Forms.Init method.

When embedding a ContentPage -derived page that uses a WebView that needs to support an HTML "Choose

File" button, the Activity will need to override the OnActivityResult method:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/native-forms-images/android-noteentrypage-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.webview

protected override void OnActivityResult(int requestCode, Result resultCode, Intent data)
{
 base.OnActivityResult(requestCode, resultCode, data);
 ActivityResultCallbackRegistry.InvokeCallback(requestCode, resultCode, data);
}

 UWP

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 // ...
 Xamarin.Forms.Forms.Init(e);

 // Create app-level resource dictionary.
 Xamarin.Forms.Application.Current = new Xamarin.Forms.Application();
 Xamarin.Forms.Application.Current.Resources = new MyDictionary();

 // ...
}

public sealed partial class MainPage : Page
{
 NotesPage notesPage;
 NoteEntryPage noteEntryPage;

 public static MainPage Instance;
 public static string FolderPath { get; private set; }

 public MainPage()
 {
 this.NavigationCacheMode = NavigationCacheMode.Enabled;
 Instance = this;
 FolderPath =
Path.Combine(System.Environment.GetFolderPath(System.Environment.SpecialFolder.LocalApplicationData));

 notesPage = new Notes.UWP.Views.NotesPage
 {
 // Set the parent so that the app-level resource dictionary can be located.
 Parent = Xamarin.Forms.Application.Current
 };
 this.Content = notesPage.CreateFrameworkElement();
 // ...
 notesPage.Parent = null;
 }
 // ...
}

On UWP, the native App class is typically the place to perform application startup related tasks. Xamarin.Forms

is usually initialized, in Xamarin.Forms UWP applications, in the OnLaunched override in the native App class, to

pass the LaunchActivatedEventArgs argument to the Forms.Init method. For this reason, native UWP

applications that consume a Xamarin.Forms ContentPage -derived page can most easily call the Forms.Init

method from the App.OnLaunched method:

In addition, the OnLaunched method can also create any application-level resource dictionary that's required by

the application.

By default, the native App class launches the MainPage class as the first page of the application. The following

code example shows the MainPage class in the sample application:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

IMPORTANTIMPORTANT

void OnNoteAddedClicked(object sender, EventArgs e)
{
 MainPage.Instance.NavigateToNoteEntryPage(new Note());
}

public void NavigateToNoteEntryPage(Note note)
{
 noteEntryPage = new Notes.UWP.Views.NoteEntryPage
 {
 BindingContext = note,
 // Set the parent so that the app-level resource dictionary can be located.
 Parent = Xamarin.Forms.Application.Current
 };
 this.Frame.Navigate(noteEntryPage);
 noteEntryPage.Parent = null;
}

The MainPage constructor performs the following tasks:

Caching is enabled for the page, so that a new MainPage isn't constructed when a user navigates back to the

page.

A reference to the MainPage class is stored in the static Instance field. This is to provide a mechanism for

other classes to call methods defined in the MainPage class.

The FolderPath property is initialized to a path on the device where note data will be stored.

A NotesPage object is created, which is a Xamarin.Forms ContentPage -derived page defined in XAML, and its

parent is set to the previously created Xamarin.Forms.Application object.

The NotesPage object is converted to a FrameworkElement using the CreateFrameworkElement extension

method, and then set as the content of the MainPage class.

The Parent property of the NotesPage object is set to null , to prevent a memory leak.

Once the MainPage constructor has executed, the UI defined in the Xamarin.Forms NotesPage class will be

displayed, as shown in the following screenshot:

All ContentPage -derived pages can consume resources defined in the application-level ResourceDictionary , provided

that the Parent property of the page is set to the Application object.

Interacting with the UI, for example by tapping on the ++ Button , will result in the following event handler in the

NotesPage code-behind executing:

The static MainPage.Instance field enables the MainPage.NavigateToNoteEntryPage method to be invoked,

which is shown in the following code example:

Navigation in UWP is typically performed with the Frame.Navigate method, which takes a Page argument.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/native-forms-images/uwp-notespage-large.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button

 Enable page resizing supportEnable page resizing support

public MainPage()
{
 // ...
 this.Loaded += OnMainPageLoaded;
 // ...
}

void OnMainPageLoaded(object sender, RoutedEventArgs e)
{
 this.Frame.SizeChanged += (o, args) =>
 {
 if (noteEntryPage != null)
 noteEntryPage.Layout(new Xamarin.Forms.Rectangle(0, 0, args.NewSize.Width,
args.NewSize.Height));
 else
 notesPage.Layout(new Xamarin.Forms.Rectangle(0, 0, args.NewSize.Width, args.NewSize.Height));
 };
}

 Enable back navigation supportEnable back navigation support

public MainPage()
{
 // ...
 SystemNavigationManager.GetForCurrentView().BackRequested += OnBackRequested;
}

Xamarin.Forms defines a Frame.Navigate extension method that takes a ContentPage -derived page instance.

Therefore, when the NavigateToNoteEntryPage method executes, the UI defined in the Xamarin.Forms

NoteEntryPage will be displayed, as shown in the following screenshot:

When the NoteEntryPage is displayed, tapping the back arrow will pop the FrameworkElement for the

NoteEntryPage from the in-app back stack, returning the user to the FrameworkElement for the NotesPage class.

When the UWP application window is resized, the Xamarin.Forms content should also be resized. This is

accomplished by registering an event handler for the Loaded event, in the MainPage constructor :

The Loaded event fires when the page is laid out, rendered, and ready for interaction, and executes the

OnMainPageLoaded method in response:

The OnMainPageLoaded method registers an anonymous event handler for the Frame.SizeChanged event, which is

raised when either the ActualHeight or the ActualWidth properties change on the Frame . In response, the

Xamarin.Forms content for the active page is resized by calling the Layout method.

On UWP, applications must enable back navigation for all hardware and software back buttons, across different

device form factors. This can be accomplished by registering an event handler for the BackRequested event,

which can be performed in the MainPage constructor :

When the application is launched, the GetForCurrentView method retrieves the SystemNavigationManager object

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/native-forms-images/uwp-noteentrypage-large.png#lightbox

void OnBackRequested(object sender, BackRequestedEventArgs e)
{
 Frame rootFrame = Window.Current.Content as Frame;
 if (rootFrame.CanGoBack)
 {
 e.Handled = true;
 rootFrame.GoBack();
 noteEntryPage = null;
 }
}

void OnNavigated(object sender, NavigationEventArgs e)
{
 SystemNavigationManager.GetForCurrentView().AppViewBackButtonVisibility =
 ((Frame)sender).CanGoBack ? AppViewBackButtonVisibility.Visible :
AppViewBackButtonVisibility.Collapsed;
}

 Related links

associated with the current view, then registers an event handler for the BackRequested event. The application

only receives this event if it's the foreground application, and in response, calls the OnBackRequested event

handler :

The OnBackRequested event handler calls the GoBack method on the root frame of the application and sets the

BackRequestedEventArgs.Handled property to true to mark the event as handled. Failure to mark the event as

handled could result in the event being ignored.

The application chooses whether to show a back button on the title bar. This is achieved by setting the

AppViewBackButtonVisibility property to one of the AppViewBackButtonVisibility enumeration values, in the

App class:

The OnNavigated event handler, which is executed in response to the Navigated event firing, updates the

visibility of the title bar back button when page navigation occurs. This ensures that the title bar back button is

visible if the in-app back stack is not empty, or removed from the title bar if the in-app back stack is empty.

For more information about back navigation support on UWP, see Navigation history and backwards navigation

for UWP apps.

NativeForms (sample)

Native Views

https://docs.microsoft.com/en-us/windows/uwp/design/basics/navigation-history-and-backwards-navigation/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/native2forms

Native Views in Xamarin.Forms
 11/2/2020 • 2 minutes to read • Edit Online

 Native Views in XAML

 Native Views in C#

 Related Links

Native views from iOS, Android, and the Universal Windows Platform (UWP) can be directly referenced from

Xamarin.Forms. Properties and event handlers can be set on native views, and they can interact with

Xamarin.Forms views.

Native views from iOS, Android, and UWP can be directly referenced from Xamarin.Forms pages created using

XAML.

Native views from iOS, Android, and UWP can be directly referenced from Xamarin.Forms pages created using

C#.

Native Forms

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/native-views/index.md

Native Views in XAML
 7/8/2021 • 12 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Consume native views

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"
 xmlns:androidWidget="clr-namespace:Android.Widget;assembly=Mono.Android;targetPlatform=Android"
 xmlns:androidLocal="clr-
namespace:SimpleColorPicker.Droid;assembly=SimpleColorPicker.Droid;targetPlatform=Android"
 xmlns:win="clr-namespace:Windows.UI.Xaml.Controls;assembly=Windows, Version=255.255.255.255,
 Culture=neutral, PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows"
 x:Class="NativeViews.NativeViewDemo">
 <StackLayout Margin="20">
 <ios:UILabel Text="Hello World" TextColor="{x:Static ios:UIColor.Red}"
View.HorizontalOptions="Start" />
 <androidWidget:TextView Text="Hello World" x:Arguments="{x:Static
androidLocal:MainActivity.Instance}" />
 <win:TextBlock Text="Hello World" />
 </StackLayout>
</ContentPage>

 Download the sample

Native views from iOS, Android, and the Universal Windows Platform can be directly referenced from

Xamarin.Forms XAML files. Properties and event handlers can be set on native views, and they can interact with

Xamarin.Forms views. This article demonstrates how to consume native views from Xamarin.Forms XAML files.

To embed a native view into a Xamarin.Forms XAML file:

1. Add an xmlns namespace declaration in the XAML file for the namespace that contains the native view.

2. Create an instance of the native view in the XAML file.

Compiled XAML must be disabled for any XAML pages that use native views. This can be accomplished by decorating the

code-behind class for your XAML page with the [XamlCompilation(XamlCompilationOptions.Skip)] attribute. For

more information about XAML compilation, see XAML Compilation in Xamarin.Forms.

To reference a native view from a code-behind file, you must use a Shared Asset Project (SAP) and wrap the

platform-specific code with conditional compilation directives. For more information see Refer to native views

from code.

The following code example demonstrates consuming native views for each platform to a Xamarin.Forms

ContentPage :

As well as specifying the clr-namespace and assembly for a native view namespace, a targetPlatform must

also be specified. This should be set to iOS , Android , UWP , Windows (which is equivalent to UWP), macOS , GTK ,

Tizen , or WPF . At runtime, the XAML parser will ignore any XML namespace prefixes that have a

targetPlatform that doesn't match the platform on which the application is running.

Each namespace declaration can be used to reference any class or structure from the specified namespace. For

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/native-views/xaml.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-nativeviews-nativeswitch
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage

NOTENOTE

NOTENOTE

 Native bindings

example, the ios namespace declaration can be used to reference any class or structure from the iOS UIKit

namespace. Properties of the native view can be set through XAML, but the property and object types must

match. For example, the UILabel.TextColor property is set to UIColor.Red using the x:Static markup

extension and the ios namespace.

Bindable properties and attached bindable properties can also be set on native views by using the

Class.BindableProperty="value" syntax. Each native view is wrapped in a platform-specific NativeViewWrapper

instance, which derives from the Xamarin.Forms.View class. Setting a bindable property or attached bindable

property on a native view transfers the property value to the wrapper. For example, a centered horizontal layout

can be specified by setting View.HorizontalOptions="Center" on the native view.

Note that styles can't be used with native views, because styles can only target properties that are backed by

BindableProperty objects.

Android widget constructors generally require the Android Context object as an argument, and this can be

made available through a static property in the MainActivity class. Therefore, when creating an Android widget

in XAML, the Context object must generally be passed to the widget's constructor using the x:Arguments

attribute with a x:Static markup extension. For more information, see Pass arguments to native views.

Note that naming a native view with x:Name is not possible in either a .NET Standard library project or a Shared Asset

Project (SAP). Doing so will generate a variable of the native type, which will cause a compilation error. However, native

views can be wrapped in ContentView instances and retrieved in the code-behind file, provided that a SAP is being used.

For more information, see Refer to native view from code.

Data binding is used to synchronize a UI with its data source, and simplifies how a Xamarin.Forms application

displays and interacts with its data. Provided that the source object implements the INotifyPropertyChanged

interface, changes in the source object are automatically pushed to the target object by the binding framework,

and changes in the target object can optionally be pushed to the source object.

Properties of native views can also use data binding. The following code example demonstrates data binding

using properties of native views:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"
 xmlns:androidWidget="clr-namespace:Android.Widget;assembly=Mono.Android;targetPlatform=Android"
 xmlns:androidLocal="clr-
namespace:SimpleColorPicker.Droid;assembly=SimpleColorPicker.Droid;targetPlatform=Android"
 xmlns:win="clr-namespace:Windows.UI.Xaml.Controls;assembly=Windows, Version=255.255.255.255,
 Culture=neutral, PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows"
 xmlns:local="clr-namespace:NativeSwitch"
 x:Class="NativeSwitch.NativeSwitchPage">
 <StackLayout Margin="20">
 <Label Text="Native Views Demo" FontAttributes="Bold" HorizontalOptions="Center" />
 <Entry Placeholder="This Entry is bound to the native switch" IsEnabled="{Binding IsSwitchOn}" />
 <ios:UISwitch On="{Binding Path=IsSwitchOn, Mode=TwoWay, UpdateSourceEventName=ValueChanged}"
 OnTintColor="{x:Static ios:UIColor.Red}"
 ThumbTintColor="{x:Static ios:UIColor.Blue}" />
 <androidWidget:Switch x:Arguments="{x:Static androidLocal:MainActivity.Instance}"
 Checked="{Binding Path=IsSwitchOn, Mode=TwoWay, UpdateSourceEventName=CheckedChange}"
 Text="Enable Entry?" />
 <win:ToggleSwitch Header="Enable Entry?"
 OffContent="No"
 OnContent="Yes"
 IsOn="{Binding IsSwitchOn, Mode=TwoWay, UpdateSourceEventName=Toggled}" />
 </StackLayout>
</ContentPage>

 Pass arguments to native views

The page contains an Entry whose IsEnabled property binds to the NativeSwitchPageViewModel.IsSwitchOn

property. The BindingContext of the page is set to a new instance of the NativeSwitchPageViewModel class in the

code-behind file, with the ViewModel class implementing the INotifyPropertyChanged interface.

The page also contains a native switch for each platform. Each native switch uses a TwoWay binding to update

the value of the NativeSwitchPageViewModel.IsSwitchOn property. Therefore, when the switch is off, the Entry is

disabled, and when the switch is on, the Entry is enabled. The following screenshots show this functionality on

each platform:

Two-way bindings are automatically supported provided that the native property implements

INotifyPropertyChanged , or supports Key-Value Observing (KVO) on iOS, or is a DependencyProperty on UWP.

However, many native views don't support property change notification. For these views, you can specify an

UpdateSourceEventName property value as part of the binding expression. This property should be set to the

name of an event in the native view that signals when the target property has changed. Then, when the value of

the native switch changes, the Binding class is notified that the user has changed the switch value, and the

NativeSwitchPageViewModel.IsSwitchOn property value is updated.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.entry
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isenabled#xamarin_forms_visualelement_isenabled
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindingmode#xamarin_forms_bindingmode_twoway
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.binding.updatesourceeventname#xamarin_forms_binding_updatesourceeventname

<ContentPage ...
 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"
 xmlns:androidWidget="clr-namespace:Android.Widget;assembly=Mono.Android;targetPlatform=Android"
 xmlns:androidGraphics="clr-namespace:Android.Graphics;assembly=Mono.Android;targetPlatform=Android"
 xmlns:androidLocal="clr-
namespace:SimpleColorPicker.Droid;assembly=SimpleColorPicker.Droid;targetPlatform=Android"
 xmlns:winControls="clr-namespace:Windows.UI.Xaml.Controls;assembly=Windows, Version=255.255.255.255,
Culture=neutral, PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows"
 xmlns:winMedia="clr-namespace:Windows.UI.Xaml.Media;assembly=Windows, Version=255.255.255.255,
Culture=neutral, PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows"
 xmlns:winText="clr-namespace:Windows.UI.Text;assembly=Windows, Version=255.255.255.255,
Culture=neutral, PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows"
 xmlns:winui="clr-namespace:Windows.UI;assembly=Windows, Version=255.255.255.255, Culture=neutral,
PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows">
 ...
 <ios:UILabel Text="Simple Native Color Picker" View.HorizontalOptions="Center">
 <ios:UILabel.Font>
 <ios:UIFont x:FactoryMethod="FromName">
 <x:Arguments>
 <x:String>Papyrus</x:String>
 <x:Single>24</x:Single>
 </x:Arguments>
 </ios:UIFont>
 </ios:UILabel.Font>
 </ios:UILabel>
 <androidWidget:TextView x:Arguments="{x:Static androidLocal:MainActivity.Instance}"
 Text="Simple Native Color Picker"
 TextSize="24"
 View.HorizontalOptions="Center">
 <androidWidget:TextView.Typeface>
 <androidGraphics:Typeface x:FactoryMethod="Create">
 <x:Arguments>
 <x:String>cursive</x:String>
 <androidGraphics:TypefaceStyle>Normal</androidGraphics:TypefaceStyle>
 </x:Arguments>
 </androidGraphics:Typeface>
 </androidWidget:TextView.Typeface>
 </androidWidget:TextView>
 <winControls:TextBlock Text="Simple Native Color Picker"
 FontSize="20"
 FontStyle="{x:Static winText:FontStyle.Italic}"
 View.HorizontalOptions="Center">
 <winControls:TextBlock.FontFamily>
 <winMedia:FontFamily>
 <x:Arguments>
 <x:String>Georgia</x:String>
 </x:Arguments>
 </winMedia:FontFamily>
 </winControls:TextBlock.FontFamily>
 </winControls:TextBlock>
 ...
</ContentPage>

Constructor arguments can be passed to native views using the x:Arguments attribute with a x:Static markup

extension. In addition, native view factory methods (public static methods that return objects or values of the

same type as the class or structure that defines the methods) can be called by specifying the method's name

using the x:FactoryMethod attribute, and its arguments using the x:Arguments attribute.

The following code example demonstrates both techniques:

The UIFont.FromName factory method is used to set the UILabel.Font property to a new UIFont on iOS. The

UIFont name and size are specified by the method arguments that are children of the x:Arguments attribute.

The Typeface.Create factory method is used to set the TextView.Typeface property to a new Typeface on

https://docs.microsoft.com/en-us/dotnet/api/uikit.uifont.fromname
https://docs.microsoft.com/en-us/dotnet/api/uikit.uilabel.font#uikit_uilabel_font
https://docs.microsoft.com/en-us/dotnet/api/uikit.uifont
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.typeface.create
https://docs.microsoft.com/en-us/dotnet/api/android.widget.textview.typeface#android_widget_textview_typeface
https://docs.microsoft.com/en-us/dotnet/api/android.graphics.typeface

NOTENOTE

 Refer to native views from code

Android. The Typeface family name and style are specified by the method arguments that are children of the

x:Arguments attribute.

The FontFamily constructor is used to set the TextBlock.FontFamily property to a new FontFamily on the

Universal Windows Platform (UWP). The FontFamily name is specified by the method argument that is a child

of the x:Arguments attribute.

Arguments must match the types required by the constructor or factory method.

The following screenshots show the result of specifying factory method and constructor arguments to set the

font on different native views:

For more information about passing arguments in XAML, see Passing Arguments in XAML.

Although it's not possible to name a native view with the x:Name attribute, it is possible to retrieve a native view

instance declared in a XAML file from its code-behind file in a Shared Access Project, provided that the native

view is a child of a ContentView that specifies an x:Name attribute value. Then, inside conditional compilation

directives in the code-behind file you should:

1. Retrieve the ContentView.Content property value and cast it to a platform-specific NativeViewWrapper type.

2. Retrieve the NativeViewWrapper.NativeElement property and cast it to the native view type.

The native API can then be invoked on the native view to perform the desired operations. This approach also

offers the benefit that multiple XAML native views for different platforms can be children of the same

ContentView . The following code example demonstrates this technique:

https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.media.fontfamily
https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.controls.textblock
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview.content#xamarin_forms_contentview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"
 xmlns:androidWidget="clr-namespace:Android.Widget;assembly=Mono.Android;targetPlatform=Android"
 xmlns:androidLocal="clr-
namespace:SimpleColorPicker.Droid;assembly=SimpleColorPicker.Droid;targetPlatform=Android"
 xmlns:winControls="clr-namespace:Windows.UI.Xaml.Controls;assembly=Windows, Version=255.255.255.255,
 Culture=neutral, PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows"
 xmlns:local="clr-namespace:NativeViewInsideContentView"
 x:Class="NativeViewInsideContentView.NativeViewInsideContentViewPage">
 <StackLayout Margin="20">
 <ContentView x:Name="contentViewTextParent" HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
 <ios:UILabel Text="Text in a UILabel" TextColor="{x:Static ios:UIColor.Red}" />
 <androidWidget:TextView x:Arguments="{x:Static androidLocal:MainActivity.Instance}"
 Text="Text in a TextView" />
 <winControls:TextBlock Text="Text in a TextBlock" />
 </ContentView>
 <ContentView x:Name="contentViewButtonParent" HorizontalOptions="Center"
VerticalOptions="EndAndExpand">
 <ios:UIButton TouchUpInside="OnButtonTap" View.HorizontalOptions="Center"
View.VerticalOptions="Center" />
 <androidWidget:Button x:Arguments="{x:Static androidLocal:MainActivity.Instance}"
 Text="Scale and Rotate Text"
 Click="OnButtonTap" />
 <winControls:Button Content="Scale and Rotate Text" />
 </ContentView>
 </StackLayout>
</ContentPage>

In the example above, the native views for each platform are children of ContentView controls, with the x:Name

attribute value being used to retrieve the ContentView in the code-behind:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview

public partial class NativeViewInsideContentViewPage : ContentPage
{
 public NativeViewInsideContentViewPage()
 {
 InitializeComponent();

#if __IOS__
 var wrapper = (Xamarin.Forms.Platform.iOS.NativeViewWrapper)contentViewButtonParent.Content;
 var button = (UIKit.UIButton)wrapper.NativeView;
 button.SetTitle("Scale and Rotate Text", UIKit.UIControlState.Normal);
 button.SetTitleColor(UIKit.UIColor.Black, UIKit.UIControlState.Normal);
#endif
#if __ANDROID__
 var wrapper = (Xamarin.Forms.Platform.Android.NativeViewWrapper)contentViewTextParent.Content;
 var textView = (Android.Widget.TextView)wrapper.NativeView;
 textView.SetTextColor(Android.Graphics.Color.Red);
#endif
#if WINDOWS_UWP
 var textWrapper = (Xamarin.Forms.Platform.UWP.NativeViewWrapper)contentViewTextParent.Content;
 var textBlock = (Windows.UI.Xaml.Controls.TextBlock)textWrapper.NativeElement;
 textBlock.Foreground = new Windows.UI.Xaml.Media.SolidColorBrush(Windows.UI.Colors.Red);
 var buttonWrapper = (Xamarin.Forms.Platform.UWP.NativeViewWrapper)contentViewButtonParent.Content;
 var button = (Windows.UI.Xaml.Controls.Button)buttonWrapper.NativeElement;
 button.Click += (sender, args) => OnButtonTap(sender, EventArgs.Empty);
#endif
 }

 async void OnButtonTap(object sender, EventArgs e)
 {
 contentViewButtonParent.Content.IsEnabled = false;
 contentViewTextParent.Content.ScaleTo(2, 2000);
 await contentViewTextParent.Content.RotateTo(360, 2000);
 contentViewTextParent.Content.ScaleTo(1, 2000);
 await contentViewTextParent.Content.RelRotateTo(360, 2000);
 contentViewButtonParent.Content.IsEnabled = true;
 }
}

The ContentView.Content property is accessed to retrieve the wrapped native view as a platform-specific

NativeViewWrapper instance. The NativeViewWrapper.NativeElement property is then accessed to retrieve the

native view as its native type. The native view's API is then invoked to perform the desired operations.

The iOS and Android native buttons share the same OnButtonTap event handler, because each native button

consumes an EventHandler delegate in response to a touch event. However, the Universal Windows Platform

(UWP) uses a separate RoutedEventHandler , which in turn consumes the OnButtonTap event handler in this

example. Therefore, when a native button is clicked, the OnButtonTap event handler executes, which scales and

rotates the native control contained within the ContentView named contentViewTextParent . The following

screenshots demonstrate this occurring on each platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview.content#xamarin_forms_contentview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview

 Subclass native views
Many iOS and Android native views are not suitable for instantiating in XAML because they use methods, rather

than properties, to set up the control. The solution to this issue is to subclass native views in wrappers that

define a more XAML-friendly API that uses properties to setup the control, and that uses platform-independent

events. The wrapped native views can then be placed in a Shared Asset Project (SAP) and surrounded with

conditional compilation directives, or placed in platform-specific projects and referenced from XAML in a .NET

Standard library project.

The following code example demonstrates a Xamarin.Forms page that consumes subclassed native views:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"
 xmlns:iosLocal="clr-
namespace:SubclassedNativeControls.iOS;assembly=SubclassedNativeControls.iOS;targetPlatform=iOS"
 xmlns:android="clr-namespace:Android.Widget;assembly=Mono.Android;targetPlatform=Android"
 xmlns:androidLocal="clr-
namespace:SimpleColorPicker.Droid;assembly=SimpleColorPicker.Droid;targetPlatform=Android"
 xmlns:androidLocal="clr-
namespace:SubclassedNativeControls.Droid;assembly=SubclassedNativeControls.Droid;targetPlatform=Android"
 xmlns:winControls="clr-namespace:Windows.UI.Xaml.Controls;assembly=Windows, Version=255.255.255.255,
 Culture=neutral, PublicKeyToken=null, ContentType=WindowsRuntime;targetPlatform=Windows"
 xmlns:local="clr-namespace:SubclassedNativeControls"
 x:Class="SubclassedNativeControls.SubclassedNativeControlsPage">
 <StackLayout Margin="20">
 <Label Text="Subclassed Native Views Demo" FontAttributes="Bold" HorizontalOptions="Center" />
 <StackLayout Orientation="Horizontal">
 <Label Text="You have chosen:" />
 <Label Text="{Binding SelectedFruit}" />
 </StackLayout>
 <iosLocal:MyUIPickerView ItemsSource="{Binding Fruits}"
 SelectedItem="{Binding SelectedFruit, Mode=TwoWay, UpdateSourceEventName=SelectedItemChanged}"
/>
 <androidLocal:MySpinner x:Arguments="{x:Static androidLocal:MainActivity.Instance}"
 ItemsSource="{Binding Fruits}"
 SelectedObject="{Binding SelectedFruit, Mode=TwoWay, UpdateSourceEventName=ItemSelected}" />
 <winControls:ComboBox ItemsSource="{Binding Fruits}"
 SelectedItem="{Binding SelectedFruit, Mode=TwoWay, UpdateSourceEventName=SelectionChanged}" />
 </StackLayout>
</ContentPage>

The page contains a Label that displays the fruit chosen by the user from a native control. The Label binds to

the SubclassedNativeControlsPageViewModel.SelectedFruit property. The BindingContext of the page is set to a

new instance of the SubclassedNativeControlsPageViewModel class in the code-behind file, with the ViewModel

class implementing the INotifyPropertyChanged interface.

The page also contains a native picker view for each platform. Each native view displays the collection of fruits

by binding its ItemSource property to the SubclassedNativeControlsPageViewModel.Fruits collection. This allows

the user to pick a fruit, as shown in the following screenshots:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.bindableobject.bindingcontext#xamarin_forms_bindableobject_bindingcontext

 iOSiOS

On iOS and Android the native pickers use methods to setup the controls. Therefore, these pickers must be

subclassed to expose properties to make them XAML-friendly. On the Universal Windows Platform (UWP), the

ComboBox is already XAML-friendly, and so doesn't require subclassing.

The iOS implementation subclasses the UIPickerView view, and exposes properties and an event that can be

easily consumed from XAML:

https://docs.microsoft.com/en-us/dotnet/api/uikit.uipickerview

public class MyUIPickerView : UIPickerView
{
 public event EventHandler<EventArgs> SelectedItemChanged;

 public MyUIPickerView()
 {
 var model = new PickerModel();
 model.ItemChanged += (sender, e) =>
 {
 if (SelectedItemChanged != null)
 {
 SelectedItemChanged.Invoke(this, e);
 }
 };
 Model = model;
 }

 public IList<string> ItemsSource
 {
 get
 {
 var pickerModel = Model as PickerModel;
 return (pickerModel != null) ? pickerModel.Items : null;
 }
 set
 {
 var model = Model as PickerModel;
 if (model != null)
 {
 model.Items = value;
 }
 }
 }

 public string SelectedItem
 {
 get { return (Model as PickerModel).SelectedItem; }
 set { }
 }
}

The MyUIPickerView class exposes ItemsSource and SelectedItem properties, and a SelectedItemChanged event.

A UIPickerView requires an underlying UIPickerViewModel data model, which is accessed by the

MyUIPickerView properties and event. The UIPickerViewModel data model is provided by the PickerModel class:

https://docs.microsoft.com/en-us/dotnet/api/uikit.uipickerview
https://docs.microsoft.com/en-us/dotnet/api/uikit.uipickerviewmodel

class PickerModel : UIPickerViewModel
{
 int selectedIndex = 0;
 public event EventHandler<EventArgs> ItemChanged;
 public IList<string> Items { get; set; }

 public string SelectedItem
 {
 get
 {
 return Items != null && selectedIndex >= 0 && selectedIndex < Items.Count ? Items[selectedIndex]
: null;
 }
 }

 public override nint GetRowsInComponent(UIPickerView pickerView, nint component)
 {
 return Items != null ? Items.Count : 0;
 }

 public override string GetTitle(UIPickerView pickerView, nint row, nint component)
 {
 return Items != null && Items.Count > row ? Items[(int)row] : null;
 }

 public override nint GetComponentCount(UIPickerView pickerView)
 {
 return 1;
 }

 public override void Selected(UIPickerView pickerView, nint row, nint component)
 {
 selectedIndex = (int)row;
 if (ItemChanged != null)
 {
 ItemChanged.Invoke(this, new EventArgs());
 }
 }
}

 AndroidAndroid

The PickerModel class provides the underlying storage for the MyUIPickerView class, via the Items property.

Whenever the selected item in the MyUIPickerView changes, the Selected method is executed, which updates

the selected index and fires the ItemChanged event. This ensures that the SelectedItem property will always

return the last item picked by the user. In addition, the PickerModel class overrides methods that are used to

setup the MyUIPickerView instance.

The Android implementation subclasses the Spinner view, and exposes properties and an event that can be

easily consumed from XAML:

https://docs.microsoft.com/en-us/dotnet/api/uikit.uipickerviewmodel.selected
https://docs.microsoft.com/en-us/dotnet/api/android.widget.spinner

class MySpinner : Spinner
{
 ArrayAdapter adapter;
 IList<string> items;

 public IList<string> ItemsSource
 {
 get { return items; }
 set
 {
 if (items != value)
 {
 items = value;
 adapter.Clear();

 foreach (string str in items)
 {
 adapter.Add(str);
 }
 }
 }
 }

 public string SelectedObject
 {
 get { return (string)GetItemAtPosition(SelectedItemPosition); }
 set
 {
 if (items != null)
 {
 int index = items.IndexOf(value);
 if (index != -1)
 {
 SetSelection(index);
 }
 }
 }
 }

 public MySpinner(Context context) : base(context)
 {
 ItemSelected += OnBindableSpinnerItemSelected;

 adapter = new ArrayAdapter(context, Android.Resource.Layout.SimpleSpinnerItem);
 adapter.SetDropDownViewResource(Android.Resource.Layout.SimpleSpinnerDropDownItem);
 Adapter = adapter;
 }

 void OnBindableSpinnerItemSelected(object sender, ItemSelectedEventArgs args)
 {
 SelectedObject = (string)GetItemAtPosition(args.Position);
 }
}

 Related links

The MySpinner class exposes ItemsSource and SelectedObject properties, and a ItemSelected event. The items

displayed by the MySpinner class are provided by the Adapter associated with the view, and items are

populated into the Adapter when the ItemsSource property is first set. Whenever the selected item in the

MySpinner class changes, the OnBindableSpinnerItemSelected event handler updates the SelectedObject

property.

NativeSwitch (sample)

https://docs.microsoft.com/en-us/dotnet/api/android.widget.adapter
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-nativeviews-nativeswitch

Forms2Native (sample)

NativeViewInsideContentView (sample)

SubclassedNativeControls (sample)

Native Forms

Passing Arguments in XAML

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/forms2native
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-nativeviews-nativeviewinsidecontentview
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-nativeviews-subclassednativecontrols

Native Views in C#
 7/8/2021 • 7 minutes to read • Edit Online

 Overview

 Download the sample

Native views from iOS, Android, and UWP can be directly referenced from Xamarin.Forms pages created using

C#. This article demonstrates how to add native views to a Xamarin.Forms layout created using C#, and how to

override the layout of custom views to correct their measurement API usage.

Any Xamarin.Forms control that allows Content to be set, or that has a Children collection, can add platform-

specific views. For example, an iOS UILabel can be directly added to the ContentView.Content property, or to

the StackLayout.Children collection. However, note that this functionality requires the use of #if defines in

Xamarin.Forms Shared Project solutions, and isn't available from Xamarin.Forms .NET Standard library solutions.

The following screenshots demonstrate platform-specific views having been added to a Xamarin.Forms

StackLayout :

The ability to add platform-specific views to a Xamarin.Forms layout is enabled by two extension methods on

each platform:

Add – adds a platform-specific view to the Children collection of a layout.

ToView – takes a platform-specific view and wraps it as a Xamarin.Forms View that can be set as the

Content property of a control.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/native-views/code.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-nativeembedding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview.content#xamarin_forms_contentview_content
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1.children#xamarin_forms_layout_1_children
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/native-views/code-images/screenshots.png#lightbox
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1.children#xamarin_forms_layout_1_children
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view

 Adding Platform-Specific Views on Each Platform

 iOSiOS

var uiLabel = new UILabel {
 MinimumFontSize = 14f,
 Lines = 0,
 LineBreakMode = UILineBreakMode.WordWrap,
 Text = originalText,
};
stackLayout.Children.Add (uiLabel);
contentView.Content = uiLabel.ToView();

 AndroidAndroid

var textView = new TextView (MainActivity.Instance) { Text = originalText, TextSize = 14 };
stackLayout.Children.Add (textView);
contentView.Content = textView.ToView();

 Universal Windows PlatformUniversal Windows Platform

var textBlock = new TextBlock
{
 Text = originalText,
 FontSize = 14,
 FontFamily = new FontFamily("HelveticaNeue"),
 TextWrapping = TextWrapping.Wrap
};
stackLayout.Children.Add(textBlock);
contentView.Content = textBlock.ToView();

 Overriding Platform Measurements for Custom Views

Using these methods in a Xamarin.Forms shared project requires importing the appropriate platform-specific

Xamarin.Forms namespace:

iOSiOS – Xamarin.Forms.Platform.iOS

AndroidAndroid – Xamarin.Forms.Platform.Android

Universal Windows Platform (UWP)Universal Windows Platform (UWP) – Xamarin.Forms.Platform.UWP

The following sections demonstrate how to add platform-specific views to a Xamarin.Forms layout on each

platform.

The following code example demonstrates how to add a UILabel to a StackLayout and a ContentView :

The example assumes that the stackLayout and contentView instances have previously been created in XAML

or C#.

The following code example demonstrates how to add a TextView to a StackLayout and a ContentView :

The example assumes that the stackLayout and contentView instances have previously been created in XAML

or C#.

The following code example demonstrates how to add a TextBlock to a StackLayout and a ContentView :

The example assumes that the stackLayout and contentView instances have previously been created in XAML

or C#.

Custom views on each platform often only correctly implement measurement for the layout scenario for which

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentview

 iOSiOS

public class CustomControl : UILabel
{
 public override string Text {
 get { return base.Text; }
 set { base.Text = value.ToUpper (); }
 }

 public override CGSize SizeThatFits (CGSize size)
 {
 return new CGSize (size.Width, 150);
 }
}

var customControl = new CustomControl {
 MinimumFontSize = 14,
 Lines = 0,
 LineBreakMode = UILineBreakMode.WordWrap,
 Text = "This control has incorrect sizing - there's empty space above and below it."
};
stackLayout.Children.Add (customControl);

they were designed. For example, a custom view may have been designed to only occupy half of the available

width of the device. However, after being shared with other users, the custom view may be required to occupy

the full available width of the device. Therefore, it can be necessary to override a custom views measurement

implementation when being reused in a Xamarin.Forms layout. For that reason, the Add and ToView extension

methods provide overrides that allow measurement delegates to be specified, which can override the custom

view layout when it's added to a Xamarin.Forms layout.

The following sections demonstrate how to override the layout of custom views, to correct their measurement

API usage.

The following code example shows the CustomControl class, which inherits from UILabel :

An instance of this view is added to a StackLayout , as demonstrated in the following code example:

However, because the CustomControl.SizeThatFits override always returns a height of 150, the view will be

displayed with empty space above and below it, as shown in the following screenshot:

A solution to this problem is to provide a GetDesiredSizeDelegate implementation, as demonstrated in the

following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

SizeRequest? FixSize (NativeViewWrapperRenderer renderer, double width, double height)
{
 var uiView = renderer.Control;

 if (uiView == null) {
 return null;
 }

 var constraint = new CGSize (width, height);

 // Let the CustomControl determine its size (which will be wrong)
 var badRect = uiView.SizeThatFits (constraint);

 // Use the width and substitute the height
 return new SizeRequest (new Size (badRect.Width, 70));
}

stackLayout.Children.Add (customControl, FixSize);

 AndroidAndroid

public class CustomControl : TextView
{
 public CustomControl (Context context) : base (context)
 {
 }

 protected override void OnMeasure (int widthMeasureSpec, int heightMeasureSpec)
 {
 int width = MeasureSpec.GetSize (widthMeasureSpec);

 // Force the width to half of what's been requested.
 // This is deliberately wrong to demonstrate providing an override to fix it with.
 int widthSpec = MeasureSpec.MakeMeasureSpec (width / 2, MeasureSpec.GetMode (widthMeasureSpec));

 base.OnMeasure (widthSpec, heightMeasureSpec);
 }
}

This method uses the width provided by the CustomControl.SizeThatFits method, but substitutes the height of

150 for a height of 70. When the CustomControl instance is added to the StackLayout , the FixSize method can

be specified as the GetDesiredSizeDelegate to fix the bad measurement provided by the CustomControl class:

This results in the custom view being displayed correctly, without empty space above and below it, as shown in

the following screenshot:

The following code example shows the CustomControl class, which inherits from TextView :

An instance of this view is added to a StackLayout , as demonstrated in the following code example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

var customControl = new CustomControl (MainActivity.Instance) {
 Text = "This control has incorrect sizing - it doesn't occupy the available width of the device.",
 TextSize = 14
};
stackLayout.Children.Add (customControl);

SizeRequest? FixSize (NativeViewWrapperRenderer renderer, int widthConstraint, int heightConstraint)
{
 var nativeView = renderer.Control;

 if ((widthConstraint == 0 && heightConstraint == 0) || nativeView == null) {
 return null;
 }

 int width = Android.Views.View.MeasureSpec.GetSize (widthConstraint);
 int widthSpec = Android.Views.View.MeasureSpec.MakeMeasureSpec (
 width * 2, Android.Views.View.MeasureSpec.GetMode (widthConstraint));
 nativeView.Measure (widthSpec, heightConstraint);
 return new SizeRequest (new Size (nativeView.MeasuredWidth, nativeView.MeasuredHeight));
}

stackLayout.Children.Add (customControl, FixSize);

 Universal Windows PlatformUniversal Windows Platform

However, because the CustomControl.OnMeasure override always returns half of the requested width, the view

will be displayed occupying only half the available width of the device, as shown in the following screenshot:

A solution to this problem is to provide a GetDesiredSizeDelegate implementation, as demonstrated in the

following code example:

This method uses the width provided by the CustomControl.OnMeasure method, but multiplies it by two. When

the CustomControl instance is added to the StackLayout , the FixSize method can be specified as the

GetDesiredSizeDelegate to fix the bad measurement provided by the CustomControl class:

This results in the custom view being displayed correctly, occupying the width of the device, as shown in the

following screenshot:

The following code example shows the CustomControl class, which inherits from Panel :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

public class CustomControl : Panel
{
 public static readonly DependencyProperty TextProperty =
 DependencyProperty.Register(
 "Text", typeof(string), typeof(CustomControl), new PropertyMetadata(default(string),
OnTextPropertyChanged));

 public string Text
 {
 get { return (string)GetValue(TextProperty); }
 set { SetValue(TextProperty, value.ToUpper()); }
 }

 readonly TextBlock textBlock;

 public CustomControl()
 {
 textBlock = new TextBlock
 {
 MinHeight = 0,
 MaxHeight = double.PositiveInfinity,
 MinWidth = 0,
 MaxWidth = double.PositiveInfinity,
 FontSize = 14,
 TextWrapping = TextWrapping.Wrap,
 VerticalAlignment = VerticalAlignment.Center
 };

 Children.Add(textBlock);
 }

 static void OnTextPropertyChanged(DependencyObject dependencyObject, DependencyPropertyChangedEventArgs
args)
 {
 ((CustomControl)dependencyObject).textBlock.Text = (string)args.NewValue;
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 // This is deliberately wrong to demonstrate providing an override to fix it with.
 textBlock.Arrange(new Rect(0, 0, finalSize.Width/2, finalSize.Height));
 return finalSize;
 }

 protected override Size MeasureOverride(Size availableSize)
 {
 textBlock.Measure(availableSize);
 return new Size(textBlock.DesiredSize.Width, textBlock.DesiredSize.Height);
 }
}

var brokenControl = new CustomControl {
 Text = "This control has incorrect sizing - it doesn't occupy the available width of the device."
};
stackLayout.Children.Add(brokenControl);

An instance of this view is added to a StackLayout , as demonstrated in the following code example:

However, because the CustomControl.ArrangeOverride override always returns half of the requested width, the

view will be clipped to half the available width of the device, as shown in the following screenshot:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

stackLayout.Children.Add(fixedControl, arrangeOverrideDelegate: (renderer, finalSize) =>
{
 if (finalSize.Width <= 0 || double.IsInfinity(finalSize.Width))
 {
 return null;
 }
 var frameworkElement = renderer.Control;
 frameworkElement.Arrange(new Rect(0, 0, finalSize.Width * 2, finalSize.Height));
 return finalSize;
});

 Summary

 Related Links

A solution to this problem is to provide an ArrangeOverrideDelegate implementation, when adding the view to

the StackLayout , as demonstrated in the following code example:

This method uses the width provided by the CustomControl.ArrangeOverride method, but multiplies it by two.

This results in the custom view being displayed correctly, occupying the width of the device, as shown in the

following screenshot:

This article explained how to add native views to a Xamarin.Forms layout created using C#, and how to override

the layout of custom views to correct their measurement API usage.

NativeEmbedding (sample)

Native Forms

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/userinterface-nativeembedding

Sign In with Apple in Xamarin.Forms
 11/2/2020 • 2 minutes to read • Edit Online

 Setup for Xamarin.iOS

 Setup for other platforms

 Use Sign In with Apple in Xamarin.Forms

Sign In with Apple introduces a new service providing identity protection for users. As of iOS 13 Apple requires

any apps using third-party authentication providers to also offer Sign In with Apple. For instructions on using

this feature with Xamarin.iOS, read more here.

When supporting Sign In with Apple within a Xamarin.Forms solution, there are additional considerations to

account for Android and UWP. For those platforms, Apple provides a different workflow.

This guide walks through the setup necessary to enable Sign in with Apple for Xamarin.iOS applications.

This guide walks through the setup necessary to enable Sign in with Apple for other platforms, including

Xamarin.Forms Android and UWP.

With a few services you can support Sign In with Apple in your cross-platform Xamarin.Forms applications. This

guide describes the necessary steps.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/sign-in-with-apple/index.md

Sign In with Apple in Xamarin.iOS
 7/12/2021 • 4 minutes to read • Edit Online

 Apple developer setup

 Check sign in status

 Download the sample

Sign In with Apple is a new service that provides identity protection for users of third-party authentication

services. Beginning with iOS 13, Apple requires that any new app using a third-party authentication services

should also provide Sign In with Apple. Existing apps being updated do not need to add Sign In with Apple until

April 2020.

This document introduces how you can add Sign In with Apple to iOS 13 applications.

Before building and running an app using Sign In with Apple, you need to complete these steps. On Apple

Developer Certificates, Identifiers & Profiles portal:

1. Create a new App IdsApp Ids Identifier.

2. Set a description in the Descr iptionDescr iption field.

3. Choose an ExplicitExplicit Bundle ID and set com.xamarin.AddingTheSignInWithAppleFlowToYourApp in the field.

4. Enable S ign In with AppleSign In with Apple capability and register the new Identity.

5. Create a new Provisioning Profile with the new Identity.

6. Download and install it on your device.

7. In Visual Studio, enable the S ign In with AppleSign In with Apple capability in Entitlements.plistEntitlements.plist file.

When your app begins, or when you first need to check the authentication status of a user, instantiate an

ASAuthorizationAppleIdProvider and check the current state:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/ios/platform/ios13/sign-in.md
https://docs.microsoft.com/en-us/samples/xamarin/ios-samples/ios13-addingthesigninwithappleflowtoyourapp/
https://developer.apple.com/account/resources/identifiers/list

var appleIdProvider = new ASAuthorizationAppleIdProvider ();
appleIdProvider.GetCredentialState (KeychainItem.CurrentUserIdentifier, (credentialState, error) => {
 switch (credentialState) {
 case ASAuthorizationAppleIdProviderCredentialState.Authorized:
 // The Apple ID credential is valid.
 break;
 case ASAuthorizationAppleIdProviderCredentialState.Revoked:
 // The Apple ID credential is revoked.
 break;
 case ASAuthorizationAppleIdProviderCredentialState.NotFound:
 // No credential was found, so show the sign-in UI.
 InvokeOnMainThread (() => {
 var storyboard = UIStoryboard.FromName ("Main", null);

 if (!(storyboard.InstantiateViewController (nameof (LoginViewController)) is LoginViewController
viewController))
 return;

 viewController.ModalPresentationStyle = UIModalPresentationStyle.FormSheet;
 viewController.ModalInPresentation = true;
 Window?.RootViewController?.PresentViewController (viewController, true, null);
 });
 break;
 }
});

 A LoginViewController for Sign In with Apple

In this code, called during FinishedLaunching in the AppDelegate.cs , the app will handle when a state is

NotFound and present the LoginViewController to the user. If the state had return Authorized or Revoked , a

different action may be presented to the user.

The UIViewController that implements login logic and offers Sign In with Apple needs to implement

IASAuthorizationControllerDelegate and IASAuthorizationControllerPresentationContextProviding as in the

LoginViewController example below.

public partial class LoginViewController : UIViewController, IASAuthorizationControllerDelegate,
IASAuthorizationControllerPresentationContextProviding {
 public LoginViewController (IntPtr handle) : base (handle)
 {
 }

 public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();
 // Perform any additional setup after loading the view, typically from a nib.

 SetupProviderLoginView ();
 }

 public override void ViewDidAppear (bool animated)
 {
 base.ViewDidAppear (animated);

 PerformExistingAccountSetupFlows ();
 }

 void SetupProviderLoginView ()
 {
 var authorizationButton = new ASAuthorizationAppleIdButton
(ASAuthorizationAppleIdButtonType.Default, ASAuthorizationAppleIdButtonStyle.White);
 authorizationButton.TouchUpInside += HandleAuthorizationAppleIDButtonPress;
 loginProviderStackView.AddArrangedSubview (authorizationButton);
 }

 // Prompts the user if an existing iCloud Keychain credential or Apple ID credential is found.
 void PerformExistingAccountSetupFlows ()
 {
 // Prepare requests for both Apple ID and password providers.
 ASAuthorizationRequest [] requests = {
 new ASAuthorizationAppleIdProvider ().CreateRequest (),
 new ASAuthorizationPasswordProvider ().CreateRequest ()
 };

 // Create an authorization controller with the given requests.
 var authorizationController = new ASAuthorizationController (requests);
 authorizationController.Delegate = this;
 authorizationController.PresentationContextProvider = this;
 authorizationController.PerformRequests ();
 }

 private void HandleAuthorizationAppleIDButtonPress (object sender, EventArgs e)
 {
 var appleIdProvider = new ASAuthorizationAppleIdProvider ();
 var request = appleIdProvider.CreateRequest ();
 request.RequestedScopes = new [] { ASAuthorizationScope.Email, ASAuthorizationScope.FullName };

 var authorizationController = new ASAuthorizationController (new [] { request });
 authorizationController.Delegate = this;
 authorizationController.PresentationContextProvider = this;
 authorizationController.PerformRequests ();
 }
}

 Handling authorization

This example code checks the current login status in PerformExistingAccountSetupFlows and connects to the

current view as a delegate. If an existing iCloud Keychain credential or Apple ID credential is found, the user will

be prompted to use that.

Apple provides ASAuthorizationAppleIdButton , a button specifically for this purpose. When touched, the button

will trigger the workflow handled in the method HandleAuthorizationAppleIDButtonPress .

In the IASAuthorizationController implement any custom logic to store the user's account. The example below

stores the user's account in Keychain, Apple's own storage service.

#region IASAuthorizationController Delegate

[Export ("authorizationController:didCompleteWithAuthorization:")]
public void DidComplete (ASAuthorizationController controller, ASAuthorization authorization)
{
 if (authorization.GetCredential<ASAuthorizationAppleIdCredential> () is ASAuthorizationAppleIdCredential
appleIdCredential) {
 var userIdentifier = appleIdCredential.User;
 var fullName = appleIdCredential.FullName;
 var email = appleIdCredential.Email;

 // Create an account in your system.
 // For the purpose of this demo app, store the userIdentifier in the keychain.
 try {
 new KeychainItem ("com.example.apple-samplecode.juice", "userIdentifier").SaveItem
(userIdentifier);
 } catch (Exception) {
 Console.WriteLine ("Unable to save userIdentifier to keychain.");
 }

 // For the purpose of this demo app, show the Apple ID credential information in the
ResultViewController.
 if (!(PresentingViewController is ResultViewController viewController))
 return;

 InvokeOnMainThread (() => {
 viewController.UserIdentifierText = userIdentifier;
 viewController.GivenNameText = fullName?.GivenName ?? "";
 viewController.FamilyNameText = fullName?.FamilyName ?? "";
 viewController.EmailText = email ?? "";

 DismissViewController (true, null);
 });
 } else if (authorization.GetCredential<ASPasswordCredential> () is ASPasswordCredential
passwordCredential) {
 // Sign in using an existing iCloud Keychain credential.
 var username = passwordCredential.User;
 var password = passwordCredential.Password;

 // For the purpose of this demo app, show the password credential as an alert.
 InvokeOnMainThread (() => {
 var message = $"The app has received your selected credential from the keychain. \n\n Username:
{username}\n Password: {password}";
 var alertController = UIAlertController.Create ("Keychain Credential Received", message,
UIAlertControllerStyle.Alert);
 alertController.AddAction (UIAlertAction.Create ("Dismiss", UIAlertActionStyle.Cancel, null));

 PresentViewController (alertController, true, null);
 });
 }
}

[Export ("authorizationController:didCompleteWithError:")]
public void DidComplete (ASAuthorizationController controller, NSError error)
{
 Console.WriteLine (error);
}

#endregion

 Authorization Controller
The final piece in this implementation is the ASAuthorizationController which manages authorization requests

for the provider.

#region IASAuthorizationControllerPresentation Context Providing

public UIWindow GetPresentationAnchor (ASAuthorizationController controller) => View.Window;

#endregion

 Related links
Sign In with Apple Guidelines

Sign In with Apple Entitlement.

WWDC 2019 session 706: Introducing Sign In with Apple.

Setup Sign In with Apple for Xamarin.Forms

https://developer.apple.com/design/human-interface-guidelines/sign-in-with-apple/overview/
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_applesignin
https://developer.apple.com/videos/play/wwdc19/706/

Setup Sign In with Apple for Xamarin.Forms
 7/8/2021 • 3 minutes to read • Edit Online

 Apple developer setup

 Apple sign in domainApple sign in domain

NOTENOTE

This guide covers the series of steps needed to setup your cross-platform applications to take advanced of Sign

In with Apple. While the Apple setup is straight forward in the Apple Developer Portal, additional steps are

necessary to create a secure relationship between your Android and Apple.

Before you can use Sign In with Apple in your applications, you'll need to address some setup steps in the

Certificates, Identifiers & Profiles section of Apple's Developer Portal.

Register your domain name and verify it with Apple in the More section of the Certificates, Identifiers & Profiles

section.

Add your domain and click RegisterRegister .

If you see an error about your domain not being SPF Compliant, you will need to add a SPF DNS TXT Record to your

domain and wait for it to propagate before continuing: The SPF TXT may look something like this:

v=spf1 a a:myapp.com -all

Next you will need to verify ownership of the domain by clicking DownloadDownload to retrieve the

apple-developer-domain-association.txt file, and upload it to the .well-known folder of your domain's website.

Once the .well-known/apple-developer-domain-association.txt file is uploaded, and reachable, you can click

VerifyVerify to have Apple verify your domain ownership.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/sign-in-with-apple/setup.md
https://developer.apple.com/account/resources/
https://developer.apple.com/account/resources/services/list

NOTENOTE

 Setup your App ID

 Create a Service ID

NOTENOTE

Apple will verify ownership with https:// . Ensure you have SSL setup and the file is accessible through a secure URL.

Successfully complete this process before continuing.

In the Identifiers section, create a new identifier, and choose App IDsApp IDs . If you already have an App ID, choose to

edit it instead.

Enable S ign In with AppleSign In with Apple. You will most likely want to use the Enable as pr imar y App IDEnable as pr imar y App ID option.

Save your App ID changes.

In the Identifiers section, create a new identifier, and choose Ser vice IDsSer vice IDs .

Give your Services ID a description, and an identifier. This identifier will be your ServerId . Make sure to enable

Sign In with AppleSign In with Apple.

Before continuing, click ConfigureConfigure next to the Sign In with Apple option you enabled.

In the configuration panel, ensure the correct Pr imar y App IDPrimar y App ID is selected.

Next, choose the Web DomainWeb Domain you configured previously.

Finally, add one or more Return URLsReturn URLs . Any redirect_uri you use later must be registered here exactly as you

use it. Make sure you include the http:// or https:// in the URL when you enter it.

For testing purposes, you cannot use 127.0.0.1 or localhost , but you can use other domains such as local.test .

If you choose to do this, you can edit your machine's hosts file to resolve this fictitious domain to your local IP address.

https://developer.apple.com/account/resources/identifiers/list
https://developer.apple.com/account/resources/identifiers/list/serviceId

 Create a key for your Services ID

Save your changes when finished.

In the Keys section, create a new KeyKey .

Give your key a name, and enable S ign In with AppleSign In with Apple.

https://developer.apple.com/account/resources/authkeys/list

-----BEGIN PRIVATE KEY-----
MIGTAgEAMBMGBasGSM49AgGFCCqGSM49AwEHBHkwdwIBAQQg3MX8n6VnQ2WzgEy0
Skoz9uOvatLMKTUIPyPCAejzzUCgCgYIKoZIzj0DAQehRANCAARZ0DoM6QPqpJxP
JKSlWz0AohFhYre10EXPkjrih4jTm+b0AeG2BGuoIWd18i8FimGDgK6IzHHPsEqj
DHF5Svq0
-----END PRIVATE KEY-----

 Summary

Click ConfigureConfigure beside Sign In with Apple.

Ensure the correct Pr imar y App IDPrimar y App ID is selected and click SaveSave.

Click ContinueContinue and then RegisterRegister to create your new key.

Next, you will only have one chance to download the key you just generated. Click DownloadDownload.

Also, take note of your Key IDKey ID at this step. This will be used for your KeyId later on.

You will have downloaded a .p8 key file. You can open this file in Notepad, or VSCode to see the text contents.

They should look something like:

Name this key P8FileContents and keep it in a safe place. You will use it when integrating this service into your

mobile application.

This article described the steps necessary to setup Sign In with Apple for use in your Xamarin.Forms

applications.

Related links
Sign In with Apple Guidelines

https://developer.apple.com/design/human-interface-guidelines/sign-in-with-apple/overview/

Use Sign In with Apple in Xamarin.Forms
 7/8/2021 • 6 minutes to read • Edit Online

 A sample Apple sign in flow

 Download the sample

Sign In with Apple is for all new applications on iOS 13 that use third-party authentication services. The

implementation details between iOS and Android are quite different. This guide walks through how you can do

this today in Xamarin.Forms.

In this guide and sample, specific platform services are used to handle Sign In with Apple:

Android using a generic web service talking to Azure Functions with OpenID/OpenAuth

iOS uses the native API for authentication on iOS 13, and falls back to a generic web service for iOS 12 and

below

This sample offers an opinionated implementation for getting Apple Sign In to work in your Xamarin.Forms app.

We use two Azure Functions to help with the authentication flow:

1. applesignin_auth - Generates the Apple Sign In Authorization URL and redirects to it. We do this on the

server side, instead of the mobile app, so we can cache the state and validate it when Apple's servers send

a callback.

2. applesignin_callback - Handles the POST callback from Apple and securely exchanges the authorization

code for an Access Token and ID Token. Finally, it redirects back to the App's URI Scheme, passing back the

tokens in a URL Fragment.

The mobile app registers itself to handle the custom URI scheme we have selected (in this case

xamarinformsapplesignin://) so the applesignin_callback function can relay the tokens back to it.

When the user starts authentication, the following steps happen:

1. The mobile app generates a nonce and state value and passes them to the applesignin_auth Azure

function.

2. The applesignin_auth Azure function generates an Apple Sign In Authorization URL (using the provided

state and nonce), and redirects the mobile app browser to it.

3. The user enters their credentials securely in the Apple Sign In authorization page hosted on Apple's servers.

4. After the Apple Sign In flow finishes on Apple's servers, Apple Redirects to the redirect_uri which will be

the applesignin_callback Azure function.

5. The request from Apple sent to the applesignin_callback function is validated to ensure the correct state is

returned, and that the ID Token claims are valid.

6. The applesignin_callback Azure function exchanges the code posted to it by Apple, for an Access Token,

Refresh Token, and ID Token (which contains claims about the User ID, Name, and Email).

7. The applesignin_callback Azure function finally redirects back to the app's URI scheme (

xamarinformsapplesignin://) appending a URI fragment with the Tokens (e.g.

xamarinformsapplesignin://#access_token=...&refresh_token=...&id_token=...).

8. The Mobile app parses out the URI Fragment into an AppleAccount and validates the nonce claim received

matches the nonce generated at the start of the flow.

9. The mobile app is now authenticated!

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/sign-in-with-apple/android-ios-sign-in.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/signinwithapple/

 Azure Functions

 ConfigurationConfiguration

 Security considerationsSecurity considerations

 A cross-platform sign in service

public interface IAppleSignInService
{
 bool Callback(string url);

 Task<AppleAccount> SignInAsync();
}

public class AppleSignInServiceiOS : IAppleSignInService
{
#if __IOS__13
 AuthManager authManager;
#endif

 bool Is13 => UIDevice.CurrentDevice.CheckSystemVersion(13, 0);
 WebAppleSignInService webSignInService;

 public AppleSignInServiceiOS()
 {
 if (!Is13)
 webSignInService = new WebAppleSignInService();
 }

This sample uses Azure Functions. Alternatively, an ASP.NET Core Controller or similar web server solution could

deliver the same functionality.

Several app settings need to be configured when using Azure Functions:

APPLE_SIGNIN_KEY_ID - This is your KeyId from earlier.

APPLE_SIGNIN_TEAM_ID - This is usually your Team ID found in your Membership Profile

APPLE_SIGNIN_SERVER_ID : This is the ServerId from earlier. It's not your App Bundle ID, but rather the

Identifier of the Services ID you created.

APPLE_SIGNIN_APP_CALLBACK_URI - This is the custom URI Scheme you want to redirect back to your app with.

In this sample xamarinformsapplesignin:// is used.

APPLE_SIGNIN_REDIRECT_URI - The Redirect URL you setup when creating your Services ID in the Apple Sign In

Configuration section. To test, it might look something like: http://local.test:7071/api/applesignin_callback

APPLE_SIGNIN_P8_KEY - The text contents of your .p8 file, with all the \n newlines removed so it's one long

string

NeverNever store your P8 key inside of your application code. Application code is easy to download and disassemble.

It is also considered a bad practice to use a WebView to host the authentication flow, and to intercept URL

Navigation events to obtain the authorization code. At this time there is currently no fully secure way to handle

Sign In with Apple on non iOS13+ devices without hosting some code on a server to handle the token

exchange. We recommend hosting the authorization url generation code on a server so you can cache the state

and validate it when Apple issues a POST callback to your server.

Using the Xamarin.Forms DependencyService, you can create separate authentication services that use the

platform services on iOS, and a generic web service for Android and other non-iOS platforms based on a shared

interface.

On iOS, the native APIs are used:

https://developer.apple.com/account/#/membership

 }

 public async Task<AppleAccount> SignInAsync()
 {
 // Fallback to web for older iOS versions
 if (!Is13)
 return await webSignInService.SignInAsync();

 AppleAccount appleAccount = default;

#if __IOS__13
 var provider = new ASAuthorizationAppleIdProvider();
 var req = provider.CreateRequest();

 authManager = new AuthManager(UIApplication.SharedApplication.KeyWindow);

 req.RequestedScopes = new[] { ASAuthorizationScope.FullName, ASAuthorizationScope.Email };
 var controller = new ASAuthorizationController(new[] { req });

 controller.Delegate = authManager;
 controller.PresentationContextProvider = authManager;

 controller.PerformRequests();

 var creds = await authManager.Credentials;

 if (creds == null)
 return null;

 appleAccount = new AppleAccount();
 appleAccount.IdToken = JwtToken.Decode(new NSString(creds.IdentityToken,
NSStringEncoding.UTF8).ToString());
 appleAccount.Email = creds.Email;
 appleAccount.UserId = creds.User;
 appleAccount.Name = NSPersonNameComponentsFormatter.GetLocalizedString(creds.FullName,
NSPersonNameComponentsFormatterStyle.Default, NSPersonNameComponentsFormatterOptions.Phonetic);
 appleAccount.RealUserStatus = creds.RealUserStatus.ToString();
#endif

 return appleAccount;
 }

 public bool Callback(string url) => true;
}

#if __IOS__13
class AuthManager : NSObject, IASAuthorizationControllerDelegate,
IASAuthorizationControllerPresentationContextProviding
{
 public Task<ASAuthorizationAppleIdCredential> Credentials
 => tcsCredential?.Task;

 TaskCompletionSource<ASAuthorizationAppleIdCredential> tcsCredential;

 UIWindow presentingAnchor;

 public AuthManager(UIWindow presentingWindow)
 {
 tcsCredential = new TaskCompletionSource<ASAuthorizationAppleIdCredential>();
 presentingAnchor = presentingWindow;
 }

 public UIWindow GetPresentationAnchor(ASAuthorizationController controller)
 => presentingAnchor;

 [Export("authorizationController:didCompleteWithAuthorization:")]
 public void DidComplete(ASAuthorizationController controller, ASAuthorization authorization)
 {
 var creds = authorization.GetCredential<ASAuthorizationAppleIdCredential>();
 tcsCredential?.TrySetResult(creds);

 tcsCredential?.TrySetResult(creds);
 }

 [Export("authorizationController:didCompleteWithError:")]
 public void DidComplete(ASAuthorizationController controller, NSError error)
 => tcsCredential?.TrySetException(new Exception(error.LocalizedDescription));
}
#endif

The compile flag __IOS__13 is used to provide support for iOS 13 as well as legacy versions that fallback to the

generic web service.

On Android, the generic web service with Azure Functions is used:

public class WebAppleSignInService : IAppleSignInService
{
 // IMPORTANT: This is what you register each native platform's url handler to be
 public const string CallbackUriScheme = "xamarinformsapplesignin";
 public const string InitialAuthUrl = "http://local.test:7071/api/applesignin_auth";

 string currentState;
 string currentNonce;

 TaskCompletionSource<AppleAccount> tcsAccount = null;

 public bool Callback(string url)
 {
 // Only handle the url with our callback uri scheme
 if (!url.StartsWith(CallbackUriScheme + "://"))
 return false;

 // Ensure we have a task waiting
 if (tcsAccount != null && !tcsAccount.Task.IsCompleted)
 {
 try
 {
 // Parse the account from the url the app opened with
 var account = AppleAccount.FromUrl(url);

 // IMPORTANT: Validate the nonce returned is the same as our originating request!!
 if (!account.IdToken.Nonce.Equals(currentNonce))
 tcsAccount.TrySetException(new InvalidOperationException("Invalid or non-matching nonce
returned"));

 // Set our account result
 tcsAccount.TrySetResult(account);
 }
 catch (Exception ex)
 {
 tcsAccount.TrySetException(ex);
 }
 }

 tcsAccount.TrySetResult(null);
 return false;
 }

 public async Task<AppleAccount> SignInAsync()
 {
 tcsAccount = new TaskCompletionSource<AppleAccount>();

 // Generate state and nonce which the server will use to initial the auth
 // with Apple. The nonce should flow all the way back to us when our function
 // redirects to our app
 currentState = Util.GenerateState();
 currentNonce = Util.GenerateNonce();

 // Start the auth request on our function (which will redirect to apple)
 // inside a browser (either SFSafariViewController, Chrome Custom Tabs, or native browser)
 await Xamarin.Essentials.Browser.OpenAsync($"{InitialAuthUrl}?&state={currentState}&nonce=
{currentNonce}",
 Xamarin.Essentials.BrowserLaunchMode.SystemPreferred);

 return await tcsAccount.Task;
 }
}

 Summary

 Related links

This article described the steps necessary to setup Sign In with Apple for use in your Xamarin.Forms

applications.

XamarinFormsAppleSignIn (Sample)

Sign In with Apple Guidelines

https://github.com/Redth/Xamarin.AppleSignIn.Sample
https://developer.apple.com/design/human-interface-guidelines/sign-in-with-apple/overview/

Xamarin.Forms Other Platforms
 11/2/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

 GTK

 Mac

 Tizen

 WPF

Xamarin.Forms supports additional platforms beyond iOS, Android, and Windows.

For more information about supported Xamarin.Forms platforms, see Xamarin.Forms Platform Support.

Xamarin.Forms now has preview support for GTK# apps.

Xamarin.Forms now has preview support for macOS apps.

Tizen .NET enables you to build .NET applications with Xamarin.Forms and the Tizen .NET Framework.

Xamarin.Forms now has preview support for Windows Presentation Foundation (WPF) apps.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/other/index.md
https://github.com/xamarin/Xamarin.Forms/wiki/Platform-Support

GTK# Platform Setup
 7/8/2021 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

 Adding a GTK# App

Xamarin.Forms now has preview support for GTK# apps. GTK# is a graphical user interface toolkit that links the

GTK+ toolkit and a variety of GNOME libraries, allowing the development of fully native GNOME graphics apps

using Mono and .NET. This article demonstrates how to add a GTK# project to a Xamarin.Forms solution.

Xamarin.Forms support for GTK# is provided by the community. For more information, see Xamarin.Forms Platform

Support.

Before you start, create a new Xamarin.Forms solution, or use an existing Xamarin.Forms solution, for example,

GameOfLifeGameOfLife.

While this article focuses on adding a GTK# app to a Xamarin.Forms solution in VS2017 and Visual Studio for Mac, it can

also be performed in MonoDevelop for Linux.

GTK# for macOS and Linux is installed as part of Mono. GTK# for .NET can be installed on Windows with the

GTK# Installer.

Visual Studio

Visual Studio for Mac

Follow these instructions to add a GTK# app that will run on the Windows desktop:

1. In Visual Studio 2019, right-click on the solution name in Solution ExplorerSolution Explorer and choose Add > NewAdd > New

Project...Project... .

2. In the New ProjectNew Project window, at the left select Visual C#Visual C# and Windows Classic DesktopWindows Classic Desktop. In the list of

project types, choose Class L ibrar y (.NET Framework)Class L ibrar y (.NET Framework) , and ensure that the FrameworkFramework drop-down is

set to a minimum of .NET Framework 4.7.

3. Type a name for the project with a GTKGTK extension, for example GameOfLife.GTKGameOfLife.GTK. Click the BrowseBrowse

button, select the folder containing the other platform projects, and press Select FolderSelect Folder . This will put the

GTK project in the same directory as the other projects in the solution.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/other/gtk.md
https://github.com/xamarin/Xamarin.Forms/wiki/Platform-Support
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-gameoflife
https://www.monodevelop.com/
https://www.mono-project.com/download/stable/
https://www.mono-project.com/download/stable/#download-win

Press the OKOK button to create the project.

4. In the Solution ExplorerSolution Explorer , right click the new GTK project and select Manage NuGet PackagesManage NuGet Packages . Select

the BrowseBrowse tab, and search for Xamarin.FormsXamarin.Forms 3.0 or greater.

Select the package and click the InstallInstall button.

5. Now search for the Xamarin.Forms.Platform.GTKXamarin.Forms.Platform.GTK 3.0 package or greater.

Select the package and click the InstallInstall button.

6. In the Solution ExplorerSolution Explorer , right-click the solution name and select Manage NuGet Packages forManage NuGet Packages for

SolutionSolution. Select the UpdateUpdate tab and the Xamarin.FormsXamarin.Forms package. Select all the projects and update

them to the same Xamarin.Forms version as used by the GTK project.

7. In the Solution ExplorerSolution Explorer , right-click on ReferencesReferences in the GTK project. In the Reference ManagerReference Manager

dialog, select ProjectsProjects at the left, and check the checkbox adjacent to the .NET Standard or Shared

project:

8. In the Reference ManagerReference Manager dialog, press the BrowseBrowse button and browse to the C:\Program FilesC:\Program Files

(x86)\GtkSharp\2.12\lib(x86)\GtkSharp\2.12\lib folder and select the atk-sharp.dllatk-sharp.dll , gdk-sharp.dllgdk-sharp.dll , glade-sharp.dllglade-sharp.dll , glib-glib-

sharp.dllsharp.dll , gtk-dotnet.dllgtk-dotnet.dll , gtk-sharp.dllgtk-sharp.dll files.

Press the OKOK button to add the references.

9. In the GTK project, rename Class1.csClass1.cs to Program.csProgram.cs .

10. In the GTK project, edit the Program.csProgram.cs file so that it resembles the following code:

using System;
using Xamarin.Forms;
using Xamarin.Forms.Platform.GTK;

namespace GameOfLife.GTK
{
 class MainClass
 {
 [STAThread]
 public static void Main(string[] args)
 {
 Gtk.Application.Init();
 Forms.Init();

 var app = new App();
 var window = new FormsWindow();
 window.LoadApplication(app);
 window.SetApplicationTitle("Game of Life");
 window.Show();

 Gtk.Application.Run();
 }
 }
}

This code initializes GTK# and Xamarin.Forms, creates an application window, and runs the app.

11. In the Solution ExplorerSolution Explorer , right click the GTK project and select Proper tiesProper ties .

12. In the Proper tiesProper ties window, select the ApplicationApplication tab and change the Output typeOutput type drop-down to

Windows ApplicationWindows Application.

13. In the Solution ExplorerSolution Explorer , right-click the GTK project and select Set as Star tup ProjectSet as Star tup Project. Press F5 to run

the program with the Visual Studio debugger on the Windows desktop:

 Next Steps
 Platform SpecificsPlatform Specifics

<Button.TextColor>
 <OnPlatform x:TypeArguments="Color">
 <On Platform="iOS" Value="White" />
 <On Platform="macOS" Value="White" />
 <On Platform="Android" Value="Black" />
 <On Platform="GTK" Value="Blue" />
 </OnPlatform>
</Button.TextColor>

 Application IconApplication Icon

window.SetApplicationIcon("icon.png");

 ThemesThemes

You can determine what platform your Xamarin.Forms application is running on from either XAML or code. This

allows you to change program characteristics when it's running on GTK#. In code, compare the value of

Device.RuntimePlatform with the Device.GTK constant (which equals the string "GTK"). If there's a match, the

application is running on GTK#.

In XAML, you can use the OnPlatform tag to select a property value specific to the platform:

You can set the app icon at startup:

There are a wide variety of themes available for GTK#, and they can be used from a Xamarin.Forms app:

GtkThemes.Init ();
GtkThemes.LoadCustomTheme ("Themes/gtkrc");

 Native FormsNative Forms

var settingsView = new SettingsView().CreateContainer();
vbox.PackEnd(settingsView, true, true, 0);

 Issues

Native Forms allows Xamarin.Forms ContentPage -derived pages to be consumed by native projects, including

GTK# projects. This can be accomplished by creating an instance of the ContentPage -derived page and

converting it to the native GTK# type using the CreateContainer extension method:

For more information about Native Forms, see Native Forms.

This is a Preview, so you should expect that not everything is production ready. For the current implementation

status, see Status, and for the current known issues, see Pending & Known Issues.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.contentpage
https://github.com/jsuarezruiz/forms-gtk-progress/blob/master/Status.md
https://github.com/jsuarezruiz/forms-gtk-progress/blob/master/Issues-Pending.md

Mac Platform Setup
 7/8/2021 • 2 minutes to read • Edit Online

 Adding a Mac App

Before you start, create (or use an existing) Xamarin.Forms project. You can only add Mac apps using Visual

Studio for Mac.

Adding a macOS project to Xamarin.Forms videoAdding a macOS project to Xamarin.Forms video

Follow these instructions to add a Mac app that will run on macOS Sierra and macOS El Capitan:

1. In Visual Studio for Mac, right-click on the existing Xamarin.Forms solution and choose Add > Add NewAdd > Add New

Project...Project...

2. In the New ProjectNew Project window choose Mac > App > Cocoa AppMac > App > Cocoa App and press NextNext.

3. Type an App NameApp Name (and optionally choose a different name for the Dock Item), then press NextNext.

4. Review the configuration and press CreateCreate. These steps are shown in below:

5. In the Mac project, right-click on Packages > Add Packages...Packages > Add Packages... to add the Xamarin.Forms NuGet. You

should also update the other projects to use the same version of the Xamarin.Forms NuGet package.

6. In the Mac project, right-click on ReferencesReferences and add a reference to the Xamarin.Forms project (either

Shared Project or .NET Standard library project).

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/other/mac.md
https://www.youtube-nocookie.com/embed/mvQ7jzaNseM
https://www.nuget.org/packages/Xamarin.Forms/

static class MainClass
{
 static void Main(string[] args)
 {
 NSApplication.Init();
 NSApplication.SharedApplication.Delegate = new AppDelegate(); // add this line
 NSApplication.Main(args);
 }
}

using Xamarin.Forms;
using Xamarin.Forms.Platform.MacOS;
// also add a using for the Xamarin.Forms project, if the namespace is different to this file
...
[Register("AppDelegate")]
public class AppDelegate : FormsApplicationDelegate
{
 NSWindow window;
 public AppDelegate()
 {
 var style = NSWindowStyle.Closable | NSWindowStyle.Resizable | NSWindowStyle.Titled;

 var rect = new CoreGraphics.CGRect(200, 1000, 1024, 768);
 window = new NSWindow(rect, style, NSBackingStore.Buffered, false);
 window.Title = "Xamarin.Forms on Mac!"; // choose your own Title here
 window.TitleVisibility = NSWindowTitleVisibility.Hidden;
 }

 public override NSWindow MainWindow
 {
 get { return window; }
 }

 public override void DidFinishLaunching(NSNotification notification)
 {
 Forms.Init();
 LoadApplication(new App());
 base.DidFinishLaunching(notification);
 }
}

7. Update Main.csMain.cs to initialize the AppDelegate :

8. Update AppDelegate to initialize Xamarin.Forms, create a window, and load the Xamarin.Forms

application (remembering to set an appropriate Title). If you have other dependencies that need to be

initialized, do that here as well.

9. Double-click Main.stor yboardMain.stor yboard to edit in Xcode. Select the WindowWindow and uncheck the Is InitialIs Initial

ControllerController checkbox (this is because the code above creates a window):

 Next Steps
 StylingStyling

<Button.TextColor>
 <OnPlatform x:TypeArguments="Color">
 <On Platform="iOS" Value="White"/>
 <On Platform="macOS" Value="White"/>
 <On Platform="Android" Value="Black"/>
 </OnPlatform>
</Button.TextColor>

 Window Size and PositionWindow Size and Position

var rect = new CoreGraphics.CGRect(200, 1000, 1024, 768); // x, y, width, height

 Known Issues

 Not all NuGets are ready for macOSNot all NuGets are ready for macOS

 Missing Xamarin.Forms FeaturesMissing Xamarin.Forms Features

 Related Links

You can edit the menu system in the storyboard to remove unwanted items.

10. Finally, add any local resources (eg. image files) from the existing platform projects that are required.

11. The Mac project should now run your Xamarin.Forms code on macOS!

With recent changes made to OnPlatform you can now target any number of platforms. That includes macOS.

Note you may also double up on platforms like this: <On Platform="iOS, macOS" ...> .

You can adjust the initial size and location of the window in the AppDelegate :

This is a Preview, so you should expect that not everything is production ready. Below are a few things you may

encounter as you add macOS to your projects:

You may find that some of the libraries you use do not yet support macOS. In this case, you'll need to send a

request to the project's maintainer to add it. Until they have support, you may need to look for alternatives.

Not all Xamarin.Forms features are complete in this preview. For more information, see Platform Support

macOS Status in the Xamarin.Forms GitHub repository.

Xamarin.Mac

file:///T:/c1uy/wq21/xamarin/xamarin-forms/platform/other/mac-images/xcode-init-controller.png#lightbox
https://github.com/xamarin/Xamarin.Forms/wiki/Platform-Support-macOS-Status
https://github.com/xamarin/Xamarin.Forms
https://docs.microsoft.com/en-us/xamarin/mac/index

Tizen .NET
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Documentation

 Samples

Tizen .NET allows you to develop Tizen applications to run on Samsung devices, including TVs, wearables,

mobile devices, and other IoT devices.

Tizen .NET enables you to build .NET applications with Xamarin.Forms and the Tizen .NET framework. The Tizen

.NET platform is supported by Samsung. Xamarin.Forms allows you to easily create user interfaces, while the

TizenFX API provides interfaces to the hardware that's found in modern TV, mobile, wearable, and IoT devices.

For more information about Tizen .NET, see Introduction to Tizen .NET Application.

Before you can start developing Tizen .NET applications, you must first set up your development environment.

For more information, see Installing Visual Studio Tools for Tizen.

For information about how to add Tizen .NET project to an existing Xamarin.Forms solution, see Creating your

First Tizen .NET Application.

Xamarin.Forms documentation – how to build cross-platform applications with C# and Xamarin.Forms.

developer.tizen.orgdeveloper.tizen.org – documentation and videos to help you build and deploy Tizen applications.

Samsung maintains a fork of the Xamarin.Forms samples with Tizen projects added, and there is a separate

repository Tizen-Csharp-Samples that contains additional projects, including Wearable and TV-specific demos.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/other/tizen.md
https://developer.tizen.org/development/training/.net-application
https://developer.tizen.org/development/visual-studio-tools-tizen/installing-visual-studio-tools-tizen
https://developer.tizen.org/development/training/.net-application/creating-your-first-tizen-.net-application
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/index
https://developer.tizen.org/development
https://github.com/Samsung/xamarin-forms-samples
https://github.com/Samsung/Tizen-CSharp-Samples

WPF platform setup
 7/8/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Add a WPF application

Xamarin.Forms has preview support for the Windows Presentation Foundation (WPF), on .NET Framework and

on .NET Core 3. This article demonstrates how to add a WPF project that targets .NET Framework, to a

Xamarin.Forms solution.

Xamarin.Forms support for WPF is provided by the community. For more information, see Xamarin.Forms Platform

Support.

Before you start, create a new Xamarin.Forms solution in Visual Studio 2019, or use an existing Xamarin.Forms

solution, for example, BoxViewClockBoxViewClock . You can only add WPF apps to a Xamarin.Forms solution in Windows.

Follow these instructions to add a WPF application that will run on the Windows 7, 8, and 10 desktops:

1. In Visual Studio 2019, right-click on the solution name in the Solution ExplorerSolution Explorer and choose Add >Add >

New Project...New Project... .

2. In the Add a new projectAdd a new project window, select C#C# in the LanguagesLanguages drop down, select WindowsWindows in the

PlatformsPlatforms drop down, and select DesktopDesktop in the Project typeProject type drop down. In the list of project types,

choose WPF App (.NET Framework)WPF App (.NET Framework) :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/platform/other/wpf.md
https://github.com/xamarin/Xamarin.Forms/wiki/Platform-Support
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/boxview-boxviewclock

NOTENOTE

Press the NextNext button.

Xamarin.Forms 4.7 includes support for WPF apps that run on .NET Core 3.

3. In the Configure your new projectConfigure your new project window, type a name for the project with a WPFWPF extension, for

example, BoxViewClock .WPFBoxViewClock .WPF . Click the BrowseBrowse button, select the BoxViewClockBoxViewClock folder, and press

Select FolderSelect Folder to put the WPF project in the same directory as the other projects in the solution:

xmlns:wpf="clr-namespace:Xamarin.Forms.Platform.WPF;assembly=Xamarin.Forms.Platform.WPF"

Press the CreateCreate button to create the project.

4. In the Solution ExplorerSolution Explorer , right click the new BoxViewClock .WPFBoxViewClock .WPF project and select Manage NuGetManage NuGet

Packages...Packages... . Select the BrowseBrowse tab, and search for Xamarin.Forms.Platform.WPFXamarin.Forms.Platform.WPF :

Select the package and click the InstallInstall button.

5. Right click the solution name in the Solution ExplorerSolution Explorer and select Manage NuGet Packages forManage NuGet Packages for

Solution...Solution.... Select the UpdatesUpdates tab and then select the Xamarin.FormsXamarin.Forms package. Select all the projects

and update them to the same Xamarin.Forms version:

6. In the WPF project, right-click on ReferencesReferences and select Add Reference...Add Reference.... In the Reference ManagerReference Manager

dialog, select ProjectsProjects at the left, and check the checkbox adjacent to the BoxViewClockBoxViewClock project:

Press the OKOK button.

7. Edit the MainWindow.xamlMainWindow.xaml file of the WPF project. In the Window tag, add an XML namespace

declaration for the Xamarin.Forms.Platform.WPFXamarin.Forms.Platform.WPF assembly and namespace:

Now change the Window tag to wpf:FormsApplicationPage . Change the Title setting to the name of your

application, for example, BoxViewClockBoxViewClock . The completed XAML file should look like this:

<wpf:FormsApplicationPage x:Class="BoxViewClock.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:BoxViewClock.WPF"
 xmlns:wpf="clr-namespace:Xamarin.Forms.Platform.WPF;assembly=Xamarin.Forms.Platform.WPF"
 mc:Ignorable="d"
 Title="BoxViewClock" Height="450" Width="800">
 <Grid>

 </Grid>
</wpf:FormsApplicationPage>

using Xamarin.Forms;
using Xamarin.Forms.Platform.WPF;

Forms.Init();
LoadApplication(new BoxViewClock.App());

using Xamarin.Forms;
using Xamarin.Forms.Platform.WPF;

namespace BoxViewClock.WPF
{
 public partial class MainWindow : FormsApplicationPage
 {
 public MainWindow()
 {
 InitializeComponent();

 Forms.Init();
 LoadApplication(new BoxViewClock.App());
 }
 }
}

8. Edit the MainWindow.xaml.csMainWindow.xaml.cs file of the WPF project. Add two new using directives:

Change the base class of MainWindow from Window to FormsApplicationPage . Following the

InitializeComponent call, add the following two statements:

Except for comments and unused using directives, the complete MainWindows.xaml.csMainWindows.xaml.cs file should

look like this:

9. Right-click the WPF project in the Solution ExplorerSolution Explorer and select Set as Star tup ProjectSet as Star tup Project. Press F5 to run

the program with the Visual Studio debugger on the Windows desktop:

 Platform specifics

<Button.TextColor>
 <OnPlatform x:TypeArguments="Color">
 <On Platform="iOS" Value="White" />
 <On Platform="macOS" Value="White" />
 <On Platform="Android" Value="Black" />
 <On Platform="WPF" Value="Blue" />
 </OnPlatform>
</Button.TextColor>

 Window size

Title="BoxViewClock" Height="450" Width="800"

 Issues

 Related video

You can determine what platform your Xamarin.Forms application is running on from either code or XAML. This

allows you to change program characteristics when it's running on WPF. In code, compare the value of

Device.RuntimePlatform with the Device.WPF constant (which equals the string "WPF"). If there's a match, the

application is running on WPF.

In XAML, you can use the OnPlatform tag to select a property value specific to the platform:

You can adjust the initial size of the window in the WPF MainWindow.xamlMainWindow.xaml file:

This is a preview, so you should expect that not everything is production ready. Not all NuGet packages for

Xamarin.Forms are ready for WPF, and some features might not be fully working.

Xamarin.Forms 3.0 WPF suppor t videoXamarin.Forms 3.0 WPF suppor t video

https://www.youtube-nocookie.com/embed/Fy9N6OSxK64

Xamarin.Essentials
 3/5/2021 • 2 minutes to read • Edit Online

 Get Started with Xamarin.Essentials

 Feature Guides

Xamarin.Essentials provides developers with cross-platform APIs for their mobile applications.

Android, iOS, and UWP offer unique operating system and platform APIs that developers have access to all in C#

leveraging Xamarin. Xamarin.Essentials provides a single cross-platform API that works with any

Xamarin.Forms, Android, iOS, or UWP application that can be accessed from shared code no matter how the

user interface is created.

Follow the getting started guide to install the Xamarin.EssentialsXamarin.Essentials NuGet package into your existing or new

Xamarin.Forms, Android, iOS, or UWP projects.

Follow the guides to integrate these Xamarin.Essentials features into your applications:

Accelerometer – Retrieve acceleration data of the device in three dimensional space.

App Actions – Get and set shortcuts for the application.

App Information – Find out information about the application.

App Theme – Detect the current theme requested for the application.

Barometer – Monitor the barometer for pressure changes.

Battery – Easily detect battery level, source, and state.

Clipboard – Quickly and easily set or read text on the clipboard.

Color Converters – Helper methods for System.Drawing.Color.

Compass – Monitor compass for changes.

Connectivity – Check connectivity state and detect changes.

Contacts – Retrieve information about a contact on the device.

Detect Shake – Detect a shake movement of the device.

Device Display Information – Get the device's screen metrics and orientation.

Device Information – Find out about the device with ease.

Email – Easily send email messages.

File Picker – Allow user to pick files from the device.

File System Helpers – Easily save files to app data.

Flashlight – A simple way to turn the flashlight on/off.

Geocoding – Geocode and reverse geocode addresses and coordinates.

Geolocation – Retrieve the device's GPS location.

Gyroscope – Track rotation around the device's three primary axes.

Haptic Feedback – Control click and long press haptics.

Launcher – Enables an application to open a URI by the system.

Magnetometer – Detect device's orientation relative to Earth's magnetic field.

MainThread – Run code on the application's main thread.

Maps – Open the maps application to a specific location.

Media Picker – Allow user to pick or take photos and videos.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/index.md

 Troubleshooting

 Xamarin.Essentials on Q&A

 Release Notes

 API Documentation

Open Browser – Quickly and easily open a browser to a specific website.

Orientation Sensor – Retrieve the orientation of the device in three dimensional space.

Permissions – Check and request permissions from users.

Phone Dialer – Open the phone dialer.

Platform Extensions – Helper methods for converting Rect, Size, and Point.

Preferences – Quickly and easily add persistent preferences.

Screenshot – Take a capture of the current display of the application.

Secure Storage – Securely store data.

Share – Send text and website links to other apps.

SMS – Create an SMS message for sending.

Text-to-Speech – Vocalize text on the device.

Unit Converters – Helper methods to convert units.

Version Tracking – Track the applications version and build numbers.

Vibrate – Make the device vibrate.

Web Authenticator - Start web authentication flows and listen for a callback.

Find help if you are running into issues.

Ask questions about accessing native features with Xamarin.Essentials.

Find full release notes for each release of Xamarin.Essentials.

Browse the API documentation for every feature of Xamarin.Essentials.

https://docs.microsoft.com/en-us/answers/topics/dotnet-xamarinessentials.html
https://docs.microsoft.com/en-us/xamarin/essentials/release-notes/
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials

Get Started with Xamarin.Essentials
 3/5/2021 • 2 minutes to read • Edit Online

 Installation

Xamarin.Essentials provides a single cross-platform API that works with any iOS, Android, or UWP application

that can be accessed from shared code no matter how the user interface is created. See the platform & feature

support guide for more information on supported operating systems.

Xamarin.Essentials is available as a NuGet package and is included in every new project in Visual Studio. It can

also be added to any existing projects using Visual Studio with the following steps.

IMPORTANTIMPORTANT

using Xamarin.Essentials;

1. Download and install Visual Studio with the Visual Studio tools for Xamarin.

2. Open an existing project, or create a new project using the Blank App template under Visual Studio C#Visual Studio C#

(Android, iPhone & iPad, or Cross-Platform).

If adding to a UWP project ensure Build 16299 or higher is set in the project properties.

3. Add the Xamarin.EssentialsXamarin.Essentials NuGet package to each project:

Visual Studio

Visual Studio for Mac

In the Solution Explorer panel, right click on the solution name and select Manage NuGet PackagesManage NuGet Packages .

Search for Xamarin.EssentialsXamarin.Essentials and install the package into ALLALL projects including Android, iOS, UWP,

and .NET Standard libraries.

4. Add a reference to Xamarin.Essentials in any C# class to reference the APIs.

5. Xamarin.Essentials requires platform-specific setup:

Android

iOS

UWP

Xamarin.Essentials supports a minimum Android version of 4.4, corresponding to API level 19, but the

target Android version for compiling must be 9.0 or 10.0, corresponding to API level 28 and level 29. (In

Visual Studio, these two versions are set in the Project Properties dialog for the Android project, in the

Android Manifest tab. In Visual Studio for Mac, they're set in the Project Options dialog for the Android

project, in the Android Application tab.)

When compiling against Android 9.0, Xamarin.Essentials installs version 28.0.0.3 of the

Xamarin.Android.Support libraries that it requires. Any other Xamarin.Android.Support libraries that your

application requires should also be updated to version 28.0.0.3 using the NuGet package manager. All

Xamarin.Android.Support libraries used by your application should be the same, and should be at least

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/get-started.md
https://visualstudio.microsoft.com/
https://www.nuget.org/packages/Xamarin.Essentials/

 Xamarin.Essentials - Cross-Platform APIs for Mobile Apps (video)

 Other Resources

protected override void OnCreate(Bundle savedInstanceState) {
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may
also be called: bundle
 //...

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

version 28.0.0.3. Refer to the troubleshooting page if you have issues adding the Xamarin.Essentials

NuGet or updating NuGets in your solution.

Starting with version 1.5.0 when compiling against Android 10.0, Xamarin.Essentials install AndroidX

support libraries that it requires. Read through the AndroidX documentation if you have not made the

transition yet.

In the Android project's MainLauncher or any Activity that is launched, Xamarin.Essentials must be

initialized in the OnCreate method:

To handle runtime permissions on Android, Xamarin.Essentials must receive any

OnRequestPermissionsResult . Add the following code to all Activity classes:

6. Follow the Xamarin.Essentials guides that enable you to copy and paste code snippets for each feature.

We recommend developers new to Xamarin visit getting started with Xamarin development.

Visit the Xamarin.Essentials GitHub Repository to see the current source code, what is coming next, run samples,

and clone the repository. Community contributions are welcome!

Browse through the API documentation for every feature of Xamarin.Essentials.

https://docs.microsoft.com/en-us/xamarin/android/platform/androidx
https://channel9.msdn.com/Shows/XamarinShow/Snack-Pack-XamarinEssentials-Cross-Platform-APIs-for-Mobile-Apps/player?nocookie=true
file:///T:/c1uy/wq21/xamarin/cross-platform/getting-started/index.html
https://github.com/xamarin/Essentials
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials

Platform Support
 7/8/2021 • 2 minutes to read • Edit Online

P L AT F O RMP L AT F O RM VERSIO NVERSIO N

Android 4.4 (API 19) or higher

iOS 10.0 or higher

Tizen 4.0 or higher

tvOS 10.0 or higher

watchOS 4.0 or higher

UWP 10.0.16299.0 or higher

macOS 10.12.6 (Sierra) or higher

NOTENOTE

 Feature Support

F EAT UREF EAT URE A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN M A C O SM A C O S

Accelerome
ter

App
Actions

App
Information

Xamarin.Essentials supports the following platforms and operating systems:

Tizen is officially supported by the Samsung development team.

tvOS & watchOS have limited API coverage, please see the feature guide for more information.

macOS support is in preview.

Xamarin.Essentials always tries to bring features to every platform, however sometimes there are limitations

based on the device. Below is a guide of what features are supported on each platform.

Icon Guide:

 - Full support

 - Limited support

 - Not supported

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/platform-feature-support.md

App Theme

Barometer

Battery

Clipboard

Color
Converters

Compass

Connectivit
y

Contacts

Detect
Shake

Device
Display
Information

Device
Information

Email

File Picker

File System
Helpers

Flashlight

Geocoding

Geolocatio
n

Gyroscope

Haptic
Feedback

Launcher

Magnetom
eter

F EAT UREF EAT URE A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN M A C O SM A C O S

MainThrea
d

Maps

Media
Picker

Open
Browser

Orientation
Sensor

Permissions

Phone
Dialer

Platform
Extensions

Preferences

Screenshot

Secure
Storage

Share

SMS

Text-to-
Speech

Unit
Converters

Version
Tracking

Vibrate

Web
Authenticat
or

F EAT UREF EAT URE A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN M A C O SM A C O S

Xamarin.Essentials: Accelerometer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Accelerometer

using Xamarin.Essentials;

The AccelerometerAccelerometer class lets you monitor the device's accelerometer sensor, which indicates the acceleration of

the device in three-dimensional space.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Accelerometer functionality works by calling the Start and Stop methods to listen for changes to the

acceleration. Any changes are sent back through the ReadingChanged event. Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/accelerometer.md

public class AccelerometerTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public AccelerometerTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 Accelerometer.ReadingChanged += Accelerometer_ReadingChanged;
 }

 void Accelerometer_ReadingChanged(object sender, AccelerometerChangedEventArgs e)
 {
 var data = e.Reading;
 Console.WriteLine($"Reading: X: {data.Acceleration.X}, Y: {data.Acceleration.Y}, Z:
{data.Acceleration.Z}");
 // Process Acceleration X, Y, and Z
 }

 public void ToggleAccelerometer()
 {
 try
 {
 if (Accelerometer.IsMonitoring)
 Accelerometer.Stop();
 else
 Accelerometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

Accelerometer readings are reported back in G. A G is a unit of gravitation force equal to that exerted by the

earth's gravitational field (9.81 m/s^2).

The coordinate-system is defined relative to the screen of the phone in its default orientation. The axes are not

swapped when the device's screen orientation changes.

The X axis is horizontal and points to the right, the Y axis is vertical and points up and the Z axis points towards

the outside of the front face of the screen. In this system, coordinates behind the screen have negative Z values.

Examples:

When the device lies flat on a table and is pushed on its left side toward the right, the x acceleration value

is positive.

When the device lies flat on a table, the acceleration value is +1.00 G or (+9.81 m/s^2), which correspond

to the acceleration of the device (0 m/s^2) minus the force of gravity (-9.81 m/s^2) and normalized as in

G.

When the device lies flat on a table and is pushed toward the sky with an acceleration of A m/s^2, the

acceleration value is equal to A+9.81 which corresponds to the acceleration of the device (+A m/s^2)

minus the force of gravity (-9.81 m/s^2) and normalized in G.

Sensor Speed

 API

 Related Video

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Accelerometer source code

Accelerometer API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Accelerometer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.accelerometer
https://channel9.msdn.com/Shows/XamarinShow/Accelerometer-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: App Actions
 7/8/2021 • 2 minutes to read • Edit Online

 Get started

[IntentFilter(
 new[] { Xamarin.Essentials.Platform.Intent.ActionAppAction },
 Categories = new[] { Android.Content.Intent.CategoryDefault })]
public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsAppCompatActivity
{
 ...

protected override void OnResume()
{
 base.OnResume();

 Xamarin.Essentials.Platform.OnResume(this);
}

protected override void OnNewIntent(Android.Content.Intent intent)
{
 base.OnNewIntent(intent);

 Xamarin.Essentials.Platform.OnNewIntent(intent);
}

 Create Actions

using Xamarin.Essentials;

The AppActionsAppActions class lets you create and respond to app shortcuts from the app icon.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the AppActionsAppActions functionality the following platform specific setup is required.

Android

iOS

UWP

Add the intent filter to your MainActivity class:

Then add the following logic to handle actions:

Add a reference to Xamarin.Essentials in your class:

App Actions can be created at any time, but are often created when an application starts. Call the SetAsync

method to create the list of actions for your app.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/app-actions.md

try
{
 await AppActions.SetAsync(
 new AppAction("app_info", "App Info", icon: "app_info_action_icon"),
 new AppAction("battery_info", "Battery Info"));
}
catch (FeatureNotSupportedException ex)
{
 Debug.WriteLine("App Actions not supported");
}

 Responding To Actions

public App()
{
 //...
 AppActions.OnAppAction += AppActions_OnAppAction;
}

void AppActions_OnAppAction(object sender, AppActionEventArgs e)
{
 // Don't handle events fired for old application instances
 // and cleanup the old instance's event handler
 if (Application.Current != this && Application.Current is App app)
 {
 AppActions.OnAppAction -= app.AppActions_OnAppAction;
 return;
 }
 MainThread.BeginInvokeOnMainThread(async () =>
 {
 await Shell.Current.GoToAsync($"//{e.AppAction.Id}");
 });
}

 GetActions

If App Actions are not supported on the specific version of the operating system a FeatureNotSupportedException

will be thrown.

The following properties can be set on an AppAction :

Id: A unique identifier used to respond to the action tap.

Title: the visible title to display.

Subtitle: If supported a sub-title to display under the title.

Icon: Must match icons in the corresponding resources directory on each platform.

When your application starts register for the OnAppAction event. When an app action is selected the event will

be sent with information as to which action was selected.

 API

 Related Video

You can get the current list of App Actions by calling AppActions.GetAsync() .

AppActions source code

AppActions API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/AppActions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.appactions
https://channel9.msdn.com/Shows/XamarinShow/App-Actions-XamarinEssentials-API-of-the-Week/player?nocookie=true

Xamarin.Essentials: App Information
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using AppInfo

using Xamarin.Essentials;

 Obtaining Application Information:

// Application Name
var appName = AppInfo.Name;

// Package Name/Application Identifier (com.microsoft.testapp)
var packageName = AppInfo.PackageName;

// Application Version (1.0.0)
var version = AppInfo.VersionString;

// Application Build Number (1)
var build = AppInfo.BuildString;

 Displaying Application Settings

// Display settings page
AppInfo.ShowSettingsUI();

 Platform Implementation Specifics

The AppInfoAppInfo class provides information about your application.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The following information is exposed through the API:

The AppInfoAppInfo class can also display a page of settings maintained by the operating system for the application:

This settings page allows the user to change application permissions and perform other platform-specific tasks.

Android

iOS

UWP

App information is taken from the AndroidManifest.xml for the following fields:

BuildBuild – android:versionCode in manifest node

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/app-information.md

 API

 Related Video

NameName - android:label in the application node

PackageNamePackageName: package in the manifest node

VersionStr ingVersionStr ing – android:versionName in the application node

AppInfo source code

AppInfo API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/AppInfo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.appinfo
https://channel9.msdn.com/Shows/XamarinShow/App-Information-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: App Theme
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using RequestedTheme

using Xamarin.Essentials;

 Obtaining Theme Information

AppTheme appTheme = AppInfo.RequestedTheme;

 Platform Implementation Specifics

 API

The RequestedThemeRequestedTheme API is part of the AppInfo class and provides information as to what theme is requested

for your running app by the system.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The requested application theme can be detected with the following API:

This will provide the current requested theme by the system for your application. The return value will be one of

the following:

Unspecified

Light

Dark

Unspecified will be returned when the operating system does not have a specific user interface style to request.

An example of this is on devices running versions of iOS older than 13.0.

Android

iOS

UWP

Android uses configuration modes to specify the type of theme to request from the user. Based on the version of

Android, it can be changed by the user or is changed when battery saver mode is enabled.

You can read more on the official Android documentation for Dark Theme.

AppInfo source code

AppInfo API documentation

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/app-theme.md
https://developer.android.com/guide/topics/ui/look-and-feel/darktheme
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/AppInfo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.appinfo

 Related Video

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Shows/XamarinShow/Theme-Detection-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Barometer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Barometer

using Xamarin.Essentials;

The BarometerBarometer class lets you monitor the device's barometer sensor, which measures pressure.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Barometer functionality works by calling the Start and Stop methods to listen for changes to the

barometer's pressure reading in hectopascals. Any changes are sent back through the ReadingChanged event.

Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/barometer.md

public class BarometerTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public BarometerTest()
 {
 // Register for reading changes.
 Barometer.ReadingChanged += Barometer_ReadingChanged;
 }

 void Barometer_ReadingChanged(object sender, BarometerChangedEventArgs e)
 {
 var data = e.Reading;
 // Process Pressure
 Console.WriteLine($"Reading: Pressure: {data.PressureInHectopascals} hectopascals");
 }

 public void ToggleBarometer()
 {
 try
 {
 if (Barometer.IsMonitoring)
 Barometer.Stop();
 else
 Barometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 Platform Implementation Specifics

 API

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Android

iOS

UWP

No platform-specific implementation details.

Barometer source code

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Barometer

Barometer API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.barometer

Xamarin.Essentials: Battery
 4/27/2021 • 3 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.BatteryStats)]

<uses-permission android:name="android.permission.BATTERY_STATS" />

 Using Battery

using Xamarin.Essentials;

The Batter yBatter y class lets you check the device's battery information and monitor for changes and provides

information about the device's energy-saver status, which indicates if the device is running in a low-power

mode. Applications should avoid background processing if the device's energy-saver status is on.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the Batter yBatter y functionality the following platform specific setup is required.

Android

iOS

UWP

The Battery permission is required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the Batter yBatter y permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

Check current battery information:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/battery.md

var level = Battery.ChargeLevel; // returns 0.0 to 1.0 or 1.0 when on AC or no battery.

var state = Battery.State;

switch (state)
{
 case BatteryState.Charging:
 // Currently charging
 break;
 case BatteryState.Full:
 // Battery is full
 break;
 case BatteryState.Discharging:
 case BatteryState.NotCharging:
 // Currently discharging battery or not being charged
 break;
 case BatteryState.NotPresent:
 // Battery doesn't exist in device (desktop computer)
 break;
 case BatteryState.Unknown:
 // Unable to detect battery state
 break;
}

var source = Battery.PowerSource;

switch (source)
{
 case BatteryPowerSource.Battery:
 // Being powered by the battery
 break;
 case BatteryPowerSource.AC:
 // Being powered by A/C unit
 break;
 case BatteryPowerSource.Usb:
 // Being powered by USB cable
 break;
 case BatteryPowerSource.Wireless:
 // Powered via wireless charging
 break;
 case BatteryPowerSource.Unknown:
 // Unable to detect power source
 break;
}

public class BatteryTest
{
 public BatteryTest()
 {
 // Register for battery changes, be sure to unsubscribe when needed
 Battery.BatteryInfoChanged += Battery_BatteryInfoChanged;
 }

 void Battery_BatteryInfoChanged(object sender, BatteryInfoChangedEventArgs e)
 {
 var level = e.ChargeLevel;
 var state = e.State;
 var source = e.PowerSource;
 Console.WriteLine($"Reading: Level: {level}, State: {state}, Source: {source}");
 }
}

Whenever any of the battery's properties change an event is triggered:

Devices that run on batteries can be put into a low-power energy-saver mode. Sometimes devices are switched

// Get energy saver status
var status = Battery.EnergySaverStatus;

public class EnergySaverTest
{
 public EnergySaverTest()
 {
 // Subscribe to changes of energy-saver status
 Battery.EnergySaverStatusChanged += OnEnergySaverStatusChanged;
 }

 private void OnEnergySaverStatusChanged(EnergySaverStatusChangedEventArgs e)
 {
 // Process change
 var status = e.EnergySaverStatus;
 }
}

 Platform Differences

 API

 Related Video

into this mode automatically, for example, when the battery drops below 20% capacity. The operating system

responds to energy-saver mode by reducing activities that tend to deplete the battery. Applications can help by

avoiding background processing or other high-power activities when energy-saver mode is on.

You can also obtain the current energy-saver status of the device using the static Battery.EnergySaverStatus

property:

This property returns a member of the EnergySaverStatus enumeration, which is either On , Off , or Unknown . If

the property returns On , the application should avoid background processing or other activities that might

consume a lot of power.

The application should also install an event handler. The Batter yBatter y class exposes an event that is triggered when

the energy-saver status changes:

If the energy-saver status changes to On , the application should stop performing background processing. If the

status changes to Unknown or Off , the application can resume background processing.

Android

iOS

UWP

No platform differences.

Battery source code

Battery API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Battery
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.battery
https://channel9.msdn.com/Shows/XamarinShow/Battery-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Clipboard
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Clipboard

using Xamarin.Essentials;

var hasText = Clipboard.HasText;

await Clipboard.SetTextAsync("Hello World");

var text = await Clipboard.GetTextAsync();

public class ClipboardTest
{
 public ClipboardTest()
 {
 // Register for clipboard changes, be sure to unsubscribe when needed
 Clipboard.ClipboardContentChanged += OnClipboardContentChanged;
 }

 void OnClipboardContentChanged(object sender, EventArgs e)
 {
 Console.WriteLine($"Last clipboard change at {DateTime.UtcNow:T}";);
 }
}

TIPTIP

The ClipboardClipboard class lets you copy and paste text to the system clipboard between applications.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To check if the ClipboardClipboard has text currently ready to be pasted:

To set text to the ClipboardClipboard:

To read text from the ClipboardClipboard:

Whenever any of the clipboard's content has changed an event is triggered:

Access to the Clipboard must be done on the main user interface thread. See the MainThread API to see how to invoke

methods on the main user interface thread.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/clipboard.md

API

 Related Video

Clipboard source code

Clipboard API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Clipboard
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.clipboard
https://channel9.msdn.com/Shows/XamarinShow/Clipboard-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Color Converters
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Color Converters

using Xamarin.Essentials;

var blueHex = ColorConverters.FromHex("#3498db");
var blueHsl = ColorConverters.FromHsl(204, 70, 53);
var blueUInt = ColorConverters.FromUInt(3447003);

 Using Color Extensions

var blue = ColorConverters.FromHex("#3498db");

// Multiplies the current alpha by 50%
var blueWithAlpha = blue.MultiplyAlpha(.5f);

 Using Platform Extensions

The ColorConver tersColorConver ters class in Xamarin.Essentials provides several helper methods for System.Drawing.Color.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

When working with System.Drawing.Color you can use the built in converters of Xamarin.Forms to create a

color from Hsl, Hex, or UInt.

Extension methods on System.Drawing.Color enable you to apply different properties:

There are several other extension methods including:

GetComplementary

MultiplyAlpha

ToUInt

WithAlpha

WithHue

WithLuminosity

WithSaturation

Additionally, you can convert System.Drawing.Color to the platform specific color structure. These methods can

only be called from the iOS, Android, and UWP projects.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/color-converters.md

var system = System.Drawing.Color.FromArgb(255, 52, 152, 219);

// Extension to convert to Android.Graphics.Color, UIKit.UIColor, or Windows.UI.Color
var platform = system.ToPlatformColor();

var platform = new Android.Graphics.Color(52, 152, 219, 255);

// Back to System.Drawing.Color
var system = platform.ToSystemColor();

 API

 Related Video

The ToSystemColor method applies to Android.Graphics.Color, UIKit.UIColor, and Windows.UI.Color.

Color Converters source code

Color Converters API documentation

Color Extensions source code

Color Extensions API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/ColorConverters.shared.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.colorconverters
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/ColorConverters.shared.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.colorextensions
https://channel9.msdn.com/Shows/XamarinShow/Color-Converters-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Compass
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Compass

using Xamarin.Essentials;

public class CompassTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public CompassTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 Compass.ReadingChanged += Compass_ReadingChanged;
 }

 void Compass_ReadingChanged(object sender, CompassChangedEventArgs e)
 {
 var data = e.Reading;
 Console.WriteLine($"Reading: {data.HeadingMagneticNorth} degrees");
 // Process Heading Magnetic North
 }

 public void ToggleCompass()
 {
 try
 {
 if (Compass.IsMonitoring)
 Compass.Stop();
 else
 Compass.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Some other exception has occurred
 }
 }
}

The CompassCompass class lets you monitor the device's magnetic north heading.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Compass functionality works by calling the Start and Stop methods to listen for changes to the compass.

Any changes are sent back through the ReadingChanged event. Here is an example:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/compass.md

 Sensor Speed

 Platform Implementation Specifics

 Low Pass Filter

Compass.Start(SensorSpeed.UI, applyLowPassFilter: true);

 API

 Related Video

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Android

Android does not provide an API for retrieving the compass heading. We utilize the accelerometer and

magnetometer to calculate the magnetic north heading, which is recommended by Google.

In rare instances, you maybe see inconsistent results because the sensors need to be calibrated, which involves

moving your device in a figure-8 motion. The best way of doing this is to open Google Maps, tap on the dot for

your location, and select Calibrate compassCalibrate compass .

Running multiple sensors from your app at the same time may adjust the sensor speed.

Due to how the Android compass values are updated and calculated there may be a need to smooth out the

values. A Low Pass Filter can be applied that averages the sine and cosine values of the angles and can be turned

on by using the Start method overload, which accepts the bool applyLowPassFilter parameter :

This is only applied on the Android platform, and the parameter is ignored on iOS and UWP. More information

can be read here.

Compass source code

Compass API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/pull/354#issuecomment-405316860
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Compass
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.compass
https://channel9.msdn.com/Shows/XamarinShow/Compass-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Connectivity
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.AccessNetworkState)]

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 Using Connectivity

using Xamarin.Essentials;

var current = Connectivity.NetworkAccess;

if (current == NetworkAccess.Internet)
{
 // Connection to internet is available
}

The ConnectivityConnectivity class lets you monitor for changes in the device's network conditions, check the current

network access, and how it is currently connected.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the ConnectivityConnectivity functionality the following platform specific setup is required.

Android

iOS

UWP

The AccessNetworkState permission is required and must be configured in the Android project. This can be

added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the Access Network StateAccess Network State permission. This will automatically update

the AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

Check current network access:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/connectivity.md

var profiles = Connectivity.ConnectionProfiles;
if (profiles.Contains(ConnectionProfile.WiFi))
{
 // Active Wi-Fi connection.
}

public class ConnectivityTest
{
 public ConnectivityTest()
 {
 // Register for connectivity changes, be sure to unsubscribe when finished
 Connectivity.ConnectivityChanged += Connectivity_ConnectivityChanged;
 }

 void Connectivity_ConnectivityChanged(object sender, ConnectivityChangedEventArgs e)
 {
 var access = e.NetworkAccess;
 var profiles = e.ConnectionProfiles;
 }
}

 Limitations

 API

 Related Video

Network access falls into the following categories:

InternetInternet – Local and internet access.

ConstrainedInternetConstrainedInternet – Limited internet access. Indicates captive portal connectivity, where local access to a

web portal is provided, but access to the Internet requires that specific credentials are provided via a portal.

LocalLocal – Local network access only.

NoneNone – No connectivity is available.

UnknownUnknown – Unable to determine internet connectivity.

You can check what type of connection profile the device is actively using:

Whenever the connection profile or network access changes you can receive an event when triggered:

It is important to note that it is possible that Internet is reported by NetworkAccess but full access to the web is

not available. Due to how connectivity works on each platform it can only guarantee that a connection is

available. For instance the device may be connected to a Wi-Fi network, but the router is disconnected from the

internet. In this instance Internet may be reported, but an active connection is not available.

Connectivity source code

Connectivity API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.networkaccess
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.connectionprofile
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Connectivity
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.connectivity
https://channel9.msdn.com/Shows/XamarinShow/Connectivity-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Contacts
 3/5/2021 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.ReadContacts)]

<uses-permission android:name="android.permission.READ_CONTACTS" /> />

 Pick a contact

The ContactsContacts class lets a user pick a contact and retrieve information about it.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the ContactsContacts functionality the following platform specific setup is required.

Android

iOS

UWP

The ReadContacts permission is required and must be configured in the Android project. This can be added in

the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check this permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

By calling Contacts.PickContactAsync() the contact dialog will appear and allow the user to receive information

about the user.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/contacts.md

try
{
 var contact = await Contacts.PickContactAsync();

 if(contact == null)
 return;

 var id = contact.Id;
 var namePrefix = contact.NamePrefix;
 var givenName = contact.GivenName;
 var middleName = contact.MiddleName;
 var familyName = contact.FamilyName;
 var nameSuffix = contact.NameSuffix;
 var displayName = contact.DisplayName;
 var phones = contact.Phones; // List of phone numbers
 var emails = contact.Emails; // List of email addresses
}
catch (Exception ex)
{
 // Handle exception here.
}

 Get all contacts

ObservableCollection<Contact> contactsCollect = new ObservableCollection<Contact>();

try
{
 // cancellationToken parameter is optional
 var cancellationToken = default(CancellationToken);
 var contacts = await Contacts.GetAllAsync(cancellationToken);

 if (contacts == null)
 return;

 foreach (var contact in contacts)
 contactsCollect.Add(contact);
}
catch (Exception ex)
{
 // Handle exception here.
}

 Platform differences

 API

Android

iOS

UWP

The cancellationToken parameter in the GetAllAsync method is only used on UWP.

Contacts source code

Contacts API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Contacts
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.contacts

Xamarin.Essentials: Detect Shake
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Detect Shake

using Xamarin.Essentials;

The AccelerometerAccelerometer class lets you monitor the device's accelerometer sensor, which indicates the acceleration of

the device in three-dimensional space. Additionally, it enables you to register for events when the user shakes

the device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To detect a shake of the device you must use the Accelerometer functionality by calling the Start and Stop

methods to listen for changes to the acceleration and to detect a shake. Any time a shake is detected a

ShakeDetected event will fire. It is recommended to use Game or faster for the SensorSpeed . Here is sample

usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/detect-shake.md

public class DetectShakeTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.Game;

 public DetectShakeTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 Accelerometer.ShakeDetected += Accelerometer_ShakeDetected ;
 }

 void Accelerometer_ShakeDetected (object sender, EventArgs e)
 {
 // Process shake event
 }

 public void ToggleAccelerometer()
 {
 try
 {
 if (Accelerometer.IsMonitoring)
 Accelerometer.Stop();
 else
 Accelerometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 Implementation Details

 API

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

The detect shake API uses raw readings from the accelerometer to calculate acceleration. It uses a simple queue

mechanism to detect if 3/4ths of the recent accelerometer events occurred in the last half second. Acceleration is

calculated by adding the square of the X, Y, and Z readings from the accelerometer and comparing it to a specific

threashold.

Accelerometer source code

Accelerometer API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Accelerometer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.accelerometer

Related Video

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Shows/XamarinShow/Detect-Shake-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Device Display Information
 3/11/2021 • 2 minutes to read • Edit Online

 Get started

 Using DeviceDisplay

using Xamarin.Essentials;

 Main Display Info

// Get Metrics
var mainDisplayInfo = DeviceDisplay.MainDisplayInfo;

// Orientation (Landscape, Portrait, Square, Unknown)
var orientation = mainDisplayInfo.Orientation;

// Rotation (0, 90, 180, 270)
var rotation = mainDisplayInfo.Rotation;

// Width (in pixels)
var width = mainDisplayInfo.Width;

// Height (in pixels)
var height = mainDisplayInfo.Height;

// Screen density
var density = mainDisplayInfo.Density;

The DeviceDisplayDeviceDisplay class provides information about the device's screen metrics the application is running on

and can request to keep the screen from falling asleep when the application is running.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

In addition to basic device information the DeviceDisplayDeviceDisplay class contains information about the device's screen

and orientation.

The DeviceDisplayDeviceDisplay class also exposes an event that can be subscribed to that is triggered whenever any screen

metric changes:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/device-display.md

public class DisplayInfoTest
{
 public DisplayInfoTest()
 {
 // Subscribe to changes of screen metrics
 DeviceDisplay.MainDisplayInfoChanged += OnMainDisplayInfoChanged;
 }

 void OnMainDisplayInfoChanged(object sender, DisplayInfoChangedEventArgs e)
 {
 // Process changes
 var displayInfo = e.DisplayInfo;
 }
}

 Keep Screen On

public class KeepScreenOnTest
{
 public void ToggleScreenLock()
 {
 DeviceDisplay.KeepScreenOn = !DeviceDisplay.KeepScreenOn;
 }
}

 Platform Differences

 API

 Related Video

The DeviceDisplayDeviceDisplay class exposes a bool property called KeepScreenOn that can be set to attempt to keep the

device's display from turning off or locking.

Android

iOS

UWP

No differences.

DeviceDisplay source code

DeviceDisplay API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/DeviceDisplay
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.devicedisplay
https://channel9.msdn.com/Shows/XamarinShow/Device-Display-Information-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Device Information
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using DeviceInfo

using Xamarin.Essentials;

// Device Model (SMG-950U, iPhone10,6)
var device = DeviceInfo.Model;

// Manufacturer (Samsung)
var manufacturer = DeviceInfo.Manufacturer;

// Device Name (Motz's iPhone)
var deviceName = DeviceInfo.Name;

// Operating System Version Number (7.0)
var version = DeviceInfo.VersionString;

// Platform (Android)
var platform = DeviceInfo.Platform;

// Idiom (Phone)
var idiom = DeviceInfo.Idiom;

// Device Type (Physical)
var deviceType = DeviceInfo.DeviceType;

 Platforms

 Idioms

The DeviceInfoDeviceInfo class provides information about the device the application is running on.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The following information is exposed through the API:

DeviceInfo.Platform correlates to a constant string that maps to the operating system. The values can be

checked with the DevicePlatform struct:

DevicePlatform.iOSDevicePlatform.iOS – iOS

DevicePlatform.AndroidDevicePlatform.Android – Android

DevicePlatform.UWPDevicePlatform.UWP – UWP

DevicePlatform.UnknownDevicePlatform.Unknown – Unknown

DeviceInfo.Idiom correlates a constant string that maps to the type of device the application is running on. The

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/device-information.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.deviceinfo.platform#xamarin_essentials_deviceinfo_platform
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.deviceinfo.idiom#xamarin_essentials_deviceinfo_idiom

 Device Type

 Platform Implementation Specifics

 API

 Related Video

values can be checked with the DeviceIdiom struct:

DeviceIdiom.PhoneDeviceIdiom.Phone – Phone

DeviceIdiom.TabletDeviceIdiom.Tablet – Tablet

DeviceIdiom.DesktopDeviceIdiom.Desktop – Desktop

DeviceIdiom.TVDeviceIdiom.TV – TV

DeviceIdiom.WatchDeviceIdiom.Watch – Watch

DeviceIdiom.UnknownDeviceIdiom.Unknown – Unknown

DeviceInfo.DeviceType correlates an enumeration to determine if the application is running on a physical or

virtual device. A virtual device is a simulator or emulator.

iOS

iOS does not expose an API for developers to get the model of the specific iOS device. Instead a hardware

identifier is returned such as iPhone10,6 which refers to the iPhone X. A mapping of these identifiers are not

provided by Apple, but can be found on these (non-official sources) The iPhone Wiki and Get iOS Model.

DeviceInfo source code

DeviceInfo API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://www.theiphonewiki.com/wiki/Models
https://github.com/dannycabrera/Get-iOS-Model
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/DeviceInfo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.deviceinfo
https://channel9.msdn.com/Shows/XamarinShow/Device-Information-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Email
 11/2/2020 • 2 minutes to read • Edit Online

<queries>
 <intent>
 <action android:name="android.intent.action.SENDTO" />
 <data android:scheme="mailto" />
 </intent>
</queries>

 Get started

TIPTIP

 Using Email

using Xamarin.Essentials;

The EmailEmail class enables an application to open the default email application with a specified information

including subject, body, and recipients (TO, CC, BCC).

To access the EmailEmail functionality the following platform specific setup is required.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To use the Email API on iOS you must run it on a physical device, else an exception will be thrown.

Add a reference to Xamarin.Essentials in your class:

The Email functionality works by calling the ComposeAsync method an EmailMessage that contains information

about the email:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/email.md
https://developer.android.com/preview/privacy/package-visibility

public class EmailTest
{
 public async Task SendEmail(string subject, string body, List<string> recipients)
 {
 try
 {
 var message = new EmailMessage
 {
 Subject = subject,
 Body = body,
 To = recipients,
 //Cc = ccRecipients,
 //Bcc = bccRecipients
 };
 await Email.ComposeAsync(message);
 }
 catch (FeatureNotSupportedException fbsEx)
 {
 // Email is not supported on this device
 }
 catch (Exception ex)
 {
 // Some other exception occurred
 }
 }
}

 File Attachments

var message = new EmailMessage
{
 Subject = "Hello",
 Body = "World",
};

var fn = "Attachment.txt";
var file = Path.Combine(FileSystem.CacheDirectory, fn);
File.WriteAllText(file, "Hello World");

message.Attachments.Add(new EmailAttachment(file));

await Email.ComposeAsync(message);

 Platform Differences

 API

This feature enables an app to email files in email clients on the device. Xamarin.Essentials will automatically

detect the file type (MIME) and request the file to be added as an attachment. Every email client is different and

may only support specific file extensions, or none at all.

Here is a sample of writing text to disk and adding it as an email attachment:

Android

iOS

UWP

Not all email clients for Android support Html , since there is no way to detect this we recommend using

PlainText when sending emails.

 Related Video

Email source code

Email API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Email
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.email
https://channel9.msdn.com/Shows/XamarinShow/Email-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: File Picker
 5/13/2021 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.ReadExternalStorage)]

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

TIPTIP

 Pick File

The FilePickerFilePicker class lets a user pick a single or multiple files from the device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the FilePickerFilePicker functionality the following platform specific setup is required.

Android

iOS

UWP

The ReadExternalStorage permission is required and must be configured in the Android project. This can be

added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check this permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

All methods must be called on the UI thread because permission checks and requests are automatically handled by

Xamarin.Essentials.

FilePicker.PickAsync() method enables your user to pick a file from the device. You are able to specific

different PickOptions when calling the method enabling you to specify the title to display and the file types the

user is allowed to pick. By default

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/file-picker.md

async Task<FileResult> PickAndShow(PickOptions options)
{
 try
 {
 var result = await FilePicker.PickAsync(options);
 if (result != null)
 {
 Text = $"File Name: {result.FileName}";
 if (result.FileName.EndsWith("jpg", StringComparison.OrdinalIgnoreCase) ||
 result.FileName.EndsWith("png", StringComparison.OrdinalIgnoreCase))
 {
 var stream = await result.OpenReadAsync();
 Image = ImageSource.FromStream(() => stream);
 }
 }

 return result;
 }
 catch (Exception ex)
 {
 // The user canceled or something went wrong
 }

 return null;
}

var customFileType =
 new FilePickerFileType(new Dictionary<DevicePlatform, IEnumerable<string>>
 {
 { DevicePlatform.iOS, new[] { "public.my.comic.extension" } }, // or general UTType values
 { DevicePlatform.Android, new[] { "application/comics" } },
 { DevicePlatform.UWP, new[] { ".cbr", ".cbz" } },
 { DevicePlatform.Tizen, new[] { "*/*" } },
 { DevicePlatform.macOS, new[] { "cbr", "cbz" } }, // or general UTType values
 });
var options = new PickOptions
{
 PickerTitle = "Please select a comic file",
 FileTypes = customFileType,
};

 Pick Multiple Files

TIPTIP

 Platform Differences

Default file types are provided with FilePickerFileType.Images , FilePickerFileType.Png , and

FilePickerFilerType.Videos . You can specify custom files types when creating the PickOptions and they can be

customized per platform. For example here is how you would specify specific comic file types:

If you desire your user to pick multiple files you can call the FilePicker.PickMultipleAsync() method. It also

takes in PickOptions as a parameter to specify additional information. The results are the same as PickAsync ,

but instead of a single FileResult an IEnumerable<FileResult> is returned that can be iterated over.

The FullPath property does not always return the physical path to the file. To get the file, use the OpenReadAsync

method.

Android

 API

 Related Video

iOS

UWP

No platform differences.

FilePicker source code

FilePicker API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/FilePicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.filepicker
https://channel9.msdn.com/Shows/XamarinShow/File-Picker-XamarinEssentials-API-of-the-Week/player?nocookie=true

Xamarin.Essentials: File System Helpers
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using File System Helpers

using Xamarin.Essentials;

var cacheDir = FileSystem.CacheDirectory;

var mainDir = FileSystem.AppDataDirectory;

 using (var stream = await FileSystem.OpenAppPackageFileAsync(templateFileName))
 {
 using (var reader = new StreamReader(stream))
 {
 var fileContents = await reader.ReadToEndAsync();
 }
 }

 Platform Implementation Specifics

The FileSystemFileSystem class contains a series of helpers to find the application's cache and data directories and open

files inside of the app package.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To get the application's directory to store cache datacache data. Cache data can be used for any data that needs to persist

longer than temporary data, but should not be data that is required to properly operate, as the OS dictates when

this storage is cleared.

To get the application's top-level directory for any files that are not user data files. These files are backed up with

the operating system syncing framework. See Platform Implementation Specifics below.

To open a file that is bundled into the application package:

Android

iOS

UWP

CacheDirector yCacheDirector y – Returns the CacheDir of the current context.

AppDataDirector yAppDataDirector y – Returns the FilesDir of the current context and are backed up using Auto Backup

starting on API 23 and above.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/file-system-helpers.md
https://developer.android.com/reference/android/content/Context.html#getCacheDir
https://developer.android.com/reference/android/content/Context.html#getFilesDir
https://developer.android.com/guide/topics/data/autobackup.html

 API

 Related Video

Add any file into the AssetsAssets folder in the Android project and mark the Build Action as AndroidAssetAndroidAsset to use it

with OpenAppPackageFileAsync .

File System Helpers source code

File System API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/FileSystem
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.filesystem
https://channel9.msdn.com/Shows/XamarinShow/File-System-Helpers-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Flashlight
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.Flashlight)]
[assembly: UsesPermission(Android.Manifest.Permission.Camera)]

<uses-permission android:name="android.permission.FLASHLIGHT" />
<uses-permission android:name="android.permission.CAMERA" />

[assembly: UsesFeature("android.hardware.camera", Required = false)]
[assembly: UsesFeature("android.hardware.camera.autofocus", Required = false)]

The FlashlightFlashlight class has the ability to turn on or off the device's camera flash to turn it into a flashlight.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the FlashlightFlashlight functionality the following platform specific setup is required.

Android

iOS

UWP

The Flashlight and Camera permissions are required and must be configured in the Android project. This can be

added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the FL ASHLIGHTFL ASHLIGHT and CAMERACAMERA permissions. This will automatically

update the AndroidManifest.xmlAndroidManifest.xml file.

By adding these permissions Google Play will automatically filter out devices without specific hardware. You can

get around this by adding the following to your AssemblyInfo.cs file in your Android project:

This API uses runtime permissions on Android. Please ensure that Xamarin.Essentials is fully initialized and

permission handling is setup in your app.

In the Android project's MainLauncher or any Activity that is launched Xamarin.Essentials must be initialized in

the OnCreate method:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/flashlight.md
https://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions-features

protected override void OnCreate(Bundle savedInstanceState)
{
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may also
be called: bundle
 //...
}

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

 Using Flashlight

using Xamarin.Essentials;

try
{
 // Turn On
 await Flashlight.TurnOnAsync();

 // Turn Off
 await Flashlight.TurnOffAsync();
}
catch (FeatureNotSupportedException fnsEx)
{
 // Handle not supported on device exception
}
catch (PermissionException pEx)
{
 // Handle permission exception
}
catch (Exception ex)
{
 // Unable to turn on/off flashlight
}

 Platform Implementation Specifics

To handle runtime permissions on Android, Xamarin.Essentials must receive any OnRequestPermissionsResult .

Add the following code to all Activity classes:

Add a reference to Xamarin.Essentials in your class:

The flashlight can be turned on and off through the TurnOnAsync and TurnOffAsync methods:

Android

iOS

UWP

The Flashlight class has been optimized based on the device's operating system.

API Level 23 and HigherAPI Level 23 and Higher

 API Level 22 and LowerAPI Level 22 and Lower

 API

 Related Video

On newer API levels, Torch Mode will be used to turn on or off the flash unit of the device.

A camera surface texture is created to turn on or off the FlashMode of the camera unit.

Flashlight source code

Flashlight API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://developer.android.com/reference/android/hardware/camera2/CameraManager.html#setTorchMode
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Flashlight
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.flashlight
https://channel9.msdn.com/Shows/XamarinShow/Flashlight-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Geocoding
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Geocoding

using Xamarin.Essentials;

try
{
 var address = "Microsoft Building 25 Redmond WA USA";
 var locations = await Geocoding.GetLocationsAsync(address);

 var location = locations?.FirstOrDefault();
 if (location != null)
 {
 Console.WriteLine($"Latitude: {location.Latitude}, Longitude: {location.Longitude}, Altitude:
{location.Altitude}");
 }
}
catch (FeatureNotSupportedException fnsEx)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Handle exception that may have occurred in geocoding
}

 Using Reverse Geocoding

The GeocodingGeocoding class provides APIs to geocode a placemark to a positional coordinates and reverse geocode

coordinates to a placemark.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the GeocodingGeocoding functionality the following platform specific setup is required.

Android

iOS

UWP

No additional setup required.

Add a reference to Xamarin.Essentials in your class:

Getting location coordinates for an address:

The altitude isn't always available. If it is not available, the Altitude property might be null or the value might

be zero. If the altitude is available, the value is in meters above sea level.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/geocoding.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

try
{
 var lat = 47.673988;
 var lon = -122.121513;

 var placemarks = await Geocoding.GetPlacemarksAsync(lat, lon);

 var placemark = placemarks?.FirstOrDefault();
 if (placemark != null)
 {
 var geocodeAddress =
 $"AdminArea: {placemark.AdminArea}\n" +
 $"CountryCode: {placemark.CountryCode}\n" +
 $"CountryName: {placemark.CountryName}\n" +
 $"FeatureName: {placemark.FeatureName}\n" +
 $"Locality: {placemark.Locality}\n" +
 $"PostalCode: {placemark.PostalCode}\n" +
 $"SubAdminArea: {placemark.SubAdminArea}\n" +
 $"SubLocality: {placemark.SubLocality}\n" +
 $"SubThoroughfare: {placemark.SubThoroughfare}\n" +
 $"Thoroughfare: {placemark.Thoroughfare}\n";

 Console.WriteLine(geocodeAddress);
 }
}
catch (FeatureNotSupportedException fnsEx)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Handle exception that may have occurred in geocoding
}

 Distance between Two Locations

 API

 Related Video

Reverse geocoding is the process of getting placemarks for an existing set of coordinates:

The Location and LocationExtensions classes define methods to calculate the distance between two locations.

See the article Xamarin.Essentials: GeolocationXamarin.Essentials: Geolocation for an example.

Geocoding source code

Geocoding API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.placemark
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.locationextensions
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Geocoding
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.geocoding
https://channel9.msdn.com/Shows/XamarinShow/Geocoding-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Geolocation
 7/28/2021 • 5 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.AccessCoarseLocation)]
[assembly: UsesPermission(Android.Manifest.Permission.AccessFineLocation)]
[assembly: UsesFeature("android.hardware.location", Required = false)]
[assembly: UsesFeature("android.hardware.location.gps", Required = false)]
[assembly: UsesFeature("android.hardware.location.network", Required = false)]

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-feature android:name="android.hardware.location" android:required="false" />
<uses-feature android:name="android.hardware.location.gps" android:required="false" />
<uses-feature android:name="android.hardware.location.network" android:required="false" />

[assembly: UsesPermission(Manifest.Permission.AccessBackgroundLocation)]

The GeolocationGeolocation class provides APIs to retrieve the device's current geolocation coordinates.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the GeolocationGeolocation functionality, the following platform-specific setup is required:

Android

iOS

UWP

Coarse and Fine Location permissions are required and must be configured in the Android project. Additionally,

if your app targets Android 5.0 (API level 21) or higher, you must declare that your app uses the hardware

features in the manifest file. This can be added in the following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

Or update the Android manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Or right-click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the ACCESS_COARSE_LOCATIONACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATIONACCESS_FINE_LOCATION

permissions. This will automatically update the AndroidManifest.xmlAndroidManifest.xml file.

If your application is targeting Android 10 - Q (API Level 29 or higher) and is requesting LocationAlwaysLocationAlways , you

must also add the following permission into AssemblyInfo.csAssemblyInfo.cs :

Or directly into your AndroidManifest.xmlAndroidManifest.xml :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/geolocation.md

<uses-permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION" />

protected override void OnCreate(Bundle savedInstanceState)
{
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may also
be called: bundle
 //...
}

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

 Using Geolocation

using Xamarin.Essentials;

If it recommended to read Android documentation on background location updates as there are many

restrictions that need to be considered.

This API uses runtime permissions on Android. Please ensure that Xamarin.Essentials is fully initialized and

permission handling is setup in your app.

In the Android project's MainLauncher or any Activity that is launched Xamarin.Essentials must be initialized in

the OnCreate method:

To handle runtime permissions on Android, Xamarin.Essentials must receive any OnRequestPermissionsResult .

Add the following code to all Activity classes:

Add a reference to Xamarin.Essentials in your class:

The Geolocation API will also prompt the user for permissions when necessary.

You can get the last known location of the device by calling the GetLastKnownLocationAsync method. This is often

faster then doing a full query, but can be less accurate and may return null if no cached location exists.

https://developer.android.com/training/location/permissions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

try
{
 var location = await Geolocation.GetLastKnownLocationAsync();

 if (location != null)
 {
 Console.WriteLine($"Latitude: {location.Latitude}, Longitude: {location.Longitude}, Altitude:
{location.Altitude}");
 }
}
catch (FeatureNotSupportedException fnsEx)
{
 // Handle not supported on device exception
}
catch (FeatureNotEnabledException fneEx)
{
 // Handle not enabled on device exception
}
catch (PermissionException pEx)
{
 // Handle permission exception
}
catch (Exception ex)
{
 // Unable to get location
}

To query the current device's location coordinates, the GetLocationAsync can be used. It is best to pass in a full

GeolocationRequest and CancellationToken since it may take some time to get the device's location.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

CancellationTokenSource cts;

async Task GetCurrentLocation()
{
 try
 {
 var request = new GeolocationRequest(GeolocationAccuracy.Medium, TimeSpan.FromSeconds(10));
 cts = new CancellationTokenSource();
 var location = await Geolocation.GetLocationAsync(request, cts.Token);

 if (location != null)
 {
 Console.WriteLine($"Latitude: {location.Latitude}, Longitude: {location.Longitude}, Altitude:
{location.Altitude}");
 }
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Handle not supported on device exception
 }
 catch (FeatureNotEnabledException fneEx)
 {
 // Handle not enabled on device exception
 }
 catch (PermissionException pEx)
 {
 // Handle permission exception
 }
 catch (Exception ex)
 {
 // Unable to get location
 }
}

protected override void OnDisappearing()
{
 if (cts != null && !cts.IsCancellationRequested)
 cts.Cancel();
 base.OnDisappearing();
}

 Geolocation Accuracy

 LowestLowest

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 500

iOS 3000

UWP 1000 - 5000

 LowLow

Note all values may be available due to how each device queries geolocation through different providers. For

example, the Altitude property might be null , have a value of 0, or have a positive value, which is in meters

above sea level. Other values that may not be present include Speed and Course .

The following table outlines accuracy per platform:

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 500

iOS 1000

UWP 300 - 3000

 Medium (Default)Medium (Default)

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 100 - 500

iOS 100

UWP 30-500

 HighHigh

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 0 - 100

iOS 10

UWP <= 10

 BestBest

P L AT F O RMP L AT F O RM DISTA N C E (IN M ET ERS)DISTA N C E (IN M ET ERS)

Android 0 - 100

iOS ~0

UWP <= 10

 Detecting Mock Locations

var request = new GeolocationRequest(GeolocationAccuracy.Medium);
var location = await Geolocation.GetLocationAsync(request);

if (location != null)
{
 if(location.IsFromMockProvider)
 {
 // location is from a mock provider
 }
}

Some devices may return a mock location from the provider or by an application that provides mock locations.

You can detect this by using the IsFromMockProvider on any Location .

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location

 Distance between Two Locations

Location boston = new Location(42.358056, -71.063611);
Location sanFrancisco = new Location(37.783333, -122.416667);
double miles = Location.CalculateDistance(boston, sanFrancisco, DistanceUnits.Miles);

 Platform Differences

 API

 Related Video

The Location and LocationExtensions classes define CalculateDistance methods that allow you to calculate

the distance between two geographic locations. This calculated distance does not take roads or other pathways

into account, and is merely the shortest distance between the two points along the surface of the Earth, also

known as the great-circle distance or colloquially, the distance "as the crow flies."

Here's an example:

The Location constructor has latitude and longitude arguments in that order. Positive latitude values are north

of the equator, and positive longitude values are east of the Prime Meridian. Use the final argument to

CalculateDistance to specify miles or kilometers. The UnitConverters class also defines KilometersToMiles and

MilesToKilometers methods for converting between the two units.

Altitude is calculated differently on each platform.

Android

iOS

UWP

On Android, altitude, if available, is returned in meters above the WGS 84 reference ellipsoid. If this location

does not have an altitude then 0.0 is returned.

Geolocation source code

Geolocation API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.location
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.locationextensions
https://developer.android.com/reference/android/location/Location#getAltitude()
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Geolocation
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.geolocation
https://channel9.msdn.com/Shows/XamarinShow/Geolocation-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Gyroscope
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Gyroscope

using Xamarin.Essentials;

The GyroscopeGyroscope class lets you monitor the device's gyroscope sensor which is the rotation around the device's

three primary axes.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Gyroscope functionality works by calling the Start and Stop methods to listen for changes to the

gyroscope. Any changes are sent back through the ReadingChanged event in rad/s. Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/gyroscope.md

public class GyroscopeTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public GyroscopeTest()
 {
 // Register for reading changes.
 Gyroscope.ReadingChanged += Gyroscope_ReadingChanged;
 }

 void Gyroscope_ReadingChanged(object sender, GyroscopeChangedEventArgs e)
 {
 var data = e.Reading;
 // Process Angular Velocity X, Y, and Z reported in rad/s
 Console.WriteLine($"Reading: X: {data.AngularVelocity.X}, Y: {data.AngularVelocity.Y}, Z:
{data.AngularVelocity.Z}");
 }

 public void ToggleGyroscope()
 {
 try
 {
 if (Gyroscope.IsMonitoring)
 Gyroscope.Stop();
 else
 Gyroscope.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 API

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Gyroscope source code

Gyroscope API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Gyroscope
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.gyroscope

Xamarin.Essentials: Haptic Feedback
 3/5/2021 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.Vibrate)]

<uses-permission android:name="android.permission.VIBRATE" />

 Using Haptic Feedback

using Xamarin.Essentials;

The HapticFeedbackHapticFeedback class lets you control haptic feedback on device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the HapticFeedbackHapticFeedback functionality the following platform specific setup is required.

Android

iOS

UWP

The Vibrate permission is required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the VIBRATEVIBRATE permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

The Haptic Feedback functionality can be performed with a Click or LongPress feedback type.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/haptic-feedback.md

try
{
 // Perform click feedback
 HapticFeedback.Perform(HapticFeedbackType.Click);

 // Or use long press
 HapticFeedback.Perform(HapticFeedbackType.LongPress);
}
catch (FeatureNotSupportedException ex)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Other error has occurred.
}

 API
HapticFeedback source code

HapticFeedback API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/HapticFeedback
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.hapticfeedback

Xamarin.Essentials: Launcher
 3/5/2021 • 3 minutes to read • Edit Online

 Get started

 Using Launcher

using Xamarin.Essentials;

public class LauncherTest
{
 public async Task OpenRideShareAsync()
 {
 var supportsUri = await Launcher.CanOpenAsync("lyft://");
 if (supportsUri)
 await Launcher.OpenAsync("lyft://ridetype?id=lyft_line");
 }
}

public class LauncherTest
{
 public async Task<bool> OpenRideShareAsync()
 {
 return await Launcher.TryOpenAsync("lyft://ridetype?id=lyft_line");
 }
}

 Additional Platform SetupAdditional Platform Setup

The LauncherLauncher class enables an application to open a URI by the system. This is often used when deep linking

into another application's custom URI schemes. If you are looking to open the browser to a website then you

should refer to the BrowserBrowser API.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To use the Launcher functionality call the OpenAsync method and pass in a string or Uri to open. Optionally,

the CanOpenAsync method can be used to check if the URI schema can be handled by an application on the

device.

This can be combined into a single call with TryOpenAsync , which checks if the parameter can be opened and if

so open it.

Android

iOS

UWP

No additional setup.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/launcher.md

Files

var fn = "File.txt";
var file = Path.Combine(FileSystem.CacheDirectory, fn);
File.WriteAllText(file, "Hello World");

await Launcher.OpenAsync(new OpenFileRequest
{
 File = new ReadOnlyFile(file)
});

 Presentation Location When Opening Files

await Share.RequestAsync(new ShareFileRequest
{
 Title = Title,
 File = new ShareFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

await Launcher.OpenAsync(new OpenFileRequest
{
 File = new ReadOnlyFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

This features enables an app to request other apps to open and view a file. Xamarin.Essentials will automatically

detect the file type (MIME) and request the file to be opened.

Here is a sample of writing text to disk and requesting it be opened:

When requesting a share or opening launcher on iPadOS you have the ability to present in a pop over control.

This specifies where the pop over will appear and point an arrow directly to. This location is often the control

that launched the action. You can specify the location using the PresentationSourceBounds property:

Everything described here works equally for Share and Launcher .

If you are using Xamarin.Forms you are able to pass in a View and calculate the bounds:

public static class ViewHelpers
{
 public static Rectangle GetAbsoluteBounds(this Xamarin.Forms.View element)
 {
 Element looper = element;

 var absoluteX = element.X + element.Margin.Top;
 var absoluteY = element.Y + element.Margin.Left;

 // Add logic to handle titles, headers, or other non-view bars

 while (looper.Parent != null)
 {
 looper = looper.Parent;
 if (looper is Xamarin.Forms.View v)
 {
 absoluteX += v.X + v.Margin.Top;
 absoluteY += v.Y + v.Margin.Left;
 }
 }

 return new Rectangle(absoluteX, absoluteY, element.Width, element.Height);
 }

 public static System.Drawing.Rectangle ToSystemRectangle(this Rectangle rect) =>
 new System.Drawing.Rectangle((int)rect.X, (int)rect.Y, (int)rect.Width, (int)rect.Height);
}

public Command<Xamarin.Forms.View> ShareCommand { get; } = new Command<Xamarin.Forms.View>(Share);
async void Share(Xamarin.Forms.View element)
{
 try
 {
 Analytics.TrackEvent("ShareWithFriends");
 var bounds = element.GetAbsoluteBounds();

 await Share.RequestAsync(new ShareTextRequest
 {
 PresentationSourceBounds = bounds.ToSystemRectangle(),
 Title = "Title",
 Text = "Text"
 });
 }
 catch (Exception)
 {
 // Handle exception that share failed
 }
}

<Button Text="Share"
 Command="{Binding ShareWithFriendsCommand}"
 CommandParameter="{Binding Source={RelativeSource Self}}"/>

 Platform Differences

This can then be used when calling RequestAsync :

You can pass in the calling element when the Command is triggered:

Android

iOS

 API

 Related Video

UWP

The Task returned from CanOpenAsync completes immediately.

Launcher source code

Launcher API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Launcher
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.launcher
https://channel9.msdn.com/Shows/XamarinShow/Launcher-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Magnetometer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Magnetometer

using Xamarin.Essentials;

The MagnetometerMagnetometer class lets you monitor the device's magnetometer sensor which indicates the device's

orientation relative to Earth's magnetic field.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Magnetometer functionality works by calling the Start and Stop methods to listen for changes to the

magnetometer. Any changes are sent back through the ReadingChanged event. Here is sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/magnetometer.md

public class MagnetometerTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public MagnetometerTest()
 {
 // Register for reading changes.
 Magnetometer.ReadingChanged += Magnetometer_ReadingChanged;
 }

 void Magnetometer_ReadingChanged(object sender, MagnetometerChangedEventArgs e)
 {
 var data = e.Reading;
 // Process MagneticField X, Y, and Z
 Console.WriteLine($"Reading: X: {data.MagneticField.X}, Y: {data.MagneticField.Y}, Z:
{data.MagneticField.Z}");
 }

 public void ToggleMagnetometer()
 {
 try
 {
 if (Magnetometer.IsMonitoring)
 Magnetometer.Stop();
 else
 Magnetometer.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 Sensor Speed

 API

All data is returned in µT (microteslas).

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

Magnetometer source code

Magnetometer API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Magnetometer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.magnetometer

Xamarin.Essentials: MainThread
 11/2/2020 • 3 minutes to read • Edit Online

 Background

 Get started

 Running Code on the Main Thread

using Xamarin.Essentials;

MainThread.BeginInvokeOnMainThread(() =>
{
 // Code to run on the main thread
});

void MyMainThreadCode()
{
 // Code to run on the main thread
}

MainThread.BeginInvokeOnMainThread(MyMainThreadCode);

The MainThreadMainThread class allows applications to run code on the main thread of execution, and to determine if a

particular block of code is currently running on the main thread.

Most operating systems — including iOS, Android, and the Universal Windows Platform — use a single-

threading model for code involving the user interface. This model is necessary to properly serialize user-

interface events, including keystrokes and touch input. This thread is often called the main thread or the user-

interface thread or the UI thread. The disadvantage of this model is that all code that accesses user interface

elements must run on the application's main thread.

Applications sometimes need to use events that call the event handler on a secondary thread of execution. (The

Xamarin.Essentials classes Accelerometer , Compass , Gyroscope , Magnetometer , and OrientationSensor all might

return information on a secondary thread when used with faster speeds.) If the event handler needs to access

user-interface elements, it must run that code on the main thread. The MainThreadMainThread class allows the application

to run this code on the main thread.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To run code on the main thread, call the static MainThread.BeginInvokeOnMainThread method. The argument is an

Action object, which is simply a method with no arguments and no return value:

It is also possible to define a separate method for the code that must run on the main thread:

You can then run this method on the main thread by referencing it in the BeginInvokeOnMainThread method:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/main-thread.md
https://docs.microsoft.com/en-us/dotnet/api/system.action

NOTENOTE

 Determining if Code is Running on the Main Thread

if (MainThread.IsMainThread)
{
 // Code to run if this is the main thread
}
else
{
 // Code to run if this is a secondary thread
}

if (MainThread.IsMainThread)
{
 MyMainThreadCode();
}
else
{
 MainThread.BeginInvokeOnMainThread(MyMainThreadCode);
}

 Additional Methods

M ET H O DM ET H O D A RGUM EN T SA RGUM EN T S RET URN SRET URN S P URP O SEP URP O SE

InvokeOnMainThreadAsync<T> Func<T> Task<T> Invokes a Func<T> on the

main thread, and waits for it
to complete.

InvokeOnMainThreadAsync Action Task Invokes an Action on the

main thread, and waits for it
to complete.

Xamarin.Forms has a method called Device.BeginInvokeOnMainThread(Action) that does the same thing as

MainThread.BeginInvokeOnMainThread(Action) . While you can use either method in a Xamarin.Forms app, consider

whether or not the calling code has any other need for a dependency on Xamarin.Forms. If not,

MainThread.BeginInvokeOnMainThread(Action) is likely a better option.

The MainThread class also allows an application to determine if a particular block of code is running on the main

thread. The IsMainThread property returns true if the code calling the property is running on the main thread.

A program can use this property to run different code for the main thread or a secondary thread:

You might wonder if you should check if code is running on a secondary thread before calling

BeginInvokeOnMainThread , for example, like this:

You might suspect that this check might improve performance if the block of code is already running on the

main thread.

However, this check is not necessary. The platform implementations of BeginInvokeOnMainThread themselves

check if the call is made on the main thread. There is very little performance penalty if you call

BeginInvokeOnMainThread when it's not really necessary.

The MainThread class includes the following additional static methods that can be used to interact with user

interface elements from backgrounds threads:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.begininvokeonmainthread

InvokeOnMainThreadAsync<T> Func<Task<T>> Task<T> Invokes a Func<Task<T>>

on the main thread, and
waits for it to complete.

InvokeOnMainThreadAsync Func<Task> Task Invokes a Func<Task> on

the main thread, and waits
for it to complete.

GetMainThreadSynchronizationContextAsync Task<SynchronizationContext>Returns the
SynchronizationContext

for the main thread.

M ET H O DM ET H O D A RGUM EN T SA RGUM EN T S RET URN SRET URN S P URP O SEP URP O SE

 API

 Related Video

MainThread source code

MainThread API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/MainThread
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.mainthread
https://channel9.msdn.com/Shows/XamarinShow/Main-Thread-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Map
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Map

using Xamarin.Essentials;

public class MapTest
{
 public async Task NavigateToBuilding25()
 {
 var location = new Location(47.645160, -122.1306032);
 var options = new MapLaunchOptions { Name = "Microsoft Building 25" };

 try
 {
 await Map.OpenAsync(location, options);
 }
 catch (Exception ex)
 {
 // No map application available to open
 }
 }
}

The MapMap class enables an application to open the installed map application to a specific location or placemark.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The Map functionality works by calling the OpenAsync method with the Location or Placemark to open with

optional MapLaunchOptions .

When opening with a Placemark , the following information is required:

CountryName

AdminArea

Thoroughfare

Locality

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/maps.md

public class MapTest
{
 public async Task NavigateToBuilding25()
 {
 var placemark = new Placemark
 {
 CountryName = "United States",
 AdminArea = "WA",
 Thoroughfare = "Microsoft Building 25",
 Locality = "Redmond"
 };
 var options = new MapLaunchOptions { Name = "Microsoft Building 25" };

 try
 {
 await Map.OpenAsync(placemark, options);
 }
 catch (Exception ex)
 {
 // No map application available to open or placemark can not be located
 }
 }
}

 Extension Methods

public class MapTest
{
 public async Task OpenPlacemarkOnMap(Placemark placemark)
 {
 try
 {
 await placemark.OpenMapAsync();
 }
 catch (Exception ex)
 {
 // No map application available to open
 }
 }
}

 Directions Mode

If you already have a reference to a Location or Placemark , you can use the built-in extension method

OpenMapAsync with optional MapLaunchOptions :

If you call OpenMapAsync without any MapLaunchOptions , the map will launch to the location specified. Optionally,

you can have a navigation route calculated from the device's current position. This is accomplished by setting

the NavigationMode on the MapLaunchOptions :

public class MapTest
{
 public async Task NavigateToBuilding25()
 {
 var location = new Location(47.645160, -122.1306032);
 var options = new MapLaunchOptions { NavigationMode = NavigationMode.Driving };

 await Map.OpenAsync(location, options);
 }
}

 Platform Differences

 Platform Implementation Specifics

 API

 Related Video

Android

iOS

UWP

NavigationMode supports Bicycling, Driving, and Walking.

Android

iOS

UWP

Android uses the geo: Uri scheme to launch the maps application on the device. This may prompt the user to

select from an existing app that supports this Uri scheme. Xamarin.Essentials is tested with Google Maps, which

supports this scheme.

Map source code

Map API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Map
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.map
https://channel9.msdn.com/Shows/XamarinShow/Maps-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Media Picker
 7/7/2021 • 2 minutes to read • Edit Online

 Get started

// Needed for Picking photo/video
[assembly: UsesPermission(Android.Manifest.Permission.ReadExternalStorage)]

// Needed for Taking photo/video
[assembly: UsesPermission(Android.Manifest.Permission.WriteExternalStorage)]
[assembly: UsesPermission(Android.Manifest.Permission.Camera)]

// Add these properties if you would like to filter out devices that do not have cameras, or set to false to
make them optional
[assembly: UsesFeature("android.hardware.camera", Required = true)]
[assembly: UsesFeature("android.hardware.camera.autofocus", Required = true)]

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.CAMERA" />

 Using Media Picker

The MediaPickerMediaPicker class lets a user pick or take a photo or video on the device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the MediaPickerMediaPicker functionality the following platform specific setup is required.

Android

iOS

UWP

The following permissions are required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the these permissions. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

The MediaPicker class has the following methods that all return a FileResult that can be used to get the files

location or read it as a Stream .

PickPhotoAsync : Opens the media browser to select a photo.

CapturePhotoAsync : Opens the camera to take a photo.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/media-picker.md

TIPTIP

 General Usage

async Task TakePhotoAsync()
{
 try
 {
 var photo = await MediaPicker.CapturePhotoAsync();
 await LoadPhotoAsync(photo);
 Console.WriteLine($"CapturePhotoAsync COMPLETED: {PhotoPath}");
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature is not supported on the device
 }
 catch (PermissionException pEx)
 {
 // Permissions not granted
 }
 catch (Exception ex)
 {
 Console.WriteLine($"CapturePhotoAsync THREW: {ex.Message}");
 }
}

async Task LoadPhotoAsync(FileResult photo)
{
 // canceled
 if (photo == null)
 {
 PhotoPath = null;
 return;
 }
 // save the file into local storage
 var newFile = Path.Combine(FileSystem.CacheDirectory, photo.FileName);
 using (var stream = await photo.OpenReadAsync())
 using (var newStream = File.OpenWrite(newFile))
 await stream.CopyToAsync(newStream);

 PhotoPath = newFile;
}

TIPTIP

 API

PickVideoAsync : Opens the media browser to select a video.

CaptureVideoAsync : Opens the camera to take a video.

Each method optionally takes in a MediaPickerOptions parameter that allows the Title to be set on some

operating systems that is displayed to the users.

All methods must be called on the UI thread because permission checks and requests are automatically handled by

Xamarin.Essentials.

The FullPath property does not always return the physical path to the file. To get the file, use the OpenReadAsync

method.

MediaPicker source code

MediaPicker API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/MediaPicker
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.mediapicker

Xamarin.Essentials: Browser
 7/8/2021 • 2 minutes to read • Edit Online

 Get started

<queries>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="http"/>
 </intent>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="https"/>
 </intent>
</queries>

 Using Browser

using Xamarin.Essentials;

The BrowserBrowser class enables an application to open a web link in the optimized system preferred browser or the

external browser.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the BrowserBrowser functionality the following platform specific setup is required.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Add a reference to Xamarin.Essentials in your class:

The Browser functionality works by calling the OpenAsync method with the Uri and BrowserLaunchMode .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/open-browser.md
https://developer.android.com/preview/privacy/package-visibility

public class BrowserTest
{
 public async Task OpenBrowser(Uri uri)
 {
 try
 {
 await Browser.OpenAsync(uri, BrowserLaunchMode.SystemPreferred);
 }
 catch(Exception ex)
 {
 // An unexpected error occured. No browser may be installed on the device.
 }
 }
}

 Customization

await Browser.OpenAsync(uri, new BrowserLaunchOptions
 {
 LaunchMode = BrowserLaunchMode.SystemPreferred,
 TitleMode = BrowserTitleMode.Show,
 PreferredToolbarColor = Color.AliceBlue,
 PreferredControlColor = Color.Violet
 });

 Platform Implementation Specifics

 System Preferred

 External

This method returns after the browser was launched and not necessarily closed by the user. The bool result

indicates whether the launching was successful or not.

When using the system preferred browser there are several customization options available for iOS and

Android. This includes a TitleMode (Android only), and preferred color options for the Toolbar (iOS and

Android) and Controls (iOS only) that appear.

These options are specified using BrowserLaunchOptions when calling OpenAsync .

Android

iOS

UWP

The Launch Mode determines how the browser is launched:

Custom Tabs will attempted to be used to load the Uri and keep navigation awareness.

An Intent will be used to request the Uri be opened through the systems normal browser.

https://developer.chrome.com/multidevice/android/customtabs

 API

 Related Video

Browser source code

Browser API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Browser
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.browser
https://channel9.msdn.com/Shows/XamarinShow/Open-Browser-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: OrientationSensor
 11/2/2020 • 3 minutes to read • Edit Online

NOTENOTE

 Get started

 Using OrientationSensor

using Xamarin.Essentials;

The OrientationSensorOrientationSensor class lets you monitor the orientation of a device in three dimensional space.

This class is for determining the orientation of a device in 3D space. If you need to determine if the device's video display

is in portrait or landscape mode, use the Orientation property of the ScreenMetrics object available from the

DeviceDisplay class.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The OrientationSensor is enabled by calling the Start method to monitor changes to the device's orientation,

and disabled by calling the Stop method. Any changes are sent back through the ReadingChanged event. Here is

a sample usage:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/orientation-sensor.md

public class OrientationSensorTest
{
 // Set speed delay for monitoring changes.
 SensorSpeed speed = SensorSpeed.UI;

 public OrientationSensorTest()
 {
 // Register for reading changes, be sure to unsubscribe when finished
 OrientationSensor.ReadingChanged += OrientationSensor_ReadingChanged;
 }

 void OrientationSensor_ReadingChanged(object sender, OrientationSensorChangedEventArgs e)
 {
 var data = e.Reading;
 Console.WriteLine($"Reading: X: {data.Orientation.X}, Y: {data.Orientation.Y}, Z:
{data.Orientation.Z}, W: {data.Orientation.W}");
 // Process Orientation quaternion (X, Y, Z, and W)
 }

 public void ToggleOrientationSensor()
 {
 try
 {
 if (OrientationSensor.IsMonitoring)
 OrientationSensor.Stop();
 else
 OrientationSensor.Start(speed);
 }
 catch (FeatureNotSupportedException fnsEx)
 {
 // Feature not supported on device
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

OrientationSensor readings are reported back in the form of a Quaternion that describes the orientation of the

device based on two 3D coordinate systems:

The device (generally a phone or tablet) has a 3D coordinate system with the following axes:

The positive X axis points to the right of the display in portrait mode.

The positive Y axis points to the top of the device in portrait mode.

The positive Z axis points out of the screen.

The 3D coordinate system of the Earth has the following axes:

The positive X axis is tangent to the surface of the Earth and points east.

The positive Y axis is also tangent to the surface of the Earth and points north.

The positive Z axis is perpendicular to the surface of the Earth and points up.

The Quaternion describes the rotation of the device's coordinate system relative to the Earth's coordinate

system.

A Quaternion value is very closely related to rotation around an axis. If an axis of rotation is the normalized

vector (a , a , a), and the rotation angle is Θ, then the (X, Y, Z, W) components of the quaternion are:x y z

(a ·sin(Θ/2), a ·sin(Θ/2), a ·sin(Θ/2), cos(Θ/2))x y z

https://docs.microsoft.com/en-us/dotnet/api/system.numerics.quaternion

 Sensor Speed

 API

These are right-hand coordinate systems, so with the thumb of the right hand pointed in the positive direction of

the rotation axis, the curve of the fingers indicate the direction of rotation for positive angles.

Examples:

When the device lies flat on a table with its screen facing up, with the top of the device (in portrait mode)

pointing north, the two coordinate systems are aligned. The Quaternion value represents the identity

quaternion (0, 0, 0, 1). All rotations can be analyzed relative to this position.

When the device lies flat on a table with its screen facing up, and the top of the device (in portrait mode)

pointing west, the Quaternion value is (0, 0, 0.707, 0.707). The device has been rotated 90 degrees

around the Z axis of the Earth.

When the device is held upright so that the top (in portrait mode) points towards the sky, and the back of

the device faces north, the device has been rotated 90 degrees around the X axis. The Quaternion value is

(0.707, 0, 0, 0.707).

If the device is positioned so its left edge is on a table, and the top points north, the device has been

rotated –90 degrees around the Y axis (or 90 degrees around the negative Y axis). The Quaternion value

is (0, -0.707, 0, 0.707).

FastestFastest – Get the sensor data as fast as possible (not guaranteed to return on UI thread).

GameGame – Rate suitable for games (not guaranteed to return on UI thread).

DefaultDefault – Default rate suitable for screen orientation changes.

UIUI – Rate suitable for general user interface.

If your event handler is not guaranteed to run on the UI thread, and if the event handler needs to access user-

interface elements, use the MainThread.BeginInvokeOnMainThread method to run that code on the UI thread.

OrientationSensor source code

OrientationSensor API documentation

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sensorspeed
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/OrientationSensor
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.orientationsensor

Xamarin.Essentials: Permissions
 7/8/2021 • 6 minutes to read • Edit Online

 Get started

protected override void OnCreate(Bundle savedInstanceState)
{
 //...
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState); // add this line to your code, it may also
be called: bundle
 //...
}

public override void OnRequestPermissionsResult(int requestCode, string[] permissions,
Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);
}

 Using Permissions

using Xamarin.Essentials;

 Checking Permissions

var status = await Permissions.CheckStatusAsync<Permissions.LocationWhenInUse>();

The PermissionsPermissions class provides the ability to check and request runtime permissions.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

This API uses runtime permissions on Android. Please ensure that Xamarin.Essentials is fully initialized and

permission handling is setup in your app.

In the Android project's MainLauncher or any Activity that is launched Xamarin.Essentials must be initialized in

the OnCreate method:

To handle runtime permissions on Android, Xamarin.Essentials must receive any OnRequestPermissionsResult .

Add the following code to all Activity classes:

Add a reference to Xamarin.Essentials in your class:

To check the current status of a permission, use the CheckStatusAsync method along with the specific

permission to get the status for.

A PermissionException is thrown if the required permission is not declared.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/permissions.md

 Requesting Permissions

var status = await Permissions.RequestAsync<Permissions.LocationWhenInUse>();

 Permission Status

 Explain Why Permission Is Needed

 Available Permissions

P ERM ISSIO NP ERM ISSIO N A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN

CalendarRead

It's best to check the status of the permission before requesting it. Each operating system returns a different

default state if the user has never been prompted. iOS returns Unknown , while others return Denied . If the status

is Granted then there is no need to make other calls. On iOS if the status is Denied you should prompt the user

to change the permission in the settings and on Android you can call ShouldShowRationale to detect if the user

has already denied the permission in the past.

To request a permission from the users, use the RequestAsync method along with the specific permission to

request. If the user previously granted permission and hasn't revoked it, then this method will return Granted

immediately and not display a dialog.

A PermissionException is thrown if the required permission is not declared.

Note, that on some platforms a permission request can only be activated a single time. Further prompts must be

handled by the developer to check if a permission is in the Denied state and ask the user to manually turn it on.

When using CheckStatusAsync or RequestAsync a PermissionStatus will be returned that can be used to

determine the next steps:

Unknown - The permission is in an unknown state

Denied - The user denied the permission request

Disabled - The feature is disabled on the device

Granted - The user granted permission or is automatically granted

Restricted - In a restricted state

It is best practice to explain why your application needs a specific permission. On iOS you must specify a string

that is displayed to the user. Android does not have this ability and and also defaults permission status to

Disabled. This limits the ability to know if the user denied the permission or if it is the first time prompting the

user. The ShouldShowRationale method can be used to determine if an educational UI should be displayed. If the

method returns true this is because the user has denied or disabled the permission in the past. Other

platforms will always return false when calling this method.

Xamarin.Essentials attempts to abstract as many permissions as possible. However, each operating system has a

different set of runtime permissions. In addition there are differences when providing a single API for some

permissions. Here is a guide to the currently available permissions:

Icon Guide:

 - Supported

 - Not supported/required

CalendarWrit
e

Camera

ContactsRead

ContactsWrit
e

Flashlight

LocationWhe
nInUse

LocationAlwa
ys

Media

Microphone

Phone

Photos

Reminders

Sensors

Sms

Speech

StorageRead

StorageWrite

P ERM ISSIO NP ERM ISSIO N A N DRO IDA N DRO ID IO SIO S UW PUW P WATC H O SWATC H O S T VO ST VO S T IZ ENT IZ EN

 General Usage

If a permission is marked as it will always return Granted when checked or requested.

The following code presents the general usage pattern for determining whether a permission has been granted

and requesting it if it has not. This code uses features that are available with Xamarin.Essentials version 1.6.0 or

later.

public async Task<PermissionStatus> CheckAndRequestLocationPermission()
{
 var status = await Permissions.CheckStatusAsync<Permissions.LocationWhenInUse>();

 if (status == PermissionStatus.Granted)
 return status;

 if (status == PermissionStatus.Denied && DeviceInfo.Platform == DevicePlatform.iOS)
 {
 // Prompt the user to turn on in settings
 // On iOS once a permission has been denied it may not be requested again from the application
 return status;
 }

 if (Permissions.ShouldShowRationale<Permissions.LocationWhenInUse>())
 {
 // Prompt the user with additional information as to why the permission is needed
 }

 status = await Permissions.RequestAsync<Permissions.LocationWhenInUse>();

 return status;
}

public async Task GetLocationAsync()
{
 var status = await CheckAndRequestPermissionAsync(new Permissions.LocationWhenInUse());
 if (status != PermissionStatus.Granted)
 {
 // Notify user permission was denied
 return;
 }

 var location = await Geolocation.GetLocationAsync();
}

public async Task<PermissionStatus> CheckAndRequestPermissionAsync<T>(T permission)
 where T : BasePermission
{
 var status = await permission.CheckStatusAsync();
 if (status != PermissionStatus.Granted)
 {
 status = await permission.RequestAsync();
 }

 return status;
}

 Extending Permissions

Each permission type can have an instance of it created that the methods can be called directly.

The Permissions API was created to be flexible and extensible for applications that require additional validation

or permissions that aren't included in Xamarin.Essentials. Create a new class that inherits from BasePermission

and implement the required abstract methods.

public class MyPermission : BasePermission
{
 // This method checks if current status of the permission
 public override Task<PermissionStatus> CheckStatusAsync()
 {
 throw new System.NotImplementedException();
 }

 // This method is optional and a PermissionException is often thrown if a permission is not declared
 public override void EnsureDeclared()
 {
 throw new System.NotImplementedException();
 }

 // Requests the user to accept or deny a permission
 public override Task<PermissionStatus> RequestAsync()
 {
 throw new System.NotImplementedException();
 }
}

public class ReadWriteStoragePermission : Xamarin.Essentials.Permissions.BasePlatformPermission
{
 public override (string androidPermission, bool isRuntime)[] RequiredPermissions => new List<(string
androidPermission, bool isRuntime)>
 {
 (Android.Manifest.Permission.ReadExternalStorage, true),
 (Android.Manifest.Permission.WriteExternalStorage, true)
 }.ToArray();
}

await Permissions.RequestAsync<ReadWriteStoragePermission>();

public interface IReadWritePermission
{
 Task<PermissionStatus> CheckStatusAsync();
 Task<PermissionStatus> RequestAsync();
}

When implementing a permission in a specific platform, the BasePlatformPermission class can be inherited from.

This provides additional platform helper methods to automatically check the declarations. This can help when

creating custom permissions that do groupings. For example, you can request both Read and Write access to

storage on Android using the following custom permission.

Then you can call your new permission from Android project.

If you wanted to call this API from your shared code you could create an interface and use a dependency service

to register and get the implementation.

Then implement the interface in your platform project:

public class ReadWriteStoragePermission : Xamarin.Essentials.Permissions.BasePlatformPermission,
IReadWritePermission
{
 public override (string androidPermission, bool isRuntime)[] RequiredPermissions => new List<(string
androidPermission, bool isRuntime)>
 {
 (Android.Manifest.Permission.ReadExternalStorage, true),
 (Android.Manifest.Permission.WriteExternalStorage, true)
 }.ToArray();
}

DependencyService.Register<IReadWritePermission, ReadWriteStoragePermission>();

var readWritePermission = DependencyService.Get<IReadWritePermission>();
var status = await readWritePermission.CheckStatusAsync();
if (status != PermissionStatus.Granted)
{
 status = await readWritePermission.RequestAsync();
}

 Platform Implementation Specifics

 API

 Related Video

You can then register the specific implementation:

Then from your shared project you can resolve and use it:

Android

iOS

UWP

Permissions must have the matching attributes set in the Android Manifest file. Permission status defaults to

Denied.

Read more on the Permissions in Xamarin.Android documentation.

Permissions source code

Permissions API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/permissions
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Permissions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.permissions
https://channel9.msdn.com/Shows/XamarinShow/Permissions-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Phone Dialer
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

<queries>
 <intent>
 <action android:name="android.intent.action.DIAL" />
 <data android:scheme="tel"/>
 </intent>
</queries>

 Using Phone Dialer

using Xamarin.Essentials;

The PhoneDialerPhoneDialer class enables an application to open a phone number in the dialer.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Add a reference to Xamarin.Essentials in your class:

The Phone Dialer functionality works by calling the Open method with a phone number to open the dialer with.

When Open is requested the API will automatically attempt to format the number based on the country code if

specified.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/phone-dialer.md
https://developer.android.com/preview/privacy/package-visibility

public class PhoneDialerTest
{
 public void PlacePhoneCall(string number)
 {
 try
 {
 PhoneDialer.Open(number);
 }
 catch (ArgumentNullException anEx)
 {
 // Number was null or white space
 }
 catch (FeatureNotSupportedException ex)
 {
 // Phone Dialer is not supported on this device.
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 API

 Related Video

Phone Dialer source code

Phone Dialer API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/PhoneDialer
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.phonedialer
https://channel9.msdn.com/Shows/XamarinShow/Phone-Dialer-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Platform Extensions
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Platform Extensions

using Xamarin.Essentials;

 Android Extensions

 Application Context & ActivityApplication Context & Activity

var context = Platform.AppContext;

// Current Activity or null if not initialized or not started.
var activity = Platform.CurrentActivity;

var activity = await Platform.WaitForActivityAsync();

 Activity LifecycleActivity Lifecycle

Xamarin.Essentials provides several platform extension methods when having to work with platform types such

as Rect, Size, and Point. This means that you can convert between the System version of these types for their

iOS, Android, and UWP specific types.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

All platform extensions can only be called from the iOS, Android, or UWP project.

These extensions can only be accessed from an Android project.

Using the platform extensions in the Platform class you can get access to the current Context or Activity for

the running app.

If there is a situation where the Activity is needed, but the application hasn't fully started then the

WaitForActivityAsync method should be used.

In addition to getting the current Activity, you can also register for lifecycle events.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/platform-extensions.md

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 Xamarin.Essentials.Platform.Init(this, bundle);

 Xamarin.Essentials.Platform.ActivityStateChanged += Platform_ActivityStateChanged;
}

protected override void OnDestroy()
{
 base.OnDestroy();
 Xamarin.Essentials.Platform.ActivityStateChanged -= Platform_ActivityStateChanged;
}

void Platform_ActivityStateChanged(object sender, Xamarin.Essentials.ActivityStateChangedEventArgs e) =>
 Toast.MakeText(this, e.State.ToString(), ToastLength.Short).Show();

 iOS Extensions

 Current UIViewControllerCurrent UIViewController

var vc = Platform.GetCurrentUIViewController();

 Cross-platform Extensions

 PointPoint

var system = new System.Drawing.Point(x, y);

// Convert to CoreGraphics.CGPoint, Android.Graphics.Point, and Windows.Foundation.Point
var platform = system.ToPlatformPoint();

// Back to System.Drawing.Point
var system2 = platform.ToSystemPoint();

 SizeSize

Activity states are the following:

Created

Resumed

Paused

Destroyed

SaveInstanceState

Started

Stopped

Read the Activity Lifecycle documentation to learn more.

These extensions can only be accessed from an iOS project.

Gain access to the currently visible UIViewController :

This method will return null if unable to detect a UIViewController .

These extensions exist in every platform.

https://docs.microsoft.com/en-us/xamarin/android/app-fundamentals/activity-lifecycle/index

var system = new System.Drawing.Size(width, height);

// Convert to CoreGraphics.CGSize, Android.Util.Size, and Windows.Foundation.Size
var platform = system.ToPlatformSize();

// Back to System.Drawing.Size
var system2 = platform.ToSystemSize();

 RectangleRectangle

var system = new System.Drawing.Rectangle(x, y, width, height);

// Convert to CoreGraphics.CGRect, Android.Graphics.Rect, and Windows.Foundation.Rect
var platform = system.ToPlatformRectangle();

// Back to System.Drawing.Rectangle
var system2 = platform.ToSystemRectangle();

 API
Converters source code

Point Converters API documentation

Rectangle Converters API documentation

Size Converters API documentation

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/PlatformExtensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.pointextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.rectangleextensions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sizeextensions

Xamarin.Essentials: Preferences
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Preferences

using Xamarin.Essentials;

Preferences.Set("my_key", "my_value");

var myValue = Preferences.Get("my_key", "default_value");

bool hasKey = Preferences.ContainsKey("my_key");

Preferences.Remove("my_key");

Preferences.Clear();

TIPTIP

 Supported Data Types

The PreferencesPreferences class helps to store application preferences in a key/value store.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

To save a value for a given key in preferences:

To retrieve a value from preferences or a default if not set:

To check if a given key exists in preferences:

To remove the key from preferences:

To remove all preferences:

The above methods take in an optional string parameter called sharedName . This parameter is used to create

additional containers for preferences which are helpful in some use cases. One use case is when your application needs to

share preferences across extensions or to a watch application. Please read the platform implementation specifics below.

The following data types are supported in PreferencesPreferences :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/preferences.md

 Integrate with System Settings

 Implementation Details

 Platform Implementation Specifics

 Persistence

 Limitations

 API

 Related Video

boolbool

doubledouble

intint

floatfloat

longlong

str ingstr ing

DateTimeDateTime

Preferences are stored natively, which allows you to integrate your settings into the native system settings.

Follow the platform documentation and samples to integrate with the platform:

Apple: Implementing an iOS Settings Bundle

iOS Applicaton Preferences Sample

watchOS Settings

Android: Getting Started with Settings Screens

Values of DateTime are stored in a 64-bit binary (long integer) format using two methods defined by the

DateTime class: The ToBinary method is used to encode the DateTime value, and the FromBinary method

decodes the value. See the documentation of these methods for adjustments that might be made to decoded

values when a DateTime is stored that is not a Coordinated Universal Time (UTC) value.

Android

iOS

UWP

All data is stored into Shared Preferences. If no sharedName is specified the default shared preferences are used,

otherwise the name is used to get a pr ivateprivate shared preferences with the specified name.

Uninstalling the application will cause all Preferences to be removed, with the exception being apps that target

and run on Android 6.0 (API level 23) or later that use Auto BackupAuto Backup. This feature is on by default and preserves

app data including Shared PreferencesShared Preferences , which is what the PreferencesPreferences API utilizes. You can disable this by

following Google's documentation.

When storing a string, this API is intended to store small amounts of text. Performance may be subpar if you try

to use it to store large amounts of text.

Preferences source code

Preferences API documentation

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html
https://docs.microsoft.com/en-us/samples/xamarin/ios-samples/appprefs/
https://developer.xamarin.com/guides/ios/watch/working-with/settings/
https://developer.android.com/guide/topics/ui/settings.html
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.tobinary#system_datetime_tobinary
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.frombinary#system_datetime_frombinary_system_int64_
https://developer.android.com/training/data-storage/shared-preferences.html
https://developer.android.com/guide/topics/data/autobackup
https://developer.android.com/guide/topics/data/autobackup
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Preferences
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.preferences

Find more Xamarin videos on Channel 9 and YouTube.

https://channel9.msdn.com/Shows/XamarinShow/Preferences-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Screenshot
 4/14/2021 • 2 minutes to read • Edit Online

 Get started

 Using Screenshot

using Xamarin.Essentials;

async Task CaptureScreenshot()
{
 var screenshot = await Screenshot.CaptureAsync();
 var stream = await screenshot.OpenReadAsync();

 Image = ImageSource.FromStream(() => stream);
}

 Limitations

 API

The ScreenshotScreenshot class lets you take a capture of the current displayed screen of the app.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

Then call CaptureAsync to take a screenshot of the current screen of the running application. This will return

back a ScreenshotResult that can be used to get the Width , Height , and a Stream of the screenshot taken.

Not all views support being captured at a screen level such as an OpenGL view.

Screenshot source code

Screenshot API documentation

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/screenshot.md
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Screenshot
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.screenshot

Xamarin.Essentials: Secure Storage
 11/2/2020 • 4 minutes to read • Edit Online

 Get started

TIPTIP

 Enable or disable backupEnable or disable backup

<manifest ... >
 ...
 <application android:allowBackup="false" ... >
 ...
 </application>
</manifest>

 Selective BackupSelective Backup

The SecureStorageSecureStorage class helps securely store simple key/value pairs.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the SecureStorageSecureStorage functionality, the following platform-specific setup is required:

Android

iOS

UWP

Auto Backup for Apps is a feature of Android 6.0 (API level 23) and later that backs up user's app data (shared

preferences, files in the app's internal storage, and other specific files). Data is restored when an app is re-installed or

installed on a new device. This can impact SecureStorage which utilizes share preferences that are backed up and can

not be decrypted when the restore occurs. Xamarin.Essentials automatically handles this case by removing the key so it

can be reset, but you can take an additional step by disabling Auto Backup.

You can choose to disable Auto Backup for your entire application by setting the android:allowBackup setting to

false in the AndroidManifest.xml file. This approach is only recommended if you plan on restoring data in

another way.

Auto Backup can be configured to disable specific content from backing up. You can create a custom rule set to

exclude SecureStore items from being backed up.

<application ...
 android:fullBackupContent="@xml/auto_backup_rules">
</application>

1. Set the android:fullBackupContent attribute in your AndroidManifest.xmlAndroidManifest.xml :

2. Create a new XML file named auto_backup_rules.xmlauto_backup_rules.xml in the Resources/xmlResources/xml directory with the build

action of AndroidResourceAndroidResource. Then set the following content that includes all shared preferences except

for SecureStorage :

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/secure-storage.md
https://developer.android.com/guide/topics/data/autobackup

 Using Secure Storage

using Xamarin.Essentials;

try
{
 await SecureStorage.SetAsync("oauth_token", "secret-oauth-token-value");
}
catch (Exception ex)
{
 // Possible that device doesn't support secure storage on device.
}

try
{
 var oauthToken = await SecureStorage.GetAsync("oauth_token");
}
catch (Exception ex)
{
 // Possible that device doesn't support secure storage on device.
}

NOTENOTE

SecureStorage.Remove("oauth_token");

SecureStorage.RemoveAll();

TIPTIP

<?xml version="1.0" encoding="utf-8"?>
<full-backup-content>
 <include domain="sharedpref" path="."/>
 <exclude domain="sharedpref" path="${applicationId}.xamarinessentials.xml"/>
</full-backup-content>

Add a reference to Xamarin.Essentials in your class:

To save a value for a given key in secure storage:

To retrieve a value from secure storage:

If there is no value associated with the requested key, GetAsync will return null .

To remove a specific key, call:

To remove all keys, call:

It is possible that an exception is thrown when calling GetAsync or SetAsync . This can be caused by a device not

supporting secure storage, encryption keys changing, or corruption of data. It is best to handle this by removing and

adding the setting back if possible.

 Platform Implementation Specifics

 Limitations

 API

 Related Video

Android

iOS

UWP

The Android KeyStore is used to store the cipher key used to encrypt the value before it is saved into a Shared

Preferences with a filename of [YOUR-APP-PACKAGE-ID].xamarinessentials[YOUR-APP-PACKAGE-ID].xamarinessentials . The key (not a cryptographic

key, the key to the value) used in the shared preferences file is a MD5 Hash of the key passed into the

SecureStorage APIs.

API Level 23 and HigherAPI Level 23 and Higher

On newer API levels, an AESAES key is obtained from the Android KeyStore and used with an

AES/GCM/NoPaddingAES/GCM/NoPadding cipher to encrypt the value before it is stored in the shared preferences file.

API Level 22 and LowerAPI Level 22 and Lower

On older API levels, the Android KeyStore only supports storing RSARSA keys, which is used with an

RSA/ECB/PKCS1PaddingRSA/ECB/PKCS1Padding cipher to encrypt an AESAES key (randomly generated at runtime) and stored in the

shared preferences file under the key SecureStorageKey, if one has not already been generated.

SecureStorageSecureStorage uses the Preferences API and follows the same data persistence outlined in the Preferences

documentation. If a device upgrades from API level 22 or lower to API level 23 and higher, this type of

encryption will continue to be used unless the app is uninstalled or RemoveAllRemoveAll is called.

This API is intended to store small amounts of text. Performance may be slow if you try to use it to store large

amounts of text.

SecureStorage source code

SecureStorage API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/data-storage/shared-preferences.html
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/SecureStorage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.securestorage
https://channel9.msdn.com/Shows/XamarinShow/Secure-Storage-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Share
 7/15/2021 • 3 minutes to read • Edit Online

 Get started

 Using Share

using Xamarin.Essentials;

public class ShareTest
{
 public async Task ShareText(string text)
 {
 await Share.RequestAsync(new ShareTextRequest
 {
 Text = text,
 Title = "Share Text"
 });
 }

 public async Task ShareUri(string uri)
 {
 await Share.RequestAsync(new ShareTextRequest
 {
 Uri = uri,
 Title = "Share Web Link"
 });
 }
}

The ShareShare class enables an application to share data such as text and web links to other applications on the

device.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Android

iOS

UWP

No additional setup required.

Add a reference to Xamarin.Essentials in your class:

The Share functionality works by calling the RequestAsync method with a data request payload that includes

information to share to other applications. Text and Uri can be mixed and each platform will handle filtering

based on content.

User interface to share to external application that appears when request is made:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/share.md

 File

var fn = "Attachment.txt";
var file = Path.Combine(FileSystem.CacheDirectory, fn);
File.WriteAllText(file, "Hello World");

await Share.RequestAsync(new ShareFileRequest
{
 Title = Title,
 File = new ShareFile(file)
});

 Multiple Files

var file1 = Path.Combine(FileSystem.CacheDirectory, "Attachment1.txt");
File.WriteAllText(file, "Content 1");
var file2 = Path.Combine(FileSystem.CacheDirectory, "Attachment2.txt");
File.WriteAllText(file, "Content 2");

await Share.RequestAsync(new ShareMultipleFilesRequest
{
 Title = ShareFilesTitle,
 Files = new List<ShareFile> { new ShareFile(file1), new ShareFile(file2) }
});

 Presentation Location

This features enables an app to share files to other applications on the device. Xamarin.Essentials will

automatically detect the file type (MIME) and request a share. Each platform may only support specific file

extensions.

Here is a sample of writing text to disk and sharing it to other apps:

The usage of share multiple files differs from the single file only in the ability of sending several files at once:

When requesting a share or opening launcher on iPadOS you have the ability to present in a pop over control.

This specifies where the pop over will appear and point an arrow directly to. This location is often the control

that launched the action. You can specify the location using the PresentationSourceBounds property:

await Share.RequestAsync(new ShareFileRequest
{
 Title = Title,
 File = new ShareFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

await Launcher.OpenAsync(new OpenFileRequest
{
 File = new ReadOnlyFile(file),
 PresentationSourceBounds = DeviceInfo.Platform== DevicePlatform.iOS && DeviceInfo.Idiom ==
DeviceIdiom.Tablet
 ? new System.Drawing.Rectangle(0, 20, 0, 0)
 : System.Drawing.Rectangle.Empty
});

public static class ViewHelpers
{
 public static Rectangle GetAbsoluteBounds(this Xamarin.Forms.View element)
 {
 Element looper = element;

 var absoluteX = element.X + element.Margin.Top;
 var absoluteY = element.Y + element.Margin.Left;

 // Add logic to handle titles, headers, or other non-view bars

 while (looper.Parent != null)
 {
 looper = looper.Parent;
 if (looper is Xamarin.Forms.View v)
 {
 absoluteX += v.X + v.Margin.Top;
 absoluteY += v.Y + v.Margin.Left;
 }
 }

 return new Rectangle(absoluteX, absoluteY, element.Width, element.Height);
 }

 public static System.Drawing.Rectangle ToSystemRectangle(this Rectangle rect) =>
 new System.Drawing.Rectangle((int)rect.X, (int)rect.Y, (int)rect.Width, (int)rect.Height);
}

Everything described here works equally for Share and Launcher .

If you are using Xamarin.Forms you are able to pass in a View and calculate the bounds:

This can then be used when calling RequestAsync :

public Command<Xamarin.Forms.View> ShareCommand { get; } = new Command<Xamarin.Forms.View>(Share);
async void Share(Xamarin.Forms.View element)
{
 try
 {
 Analytics.TrackEvent("ShareWithFriends");
 var bounds = element.GetAbsoluteBounds();

 await Share.RequestAsync(new ShareTextRequest
 {
 PresentationSourceBounds = bounds.ToSystemRectangle(),
 Title = "Title",
 Text = "Text"
 });
 }
 catch (Exception)
 {
 // Handle exception that share failed
 }
}

<Button Text="Share"
 Command="{Binding ShareWithFriendsCommand}"
 CommandParameter="{Binding Source={RelativeSource Self}}"/>

 Platform Differences

 API

 Related Video

You can pass in the calling element when the Command is triggered:

Android

iOS

UWP

Subject property is used for desired subject of a message.

Share source code

Share API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Share
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.share
https://channel9.msdn.com/Shows/XamarinShow/Share-Essential-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: SMS
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

<queries>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="smsto"/>
 </intent>
</queries>

 Using Sms

using Xamarin.Essentials;

The SmsSms class enables an application to open the default SMS application with a specified message to send to a

recipient.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the SmsSms functionality the following platform specific setup is required.

Android

iOS

UWP

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node:

Add a reference to Xamarin.Essentials in your class:

The SMS functionality works by calling the ComposeAsync method an SmsMessage that contains the message's

recipient and the body of the message, both of which are optional.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/sms.md
https://developer.android.com/preview/privacy/package-visibility

public class SmsTest
{
 public async Task SendSms(string messageText, string recipient)
 {
 try
 {
 var message = new SmsMessage(messageText, new []{ recipient });
 await Sms.ComposeAsync(message);
 }
 catch (FeatureNotSupportedException ex)
 {
 // Sms is not supported on this device.
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

public class SmsTest
{
 public async Task SendSms(string messageText, string[] recipients)
 {
 try
 {
 var message = new SmsMessage(messageText, recipients);
 await Sms.ComposeAsync(message);
 }
 catch (FeatureNotSupportedException ex)
 {
 // Sms is not supported on this device.
 }
 catch (Exception ex)
 {
 // Other error has occurred.
 }
 }
}

 API

 Related Video

Additionally, you can pass in multiple receipients to a SmsMessage :

Sms source code

Sms API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Sms
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.sms
https://channel9.msdn.com/Shows/XamarinShow/SMS-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Text-to-Speech
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Text-to-Speech

using Xamarin.Essentials;

public async Task SpeakNowDefaultSettings()
{
 await TextToSpeech.SpeakAsync("Hello World");

 // This method will block until utterance finishes.
}

public void SpeakNowDefaultSettings2()
{
 TextToSpeech.SpeakAsync("Hello World").ContinueWith((t) =>
 {
 // Logic that will run after utterance finishes.

 }, TaskScheduler.FromCurrentSynchronizationContext());
}

The TextToSpeechTextToSpeech class enables an application to utilize the built-in text-to-speech engines to speak back text

from the device and also to query available languages that the engine can support.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

Text-to-Speech works by calling the SpeakAsync method with text and optional parameters, and returns after the

utterance has finished.

This method takes in an optional CancellationToken to stop the utterance once it starts.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/text-to-speech.md

CancellationTokenSource cts;
public async Task SpeakNowDefaultSettings()
{
 cts = new CancellationTokenSource();
 await TextToSpeech.SpeakAsync("Hello World", cancelToken: cts.Token);

 // This method will block until utterance finishes.
}

// Cancel speech if a cancellation token exists & hasn't been already requested.
public void CancelSpeech()
{
 if (cts?.IsCancellationRequested ?? true)
 return;

 cts.Cancel();
}

bool isBusy = false;
public void SpeakMultiple()
{
 isBusy = true;
 Task.Run(async () =>
 {
 await TextToSpeech.SpeakAsync("Hello World 1");
 await TextToSpeech.SpeakAsync("Hello World 2");
 await TextToSpeech.SpeakAsync("Hello World 3");
 isBusy = false;
 });

 // or you can query multiple without a Task:
 Task.WhenAll(
 TextToSpeech.SpeakAsync("Hello World 1"),
 TextToSpeech.SpeakAsync("Hello World 2"),
 TextToSpeech.SpeakAsync("Hello World 3"))
 .ContinueWith((t) => { isBusy = false; }, TaskScheduler.FromCurrentSynchronizationContext());
}

 Speech SettingsSpeech Settings

public async Task SpeakNow()
{
 var settings = new SpeechOptions()
 {
 Volume = .75f,
 Pitch = 1.0f
 };

 await TextToSpeech.SpeakAsync("Hello World", settings);
}

PA RA M ET ERPA RA M ET ER M IN IM UMM IN IM UM M A XIM UMM A XIM UM

Pitch 0 2.0

Text-to-Speech will automatically queue speech requests from the same thread.

For more control over how the audio is spoken back with SpeechOptions that allows setting the volume, pitch,

and locale.

The following are supported values for these parameters:

Volume 0 1.0

PA RA M ET ERPA RA M ET ER M IN IM UMM IN IM UM M A XIM UMM A XIM UM

 Speech LocalesSpeech Locales

public async Task SpeakNow()
{
 var locales = await TextToSpeech.GetLocalesAsync();

 // Grab the first locale
 var locale = locales.FirstOrDefault();

 var settings = new SpeechOptions()
 {
 Volume = .75f,
 Pitch = 1.0f,
 Locale = locale
 };

 await TextToSpeech.SpeakAsync("Hello World", settings);
}

 Limitations

 API

 Related Video

Each platform supports different locales, to speak back text in different languages and accents. Platforms have

different codes and ways of specifying the locale, which is why Xamarin.Essentials provides a cross-platform

Locale class and a way to query them with GetLocalesAsync .

Utterance queue is not guaranteed if called across multiple threads.

Background audio playback is not officially supported.

TextToSpeech source code

TextToSpeech API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/TextToSpeech
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.texttospeech
https://channel9.msdn.com/Shows/XamarinShow/Text-to-Speech-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Unit Converters
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Unit Converters

using Xamarin.Essentials;

var celsius = UnitConverters.FahrenheitToCelsius(32.0);

The UnitConver tersUnitConver ters class provides several unit converters to help developers when using Xamarin.Essentials.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

All unit converters are available by using the static UnitConverters class in Xamarin.Essentials. For instance you

can easily convert Fahrenheit to Celsius.

Here is a list of available conversions:

FahrenheitToCelsius

CelsiusToFahrenheit

CelsiusToKelvin

KelvinToCelsius

MilesToMeters

MilesToKilometers

KilometersToMiles

MetersToInternationalFeet

InternationalFeetToMeters

DegreesToRadians

RadiansToDegrees

DegreesPerSecondToRadiansPerSecond

RadiansPerSecondToDegreesPerSecond

DegreesPerSecondToHertz

RadiansPerSecondToHertz

HertzToDegreesPerSecond

HertzToRadiansPerSecond

KilopascalsToHectopascals

HectopascalsToKilopascals

KilopascalsToPascals

HectopascalsToPascals

AtmospheresToPascals

PascalsToAtmospheres

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/unit-converters.md

 API

 Related Video

CoordinatesToMiles

CoordinatesToKilometers

KilogramsToPounds

PoundsToKilograms

StonesToPounds

PoundsToStones

Unit Converters source code

Unit Converters API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Types/UnitConverters.shared.cs
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.unitconverters
https://channel9.msdn.com/Shows/XamarinShow/Unit-Conversion-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Version Tracking
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

 Using Version Tracking

using Xamarin.Essentials;

VersionTracking.Track();

The VersionTrackingVersionTracking class lets you check the applications version and build numbers along with seeing

additional information such as if it is the first time the application launched ever or for the current version, get

the previous build information, and more.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

Add a reference to Xamarin.Essentials in your class:

The first time you use the VersionTrackingVersionTracking class it will start tracking the current version. You must call Track

early only in your application each time it is loaded to ensure the current version information is tracked:

After the initial Track is called version information can be read:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/version-tracking.md

// First time ever launched application
var firstLaunch = VersionTracking.IsFirstLaunchEver;

// First time launching current version
var firstLaunchCurrent = VersionTracking.IsFirstLaunchForCurrentVersion;

// First time launching current build
var firstLaunchBuild = VersionTracking.IsFirstLaunchForCurrentBuild;

// Current app version (2.0.0)
var currentVersion = VersionTracking.CurrentVersion;

// Current build (2)
var currentBuild = VersionTracking.CurrentBuild;

// Previous app version (1.0.0)
var previousVersion = VersionTracking.PreviousVersion;

// Previous app build (1)
var previousBuild = VersionTracking.PreviousBuild;

// First version of app installed (1.0.0)
var firstVersion = VersionTracking.FirstInstalledVersion;

// First build of app installed (1)
var firstBuild = VersionTracking.FirstInstalledBuild;

// List of versions installed (1.0.0, 2.0.0)
var versionHistory = VersionTracking.VersionHistory;

// List of builds installed (1, 2)
var buildHistory = VersionTracking.BuildHistory;

 Platform Implementation Specifics

 API

 Related Video

All version information is stored using the Preferences API in Xamarin.Essentials and is stored with a filename of

[YOUR-APP-PACKAGE-ID].xamarinessentials.versiontracking[YOUR-APP-PACKAGE-ID].xamarinessentials.versiontracking and follows the same data persistence

outlined in the Preferences documentation.

Version Tracking source code

Version Tracking API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/VersionTracking
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.versiontracking
https://channel9.msdn.com/Shows/XamarinShow/Version-Tracking-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Vibration
 11/2/2020 • 2 minutes to read • Edit Online

 Get started

[assembly: UsesPermission(Android.Manifest.Permission.Vibrate)]

<uses-permission android:name="android.permission.VIBRATE" />

 Using Vibration

using Xamarin.Essentials;

The VibrationVibration class lets you start and stop the vibrate functionality for a desired amount of time.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the VibrationVibration functionality the following platform specific setup is required.

Android

iOS

UWP

The Vibrate permission is required and must be configured in the Android project. This can be added in the

following ways:

Open the AssemblyInfo.csAssemblyInfo.cs file under the Proper tiesProper ties folder and add:

OR Update Android Manifest:

Open the AndroidManifest.xmlAndroidManifest.xml file under the Proper tiesProper ties folder and add the following inside of the manifestmanifest

node.

Or right click on the Android project and open the project's properties. Under Android ManifestAndroid Manifest find the

Required permissions:Required permissions: area and check the VIBRATEVIBRATE permission. This will automatically update the

AndroidManifest.xmlAndroidManifest.xml file.

Add a reference to Xamarin.Essentials in your class:

The Vibration functionality can be requested for a set amount of time or the default of 500 milliseconds.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/vibrate.md

try
{
 // Use default vibration length
 Vibration.Vibrate();

 // Or use specified time
 var duration = TimeSpan.FromSeconds(1);
 Vibration.Vibrate(duration);
}
catch (FeatureNotSupportedException ex)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Other error has occurred.
}

try
{
 Vibration.Cancel();
}
catch (FeatureNotSupportedException ex)
{
 // Feature not supported on device
}
catch (Exception ex)
{
 // Other error has occurred.
}

 Platform Differences

 API

 Related Video

Cancellation of device vibration can be requested with the Cancel method:

Android

iOS

UWP

No platform differences.

Vibration source code

Vibration API documentation

Find more Xamarin videos on Channel 9 and YouTube.

https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/Vibration
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.vibration
https://channel9.msdn.com/Shows/XamarinShow/Vibration-XamarinEssentials-API-of-the-Week/player?nocookie=true
https://channel9.msdn.com/Shows/XamarinShow
https://www.youtube.com/c/XamarinDevelopers

Xamarin.Essentials: Web Authenticator
 7/15/2021 • 7 minutes to read • Edit Online

 Overview

 Why use a server back end?

IMPORTANTIMPORTANT

 Get started

The WebAuthenticatorWebAuthenticator class lets you initiate browser based flows which listen for a callback to a specific URL

registered to the app.

Many apps require adding user authentication, and this often means enabling your users to sign in their existing

Microsoft, Facebook, Google, and now Apple Sign In accounts.

Microsoft Authentication Library (MSAL) provides an excellent turn-key solution to adding authentication to

your app. There's even support for Xamarin apps in their client NuGet package.

If you're interested in using your own web service for authentication, it's possible to use WebAuthenticatorWebAuthenticator to

implement the client side functionality.

Many authentication providers have moved to only offering explicit or two-legged authentication flows to

ensure better security. This means you'll need a 'client secret' from the provider to complete the authentication

flow. Unfortunately, mobile apps are not a great place to store secrets and anything stored in a mobile app's

code, binaries, or otherwise is generally considered to be insecure.

The best practice here is to use a web backend as a middle layer between your mobile app and the

authentication provider.

We strongly recommend against using older mobile-only authentication libraries and patterns which do not leverage a

web backend in the authentication flow due to their inherent lack of security for storing client secrets.

To start using this API, read the getting started guide for Xamarin.Essentials to ensure the library is properly

installed and set up in your projects.

To access the WebAuthenticatorWebAuthenticator functionality the following platform specific setup is required.

Android

iOS

UWP

Android requires an Intent Filter setup to handle your callback URI. This is easily accomplished by subclassing

the WebAuthenticatorCallbackActivity class:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/web-authenticator.md
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview

const string CALLBACK_SCHEME = "myapp";

[Activity(NoHistory = true, LaunchMode = LaunchMode.SingleTop)]
[IntentFilter(new[] { Android.Content.Intent.ActionView },
 Categories = new[] { Android.Content.Intent.CategoryDefault, Android.Content.Intent.CategoryBrowsable },
 DataScheme = CALLBACK_SCHEME)]
public class WebAuthenticationCallbackActivity : Xamarin.Essentials.WebAuthenticatorCallbackActivity
{
}

<queries>
 <intent>
 <action android:name="android.support.customtabs.action.CustomTabsService" />
 </intent>
</queries>

 Using WebAuthenticator

using Xamarin.Essentials;

var authResult = await WebAuthenticator.AuthenticateAsync(
 new Uri("https://mysite.com/mobileauth/Microsoft"),
 new Uri("myapp://"));

var accessToken = authResult?.AccessToken;

If your project's Target Android version is set to Android 11 (R API 30)Android 11 (R API 30) you must update your Android

Manifest with queries that are used with the new package visibility requirements.

Open the AndroidManifest.xmlAndroidManifest.xml file under the Properties folder and add the following inside of the manifest

node:

Add a reference to Xamarin.Essentials in your class:

The API consists mainly of a single method AuthenticateAsync which takes two parameters: The url which

should be used to start the web browser flow, and the Uri which you expect the flow to ultimately call back to

and which your app is registered to be able to handle.

The result is a WebAuthenticatorResult which includes any query parameters parsed from the callback URI:

The WebAuthenticator API takes care of launching the url in the browser and waiting until the callback is

received:

https://developer.android.com/preview/privacy/package-visibility

 Private authentication sessionPrivate authentication session

var url = new Uri("https://mysite.com/mobileauth/Microsoft");
var callbackUrl = new Uri("myapp://")
var authResult = await WebAuthenticator.AuthenticateAsync(new WebAuthenticatorOptions
 {
 Url = url,
 CallbackUrl = callbackUrl,
 PrefersEphemeralWebBrowserSession = true
 });

 Platform differences

 Apple Sign In

If the user cancels the flow at any point, a TaskCanceledException is thrown.

iOS 13 introduced an ephemeral web browser API for developers to launch the authentication session as

private. This enables developers to request that no shared cookies or browsing data is available between

authentication sessions and will be a fresh login session each time. This is available through the new

WebAuthenticatorOptions that was introduced in Xamarin.Essentials 1.7 for iOS.

Android

iOS

UWP

Custom Tabs are used whenever available, otherwise an Intent is started for the URL.

According to Apple's review guidelines, if your app uses any social login service to authenticate, it must also

offer Apple Sign In as an option.

To add Apple Sign In to your apps, first you'll need to configure your app to use Apple Sign In.

For iOS 13 and higher you'll want to call the AppleSignInAuthenticator.AuthenticateAsync() method. This will

use the native Apple Sign in API's under the hood so your users get the best experience possible on these

devices. You can write your shared code to use the right API at runtime like this:

https://developer.apple.com/app-store/review/guidelines/#sign-in-with-apple

var scheme = "..."; // Apple, Microsoft, Google, Facebook, etc.
WebAuthenticatorResult r = null;

if (scheme.Equals("Apple")
 && DeviceInfo.Platform == DevicePlatform.iOS
 && DeviceInfo.Version.Major >= 13)
{
 // Use Native Apple Sign In API's
 r = await AppleSignInAuthenticator.AuthenticateAsync();
}
else
{
 // Web Authentication flow
 var authUrl = new Uri(authenticationUrl + scheme);
 var callbackUrl = new Uri("xamarinessentials://");

 r = await WebAuthenticator.AuthenticateAsync(authUrl, callbackUrl);
}

var authToken = string.Empty;
if (r.Properties.TryGetValue("name", out var name) && !string.IsNullOrEmpty(name))
 authToken += $"Name: {name}{Environment.NewLine}";
if (r.Properties.TryGetValue("email", out var email) && !string.IsNullOrEmpty(email))
 authToken += $"Email: {email}{Environment.NewLine}";

// Note that Apple Sign In has an IdToken and not an AccessToken
authToken += r?.AccessToken ?? r?.IdToken;

TIPTIP

 ASP.NET core server back end

services.AddAuthentication(o =>
 {
 o.DefaultScheme = CookieAuthenticationDefaults.AuthenticationScheme;
 })
 .AddCookie()
 .AddFacebook(fb =>
 {
 fb.AppId = Configuration["FacebookAppId"];
 fb.AppSecret = Configuration["FacebookAppSecret"];
 fb.SaveTokens = true;
 });

For non-iOS 13 devices this will start the web authentication flow, which can also be used to enable Apple Sign In on your

Android and UWP devices. You can sign into your iCloud account on your iOS simulator to test Apple Sign In.

It's possible to use the WebAuthenticator API with any web back end service. To use it with an ASP.NET core app,

first you need to configure the web app with the following steps:

1. Setup your desired external social authentication providers in an ASP.NET Core web app.

2. Set the Default Authentication Scheme to CookieAuthenticationDefaults.AuthenticationScheme in your

.AddAuthentication() call.

3. Use .AddCookie() in your Startup.cs .AddAuthentication() call.

4. All providers must be configured with .SaveTokens = true; .

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/?tabs=visual-studio

TIPTIP

 Add a custom mobile auth controllerAdd a custom mobile auth controller

[Route("mobileauth")]
[ApiController]
public class AuthController : ControllerBase
{
 const string callbackScheme = "myapp";

 [HttpGet("{scheme}")] // eg: Microsoft, Facebook, Apple, etc
 public async Task Get([FromRoute]string scheme)
 {
 // 1. Initiate authentication flow with the scheme (provider)
 // 2. When the provider calls back to this URL
 // a. Parse out the result
 // b. Build the app callback URL
 // c. Redirect back to the app
 }
}

NOTENOTE

 API

If you'd like to include Apple Sign In, you can use the AspNet.Security.OAuth.Apple NuGet package. You can view the

full Startup.cs sample in the Essentials GitHub repository.

With a mobile authentication flow it is usually desirable to initiate the flow directly to a provider that the user

has chosen (e.g. by clicking a "Microsoft" button on the sign in screen of the app). It is also important to be able

to return relevant information to your app at a specific callback URI to end the authentication flow.

To achieve this, use a custom API Controller :

The purpose of this controller is to infer the scheme (provider) that the app is requesting, and initiate the

authentication flow with the social provider. When the provider calls back to the web backend, the controller

parses out the result and redirects to the app's callback URI with parameters.

Sometimes you may want to return data such as the provider's access_token back to the app which you can do

via the callback URI's query parameters. Or, you may want to instead create your own identity on your server

and pass back your own token to the app. What and how you do this part is up to you!

Check out the full controller sample in the Essentials repository.

The above sample demonstrates how to return the Access Token from the 3rd party authentication (ie: OAuth) provider.

To obtain a token you can use to authorize web requests to the web backend itself, you should create your own token in

your web app, and return that instead. The Overview of ASP.NET Core authentication has more information about

advanced authentication scenarios in ASP.NET Core.

WebAuthenticator source code

WebAuthenticator API documentation

ASP.NET Core Server Sample

https://github.com/xamarin/Essentials/blob/develop/Samples/Sample.Server.WebAuthenticator/Startup.cs#L32-L60
https://github.com/xamarin/Essentials/blob/develop/Samples/Sample.Server.WebAuthenticator/Controllers/MobileAuthController.cs
https://docs.microsoft.com/en-us/aspnet/core/security/authentication
https://github.com/xamarin/Essentials/tree/main/Xamarin.Essentials/WebAuthenticator
https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.webauthenticator
https://github.com/xamarin/Essentials/blob/develop/Samples/Sample.Server.WebAuthenticator/

Xamarin.Essentials: Troubleshooting
 11/2/2020 • 2 minutes to read • Edit Online

 Error: Version conflict detected for Xamarin.Android.Support.Compat

NU1107: Version conflict detected for Xamarin.Android.Support.Compat. Reference the package directly from
the project to resolve this issue.
 MyApp -> Xamarin.Essentials 1.3.1 -> Xamarin.Android.Support.CustomTabs 28.0.0.3 ->
Xamarin.Android.Support.Compat (= 28.0.0.3)
 MyApp -> Xamarin.Forms 3.1.0.583944 -> Xamarin.Android.Support.v4 25.4.0.2 ->
Xamarin.Android.Support.Compat (= 25.4.0.2).

The following error may occur when updating NuGet packages (or adding a new package) with a

Xamarin.Forms project that uses Xamarin.Essentials:

The problem is mismatched dependencies for the two NuGets. This can be resolved by manually adding a

specific version of the dependency (in this case Xamarin.Android.Suppor t.CompatXamarin.Android.Suppor t.Compat) that can support both.

To do this, add the NuGet that is the source of the conflict manually, and use the VersionVersion list to select a specific

version. Currently version 28.0.0.3 of the Xamarin.Android.Support.Compat &

Xamarin.Android.Support.Core.Util NuGet will resolve this error.

Refer to this blog post for more information and a video on how to resolve the issue.

If run into any issues or find a bug please report it on the Xamarin.Essentials GitHub repository.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/essentials/troubleshooting.md
https://redth.codes/how-to-fix-the-dreaded-version-conflict-nuget-error-in-your-xamarin-android-projects/
https://github.com/xamarin/Essentials

Xamarin.Forms local data storage
 11/2/2020 • 2 minutes to read • Edit Online

 Files

 Local Databases

File handling with Xamarin.Forms can be achieved using code in a .NET Standard library, or by using embedded

resources. This article explains how to perform file handling from shared code in a Xamarin.Forms application.

Xamarin.Forms supports database-driven applications using the SQLite database engine, which makes it

possible to load and save objects in shared code. This article describes how Xamarin.Forms applications can

read and write data to a local SQLite database using SQLite.Net.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/data/index.md

File Handling in Xamarin.Forms
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

 Saving and Loading Files

File.WriteAllText(fileName, text);

string text = File.ReadAllText(fileName);

bool doesExist = File.Exists(fileName);

string fileName = Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData),
"temp.txt");

 Download the sample

File handling with Xamarin.Forms can be achieved using code in a .NET Standard library, or by using embedded

resources.

Xamarin.Forms code runs on multiple platforms - each of which has its own filesystem. Previously, this meant

that reading and writing files was most easily performed using the native file APIs on each platform.

Alternatively, embedded resources are a simpler solution to distribute data files with an app. However, with .NET

Standard 2.0 it's possible to share file access code in .NET Standard libraries.

For information on handling image files, refer to the Working with Images page.

The System.IO classes can be used to access the file system on each platform. The File class lets you create,

delete, and read files, and the Directory class allows you to create, delete, or enumerate the contents of

directories. You can also use the Stream subclasses, which can provide a greater degree of control over file

operations (such as compression or position search within a file).

A text file can be written using the File.WriteAllText method:

A text file can be read using the File.ReadAllText method:

In addition, the File.Exists method determines whether the specified file exists:

The path of the file on each platform can be determined from a .NET Standard library by using a value of the

Environment.SpecialFolder enumeration as the first argument to the Environment.GetFolderPath method. This

can then be combined with a filename with the Path.Combine method:

These operations are demonstrated in the sample app, which includes a page that saves and loads text:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/data/files.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithfiles
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder

 Loading Files Embedded as Resources

var assembly = IntrospectionExtensions.GetTypeInfo(typeof(LoadResourceText)).Assembly;
Stream stream = assembly.GetManifestResourceStream("WorkingWithFiles.LibTextResource.txt");
string text = "";
using (var reader = new System.IO.StreamReader (stream))
{
 text = reader.ReadToEnd ();
}

To embed a file into a .NET Standard.NET Standard assembly, create or add a file and ensure that Build Action:Build Action:

EmbeddedResourceEmbeddedResource.

Visual Studio

Visual Studio for Mac

GetManifestResourceStream is used to access the embedded file using its Resource IDResource ID. By default the resource

ID is the filename prefixed with the default namespace for the project it is embedded in - in this case the

assembly is WorkingWithFilesWorkingWithFiles and the filename is L ibTextResource.txtL ibTextResource.txt, so the resource ID is

WorkingWithFiles.LibTextResource.txt .

The text variable can then be used to display the text or otherwise use it in code. This screenshot of the sample

app shows the text rendered in a Label control.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/data/files-images/saveandload.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/data/files-images/vs-embeddedresource.png#lightbox
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithfiles

var assembly = IntrospectionExtensions.GetTypeInfo(typeof(LoadResourceText)).Assembly;
Stream stream = assembly.GetManifestResourceStream("WorkingWithFiles.LibXmlResource.xml");
List<Monkey> monkeys;
using (var reader = new System.IO.StreamReader (stream)) {
 var serializer = new XmlSerializer(typeof(List<Monkey>));
 monkeys = (List<Monkey>)serializer.Deserialize(reader);
}
var listView = new ListView ();
listView.ItemsSource = monkeys;

 Embedding in Shared Projects

Loading and deserializing an XML is equally simple. The following code shows an XML file being loaded and

deserialized from a resource, then bound to a ListView for display. The XML file contains an array of Monkey

objects (the class is defined in the sample code).

Shared Projects can also contain files as embedded resources, however because the contents of a Shared Project

are compiled into the referencing projects, the prefix used for embedded file resource IDs can change. This

means the resource ID for each embedded file may be different for each platform.

There are two solutions to this issue with Shared Projects:

Synchronize the ProjectsSynchronize the Projects - Edit the project properties for each platform to use the samesame assembly name

and default namespace. This value can then be "hardcoded" as the prefix for embedded resource IDs in the

Shared Project.

#if compiler directives#if compiler directives - Use compiler directives to set the correct resource ID prefix and use that value to

dynamically construct the correct resource ID.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/data/files-images/pcltext.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/data/files-images/pclxml.png#lightbox

#if __IOS__
var resourcePrefix = "WorkingWithFiles.iOS.";
#endif
#if __ANDROID__
var resourcePrefix = "WorkingWithFiles.Droid.";
#endif

Debug.WriteLine("Using this resource prefix: " + resourcePrefix);
// note that the prefix includes the trailing period '.' that is required
var assembly = IntrospectionExtensions.GetTypeInfo(typeof(SharedPage)).Assembly;
Stream stream = assembly.GetManifestResourceStream
 (resourcePrefix + "SharedTextResource.txt");

 Organizing ResourcesOrganizing Resources

 Debugging Embedded ResourcesDebugging Embedded Resources

using System.Reflection;
// ...
// use for debugging, not in released app code!
var assembly = IntrospectionExtensions.GetTypeInfo(typeof(SharedPage)).Assembly;
foreach (var res in assembly.GetManifestResourceNames()) {
 System.Diagnostics.Debug.WriteLine("found resource: " + res);
}

 Summary

 Related Links

Code illustrating the second option is shown below. Compiler directives are used to select the hardcoded

resource prefix (which is normally the same as the default namespace for the referencing project). The

resourcePrefix variable is then used to create a valid resource ID by concatenating it with the embedded

resource filename.

The above examples assume that the file is embedded in the root of the .NET Standard library project, in which

case the resource ID is of the form Namespace.Filename.ExtensionNamespace.Filename.Extension, such as

WorkingWithFiles.LibTextResource.txt and WorkingWithFiles.iOS.SharedTextResource.txt .

It is possible to organize embedded resources in folders. When an embedded resource is placed in a folder, the

folder name becomes part of the resource ID (separated by periods), so that the resource ID format becomes

Namespace.Folder.Filename.ExtensionNamespace.Folder.Filename.Extension. Placing the files used in the sample app into a folder MyFolderMyFolder

would make the corresponding resource IDs WorkingWithFiles.MyFolder.LibTextResource.txt and

WorkingWithFiles.iOS.MyFolder.SharedTextResource.txt .

Because it is sometimes difficult to understand why a particular resource isn't being loaded, the following debug

code can be added temporarily to an application to help confirm the resources are correctly configured. It will

output all known resources embedded in the given assembly to the ErrorsErrors pad to help debug resource loading

issues.

This article has shown some simple file operations for saving and loading text on the device, and for loading

embedded resources. With .NET Standard 2.0 it's possible to share file access code in .NET Standard libraries.

FilesSample

Xamarin.Forms Samples

Working with the File System in Xamarin.iOS

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/workingwithfiles
https://github.com/xamarin/xamarin-forms-samples
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/file-system

Xamarin.Forms Local Databases
 7/8/2021 • 6 minutes to read • Edit Online

 Install the SQLite NuGet package

NOTENOTE

 Configure app constants

 Download the sample

The SQLite database engine allows Xamarin.Forms applications to load and save data objects in shared code.

The sample application uses a SQLite database table to store todo items. This article describes how to use

SQLite.Net in shared code to store and retrieve information in a local database.

Integrate SQLite.NET into mobile apps by following these steps:

1. Install the NuGet package.

2. Configure constants.

3. Create a database access class.

4. Access data in Xamarin.Forms.

5. Advanced configuration.

Use the NuGet package manager to search for sqlite-net-pclsqlite-net-pcl and add the latest version to the shared code

project.

There are a number of NuGet packages with similar names. The correct package has these attributes:

ID:ID: sqlite-net-pcl

Authors:Authors: SQLite-net

Owners:Owners: praeclarum

NuGet link :NuGet link : sqlite-net-pcl

Despite the package name, use the sqlite-net-pclsqlite-net-pcl NuGet package even in .NET Standard projects.

The sample project includes a Constants.csConstants.cs file that provides common configuration data:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/data/databases.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/data/databases-images/todo-list.png#lightbox
https://www.nuget.org/packages/sqlite-net-pcl/

public static class Constants
{
 public const string DatabaseFilename = "TodoSQLite.db3";

 public const SQLite.SQLiteOpenFlags Flags =
 // open the database in read/write mode
 SQLite.SQLiteOpenFlags.ReadWrite |
 // create the database if it doesn't exist
 SQLite.SQLiteOpenFlags.Create |
 // enable multi-threaded database access
 SQLite.SQLiteOpenFlags.SharedCache;

 public static string DatabasePath
 {
 get
 {
 var basePath = Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData);
 return Path.Combine(basePath, DatabaseFilename);
 }
 }
}

 Create a database access class

 Lazy initializationLazy initialization

The constants file specifies default SQLiteOpenFlag enum values that are used to initialize the database

connection. The SQLiteOpenFlag enum supports these values:

Create : The connection will automatically create the database file if it doesn't exist.

FullMutex : The connection is opened in serialized threading mode.

NoMutex : The connection is opened in multi-threading mode.

PrivateCache : The connection will not participate in the shared cache, even if it's enabled.

ReadWrite : The connection can read and write data.

SharedCache : The connection will participate in the shared cache, if it's enabled.

ProtectionComplete : The file is encrypted and inaccessible while the device is locked.

ProtectionCompleteUnlessOpen : The file is encrypted until it's opened but is then accessible even if the user

locks the device.

ProtectionCompleteUntilFirstUserAuthentication : The file is encrypted until after the user has booted and

unlocked the device.

ProtectionNone : The database file isn't encrypted.

You may need to specify different flags depending on how your database will be used. For more information

about SQLiteOpenFlags , see Opening A New Database Connection on sqlite.org.

A database wrapper class abstracts the data access layer from the rest of the app. This class centralizes query

logic and simplifies the management of database initialization, making it easier to refactor or expand data

operations as the app grows. The Todo app defines a TodoItemDatabase class for this purpose.

The TodoItemDatabase uses asynchronous lazy initialization, represented by the custom AsyncLazy<T> class, to

delay initialization of the database until it's first accessed:

https://www.sqlite.org/c3ref/open.html

public class TodoItemDatabase
{
 static SQLiteAsyncConnection Database;

 public static readonly AsyncLazy<TodoItemDatabase> Instance = new AsyncLazy<TodoItemDatabase>(async ()
=>
 {
 var instance = new TodoItemDatabase();
 CreateTableResult result = await Database.CreateTableAsync<TodoItem>();
 return instance;
 });

 public TodoItemDatabase()
 {
 Database = new SQLiteAsyncConnection(Constants.DatabasePath, Constants.Flags);
 }

 //...
}

NOTENOTE

 Asynchronous lazy initializationAsynchronous lazy initialization

public class AsyncLazy<T>
{
 readonly Lazy<Task<T>> instance;

 public AsyncLazy(Func<T> factory)
 {
 instance = new Lazy<Task<T>>(() => Task.Run(factory));
 }

 public AsyncLazy(Func<Task<T>> factory)
 {
 instance = new Lazy<Task<T>>(() => Task.Run(factory));
 }

 public TaskAwaiter<T> GetAwaiter()
 {
 return instance.Value.GetAwaiter();
 }
}

The Instance field is used to create the database table for the TodoItem object, if it doesn't already exist, and

returns a TodoItemDatabase as a singleton. The Instance field, of type AsyncLazy<TodoItemDatabase> is

constructed the first time it's awaited. If multiple threads attempt to access the field simultaneously, they will all

use the single construction. Then, when the construction completes, all await operations complete. In addition,

any await operations after the construction is complete continue immediately since the value is available.

The database connection is a static field which ensures that a single database connection is used for the life of the app.

Using a persistent, static connection offers better performance than opening and closing connections multiple times

during a single app session.

In order to start the database initialization, avoid blocking execution, and have the opportunity to catch

exceptions, the sample application uses asynchronous lazy initalization, represented by the AsyncLazy<T> class:

The AsyncLazy class combines the Lazy<T> and Task<T> types to create a lazy-initialized task that represents

the initialization of a resource. The factory delegate that's passed to the constructor can either be synchronous

or asynchronous. Factory delegates will run on a thread pool thread, and will not be executed more than once

 Data manipulation methodsData manipulation methods

public class TodoItemDatabase
{
 // ...
 public Task<List<TodoItem>> GetItemsAsync()
 {
 return Database.Table<TodoItem>().ToListAsync();
 }

 public Task<List<TodoItem>> GetItemsNotDoneAsync()
 {
 // SQL queries are also possible
 return Database.QueryAsync<TodoItem>("SELECT * FROM [TodoItem] WHERE [Done] = 0");
 }

 public Task<TodoItem> GetItemAsync(int id)
 {
 return Database.Table<TodoItem>().Where(i => i.ID == id).FirstOrDefaultAsync();
 }

 public Task<int> SaveItemAsync(TodoItem item)
 {
 if (item.ID != 0)
 {
 return Database.UpdateAsync(item);
 }
 else
 {
 return Database.InsertAsync(item);
 }
 }

 public Task<int> DeleteItemAsync(TodoItem item)
 {
 return Database.DeleteAsync(item);
 }
}

 Access data in Xamarin.Forms

async void OnSaveClicked(object sender, EventArgs e)
{
 var todoItem = (TodoItem)BindingContext;
 TodoItemDatabase database = await TodoItemDatabase.Instance;
 await database.SaveItemAsync(todoItem);

 // Navigate backwards
 await Navigation.PopAsync();
}

(even when multiple threads attempt to start them simultaneously). When a factory delegate completes, the

lazy-initialized value is available, and any methods awaiting the AsyncLazy<T> instance receive the value. For

more information, see AsyncLazy.

The TodoItemDatabase class includes methods for the four types of data manipulation: create, read, edit, and

delete. The SQLite.NET library provides a simple Object Relational Map (ORM) that allows you to store and

retrieve objects without writing SQL statements.

The TodoItemDatabase class exposes the Instance field, through which the data access operations in the

TodoItemDatabase class can be invoked:

https://devblogs.microsoft.com/pfxteam/asynclazyt/

 Advanced configuration

 Write-ahead loggingWrite-ahead logging

await Database.EnableWriteAheadLoggingAsync();

 Copy a databaseCopy a database

 Related links

SQLite provides a robust API with more features than are covered in this article and the sample app. The

following sections cover features that are important for scalability.

For more information, see SQLite Documentation on sqlite.org.

By default, SQLite uses a traditional rollback journal. A copy of the unchanged database content is written into a

separate rollback file, then the changes are written directly to the database file. The COMMIT occurs when the

rollback journal is deleted.

Write-Ahead Logging (WAL) writes changes into a separate WAL file first. In WAL mode, a COMMIT is a special

record, appended to the WAL file, which allows multiple transactions to occur in a single WAL file. A WAL file is

merged back into the database file in a special operation called a checkpoint.

WAL can be faster for local databases because readers and writers do not block each other, allowing read and

write operations to be concurrent. However, WAL mode doesn't allow changes to the page size, adds additional

file associations to the database, and adds the extra checkpointing operation.

To enable WAL in SQLite.NET, call the EnableWriteAheadLoggingAsync method on the SQLiteAsyncConnection

instance:

For more information, see SQLite Write-Ahead Logging on sqlite.org.

There are several cases where it may be necessary to copy a SQLite database:

A database has shipped with your application but must be copied or moved to writeable storage on the

mobile device.

You need to make a backup or copy of the database.

You need to version, move, or rename the database file.

In general, moving, renaming, or copying a database file is the same process as any other file type with a few

additional considerations:

All database connections should be closed before attempting to move the database file.

If you use Write-Ahead Logging, SQLite will create a Shared Memory Access (.shm) file and a (Write Ahead

Log) (.wal) file. Ensure that you apply any changes to these files as well.

For more information, see File Handling in Xamarin.Forms.

Todo sample application

SQLite.NET NuGet package

SQLite documentation

Using SQLite with Android

Using SQLite with iOS

AsyncLazy

https://www.sqlite.org/docs.html
https://www.sqlite.org/wal.html
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo
https://www.nuget.org/packages/sqlite-net-pcl/
https://www.sqlite.org/docs.html
https://docs.microsoft.com/en-us/xamarin/android/data-cloud/data-access/using-sqlite-orm
https://docs.microsoft.com/en-us/xamarin/ios/data-cloud/data/using-sqlite-orm
https://devblogs.microsoft.com/pfxteam/asynclazyt/

Xamarin.Forms and Azure Services
 3/5/2021 • 2 minutes to read • Edit Online

 Consume an Azure Cosmos DB Document Database in Xamarin.Forms

 Send and receive Push Notifications with Azure Notification Hubs and
Xamarin.Forms

 Store and Access Data in Azure Storage from Xamarin.Forms

 Search Data with Azure Search and Xamarin.Forms

 Azure Functions with Xamarin.Forms

An Azure Cosmos DB document database is a NoSQL database that provides low latency access to JSON

documents, offering a fast, highly available, scalable database service for applications that require seamless

scale and global replication. This article explains how to use the Azure Cosmos DB .NET Standard client library to

integrate an Azure Cosmos DB document database into a Xamarin.Forms application.

Azure Notification Hubs enable you to centralize notifications across platforms so your backend application can

communicate with a single hub. Azure Notification Hubs take care of distributing push notifications to multiple

platform providers. This article explains how to integrate Azure Notification Hubs into a Xamarin.Forms

application.

Azure Storage is a scalable cloud storage solution that can be used to store unstructured, and structured data.

This article demonstrates how to use Xamarin.Forms to store text and binary data in Azure Storage, and how to

access the data.

Azure Search is a cloud service that provides indexing and querying capabilities for uploaded data. This removes

the infrastructure requirements and search algorithm complexities traditionally associated with implementing

search functionality in an application. This article demonstrates how to use the Microsoft Azure Search Library

to integrate Azure Search into a Xamarin.Forms application.

This article demonstrates how to build your first Azure Function that interacts with Xamarin.Forms.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-services/index.md
https://docs.microsoft.com/en-us/azure/developer/mobile-apps/notification-hubs-backend-service-xamarin-forms

Consume an Azure Cosmos DB Document
Database in Xamarin.Forms

 7/8/2021 • 7 minutes to read • Edit Online

NOTENOTE

 Setup

 Download the sample

An Azure Cosmos DB document database is a NoSQL database that provides low latency access to JSON

documents, offering a fast, highly available, scalable database service for applications that require seamless

scale and global replication. This article explains how to use the Azure Cosmos DB .NET Standard client library to

integrate an Azure Cosmos DB document database into a Xamarin.Forms application.

Microsoft Azure Cosmos DB videoMicrosoft Azure Cosmos DB video

An Azure Cosmos DB document database account can be provisioned using an Azure subscription. Each

database account can have zero or more databases. A document database in Azure Cosmos DB is a logical

container for document collections and users.

An Azure Cosmos DB document database may contain zero or more document collections. Each document

collection can have a different performance level, allowing more throughput to be specified for frequently

accessed collections, and less throughput for infrequently accessed collections.

Each document collection consists of zero or more JSON documents. Documents in a collection are schema-free,

and so do not need to share the same structure or fields. As documents are added to a document collection,

Cosmos DB automatically indexes them and they become available to be queried.

For development purposes, a document database can also be consumed through an emulator. Using the

emulator, applications can be developed and tested locally, without creating an Azure subscription or incurring

any costs. For more information about the emulator, see Developing locally with the Azure Cosmos DB Emulator.

This article, and accompanying sample application, demonstrates a Todo list application where the tasks are

stored in an Azure Cosmos DB document database. For more information about the sample application, see

Understanding the sample.

For more information about Azure Cosmos DB, see the Azure Cosmos DB Documentation.

If you don't have an Azure subscription, create a free account before you begin.

The process for integrating an Azure Cosmos DB document database into a Xamarin.Forms application is as

follows:

1. Create a Cosmos DB account. For more information, see Create an Azure Cosmos DB account.

2. Add the Azure Cosmos DB .NET Standard client library NuGet package to the platform projects in the

Xamarin.Forms solution.

3. Add using directives for the Microsoft.Azure.Documents , Microsoft.Azure.Documents.Client , and

Microsoft.Azure.Documents.Linq namespaces to classes that will access the Cosmos DB account.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-services/azure-cosmosdb.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-tododocumentdb
https://www.youtube-nocookie.com/embed/BoVH12igmbg
https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started#create-an-azure-cosmos-account
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core

NOTENOTE

 Consuming the Azure Cosmos DB account

DocumentClient client = new DocumentClient(new Uri(Constants.EndpointUri), Constants.PrimaryKey);

 Creating a DatabaseCreating a Database

public async Task CreateDatabase(string databaseName)
{
 ...
 await client.CreateDatabaseIfNotExistsAsync(new Database
 {
 Id = databaseName
 });
 ...
}

NOTENOTE

 Creating a Document CollectionCreating a Document Collection

After performing these steps, the Azure Cosmos DB .NET Standard client library can be used to configure and

execute requests against the document database.

The Azure Cosmos DB .NET Standard client library can only be installed into platform projects, and not into a Portable

Class Library (PCL) project. Therefore, the sample application is a Shared Access Project (SAP) to avoid code duplication.

However, the DependencyService class can be used in a PCL project to invoke Azure Cosmos DB .NET Standard client

library code contained in platform-specific projects.

The DocumentClient type encapsulates the endpoint, credentials, and connection policy used to access the Azure

Cosmos DB account, and is used to configure and execute requests against the account. The following code

example demonstrates how to create an instance of this class:

The Cosmos DB Uri and primary key must be provided to the DocumentClient constructor. These can be

obtained from the Azure Portal. For more information, see Connect to a Azure Cosmos DB account.

A document database is a logical container for document collections and users, and can be created in the Azure

Portal, or programmatically using the DocumentClient.CreateDatabaseIfNotExistsAsync method:

The CreateDatabaseIfNotExistsAsync method specifies a Database object as an argument, with the Database

object specifying the database name as its Id property. The CreateDatabaseIfNotExistsAsync method creates

the database if it doesn't exist, or returns the database if it already exists. However, the sample application

ignores any data returned by the CreateDatabaseIfNotExistsAsync method.

The CreateDatabaseIfNotExistsAsync method returns a Task<ResourceResponse<Database>> object, and the status

code of the response can be checked to determine whether a database was created, or an existing database was returned.

A document collection is a container for JSON documents, and can be created in the Azure Portal, or

programmatically using the DocumentClient.CreateDocumentCollectionIfNotExistsAsync method:

https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started#connect

public async Task CreateDocumentCollection(string databaseName, string collectionName)
{
 ...
 // Create collection with 400 RU/s
 await client.CreateDocumentCollectionIfNotExistsAsync(
 UriFactory.CreateDatabaseUri(databaseName),
 new DocumentCollection
 {
 Id = collectionName
 },
 new RequestOptions
 {
 OfferThroughput = 400
 });
 ...
}

NOTENOTE

IMPORTANTIMPORTANT

 Retrieving Document Collection DocumentsRetrieving Document Collection Documents

public async Task<List<TodoItem>> GetTodoItemsAsync()
{
 ...
 var query = client.CreateDocumentQuery<TodoItem>(collectionLink)
 .AsDocumentQuery();
 while (query.HasMoreResults)
 {
 Items.AddRange(await query.ExecuteNextAsync<TodoItem>());
 }
 ...
}

The CreateDocumentCollectionIfNotExistsAsync method requires two compulsory arguments – a database name

specified as a Uri , and a DocumentCollection object. The DocumentCollection object represents a document

collection whose name is specified with the Id property. The CreateDocumentCollectionIfNotExistsAsync

method creates the document collection if it doesn't exist, or returns the document collection if it already exists.

However, the sample application ignores any data returned by the CreateDocumentCollectionIfNotExistsAsync

method.

The CreateDocumentCollectionIfNotExistsAsync method returns a Task<ResourceResponse<DocumentCollection>>

object, and the status code of the response can be checked to determine whether a document collection was created, or

an existing document collection was returned.

Optionally, the CreateDocumentCollectionIfNotExistsAsync method can also specify a RequestOptions object,

which encapsulates options that can be specified for requests issued to the Cosmos DB account. The

RequestOptions.OfferThroughput property is used to define the performance level of the document collection,

and in the sample application, is set to 400 request units per second. This value should be increased or

decreased depending on whether the collection will be frequently or infrequently accessed.

Note that the CreateDocumentCollectionIfNotExistsAsync method will create a new collection with a reserved

throughput, which has pricing implications.

The contents of a document collection can be retrieved by creating and executing a document query. A

document query is created with the DocumentClient.CreateDocumentQuery method:

Uri collectionLink = UriFactory.CreateDocumentCollectionUri(Constants.DatabaseName,
Constants.CollectionName);

var query = client.CreateDocumentQuery<TodoItem>(collectionLink)
 .Where(f => f.Done != true)
 .AsDocumentQuery();

 Inserting a Document into a Document CollectionInserting a Document into a Document Collection

public async Task SaveTodoItemAsync(TodoItem item, bool isNewItem = false)
{
 ...
 await client.CreateDocumentAsync(collectionLink, item);
 ...
}

 Replacing a Document in a Document CollectionReplacing a Document in a Document Collection

public async Task SaveTodoItemAsync(TodoItem item, bool isNewItem = false)
{
 ...
 await client.ReplaceDocumentAsync(UriFactory.CreateDocumentUri(Constants.DatabaseName,
Constants.CollectionName, item.Id), item);
 ...
}

 Deleting a Document from a Document CollectionDeleting a Document from a Document Collection

This query asynchronously retrieves all the documents from the specified collection, and places the documents

in a List<TodoItem> collection for display.

The CreateDocumentQuery<T> method specifies a Uri argument that represents the collection that should be

queried for documents. In this example, the collectionLink variable is a class-level field that specifies the Uri

that represents the document collection to retrieve documents from:

The CreateDocumentQuery<T> method creates a query that is executed synchronously, and returns an

IQueryable<T> object. However, the AsDocumentQuery method converts the IQueryable<T> object to an

IDocumentQuery<T> object which can be executed asynchronously. The asynchronous query is executed with the

IDocumentQuery<T>.ExecuteNextAsync method, which retrieves the next page of results from the document

database, with the IDocumentQuery<T>.HasMoreResults property indicating whether there are additional results to

be returned from the query.

Documents can be filtered server side by including a Where clause in the query, which applies a filtering

predicate to the query against the document collection:

This query retrieves all documents from the collection whose Done property is equal to false .

Documents are user defined JSON content, and can be inserted into a document collection with the

DocumentClient.CreateDocumentAsync method:

The CreateDocumentAsync method specifies a Uri argument that represents the collection the document should

be inserted into, and an object argument that represents the document to be inserted.

Documents can be replaced in a document collection with the DocumentClient.ReplaceDocumentAsync method:

The ReplaceDocumentAsync method specifies a Uri argument that represents the document in the collection that

should be replaced, and an object argument that represents the updated document data.

public async Task DeleteTodoItemAsync(string id)
{
 ...
 await client.DeleteDocumentAsync(UriFactory.CreateDocumentUri(Constants.DatabaseName,
Constants.CollectionName, id));
 ...
}

 Deleting a Document CollectionDeleting a Document Collection

await client.DeleteDocumentCollectionAsync(collectionLink);

 Deleting a DatabaseDeleting a Database

await client.DeleteDatabaseAsync(UriFactory.CreateDatabaseUri(Constants.DatabaseName));

 Summary

 Related Links

A document can be deleted from a document collection with the DocumentClient.DeleteDocumentAsync method:

The DeleteDocumentAsync method specifies a Uri argument that represents the document in the collection that

should be deleted.

A document collection can be deleted from a database with the DocumentClient.DeleteDocumentCollectionAsync

method:

The DeleteDocumentCollectionAsync method specifies a Uri argument that represents the document collection

to be deleted. Note that invoking this method will also delete the documents stored in the collection.

A database can be deleted from a Cosmos DB database account with the DocumentClient.DeleteDatabaesAsync

method:

The DeleteDatabaseAsync method specifies a Uri argument that represents the database to be deleted. Note

that invoking this method will also delete the document collections stored in the database, and the documents

stored in the document collections.

This article explained how to use the Azure Cosmos DB .NET Standard client library to integrate an Azure

Cosmos DB document database into a Xamarin.Forms application. An Azure Cosmos DB document database is a

NoSQL database that provides low latency access to JSON documents, offering a fast, highly available, scalable

database service for applications that require seamless scale and global replication.

Todo Azure Cosmos DB (sample)

Azure Cosmos DB Documentation

Azure Cosmos DB .NET Standard client library

Azure Cosmos DB API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-tododocumentdb
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/cosmosdb/client?view=azure-dotnet

Store and Access Data in Azure Storage from
Xamarin.Forms

 7/8/2021 • 9 minutes to read • Edit Online

NOTENOTE

 Introduction to Blob Storage

 Download the sample

Azure Storage is a scalable cloud storage solution that can be used to store unstructured, and structured data.

This article demonstrates how to use Xamarin.Forms to store text and binary data in Azure Storage, and how to

access the data.

Azure Storage provides four storage services:

Blob Storage. A blob can be text or binary data, such as backups, virtual machines, media files, or documents.

Table Storage is a NoSQL key-attribute store.

Queue Storage is a messaging service for workflow processing and communication between cloud services.

File Storage provides shared storage using the SMB protocol.

There are two types of storage accounts:

A general-purpose storage accounts provides access to Azure Storage services from a single account.

A Blob storage account is a specialized storage account for storing blobs. This account type is recommended

when you only need to store blob data.

This article, and accompanying sample application, demonstrates uploading image and text files to blob storage,

and downloading them. In addition, it also demonstrates retrieving a list of files from blob storage, and deleting

files.

For more information about Azure Storage, see Introduction to Storage.

If you don't have an Azure subscription, create a free account before you begin.

Blob storage consists of three components, which are shown in the following diagram:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-services/azure-storage.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-azurestorage
https://azure.microsoft.com/documentation/articles/storage-introduction/
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps

NOTENOTE

 Setup

All access to Azure Storage is through a storage account. A storage account can contain an unlimited number of

containers, and a container can store an unlimited number of blobs, up to the capacity limit of the storage

account.

A blob is a file of any type and size. Azure Storage supports three different blob types:

Block blobs are optimized for streaming and storing cloud objects, and are a good choice for storing

backups, media files, documents etc. Block blobs can be up to 195Gb in size.

Append blobs are similar to block blobs but are optimized for append operations, such as logging. Append

blobs can be up to 195Gb in size.

Page blobs are optimized for frequent read/write operations and are typically used for storing virtual

machines, and their disks. Page blobs can be up to 1Tb in size.

Note that blob storage accounts support block and append blobs, but not page blobs.

A blob is uploaded to Azure Storage, and downloaded from Azure Storage, as a stream of bytes. Therefore, files

must be converted to a stream of bytes prior to upload, and converted back to their original representation after

download.

Every object that's stored in Azure Storage has a unique URL address. The storage account name forms the

subdomain of that address, and the combination of subdomain and domain name forms an endpoint for the

storage account. For example, if your storage account is named mystorageaccount, the default blob endpoint for

the storage account is https://mystorageaccount.blob.core.windows.net .

The URL for accessing an object in a storage account is built by appending the object's location in the storage

account to the endpoint. For example, a blob address will have the format

https://mystorageaccount.blob.core.windows.net/mycontainer/myblob .

The process for integrating an Azure Storage account into a Xamarin.Forms application is as follows:

1. Create a storage account. For more information, see Create a storage account.

2. Add the Azure Storage Client Library to the Xamarin.Forms application.

3. Configure the storage connection string. For more information, see Connecting to Azure Storage.

4. Add using directives for the Microsoft.WindowsAzure.Storage and Microsoft.WindowsAzure.Storage.Blob

namespaces to classes that will access Azure Storage.

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create#create-a-storage-account
https://www.nuget.org/packages/WindowsAzure.Storage/

 Connecting to Azure Storage

NOTENOTE

 Connecting to the Azure Storage EmulatorConnecting to the Azure Storage Emulator

UseDevelopmentStorage=true

 Connecting to Azure Storage Using a Shared KeyConnecting to Azure Storage Using a Shared Key

DefaultEndpointsProtocol=[http|https];AccountName=myAccountName;AccountKey=myAccountKey

NOTENOTE

 Connecting to Azure Storage using a Shared Access SignatureConnecting to Azure Storage using a Shared Access Signature

Every request made against storage account resources must be authenticated. While blobs can be configured to

support anonymous authentication, there are two main approaches an application can use to authenticate with

a storage account:

Shared Key. This approach uses the Azure Storage account name and account key to access storage services.

A storage account is assigned two private keys on creation that can be used for shared key authentication.

Shared Access Signature. This is a token that can be appended to a URL that enables delegated access to a

storage resource, with the permissions it specifies, for the period of time that it's valid.

Connection strings can be specified that include the authentication information required to access Azure Storage

resources from an application. In addition, a connection string can be configured to connect to the Azure storage

emulator from Visual Studio.

Azure Storage supports HTTP and HTTPS in a connection string. However, using HTTPS is recommended.

The Azure storage emulator provides a local environment that emulates the Azure blob, queue, and table

services for development purposes.

The following connection string should be used to connect to the Azure storage emulator :

For more information about the Azure storage emulator, see Use the Azure storage emulator for Development

and testing.

The following connection string format should be used to connect to Azure Storage with a shared key:

myAccountName should be replaced with the name of your storage account, and myAccountKey should be

replaced with one of your two account access keys.

When using shared key authentication, your account name and account key will be distributed to each person that uses

your application, which will provide full read/write access to the storage account. Therefore, use shared key authentication

for testing purposes only, and never distribute keys to other users.

The following connection string format should be used to connect to Azure Storage with an SAS:

BlobEndpoint=myBlobEndpoint;SharedAccessSignature=mySharedAccessSignature

myBlobEndpoint should be replaced with the URL of your blob endpoint, and mySharedAccessSignature should be

replaced with your SAS. The SAS provides the protocol, the service endpoint, and the credentials to access the

resource.

https://docs.microsoft.com/en-us/azure/storage/common/storage-use-emulator

NOTENOTE

 Creating a Container

static CloudBlobContainer GetContainer(ContainerType containerType)
{
 var account = CloudStorageAccount.Parse(Constants.StorageConnection);
 var client = account.CreateCloudBlobClient();
 return client.GetContainerReference(containerType.ToString().ToLower());
}

NOTENOTE

var container = GetContainer(containerType);

await container.CreateIfNotExistsAsync();

 Uploading Data to a Container

SAS authentication is recommended for production applications. However, in a production application the SAS should be

retrieved from a backend service on-demand, rather than being bundled with the application.

For more information about Shared Access Signatures, see Using Shared Access Signatures (SAS).

The GetContainer method is used to retrieve a reference to a named container, which can then be used to

retrieve blobs from the container or to add blobs to the container. The following code example shows the

GetContainer method:

The CloudStorageAccount.Parse method parses a connection string and returns a CloudStorageAccount instance

that represents the storage account. A CloudBlobClient instance, which is used to retrieve containers and blobs,

is then created by the CreateCloudBlobClient method. The GetContainerReference method retrieves the

specified container as a CloudBlobContainer instance, before it's returned to the calling method. In this example,

the container name is the ContainerType enumeration value, converted to a lowercase string.

Container names must be lowercase, and must start with a letter or number. In addition, they can only contain letters,

numbers, and the dash character, and must be between 3 and 63 characters long.

The GetContainer method is invoked as follows:

The CloudBlobContainer instance can then be used to create a container if it doesn't already exist:

By default, a newly created container is private. This means that a storage access key must be specified to

retrieve blobs from the container. For information about making blobs within a container public, see Create a

container.

The UploadFileAsync method is used to upload a stream of byte data to blob storage, and is shown in the

following code example:

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet#create-a-container

public static async Task<string> UploadFileAsync(ContainerType containerType, Stream stream)
{
 var container = GetContainer(containerType);
 await container.CreateIfNotExistsAsync();

 var name = Guid.NewGuid().ToString();
 var fileBlob = container.GetBlockBlobReference(name);
 await fileBlob.UploadFromStreamAsync(stream);

 return name;
}

var byteData = Encoding.UTF8.GetBytes(text);
uploadedFilename = await AzureStorage.UploadFileAsync(ContainerType.Text, new MemoryStream(byteData));

 Downloading Data from a Container

public static async Task<byte[]> GetFileAsync(ContainerType containerType, string name)
{
 var container = GetContainer(containerType);

 var blob = container.GetBlobReference(name);
 if (await blob.ExistsAsync())
 {
 await blob.FetchAttributesAsync();
 byte[] blobBytes = new byte[blob.Properties.Length];

 await blob.DownloadToByteArrayAsync(blobBytes, 0);
 return blobBytes;
 }
 return null;
}

var byteData = await AzureStorage.GetFileAsync(ContainerType.Text, uploadedFilename);
string text = Encoding.UTF8.GetString(byteData);

After retrieving a container reference, the method creates the container if it doesn't already exist. A new Guid is

then created to act as a unique blob name, and a blob block reference is retrieved as an CloudBlockBlob

instance. The stream of data is then uploaded to the blob using the UploadFromStreamAsync method, which

creates the blob if it doesn't already exist, or overwrites it if it does exist.

Before a file can be uploaded to blob storage using this method, it must first be converted to a byte stream. This

is demonstrated in the following code example:

The text data is converted to a byte array, which is then wrapped as a stream that's passed to the

UploadFileAsync method.

The GetFileAsync method is used to download blob data from Azure Storage, and is shown in the following

code example:

After retrieving a container reference, the method retrieves a blob reference for the stored data. If the blob

exists, its properties are retrieved by the FetchAttributesAsync method. A byte array of the correct size is

created, and the blob is downloaded as an array of bytes that gets returned to the calling method.

After downloading the blob byte data, it must be converted to its original representation. This is demonstrated

in the following code example:

 Listing Data in a Container

public static async Task<IList<string>> GetFilesListAsync(ContainerType containerType)
{
 var container = GetContainer(containerType);

 var allBlobsList = new List<string>();
 BlobContinuationToken token = null;

 do
 {
 var result = await container.ListBlobsSegmentedAsync(token);
 if (result.Results.Count() > 0)
 {
 var blobs = result.Results.Cast<CloudBlockBlob>().Select(b => b.Name);
 allBlobsList.AddRange(blobs);
 }
 token = result.ContinuationToken;
 } while (token != null);

 return allBlobsList;
}

 Deleting Data from a Container

public static async Task<bool> DeleteFileAsync(ContainerType containerType, string name)
{
 var container = GetContainer(containerType);
 var blob = container.GetBlobReference(name);
 return await blob.DeleteIfExistsAsync();
}

 Related Links

The array of bytes is retrieved from Azure Storage by the GetFileAsync method, before it's converted back to a

UTF8 encoded string.

The GetFilesListAsync method is used to retrieve a list of blobs stored in a container, and is shown in the

following code example:

After retrieving a container reference, the method uses the container's ListBlobsSegmentedAsync method to

retrieve references to the blobs within the container. The results returned by the ListBlobsSegmentedAsync

method are enumerated while the BlobContinuationToken instance is not null . Each blob is cast from the

returned IListBlobItem to a CloudBlockBlob in order access the Name property of the blob, before it's value is

added to the allBlobsList collection. Once the BlobContinuationToken instance is null , the last blob name has

been returned, and execution exits the loop.

The DeleteFileAsync method is used to delete a blob from a container, and is shown in the following code

example:

After retrieving a container reference, the method retrieves a blob reference for the specified blob. The blob is

then deleted with the DeleteIfExistsAsync method.

Azure Storage (sample)

Introduction to Storage

How to use Blob Storage from Xamarin

Using Shared Access Signatures (SAS)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-azurestorage
https://azure.microsoft.com/documentation/articles/storage-introduction/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-xamarin
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

Windows Azure Storage (NuGet)

https://www.nuget.org/packages/WindowsAzure.Storage/

Search Data with Azure Search and Xamarin.Forms
 7/8/2021 • 10 minutes to read • Edit Online

 Overview

NOTENOTE

 Setup

 Download the sample

Azure Search is a cloud service that provides indexing and querying capabilities for uploaded data. This removes

the infrastructure requirements and search algorithm complexities traditionally associated with implementing

search functionality in an application. This article demonstrates how to use the Microsoft Azure Search Library

to integrate Azure Search into a Xamarin.Forms application.

Data is stored in Azure Search as indexes and documents. An index is a store of data that can be searched by the

Azure Search service, and is conceptually similar to a database table. A document is a single unit of searchable

data in an index, and is conceptually similar to a database row. When uploading documents and submitting

search queries to Azure Search, requests are made to a specific index in the search service.

Each request made to Azure Search must include the name of the service, and an API key. There are two types of

API key:

Admin keys grant full rights to all operations. This includes managing the service, creating and deleting

indexes, and data sources.

Query keys grant read-only access to indexes and documents, and should be used by applications that issue

search requests.

The most common request to Azure Search is to execute a query. There are two types of query that can be

submitted:

A search query searches for one or more items in all searchable fields in an index. Search queries are built

using the simplified syntax, or the Lucene query syntax. For more information, see Simple query syntax in

Azure Search, and Lucene query syntax in Azure Search.

A filter query evaluates a boolean expression over all filterable fields in an index. Filter queries are built using

a subset of the OData filter language. For more information, see OData Expression Syntax for Azure Search.

Search queries and filter queries can be used separately or together. When used together, the filter query is

applied first to the entire index, and then the search query is performed on the results of the filter query.

Azure Search also supports retrieving suggestions based on search input. For more information, see Suggestion

Queries.

If you don't have an Azure subscription, create a free account before you begin.

The process for integrating Azure Search into a Xamarin.Forms application is as follows:

1. Create an Azure Search service. For more information, see Create an Azure Search service using the Azure

Portal.

2. Remove Silverlight as a target framework from the Xamarin.Forms solution Portable Class Library (PCL). This

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-services/azure-search.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-azuresearch
https://docs.microsoft.com/en-us/rest/api/searchservice/simple-query-syntax-in-azure-search/
https://docs.microsoft.com/en-us/rest/api/searchservice/lucene-query-syntax-in-azure-search/
https://docs.microsoft.com/en-us/rest/api/searchservice/odata-expression-syntax-for-azure-search/
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://docs.microsoft.com/en-us/azure/search/search-create-service-portal/

 Creating the Azure Search Index

var searchClient =
 new SearchServiceClient(Constants.SearchServiceName, new SearchCredentials(Constants.AdminApiKey));

NOTENOTE

static void CreateSearchIndex()
{
 var index = new Index()
 {
 Name = Constants.Index,
 Fields = new[]
 {
 new Field("id", DataType.String) { IsKey = true, IsRetrievable = true },
 new Field("name", DataType.String) { IsRetrievable = true, IsFilterable = true, IsSortable = true,
IsSearchable = true },
 new Field("location", DataType.String) { IsRetrievable = true, IsFilterable = true, IsSortable = true,
IsSearchable = true },
 new Field("details", DataType.String) { IsRetrievable = true, IsFilterable = true, IsSearchable = true
},
 new Field("imageUrl", DataType.String) { IsRetrievable = true }
 },
 Suggesters = new[]
 {
 new Suggester("nameSuggester", SuggesterSearchMode.AnalyzingInfixMatching, new[] { "name" })
 }
 };

 searchClient.Indexes.Create(index);
}

can be accomplished by changing the PCL profile to any profile that supports cross-platform development,

but doesn't support Silverlight, such as profile 151 or profile 92.

3. Add the Microsoft Azure Search Library NuGet package to the PCL project in the Xamarin.Forms solution.

After performing these steps, the Microsoft Search Library API can be used to manage search indexes and data

sources, upload and manage documents, and execute queries.

An index schema must be defined that maps to the structure of the data to be searched. This can be

accomplished in the Azure Portal, or programmatically using the SearchServiceClient class. This class manages

connections to Azure Search, and can be used to create an index. The following code example demonstrates how

to create an instance of this class:

The SearchServiceClient constructor overload takes a search service name and a SearchCredentials object as

arguments, with the SearchCredentials object wrapping the admin key for the Azure Search service. The admin

key is required to create an index.

A single SearchServiceClient instance should be used in an application to avoid opening too many connections to

Azure Search.

An index is defined by the Index object, as demonstrated in the following code example:

The Index.Name property should be set to the name of the index, and the Index.Fields property should be set

to an array of Field objects. Each Field instance specifies a name, a type, and any properties, which specify

how the field is used. These properties include:

https://www.nuget.org/packages/Microsoft.Azure.Search

NOTENOTE

NOTENOTE

 Deleting the Azure Search Index

searchClient.Indexes.Delete(Constants.Index);

 Uploading Data to the Azure Search Index

IsKey – indicates whether the field is the key of the index. Only one field in the index, of type

DataType.String , must be designated as the key field.

IsFacetable – indicates whether it's possible to perform faceted navigation on this field. The default value is

false .

IsFilterable – indicates whether the field can be used in filter queries. The default value is false .

IsRetrievable – indicates whether the field can be retrieved in search results. The default value is true .

IsSearchable – indicates whether the field is included in full-text searches. The default value is false .

IsSortable – indicates whether the field can be used in OrderBy expressions. The default value is false .

Changing an index after it's deployed involves rebuilding and reloading the data.

An Index object can optionally specify a Suggesters property, which defines the fields in the index to be used

to support auto-complete or search suggestion queries. The Suggesters property should be set to an array of

Suggester objects that define the fields that are used to build the search suggestion results.

After creating the Index object, the index is created by calling Indexes.Create on the SearchServiceClient

instance.

When creating an index from an application that must be kept responsive, use the Indexes.CreateAsync method.

For more information, see Create an Azure Search index using the .NET SDK.

An index can be deleted by calling Indexes.Delete on the SearchServiceClient instance:

After defining the index, data can be uploaded to it using one of two models:

Pull modelPull model – data is periodically ingested from Azure Cosmos DB, Azure SQL Database, Azure Blob Storage,

or SQL Server hosted in an Azure Virtual Machine.

Push modelPush model – data is programmatically sent to the index. This is the model adopted in this article.

A SearchIndexClient instance must be created to import data into the index. This can be accomplished by

calling the SearchServiceClient.Indexes.GetClient method, as demonstrated in the following code example:

https://docs.microsoft.com/en-us/azure/search/search-create-index-dotnet/

static void UploadDataToSearchIndex()
{
 var indexClient = searchClient.Indexes.GetClient(Constants.Index);

 var monkeyList = MonkeyData.Monkeys.Select(m => new
 {
 id = Guid.NewGuid().ToString(),
 name = m.Name,
 location = m.Location,
 details = m.Details,
 imageUrl = m.ImageUrl
 });

 var batch = IndexBatch.New(monkeyList.Select(IndexAction.Upload));
 try
 {
 indexClient.Documents.Index(batch);
 }
 catch (IndexBatchException ex)
 {
 // Sometimes when the Search service is under load, indexing will fail for some
 // documents in the batch. Compensating actions like delaying and retrying should be taken.
 // Here, the failed document keys are logged.
 Console.WriteLine("Failed to index some documents: {0}",
 string.Join(", ", ex.IndexingResults.Where(r => !r.Succeeded).Select(r => r.Key)));
 }
}

NOTENOTE

 Querying the Azure Search Index

SearchIndexClient indexClient =
 new SearchIndexClient(Constants.SearchServiceName, Constants.Index, new
SearchCredentials(Constants.QueryApiKey));

Data to be imported into the index is packaged as an IndexBatch object, which encapsulates a collection of

IndexAction objects. Each IndexAction instance contains a document, and a property that tells Azure Search

which action to perform on the document. In the code example above, the IndexAction.Upload action is

specified, which results in the document being inserted into the index if it's new, or replaced if it already exists.

The IndexBatch object is then sent to the index by calling the Documents.Index method on the

SearchIndexClient object. For information about other indexing actions, see Decide which indexing action to

use.

Only 1000 documents can be included in a single indexing request.

Note that in the code example above, the monkeyList collection is created as an anonymous object from a

collection of Monkey objects. This creates data for the id field, and resolves the mapping of Pascal case Monkey

property names to camel case search index field names. Alternatively, this mapping can also be accomplished by

adding the [SerializePropertyNamesAsCamelCase] attribute to the Monkey class.

For more information, see Upload data to Azure Search using the .NET SDK.

A SearchIndexClient instance must be created to query an index. When an application executes queries, it's

advisable to follow the principle of least privilege and create a SearchIndexClient directly, passing the query key

as an argument. This ensures that users have read-only access to indexes and documents. This approach is

demonstrated in the following code example:

https://docs.microsoft.com/en-us/azure/search/search-import-data-dotnet#decide-which-indexing-action-to-use
https://docs.microsoft.com/en-us/azure/search/search-import-data-dotnet/

 Search QueriesSearch Queries

async Task AzureSearch(string text)
{
 Monkeys.Clear();

 var searchResults = await indexClient.Documents.SearchAsync<Monkey>(text);
 foreach (SearchResult<Monkey> result in searchResults.Results)
 {
 Monkeys.Add(new Monkey
 {
 Name = result.Document.Name,
 Location = result.Document.Location,
 Details = result.Document.Details,
 ImageUrl = result.Document.ImageUrl
 });
 }
}

var parameters = new SearchParameters
{
 Filter = "location ne 'China' and location ne 'Vietnam'"
};
var searchResults = await indexClient.Documents.SearchAsync<Monkey>(text, parameters);

NOTENOTE

The SearchIndexClient constructor overload takes a search service name, index name, and a SearchCredentials

object as arguments, with the SearchCredentials object wrapping the query key for the Azure Search service.

The index can be queried by calling the Documents.SearchAsync method on the SearchIndexClient instance, as

demonstrated in the following code example:

The SearchAsync method takes a search text argument, and an optional SearchParameters object that can be

used to further refine the query. A search query is specified as the search text argument, while a filter query can

be specified by setting the Filter property of the SearchParameters argument. The following code example

demonstrates both query types:

This filter query is applied to the entire index and removes documents from the results where the location

field is not equal to China and not equal to Vietnam. After filtering, the search query is performed on the results

of the filter query.

To filter without searching, pass * as the search text argument.

The SearchAsync method returns a DocumentSearchResult object that contains the query results. This object is

enumerated, with each Document object being created as a Monkey object and added to the Monkeys

ObservableCollection for display. The following screenshots show search query results returned from Azure

Search:

 Suggestion QueriesSuggestion Queries

For more information about searching and filtering, see Query your Azure Search index using the .NET SDK.

Azure Search allows suggestions to be requested based on a search query, by calling the

Documents.SuggestAsync method on the SearchIndexClient instance. This is demonstrated in the following code

example:

https://docs.microsoft.com/en-us/azure/search/search-query-dotnet/

async Task AzureSuggestions(string text)
{
 Suggestions.Clear();

 var parameters = new SuggestParameters()
 {
 UseFuzzyMatching = true,
 HighlightPreTag = "[",
 HighlightPostTag = "]",
 MinimumCoverage = 100,
 Top = 10
 };

 var suggestionResults =
 await indexClient.Documents.SuggestAsync<Monkey>(text, "nameSuggester", parameters);

 foreach (var result in suggestionResults.Results)
 {
 Suggestions.Add(new Monkey
 {
 Name = result.Text,
 Location = result.Document.Location,
 Details = result.Document.Details,
 ImageUrl = result.Document.ImageUrl
 });
 }
}

The SuggestAsync method takes a search text argument, the name of the suggester to use (that's defined in the

index), and an optional SuggestParameters object that can be used to further refine the query. The

SuggestParameters instance sets the following properties:

UseFuzzyMatching – when set to true , Azure Search will find suggestions even if there's a substituted or

missing character in the search text.

HighlightPreTag – the tag that is prepended to suggestion hits.

HighlightPostTag – the tag that is appended to suggestion hits.

MinimumCoverage – represents the percentage of the index that must be covered by a suggestion query for

the query to be reported a success. The default is 80.

Top – the number of suggestions to retrieve. It must be an integer between 1 and 100, with a default value

of 5.

The overall effect is that the top 10 results from the index will be returned with hit highlighting, and the results

will include documents that include similarly spelled search terms.

The SuggestAsync method returns a DocumentSuggestResult object that contains the query results. This object is

enumerated, with each Document object being created as a Monkey object and added to the Monkeys

ObservableCollection for display. The following screenshots show the suggestion results returned from Azure

Search:

 Summary

 Related Links

Note that in the sample application, the SuggestAsync method is only invoked when the user finishes inputting a

search term. However, it can also be used to support auto-complete search queries by executing on each

keypress.

This article demonstrated how to use the Microsoft Azure Search Library to integrate Azure Search into a

Xamarin.Forms application. Azure Search is a cloud service that provides indexing and querying capabilities for

uploaded data. This removes the infrastructure requirements and search algorithm complexities traditionally

associated with implementing search functionality in an application.

Azure Search (sample)

Azure Search Documentation

Microsoft Azure Search Library

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-azuresearch
https://docs.microsoft.com/en-us/azure/search/
https://www.nuget.org/packages/Microsoft.Azure.Search/

Get started with Azure Functions
 7/8/2021 • 2 minutes to read • Edit Online

 Step-by-step instructions

NOTENOTE

 Related Links

 Download the sample

Get started building your first Azure Function that interacts with Xamarin.Forms.

Visual Studio 2019

Visual Studio 2017

Visual Studio for Mac

In addition to the video, you can follow these instructions to build your first Function using Visual Studio.

If you don't have an Azure subscription, create a free account before you begin.

Azure Functions docs

Implementing a simple Azure Function with a Xamarin.Forms client (sample)

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-services/azure-functions.md
https://azure.microsoft.com/resources/samples/functions-xamarin-getting-started/
https://channel9.msdn.com/Shows/XamarinShow/Creating-Cloud-Connected-Mobile-Apps-with-Azure-Functions-and-Visual-Studio-2017/player?nocookie=true
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://docs.microsoft.com/en-us/azure/azure-functions/
https://azure.microsoft.com/resources/samples/functions-xamarin-getting-started/

Xamarin.Forms and Azure Cognitive Services
 11/2/2020 • 2 minutes to read • Edit Online

 Introduction

 Speech Recognition

 Spell Check

 Text Translation

 Perceived Emotion Recognition

Microsoft Cognitive Services are a set of APIs, SDKs, and services available to developers to make their

applications more intelligent by adding features such as facial recognition, speech recognition, and language

understanding. This article provides an introduction to the sample application that demonstrates how to invoke

some of the Microsoft Cognitive Service APIs from Xamarin.Forms applications.

Azure Speech Service is a cloud-based API that provides algorithms to process spoken language. This article

explains how to use the Azure Speech Service to transcribe speech to text in a Xamarin.Forms application.

Bing Spell Check performs contextual spell checking for text, providing inline suggestions for misspelled words.

This article explains how to use the Bing Spell Check REST API to correct spelling errors in a Xamarin.Forms

application.

The Microsoft Translator API can be used to translate speech and text through a REST API. This article explains

how to use the Microsoft Translator Text API to translate text from one language to another in a Xamarin.Forms

application.

The Face API takes a facial expression in an image as an input, and returns data that includes confidence levels

across a set of emotions for each face in the image. This article explains how to use the Face API to recognize

emotion, to rate a Xamarin.Forms application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-cognitive-services/index.md

Xamarin.Forms and Azure Cognitive Services
Introduction

 7/8/2021 • 5 minutes to read • Edit Online

 Overview

WARNINGWARNING

 Download the sample

Microsoft Cognitive Services are a set of APIs, SDKs, and services available to developers to make their

applications more intelligent by adding features such as facial recognition, speech recognition, and language

understanding. This article provides an introduction to the sample application that demonstrates how to invoke

some of the Microsoft Cognitive Service APIs.

The accompanying sample is a todo list application that provides functionality to:

View a list of tasks.

Add and edit tasks through the soft keyboard, or by performing speech recognition with the Microsoft

Speech API.

Spell check tasks using the Bing Spell Check API. For more information, see Spell Checking using the Bing

Spell Check API.

Translate tasks from English to German using the Translator API. For more information, see Text Translation

using the Translator API.

Delete tasks.

Set a task's status to 'done'.

Rate the application with emotion recognition, using the Face API. For more information, see Emotion

Recognition using the Face API.

The Bing Speech API has been deprecated in favor of the Azure Speech Service. For a sample dedicated to Azure Speech

Service, see Speech recognition with the Speech Service API.

Tasks are stored in a local SQLite database. For more information about using a local SQLite database, see

Working with a Local Database.

The TodoListPage is displayed when the application is launched. This page displays a list of any tasks stored in

the local database, and allows the user to create a new task or to rate the application:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-cognitive-services/introduction.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices

New items can be created by clicking on the + button, which navigates to the TodoItemPage . This page can also

be navigated to by selecting a task:

 Understand the application anatomy

F O L DERF O L DER P URP O SEP URP O SE

Models Contains the data model classes for the application. This
includes the TodoItem class, which models a single item of

data used by the application. The folder also includes classes
used to model JSON responses returned from different
Microsoft Cognitive Service APIs.

Repositories Contains the ITodoItemRepository interface and

TodoItemRepository class that are used to perform

database operations.

The TodoItemPage allows tasks to be created, edited, spell-checked, translated, saved, and deleted. Speech

recognition can be used to create or edit a task. This is achieved by pressing the microphone button to start

recording, and by pressing the same button a second time to stop recording, which sends the recording to the

Bing Speech Recognition API.

Clicking the smilies button on the TodoListPage navigates to the RateAppPage , which is used to perform

emotion recognition on an image of a facial expression:

The RateAppPage allows the user to take a photo of their face, which is submitted to the Face API with the

returned emotion being displayed.

The shared code project for the sample application consists of five main folders:

Services Contains the interfaces and classes that are used to access
different Microsoft Cognitive Service APIs, along with
interfaces that are used by the DependencyService class to

locate the classes that implement the interfaces in platform
projects.

Utils Contains the Timer class, which is used by the

AuthenticationService class to renew a JWT access token

every 9 minutes.

Views Contains the pages for the application.

F O L DERF O L DER P URP O SEP URP O SE

F IL EF IL E P URP O SEP URP O SE

Constants.cs The Constants class, which specifies the API keys and

endpoints for the Microsoft Cognitive Service APIs that are
invoked. The API key constants require updating to access
the different Cognitive Service APIs.

App.xaml.cs The App class is responsible for instantiating both the first

page that will be displayed by the application on each
platform, and the TodoManager class that is used to invoke

database operations.

 NuGet packagesNuGet packages

 Model the dataModel the data

public class TodoItem
{
 [PrimaryKey, AutoIncrement]
 public int ID { get; set; }
 public string Name { get; set; }
 public bool Done { get; set; }
}

 Invoke database operationsInvoke database operations

The shared code project also contains some important files:

The sample application uses the following NuGet packages:

Newtonsoft.Json – provides a JSON framework for .NET.

PCLStorage – provides a set of cross-platform local file IO APIs.

sqlite-net-pcl – provides SQLite database storage.

Xam.Plugin.Media – provides cross-platform photo taking and picking APIs.

In addition, these NuGet packages also install their own dependencies.

The sample application uses the TodoItem class to model the data that is displayed and stored in the local

SQLite database. The following code example shows the TodoItem class:

The ID property is used to uniquely identify each TodoItem instance, and is decorated with SQLite attributes

that make the property an auto-incrementing primary key in the database.

The TodoItemRepository class implements database operations, and an instance of the class can be accessed

 Platform project implementationsPlatform project implementations

 Invoke cognitive servicesInvoke cognitive services

 Related links

through the App.TodoManager property. The TodoItemRepository class provides the following methods to invoke

database operations:

GetAllItemsAsyncGetAllItemsAsync – retrieves all of the items from the local SQLite database.

GetItemAsyncGetItemAsync – retrieves a specified item from the local SQLite database.

SaveItemAsyncSaveItemAsync – creates or updates an item in the local SQLite database.

DeleteItemAsyncDeleteItemAsync – deletes the specified item from the local SQLite database.

The Services folder in the shared code project contains the IFileHelper and IAudioRecorderService interfaces

that are used by the DependencyService class to locate the classes that implement the interfaces in platform

projects.

The IFileHelper interface is implemented by the FileHelper class in each platform project. This class consists

of a single method, GetLocalFilePath , which returns a local file path for storing the SQLite database.

The IAudioRecorderService interface is implemented by the AudioRecorderService class in each platform project.

This class consists of StartRecording , StopRecording , and supporting methods, which use platform APIs to

record audio from the device's microphone and store it as a wav file. On iOS, the AudioRecorderService uses the

AVFoundation API to record audio. On Android, the AudioRecordService uses the AudioRecord API to record

audio. On the Universal Windows Platform (UWP), the AudioRecorderService uses the AudioGraph API to record

audio.

The sample application invokes the following Microsoft Cognitive Services:

Microsoft Speech API. For more information, see Speech Recognition using the Microsoft Speech API.

Bing Spell Check API. For more information, see Spell Checking using the Bing Spell Check API.

Translate API. For more information, see Text Translation using the Translator API.

Face API. For more information, see Emotion Recognition using the Face API.

Speech recognition with the Speech Service API

Microsoft Cognitive Services Documentation

Todo Cognitive Services (sample)

https://www.microsoft.com/cognitive-services/documentation
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices

Speech recognition using Azure Speech Service
 7/8/2021 • 8 minutes to read • Edit Online

 Create an Azure Speech Service resource

NOTENOTE

 Download the sample

Azure Speech Service is a cloud-based API that offers the following functionality:

Speech-to-textSpeech-to-text transcribes audio files or streams to text.

Text-to-speechText-to-speech converts input text into human-like synthesized speech.

Speech translationSpeech translation enables real-time, multi-language translation for both speech-to-text and speech-to-

speech.

Voice assistantsVoice assistants can create human-like conversation interfaces for applications.

This article explains how speech-to-text is implemented in the sample Xamarin.Forms application using the

Azure Speech Service. The following screenshots show the sample application on iOS and Android:

Azure Speech Service is part of Azure Cognitive Services, which provides cloud-based APIs for tasks such as

image recognition, speech recognition and translation, and Bing search. For more information, see What are

Azure Cognitive Services?.

The sample project requires an Azure Cognitive Services resource to be created in your Azure portal. A

Cognitive Services resource can be created for a single service, such as Speech Service, or as a multi-service

resource. The steps to create a Speech Service resource are as follows:

1. Log into your Azure portal.

2. Create a multi-service or single-service resource.

3. Obtain the API key and region information for your resource.

4. Update the sample Constants.csConstants.cs file.

For a step-by-step guide to creating a resource, see Create a Cognitive Services resource.

If you don't have an Azure subscription, create a free account before you begin. Once you have an account, a single-

service resource can be created at the free tier to try out the service.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-cognitive-services/speech-recognition.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-cognitivespeechservice
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/azure-cognitive-services/speech-recognition-images/speech-recognition.png#lightbox
https://docs.microsoft.com/en-us/azure/cognitive-services/welcome
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps

Configure your app with the Speech Service

public static class Constants
{
 public static string CognitiveServicesApiKey = "YOUR_KEY_GOES_HERE";
 public static string CognitiveServicesRegion = "westus";
}

 Install NuGet Speech Service package

 Create an IMicrophoneService interface

public interface IMicrophoneService
{
 Task<bool> GetPermissionAsync();
 void OnRequestPermissionResult(bool isGranted);
}

 Create the page layout

<ContentPage ...>
 <StackLayout>
 <Frame ...>
 <ScrollView x:Name="scroll"
 ...>
 <Label x:Name="transcribedText"
 ... />
 </ScrollView>
 </Frame>

 <ActivityIndicator x:Name="transcribingIndicator"
 IsRunning="False" />
 <Button x:Name="transcribeButton"
 ...
 Clicked="TranscribeClicked"/>
 </StackLayout>
</ContentPage>

 Implement the Speech Service

After creating a Cognitive Services resource, the Constants.csConstants.cs file can be updated with the region and API key

from your Azure resource:

The sample application uses the Microsoft.CognitiveSer vices.SpeechMicrosoft.CognitiveSer vices.Speech NuGet package to connect to the

Azure Speech Service. Install this NuGet package in the shared project and each platform project.

Each platform requires permission to access to the microphone. The sample project provides an

IMicrophoneService interface in the shared project, and uses the Xamarin.Forms DependencyService to obtain

platform implementations of the interface.

The sample project defines a basic page layout in the MainPage.xamlMainPage.xaml file. The key layout elements are a

Button that starts the transcription process, a Label to contain the transcribed text, and an ActivityIndicator

to show when transcription is in progress:

The MainPage.xaml.csMainPage.xaml.cs code-behind file contains all of the logic to send audio and receive transcribed text from

the Azure Speech Service.

public partial class MainPage : ContentPage
{
 SpeechRecognizer recognizer;
 IMicrophoneService micService;
 bool isTranscribing = false;

 public MainPage()
 {
 InitializeComponent();

 micService = DependencyService.Resolve<IMicrophoneService>();
 }

 // ...
}

The MainPage constructor gets an instance of the IMicrophoneService interface from the DependencyService :

The TranscribeClicked method is called when the transcribeButton instance is tapped:

async void TranscribeClicked(object sender, EventArgs e)
{
 bool isMicEnabled = await micService.GetPermissionAsync();

 // EARLY OUT: make sure mic is accessible
 if (!isMicEnabled)
 {
 UpdateTranscription("Please grant access to the microphone!");
 return;
 }

 // initialize speech recognizer
 if (recognizer == null)
 {
 var config = SpeechConfig.FromSubscription(Constants.CognitiveServicesApiKey,
Constants.CognitiveServicesRegion);
 recognizer = new SpeechRecognizer(config);
 recognizer.Recognized += (obj, args) =>
 {
 UpdateTranscription(args.Result.Text);
 };
 }

 // if already transcribing, stop speech recognizer
 if (isTranscribing)
 {
 try
 {
 await recognizer.StopContinuousRecognitionAsync();
 }
 catch(Exception ex)
 {
 UpdateTranscription(ex.Message);
 }
 isTranscribing = false;
 }

 // if not transcribing, start speech recognizer
 else
 {
 Device.BeginInvokeOnMainThread(() =>
 {
 InsertDateTimeRecord();
 });
 try
 {
 await recognizer.StartContinuousRecognitionAsync();
 }
 catch(Exception ex)
 {
 UpdateTranscription(ex.Message);
 }
 isTranscribing = true;
 }
 UpdateDisplayState();
}

The TranscribeClicked method does the following:

1. Checks if the application has access to the microphone and exits early if it does not.

2. Creates an instance of SpeechRecognizer class if it doesn't already exist.

3. Stops continuous transcription if it is in progress.

4. Inserts a timestamp and starts continuous transcription if it is not in progress.

5. Notifies the application to update its appearance based on the new application state.

void UpdateTranscription(string newText)
{
 Device.BeginInvokeOnMainThread(() =>
 {
 if (!string.IsNullOrWhiteSpace(newText))
 {
 transcribedText.Text += $"{newText}\n";
 }
 });
}

void InsertDateTimeRecord()
{
 var msg = $"=================\n{DateTime.Now.ToString()}\n=================";
 UpdateTranscription(msg);
}

void UpdateDisplayState()
{
 Device.BeginInvokeOnMainThread(() =>
 {
 if (isTranscribing)
 {
 transcribeButton.Text = "Stop";
 transcribeButton.BackgroundColor = Color.Red;
 transcribingIndicator.IsRunning = true;
 }
 else
 {
 transcribeButton.Text = "Transcribe";
 transcribeButton.BackgroundColor = Color.Green;
 transcribingIndicator.IsRunning = false;
 }
 });
}

 Create platform microphone services

 AndroidAndroid

The remainder of the MainPage class methods are helpers for displaying the application state:

The UpdateTranscription method writes the provided newText string to the Label element named

transcribedText . It forces this update to happen on the UI thread so it can be called from any context without

causing exceptions. The InsertDateTimeRecord writes the current date and time to the transcribedText instance

to mark the start of a new transcription. Finally, the UpdateDisplayState method updates the Button and

ActivityIndicator elements to reflect whether or not transcription is in progress.

The application must have microphone access to collect speech data. The IMicrophoneService interface must be

implemented and registered with the DependencyService on each platform for the application to function.

The sample project defines an IMicrophoneService implementation for Android called AndroidMicrophoneService

:

[assembly: Dependency(typeof(AndroidMicrophoneService))]
namespace CognitiveSpeechService.Droid.Services
{
 public class AndroidMicrophoneService : IMicrophoneService
 {
 public const int RecordAudioPermissionCode = 1;
 private TaskCompletionSource<bool> tcsPermissions;
 string[] permissions = new string[] { Manifest.Permission.RecordAudio };

 public Task<bool> GetPermissionAsync()
 {
 tcsPermissions = new TaskCompletionSource<bool>();

 if ((int)Build.VERSION.SdkInt < 23)
 {
 tcsPermissions.TrySetResult(true);
 }
 else
 {
 var currentActivity = MainActivity.Instance;
 if (ActivityCompat.CheckSelfPermission(currentActivity, Manifest.Permission.RecordAudio) !=
(int)Permission.Granted)
 {
 RequestMicPermissions();
 }
 else
 {
 tcsPermissions.TrySetResult(true);
 }

 }

 return tcsPermissions.Task;
 }

 public void OnRequestPermissionResult(bool isGranted)
 {
 tcsPermissions.TrySetResult(isGranted);
 }

 void RequestMicPermissions()
 {
 if (ActivityCompat.ShouldShowRequestPermissionRationale(MainActivity.Instance,
Manifest.Permission.RecordAudio))
 {
 Snackbar.Make(MainActivity.Instance.FindViewById(Android.Resource.Id.Content),
 "Microphone permissions are required for speech transcription!",
 Snackbar.LengthIndefinite)
 .SetAction("Ok", v =>
 {
 ((Activity)MainActivity.Instance).RequestPermissions(permissions,
RecordAudioPermissionCode);
 })
 .Show();
 }
 else
 {
 ActivityCompat.RequestPermissions((Activity)MainActivity.Instance, permissions,
RecordAudioPermissionCode);
 }
 }
 }
}

The AndroidMicrophoneService has the following features:

public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsAppCompatActivity
{
 IMicrophoneService micService;
 internal static MainActivity Instance { get; private set; }

 protected override void OnCreate(Bundle savedInstanceState)
 {
 Instance = this;
 // ...
 micService = DependencyService.Resolve<IMicrophoneService>();
 }
 public override void OnRequestPermissionsResult(int requestCode, string[] permissions, [GeneratedEnum]
Android.Content.PM.Permission[] grantResults)
 {
 // ...
 switch(requestCode)
 {
 case AndroidMicrophoneService.RecordAudioPermissionCode:
 if (grantResults[0] == Permission.Granted)
 {
 micService.OnRequestPermissionResult(true);
 }
 else
 {
 micService.OnRequestPermissionResult(false);
 }
 break;
 }
 }
}

<manifest ...>
 ...
 <uses-permission android:name="android.permission.RECORD_AUDIO" />
</manifest>

 iOSiOS

1. The Dependency attribute registers the class with the DependencyService .

2. The GetPermissionAsync method checks if permissions are required based on the Android SDK version, and

calls RequestMicPermissions if permission has not already been granted.

3. The RequestMicPermissions method uses the Snackbar class to request permissions from the user if a

rationale is required, otherwise it directly requests audio recording permissions.

4. The OnRequestPermissionResult method is called with a bool result once the user has responded to the

permissions request.

The MainActivity class is customized to update the AndroidMicrophoneService instance when permissions

requests are complete:

The MainActivity class defines a static reference called Instance , which is required by the

AndroidMicrophoneService object when requesting permissions. It overrides the OnRequestPermissionsResult

method to update the AndroidMicrophoneService object when the permissions request is approved or denied by

the user.

Finally, the Android application must include the permission to record audio in the AndroidManifest.xmlAndroidManifest.xml file:

The sample project defines an IMicrophoneService implementation for iOS called iOSMicrophoneService :

[assembly: Dependency(typeof(iOSMicrophoneService))]
namespace CognitiveSpeechService.iOS.Services
{
 public class iOSMicrophoneService : IMicrophoneService
 {
 TaskCompletionSource<bool> tcsPermissions;

 public Task<bool> GetPermissionAsync()
 {
 tcsPermissions = new TaskCompletionSource<bool>();
 RequestMicPermission();
 return tcsPermissions.Task;
 }

 public void OnRequestPermissionResult(bool isGranted)
 {
 tcsPermissions.TrySetResult(isGranted);
 }

 void RequestMicPermission()
 {
 var session = AVAudioSession.SharedInstance();
 session.RequestRecordPermission((granted) =>
 {
 tcsPermissions.TrySetResult(granted);
 });
 }
 }
}

<plist>
 <dict>
 ...
 <key>NSMicrophoneUsageDescription</key>
 <string>Voice transcription requires microphone access</string>
 </dict>
</plist>

 UWPUWP

The iOSMicrophoneService has the following features:

1. The Dependency attribute registers the class with the DependencyService .

2. The GetPermissionAsync method calls RequestMicPermissions to request permissions from the device user.

3. The RequestMicPermissions method uses the shared AVAudioSession instance to request recording

permissions.

4. The OnRequestPermissionResult method updates the TaskCompletionSource instance with the provided bool

value.

Finally, the iOS app Info.plistInfo.plist must include a message that tells the user why the app is requesting access to the

microphone. Edit the Info.plist file to include the following tags within the <dict> element:

The sample project defines an IMicrophoneService implementation for UWP called UWPMicrophoneService :

[assembly: Dependency(typeof(UWPMicrophoneService))]
namespace CognitiveSpeechService.UWP.Services
{
 public class UWPMicrophoneService : IMicrophoneService
 {
 public async Task<bool> GetPermissionAsync()
 {
 bool isMicAvailable = true;
 try
 {
 var mediaCapture = new MediaCapture();
 var settings = new MediaCaptureInitializationSettings();
 settings.StreamingCaptureMode = StreamingCaptureMode.Audio;
 await mediaCapture.InitializeAsync(settings);
 }
 catch(Exception ex)
 {
 isMicAvailable = false;
 }

 if(!isMicAvailable)
 {
 await Windows.System.Launcher.LaunchUriAsync(new Uri("ms-settings:privacy-microphone"));
 }

 return isMicAvailable;
 }

 public void OnRequestPermissionResult(bool isGranted)
 {
 // intentionally does nothing
 }
 }
}

 Test the application

The UWPMicrophoneService has the following features:

1. The Dependency attribute registers the class with the DependencyService .

2. The GetPermissionAsync method attempts to initialize a MediaCapture instance. If that fails, it launches a user

request to enable the microphone.

3. The OnRequestPermissionResult method exists to satisfy the interface but is not required for the UWP

implementation.

Finally, the UWP Package.appxmanifestPackage.appxmanifest must specify that the application uses the microphone. Double-click

the Package.appxmanifest file and select the MicrophoneMicrophone option on the CapabilitiesCapabilities tab in Visual Studio 2019:

Run the app and click the Transcr ibeTranscr ibe button. The app should request microphone access and begin the

transcription process. The ActivityIndicator will animate, showing that transcription is active. As you speak,

the app will stream audio data to the Azure Speech Services resource, which will respond with transcribed text.

The transcribed text will appear in the Label element as it is received.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/azure-cognitive-services/speech-recognition-images/package-manifest.png#lightbox

NOTENOTE

 Related links

Android emulators fail to load and initialize the Speech Service libraries. Testing on a physical device is recommended for

the Android platform.

Azure Speech Service sample

Azure Speech Service overview

Create a Cognitive Services resource

Quickstart: Recognize speech from a microphone

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-cognitivespeechservice
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/quickstarts/speech-to-text-from-microphone

Spell Checking Using the Bing Spell Check API
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

NOTENOTE

 Authentication

public BingSpellCheckService()
{
 httpClient = new HttpClient();
 httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", Constants.BingSpellCheckApiKey);
}

 Performing Spell Checking

 Download the sample

Bing Spell Check performs contextual spell checking for text, providing inline suggestions for misspelled words.

This article explains how to use the Bing Spell Check REST API to correct spelling errors in a Xamarin.Forms

application.

The Bing Spell Check REST API has two operating modes, and a mode must be specified when making a request

to the API:

Spell corrects short text (up to 9 words) without any casing changes.

Proof corrects long text, provides casing corrections and basic punctuation, and suppresses aggressive

corrections.

If you don't have an Azure subscription, create a free account before you begin.

An API key must be obtained to use the Bing Spell Check API. This can be obtained at Try Cognitive Services

For a list of the languages supported by the Bing Spell Check API, see Supported languages. For more

information about the Bing Spell Check API, see Bing Spell Check Documentation.

Every request made to the Bing Spell Check API requires an API key that should be specified as the value of the

Ocp-Apim-Subscription-Key header. The following code example shows how to add the API key to the

Ocp-Apim-Subscription-Key header of a request:

Failure to pass a valid API key to the Bing Spell Check API will result in a 401 response error.

Spell checking can be achieved by making a GET or POST request to the SpellCheck API at

https://api.cognitive.microsoft.com/bing/v7.0/SpellCheck . When making a GET request, the text to be spell

checked is sent as a query parameter. When making a POST request, the text to be spell checked is sent in the

request body. GET requests are limited to spell checking 1500 characters due to the query parameter string

length limitation. Therefore, POST requests should typically be made unless short strings are being spell

checked.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-cognitive-services/spell-check.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://azure.microsoft.com/try/cognitive-services/
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-spell-check/bing-spell-check-supported-languages/
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-spell-check/

public async Task<SpellCheckResult> SpellCheckTextAsync(string text)
{
 string requestUri = GenerateRequestUri(Constants.BingSpellCheckEndpoint, text, SpellCheckMode.Spell);
 var response = await SendRequestAsync(requestUri);
 var spellCheckResults = JsonConvert.DeserializeObject<SpellCheckResult>(response);
 return spellCheckResults;
}

 Configuring Spell CheckingConfiguring Spell Checking

string GenerateRequestUri(string spellCheckEndpoint, string text, SpellCheckMode mode)
{
 string requestUri = spellCheckEndpoint;
 requestUri += string.Format("?text={0}", text); // text to spell check
 requestUri += string.Format("&mode={0}", mode.ToString().ToLower()); // spellcheck mode - proof or
spell
 return requestUri;
}

 Sending the RequestSending the Request

async Task<string> SendRequestAsync(string url)
{
 var response = await httpClient.GetAsync(url);
 return await response.Content.ReadAsStringAsync();
}

 Processing the ResponseProcessing the Response

In the sample application, the SpellCheckTextAsync method invokes the spell checking process:

The SpellCheckTextAsync method generates a request URI and then sends the request to the SpellCheck API,

which returns a JSON response containing the result. The JSON response is deserialized, with the result being

returned to the calling method for display.

The spell checking process can be configured by specifying HTTP query parameters:

This method sets the text to be spell checked, and the spell check mode.

For more information about the Bing Spell Check REST API, see Spell Check API v7 reference.

The SendRequestAsync method makes the GET request to the Bing Spell Check REST API and returns the

response:

This method sends the GET request to the SpellCheck API, with the request URL specifying the text to be

translated, and the spell check mode. The response is then read and returned to the calling method.

The SpellCheck API will send HTTP status code 200 (OK) in the response, provided that the request is valid,

which indicates that the request succeeded and that the requested information is in the response. For a list of

response objects, see Response objects.

The API response is returned in JSON format. The following JSON data shows the response message for the

misspelled text Go shappin tommorow :

https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-spell-check-api-v7-reference/
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-spell-check-api-v7-reference#response-objects

{
 "_type":"SpellCheck",
 "flaggedTokens":[
 {
 "offset":3,
 "token":"shappin",
 "type":"UnknownToken",
 "suggestions":[
 {
 "suggestion":"shopping",
 "score":1
 }
]
 },
 {
 "offset":11,
 "token":"tommorow",
 "type":"UnknownToken",
 "suggestions":[
 {
 "suggestion":"tomorrow",
 "score":1
 }
]
 }
],
 "correctionType":"High"
}

var spellCheckResult = await bingSpellCheckService.SpellCheckTextAsync(TodoItem.Name);
foreach (var flaggedToken in spellCheckResult.FlaggedTokens)
{
 TodoItem.Name = TodoItem.Name.Replace(flaggedToken.Token,
flaggedToken.Suggestions.FirstOrDefault().Suggestion);
}

The flaggedTokens array contains an array of words in the text that were flagged as not being spelled correctly

or are grammatically incorrect. The array will be empty if no spelling or grammar errors are found. The tags

within the array are:

offset – a zero-based offset from the beginning of the text string to the word that was flagged.

token – the word in the text string that is not spelled correctly or is grammatically incorrect.

type – the type of the error that caused the word to be flagged. There are two possible values –

RepeatedToken and UnknownToken .

suggestions – an array of words that will correct the spelling or grammar error. The array is made up of a

suggestion and a score , which indicates the level of confidence that the suggested correction is correct.

In the sample application, the JSON response is deserialized into a SpellCheckResult instance, with the result

being returned to the calling method for display. The following code example shows how the SpellCheckResult

instance is processed for display:

This code iterates through the FlaggedTokens collection and replaces any misspelled or grammatically incorrect

words in the source text with the first suggestion. The following screenshots show before and after the spell

check:

NOTENOTE

 Summary

 Related Links

The example above uses Replace for simplicity, but across a large amount of text it could replace the wrong token. The

API provides the offset value which should be used in production apps to identify the correct location in the source

text to perform an update.

This article explained how to use the Bing Spell Check REST API to correct spelling errors in a Xamarin.Forms

application. Bing Spell Check performs contextual spell checking for text, providing inline suggestions for

misspelled words.

Bing Spell Check Documentation

Consume a RESTful Web Service

Todo Cognitive Services (sample)

Bing Spell Check API v7 reference

https://docs.microsoft.com/en-us/azure/cognitive-services/bing-spell-check/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-spell-check-api-v7-reference/

Text Translation Using the Translator API
 7/8/2021 • 4 minutes to read • Edit Online

 Overview

NOTENOTE

 Authentication

public AuthenticationService(string apiKey)
{
 subscriptionKey = apiKey;
 httpClient = new HttpClient();
 httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", apiKey);
}
...
async Task<string> FetchTokenAsync(string fetchUri)
{
 UriBuilder uriBuilder = new UriBuilder(fetchUri);
 uriBuilder.Path += "/issueToken";
 var result = await httpClient.PostAsync(uriBuilder.Uri.AbsoluteUri, null);
 return await result.Content.ReadAsStringAsync();
}

 Download the sample

The Microsoft Translator API can be used to translate speech and text through a REST API. This article explains

how to use the Microsoft Translator Text API to translate text from one language to another in a Xamarin.Forms

application.

The Translator API has two components:

A text translation REST API to translate text from one language into text of another language. The API

automatically detects the language of the text that was sent before translating it.

A speech translation REST API to transcribe speech from one language into text of another language. The API

also integrates text-to-speech capabilities to speak the translated text back.

This article focuses on translating text from one language to another using the Translator Text API.

If you don't have an Azure subscription, create a free account before you begin.

An API key must be obtained to use the Translator Text API. This can be obtained at How to sign up for the

Microsoft Translator Text API.

For more information about the Microsoft Translator Text API, see Translator Text API Documentation.

Every request made to the Translator Text API requires a JSON Web Token (JWT) access token, which can be

obtained from the cognitive services token service at https://api.cognitive.microsoft.com/sts/v1.0/issueToken .

A token can be obtained by making a POST request to the token service, specifying an

Ocp-Apim-Subscription-Key header that contains the API key as its value.

The following code example shows how to request an access token from the token service:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-cognitive-services/text-translation.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/translator-text-how-to-signup/
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/

httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", bearerToken);

 Performing Text Translation

public async Task<string> TranslateTextAsync(string text)
{
 ...
 string requestUri = GenerateRequestUri(Constants.TextTranslatorEndpoint, text, "en", "de");
 string accessToken = authenticationService.GetAccessToken();
 var response = await SendRequestAsync(requestUri, accessToken);
 var xml = XDocument.Parse(response);
 return xml.Root.Value;
}

 Configuring Text TranslationConfiguring Text Translation

string GenerateRequestUri(string endpoint, string text, string to)
{
 string requestUri = endpoint;
 requestUri += string.Format("?text={0}", Uri.EscapeUriString(text));
 requestUri += string.Format("&to={0}", to);
 return requestUri;
}

NOTENOTE

 Sending the RequestSending the Request

The returned access token, which is Base64 text, has an expiry time of 10 minutes. Therefore, the sample

application renews the access token every 9 minutes.

The access token must be specified in each Translator Text API call as an Authorization header prefixed with the

string Bearer , as shown in the following code example:

For more information about the cognitive services token service, see Authentication.

Text translation can be achieved by making a GET request to the translate API at

https://api.microsofttranslator.com/v2/http.svc/translate . In the sample application, the TranslateTextAsync

method invokes the text translation process:

The TranslateTextAsync method generates a request URI and retrieves an access token from the token service.

The text translation request is then sent to the translate API, which returns an XML response containing the

result. The XML response is parsed, and the translation result is returned to the calling method for display.

For more information about the Text Translation REST APIs, see Translator Text API.

The text translation process can be configured by specifying HTTP query parameters:

This method sets the text to be translated, and the language to translate the text to. For a list of the languages

supported by Microsoft Translator, see Supported languages in the Microsoft Translator Text API.

If an application needs to know what language the text is in, the Detect API can be called to detect the language of the

text string.

The SendRequestAsync method makes the GET request to the Text Translation REST API and returns the response:

https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference#authentication
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/languages/

async Task<string> SendRequestAsync(string url, string bearerToken)
{
 if (httpClient == null)
 {
 httpClient = new HttpClient();
 }
 httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", bearerToken);

 var response = await httpClient.GetAsync(url);
 return await response.Content.ReadAsStringAsync();
}

 Processing the ResponseProcessing the Response

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">Morgen kaufen gehen ein</string>

This method builds the GET request by adding the access token to the Authorization header, prefixed with the

string Bearer . The GET request is then sent to the translate API, with the request URL specifying the text to be

translated, and the language to translate the text to. The response is then read and returned to the calling

method.

The translate API will send HTTP status code 200 (OK) in the response, provided that the request is valid,

which indicates that the request succeeded and that the requested information is in the response. For a list of

possible error responses, see Response Messages at GET Translate.

The API response is returned in XML format. The following XML data shows a typical successful response

message:

In the sample application, the XML response is parsed into a XDocument instance, with the XML root value being

returned to the calling method for display as shown in the following screenshots:

https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-translate

 Summary

 Related Links

This article explained how to use the Microsoft Translator Text API to translate text from one language into text of

another language in a Xamarin.Forms application. In addition to translating text, the Microsoft Translator API can

also transcribe speech from one language into text of another language.

Translator Text API Documentation

Consume a RESTful Web Service

Todo Cognitive Services (sample)

Translator Text API

https://docs.microsoft.com/en-us/azure/cognitive-services/translator/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference

Perceived Emotion Recognition Using the Face API
 7/8/2021 • 5 minutes to read • Edit Online

NOTENOTE

 Authentication

public FaceRecognitionService()
{
 _client = new HttpClient();
 _client.DefaultRequestHeaders.Add("ocp-apim-subscription-key", Constants.FaceApiKey);
}

 Perform emotion recognition

 Download the sample

The Face API can perform emotion detection to detect anger, contempt, disgust, fear, happiness, neutral, sadness,

and surprise, in a facial expression based on perceived annotations by human coders. It is important to note,

however, that facial expressions alone may not necessarily represent the internal states of people.

In addition to returning an emotion result for a facial expression, the Face API can also returns a bounding box

for detected faces.

Emotion recognition can be performed via a client library, and via a REST API. This article focuses on performing

emotion recognition via the REST API. For more information about the REST API, see Face REST API.

The Face API can also be used to recognize the facial expressions of people in video, and can return a summary

of their emotions. For more information, see How to Analyze Videos in Real-time.

If you don't have an Azure subscription, create a free account before you begin.

An API key must be obtained to use the Face API. This can be obtained at Try Cognitive Services.

For more information about the Face API, see Face API.

Every request made to the Face API requires an API key that should be specified as the value of the

Ocp-Apim-Subscription-Key header. The following code example shows how to add the API key to the

Ocp-Apim-Subscription-Key header of a request:

Failure to pass a valid API key to the Face API will result in a 401 response error.

Emotion recognition is performed by making a POST request containing an image to the detect API at

https://[location].api.cognitive.microsoft.com/face/v1.0 , where [location]] is the region you used to obtain

your API key. The optional request parameters are:

returnFaceId – whether to return faceIds of the detected faces. The default value is true .

returnFaceLandmarks – whether to return face landmarks of the detected faces. The default value is false .

returnFaceAttributes – whether to analyze and return one or more specified face attributes. Supported face

attributes include age , gender , headPose , smile , facialHair , glasses , emotion , hair , makeup ,

occlusion , accessories , blur , exposure , and noise . Note that face attribute analysis has additional

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/azure-cognitive-services/emotion-recognition.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices
https://westus.dev.cognitive.microsoft.com/docs/services/563879b61984550e40cbbe8d/operations/563879b61984550f30395236
https://docs.microsoft.com/en-us/azure/cognitive-services/face/face-api-how-to-topics/howtoanalyzevideo_face/
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://azure.microsoft.com/try/cognitive-services/?api=face-api
https://docs.microsoft.com/en-us/azure/cognitive-services/face/overview/

NOTENOTE

Face[] faces = await _faceRecognitionService.DetectAsync(photoStream, true, false, new FaceAttributeType[] {
FaceAttributeType.Emotion });

public async Task<Face[]> DetectAsync(Stream imageStream, bool returnFaceId, bool returnFaceLandmarks,
IEnumerable<FaceAttributeType> returnFaceAttributes)
{
 var requestUrl =
 $"{Constants.FaceEndpoint}/detect?returnFaceId={returnFaceId}" +
 "&returnFaceLandmarks={returnFaceLandmarks}" +
 "&returnFaceAttributes={GetAttributeString(returnFaceAttributes)}";
 return await SendRequestAsync<Stream, Face[]>(HttpMethod.Post, requestUrl, imageStream);
}

NOTENOTE

 Send the requestSend the request

computational and time cost.

Image content must be placed in the body of the POST request as a URL, or binary data.

Supported image file formats are JPEG, PNG, GIF, and BMP, and the allowed file size is from 1KB to 4MB.

In the sample application, the emotion recognition process is invoked by calling the DetectAsync method:

This method call specifies the stream containing the image data, that faceIds should be returned, that face

landmarks shouldn't be returned, and that the emotion of the image should be analyzed. It also specifies that the

results will be returned as an array of Face objects. In turn, the DetectAsync method invokes the detect REST

API that performs emotion recognition:

This method generates a request URI and then sends the request to the detect API via the SendRequestAsync

method.

You must use the same region in your Face API calls as you used to obtain your subscription keys. For example, if you

obtained your subscription keys from the westus region, the face detection endpoint will be

https://westus.api.cognitive.microsoft.com/face/v1.0/detect .

The SendRequestAsync method makes the POST request to the Face API and returns the result as a Face array:

async Task<TResponse> SendRequestAsync<TRequest, TResponse>(HttpMethod httpMethod, string requestUrl,
TRequest requestBody)
{
 var request = new HttpRequestMessage(httpMethod, Constants.FaceEndpoint);
 request.RequestUri = new Uri(requestUrl);
 if (requestBody != null)
 {
 if (requestBody is Stream)
 {
 request.Content = new StreamContent(requestBody as Stream);
 request.Content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream");
 }
 else
 {
 // If the image is supplied via a URL
 request.Content = new StringContent(JsonConvert.SerializeObject(requestBody, s_settings),
Encoding.UTF8, "application/json");
 }
 }

 HttpResponseMessage responseMessage = await _client.SendAsync(request);
 if (responseMessage.IsSuccessStatusCode)
 {
 string responseContent = null;
 if (responseMessage.Content != null)
 {
 responseContent = await responseMessage.Content.ReadAsStringAsync();
 }
 if (!string.IsNullOrWhiteSpace(responseContent))
 {
 return JsonConvert.DeserializeObject<TResponse>(responseContent, s_settings);
 }
 return default(TResponse);
 }
 else
 {
 ...
 }
 return default(TResponse);
}

 Process the responseProcess the response

If the image is supplied via a stream, the method builds the POST request by wrapping the image stream in a

StreamContent instance, which provides HTTP content based on a stream. Alternatively, if the image is supplied

via a URL, the method builds the POST request by wrapping the URL in a StringContent instance, which

provides HTTP content based on a string.

The POST request is then sent to detect API. The response is read, deserialized, and returned to the calling

method.

The detect API will send HTTP status code 200 (OK) in the response, provided that the request is valid, which

indicates that the request succeeded and that the requested information is in the response. For a list of possible

error responses, see Face REST API.

The API response is returned in JSON format. The following JSON data shows a typical successful response

message that supplies the data requested by the sample application:

https://westus.dev.cognitive.microsoft.com/docs/services/563879b61984550e40cbbe8d/operations/563879b61984550f30395236

[
 {
 "faceId":"8a1a80fe-1027-48cf-a7f0-e61c0f005051",
 "faceRectangle":{
 "top":192,
 "left":164,
 "width":339,
 "height":339
 },
 "faceAttributes":{
 "emotion":{
 "anger":0.0,
 "contempt":0.0,
 "disgust":0.0,
 "fear":0.0,
 "happiness":1.0,
 "neutral":0.0,
 "sadness":0.0,
 "surprise":0.0
 }
 }
 }
]

emotionResultLabel.Text = faces.FirstOrDefault().FaceAttributes.Emotion.ToRankedList().FirstOrDefault().Key;

A successful response message consists of an array of face entries ranked by face rectangle size in descending

order, while an empty response indicates no faces detected. Each recognized face includes a series of optional

face attributes, which are specified by the returnFaceAttributes argument to the DetectAsync method.

In the sample application, the JSON response is deserialized into an array of Face objects. When interpreting

results from the Face API, the detected emotion should be interpreted as the emotion with the highest score, as

scores are normalized to sum to one. Therefore, the sample application displays the recognized emotion with

the highest score for the largest detected face in the image. This is achieved with the following code:

The following screenshot shows the result of the emotion recognition process in the sample application:

 Related links
Face API.

Todo Cognitive Services (sample)

Face REST API

https://docs.microsoft.com/en-us/azure/cognitive-services/face/overview/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todocognitiveservices
https://westus.dev.cognitive.microsoft.com/docs/services/563879b61984550e40cbbe8d/operations/563879b61984550f30395236

Xamarin.Forms and Web Services
 11/2/2020 • 2 minutes to read • Edit Online

 Introduction

 Consume an ASP.NET Web Service (ASMX)

 Consume a Windows Communication Foundation (WCF) Web Service

 Consume a RESTful Web Service

This article provides a walkthrough of the Xamarin.Forms sample application that demonstrates how to

communicate with different web services. Topics covered include the anatomy of the application, the pages, data

model, and invoking web service operations.

ASP.NET Web Services (ASMX) provide the ability to build web services that send messages over HTTP using

Simple Object Access Protocol (SOAP). SOAP is a platform-independent and language-independent protocol for

building and accessing web services. Consumers of an ASMX service do not need to know anything about the

platform, object model, or programming language used to implement the service. They only need to understand

how to send and receive SOAP messages. This article demonstrates how to consume an ASMX web service from

a Xamarin.Forms application.

WCF is Microsoft's unified framework for building service-oriented applications. It enables developers to build

secure, reliable, transacted, and interoperable distributed applications. There are differences between ASP.NET

Web Services (ASMX) and WCF, but it is important to understand that WCF supports the same capabilities that

ASMX provides — SOAP messages over HTTP. This article demonstrates how to consume an WCF SOAP service

from a Xamarin.Forms application.

Representational State Transfer (REST) is an architectural style for building web services. REST requests are

made over HTTP using the same HTTP verbs that web browsers use to retrieve web pages and to send data to

servers. This article demonstrates how to consume a RESTful web service from a Xamarin.Forms application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/web-services/index.md

Xamarin.Forms Web Services Introduction
 7/8/2021 • 3 minutes to read • Edit Online

 Download the sample

This topic provides a walkthrough of the Xamarin.Forms sample application that demonstrates how to

communicate with different web services. While each web service uses a separate sample application, they are

functionally similar and share common classes.

The sample to-do list application described below is used to demonstrate how to access different types of web

service backends with Xamarin.Forms. It provides functionality to:

View a list of tasks.

Add, edit, and delete tasks.

Set a task's status to 'done'.

Speak the task's name and notes fields.

In all cases, the tasks are stored in a backend that's accessed through a web service.

When the application is launched, a page is displayed that lists any tasks retrieved from the web service, and

allows the user to create a new task. Clicking on a task navigates the application to a second page where the

task can be edited, saved, deleted, and spoken. The final application is shown below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/web-services/introduction.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todorest

 Understand the application anatomy

F O L DERF O L DER P URP O SEP URP O SE

Data Contains the classes and interfaces used to manage data
items, and communicate with the web service. At a
minimum, this includes the TodoItemManager class, which is

exposed through a property in the App class to invoke web

service operations.

Models Contains the data model classes for the application. At a
minimum, this includes the TodoItem class, which models a

single item of data used by the application. The folder can
also include any additional classes used to model user data.

Views Contains the pages for the application. This usually consists
of the TodoListPage and TodoItemPage classes, and any

additional classes used for authentication purposes.

F IL EF IL E P URP O SEP URP O SE

Constants.cs The Constants class, which specifies any constants used by

the application to communicate with the web service. These
constants require updating to access your personal backend
service created on a provider.

ITextToSpeech.cs The ITextToSpeech interface, which specifies that the

Speak method must be provided by any implementing

classes.

Each topic in this guide provides a download link to a different version of the application that demonstrates a

specific type of web service backend. Download the relevant sample code on the page relating to each web-

service style.

The shared code project for each sample application consists of three main folders:

The shared code project for each application also consists of a number of important files:

Todo.cs The App class that is responsible for instantiating both the

first page that will be displayed by the application on each
platform, and the TodoItemManager class that is used to

invoke web service operations.

F IL EF IL E P URP O SEP URP O SE

 View pagesView pages

 Model the dataModel the data

public class TodoItem
{
 public string ID { get; set; }
 public string Name { get; set; }
 public string Notes { get; set; }
 public bool Done { get; set; }
}

 Invoke web service operationsInvoke web service operations

 Related links

The majority of the sample applications contain at least two pages:

TodoListPageTodoListPage – this page displays a list of TodoItem instances, and a tick icon if the TodoItem.Done property

is true . Clicking on an item navigates to the TodoItemPage . In addition, new items can be created by clicking

on the + symbol.

TodoItemPageTodoItemPage – this page displays the details for the selected TodoItem , and allows it to be edited, saved,

deleted, and spoken.

In addition, some sample applications contain additional pages that are used to manage the user authentication

process.

Each sample application uses the TodoItem class to model the data that is displayed and sent to the web service

for storage. The following code example shows the TodoItem class:

The ID property is used to uniquely identify each TodoItem instance, and is used by each web service to

identify data to be updated or deleted.

Web service operations are accessed through the TodoItemManager class, and an instance of the class can be

accessed through the App.TodoManager property. The TodoItemManager class provides the following methods to

invoke web service operations:

GetTasksAsyncGetTasksAsync – this method is used to populate the ListView control on the TodoListPage with the

TodoItem instances retrieved from the web service.

SaveTaskAsyncSaveTaskAsync – this method is used to create or update a TodoItem instance on the web service.

DeleteTaskAsyncDeleteTaskAsync – this method is used to delete a TodoItem instance on the web service.

In addition, some sample applications contain additional methods in the TodoItemManager class, which are used

to manage the user authentication process.

Rather than invoke the web service operations directly, the TodoItemManager methods invoke methods on a

dependent class that is injected into the TodoItemManager constructor. For example, one sample application

injects the RestService class into the TodoItemManager constructor to provide the implementation that uses

REST APIs to access data.

ASMX (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todoasmx

WCF (sample)

REST (sample)

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todowcf
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todorest

Consume an ASP.NET Web Service (ASMX)
 7/8/2021 • 6 minutes to read • Edit Online

 Download the sample

ASMX provides the ability to build web services that send messages using the Simple Object Access Protocol

(SOAP). SOAP is a platform-independent and language-independent protocol for building and accessing web

services. Consumers of an ASMX service do not need to know anything about the platform, object model, or

programming language used to implement the service. They only need to understand how to send and receive

SOAP messages. This article demonstrates how to consume an ASMX SOAP service from a Xamarin.Forms

application.

A SOAP message is an XML document containing the following elements:

A root element named Envelope that identifies the XML document as a SOAP message.

An optional Header element that contains application-specific information such as authentication data. If the

Header element is present it must be the first child element of the Envelope element.

A required Body element that contains the SOAP message intended for the recipient.

An optional Fault element that's used to indicate error messages. If the Fault element is present, it must be a

child element of the Body element.

SOAP can operate over many transport protocols, including HTTP, SMTP, TCP, and UDP. However, an ASMX

service can only operate over HTTP. The Xamarin platform supports standard SOAP 1.1 implementations over

HTTP, and this includes support for many of the standard ASMX service configurations.

This sample includes the mobile applications that run on physical or emulated devices, and an ASMX service

that provides methods to get, add, edit, and delete data. When the mobile applications are run, they connect to

the locally-hosted ASMX service as shown in the following screenshot:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/web-services/asmx.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todoasmx

NOTENOTE

 Consume the web service

O P ERAT IO NO P ERAT IO N DESC RIP T IO NDESC RIP T IO N PA RA M ET ERSPA RA M ET ERS

GetTodoItems Get a list of to-do items

CreateTodoItem Create a new to-do item An XML serialized TodoItem

EditTodoItem Update a to-do item An XML serialized TodoItem

DeleteTodoItem Delete a to-do item An XML serialized TodoItem

 Create the TodoService proxy

 Create the ISoapService implementation

In iOS 9 and greater, App Transport Security (ATS) enforces secure connections between internet resources (such as the

app's back-end server) and the app, thereby preventing accidental disclosure of sensitive information. Since ATS is enabled

by default in apps built for iOS 9, all connections will be subject to ATS security requirements. If connections do not meet

these requirements, they will fail with an exception. ATS can be opted out of if it is not possible to use the HTTPS

protocol and secure communication for internet resources. This can be achieved by updating the app's Info.plistInfo.plist file. For

more information see App Transport Security.

The ASMX service provides the following operations:

For more information about the data model used in the application, see Modeling the data.

A proxy class, called TodoService , extends SoapHttpClientProtocol and provides methods for communicating

with the ASMX service over HTTP. The proxy is generated by adding a web reference to each platform-specific

project in Visual Studio 2019 or Visual Studio 2017. The web reference generates methods and events for each

action defined in the service's Web Services Description Language (WSDL) document.

For example, the GetTodoItems service action results in a GetTodoItemsAsync method and a

GetTodoItemsCompleted event in the proxy. The generated method has a void return type and invokes the

GetTodoItems action on the parent SoapHttpClientProtocol class. When the invoked method receives a

response from the service, it fires the GetTodoItemsCompleted event and provides the response data within the

event's Result property.

To enable the shared, cross-platform project to work with the service, the sample defines the ISoapService

interface, which follows the Task asynchronous programming model in C#. Each platform implements the

ISoapService to expose the platform-specific proxy. The sample uses TaskCompletionSource objects to expose

the proxy as a task asynchronous interface. Details on using TaskCompletionSource are found in the

implementations of each action type in the sections below.

The sample SoapService :

1. Instantiates the TodoService as a class-level instance

2. Creates a collection called Items to store TodoItem objects

3. Specifies a custom endpoint for the optional Url property on the TodoService

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

public class SoapService : ISoapService
{
 ASMXService.TodoService todoService;
 public List<TodoItem> Items { get; private set; } = new List<TodoItem>();

 public SoapService ()
 {
 todoService = new ASMXService.TodoService ();
 todoService.Url = Constants.SoapUrl;
 ...
 }
}

 Create data transfer objectsCreate data transfer objects

ASMXService.TodoItem ToASMXServiceTodoItem (TodoItem item)
{
 return new ASMXService.TodoItem {
 ID = item.ID,
 Name = item.Name,
 Notes = item.Notes,
 Done = item.Done
 };
}

static TodoItem FromASMXServiceTodoItem (ASMXService.TodoItem item)
{
 return new TodoItem {
 ID = item.ID,
 Name = item.Name,
 Notes = item.Notes,
 Done = item.Done
 };
}

 Retrieve dataRetrieve data

The sample application uses the TodoItem class to model data. To store a TodoItem item in the web service it

must first be converted to the proxy generated TodoItem type. This is accomplished by the

ToASMXServiceTodoItem method, as shown in the following code example:

This method creates a new ASMService.TodoItem instance, and sets each property to the identical property from

the TodoItem instance.

Similarly, when data is retrieved from the web service, it must be converted from the proxy generated TodoItem

type to a TodoItem instance. This is accomplished with the FromASMXServiceTodoItem method, as shown in the

following code example:

This method retrieves the data from the proxy generated TodoItem type and sets it in the newly created

TodoItem instance.

The ISoapService interface expects the RefreshDataAsync method to return a Task with the item collection.

However, the TodoService.GetTodoItemsAsync method returns void. To satisfy the interface pattern, you must call

GetTodoItemsAsync , wait for the GetTodoItemsCompleted event to fire, and populate the collection. This allows you

to return a valid collection to the UI.

The example below creates a new TaskCompletionSource , begins the async call in the RefreshDataAsync method,

and awaits the Task provided by the TaskCompletionSource . When the TodoService_GetTodoItemsCompleted

event handler is invoked it populates the Items collection and updates the TaskCompletionSource :

public class SoapService : ISoapService
{
 TaskCompletionSource<bool> getRequestComplete = null;
 ...

 public SoapService()
 {
 ...
 todoService.GetTodoItemsCompleted += TodoService_GetTodoItemsCompleted;
 }

 public async Task<List<TodoItem>> RefreshDataAsync()
 {
 getRequestComplete = new TaskCompletionSource<bool>();
 todoService.GetTodoItemsAsync();
 await getRequestComplete.Task;
 return Items;
 }

 private void TodoService_GetTodoItemsCompleted(object sender, ASMXService.GetTodoItemsCompletedEventArgs
e)
 {
 try
 {
 getRequestComplete = getRequestComplete ?? new TaskCompletionSource<bool>();

 Items = new List<TodoItem>();
 foreach (var item in e.Result)
 {
 Items.Add(FromASMXServiceTodoItem(item));
 }
 getRequestComplete?.TrySetResult(true);
 }
 catch (Exception ex)
 {
 Debug.WriteLine(@"\t\tERROR {0}", ex.Message);
 }
 }

 ...
}

 Create or edit dataCreate or edit data

For more information, see Asynchronous Programming Model and TPL and Traditional .NET Framework

Asynchronous Programming.

When you create or edit data, you must implement the ISoapService.SaveTodoItemAsync method. This method

detects whether the TodoItem is a new or updated item and calls the appropriate method on the todoService

object. The CreateTodoItemCompleted and EditTodoItemCompleted event handlers should also be implemented so

you know when the todoService has received a response from the ASMX service (these can be combined into a

single handler because they perform the same operation). The following example demonstrates the interface

and event handler implementations, as well as the TaskCompletionSource object used to operate asynchronously:

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/asynchronous-programming-model-apm
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/tpl-and-traditional-async-programming

public class SoapService : ISoapService
{
 TaskCompletionSource<bool> saveRequestComplete = null;
 ...

 public SoapService()
 {
 ...
 todoService.CreateTodoItemCompleted += TodoService_SaveTodoItemCompleted;
 todoService.EditTodoItemCompleted += TodoService_SaveTodoItemCompleted;
 }

 public async Task SaveTodoItemAsync (TodoItem item, bool isNewItem = false)
 {
 try
 {
 var todoItem = ToASMXServiceTodoItem(item);
 saveRequestComplete = new TaskCompletionSource<bool>();
 if (isNewItem)
 {
 todoService.CreateTodoItemAsync(todoItem);
 }
 else
 {
 todoService.EditTodoItemAsync(todoItem);
 }
 await saveRequestComplete.Task;
 }
 catch (SoapException se)
 {
 Debug.WriteLine("\t\t{0}", se.Message);
 }
 catch (Exception ex)
 {
 Debug.WriteLine("\t\tERROR {0}", ex.Message);
 }
 }

 private void TodoService_SaveTodoItemCompleted(object sender,
System.ComponentModel.AsyncCompletedEventArgs e)
 {
 saveRequestComplete?.TrySetResult(true);
 }

 ...
}

 Delete dataDelete data
Deleting data requires a similar implementation. Define a TaskCompletionSource , implement an event handler,

and the ISoapService.DeleteTodoItemAsync method:

public class SoapService : ISoapService
{
 TaskCompletionSource<bool> deleteRequestComplete = null;
 ...

 public SoapService()
 {
 ...
 todoService.DeleteTodoItemCompleted += TodoService_DeleteTodoItemCompleted;
 }

 public async Task DeleteTodoItemAsync (string id)
 {
 try
 {
 deleteRequestComplete = new TaskCompletionSource<bool>();
 todoService.DeleteTodoItemAsync(id);
 await deleteRequestComplete.Task;
 }
 catch (SoapException se)
 {
 Debug.WriteLine("\t\t{0}", se.Message);
 }
 catch (Exception ex)
 {
 Debug.WriteLine("\t\tERROR {0}", ex.Message);
 }
 }

 private void TodoService_DeleteTodoItemCompleted(object sender,
System.ComponentModel.AsyncCompletedEventArgs e)
 {
 deleteRequestComplete?.TrySetResult(true);
 }

 ...
}

 Test the web service

 Related links

Testing physical or emulated devices with a locally-hosted service requires custom IIS Configuration, endpoint

addresses, and firewall rules to be in place. For more detail on how to set up your environment for testing, see

the Configure remote access to IIS Express. The only difference between testing WCF and ASMX is the port

number of the TodoService.

TodoASMX (sample)

IAsyncResult

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todoasmx
https://docs.microsoft.com/en-us/dotnet/api/system.iasyncresult

Consume a Windows Communication Foundation
(WCF) Web Service

 7/8/2021 • 12 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Download the sample

WCF is Microsoft's unified framework for building service-oriented applications. It enables developers to build

secure, reliable, transacted, and interoperable distributed applications. This article demonstrates how to

consume an WCF Simple Object Access Protocol (SOAP) service from a Xamarin.Forms application.

WCF describes a service with a variety of different contracts including:

Data contractsData contracts – define the data structures that form the basis for the content within a message.

Message contractsMessage contracts – compose messages from existing data contracts.

Fault contractsFault contracts – allow custom SOAP faults to be specified.

Ser vice contractsSer vice contracts – specify the operations that services support and the messages required for interacting

with each operation. They also specify any custom fault behavior that can be associated with operations on

each service.

There are differences between ASP.NET Web Services (ASMX) and WCF, but WCF supports the same capabilities

that ASMX provides – SOAP messages over HTTP. For more information about consuming an ASMX service, see

Consume ASP.NET Web Services (ASMX).

The Xamarin platform support for WCF is limited to text-encoded SOAP messages over HTTP/HTTPS using the

BasicHttpBinding class.

WCF support requires the use of tools only available in a Windows environment to generate the proxy and host the

TodoWCFService. Building and testing the iOS app will require deploying the TodoWCFService on a Windows computer, or

as an Azure web service.

Xamarin Forms native apps typically share code with a .NET Standard Class Library. However, .NET Core does not currently

support WCF so the shared project must be a legacy Portable Class Library. For information about WCF support in .NET

Core, see Choosing between .NET Core and .NET Framework for server apps.

The sample application solution includes a WCF service which can be run locally, and is shown in the following

screenshot:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/web-services/wcf.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todowcf
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server

NOTENOTE

 Consume the web service

O P ERAT IO NO P ERAT IO N DESC RIP T IO NDESC RIP T IO N PA RA M ET ERSPA RA M ET ERS

GetTodoItems Get a list of to-do items

CreateTodoItem Create a new to-do item An XML serialized TodoItem

EditTodoItem Update a to-do item An XML serialized TodoItem

DeleteTodoItem Delete a to-do item An XML serialized TodoItem

In iOS 9 and greater, App Transport Security (ATS) enforces secure connections between internet resources (such as the

app's back-end server) and the app, thereby preventing accidental disclosure of sensitive information. Since ATS is enabled

by default in apps built for iOS 9, all connections will be subject to ATS security requirements. If connections do not meet

these requirements, they will fail with an exception.

ATS can be opted out of if it is not possible to use the HTTPS protocol and secure communication for internet resources.

This can be achieved by updating the app's Info.plistInfo.plist file. For more information see App Transport Security.

The WCF service provides the following operations:

For more information about the data model used in the application, see Modeling the data.

A proxy must be generated to consume a WCF service, which allows the application to connect to the service.

The proxy is constructed by consuming service metadata that define the methods and associated service

configuration. This metadata is exposed in the form of a Web Services Description Language (WSDL) document

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats

 Create the TodoServiceClient objectCreate the TodoServiceClient object

public class SoapService : ISoapService
{
 ITodoService todoService;
 ...

 public SoapService ()
 {
 todoService = new TodoServiceClient (
 new BasicHttpBinding (),
 new EndpointAddress (Constants.SoapUrl));
 }
 ...
}

that is generated by the web service. The proxy can be built by using the Microsoft WCF Web Service Reference

Provider in Visual Studio 2017 to add a service reference for the web service to a .NET Standard library. An

alternative to creating the proxy using the Microsoft WCF Web Service Reference Provider in Visual Studio 2017

is to use the ServiceModel Metadata Utility Tool (svcutil.exe). For more information, see ServiceModel Metadata

Utility Tool (Svcutil.exe).

The generated proxy classes provide methods for consuming the web services that use the Asynchronous

Programming Model (APM) design pattern. In this pattern, an asynchronous operation is implemented as two

methods named BeginOperationName and EndOperationName, which begin and end the asynchronous

operation.

The BeginOperationName method begins the asynchronous operation and returns an object that implements

the IAsyncResult interface. After calling BeginOperationName, an application can continue executing

instructions on the calling thread, while the asynchronous operation takes place on a thread pool thread.

For each call to BeginOperationName, the application should also call EndOperationName to get the results of

the operation. The return value of EndOperationName is the same type returned by the synchronous web

service method. For example, the EndGetTodoItems method returns a collection of TodoItem instances. The

EndOperationName method also includes an IAsyncResult parameter that should be set to the instance

returned by the corresponding call to the BeginOperationName method.

The Task Parallel Library (TPL) can simplify the process of consuming an APM begin/end method pair by

encapsulating the asynchronous operations in the same Task object. This encapsulation is provided by multiple

overloads of the TaskFactory.FromAsync method.

For more information about APM see Asynchronous Programming Model and TPL and Traditional .NET

Framework Asynchronous Programming on MSDN.

The generated proxy class provides the TodoServiceClient class, which is used to communicate with the WCF

service over HTTP. It provides functionality for invoking web service methods as asynchronous operations from

a URI identified service instance. For more information about asynchronous operations, see Async Support

Overview.

The TodoServiceClient instance is declared at the class-level so that the object lives for as long as the

application needs to consume the WCF service, as shown in the following code example:

The TodoServiceClient instance is configured with binding information and an endpoint address. A binding is

used to specify the transport, encoding, and protocol details required for applications and services to

communicate with each other. The BasicHttpBinding specifies that text-encoded SOAP messages will be sent

over the HTTP transport protocol. Specifying an endpoint address enables the application to connect to different

instances of the WCF service, provided that there are multiple published instances.

https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe/
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/asynchronous-programming-model-apm
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/tpl-and-traditional-async-programming
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async

 Create data transfer objectsCreate data transfer objects

TodoWCFService.TodoItem ToWCFServiceTodoItem (TodoItem item)
{
 return new TodoWCFService.TodoItem
 {
 ID = item.ID,
 Name = item.Name,
 Notes = item.Notes,
 Done = item.Done
 };
}

static TodoItem FromWCFServiceTodoItem (TodoWCFService.TodoItem item)
{
 return new TodoItem
 {
 ID = item.ID,
 Name = item.Name,
 Notes = item.Notes,
 Done = item.Done
 };
}

 Retrieve dataRetrieve data

For more information about configuring the service reference, see Configuring the Service Reference.

The sample application uses the TodoItem class to model data. To store a TodoItem item in the web service it

must first be converted to the proxy generated TodoItem type. This is accomplished by the

ToWCFServiceTodoItem method, as shown in the following code example:

This method simply creates a new TodoWCFService.TodoItem instance, and sets each property to the identical

property from the TodoItem instance.

Similarly, when data is retrieved from the web service, it must be converted from the proxy generated TodoItem

type to a TodoItem instance. This is accomplished with the FromWCFServiceTodoItem method, as shown in the

following code example:

This method simply retrieves the data from the proxy generated TodoItem type and sets it in the newly created

TodoItem instance.

The TodoServiceClient.BeginGetTodoItems and TodoServiceClient.EndGetTodoItems methods are used to call the

GetTodoItems operation provided by the web service. These asynchronous methods are encapsulated in a Task

object, as shown in the following code example:

https://docs.microsoft.com/en-us/xamarin/cross-platform/data-cloud/web-services/index

public async Task<List<TodoItem>> RefreshDataAsync ()
{
 ...
 var todoItems = await Task.Factory.FromAsync <ObservableCollection<TodoWCFService.TodoItem>> (
 todoService.BeginGetTodoItems,
 todoService.EndGetTodoItems,
 null,
 TaskCreationOptions.None);

 foreach (var item in todoItems)
 {
 Items.Add (FromWCFServiceTodoItem (item));
 }
 ...
}

 Create dataCreate data

public async Task SaveTodoItemAsync (TodoItem item, bool isNewItem = false)
{
 ...
 var todoItem = ToWCFServiceTodoItem (item);
 ...
 await Task.Factory.FromAsync (
 todoService.BeginCreateTodoItem,
 todoService.EndCreateTodoItem,
 todoItem,
 TaskCreationOptions.None);
 ...
}

 Update dataUpdate data

The Task.Factory.FromAsync method creates a Task that executes the TodoServiceClient.EndGetTodoItems

method once the TodoServiceClient.BeginGetTodoItems method completes, with the null parameter indicating

that no data is being passed into the BeginGetTodoItems delegate. Finally, the value of the TaskCreationOptions

enumeration specifies that the default behavior for the creation and execution of tasks should be used.

The TodoServiceClient.EndGetTodoItems method returns an ObservableCollection of TodoWCFService.TodoItem

instances, which is then converted to a List of TodoItem instances for display.

The TodoServiceClient.BeginCreateTodoItem and TodoServiceClient.EndCreateTodoItem methods are used to call

the CreateTodoItem operation provided by the web service. These asynchronous methods are encapsulated in a

Task object, as shown in the following code example:

The Task.Factory.FromAsync method creates a Task that executes the TodoServiceClient.EndCreateTodoItem

method once the TodoServiceClient.BeginCreateTodoItem method completes, with the todoItem parameter

being the data that's passed into the BeginCreateTodoItem delegate to specify the TodoItem to be created by the

web service. Finally, the value of the TaskCreationOptions enumeration specifies that the default behavior for

the creation and execution of tasks should be used.

The web service throws a FaultException if it fails to create the TodoItem , which is handled by the application.

The TodoServiceClient.BeginEditTodoItem and TodoServiceClient.EndEditTodoItem methods are used to call the

EditTodoItem operation provided by the web service. These asynchronous methods are encapsulated in a Task

object, as shown in the following code example:

public async Task SaveTodoItemAsync (TodoItem item, bool isNewItem = false)
{
 ...
 var todoItem = ToWCFServiceTodoItem (item);
 ...
 await Task.Factory.FromAsync (
 todoService.BeginEditTodoItem,
 todoService.EndEditTodoItem,
 todoItem,
 TaskCreationOptions.None);
 ...
}

 Delete dataDelete data

public async Task DeleteTodoItemAsync (string id)
{
 ...
 await Task.Factory.FromAsync (
 todoService.BeginDeleteTodoItem,
 todoService.EndDeleteTodoItem,
 id,
 TaskCreationOptions.None);
 ...
}

 Configure remote access to IIS Express

The Task.Factory.FromAsync method creates a Task that executes the TodoServiceClient.EndEditTodoItem

method once the TodoServiceClient.BeginCreateTodoItem method completes, with the todoItem parameter

being the data that's passed into the BeginEditTodoItem delegate to specify the TodoItem to be updated by the

web service. Finally, the value of the TaskCreationOptions enumeration specifies that the default behavior for

the creation and execution of tasks should be used.

The web service throws a FaultException if it fails to locate or update the TodoItem , which is handled by the

application.

The TodoServiceClient.BeginDeleteTodoItem and TodoServiceClient.EndDeleteTodoItem methods are used to call

the DeleteTodoItem operation provided by the web service. These asynchronous methods are encapsulated in a

Task object, as shown in the following code example:

The Task.Factory.FromAsync method creates a Task that executes the TodoServiceClient.EndDeleteTodoItem

method once the TodoServiceClient.BeginDeleteTodoItem method completes, with the id parameter being the

data that's passed into the BeginDeleteTodoItem delegate to specify the TodoItem to be deleted by the web

service. Finally, the value of the TaskCreationOptions enumeration specifies that the default behavior for the

creation and execution of tasks should be used.

The web service throws a FaultException if it fails to locate or delete the TodoItem , which is handled by the

application.

In Visual Studio 2017 or Visual Studio 2019, you should be able to test the UWP application on a PC with no

additional configuration. Testing Android and iOS clients may require the additional steps in this section. See

Connect to Local Web Services from iOS Simulators and Android Emulators for more information.

By default, IIS Express will only respond to requests to localhost . Remote devices (such as an Android device,

an iPhone or even a simulator) will not have access to your local WCF service. You will need to know your

Windows 10 workstation IP address on the local network. For the purpose of this example, assume that your

workstation has the IP address 192.168.1.143 . The following steps explain how to configure Windows 10 and

https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/connect-to-local-web-services

IIS Express to accept remote connections and connect to the service from a physical or virtual device:

netsh advfirewall firewall add rule name="TodoWCFService" dir=in protocol=tcp localport=49393
profile=private remoteip=localsubnet action=allow

<site name="TodoWCFService" id="2">
 <application path="/" applicationPool="Clr4IntegratedAppPool">
 <virtualDirectory path="/" physicalPath="C:\Users\tom\TodoWCF\TodoWCFService\TodoWCFService"
/>
 </application>
 <bindings>
 <binding protocol="http" bindingInformation="*:49393:localhost" />
 </bindings>
</site>

<binding protocol="http" bindingInformation="*:49393:192.168.1.143" />
<binding protocol="http" bindingInformation="*:49393:127.0.0.1" />

<site name="TodoWCFService" id="2">
 <application path="/" applicationPool="Clr4IntegratedAppPool">
 <virtualDirectory path="/" physicalPath="C:\Users\tom\TodoWCF\TodoWCFService\TodoWCFService"
/>
 </application>
 <bindings>
 <binding protocol="http" bindingInformation="*:49393:localhost" />
 <binding protocol="http" bindingInformation="*:49393:192.168.1.143" />
 <binding protocol="http" bindingInformation="*:49393:127.0.0.1" />
 </bindings>
</site>

IMPORTANTIMPORTANT

1. Add an exception to Windows FirewallAdd an exception to Windows Firewall . You must open a port through Windows Firewall that

applications on your subnet can use to communicate with the WCF service. Create an inbound rule

opening port 49393 in the firewall. From an administrative command prompt, run this command:

2. Configure IIS Express to Accept Remote connectionsConfigure IIS Express to Accept Remote connections . You can configure IIS Express by editing the

configuration file for IIS Express at [solution director y].vs\config\applicationhost.config[solution director y].vs\config\applicationhost.config. Find the

site element with the name TodoWCFService . It should look similar to the following XML:

You will need to add two binding elements to open up port 49393 to outside traffic and the Android

emulator. The binding uses a [IP address]:[port]:[hostname] format that specifies how IIS Express will

respond to requests. External requests will have hostnames that must be specified as a binding . Add the

following XML to the bindings element, replacing the IP address with your own IP address:

After your changes the bindings element should look like the following:

By default, IIS Express will not accept connections from external sources for security reasons. To enable

connections from remote devices you must run IIS Express with Administrative permissions. The easiest way to do

this is to run Visual Studio 2017 with Administrative permissions. This will launch IIS Express with Administrative

permissions when running the TodoWCFService.

With these steps complete, you should be able to run the TodoWCFService and connect from other

devices on your subnet. You can test this by running your application and visiting

http://localhost:49393/TodoService.svc . If you get a Bad RequestBad Request error when visiting that URL, your

 Related links

public static string SoapUrl
{
 get
 {
 var defaultUrl = "http://localhost:49393/TodoService.svc";

 if (Device.RuntimePlatform == Device.Android)
 {
 defaultUrl = "http://10.0.2.2:49393/TodoService.svc";
 }
 else if (Device.RuntimePlatform == Device.iOS)
 {
 defaultUrl = "http://192.168.1.143:49393/TodoService.svc";
 }

 return defaultUrl;
 }
}

bindings may be incorrect in the IIS Express configuration (the request is reaching IIS Express but is

being rejected). If you get a different error it may be that your application is not running or your firewall

is incorrectly configured.

To allow IIS Express to keep running and serving the service, turn off the Edit and ContinueEdit and Continue option in

Project Proper ties > Web > DebuggersProject Proper ties > Web > Debuggers .

3. Customize the endpoint devices use to access the ser viceCustomize the endpoint devices use to access the ser vice. This step involves configuring the

client application, running on a physical or emulated device, to access the WCF service.

The Android emulator utilizes an internal proxy that prevents the emulator from directly accessing the

host machine's localhost address. Instead, the address 10.0.2.2 on the emulator is routed to

localhost on the host machine through an internal proxy. These proxied requests will have 127.0.0.1

as the hostname in the request header, which is why you created the IIS Express binding for this

hostname in the steps above.

The iOS Simulator runs on a Mac build host, even if you are using the Remoted iOS Simulator for

Windows. Network requests from the simulator will have your workstation IP on the local network as the

hostname (in this example it's 192.168.1.143 , but your actual IP address will likely be different). This is

why you created the IIS Express binding for this hostname in the steps above.

Ensure the SoapUrl property in the Constants.csConstants.cs file in the TodoWCF (Portable) project have values that

are correct for your network:

Once you have configured the Constants.csConstants.cs with the appropriate endpoints, you should be able to

connect to the TodoWCFService running on your Windows 10 workstation from physical or virtual

devices.

TodoWCF (sample)

How to: Create a Windows Communication Foundation Client

ServiceModel Metadata Utility Tool (svcutil.exe)

https://docs.microsoft.com/en-us/xamarin/tools/ios-simulator/index
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todowcf
https://docs.microsoft.com/en-us/dotnet/framework/wcf/how-to-create-a-wcf-client
https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe

Consume a RESTful web service
 7/8/2021 • 7 minutes to read • Edit Online

 Download the sample

Integrating a web service into an application is a common scenario. This article demonstrates how to consume a

RESTful web service from a Xamarin.Forms application.

Representational State Transfer (REST) is an architectural style for building web services. REST requests are

made over HTTP using the same HTTP verbs that web browsers use to retrieve web pages and to send data to

servers. The verbs are:

GETGET – this operation is used to retrieve data from the web service.

POSTPOST – this operation is used to create a new item of data on the web service.

PUTPUT – this operation is used to update an item of data on the web service.

PATCHPATCH – this operation is used to update an item of data on the web service by describing a set of

instructions about how the item should be modified. This verb is not used in the sample application.

DELETEDELETE – this operation is used to delete an item of data on the web service.

Web service APIs that adhere to REST are called RESTful APIs, and are defined using:

A base URI.

HTTP methods, such as GET, POST, PUT, PATCH, or DELETE.

A media type for the data, such as JavaScript Object Notation (JSON).

RESTful web services typically use JSON messages to return data to the client. JSON is a text-based data-

interchange format that produces compact payloads, which results in reduced bandwidth requirements when

sending data. The sample application uses the open source NewtonSoft JSON.NET library to serialize and

deserialize messages.

The simplicity of REST has helped make it the primary method for accessing web services in mobile

applications.

When the sample application is run, it will connect to a locally hosted REST service, as shown in the following

screenshot:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/web-services/rest.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todorest
https://www.newtonsoft.com/json

NOTENOTE

 Consume the web service

O P ERAT IO NO P ERAT IO N H T T P M ET H O DH T T P M ET H O D REL AT IVE URIREL AT IVE URI PA RA M ET ERSPA RA M ET ERS

Get a list of to-do items GET /api/todoitems/

Create a new to-do item POST /api/todoitems/ A JSON formatted TodoItem

Update a to-do item PUT /api/todoitems/ A JSON formatted TodoItem

Delete a to-do item DELETE /api/todoitems/{id}

In iOS 9 and greater, App Transport Security (ATS) enforces secure connections between internet resources (such as the

app's back-end server) and the app, thereby preventing accidental disclosure of sensitive information. Since ATS is enabled

by default in apps built for iOS 9, all connections will be subject to ATS security requirements. If connections do not meet

these requirements, they will fail with an exception.

ATS can be opted out of if it is not possible to use the HTTPSHTTPS protocol and secure communication for internet resources.

This can be achieved by updating the app's Info.plistInfo.plist file. For more information see App Transport Security.

The REST service is written using ASP.NET Core and provides the following operations:

The majority of the URIs include the TodoItem ID in the path. For example, to delete the TodoItem whose ID is

6bb8a868-dba1-4f1a-93b7-24ebce87e243 , the client sends a DELETE request to

http://hostname/api/todoitems/6bb8a868-dba1-4f1a-93b7-24ebce87e243 . For more information about the data

model used in the sample application, see Modeling the data.

When the Web API framework receives a request it routes the request to an action. These actions are simply

public methods in the TodoItemsController class. The framework use routing middleware to match the URLs of

incoming requests and map them to actions. REST APIs should use attribute routing the model the app's

functionality as a set of resources whose operations are represented by HTTP verbs. Attribute routing uses a set

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats

 Create the HTTPClient objectCreate the HTTPClient object

public class RestService : IRestService
{
 HttpClient client;
 ...

 public RestService ()
 {
 client = new HttpClient ();
 ...
 }
 ...
}

 Retrieve dataRetrieve data

public async Task<List<TodoItem>> RefreshDataAsync ()
{
 ...
 Uri uri = new Uri (string.Format (Constants.TodoItemsUrl, string.Empty));
 ...
 HttpResponseMessage response = await client.GetAsync (uri);
 if (response.IsSuccessStatusCode)
 {
 string content = await response.Content.ReadAsStringAsync ();
 Items = JsonSerializer.Deserialize<List<TodoItem>>(content, serializerOptions);
 }
 ...
}

of attributes to map actions directly to route templates. For more information about attribute routing, see

Attribute routing for REST APIs. For more information about building the REST service using ASP.NET Core, see

Creating Backend Services for Native Mobile Applications.

The HttpClient class is used to send and receive requests over HTTP. It provides functionality for sending HTTP

requests and receiving HTTP responses from a URI identified resource. Each request is sent as an asynchronous

operation. For more information about asynchronous operations, see Async Support Overview.

The HttpResponseMessage class represents an HTTP response message received from the web service after an

HTTP request has been made. It contains information about the response, including the status code, headers,

and any body. The HttpContent class represents the HTTP body and content headers, such as Content-Type and

Content-Encoding . The content can be read using any of the ReadAs methods, such as ReadAsStringAsync and

ReadAsByteArrayAsync , depending upon the format of the data.

The HttpClient instance is declared at the class-level so that the object lives for as long as the application needs

to make HTTP requests, as shown in the following code example:

The HttpClient.GetAsync method is used to send the GET request to the web service specified by the URI, and

then receive the response from the web service, as shown in the following code example:

The REST service sends an HTTP status code in the HttpResponseMessage.IsSuccessStatusCode property, to

indicate whether the HTTP request succeeded or failed. For this operation the REST service sends HTTP status

code 200 (OK) in the response, which indicates that the request succeeded and that the requested information is

in the response.

If the HTTP operation was successful, the content of the response is read, for display. The

HttpResponseMessage.Content property represents the content of the HTTP response, and the

HttpContent.ReadAsStringAsync method asynchronously writes the HTTP content to a string. This content is then

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing?view=aspnetcore-5.0#ar
https://docs.microsoft.com/en-us/aspnet/core/mobile/native-mobile-backend/
https://docs.microsoft.com/en-us/xamarin/cross-platform/platform/async

WARNINGWARNING

 Create dataCreate data

public async Task SaveTodoItemAsync (TodoItem item, bool isNewItem = false)
{
 Uri uri = new Uri (string.Format (Constants.TodoItemsUrl, string.Empty));

 ...
 string json = JsonSerializer.Serialize<TodoItem>(item, serializerOptions);
 StringContent content = new StringContent (json, Encoding.UTF8, "application/json");

 HttpResponseMessage response = null;
 if (isNewItem)
 {
 response = await client.PostAsync (uri, content);
 }
 ...

 if (response.IsSuccessStatusCode)
 {
 Debug.WriteLine (@"\tTodoItem successfully saved.");
 }
 ...
}

 Update dataUpdate data

public async Task SaveTodoItemAsync (TodoItem item, bool isNewItem = false)
{
 ...
 response = await client.PutAsync (uri, content);
 ...
}

deserialized from JSON to a List of TodoItem instances.

Using the ReadAsStringAsync method to retrieve a large response can have a negative performance impact. In such

circumstances the response should be directly deserialized to avoid having to fully buffer it.

The HttpClient.PostAsync method is used to send the POST request to the web service specified by the URI, and

then to receive the response from the web service, as shown in the following code example:

The TodoItem instance is serialized to a JSON payload for sending to the web service. This payload is then

embedded in the body of the HTTP content that will be sent to the web service before the request is made with

the PostAsync method.

The REST service sends an HTTP status code in the HttpResponseMessage.IsSuccessStatusCode property, to

indicate whether the HTTP request succeeded or failed. The common responses for this operation are:

201 (CREATED)201 (CREATED) – the request resulted in a new resource being created before the response was sent.

400 (BAD REQUEST)400 (BAD REQUEST) – the request is not understood by the server.

409 (CONFLICT)409 (CONFLICT) – the request could not be carried out because of a conflict on the server.

The HttpClient.PutAsync method is used to send the PUT request to the web service specified by the URI, and

then receive the response from the web service, as shown in the following code example:

The operation of the PutAsync method is identical to the PostAsync method that's used for creating data in the

web service. However, the possible responses sent from the web service differ.

 Delete dataDelete data

public async Task DeleteTodoItemAsync (string id)
{
 Uri uri = new Uri (string.Format (Constants.TodoItemsUrl, id));
 ...
 HttpResponseMessage response = await client.DeleteAsync (uri);
 if (response.IsSuccessStatusCode)
 {
 Debug.WriteLine (@"\tTodoItem successfully deleted.");
 }
 ...
}

 Local developmentLocal development

 Related links

The REST service sends an HTTP status code in the HttpResponseMessage.IsSuccessStatusCode property, to

indicate whether the HTTP request succeeded or failed. The common responses for this operation are:

204 (NO CONTENT)204 (NO CONTENT) – the request has been successfully processed and the response is intentionally blank.

400 (BAD REQUEST)400 (BAD REQUEST) – the request is not understood by the server.

404 (NOT FOUND)404 (NOT FOUND) – the requested resource does not exist on the server.

The HttpClient.DeleteAsync method is used to send the DELETE request to the web service specified by the URI,

and then receive the response from the web service, as shown in the following code example:

The REST service sends an HTTP status code in the HttpResponseMessage.IsSuccessStatusCode property, to

indicate whether the HTTP request succeeded or failed. The common responses for this operation are:

204 (NO CONTENT)204 (NO CONTENT) – the request has been successfully processed and the response is intentionally blank.

400 (BAD REQUEST)400 (BAD REQUEST) – the request is not understood by the server.

404 (NOT FOUND)404 (NOT FOUND) – the requested resource does not exist on the server.

If you are developing your REST web service locally with a framework such as ASP.NET Core Web API, you can

debug your web service and mobile app at the same time. In this scenario you must enable clear-text HTTP

traffic for the iOS simualtor and Android emulator. For information about configuration your project to allow

communication, see Connect to local web services.

Microsoft Learn: Consume REST web services in Xamarin Apps

Microsoft Learn: Create a web API with ASP.NET Core

Creating Backend Services for Native Mobile Applications

Attribute routing for REST APIs

TodoREST (sample)

HttpClient API

Android Network Security Configuration

iOS App Transport Security

Connect to local web services

https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/connect-to-local-web-services
https://docs.microsoft.com/en-us/learn/modules/consume-rest-services/
https://docs.microsoft.com/en-us/learn/modules/build-web-api-aspnet-core/
https://docs.microsoft.com/en-us/aspnet/core/mobile/native-mobile-backend/
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing?view=aspnetcore-5.0#ar
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-todorest
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://devblogs.microsoft.com/xamarin/cleartext-http-android-network-security/
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/connect-to-local-web-services

Xamarin.Forms Web Service Authentication
 11/2/2020 • 2 minutes to read • Edit Online

 Authenticate a RESTful Web Service

 Authenticate Users with Azure Active Directory B2C

 Authenticate Users with an Azure Cosmos DB Document Database
and Xamarin.Forms

HTTP supports the use of several authentication mechanisms to control access to resources. Basic authentication

provides access to resources to only those clients that have the correct credentials. This article explains how to

use basic authentication to protect access to RESTful web service resources.

Azure Active Directory B2C is a cloud identity management solution for consumer-facing web and mobile

applications. This article explains how to use Microsoft Authentication Library (MSAL) and Azure Active

Directory B2C to integrate consumer identity management into a Xamarin.Forms application.

Azure Cosmos DB document databases support partitioned collections, which can span multiple servers and

partitions, while supporting unlimited storage and throughput. This article explains how to combine access

control with partitioned collections, so that a user can only access their own documents in a Xamarin.Forms

application.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/authentication/index.md

Authenticate a RESTful Web Service
 7/8/2021 • 3 minutes to read • Edit Online

NOTENOTE

 Authenticating Users over HTTP

NOTENOTE

 Specifying Basic Authentication in a Web Request

HTTP supports the use of several authentication mechanisms to control access to resources. Basic authentication

provides access to resources to only those clients that have the correct credentials. This article demonstrates

how to use basic authentication to protect access to RESTful web service resources.

In iOS 9 and greater, App Transport Security (ATS) enforces secure connections between internet resources (such as the

app's back-end server) and the app, thereby preventing accidental disclosure of sensitive information. Since ATS is enabled

by default in apps built for iOS 9, all connections will be subject to ATS security requirements. If connections do not meet

these requirements, they will fail with an exception. ATS can be opted out of if it is not possible to use the HTTPS

protocol and secure communication for internet resources. This can be achieved by updating the app's Info.plistInfo.plist file. For

more information see App Transport Security.

Basic authentication is the simplest authentication mechanism supported by HTTP, and involves the client

sending the username and password as unencrypted base64 encoded text. It works as follows:

If a web service receives a request for a protected resource, it rejects the request with an HTTP status code

401 (access denied) and sets the WWW-Authenticate response header, as shown in the following diagram:

If a web service receives a request for a protected resource, with the Authorization header correctly set, the

web service responds with an HTTP status code 200, which indicates that the request succeeded and that the

requested information is in the response. This scenario is shown in the following diagram:

Basic authentication should only be used over an HTTPS connection. When used over an HTTP connection, the

Authorization header can easily be decoded if the HTTP traffic is captured by an attacker.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/authentication/rest.md
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats

Authorization: Basic WGFtYXJpblVzZXI6WGFtYXJpblBhc3N3b3Jk

public class RestService : IRestService
{
 HttpClient _client;
 ...

 public RestService ()
 {
 var authData = string.Format ("{0}:{1}", Constants.Username, Constants.Password);
 var authHeaderValue = Convert.ToBase64String (Encoding.UTF8.GetBytes (authData));

 _client = new HttpClient ();
 _client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue ("Basic", authHeaderValue);
 }
 ...
}

IMPORTANTIMPORTANT

 Processing the Authorization Header Server Side

NOTENOTE

Use of basic authentication is specified as follows:

1. The string "Basic " is added to the Authorization header of the request.

2. The username and password are combined into a string with the format "username:password", which is then

base64 encoded and added to the Authorization header of the request.

Therefore, with a username of 'XamarinUser' and a password of 'XamarinPassword', the header becomes:

The HttpClient class can set the Authorization header value on the

HttpClient.DefaultRequestHeaders.Authorization property. Because the HttpClient instance exists across

multiple requests, the Authorization header needs only to be set once, rather than when making every request,

as shown in the following code example:

Then when a request is made to a web service operation the request is signed with the Authorization header,

indicating whether or not the user has permission to invoke the operation.

While this code stores credentials as constants, they should not be stored in an insecure format in a published application.

The REST service should decorate each action with the [BasicAuthentication] attribute. This attribute is used to

parse the Authorization header and determine if the base64 encoded credentials are valid by comparing them

against values stored in Web.config. While this approach is suitable for a sample service, it requires extending

for a public-facing web service.

In the basic authentication module used by IIS, users are authenticated against their Windows credentials.

Therefore, users must have accounts on the server's domain. However, the Basic authentication model can be

configured to allow custom authentication, where user accounts are authenticated against an external source,

such as a database. For more information see Basic Authentication in ASP.NET Web API on the ASP.NET website.

Basic authentication was not designed to manage logging out. Therefore, the standard basic authentication approach for

logging out is to end the session.

https://www.asp.net/web-api/overview/security/basic-authentication

 Related Links
Consume a RESTful web service

HttpClient

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

Authenticate Users with Azure Active Directory B2C
 7/8/2021 • 9 minutes to read • Edit Online

 Overview

NOTENOTE

 Configure an Azure Active Directory B2C tenant

 Download the sample

Azure Active Directory B2C provides cloud identity management for consumer-facing web and mobile

applications. This article shows how to use Azure Active Directory B2C to integrate identity management into a

mobile application with the Microsoft Authentication Library.

Azure Active Directory B2C (ADB2C) is an identity management service for consumer-facing applications. It

allows users to sign in to your application using their existing social accounts or custom credentials such as

email or username, and password. Custom credential accounts are referred to as local accounts.

The process for integrating the Azure Active Directory B2C identity management service into a mobile

application is as follows:

1. Create an Azure Active Directory B2C tenant.

2. Register your mobile application with the Azure Active Directory B2C tenant.

3. Create policies for sign-up and sign-in, and forgot password user flows.

4. Use the Microsoft Authentication Library (MSAL) to start an authentication workflow with your Azure Active

Directory B2C tenant.

If you don't have an Azure subscription, create a free account before you begin.

Azure Active Directory B2C supports multiple identity providers including Microsoft, GitHub, Facebook, Twitter

and more. For more information on Azure Active Directory B2C capabilities, see Azure Active Directory B2C

Documentation.

Microsoft Authentication Library supports multiple application architectures and platforms. For information

about MSAL capabilities, see Microsoft Authentication Library on GitHub.

To run the sample project, you must create an Azure Active Directory B2C tenant. For more information, see

Create an Azure Active Directory B2C tenant in the Azure portal.

Once you create a tenant, you will need the tenant nametenant name and tenant IDtenant ID to configure the mobile application.

The tenant ID and name are defined by the domain generated when you created your tenant URL. If your

generated tenant URL is https://contoso20190410tenant.onmicrosoft.com/ the tenant IDtenant ID is

contoso20190410tenant.onmicrosoft.com and the tenant nametenant name is contoso20190410tenant . Find the tenant domain

in the Azure portal by clicking the director y and subscr iption filterdirector y and subscr iption filter in the top menu. The following

screenshot shows the Azure directory and subscription filter button and the tenant domain:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/authentication/azure-ad-b2c.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-azureadb2cauth
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://docs.microsoft.com/en-us/azure/active-directory-b2c/
https://github.com/AzureAD/microsoft-authentication-library-for-dotnet/wiki
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-get-started/

public static class Constants
{
 static readonly string tenantName = "contoso20190410tenant";
 static readonly string tenantId = "contoso20190410tenant.onmicrosoft.com";
 ...
}

 Register your mobile application with Azure Active Directory B2C

In the sample project, edit the Constants.csConstants.cs file to set the tenantName and tenantId fields. The following code

shows how these values should be set if your tenant domain is https://contoso20190410tenant.onmicrosoft.com/ ,

replace these values with values from your portal:

A mobile application must be registered with the tenant before it can connect and authenticate users. The

registration process assigns a unique Application IDApplication ID to the application, and a Redirect URLRedirect URL that directs

responses back to the application after authentication. For more information, see Azure Active Directory B2C:

Register your application. You will need to know the Application IDApplication ID assigned to your application, which is listed

after the application name in the properties view. The following screenshot shows where to find the Application

ID:

Microsoft Authentication Library expects the Redirect URLRedirect URL for your application to be your Application IDApplication ID

prefixed with the text "msal", and followed by an endpoint called "auth". If your Application ID is "1234abcd", the

full URL should be msal1234abcd://auth . Make sure that your application has enabled the Native clientNative client setting

and create a Custom Redirect URICustom Redirect URI using your Application ID as shown in the following screenshot:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/authentication/azure-ad-b2c-images/azure-tenant-name.png#lightbox
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-app-registration/
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/authentication/azure-ad-b2c-images/azure-application-id.png#lightbox

public static class Constants
{
 static readonly string tenantName = "contoso20190410tenant";
 static readonly string tenantId = "contoso20190410tenant.onmicrosoft.com";
 static readonly string clientId = "1234abcd";
 ...
}

 Create sign-up and sign-in policies, and forgot password policies

The URL will be used later in both the Android ApplicationManifest.xmlApplicationManifest.xml and the iOS Info.plistInfo.plist.

In the sample project, edit the Constants.csConstants.cs file to set the clientId field to your Application IDApplication ID. The following

code shows how this value should be set if your Application ID is 1234abcd :

A policy is an experience users go through to complete a task such as creating an account or resetting a

password. A policy also specifies the contents of tokens the application receives when the user returns from the

experience. You must set up policies for both account sign-up and sign-in, and reset password. Azure has built-in

policies that simplify creation of common policies. For more information, see Azure Active Directory B2C: Built-

in policies.

When you've completed policy setup, you should have two policies in the User flows (policies)User flows (policies) view in the

Azure portal. The following screenshot demonstrates two configured policies in the Azure portal:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-policies/

public static class Constants
{
 static readonly string tenantName = "contoso20190410tenant";
 static readonly string tenantId = "contoso20190410tenant.onmicrosoft.com";
 static readonly string clientId = "1234abcd";
 static readonly string policySignin = "B2C_1_signupsignin1";
 static readonly string policyPassword = "B2C_1_passwordreset";
 ...
}

 Use the Microsoft Authentication Library (MSAL) for authentication

In the sample project, edit the Constants.csConstants.cs file to set the policySignin and policyPassword fields to reflect the

names you chose during policy setup:

The Microsoft Authentication Library (MSAL) NuGet package must be added to the shared, .NET Standard

project, and the platform projects in a Xamarin.Forms solution. MSAL includes a PublicClientApplicationBuilder

class that constructs an object adhering to the IPublicClientApplication interface. MSAL utilizes With clauses

to supply additional parameters to the constructor and authentication methods.

In the sample project, the code behind for App.xamlApp.xaml defines static properties named AuthenticationClient and

UIParent , and instantiates the AuthenticationClient object in the constructor. The

WithIosKeychainSecurityGroup clause provides a security group name for iOS applications. The

WithB2CAuthority clause provides the default AuthorityAuthority , or policy, that will be used to authenticate users. The

WithRedirectUri clause tells the Azure Notification Hubs instance which Redirect URI to use if multiple URIs are

specified. The following example demonstrates how to instantiate the PublicClientApplication :

public partial class App : Application
{
 public static IPublicClientApplication AuthenticationClient { get; private set; }

 public static object UIParent { get; set; } = null;

 public App()
 {
 InitializeComponent();

 AuthenticationClient = PublicClientApplicationBuilder.Create(Constants.ClientId)
 .WithIosKeychainSecurityGroup(Constants.IosKeychainSecurityGroups)
 .WithB2CAuthority(Constants.AuthoritySignin)
 .WithRedirectUri($"msal{Constants.ClientId}://auth")
 .Build();

 MainPage = new NavigationPage(new LoginPage());
 }

 ...

NOTENOTE

public partial class LoginPage : ContentPage
{
 ...

 protected override async void OnAppearing()
 {
 try
 {
 // Look for existing account
 IEnumerable<IAccount> accounts = await App.AuthenticationClient.GetAccountsAsync();

 AuthenticationResult result = await App.AuthenticationClient
 .AcquireTokenSilent(Constants.Scopes, accounts.FirstOrDefault())
 .ExecuteAsync();

 await Navigation.PushAsync(new LogoutPage(result));
 }
 catch
 {
 // Do nothing - the user isn't logged in
 }
 base.OnAppearing();
 }

 ...
}

If your Azure Notification Hubs instance only has one Redirect URI defined, the AuthenticationClient instance may

work without specifying the Redirect URI with the WithRedirectUri clause. However, you should always specify this

value in case your Azure configuration expands to support other clients or authentication methods.

The OnAppearing event handler in the LoginPage.xaml.csLoginPage.xaml.cs code behind calls AcquireTokenSilentAsync to

refresh the authentication token for users that have logged in before. The authentication process redirects to the

LogoutPage if successful and does nothing on failure. The following example shows the silent reauthentication

process in OnAppearing :

The OnLoginButtonClicked event handler (fired when the Login button is clicked) calls AcquireTokenAsync . The

MSAL library automatically opens the mobile device browser and navigates to the login page. The sign-in URL,

public partial class LoginPage : ContentPage
{
 ...

 async void OnLoginButtonClicked(object sender, EventArgs e)
 {
 AuthenticationResult result;
 try
 {
 result = await App.AuthenticationClient
 .AcquireTokenInteractive(Constants.Scopes)
 .WithPrompt(Prompt.SelectAccount)
 .WithParentActivityOrWindow(App.UIParent)
 .ExecuteAsync();

 await Navigation.PushAsync(new LogoutPage(result));
 }
 catch (MsalException ex)
 {
 if (ex.Message != null && ex.Message.Contains("AADB2C90118"))
 {
 result = await OnForgotPassword();
 await Navigation.PushAsync(new LogoutPage(result));
 }
 else if (ex.ErrorCode != "authentication_canceled")
 {
 await DisplayAlert("An error has occurred", "Exception message: " + ex.Message, "Dismiss");
 }
 }
 }

 ...
}

public partial class LoginPage : ContentPage
{
 ...
 async Task<AuthenticationResult> OnForgotPassword()
 {
 try
 {
 return await App.AuthenticationClient
 .AcquireTokenInteractive(Constants.Scopes)
 .WithPrompt(Prompt.SelectAccount)
 .WithParentActivityOrWindow(App.UIParent)
 .WithB2CAuthority(Constants.AuthorityPasswordReset)
 .ExecuteAsync();
 }
 catch (MsalException)
 {
 // Do nothing - ErrorCode will be displayed in OnLoginButtonClicked
 return null;
 }
 }
}

called an AuthorityAuthority , is a combination of the tenant name and policies defined in the Constants.csConstants.cs file. If the

user chooses the forgot password option, they are returned to the app with an exception, which launches the

forgot password experience. The following example shows the authentication process:

The OnForgotPassword method is similar to the sign-in process but implements a custom policy.

OnForgotPassword uses a different overload of AcquireTokenAsync , which allows you to provide a specific

AuthorityAuthority . The following example shows how to supply a custom AuthorityAuthority when acquiring a token:

public partial class LogoutPage : ContentPage
{
 ...
 async void OnLogoutButtonClicked(object sender, EventArgs e)
 {
 IEnumerable<IAccount> accounts = await App.AuthenticationClient.GetAccountsAsync();

 while (accounts.Any())
 {
 await App.AuthenticationClient.RemoveAsync(accounts.First());
 accounts = await App.AuthenticationClient.GetAccountsAsync();
 }

 await Navigation.PopAsync();
 }
}

 iOSiOS

The final piece of authentication is the sign out process. The OnLogoutButtonClicked method is called when the

user presses the sign out button. It loops through all accounts and ensures their tokens have been invalidated.

The sample below demonstrates the sign out implementation:

On iOS, the custom URL scheme that was registered with Azure Active Directory B2C must be registered in

Info.plistInfo.plist. MSAL expects the URL scheme to adhere to a specific pattern, described previously in Register your

mobile application with Azure Active Directory B2C. The following screenshot shows the custom URL scheme in

Info.plistInfo.plist.

MSAL also requires Keychain Entitlements on iOS, registered in the Entitilements.plistEntitilements.plist, as shown in the

following screenshot:

using Microsoft.Identity.Client;

namespace TodoAzure.iOS
{
 [Register("AppDelegate")]
 public partial class AppDelegate : global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate
 {
 ...
 public override bool OpenUrl(UIApplication app, NSUrl url, NSDictionary options)
 {
 AuthenticationContinuationHelper.SetAuthenticationContinuationEventArgs(url);
 return base.OpenUrl(app, url, options);
 }
 }
}

 AndroidAndroid

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" android:versionCode="1"
android:versionName="1.0" package="com.xamarin.adb2cauthorization">
 <uses-sdk android:minSdkVersion="15" />
 <application android:label="ADB2CAuthorization">
 <activity android:name="microsoft.identity.client.BrowserTabActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <!-- example -->
 <!-- <data android:scheme="msalaaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee" android:host="auth" /> -->
 <data android:scheme="INSERT_URI_SCHEME_HERE" android:host="auth" />
 </intent-filter>
 </activity>"
 </application>
</manifest>

When Azure Active Directory B2C completes the authorization request, it redirects to the registered redirect

URL. The custom URL scheme results in iOS launching the mobile application and passing in the URL as a

launch parameter, where it's processed by the OpenUrl override of the application's AppDelegate class, and

returns control of the experience to MSAL. The OpenUrl implementation is shown in the following code

example:

On Android, the custom URL scheme that was registered with Azure Active Directory B2C must be registered in

the AndroidManifest.xmlAndroidManifest.xml . MSAL expects the URL scheme to adhere to a specific pattern, described previously

in Register your mobile application with Azure Active Directory B2C. The following example shows the custom

URL scheme in the AndroidManifest.xmlAndroidManifest.xml .

The MainActivity class must be modified to provide the UIParent object to the application during the

OnCreate call. When Azure Active Directory B2C completes the authorization request, it redirects to the

registered URL scheme from the AndroidManifest.xmlAndroidManifest.xml . The registered URI scheme results in Android calling

the OnActivityResult method with the URL as a launch parameter, where it's processed by the

SetAuthenticationContinuationEventArgs method.

public class MainActivity : FormsAppCompatActivity
{
 protected override void OnCreate(Bundle bundle)
 {
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(bundle);

 Forms.Init(this, bundle);
 LoadApplication(new App());
 App.UIParent = this;
 }

 protected override void OnActivityResult(int requestCode, Result resultCode, Intent data)
 {
 base.OnActivityResult(requestCode, resultCode, data);
 AuthenticationContinuationHelper.SetAuthenticationContinuationEventArgs(requestCode, resultCode,
data);
 }
}

 Universal Windows PlatformUniversal Windows Platform

 Run the project

 Related Links

No additional setup is required to use MSAL on the Universal Windows Platform

Run the application on a virtual or physical device. Tapping the LoginLogin button should open the browser and

navigate to a page where you can sign in or create an account. After completing the sign in process, you should

be returned to the application's logout page. The following screenshot shows the user sign in screen running on

Android and iOS:

AzureADB2CAuth (sample)

Azure Active Directory B2C

Microsoft Authentication Library

Microsoft Authentication Library Documentation

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-azureadb2cauth
https://docs.microsoft.com/en-us/azure/active-directory-b2c/
https://www.nuget.org/packages/Microsoft.Identity.Client
https://github.com/AzureAD/microsoft-authentication-library-for-dotnet/wiki

Authenticate Users with an Azure Cosmos DB
Document Database and Xamarin.Forms

 7/8/2021 • 10 minutes to read • Edit Online

 Overview

 Download the sample

Azure Cosmos DB document databases support partitioned collections, which can span multiple servers and

partitions, while supporting unlimited storage and throughput. This article explains how to combine access

control with partitioned collections, so that a user can only access their own documents in a Xamarin.Forms

application.

A partition key must be specified when creating a partitioned collection, and documents with the same partition

key will be stored in the same partition. Therefore, specifying the user's identity as a partition key will result in a

partitioned collection that will only store documents for that user. This also ensures that the Azure Cosmos DB

document database will scale as the number of users and items increase.

Access must be granted to any collection, and the SQL API access control model defines two types of access

constructs:

Master keysMaster keys enable full administrative access to all resources within a Cosmos DB account, and are created

when a Cosmos DB account is created.

Resource tokensResource tokens capture the relationship between the user of a database and the permission the user has

for a specific Cosmos DB resource, such as a collection or a document.

Exposing a master key opens a Cosmos DB account to the possibility of malicious or negligent use. However,

Azure Cosmos DB resource tokens provide a safe mechanism for allowing clients to read, write, and delete

specific resources in an Azure Cosmos DB account according to the granted permissions.

A typical approach to requesting, generating, and delivering resource tokens to a mobile application is to use a

resource token broker. The following diagram shows a high-level overview of how the sample application uses a

resource token broker to manage access to the document database data:

The resource token broker is a mid-tier Web API service, hosted in Azure App Service, which possesses the

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/data-cloud/authentication/azure-cosmosdb-auth.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-tododocumentdbauth

NOTENOTE

 Setup

NOTENOTE

 Azure Cosmos DB ConfigurationAzure Cosmos DB Configuration

 Azure App Service ConfigurationAzure App Service Configuration

master key of the Cosmos DB account. The sample application uses the resource token broker to manage access

to the document database data as follows:

1. On login, the Xamarin.Forms application contacts Azure App Service to initiate an authentication flow.

2. Azure App Service performs an OAuth authentication flow with Facebook. After the authentication flow

completes, the Xamarin.Forms application receives an access token.

3. The Xamarin.Forms application uses the access token to request a resource token from the resource token

broker.

4. The resource token broker uses the access token to request the user's identity from Facebook. The user's

identity is then used to request a resource token from Cosmos DB, which is used to grant read/write access

to the authenticated user's partitioned collection.

5. The Xamarin.Forms application uses the resource token to directly access Cosmos DB resources with the

permissions defined by the resource token.

When the resource token expires, subsequent document database requests will receive a 401 unauthorized exception. At

this point, Xamarin.Forms applications should re-establish the identity and request a new resource token.

For more information about Cosmos DB partitioning, see How to partition and scale in Azure Cosmos DB. For

more information about Cosmos DB access control, see Securing access to Cosmos DB data and Access control

in the SQL API.

The process for integrating the resource token broker into a Xamarin.Forms application is as follows:

1. Create a Cosmos DB account that will use access control. For more information, see Azure Cosmos DB

Configuration.

2. Create an Azure App Service to host the resource token broker. For more information, see Azure App Service

Configuration.

3. Create a Facebook app to perform authentication. For more information, see Facebook App Configuration.

4. Configure the Azure App Service to perform easy authentication with Facebook. For more information, see

Azure App Service Authentication Configuration.

5. Configure the Xamarin.Forms sample application to communicate with Azure App Service and Cosmos DB.

For more information, see Xamarin.Forms Application Configuration.

If you don't have an Azure subscription, create a free account before you begin.

The process for creating a Cosmos DB account that will use access control is as follows:

1. Create a Cosmos DB account. For more information, see Create an Azure Cosmos DB account.

2. In the Cosmos DB account, create a new collection named UserItems , specifying a partition key of /userid .

The process for hosting the resource token broker in Azure App Service is as follows:

1. In the Azure portal, create a new App Service web app. For more information, see Create a web app in an

App Service Environment.

https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data/
https://docs.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data/
https://docs.microsoft.com/en-us/rest/api/documentdb/access-control-on-documentdb-resources/
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://aka.ms/azfree-docs-mobileapps
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started#step-1-create-an-azure-cosmos-db-account
https://docs.microsoft.com/en-us/azure/app-service-web/app-service-web-how-to-create-a-web-app-in-an-ase/

 Facebook App ConfigurationFacebook App Configuration

2. In the Azure portal, open the App Settings blade for the web app, and add the following settings:

accountUrl – the value should be the Cosmos DB account URL from the Keys blade of the Cosmos DB

account.

accountKey – the value should be the Cosmos DB master key (primary or secondary) from the Keys

blade of the Cosmos DB account.

databaseId – the value should be the name of the Cosmos DB database.

collectionId – the value should be the name of the Cosmos DB collection (in this case, UserItems).

hostUrl – the value should be the URL of the web app from the Overview blade of the App Service

account.

The following screenshot demonstrates this configuration:

3. Publish the resource token broker solution to the Azure App Service web app.

The process for creating a Facebook app to perform authentication is as follows:

1. Create a Facebook app. For more information, see Register and Configure an App on the Facebook Developer

Center.

2. Add the Facebook Login product to the app. For more information, see Add Facebook Login to Your App or

Website on the Facebook Developer Center.

3. Configure Facebook Login as follows:

Enable Client OAuth Login.

Enable Web OAuth Login.

Set the Valid OAuth redirect URI to the URI of the App Service web app, with

/.auth/login/facebook/callback appended.

The following screenshot demonstrates this configuration:

file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/authentication/azure-cosmosdb-auth-images/azure-web-app-settings-large.png#lightbox
https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/facebook-login

 Azure App Service Authentication ConfigurationAzure App Service Authentication Configuration

For more information, see Register your application with Facebook.

The process for configuring App Service easy authentication is as follows:

1. In the Azure Portal, navigate to the App Service web app.

2. In the Azure Portal, open the Authentication / Authorization blade and perform the following

configuration:

App Service Authentication should be turned on.

The action to take when a request is not authenticated should be set to Login in with FacebookLogin in with Facebook.

The following screenshot demonstrates this configuration:

The App Service web app should also be configured to communicate with the Facebook app to enable the

authentication flow. This can be accomplished by selecting the Facebook identity provider, and entering the AppApp

IDID and App SecretApp Secret values from the Facebook app settings on the Facebook Developer Center. For more

information, see Add Facebook information to your application.

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-facebook-authentication#a-nameregister-aregister-your-application-with-facebook
file:///T:/c1uy/wq21/xamarin/xamarin-forms/data-cloud/authentication/azure-cosmosdb-auth-images/app-service-authentication-settings-large.png#lightbox
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-facebook-authentication#a-namesecrets-aadd-facebook-information-to-your-application

 Xamarin.Forms Application ConfigurationXamarin.Forms Application Configuration

 Initiating Login

var auth = new Xamarin.Auth.WebRedirectAuthenticator(
 new Uri(Constants.ResourceTokenBrokerUrl + "/.auth/login/facebook"),
 new Uri(Constants.ResourceTokenBrokerUrl + "/.auth/login/done"));

The process for configuring the Xamarin.Forms sample application is as follows:

1. Open the Xamarin.Forms solution.

2. Open Constants.cs and update the values of the following constants:

EndpointUri – the value should be the Cosmos DB account URL from the Keys blade of the Cosmos

DB account.

DatabaseName – the value should be the name of the document database.

CollectionName – the value should be the name of the document database collection (in this case,

UserItems).

ResourceTokenBrokerUrl – the value should be the URL of the resource token broker web app from the

Overview blade of the App Service account.

The sample application initiates the login process by redirecting a browser to an identity provider URL, as

demonstrated in the following example code:

This causes an OAuth authentication flow to be initiated between Azure App Service and Facebook, which

displays the Facebook login page:

The login can be cancelled by pressing the CancelCancel button on iOS or by pressing the BackBack button on Android, in

which case the user remains unauthenticated and the identity provider user interface is removed from the

 Obtaining a Resource Token

auth.Completed += async (sender, e) =>
{
 if (e.IsAuthenticated && e.Account.Properties.ContainsKey("token"))
 {
 var easyAuthResponseJson = JsonConvert.DeserializeObject<JObject>(e.Account.Properties["token"]);
 var easyAuthToken = easyAuthResponseJson.GetValue("authenticationToken").ToString();

 // Call the ResourceBroker to get the resource token
 using (var httpClient = new HttpClient())
 {
 httpClient.DefaultRequestHeaders.Add("x-zumo-auth", easyAuthToken);
 var response = await httpClient.GetAsync(Constants.ResourceTokenBrokerUrl + "/api/resourcetoken/");
 var jsonString = await response.Content.ReadAsStringAsync();
 var tokenJson = JsonConvert.DeserializeObject<JObject>(jsonString);
 resourceToken = tokenJson.GetValue("token").ToString();
 UserId = tokenJson.GetValue("userid").ToString();

 if (!string.IsNullOrWhiteSpace(resourceToken))
 {
 client = new DocumentClient(new Uri(Constants.EndpointUri), resourceToken);
 ...
 }
 ...
 }
 }
};

NOTENOTE

screen.

Following successful authentication, the WebRedirectAuthenticator.Completed event fires. The following code

example demonstrates handling this event:

The result of a successful authentication is an access token, which is available

AuthenticatorCompletedEventArgs.Account property. The access token is extracted and used in a GET request to

the resource token broker's resourcetoken API.

The resourcetoken API uses the access token to request the user's identity from Facebook, which in turn is used

to request a resource token from Cosmos DB. If a valid permission document already exists for the user in the

document database, it's retrieved and a JSON document containing the resource token is returned to the

Xamarin.Forms application. If a valid permission document doesn't exist for the user, a user and permission is

created in the document database, and the resource token is extracted from the permission document and

returned to the Xamarin.Forms application in a JSON document.

A document database user is a resource associated with a document database, and each database may contain zero or

more users. A document database permission is a resource associated with a document database user, and each user may

contain zero or more permissions. A permission resource provides access to a security token that the user requires when

attempting to access a resource such as a document.

If the resourcetoken API successfully completes, it will send HTTP status code 200 (OK) in the response, along

with a JSON document containing the resource token. The following JSON data shows a typical successful

response message:

{
 "id": "John Smithpermission",
 "token":
"type=resource&ver=1&sig=zx6k2zzxqktzvuzuku4b7y==;a74aukk99qtwk8v5rxfrfz7ay7zzqfkbfkremrwtaapvavw2mrvia4umbi
/7iiwkrrq+buqqrzkaq4pp15y6bki1u//zf7p9x/aefbvqvq3tjjqiffurfx+vexa1xarxkkv9rbua9ypfzr47xpp5vmxuvzbekkwq6txme0
xxxbjhzaxbkvzaji+iru3xqjp05amvq1r1q2k+qrarurhmjzah/ha0evixazkve2xk1zu9u/jpyf1xrwbkxqpzebvqwma+hyyaazemr6qx9u
z9be==;",
 "expires": 4035948,
 "userid": "John Smith"
}

 Retrieving Documents

var query = client.CreateDocumentQuery<TodoItem>(collectionLink,
 new FeedOptions
 {
 MaxItemCount = -1,
 PartitionKey = new PartitionKey(UserId)
 })
 .Where(item => !item.Id.Contains("permission"))
 .AsDocumentQuery();
while (query.HasMoreResults)
{
 Items.AddRange(await query.ExecuteNextAsync<TodoItem>());
}

NOTENOTE

 Inserting Documents

The WebRedirectAuthenticator.Completed event handler reads the response from the resourcetoken API and

extracts the resource token and the user id. The resource token is then passed as an argument to the

DocumentClient constructor, which encapsulates the endpoint, credentials, and connection policy used to access

Cosmos DB, and is used to configure and execute requests against Cosmos DB. The resource token is sent with

each request to directly access a resource, and indicates that read/write access to the authenticated users'

partitioned collection is granted.

Retrieving documents that only belong to the authenticated user can be achieved by creating a document query

that includes the user's id as a partition key, and is demonstrated in the following code example:

The query asynchronously retrieves all the documents belonging to the authenticated user, from the specified

collection, and places them in a List<TodoItem> collection for display.

The CreateDocumentQuery<T> method specifies a Uri argument that represents the collection that should be

queried for documents, and a FeedOptions object. The FeedOptions object specifies that an unlimited number of

items can be returned by the query, and the user's id as a partition key. This ensures that only documents in the

user's partitioned collection are returned in the result.

Note that permission documents, which are created by the resource token broker, are stored in the same document

collection as the documents created by the Xamarin.Forms application. Therefore, the document query contains a Where

clause that applies a filtering predicate to the query against the document collection. This clause ensures that permission

documents aren't returned from the document collection.

For more information about retrieving documents from a document collection, see Retrieving Document

Collection Documents.

item.UserId = UserId;
await client.CreateDocumentAsync(collectionLink, item);

 Deleting Documents

await client.DeleteDocumentAsync(UriFactory.CreateDocumentUri(Constants.DatabaseName,
Constants.CollectionName, id),
 new RequestOptions
 {
 PartitionKey = new PartitionKey(UserId)
 });

 Summary

 Related Links

Prior to inserting a document into a document collection, the TodoItem.UserId property should be updated with

the value being used as the partition key, as demonstrated in the following code example:

This ensures that the document will be inserted into the user's partitioned collection.

For more information about inserting a document into a document collection, see Inserting a Document into a

Document Collection.

The partition key value must be specified when deleting a document from a partitioned collection, as

demonstrated in the following code example:

This ensures that Cosmos DB knows which partitioned collection to delete the document from.

For more information about deleting a document from a document collection, see Deleting a Document from a

Document Collection.

This article explained how to combine access control with partitioned collections, so that a user can only access

their own document database documents in a Xamarin.Forms application. Specifying the user's identity as a

partition key ensures that a partitioned collection can only store documents for that user.

Todo Azure Cosmos DB Auth (sample)

Consuming an Azure Cosmos DB Document Database

Securing access to Azure Cosmos DB data

Access control in the SQL API.

How to partition and scale in Azure Cosmos DB

Azure Cosmos DB Client Library

Azure Cosmos DB API

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/webservices-tododocumentdbauth
https://docs.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data/
https://docs.microsoft.com/en-us/rest/api/documentdb/access-control-on-documentdb-resources/
https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data/
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/cosmosdb/client

Improve Xamarin.Forms App Performance
 11/2/2020 • 15 minutes to read • Edit Online

NOTENOTE

 Enable the XAML compiler

 Use compiled bindings

 Reduce unnecessary bindings

 Use fast renderers

Evolve 2016: Optimizing App Performance with Xamarin.FormsEvolve 2016: Optimizing App Performance with Xamarin.Forms

Poor application performance presents itself in many ways. It can make an application seem unresponsive, can

cause slow scrolling, and can reduce device battery life. However, optimizing performance involves more than

just implementing efficient code. The user's experience of application performance must also be considered. For

example, ensuring that operations execute without blocking the user from performing other activities can help

to improve the user's experience.

There are many techniques for increasing the performance, and perceived performance, of Xamarin.Forms

applications. Collectively these techniques can greatly reduce the amount of work being performed by a CPU,

and the amount of memory consumed by an application.

Before reading this article you should first read Cross-Platform Performance, which discusses non-platform specific

techniques to improve the memory usage and performance of applications built using the Xamarin platform.

XAML can be optionally compiled directly into intermediate language (IL) with the XAML compiler (XAMLC).

XAMLC offers a number of benefits:

It performs compile-time checking of XAML, notifying the user of any errors.

It removes some of the load and instantiation time for XAML elements.

It helps to reduce the file size of the final assembly by no longer including .xaml files.

XAMLC is enabled by default in new Xamarin.Forms solutions. However, it may need to be enabled in older

solutions. For more information, see Compiling XAML.

Compiled bindings improve data binding performance in Xamarin.Forms applications by resolving binding

expressions at compile time, rather than at runtime with reflection. Compiling a binding expression generates

compiled code that typically resolves a binding 8-20 times quicker than using a classic binding. For more

information, see Compiled Bindings.

Don't use bindings for content that can easily be set statically. There is no advantage in binding data that doesn't

need to be bound, because bindings aren't cost efficient. For example, setting Button.Text = "Accept" has less

overhead than binding Button.Text to a viewmodel string property with value "Accept".

Fast renderers reduce the inflation and rendering costs of Xamarin.Forms controls on Android by flattening the

resulting native control hierarchy. This further improves performance by creating fewer objects, which in turns

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/deploy-test/performance.md
https://www.youtube-nocookie.com/embed/RZvdql3Ev0E
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button.text#xamarin_forms_button_text

 Enable startup tracing on Android

 Enable layout compression

 Choose the correct layout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DisplayImage.HomePage">
 <StackLayout>
 <Image Source="waterfront.jpg" />
 </StackLayout>
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DisplayImage.HomePage">
 <Image Source="waterfront.jpg" />
</ContentPage>

results in a less complex visual tree, and less memory use.

From Xamarin.Forms 4.0 onwards, all applications targeting FormsAppCompatActivity use fast renderers by

default. For more information, see Fast Renderers.

Ahead of Time (AOT) compilation on Android minimizes Just in Time (JIT) application startup overhead and

memory usage, at the cost of creating a much larger APK. An alternative is to use startup tracing, which provides

a trade-off between Android APK size and startup time, when compared to conventional AOT compilation.

Instead of compiling as much of the application as possible to unmanaged code, startup tracing compiles only

the set of managed methods that represent the most expensive parts of application startup in a blank

Xamarin.Forms application. This approach results in a reduced APK size, when compared to conventional AOT

compilation, while still providing similar startup improvements.

Layout compression removes specified layouts from the visual tree, in an attempt to improve page rendering

performance. The performance benefit that this delivers varies depending on the complexity of a page, the

version of the operating system being used, and the device on which the application is running. However, the

biggest performance gains will be seen on older devices. For more information, see Layout Compression.

A layout that's capable of displaying multiple children, but that only has a single child, is wasteful. For example,

the following code example shows a StackLayout with a single child:

This is wasteful and the StackLayout element should be removed, as shown in the following code example:

In addition, don't attempt to reproduce the appearance of a specific layout by using combinations of other

layouts, as this results in unnecessary layout calculations being performed. For example, don't attempt to

reproduce a Grid layout by using a combination of StackLayout instances. The following code example shows

an example of this bad practice:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Details.HomePage"
 Padding="0,20,0,0">
 <StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Name:" />
 <Entry Placeholder="Enter your name" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Age:" />
 <Entry Placeholder="Enter your age" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Occupation:" />
 <Entry Placeholder="Enter your occupation" />
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Address:" />
 <Entry Placeholder="Enter your address" />
 </StackLayout>
 </StackLayout>
</ContentPage>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Details.HomePage"
 Padding="0,20,0,0">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>
 <Label Text="Name:" />
 <Entry Grid.Column="1" Placeholder="Enter your name" />
 <Label Grid.Row="1" Text="Age:" />
 <Entry Grid.Row="1" Grid.Column="1" Placeholder="Enter your age" />
 <Label Grid.Row="2" Text="Occupation:" />
 <Entry Grid.Row="2" Grid.Column="1" Placeholder="Enter your occupation" />
 <Label Grid.Row="3" Text="Address:" />
 <Entry Grid.Row="3" Grid.Column="1" Placeholder="Enter your address" />
 </Grid>
</ContentPage>

 Optimize layout performance

This is wasteful because unnecessary layout calculations are performed. Instead, the desired layout can be better

achieved using a Grid , as shown in the following code example:

To obtain the best possible layout performance, follow these guidelines:

Reduce the depth of layout hierarchies by specifying Margin property values, allowing the creation of

layouts with fewer wrapping views. For more information, see Margins and Padding.

When using a Grid , try to ensure that as few rows and columns as possible are set to Auto size. Each auto-

sized row or column will cause the layout engine to perform additional layout calculations. Instead, use fixed

size rows and columns if possible. Alternatively, set rows and columns to occupy a proportional amount of

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.margin#xamarin_forms_view_margin
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.grid
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridlength.auto#xamarin_forms_gridlength_auto

 Use asynchronous programming

 FundamentalsFundamentals

space with the GridUnitType.Star enumeration value, provided that the parent tree follows these layout

guidelines.

Don't set the VerticalOptions and HorizontalOptions properties of a layout unless required. The default

values of LayoutOptions.Fill and LayoutOptions.FillAndExpand allow for the best layout optimization.

Changing these properties has a cost and consumes memory, even when setting them to the default values.

Avoid using a RelativeLayout whenever possible. It will result in the CPU having to perform significantly

more work.

When using an AbsoluteLayout , avoid using the AbsoluteLayout.AutoSize property whenever possible.

When using a StackLayout , ensure that only one child is set to LayoutOptions.Expands . This property ensures

that the specified child will occupy the largest space that the StackLayout can give to it, and it is wasteful to

perform these calculations more than once.

Avoid calling any of the methods of the Layout class, as they result in expensive layout calculations being

performed. Instead, it's likely that the desired layout behavior can be obtained by setting the TranslationX

and TranslationY properties. Alternatively, subclass the Layout<View> class to achieve the desired layout

behavior.

Don't update any Label instances more frequently than required, as the change of size of the label can result

in the entire screen layout being re-calculated.

Don't set the Label.VerticalTextAlignment property unless required.

Set the LineBreakMode of any Label instances to NoWrap whenever possible.

The overall responsiveness of your application can be enhanced, and performance bottlenecks often avoided, by

using asynchronous programming. In .NET, the Task-based Asynchronous Pattern (TAP) is the recommended

design pattern for asynchronous operations. However, incorrect use of the TAP can result in unperformant

applications. Therefore, the following guidelines should be followed when using the TAP.

Understand the task lifecycle, which is represented by the TaskStatus enumeration. For more

information, see The meaning of TaskStatus and Task status.

Use the Task.WhenAll method to asynchronously wait for multiple asynchronous operations to finish,

rather than individually await a series of asynchronous operations. For more information, see

Task.WhenAll.

Use the Task.WhenAny method to asynchronously wait for one of multiple asynchronous operations to

finish. For more information, see Task.WhenAny.

Use the Task.Delay method to produce a Task object that finishes after the specified time. This is useful

for scenarios such as polling for data, and delaying handling user input for a predetermined time. For

more information, see Task.Delay.

Execute intensive synchronous CPU operations on the thread pool with the Task.Run method. This

method is a shortcut for the TaskFactory.StartNew method, with the most optimal arguments set. For

more information, see Task.Run.

Avoid trying to create asynchronous constructors. Instead, use lifecycle events or separate initialization

logic to correctly await any initialization. For more information, see Async Constructors on

blog.stephencleary.com.

Use the lazy task pattern to avoid waiting for asynchronous operations to complete during application

startup. For more information, see AsyncLazy.

Create a task wrapper for existing asynchronous operations, that don't use the TAP, by creating

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.gridunittype#xamarin_forms_gridunittype_star
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view.verticaloptions#xamarin_forms_view_verticaloptions
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fill
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.fillandexpand
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.relativelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.absolutelayout.autosize#xamarin_forms_absolutelayout_autosize
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.stacklayout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layoutoptions.expands#xamarin_forms_layoutoptions_expands
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationx#xamarin_forms_visualelement_translationx
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.translationy#xamarin_forms_visualelement_translationy
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout-1
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.verticaltextalignment#xamarin_forms_label_verticaltextalignment
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label.linebreakmode#xamarin_forms_label_linebreakmode
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.linebreakmode#xamarin_forms_linebreakmode_nowrap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://devblogs.microsoft.com/pfxteam/the-meaning-of-taskstatus/
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap#task-status
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/consuming-the-task-based-asynchronous-pattern#taskwhenall
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/consuming-the-task-based-asynchronous-pattern#taskwhenall
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/consuming-the-task-based-asynchronous-pattern#taskdelay
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/consuming-the-task-based-asynchronous-pattern#taskrun
https://blog.stephencleary.com/2013/01/async-oop-2-constructors.html
https://devblogs.microsoft.com/pfxteam/asynclazyt/

 UIUI

 Error handlingError handling

 Choose a dependency injection container carefully

TaskCompletionSource<T> objects. These objects gain the benefits of Task programmability, and enable

you to control the lifetime and completion of the associated Task . For more information, see The Nature

of TaskCompletionSource.

Return a Task object, instead of returning an awaited Task object, when there's no need to process the

result of an asynchronous operation. This is more performant due to less context switching being

performed.

Use the Task Parallel Library (TPL) Dataflow library in scenarios such as processing data as it becomes

available, or when you have multiple operations that must communicate with each other asynchronously.

For more information, see Dataflow (Task Parallel Library).

IMPORTANTIMPORTANT

Call an asynchronous version of an API, if it's available. This will keep the UI thread unblocked, which will

help to improve the user's experience with the application.

Update UI elements with data from asynchronous operations on the UI thread, to avoid exceptions being

thrown. However, updates to the ListView.ItemsSource property will automatically be marshaled to the

UI thread. For information about determining if code is running on the UI thread, see Xamarin.Essentials:

MainThread.

Any control properties that are updated via data binding will be automatically marshaled to the UI thread.

Learn about asynchronous exception handling. Unhandled exceptions that are thrown by code that's running

asynchronously are propagated back to the calling thread, except in certain scenarios. For more information,

see Exception handling (Task Parallel Library).

Avoid creating async void methods, and instead create async Task methods. These enable easier error-

handling, composability, and testability. The exception to this guideline is asynchronous event handlers,

which must return void . For more information, see Avoid Async Void.

Don't mix blocking and asynchronous code by calling the Task.Wait , Task.Result , or

GetAwaiter().GetResult methods, as they can result in deadlock occurring. However, if this guideline must be

violated, the preferred approach is to call the GetAwaiter().GetResult method because it preserves the task

exceptions. For more information, see Async All the Way and Task Exception Handling in .NET 4.5.

Use the ConfigureAwait method whenever possible, to create context-free code. Context-free code has better

performance for mobile applications and is a useful technique for avoiding deadlock when working with a

partially asynchronous codebase. For more information, see Configure Context.

Use continuation tasks for functionality such as handling exceptions thrown by the previous asynchronous

operation, and canceling a continuation either before it starts or while it is running. For more information,

see Chaining Tasks by Using Continuous Tasks.

Use an asynchronous ICommand implementation when asynchronous operations are invoked from the

ICommand . This ensures that any exceptions in the asynchronous command logic can be handled. For more

information, see Async Programming: Patterns for Asynchronous MVVM Applications: Commands.

Dependency injection containers introduce additional performance constraints into mobile applications.

Registering and resolving types with a container has a performance cost because of the container's use of

reflection for creating each type, especially if dependencies are being reconstructed for each page navigation in

the app. If there are many or deep dependencies, the cost of creation can increase significantly. In addition, type

https://devblogs.microsoft.com/pfxteam/the-nature-of-taskcompletionsourcetresult/
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/dataflow-task-parallel-library
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming#avoid-async-void
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming#async-all-the-way
https://devblogs.microsoft.com/pfxteam/task-exception-handling-in-net-4-5/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming#configure-context
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/chaining-tasks-by-using-continuation-tasks
https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/april/async-programming-patterns-for-asynchronous-mvvm-applications-commands

 Create Shell applications

 Use CollectionView instead of ListView

 Optimize ListView performance

 Optimize image resources

 Reduce the visual tree size

registration, which usually occurs during application startup, can have a noticeable impact on startup time,

dependent upon the container being used.

As an alternative, dependency injection can be made more performant by implementing it manually using

factories.

Xamarin.Forms Shell applications provide an opinionated navigation experience based on flyouts and tabs. If

your application user experience can be implemented with Shell, it is beneficial to do so. Shell applications help

to avoid a poor startup experience, because pages are created on demand in response to navigation rather than

at application startup, which occurs with applications that use a `TabbedPage'. For more information, see

Xamarin.Forms Shell.

CollectionView is a view for presenting lists of data using different layout specifications. It provides a more

flexible, and performant alternative to ListView . For more information, see Xamarin.Forms CollectionView.

When using ListView , there are a number of user experiences that should be optimized:

InitializationInitialization – the time interval starting when the control is created, and ending when items are shown on

screen.

ScrollingScrolling – the ability to scroll through the list and ensure that the UI doesn't lag behind touch gestures.

InteractionInteraction for adding, deleting, and selecting items.

The ListView control requires an application to supply data and cell templates. How this is achieved will have a

large impact on the performance of the control. For more information, see ListView Performance.

Displaying image resources can greatly increase an application's memory footprint. Therefore, they should only

be created when required and should be released as soon as the application no longer requires them. For

example, if an application is displaying an image by reading its data from a stream, ensure that stream is created

only when it's required, and ensure that the stream is released when it's no longer required. This can be

achieved by creating the stream when the page is created, or when the Page.Appearing event fires, and then

disposing of the stream when the Page.Disappearing event fires.

When downloading an image for display with the ImageSource.FromUri method, cache the downloaded image

by ensuring that the UriImageSource.CachingEnabled property is set to true . For more information, see Working

with Images.

For more information, see Optimize Image Resources.

Reducing the number of elements on a page will make the page render faster. There are two main techniques for

achieving this. The first is to hide elements that aren't visible. The IsVisible property of each element

determines whether the element should be part of the visual tree or not. Therefore, if an element isn't visible

because it's hidden behind other elements, either remove the element or set its IsVisible property to false .

The second technique is to remove unnecessary elements. For example, the following code example shows a

page layout containing multiple Label objects:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tabbedpage
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.appearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page.disappearing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagesource.fromuri#xamarin_forms_imagesource_fromuri_system_uri_
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.uriimagesource.cachingenabled#xamarin_forms_uriimagesource_cachingenabled
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.visualelement.isvisible#xamarin_forms_visualelement_isvisible
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label

<StackLayout>
 <StackLayout Padding="20,20,0,0">
 <Label Text="Hello" />
 </StackLayout>
 <StackLayout Padding="20,20,0,0">
 <Label Text="Welcome to the App!" />
 </StackLayout>
 <StackLayout Padding="20,20,0,0">
 <Label Text="Downloading Data..." />
 </StackLayout>
</StackLayout>

<StackLayout Padding="20,35,20,20" Spacing="25">
 <Label Text="Hello" />
 <Label Text="Welcome to the App!" />
 <Label Text="Downloading Data..." />
</StackLayout>

 Reduce the application resource dictionary size

<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Resources.App">
 <Application.Resources>
 <ResourceDictionary>
 <Style x:Key="HeadingLabelStyle" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="FontSize" Value="Large" />
 <Setter Property="TextColor" Value="Red" />
 </Style>
 </ResourceDictionary>
 </Application.Resources>
</Application>

The same page layout can be maintained with a reduced element count, as shown in the following code

example:

Any resources that are used throughout the application should be stored in the application's resource dictionary

to avoid duplication. This will help to reduce the amount of XAML that has to be parsed throughout the

application. The following code example shows the HeadingLabelStyle resource, which is used application wide,

and so is defined in the application's resource dictionary:

However, XAML that's specific to a page shouldn't be included in the application's resource dictionary, as the

resources will then be parsed at application startup instead of when required by a page. If a resource is used by

a page that's not the startup page, it should be placed in the resource dictionary for that page, therefore helping

to reduce the XAML that's parsed when the application starts. The following code example shows the

HeadingLabelStyle resource, which is only on a single page, and so is defined in the page's resource dictionary:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Test.HomePage"
 Padding="0,20,0,0">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="HeadingLabelStyle" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="FontSize" Value="Large" />
 <Setter Property="TextColor" Value="Red" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 ...
</ContentPage>

 Use the custom renderer pattern

protected override void OnElementChanged (ElementChangedEventArgs<NativeListView> e)
{
 base.OnElementChanged (e);

 if (e.OldElement != null)
 {
 // Unsubscribe from event handlers and cleanup any resources
 }

 if (e.NewElement != null)
 {
 if (Control == null)
 {
 // Instantiate the native control with the SetNativeControl method
 }
 // Configure the control and subscribe to event handlers
 }
}

For more information about application resources, see XAML Styles.

Most Xamarin.Forms renderer classes expose the OnElementChanged method, which is called when a

Xamarin.Forms custom control is created to render the corresponding native control. Custom renderer classes,

in each platform project, then override this method to instantiate and customize the native control. The

SetNativeControl method is used to instantiate the native control, and this method will also assign the control

reference to the Control property.

However, in some circumstances the OnElementChanged method can be called multiple times. Therefore, to

prevent memory leaks, which can have a performance impact, care must be taken when instantiating a new

native control. The approach to use when instantiating a new native control in a custom renderer is shown in the

following code example:

A new native control should only be instantiated once, when the Control property is null . In addition, the

control should only be created, configured, and event handlers subscribed to when the custom renderer is

attached to a new Xamarin.Forms element. Similarly, any event handlers that were subscribed to should only be

unsubscribed from when the element the renderer is attached to changes. Adopting this approach will help to

create an efficiently performing custom renderer that doesn't suffer from memory leaks.

IMPORTANTIMPORTANT

 Related links

The SetNativeControl method should only be invoked if the e.NewElement property is not null , and the Control

property is null .

For more information about custom renderers, see Customizing Controls on Each Platform.

Cross-Platform Performance

Compiling XAML

Compiled Bindings

Fast Renderers

Layout Compression

Xamarin.Forms Shell

Xamarin.Forms CollectionView

ListView Performance

Optimize Image Resources

XAML Styles

Customizing Controls on Each Platform

https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices
https://docs.microsoft.com/en-us/xamarin/cross-platform/deploy-test/memory-perf-best-practices

Xamarin Hot Restart
 3/5/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Requirements

 Initial setup

NOTENOTE

Xamarin Hot Restart enables you to quickly test changes to your app during development, including multi-file

code edits, resources, and references. It pushes the new changes to the existing app bundle on the debug target

which results in a much faster build and deploy cycle.

Xamarin Hot Restart is currently available in Visual Studio 2019 version 16.5 stable and supports iOS apps using

Xamarin.Forms. Support for Visual Studio for Mac and non-Xamarin.Forms apps is on the roadmap.

Visual Studio 2019 version 16.5 or higher

iTunes (Microsoft Store or 64-bit versions)

Apple Developer account and paid Apple Developer Program enrollment

Xamarin Hot Restart is disabled by default on Visual Studio 16.8 and previous versions. You can enable it under Tools >Tools >

Options > Environment > Preview Features > Enable Xamarin Hot Restar tOptions > Environment > Preview Features > Enable Xamarin Hot Restar t . Starting in Visual Studio 16.9,

Xamarin Hot Restart is on by default and can be turned off from Tools > Options > Xamarin > iOS Settings >Tools > Options > Xamarin > iOS Settings >

Enable Hot Restar tEnable Hot Restar t .

1. Ensure the iOS project is set as the startup project and the build configuration is set to Debug|iPhoneDebug|iPhone.

a. If this is an existing project, go to Build > Configuration Manager…Build > Configuration Manager… and ensure DeployDeploy is enabled

for the iOS project.

2. Select and click Local DeviceLocal Device in the toolbar to launch the setup wizard:

3. If iTunes is not installed, click Download iTunesDownload iTunes to download the installer. Click NextNext when the iTunes

installation is complete.

4. Connect an iOS device to your machine. If a device was already plugged in, unplug then reconnect it. The

device name will appear in the wizard once it is detected. Click NextNext.

5. Enter your Apple Developer account credentials and click NextNext.

6. Select a development team using the dropdown menu in order to enable automatic provisioning in the

project. Click FinishFinish .

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/deploy-test/hot-restart.md
https://developer.apple.com/programs
file:///T:/c1uy/wq21/xamarin/xamarin-forms/deploy-test/hot-restart-images/toolbar.png
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/device-provisioning/automatic-provisioning

NOTENOTE

 Use Xamarin Hot Restart

 Limitations

 Troubleshoot

Using automatic provisioning is recommended so additional iOS devices can be easily configured for deployment.

However, you can disable it and continue using manual provisioning if the correct provisioning profiles are present.

After the initial setup, your connected device will appear in the debug target dropdown menu. To debug your

app, select your device in the dropdown and click the RunRun button. You may see a message in Visual Studio

asking you to manually launch the app on the device in order to start the debug session.

You can make edits to your code files while debugging, then press the Restar tRestar t button in the debug toolbar or

use Ctr l+Shift+F5Ctr l+Shift+F5 to restart the debug session with your new changes applied:

You can also use the HOTRESTART preprocessor symbol to prevent certain code from executing when debugging

with Xamarin Hot Restart.

Only iOS apps built with Xamarin.Forms and iOS devices are currently supported.

Only 64-bit iOS devices are supported. As of iOS 11, Apple no longer allows running iOS apps on the 32-bit

architecture (devices earlier than iPhone 5s).

Storyboard and XIB files are not supported and the app may crash if it attempts to load these at runtime. Use

the HOTRESTART preprocessor symbol to prevent this code from executing.

Static iOS libraries and frameworks are not supported and you may see runtime errors or crashes if your app

attempts to load these. Use the HOTRESTART preprocessor symbol to prevent this code from executing.

Dynamic iOS libraries are supported.

You cannot use Xamarin Hot Restart to create app bundles for publishing. You will still need a Mac machine

to do a full compilation, signing, and deployment for your application to production.

Asset Catalogs are currently not supported. When using Hot Restart, your app will show the default icon and

launch screen for Xamarin apps. When paired to a Mac, or developing on a Mac, your Asset Catalogs will

work.

There is a known issue where having device-specific builds enabled prevents the app from entering debug

mode. Workaround is to disable this under Proper ties > iOS BuildProper ties > iOS Build and retry debugging. This will be fixed

in a future release.

If the app is already present on the device, trying to deploy with Hot Restart may fail with a

AMDeviceStartHouseArrestService error. The workaround is to uninstall the app on the device then deploy

again.

Entering an Apple ID that is not part of the Apple Developer Program might result in the following error :

Authentication Error. Xcode 7.3 or later is required to continue developing with your Apple ID . You must

have a valid Apple Developer account to use Xamarin Hot Restart on iOS devices.

To report additional issues, please use the feedback tool at Help > Send Feedback > Report a Problem.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/deploy-test/hot-restart-images/toolbar.png
https://docs.microsoft.com/en-us/visualstudio/ide/feedback-options?view=vs-2019#report-a-problem

Xamarin.iOS app distribution overview
 7/12/2021 • 2 minutes to read • Edit Online

 App Store distribution

This document gives an overview of the distribution techniques that are available for Xamarin.iOS applications

and serves as a pointer to more detailed documents on the topic.

Once an Xamarin.iOS app has been developed, the next step in the software development lifecycle is to

distribute the app to users, as shown in the highlighted section of the diagram below:

Apple provides the following ways to distribute an iOS application:

App StoreApp Store

In-house (enterprise)In-house (enterprise)

Ad hocAd hoc

Custom apps for businessCustom apps for business

All these scenarios require that applications be provisioned using the appropriate provisioning profile.

Provisioning profiles are files that contain code signing information, as well as the identity of the application and

the intended distribution mechanism. For the non-App Store distribution they also contain information about

what devices the app can be deployed to.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/ios/deploy-test/app-distribution/index.md
file:///T:/c1uy/wq21/xamarin/ios/deploy-test/app-distribution/images/publishingdiagram.png#lightbox

IMPORTANTIMPORTANT

 In-house distribution

 Ad-hoc distribution

 Custom apps for business

 Related links

Apple has indicated that starting in March 2019, all apps and updates submitted to the App Store must have been built

with the iOS 12.1 SDK or later, included in Xcode 10.1 or later. Apps should also support the iPhone XS and 12.9" iPad Pro

screen sizes.

This is the main way that iOS applications are distributed to consumers on iOS devices. All apps submitted to

the App Store require approval by Apple.

Apps are submitted to the App Store through a portal called iTunes Connect. The Configure your App in iTunes

Connect guide provides more information on how to set up and use this portal to prepare a Xamarin.iOS app

for publishing in the App Store.

It is important to note that only developers who belong to the Apple Developer ProgramApple Developer Program have access to

iTunes Connect. Members of the Apple Developer Enterprise ProgramApple Developer Enterprise Program do not have access.

For more information, please visit the App Store Distribution guide.

Sometimes called Enterprise Distribution, in-house distribution allows members of the Apple DeveloperApple Developer

Enterprise ProgramEnterprise Program to distribute apps internally to other members of the same organization. In-house

distribution has the advantages of not requiring an App Store review, and having no limit on the number of

devices on which an application can be installed. However, it is important to note that Apple DeveloperApple Developer

Enterprise ProgramEnterprise Program members do notnot have access to iTunes Connect, and therefore the licensee is responsible

for distributing the app.

For more information on getting set-up and how to distribute an application In-House, please refer to the In-

House distribution guide.

Xamarin.iOS applications can be user-tested via ad hoc distribution, which is available on both the AppleApple

Developer ProgramDeveloper Program, and the Apple Developer Enterprise ProgramApple Developer Enterprise Program, and allows up to 100 iOS devices to

be tested. The best use case for ad hoc distribution is distribution within a company when iTunes Connect is not

an option.

For more information on getting set-up and how to distribute an application In-House, please refer to the Ad-

hoc distribution guide.

Apple allows custom distribution of apps to businesses and education. Review the Apple Business Manager User

Guide for information.

App Store distribution

Configuring an app in iTunes Connect

Publishing to the App Store

In-house distribution

Ad-hoc distribution

The iTunesMetadata.plist File

IPA support

https://developer.apple.com/ios/submit/
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/app-store-distribution/itunesconnect
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/app-store-distribution/index
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/in-house-distribution
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/ad-hoc-distribution
https://developer.apple.com/business/custom-apps/
https://support.apple.com/guide/apple-business-manager/welcome/web
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/app-store-distribution/index
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/app-store-distribution/itunesconnect
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/app-store-distribution/publishing-to-the-app-store
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/in-house-distribution
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/ad-hoc-distribution
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/itunesmetadata
https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-distribution/ipa-support

Troubleshooting

https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/troubleshooting

Publishing an Application
 7/8/2021 • 3 minutes to read • Edit Online

 Overview

After a great application has been created, people will want to use it. This section covers the steps involved with

the public distribution of an application created with Xamarin.Android via channels such as e-mail, a private web

server, Google Play, or the Amazon App Store for Android.

The final step in the development of a Xamarin.Android application is to publish the application. Publishing is

the process of compiling a Xamarin.Android application so that it is ready for users to install on their devices,

and it involves two essential tasks:

Preparing for PublicationPreparing for Publication – A release version of the application is created that can be deployed to

Android-powered devices (see Preparing an Application for Release for more information about release

preparation).

Distr ibutionDistr ibution – The release version of an application is made available through one or more of the

various distribution channels.

The following diagram illustrates the steps involved with publishing a Xamarin.Android application:

As can be seen by the diagram above, the preparation is the same regardless of the distribution method that is

used. There are several ways that an Android application may be released to users:

Via a WebsiteVia a Website – A Xamarin.Android application can be made available for download on a website, from

which users may then install the application by clicking on a link.

By e-mailBy e-mail – It is possible for users to install a Xamarin.Android application from their e-mail. The application

will be installed when the attachment is opened with an Android-powered device.

Through a MarketThrough a Market – There are several application marketplaces that exist for distribution, such as Google

Play or Amazon App Store for Android .

Using an established marketplace is the most common way to publish an application as it provides the broadest

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/android/deploy-test/publishing/index.md
https://docs.microsoft.com/en-us/xamarin/android/deploy-test/release-prep/index
file:///T:/c1uy/wq21/xamarin/android/deploy-test/publishing/images/build-and-deploy-steps.png#lightbox
https://play.google.com/
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011

market reach and the greatest control over distribution. However, publishing an application through a

marketplace requires additional effort.

Multiple channels can distribute a Xamarin.Android application simultaneously. For example, an application

could be published on Google Play, the Amazon App Store for Android, and also be downloaded from a web

server.

The other two methods of distribution (downloading or e-mail) are most useful for a controlled subset of users,

such as an enterprise environment or an application that is only meant for a small or well-specified set of users.

Server and e-mail distribution are also simpler publishing models, requiring less preparation to publish an

application.

The Amazon Mobile App Distribution Program enables mobile app developers to distribute and sell their

applications on Amazon. Users can discover and shop for apps on their Android-powered devices by using the

Amazon App Store application. A screenshot of the Amazon App Store running on an Android device appears

below:

Google Play is arguably the most comprehensive and popular marketplace for Android applications. Google

Play allows users to discover, download, rate, and pay for applications by clicking a single icon either on their

device or on their computer. Google Play also provides tools to assist in the analysis of sales and market trends

and to control which devices and users may download an application. A screenshot of Google Play running on

an Android device appears below:

file:///T:/c1uy/wq21/xamarin/android/deploy-test/publishing/images/google-play-app.png#lightbox

 Related Links

This section shows how to upload the application to a store such as Google Play, along with the appropriate

promotional materials. APK expansion files are explained, providing a conceptual overview of what they are and

how they work. Google Licensing services are also described. Finally, alternate means of distribution are

introduced, including the use of an HTTP web server, simple e-mail distribution, and the Amazon App Store for

Android.

HelloWorldPublishing (sample)

Build Process

Linking

Obtaining A Google Maps API Key

Deploy via Visual Studio App Center

Application Signing

Publishing on Google Play

Google Application Licensing

Android.Play.ExpansionLibrary

Mobile App Distribution Portal

Amazon Mobile App Distribution FAQ

https://docs.microsoft.com/en-us/samples/xamarin/monodroid-samples/helloworldpublishing
https://docs.microsoft.com/en-us/xamarin/android/deploy-test/building-apps/build-process
https://docs.microsoft.com/en-us/xamarin/android/deploy-test/linker
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/appcenter/distribution/stores/googleplay
https://source.android.com/security/apksigning/
https://developer.android.com/distribute/googleplay/publish/index.html
https://developer.android.com/guide/google/play/licensing/index.html
https://github.com/mattleibow/Android.Play.ExpansionLibrary
https://developer.amazon.com/welcome.html
https://developer.amazon.com/help/faq.html

Publishing Xamarin.Mac Apps to the Mac App Store
 7/12/2021 • 2 minutes to read • Edit Online

 Overview

 Mac developer program

Xamarin.Mac apps can be distributed in two different ways:

Developer IDDeveloper ID – Applications signed with a Developer ID can be distributed outside of the App Store but are

recognized by GateKeeper and allowed to install.

Mac App StoreMac App Store – Apps must have an installer package, and both the app and the installer must be signed,

for submission to the Mac App Store.

This document explains how to use Visual Studio for Mac and Xcode to setup a Apple Developer account and

configure a Xamarin.Mac project for each deployment type.

When you join the Mac Developer Program the developer will be offered a choice to join as an Individual or a

Company, as shown in the screenshot below:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/mac/deploy-test/publishing-to-the-app-store/index.md
https://developer.apple.com/devcenter/mac/

NOTENOTE

 Certificates and identifiersCertificates and identifiers

 Create provisioning profileCreate provisioning profile

 Mac app configurationMac app configuration

Choose the correct enrollment type for your situation.

The choices made here will affect the way some screens appear when configuring a developer account. The descriptions

and screenshots in this document are done from the perspective of an IndividualIndividual developer account. In a CompanyCompany ,

some options will only be available to Team AdminTeam Admin users.

This guide walks through creating the necessary Certificates and Identifiers that will be required to publish a

Xamarin.Mac app.

This guide walks through creating the necessary Provisioning Profiles that will be required to publish a

Xamarin.Mac app.

This guide walks through configuring a Xamarin.Mac app for publication.

file:///T:/c1uy/wq21/xamarin/mac/deploy-test/publishing-to-the-app-store/images/image1-large.png#lightbox
https://docs.microsoft.com/en-us/xamarin/mac/deploy-test/publishing-to-the-app-store/certificates-identifiers
https://docs.microsoft.com/en-us/xamarin/mac/deploy-test/publishing-to-the-app-store/profiles
https://docs.microsoft.com/en-us/xamarin/mac/deploy-test/publishing-to-the-app-store/app-configuration

Sign with Developer IDSign with Developer ID

 Bundle for Mac App StoreBundle for Mac App Store

 Upload to Mac App StoreUpload to Mac App Store

 Related links

This guide walks through signing a Xamarin.Mac app with a Developer ID for publication.

This guide walks through bundling a Xamarin.Mac app for publication to the Mac App Store.

This guide walks through uploading a Xamarin.Mac app for publication to the Mac App Store.

Installation

Hello, Mac sample

Developer ID and GateKeeper

https://docs.microsoft.com/en-us/xamarin/mac/deploy-test/publishing-to-the-app-store/signing
https://docs.microsoft.com/en-us/xamarin/mac/deploy-test/publishing-to-the-app-store/bundling
https://docs.microsoft.com/en-us/xamarin/mac/deploy-test/publishing-to-the-app-store/uploading
https://docs.microsoft.com/en-us/visualstudio/mac/installation/
https://docs.microsoft.com/en-us/xamarin/mac/get-started/hello-mac
https://developer.apple.com/developer-id/

Xamarin.Forms advanced concepts & internals
 11/2/2020 • 2 minutes to read • Edit Online

 Controls class hierarchy

 Dependency resolution

 Experimental flags

 Fast renderers

 Source Link

Learn about advanced concepts and the internals of Xamarin.Forms.

Learn about the hierarchy of types used to create the user interface of a Xamarin.Forms application.

Learn how to inject a dependency resolution method into Xamarin.Forms, so that an application has control over

the creation and lifetime of custom renderers, effect, and DependencyService implementations.

Xamarin.Forms experimental flags enable the engineering team to ship new features to users more quickly,

while still being able to change feature APIs before they move to a stable release.

Learn about fast renderers, which reduce the inflation and rendering costs of a Xamarin.Forms control on

Android by flattening the resulting native control hierarchy.

Learn how to debug your application into the Xamarin.Forms source code.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/internals/index.md

Xamarin.Forms Controls Class Hierarchy
 7/8/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Related links

Xamarin.Forms is made up of hundreds of types, over multiple namespaces. Developers should be most familiar

with the hierarchy of types used to create the user interface of a Xamarin.Forms application, which reside in the

Xamarin.Forms namespace.

These types can be divided into pages, layouts, views, and cells. A Xamarin.Forms page generally occupies the

entire screen, and all the page types derive from the Page class. Pages usually contain a layout, and all the

layout types derive from the Layout class. A layout usually contains views and possibly other layouts, and all

the view types ultimately derive from the View class. Finally, cells are specialized controls that are used in

display data in the TableView and ListView controls. Pages, layouts, views, and cells are all ultimately derived

from the Element class.

The following class diagram shows the hierarchy of types that are typically used to build a user interface in

Xamarin.Forms:

However, note that the diagram only shows a single Shell type.

A high resolution version of the class diagram can be downloaded from here.

Xamarin.Forms Controls Reference

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/internals/class-hierarchy.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.page
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.layout
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.view
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.tableview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.element
file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/class-hierarchy-images/class-diagram-large.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/class-hierarchy-images/class-diagram-high-resolution.png

Dependency resolution in Xamarin.Forms
 7/8/2021 • 9 minutes to read • Edit Online

NOTENOTE

 Injecting a dependency resolution method

 Download the sample

This article explains how to inject a dependency resolution method into Xamarin.Forms so that an application's

dependency injection container has control over the creation and lifetime of custom renderers, effects, and

DependencyService implementations. The code examples in this article are taken from the Dependency

Resolution using Containers sample.

In the context of a Xamarin.Forms application that uses the Model-View-ViewModel (MVVM) pattern, a

dependency injection container can be used for registering and resolving view models, and for registering

services and injecting them into view models. During view model creation, the container injects any

dependencies that are required. If those dependencies have not been created, the container creates and resolves

the dependencies first. For more information about dependency injection, including examples of injecting

dependencies into view models, see Dependency Injection.

Control over the creation and lifetime of types in platform projects is traditionally performed by Xamarin.Forms,

which uses the Activator.CreateInstance method to create instances of custom renderers, effects, and

DependencyService implementations. Unfortunately, this limits developer control over the creation and lifetime

of these types, and the ability to inject dependencies into them. This behavior can be changed by injecting a

dependency resolution method into Xamarin.Forms that controls how types will be created – either by the

application's dependency injection container, or by Xamarin.Forms. However, note that there is no requirement

to inject a dependency resolution method into Xamarin.Forms. Xamarin.Forms will continue to create and

manage the lifetime of types in platform projects if a dependency resolution method isn't injected.

While this article focuses on injecting a dependency resolution method into Xamarin.Forms that resolves registered types

using a dependency injection container, it's also possible to inject a dependency resolution method that uses factory

methods to resolve registered types. For more information, see the Dependency Resolution using Factory Methods

sample.

The DependencyResolver class provides the ability to inject a dependency resolution method into Xamarin.Forms,

using the ResolveUsing method. Then, when Xamarin.Forms needs an instance of a particular type, the

dependency resolution method is given the opportunity to provide the instance. If the dependency resolution

method returns null for a requested type, Xamarin.Forms falls back to attempting to create the type instance

itself using the Activator.CreateInstance method.

The following example shows how to set the dependency resolution method with the ResolveUsing method:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/internals/dependency-resolution.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/advanced-dependencyresolution-dicontainerdemo
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/advanced-dependencyresolution-dicontainerdemo
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/dependency-injection
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/advanced-dependencyresolution-factoriesdemo
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.internals.dependencyresolver
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.internals.dependencyresolver.resolveusing
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.internals.dependencyresolver.resolveusing

using Autofac;
using Xamarin.Forms.Internals;
...

public partial class App : Application
{
 // IContainer and ContainerBuilder are provided by Autofac
 static IContainer container;
 static readonly ContainerBuilder builder = new ContainerBuilder();

 public App()
 {
 ...
 DependencyResolver.ResolveUsing(type => container.IsRegistered(type) ? container.Resolve(type) :
null);
 ...
 }
 ...
}

NOTENOTE

WARNINGWARNING

 Registering types

In this example, the dependency resolution method is set to a lambda expression that uses the Autofac

dependency injection container to resolve any types that have been registered with the container. Otherwise,

null will be returned, which will result in Xamarin.Forms attempting to resolve the type.

The API used by a dependency injection container is specific to the container. The code examples in this article use Autofac

as a dependency injection container, which provides the IContainer and ContainerBuilder types. Alternative

dependency injection containers could equally be used, but would use different APIs than are presented here.

Note that there is no requirement to set the dependency resolution method during application startup. It can be

set at any time. The only constraint is that Xamarin.Forms needs to know about the dependency resolution

method by the time that the application attempts to consume types stored in the dependency injection

container. Therefore, if there are services in the dependency injection container that the application will require

during startup, the dependency resolution method will have to be set early in the application's lifecycle.

Similarly, if the dependency injection container manages the creation and lifetime of a particular Effect ,

Xamarin.Forms will need to know about the dependency resolution method before it attempts to create a view

that uses that Effect .

Registering and resolving types with a dependency injection container has a performance cost because of the container's

use of reflection for creating each type, especially if dependencies are being reconstructed for each page navigation in the

application. If there are many or deep dependencies, the cost of creation can increase significantly.

Types must be registered with the dependency injection container before it can resolve them via the dependency

resolution method. The following code example shows the registration methods that the sample application

exposes in the App class, for the Autofac container :

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect

using Autofac;
using Autofac.Core;
...

public partial class App : Application
{
 static IContainer container;
 static readonly ContainerBuilder builder = new ContainerBuilder();
 ...

 public static void RegisterType<T>() where T : class
 {
 builder.RegisterType<T>();
 }

 public static void RegisterType<TInterface, T>() where TInterface : class where T : class, TInterface
 {
 builder.RegisterType<T>().As<TInterface>();
 }

 public static void RegisterTypeWithParameters<T>(Type param1Type, object param1Value, Type param2Type,
string param2Name) where T : class
 {
 builder.RegisterType<T>()
 .WithParameters(new List<Parameter>()
 {
 new TypedParameter(param1Type, param1Value),
 new ResolvedParameter(
 (pi, ctx) => pi.ParameterType == param2Type && pi.Name == param2Name,
 (pi, ctx) => ctx.Resolve(param2Type))
 });
 }

 public static void RegisterTypeWithParameters<TInterface, T>(Type param1Type, object param1Value, Type
param2Type, string param2Name) where TInterface : class where T : class, TInterface
 {
 builder.RegisterType<T>()
 .WithParameters(new List<Parameter>()
 {
 new TypedParameter(param1Type, param1Value),
 new ResolvedParameter(
 (pi, ctx) => pi.ParameterType == param2Type && pi.Name == param2Name,
 (pi, ctx) => ctx.Resolve(param2Type))
 }).As<TInterface>();
 }

 public static void BuildContainer()
 {
 container = builder.Build();
 }
 ...
}

When an application uses a dependency resolution method to resolve types from a container, type registrations

are typically performed from platform projects. This enables platform projects to register types for custom

renderers, effects, and DependencyService implementations.

Following type registration from a platform project, the IContainer object must be built, which is accomplished

by calling the BuildContainer method. This method invokes Autofac's Build method on the ContainerBuilder

instance, which builds a new dependency injection container that contains the registrations that have been

made.

In the sections that follow, a Logger class that implements the ILogger interface is injected into class

constructors. The Logger class implements simple logging functionality using the Debug.WriteLine method,

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice

 Registering custom renderersRegistering custom renderers

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:video="clr-namespace:FormsVideoLibrary"
 ...>
 <video:VideoPlayer Source="https://archive.org/download/BigBuckBunny_328/BigBuckBunny_512kb.mp4" />
</ContentPage>

public VideoPlayerRenderer(ILogger logger)
{
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));
}

void RegisterTypes()
{
 App.RegisterType<ILogger, Logger>();
 App.RegisterType<FormsVideoLibrary.iOS.VideoPlayerRenderer>();
 App.BuildContainer();
}

public VideoPlayerRenderer(Context context, ILogger logger) : base(context)
{
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));
}

and is used to demonstrate how services can be injected into custom renderers, effects, and DependencyService

implementations.

The sample application includes a page that plays web videos, whose XAML source is shown in the following

example:

The VideoPlayer view is implemented on each platform by a VideoPlayerRenderer class, that provides the

functionality for playing the video. For more information about these custom renderer classes, see

Implementing a video player.

On iOS and the Universal Windows Platform (UWP), the VideoPlayerRenderer classes have the following

constructor, which requires an ILogger argument:

On all the platforms, type registration with the dependency injection container is performed by the

RegisterTypes method, which is invoked prior to the platform loading the application with the

LoadApplication(new App()) method. The following example shows the RegisterTypes method on the iOS

platform:

In this example, the Logger concrete type is registered via a mapping against its interface type, and the

VideoPlayerRenderer type is registered directly without an interface mapping. When the user navigates to the

page containing the VideoPlayer view, the dependency resolution method will be invoked to resolve the

VideoPlayerRenderer type from the dependency injection container, which will also resolve and inject the

Logger type into the VideoPlayerRenderer constructor.

The VideoPlayerRenderer constructor on the Android platform is slightly more complicated as it requires a

Context argument in addition to the ILogger argument:

The following example shows the RegisterTypes method on the Android platform:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/custom-renderer/video-player/index.html

void RegisterTypes()
{
 App.RegisterType<ILogger, Logger>();
 App.RegisterTypeWithParameters<FormsVideoLibrary.Droid.VideoPlayerRenderer>
(typeof(Android.Content.Context), this, typeof(ILogger), "logger");
 App.BuildContainer();
}

 Registering effectsRegistering effects

var boxView = new BoxView { ... };
var touchEffect = new TouchEffect();
boxView.Effects.Add(touchEffect);

public TouchEffect(ILogger logger)
{
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));
}

void RegisterTypes()
{
 App.RegisterType<ILogger, Logger>();
 App.RegisterType<TouchTracking.Droid.TouchEffect>();
 App.BuildContainer();
}

 Registering DependencyService implementationsRegistering DependencyService implementations

In this example, the App.RegisterTypeWithParameters method registers the VideoPlayerRenderer with the

dependency injection container. The registration method ensures that the MainActivity instance will be injected

as the Context argument, and that the Logger type will be injected as the ILogger argument.

The sample application includes a page that uses a touch tracking effect to drag BoxView instances around the

page. The Effect is added to the BoxView using the following code:

The TouchEffect class is a RoutingEffect that's implemented on each platform by a TouchEffect class that's a

PlatformEffect . The platform TouchEffect class provides the functionality for dragging the BoxView around

the page. For more information about these effect classes, see Invoking events from effects.

On all the platforms, the TouchEffect class has the following constructor, which requires an ILogger argument:

On all the platforms, type registration with the dependency injection container is performed by the

RegisterTypes method, which is invoked prior to the platform loading the application with the

LoadApplication(new App()) method. The following example shows the RegisterTypes method on the Android

platform:

In this example, the Logger concrete type is registered via a mapping against its interface type, and the

TouchEffect type is registered directly without an interface mapping. When the user navigates to the page

containing a BoxView instance that has the TouchEffect attached to it, the dependency resolution method will

be invoked to resolve the platform TouchEffect type from the dependency injection container, which will also

resolve and inject the Logger type into the TouchEffect constructor.

The sample application includes a page that uses DependencyService implementations on each platform to allow

the user to pick a photo from the device's picture library. The IPhotoPicker interface defines the functionality

that is implemented by the DependencyService implementations, and is shown in the following example:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.effect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.routingeffect
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.boxview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice

public interface IPhotoPicker
{
 Task<Stream> GetImageStreamAsync();
}

public PhotoPicker(ILogger logger)
{
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));
}

void RegisterTypes()
{
 DIContainerDemo.App.RegisterType<ILogger, Logger>();
 DIContainerDemo.App.RegisterType<IPhotoPicker, Services.UWP.PhotoPicker>();
 DIContainerDemo.App.BuildContainer();
}

public PhotoPicker(Context context, ILogger logger)
{
 _context = context ?? throw new ArgumentNullException(nameof(context));
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));
}

void RegisterTypes()
{
 App.RegisterType<ILogger, Logger>();
 App.RegisterTypeWithParameters<IPhotoPicker, Services.Droid.PhotoPicker>
(typeof(Android.Content.Context), this, typeof(ILogger), "logger");
 App.BuildContainer();
}

In each platform project, the PhotoPicker class implements the IPhotoPicker interface using platform APIs. For

more information about these dependency services, see Picking a photo from the picture library.

On iOS and UWP, the PhotoPicker classes have the following constructor, which requires an ILogger argument:

On all the platforms, type registration with the dependency injection container is performed by the

RegisterTypes method, which is invoked prior to the platform loading the application with the

LoadApplication(new App()) method. The following example shows the RegisterTypes method on UWP:

In this example, the Logger concrete type is registered via a mapping against its interface type, and the

PhotoPicker type is also registered via a interface mapping.

The PhotoPicker constructor on the Android platform is slightly more complicated as it requires a Context

argument in addition to the ILogger argument:

The following example shows the RegisterTypes method on the Android platform:

In this example, the App.RegisterTypeWithParameters method registers the PhotoPicker with the dependency

injection container. The registration method ensures that the MainActivity instance will be injected as the

Context argument, and that the Logger type will be injected as the ILogger argument.

When the user navigates to the photo picking page and chooses to select a photo, the

OnSelectPhotoButtonClicked handler is executed:

async void OnSelectPhotoButtonClicked(object sender, EventArgs e)
{
 ...
 var photoPickerService = DependencyService.Resolve<IPhotoPicker>();
 var stream = await photoPickerService.GetImageStreamAsync();
 if (stream != null)
 {
 image.Source = ImageSource.FromStream(() => stream);
 }
 ...
}

NOTENOTE

 Related links

When the DependencyService.Resolve<T> method is invoked, the dependency resolution method will be invoked

to resolve the PhotoPicker type from the dependency injection container, which will also resolve and inject the

Logger type into the PhotoPicker constructor.

The Resolve<T> method must be used when resolving a type from the application's dependency injection container via

the DependencyService .

Dependency resolution using containers (sample)

Dependency injection

Implementing a video player

Invoking events from effects

Picking a photo from the picture library

https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice.resolve
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.dependencyservice
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/advanced-dependencyresolution-dicontainerdemo
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/dependency-injection
file:///T:/c1uy/wq21/xamarin/xamarin-forms/app-fundamentals/custom-renderer/video-player/index.html

Xamarin.Forms experimental flags
 3/5/2021 • 2 minutes to read • Edit Online

WARNINGWARNING

 Enable flags in platform projects

Xamarin.Forms.Forms.SetFlags("Shell_UWP_Experimental");

IMPORTANTIMPORTANT

Xamarin.Forms.Forms.SetFlags(new string[] { "Shell_UWP_Experimental", "AnotherFeature_Experimental" });

WARNINGWARNING

 Enable flags in your App class

When a new Xamarin.Forms feature is implemented, it's sometimes put behind an experimental flag. This

enables the engineering team to provide new features to you more quickly, while still being able to change

feature APIs before they move to a stable release. The experimental flag is then removed once the feature moves

to a stable release.

Xamarin.Forms includes the following experimental flags:

Shell_UWP_Experimental

Using functionality that's behind an experimental flag requires you to enable the flag, or flags, in your

application. There are two approaches for enabling experimental flags:

Enable the experimental flag in your platform projects.

Enable the experimental flag in your App class.

Consuming functionality that's behind an experimental flag, without enabling the flag, will result in your application

throwing an exception that indicates which flag must be enabled.

The Xamarin.Forms.Forms.SetFlags method can be used to enable an experimental flag in your platform projects:

The SetFlags method should be invoked in your AppDelegate class on iOS, in your MainActivity class on

Android, and in your App class on UWP.

Enabling an experimental flag in your platform projects must occur before the Forms.Init method is invoked.

The Xamarin.Forms.Forms.SetFlags method accepts a string array argument, which makes it possible to enable

multiple experimental flags in a single method call:

Never call the SetFlags method more than once, as subsequent calls will overwrite the result of previous calls.

The Device.SetFlags method can be used to enable an experimental flag in the App class in your shared code

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/internals/experimental-flags.md

Device.SetFlags(new string[]{ "Shell_UWP_Experimental" });

Device.SetFlags(new string[]{ "Shell_UWP_Experimental", "AnotherFeature_Experimental" });

WARNINGWARNING

 Old experimental flags

F L A GF L A G XA M A RIN . F O RM S REL EA SEXA M A RIN . F O RM S REL EA SE

AppTheme_Experimental 4.8

Brush_Experimental 5.0

CarouselView_Experimental 5.0

CollectionView_Experimental 4.3

DragAndDrop_Experimental 5.0

FastRenderers_Experimental 4.0

IndicatorView_Experimental 4.7

Markup_Experimental 5.0 (moved to Xamarin Community Toolkit)

MediaElement_Experimental 5.0 (moved to Xamarin Community Toolkit)

RadioButton_Experimental 5.0

Shapes_Experimental 5.0

Shell_Experimental 4.0

StateTriggers_Experimental 4.7

SwipeView_Experimental 5.0

Visual_Experimental 3.6

project:

The Device.SetFlags method accepts an IReadOnlyList<string> argument, which makes it possible to enable

multiple experimental flags in a single method call:

Never call the SetFlags method more than once, as subsequent calls will overwrite the result of previous calls.

The following table lists experimental flags for features that are now in general availability, and the

Xamarin.Forms release in which the experimental flag was removed:

Xamarin.Forms Fast Renderers
 3/5/2021 • 2 minutes to read • Edit Online

NOTENOTE

 Backwards compatibility

Traditionally, most of the original control renderers on Android are composed of two views:

A native control, such as a Button or TextView .

A container ViewGroup that handles some of the layout work, gesture handling, and other tasks.

However, this approach has a performance implication in that two views are created for each logical control,

which results in a more complex visual tree that requires more memory, and more processing to render on

screen.

Fast renderers reduce the inflation and rendering costs of a Xamarin.Forms control into a single view. Therefore,

instead of creating two views and adding them to the view tree, only one is created. This improves performance

by creating fewer objects, which in turn means a less complex view tree, and less memory use (which also

results in fewer garbage collection pauses).

Fast renderers are available for the following controls in Xamarin.Forms on Android:

Button

Frame

Image

Label

Functionally, these fast renderers are no different to the legacy renderers. From Xamarin.Forms 4.0 onwards, all

applications targeting FormsAppCompatActivity will use these fast renderers by default. Renderers for all new

controls, including ImageButton and CollectionView , use the fast renderer approach.

Performance improvements when using fast renderers will vary for each application, depending upon the

complexity of the layout. For example, performance improvements of x2 are possible when scrolling through a

ListView containing thousands of rows of data, where the cells in each row are made of controls that use fast

renderers, which results in visibly smoother scrolling.

Custom renderers can be created for fast renderers using the same approach as used for the legacy renderers. For more

information, see Custom Renderers.

Fast renderers can be overridden with the following approaches:

Forms.SetFlags("UseLegacyRenderers");

1. Enabling the legacy renderers by adding the following line of code to your MainActivity class before

calling Forms.Init :

2. Using custom renderers that target the legacy renderers. Any existing custom renderers will continue to

function with the legacy renderers.

3. Specifying a different View.Visual , such as Material , that uses different renderers. For more

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/internals/fast-renderers.md
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.button
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.frame
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.image
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.label
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.imagebutton
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.collectionview
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.listview

 Related links

information about Material Visual, see Xamarin.Forms Material Visual.

Custom Renderers

Source Link with Xamarin.Forms
 7/8/2021 • 2 minutes to read • Edit Online

WARNINGWARNING

 Enable Source Link

 Enable Source Link

Xamarin.Forms NuGet packages include Source Link mappings. Source Link maps compiled libraries, contained

in a NuGet package, to a source code repository. Visual Studio will download source code files during

debugging and allow developers to step through code, enabling debugging of packages without building from

source.

For more information about using Source Link, see Source Link Documentation.

Visual Studio 2019 supports Source Link for the .NET debugger.NET debugger but does not currently support Source Link for the

Mono debuggerMono debugger . Therefore, you can use Source Link to debug UWP apps, but not Android or iOS app. When

debugging UWP apps you must ensure that the PDB files for libraries you want to debug are copied to the AppXAppX folder

in the binbin directory where your app is compiled.

Using Source Link requires enabling debugging for external code, otherwise the debugger will step past calls to

code not contained in the current solution. In Visual Studio 2019 this can be found under the OptionsOptions menu in

the DebuggingDebugging section:

Ensure that Enable just my codeEnable just my code is disabled and that Enable Source L ink suppor tEnable Source L ink suppor t is enabled.

Using Source Link requires enabling debugging for external code, otherwise the debugger will step past calls to

code not contained in the current solution. This option can be found in the PreferencesPreferences window in the

DebuggerDebugger section:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/internals/sourcelink.md
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/sourcelink
file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/sourcelink-images/sourcelink-enable-pc.png#lightbox

 Debug Xamarin.Forms using Source Link

 Source Link caching

 Source Link caching

Ensure that Step into external codeStep into external code is enabled.

If debugging external packages is enabled, Visual Studio will use the Source Link mappings contained in the

NuGet package to download and step through external source code. This can be tested by setting a breakpoint

on a call to a method provided by Xamarin.Forms:

Depending on the settings you specified in the DebuggerDebugger options, Visual Studio will warn you that it is

downloading source files:

Once you allow Visual Studio to download the files, the debugger will step into the external code.

Source Link uses caching for performance. The caching directory for Source link is defined in the OptionsOptions menu

under DebuggingDebugging in the SymbolsSymbols section:

This menu allows you to specify the caching directory for all debug symbols, as well as clear the cache if you

encounter issues with cached symbols.

Source Link uses caching for performance. The caching directory for Source Link on MacOS is

/Users/<username>/Library/Caches/VisualStudio/8.0/Symbols . This folder contains subfolders that store the

repository used to download source files. If the backing repository for a NuGet package has changed, you may

need to manually delete these folders to refresh the cache.

file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/sourcelink-images/sourcelink-enable-mac.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/sourcelink-images/external-code-available.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/sourcelink-images/external-code-available.png#lightbox
file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/sourcelink-images/sourcelink-caching-pc.png#lightbox

 Related links
Source Link Documentation

Source Link on GitHub

https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/sourcelink
https://github.com/dotnet/sourcelink

Troubleshooting Xamarin.Forms
 7/8/2021 • 2 minutes to read • Edit Online

 Error: "Unable to find a version of Xamarin.Forms compatible with..."

Attempting to resolve dependency 'Xamarin.Android.Support.v7.AppCompat (= 23.3.0.0)'.
Attempting to resolve dependency 'Xamarin.Android.Support.v4 (= 23.3.0.0)'.
Looking for updates for 'Xamarin.Android.Support.v7.MediaRouter'...
Updating 'Xamarin.Android.Support.v7.MediaRouter' from version '23.3.0.0' to '23.3.1.0' in project
'Todo.Droid'.
Updating 'Xamarin.Android.Support.v7.MediaRouter 23.3.0.0' to 'Xamarin.Android.Support.v7.MediaRouter
23.3.1.0' failed.
Unable to find a version of 'Xamarin.Forms' that is compatible with 'Xamarin.Android.Support.v7.MediaRouter
23.3.0.0'.

 What causes this error?What causes this error?

Common error conditions and how to resolve them

The following errors can appear in the Package ConsolePackage Console window when updating all the NuGet packages in a

Xamarin.Forms solution or in a Xamarin.Forms Android app project:

Visual Studio for Mac (or Visual Studio) may indicate that updates are available for the Xamarin.Forms NuGet

packge and all its dependencies. In Xamarin Studio, the solution's PackagesPackages node might look like this (the

version numbers might be different):

This error may occur if you attempt to update all the packages.

This is because with Android projects set to a target/compile version of Android 6.0 (API 23) or below,

Xamarin.Forms has a hard dependency on specific versions of the Android support packages. Although updated

versions of those packages may be available, Xamarin.Forms is not necessarily compatible with them.

In this case you should update only the Xamarin.FormsXamarin.Forms package as this will ensure that the dependencies

remain on compatible versions. Other packages that you have added to your project may also be updated

individually as long as they do not cause the Android support packages to update.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/troubleshooting/index.md

NOTENOTE

 Fix: Remove all packages, and re-add Xamarin.FormsFix: Remove all packages, and re-add Xamarin.Forms

If you are using Xamarin.Forms 2.3.4 or higher andand your Android project's target/compile version is set to Android 7.0

(API 24) or higher, then the hard dependencies mentioned above no longer apply and you may update the support

packages independently of the Xamarin.Forms package.

If the Xamarin.Android.Suppor tXamarin.Android.Suppor t packages have been updated to incompatible versions, the simplest fix is to:

1. Manually delete all the NuGet packages in the Android project, then

2. Re-add the Xamarin.FormsXamarin.Forms package.

This will automatically download the correct versions of the other packages.

To see a video of this process, refer to this forums post.

https://forums.xamarin.com/discussion/comment/170012/#Comment_170012

How do I migrate my app to Xamarin.Forms 5.0?
 5/17/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Android

 Minimum TargetFrameworkVersionMinimum TargetFrameworkVersion

<TargetFrameworkVersion>v10.0</TargetFrameworkVersion>

error XF005: The $(TargetFrameworkVersion) for MyProject.Android (v9.0) is less than the minimum required
$(TargetFrameworkVersion) for Xamarin.Forms (10.0). You need to increase the $(TargetFrameworkVersion) for
MyProject.Android.

 Minimum TargetSDKVersionMinimum TargetSDKVersion

Xamarin.Forms 5.0 includes the following breaking changes:

Expander has moved to the Xamarin Community Toolkit. For more information, see Features moved from

Xamarin.Forms.

MediaElement has moved to the Xamarin Community Toolkit. For more information, see Features moved

from Xamarin.Forms.

DataPages, and associated projects, have been removed from Xamarin.Forms.

MasterDetailPage has been renamed to FlyoutPage . Similarly, the MasterBehavior enumeration has been

renamed to FlyoutLayoutBehavior .

References to UIWebView have been removed from Xamarin.Forms on iOS.

Support for Visual Studio 2017 has been removed.

XFCorePostProcessor.Tasks has been removed. This project injected IL to maintain Xamarin.Forms 2.5

compatibility.

In addition, Android and UWP projects built with Xamarin.Forms 5.0 will require updating.

When updating an application to Xamarin.Forms 5.0, ensure that you update each project that references the

Xamarin.Forms NuGet package to an identical version.

Android projects built with Xamarin.Forms 5.0 require that you've installed the AndroidX (Android 10.0)

platform to your development environment. This can be accomplished with the Android SDK manager. For more

information about AndroidX, see AndroidX migration in Xamarin.Forms.

Android projects will then require several updates to build correctly.

Xamarin.Forms 5.0 requires a minimum target framework version of 10.0 (AndroidX) for Android projects. The

target framework version can be set in Visual Studio, or in the Android .csproj file:

A build error will be produced if this minimum requirement isn't met:

AndroidX requires that your Android manifest sets the targetSdkVersion to 29+:

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/troubleshooting/questions/forms5-migration.md
https://github.com/xamarin/XamarinCommunityToolkit/wiki/Features-moved-from-Xamarin.Forms
https://github.com/xamarin/XamarinCommunityToolkit/wiki/Features-moved-from-Xamarin.Forms

<uses-sdk android:minSdkVersion="21" android:targetSdkVersion="29" />

Android.View.InflateException has been thrown.

Binary XML file line #1 in com.companyname.myproject:layout/toolbar: Binary XML file line #1 in
com.companyname.myproject:/layout/toolbar: Error inflating class android.support.v7.widget.Toolbar

NOTENOTE

 Automatic migration to AndroidXAutomatic migration to AndroidX

 Manual migration to AndroidXManual migration to AndroidX

TIPTIP

 Use AndroidX typesUse AndroidX types

A N DRO ID SUP P O RT L IB RA RY N A M ESPA C EA N DRO ID SUP P O RT L IB RA RY N A M ESPA C E A N DRO IDX N A M ESPA C EA N DRO IDX N A M ESPA C E

Android.Support.V4.App AndroidX.Core.App

Android.Support.V4.Content AndroidX.Core.Content

Android.Support.V4.App AndroidX.Fragment.App

Android.Support.V7.App AndroidX.AppCompat.App

Android.Support.V7.Widget AndroidX.AppCompat.Widget

Failure to do this will cause the targetSdkVersion to be set to the minSdkVersion . In addition, in some

circumstances a Android.Views.InflateException will be produced if the targetSdkVersion isn't correctly set:

In Visual Studio 2019, the Android manifest will automatically be updated to specify a targetSdkVersion of API 29

when the target framework version is set to v10.0.

If your Android project references any Android support libraries, either as direct dependencies or transitive

dependencies, these support library dependencies and bindings are automatically swapped with AndroidX

dependencies during the build process. For more information about automatic AndroidX migration, see

Automatic migration in Xamarin.Forms.

If your Android project doesn't have direct or transitive dependencies on Android support libraries, but still

attempts to consume support library types through code, you will have to manually migrate your app to

AndroidX. This can be accomplished by using AndroidX types, and by removing any AXML files that you haven't

customized.

Manual migration to AndroidX will result in the fastest build process for your app.

AndroidX replaces the Android support libraries, and so any references to Android support library types must

be replaced with references to AndroidX types.

This can be accomplished by updating your using statements to use AndroidX namespaces, rather than

Android.Support namespaces. The following table lists some of the common namespace changes when moving

from the Android support libraries to AndroidX:

 Remove AXML filesRemove AXML files

TabLayoutResource = Resource.Layout.Tabbar;
ToolbarResource = Resource.Layout.Toolbar;

IMPORTANTIMPORTANT

 UWP

<TargetPlatformVersion Condition=" '$(TargetPlatformVersion)' == '' ">10.0.18362.0</TargetPlatformVersion>

 Related links

For a complete list of class mappings from support libraries to AndroidX, see AndroidX class mappings on

github.com. For a complete list of assembly mappings from support libraries to AndroidX, see AndroidX

assemblies on github.com

You should delete any AXML files from your Android project, provided that it doesn't use customized AXML files.

After deletion, the following lines should be removed from your MainActivity class:

Android projects with customized AXML files should be updated so that these files use AndroidX types.

Xamarin.Forms 5.0 recommends a target platform version of >= 10.0.18362.0 for UWP projects. The target

platform version can be set in Visual Studio, or in the UWP .csproj file:

A build warning will be produced if your UWP project uses a lower target platform version.

Features moved from Xamarin.Forms

AndroidX migration in Xamarin.Forms

AndroidX class mappings

AndroidX assemblies

https://github.com/xamarin/AndroidX/blob/master/mappings/androidx-class-mapping.csv
https://github.com/xamarin/AndroidX/blob/master/mappings/androidx-assemblies.csv
https://github.com/xamarin/XamarinCommunityToolkit/wiki/Features-moved-from-Xamarin.Forms
https://github.com/xamarin/AndroidX/blob/master/mappings/androidx-class-mapping.csv
https://github.com/xamarin/AndroidX/blob/master/mappings/androidx-assemblies.csv

Can I update the Xamarin.Forms default template
to a newer NuGet package?

 11/2/2020 • 2 minutes to read • Edit Online

This guide uses the Xamarin.Forms .NET Standard library template as an example, but the same general method

will also work for the Xamarin.Forms Shared Project template. This guide is written with the example of

updating from Xamarin.Forms 1.5.1.6471 to 2.1.0.6529, but the same steps are possible to set other versions as

the default instead.

1. Copy the original template .zip from:

C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\Extensions\Xamarin\Xamarin\
[Xamarin Version]\T\PT\Cross-Platform\Xamarin.Forms.PCL.zip

2. Unzip the .zip to a temporary location.

3. Change all of the occurrences of the old version of the Xamarin.Forms package to the new version you'd

like to use.

FormsTemplate\FormsTemplate.vstemplate

FormsTemplate.Android\FormsTemplate.Android.vstemplate

FormsTemplate.iOS\FormsTemplate.iOS.vstemplate

Example: <package id="Xamarin.Forms" version="1.5.1.6471" /> ->

<package id="Xamarin.Forms" version="2.1.0.6529" />

4. Change the "name" element of the main multi-project template file (Xamarin.Forms.PCL.vstemplate) to

make it unique. For example:

<Name>Blank App (Xamarin.Forms Portable) - 2.1.0.6529</Name>

5. Re-zip the whole template folder. Make sure to match the original file structure of the .zip file. The

Xamarin.Forms.PCL.vstemplate file should be at the top of the .zip file, not within any folders.

6. Create a "Mobile Apps" subdirectory in your per-user Visual Studio templates folder :

%USERPROFILE%\Documents\Visual Studio 2013\Templates\ProjectTemplates\Visual C#\Mobile Apps

7. Copy the new zipped-up template folder into the new "Mobile Apps" directory.

8. Download the NuGet package that matches the version from step 3. For example,

https://nuget.org/api/v2/package/Xamarin.Forms/2.1.0.6529 (see also

https://stackoverflow.com/questions/8597375/how-to-get-the-url-of-a-nupkg-file), and copy it into the

appropriate subfolder of the Xamarin Visual Studio extensions folder :

C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\Extensions\Xamarin\Xamarin\
[Xamarin Version]\Packages

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/troubleshooting/questions/update-forms-template.md
https://docs.microsoft.com/en-us/visualstudio/ide/how-to-create-multi-project-templates
https://nuget.org/api/v2/package/Xamarin.Forms/2.1.0.6529
https://stackoverflow.com/questions/8597375/how-to-get-the-url-of-a-nupkg-file

Why doesn't the Visual Studio XAML designer work
for Xamarin.Forms XAML files?

 3/10/2021 • 2 minutes to read • Edit Online

Xamarin.Forms doesn't currently support visual designers for XAML files. Because of this, when trying to open a

Forms XAML file in either Visual Studio's XAML UI Designer or XAML UI Designer with Encoding, the following

error message is thrown:

"The file cannot be opened with the selected editor. Please choose another editor."

This limitation is described in the Xamarin.Forms XAML Basics guide:

"There is no visual designer for generating XAML in Xamarin.Forms applications, so all XAML must be hand-

written."

However, the Xamarin.Forms XAML Editor can be displayed by selecting the View > Other Windows >View > Other Windows >

Xamarin.Forms EditorXamarin.Forms Editor menu option.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/troubleshooting/questions/forms-xaml-designer.md

Android build error – The LinkAssemblies task failed
unexpectedly

 11/2/2020 • 2 minutes to read • Edit Online

 Setting in Visual Studio for Mac

 Setting in Visual Studio

You may see an error message The "LinkAssemblies" task failed unexpectedly when building a

Xamarin.Android project that uses Forms. This happens when the linker is active (typically on a Release build to

reduce the size of the app package); and it occurs because the Android targets aren't updated to the latest

framework. (More information: Xamarin.Forms supported platforms)

The resolution to this issue is to make sure you have the latest supported Android SDK versions, and set the

Target FrameworkTarget Framework to the latest installed platform. It's also recommended that you set the Target AndroidTarget Android

VersionVersion to the latest installed platform, and the minimum Android versionminimum Android version to API 19 or higher. This is

considered the supported configuration.

1. Right click on the Android project, and select OptionsOptions in the menu.

2. In the Project OptionsProject Options dialog, go to Build > GeneralBuild > General .

3. Set the Compile using Android version: (Target Framework)Compile using Android version: (Target Framework) to the latest installed platform.

4. In the Project OptionsProject Options dialog, go to Build > Android ApplicationBuild > Android Application.

5. Set the Minimum Android versionMinimum Android version to API level 19 or higher, and the Target Android versionTarget Android version to the

latest installed platform you chose in (3).

1. Right click on the Android project, and select ProperiesProperies in the menu.

2. In the project properties, go to ApplicationApplication.

3. Set the Compile using Android version: (Target Framework)Compile using Android version: (Target Framework) to the latest installed platform.

4. In the project properties, go to Android ManifestAndroid Manifest.

5. Set the Minimum Android versionMinimum Android version to API level 19 or higher, and the Target Android versionTarget Android version to the

latest installed platform you chose in (3).

Once you've updated those settings, please clean and rebuild your project to ensure your changes are picked up.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/troubleshooting/questions/android-linkassemblies-error.md

Why does my Xamarin.Forms.Maps Android project
fail with COMPILETODALVIK UNEXPECTED TOP-
LEVEL ERROR?

 7/8/2021 • 2 minutes to read • Edit Online

 Visual Studio

 Visual Studio for Mac

This error may be seen in the Error pad of Visual Studio for Mac or in the Build Output window of Visual Studio;

in Android projects using Xamarin.Forms.Maps.

This is most commonly resolved by increasing the Java Heap Size for your Xamarin.Android project. Follow

these steps to increase the heap size:

1. Right-click the Android project & open the project options.

2. Go to Android Options -> AdvancedAndroid Options -> Advanced

3. In the Java heap size text box enter 1G.

4. Rebuild the project.

1. Right-click the Android project & open the project options.

2. Go to Build -> Android Build -> AdvancedBuild -> Android Build -> Advanced

3. In the Java heap size text box enter 1G.

4. Rebuild the project.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/troubleshooting/questions/maps-compiletodalvik-error.md

Xamarin.Forms Samples
 7/8/2021 • 2 minutes to read • Edit Online

 TodoTodo

 BugSweeperBugSweeper

Xamarin.Forms sample apps and code demos to help you get started and understand concepts in

Xamarin.Forms.

All Xamarin.Forms samples

This sample demonstrates a Todo list application where the data is stored and accessed in a local SQLite

database.

This is a familiar game with a new twist. Ten bugs are hidden in a 9-by-9 grid of tiles. To win, you must find and

flag all ten bugs.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/samples/index.md
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/bugsweeper/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/bugsweeper/

 RPN CalculatorRPN Calculator

 SpinPaintSpinPaint

An RPN (Reverse Polish Notation) calculator allows numbers and operations to be entered without parentheses

or an equal key.

The program simulates a revolving disk that you can paint on by touching and moving your fingers. SpinPaint

responds to touch by painting a line under your finger, but it also duplicates that line in three mirror images in

the other three quadrants of the disk.

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/rpncalculator/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/rpncalculator/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/skiasharpforms-spinpaint/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/skiasharpforms-spinpaint/

 XAML SamplesXAML Samples

 XuzzleXuzzle

 All samples

XAML—the eXtensible Application Markup Language—allows developers to define user interfaces in

Xamarin.Forms applications using markup rather than code.

This game is a variation of the classic 14-15 puzzle that you can solve by sliding tiles into the correct order.

For the complete set of Xamarin.Forms sample apps and code demos, see All Xamarin.Forms samples.

https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/xamlsamples/
https://docs.microsoft.com/en-us/samples/xamarin/mobile-samples/liveplayer-xamagonxuzzlelp/
https://docs.microsoft.com/en-us/samples/xamarin/mobile-samples/liveplayer-xamagonxuzzlelp/
https://docs.microsoft.com/en-us/samples/browse/?products=xamarin&term=xamarin.forms

Creating Mobile Apps with Xamarin.Forms book
 7/8/2021 • 5 minutes to read • Edit Online

 Download eBook for free

 Samples

 Chapter summaries

 Download chapters and summaries

C H A P T ERC H A P T ER C O M P L ET E T EXTC O M P L ET E T EXT SUM M A RYSUM M A RY

Chapter 1. How Does Xamarin.Forms
Fit In?

Download PDF Summary

 Download the sample

The book Creating Mobile Apps with Xamarin.Forms by Charles Petzold is a guide for

learning how to write Xamarin.Forms applications. The only prerequisite is knowledge of the

C# programming language. The book provides an extensive exploration into the

Xamarin.Forms user interface and also covers animation, MVVM, triggers, behaviors, custom

layouts, custom renderers, and much more.

The book was published in the spring of 2016, and has not been updated since then. There is

much in the book that remains valuable, but some of the material is outdated, and some topics are no longer

entirely correct or complete.

Download your preferred eBook format from Microsoft Virtual Academy:

PDF (56Mb)PDF (56Mb)

ePub (151Mb)ePub (151Mb)

Kindle edition (325Mb)Kindle edition (325Mb)

You can also download individual chapters as PDF files.

The samples are available on github, and include projects for iOS, Android, and the Universal Windows Platform

(UWP). (Xamarin.Forms no longer supports Windows 10 Mobile, but Xamarin.Forms applications will run on the

Windows 10 desktop.)

Chapter summaries are available in the chapter table show below. These summaries describe the contents of

each chapter, and include several types of links:

Links to the actual chapters of the book (at the bottom of the page), and to related articles

Links to all the samples in the xamarin-forms-book-samplesxamarin-forms-book-samples GitHub repository

Links to the API documentation for more detailed descriptions of Xamarin.Forms classes, structures,

properties, enumerations, and so forth

These summaries also indicate when material in the chapter might be somewhat outdated.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/creating-mobile-apps-xamarin-forms/index.md
https://github.com/xamarin/xamarin-forms-book-samples
https://aka.ms/xamformsebook
https://aka.ms/xamebook/epub
https://aka.ms/xamebook/mobi
https://github.com/xamarin/xamarin-forms-book-samples
https://github.com/xamarin/xamarin-forms-book-samples
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch01-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter01

Chapter 2. Anatomy of an App Download PDF Summary

Chapter 3. Deeper into Text Download PDF Summary

Chapter 4. Scrolling the Stack Download PDF Summary

Chapter 5. Dealing with Sizes Download PDF Summary

Chapter 6. Button Clicks Download PDF Summary

Chapter 7. XAML vs. Code Download PDF Summary

Chapter 8. Code and XAML in
Harmony

Download PDF Summary

Chapter 9. Platform-Specific API Calls Download PDF Summary

Chapter 10. XAML Markup Extensions Download PDF Summary

Chapter 11. The Bindable
Infrastructure

Download PDF Summary

Chapter 12. Styles Download PDF Summary

Chapter 13. Bitmaps Download PDF Summary

Chapter 14. Absolute Layout Download PDF Summary

Chapter 15. The Interactive Interface Download PDF Summary

Chapter 16. Data Binding Download PDF Summary

Chapter 17. Mastering the Grid Download PDF Summary

Chapter 18. MVVM Download PDF Summary

Chapter 19. Collection Views Download PDF Summary

Chapter 20. Async and File I/O Download PDF Summary

Chapter 21. Transforms Download PDF Summary

Chapter 22. Animation Download PDF Summary

Chapter 23. Triggers and Behaviors Download PDF Summary

Chapter 24. Page Navigation Download PDF Summary

Chapter 25. Page Varieties Download PDF Summary

C H A P T ERC H A P T ER C O M P L ET E T EXTC O M P L ET E T EXT SUM M A RYSUM M A RY

https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch02-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter02
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch03-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter03
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch04-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter04
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch05-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter05
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch06-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter06
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch07-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter07
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch08-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter08
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch09-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter09
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch10-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter10
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch11-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter11
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch12-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter12
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch13-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter13
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch14-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter14
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch15-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter15
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch16-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter16
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch17-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter17
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch18-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter18
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch19-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter19
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch20-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter20
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch21-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter21
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch22-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter22
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch23-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter23
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch24-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter24
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch25-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter25

Chapter 26. Custom Layouts Download PDF Summary

Chapter 27. Custom renderers Download PDF Summary

Chapter 28. Location and Maps Download PDF Summary

C H A P T ERC H A P T ER C O M P L ET E T EXTC O M P L ET E T EXT SUM M A RYSUM M A RY

 Ways in which the book is outdated

 .NET Standard 2.0 libraries have replaced Portable Class Libraries.NET Standard 2.0 libraries have replaced Portable Class Libraries

 The role of XAML has been elevatedThe role of XAML has been elevated

 Supported platformsSupported platforms

 Chapter summariesChapter summaries

Since the publication of Creating Mobile Apps with Xamarin.Forms, several new features have been added to

Xamarin.Forms. These new features are described in individual articles in the Xamarin.Forms documentation.

Other changes have caused some of the content of the book to be outdated:

A Xamarin.Forms application generally uses a library to share code among the different platforms. Originally,

this was a Portable Class Library (PCL). There are many references to PCLs throughout the book and the chapter

summaries.

The Portable Class Library has been replaced with a .NET Standard 2.0 library, as described in the article .NET

Standard 2.0 Support in Xamarin.Forms. All the sample code from the book has been updated to use .NET

Standard 2.0 libraries.

Most of the information in the book concerning the role of the Portable Class Library remains the same for a

.NET Standard 2.0 library. One difference is that only a PCL has a numeric "profile." Also, there are some

advantages to .NET Standard 2.0 libraries. For example, Chapter 20, Async and File I/O describes how to use the

underlying platforms for performing file I/O. This is no longer necessary. The .NET Standard 2.0 library supports

the familiar System.IO classes for all Xamarin.Forms platforms.

The .NET Standard 2.0 library also allows Xamarin.Forms applications to use HttpClient to access files over the

Internet rather than WebRequest or other classes.

Creating Mobile Apps with Xamarin.Forms begins by describing how to write Xamarin.Forms applications using

C#. The Extensible Application Markup Language (XAML) isn't introduced until Chapter 7. XAML vs. Code.

XAML now has a much larger role in Xamarin.Forms. The Xamarin.Forms solution templates distributed with

Visual Studio create XAML-based page files. A developer using Xamarin.Forms should become familiar with

XAML as early as possible. The eXtensible Application Markup Language (XAML) section of the Xamarin.Forms

documentation contains several articles about XAML to get you started.

Xamarin.Forms no longer supports Windows 8.1 and Windows Phone 8.1.

The book sometimes makes references to the Windows Runtime. This is a term that encompasses the Windows

API used in several versions of Windows and Windows Phone. More recent versions of Xamarin.Forms restricts

itself to supporting the Universal Windows Platform, which is the API for Windows 10 and Windows 10 Mobile.

A .NET Standard 2.0 library does not support any version of Windows 10 Mobile. Therefore, a Xamarin.Forms

application using a .NET Standard library will not run on a Windows 10 Mobile device. Xamarin.Forms

applications continue to run on the Windows 10 desktop, versions 10.0.16299.0 and above.

Xamarin.Forms has preview support for the Mac, WPF, GTK#, and Tizen platforms.

https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch26-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter26
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch27-Apr2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter27
https://download.xamarin.com/developer/xamarin-forms-book/XamarinFormsBook-Ch28-Aug2016.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter28
https://docs.microsoft.com/en-us/xamarin/index
file:///T:/c1uy/wq21/xamarin/xamarin-forms/internals/net-standard.html
https://github.com/xamarin/xamarin-forms-book-samples
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter20
https://docs.microsoft.com/en-us/dotnet/api/system.io
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/summaries/chapter07
file:///T:/c1uy/wq21/xamarin/xamarin-forms/xaml/index.html#body

NOTENOTE

 SamplesSamples

 Related Links

The chapter summaries include information concerning changes in Xamarin.Forms since the book was written.

These are often in the form of notes:

Notes on each page indicate where Xamarin.Forms has diverged from the material presented in the book.

In the xamarin-forms-book-samplesxamarin-forms-book-samples GitHub repository, the or iginal-code-from-bookoriginal-code-from-book branch contains

program samples consistent with the book. The main branch contains projects that have been upgraded to

remove deprecated APIs and reflect enhanced APIs. In addition, the Android projects in the main branch have

been upgraded for Android Material Design via AppCompat and will generally display black text on a white

background.

MS Press blog

Sample code from book

https://github.com/xamarin/xamarin-forms-book-samples
https://docs.microsoft.com/en-us/archive/blogs/microsoft_press/free-ebook-creating-mobile-apps-with-xamarin-forms
https://github.com/xamarin/xamarin-forms-book-samples

Enterprise Application Patterns using
Xamarin.Forms eBook

 7/8/2021 • 4 minutes to read • Edit Online

NOTENOTE

 Preface

 Introduction

 MVVM

 Dependency Injection

Architectural guidance for developing adaptable, maintainable, and testable Xamarin.Forms enterprise

applications

This eBook was published in the spring of 2017, and has not been updated since then. There is much in the book that

remains valuable, but some of the material is outdated.

This eBook provides guidance on how to implement the Model-View-ViewModel (MVVM) pattern, dependency

injection, navigation, validation, and configuration management, while maintaining loose coupling. In addition,

there's also guidance on performing authentication and authorization with IdentityServer, accessing data from

containerized microservices, and unit testing.

This chapter explains the purpose and scope of the guide, and who it's aimed at.

Developers of enterprise apps face several challenges that can alter the architecture of the app during

development. Therefore, it's important to build an app so that it can be modified or extended over time.

Designing for such adaptability can be difficult, but typically involves partitioning an app into discrete, loosely

coupled components that can be easily integrated together into an app.

The Model-View-ViewModel (MVVM) pattern helps to cleanly separate the business and presentation logic of an

application from its user interface (UI). Maintaining a clean separation between application logic and the UI

helps to address numerous development issues and can make an application easier to test, maintain, and evolve.

It can also greatly improve code re-use opportunities and allows developers and UI designers to more easily

collaborate when developing their respective parts of an app.

Dependency injection enables decoupling of concrete types from the code that depends on these types. It

typically uses a container that holds a list of registrations and mappings between interfaces and abstract types,

and the concrete types that implement or extend these types.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/enterprise-application-patterns/index.md
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/preface
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/introduction
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/dependency-injection

 Communicating Between Loosely Coupled Components

 Navigation

 Validation

 Configuration Management

 Containerized Microservices

 Authentication and Authorization

Dependency injection containers reduce the coupling between objects by providing a facility to instantiate class

instances and manage their lifetime based on the configuration of the container. During the objects creation, the

container injects any dependencies that the object requires into it. If those dependencies have not yet been

created, the container creates and resolves their dependencies first.

The Xamarin.Forms MessagingCenter class implements the publish-subscribe pattern, allowing message-based

communication between components that are inconvenient to link by object and type references. This

mechanism allows publishers and subscribers to communicate without having a reference to each other, helping

to reduce dependencies between components, while also allowing components to be independently developed

and tested.

Xamarin.Forms includes support for page navigation, which typically results from the user's interaction with the

UI, or from the app itself, as a result of internal logic-driven state changes. However, navigation can be complex

to implement in apps that use the MVVM pattern.

This chapter presents a NavigationService class, which is used to perform view model-first navigation from

view models. Placing navigation logic in view model classes means that the logic can be exercised through

automated tests. In addition, the view model can then implement logic to control navigation to ensure that

certain business rules are enforced.

Any app that accepts input from users should ensure that the input is valid. Without validation, a user can supply

data that causes the app to fail. Validation enforces business rules, and prevents an attacker from injecting

malicious data.

In the context of the Model-View-ViewModel (MVVM) pattern, a view model or model will often be required to

perform data validation and signal any validation errors to the view so that the user can correct them.

Settings allow the separation of data that configures the behavior of an app from the code, allowing the

behavior to be changed without rebuilding the app. App settings are data that an app creates and manages, and

user settings are the customizable settings of an app that affect the behavior of the app and don't require

frequent re-adjustment.

Microservices offer an approach to application development and deployment that's suited to the agility, scale,

and reliability requirements of modern cloud applications. One of the main advantages of microservices is that

they can be scaled-out independently, which means that a specific functional area can be scaled that requires

more processing power or network bandwidth to support demand, without unnecessarily scaling areas of the

application that are not experiencing increased demand.

There are many approaches to integrating authentication and authorization into a Xamarin.Forms app that

communicates with an ASP.NET MVC web application. Here, authentication and authorization are performed

with a containerized identity microservice that uses IdentityServer 4. IdentityServer is an open source OpenID

Connect and OAuth 2.0 framework for ASP.NET Core that integrates with ASP.NET Core Identity to perform

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/communicating-between-loosely-coupled-components
https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.messagingcenter
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/navigation
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/validation
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/configuration-management
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/containerized-microservices
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/authentication-and-authorization

 Accessing Remote Data

 Unit Testing

 Community Site

 Related Links

bearer token authentication.

Many modern web-based solutions make use of web services, hosted by web servers, to provide functionality

for remote client applications. The operations that a web service exposes constitute a web API, and client apps

should be able to utilize the web API without knowing how the data or operations that the API exposes are

implemented.

Testing models and view models from MVVM applications is identical to testing any other classes, and the same

tools and techniques can be used. However, there are some patterns that are typical to model and view model

classes, that can benefit from specific unit testing techniques.

This project has a community site, on which you can post questions, and provide feedback. The community site

is located on GitHub. Alternatively, feedback about the eBook can be emailed to dotnet-architecture-ebooks-

feedback@service.microsoft.com.

Download eBook (2Mb PDF)

eShopOnContainers (GitHub) (sample)

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/accessing-remote-data
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/unit-testing
https://github.com/dotnet-architecture/eShopOnContainers
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com
https://aka.ms/xamarinpatternsebook
https://github.com/dotnet-architecture/eShopOnContainers

SkiaSharp Graphics in Xamarin.Forms
 7/8/2021 • 2 minutes to read • Edit Online

 SkiaSharp Preliminaries

IMPORTANTIMPORTANT

 SkiaSharp Drawing Basics

 SkiaSharp Lines and Paths

 Download the sample

Use SkiaSharp for 2D graphics in your Xamarin.Forms applications

SkiaSharp is a 2D graphics system for .NET and C# powered by the open-source Skia graphics engine that is

used extensively in Google products. You can use SkiaSharp in your Xamarin.Forms applications to draw 2D

vector graphics, bitmaps, and text.

This guide assumes that you are familiar with Xamarin.Forms programming.

Webinar : SkiaSharp for Xamarin.FormsWebinar : SkiaSharp for Xamarin.Forms

SkiaSharp for Xamarin.Forms is packaged as a NuGet package. After you've created a Xamarin.Forms solution in

Visual Studio or Visual Studio for Mac, you can use the NuGet package manager to search for the

SkiaSharp.Views.FormsSkiaSharp.Views.Forms package and add it to your solution. If you check the ReferencesReferences section of each

project after adding SkiaSharp, you can see that various SkiaSharpSkiaSharp libraries have been added to each of the

projects in the solution.

If your Xamarin.Forms application targets iOS, edit its Info.plistInfo.plist file to change the minimum deployment target

to iOS 8.0.

In any C# page that uses SkiaSharp you'll want to include a using directive for the SkiaSharp namespace,

which encompasses all the SkiaSharp classes, structures, and enumerations that you'll use in your graphics

programming. You'll also want a using directive for the SkiaSharp.Views.Forms namespace for the classes

specific to Xamarin.Forms. This is a much smaller namespace, with the most important class being

SKCanvasView . This class derives from the Xamarin.Forms View class and hosts your SkiaSharp graphics output.

The SkiaSharp.Views.Forms namespace also contains an SKGLView class that derives from View but uses OpenGL

for rendering graphics. For purposes of simplicity, this guide restricts itself to SKCanvasView , but using SKGLView

instead is quite similar.

Some of the simplest graphics figures you can draw with SkiaSharp are circles, ovals, and rectangles. In

displaying these figures, you will learn about SkiaSharp coordinates, sizes, and colors. The display of text and

bitmaps is more complex, but these articles also introduce those techniques.

A graphics path is a series of connected straight lines and curves. Paths can be stroked, filled, or both. This article

encompasses many aspects of line drawing, including stroke ends and joins, and dashed and dotted lines, but

stops short of curve geometries.

https://github.com/MicrosoftDocs/xamarin-docs/blob/live/docs/xamarin-forms/user-interface/graphics/skiasharp/index.md
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/skiasharpforms-demos
https://channel9.msdn.com/Events/Xamarin/Xamarin-University-Presents-Webinar-Series/SkiaSharp-Graphics-for-XamarinForms/player?nocookie=true
https://docs.microsoft.com/en-us/dotnet/api/skiasharp
https://docs.microsoft.com/en-us/dotnet/api/skiasharp.views.forms
https://docs.microsoft.com/en-us/dotnet/api/skiasharp.views.forms.skcanvasview
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/basics/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/paths/index

 SkiaSharp Transforms

 SkiaSharp Curves and Paths

 SkiaSharp Bitmaps

 SkiaSharp Effects

 Related Links

Transforms allow graphics objects to be uniformly translated, scaled, rotated, or skewed. This article also shows

how you can use a standard 3-by-3 transform matrix for creating non-affine transforms and applying

transforms to paths.

The exploration of paths continues with adding curves to a path objects, and exploiting other powerful path

features. You'll see how you can specify an entire path in a concise text string, how to use path effects, and how

to dig into path internals.

Bitmaps are rectangular arrays of bits corresponding to the pixels of a display device. This series of articles

shows how to load, save, display, create, draw on, animate, and access the bits of SkiaSharp bitmaps.

Effects are properties that alter the normal display of graphics, including linear and circular gradients, bitmap

tiling, blend modes, blur, and others.

SkiaSharp APIs

SkiaSharpFormsDemos (sample)

SkiaSharp with Xamarin.Forms Webinar (video)

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/transforms/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/bitmaps/index
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/effects/index
https://docs.microsoft.com/en-us/dotnet/api/skiasharp
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/skiasharpforms-demos
https://channel9.msdn.com/Events/Xamarin/Xamarin-University-Presents-Webinar-Series/SkiaSharp-Graphics-for-XamarinForms

	Cover Page
	Get Started
	What is Xamarin.Forms
	Installation
	Installing Xamarin on Windows
	Installing Xamarin Previews (Windows)
	Uninstalling Xamarin from Visual Studio

	Installing Visual Studio for Mac
	Installing Xamarin Previews (Mac)
	Uninstalling Visual Studio for Mac

	Xamarin Firewall Configuration Instructions

	Supported platforms
	First App
	Quickstarts
	File > New
	Multipage
	Database
	Styling
	Deep dive

	Tutorials
	Stack Layout
	Label
	Button
	Text entry
	Text editor
	Images
	Grid Layout
	Lists
	Pop-ups
	App lifecycle
	Local database
	Web services

	Learn about Xamarin
	.NET developers
	Java developers
	Objective-C developers
	Azure

	Development guidance

	XAML
	Overview
	XAML Basics
	Part 1. Get Started with XAML
	Part 2. Essential XAML Syntax
	Part 3. XAML Markup Extensions
	Part 4. Data Binding Basics
	Part 5. From Data Bindings to MVVM

	XAML Controls
	XAML Compilation
	XAML Markup Extensions
	Consuming XAML Markup Extensions
	Creating XAML Markup Extensions

	Tooling
	XAML Hot Reload
	Live Visual Tree
	XAML Toolbox
	XAML Previewer
	Design-time data
	Custom controls

	Namespaces
	XAML Namespaces
	XAML Custom Namespace Schemas
	XAML Namespace Recommended Prefixes

	Additional Capabilities
	Bindable Properties
	Attached Properties
	Resource Dictionaries
	Passing Arguments
	Generics
	Field Modifiers
	Loading XAML at Runtime

	Xamarin.Forms XAML on Q&A

	Application Fundamentals
	Overview
	Accessibility
	Automation Properties
	Keyboard Accessibility

	App Class
	App Lifecycle
	Application Indexing and Deep Linking
	Behaviors
	Introduction
	Attached Behaviors
	Xamarin.Forms Behaviors
	Reusable EffectBehavior

	Custom Renderers
	Introduction
	Renderer Base Classes and Native Controls
	Customizing an Entry
	Customizing a ContentPage
	Customizing a Map Pin
	Customizing a ListView
	Customizing a ViewCell
	Customizing a WebView
	Implementing a View

	Data Binding
	Basic Bindings
	Binding Mode
	String Formatting
	Binding Path
	Binding Value Converters
	Relative Bindings
	Binding Fallbacks
	Multi-Bindings
	The Command Interface
	Compiled Bindings

	DependencyService
	Introduction
	Registration and Resolution
	Picking from the Photo Library

	Dual-screen
	Get started
	Dual-screen patterns
	TwoPaneView layout
	DualScreenInfo helper class
	Dual-screen triggers

	Effects
	Introduction
	Effect Creation
	Passing Parameters
	Parameters as CLR Properties
	Parameters as Attached Properties

	Invoking Events
	Reusable RoundEffect

	Gestures
	Tap
	Pinch
	Pan
	Swipe
	Drag and Drop

	Local Notifications
	Localization
	String and Image Localization
	Right-to-Left Localization

	MessagingCenter
	Navigation
	Hierarchical Navigation
	TabbedPage
	CarouselPage
	FlyoutPage
	Modal Pages

	Shell
	Introduction
	Create a Shell application
	Flyout
	Tabs
	Pages
	Navigation
	Search
	Lifecycle
	Custom Renderers

	Templates
	Overview
	Control Templates
	Data Templates
	Introduction
	Data Template Creation
	Data Template Selection

	Triggers

	User Interface
	Overview
	Controls reference
	Overview
	Pages
	Layouts
	Views
	Cells
	Common properties, methods, and events
	Third-party controls

	Present data
	BoxView
	Image
	Label
	Map
	Overview
	Initialization and Configuration
	Map Control
	Position and Distance
	Pins
	Polygons, Polylines, and Circles
	Geocoding
	Launch the Native Map App

	Shapes
	Overview
	Ellipse
	Fill rules
	Geometries
	Line
	Paths
	Path
	Path markup syntax
	Path transforms

	Polygon
	Polyline
	Rectangle

	WebView

	Initiate commands
	Button
	ImageButton
	RadioButton
	RefreshView
	SearchBar
	SwipeView

	Set values
	CheckBox
	DatePicker
	Slider
	Stepper
	Switch
	TimePicker

	Edit text
	Editor
	Entry

	Indicate activity
	ActivityIndicator
	ProgressBar

	Display collections
	CarouselView
	Introduction
	Data
	Layout
	Interaction
	EmptyView
	Scrolling

	CollectionView
	Introduction
	Data
	Layout
	Selection
	EmptyView
	Scrolling
	Grouping

	IndicatorView
	ListView
	Data Sources
	Cell Appearance
	List Appearance
	Interactivity
	Performance

	Picker
	Setting a Picker's ItemsSource Property
	Adding Data to a Picker's Items Collection

	TableView

	Additional controls
	MenuItem
	ToolbarItem

	Concepts
	Animation
	Simple Animations
	Easing Functions
	Custom Animations

	Brushes
	Overview
	Solid Colors
	Gradients
	Overview
	Linear Gradients
	Radial Gradients

	Colors
	Display pop-ups
	Fonts
	Graphics with SkiaSharp
	Splash screen
	Styles
	Styling Xamarin.Forms Apps using XAML Styles
	Introduction
	Explicit Styles
	Implicit Styles
	Global Styles
	Style Inheritance
	Dynamic Styles
	Device Styles
	Style Classes

	Styling Xamarin.Forms Apps using Cascading Style Sheets (CSS)

	Theming
	Theme an Application
	Respond to System Theme Changes

	Visual
	Material Visual
	Create a Visual Renderer

	Visual state manager

	Layouts
	Overview
	Choose a Layout
	Core layouts
	AbsoluteLayout
	FlexLayout
	Grid
	RelativeLayout
	StackLayout

	Additional layouts
	ContentView
	Frame
	ScrollView

	Concepts
	Bindable Layouts
	Custom Layouts
	Device Orientation
	LayoutOptions
	Layout Compression
	Margin and Padding
	Tablet & Desktop

	Platform Features
	Overview
	Android
	Overview
	AndroidX Migration
	Button Padding and Shadows
	Entry Input Method Editor Options
	ImageButton Drop Shadows
	ListView Fast Scrolling
	NavigationPage Bar Height
	Page Lifecycle Events
	Soft Keyboard Input Mode
	SwipeView Swipe Transition Mode
	TabbedPage Page Swiping
	TabbedPage Page Transition Animations
	TabbedPage Toolbar Placement and Color
	ViewCell Context Actions
	VisualElement Elevation
	VisualElement Legacy Color Mode
	WebView Mixed Content
	WebView Zoom

	iOS
	Overview
	Accessibility Scaling for Named Font Sizes
	Cell Background Color
	DatePicker Item Selection
	Entry Cursor Color
	Entry Font Size
	FlyoutPage Shadow
	Formatting
	Modal Page Presentation Style
	Large Page Titles
	ListView Group Header Style
	ListView Row Animations
	ListView Separator Style
	Main Thread Control Updates
	NavigationPage Bar Separator
	NavigationPage Bar Text Color Mode
	NavigationPage Bar Translucency
	Page Home Indicator Visibility
	Page Status Bar Visibility
	Picker Item Selection
	Safe Area Layout Guide
	ScrollView Content Touches
	SearchBar Style
	Simultaneous Pan Gesture Recognition
	Slider Thumb Tap
	SwipeView Swipe Transition Mode
	TabbedPage Translucent TabBar
	TimePicker Item Selection
	VisualElement Blur
	VisualElement Drop Shadows
	VisualElement Legacy Color Mode
	VisualElement First Responder

	Windows
	Overview
	Default Image Directory
	FlyoutPage Navigation Bar
	InputView Reading Order
	ListView SelectionMode
	Page Toolbar Placement
	Platform Setup
	RefreshView Pull Direction
	SearchBar Spell Check
	TabbedPage Icons
	VisualElement Access Keys
	VisualElement Legacy Color Mode
	WebView Execution Mode
	WebView JavaScript Alerts

	Create Platform-Specifics
	Device Class
	Native Forms
	Native Views
	Native Views in XAML
	Native Views in C#

	Sign In with Apple
	Setup for iOS
	Setup for other platforms
	Use Sign In with Apple

	Other Platforms
	GTK#
	Mac
	Tizen
	WPF

	Xamarin.Essentials
	Get Started
	Platform & Feature Support
	Accelerometer
	App Actions
	App Information
	App Theme
	Barometer
	Battery
	Clipboard
	Color Converters
	Compass
	Connectivity
	Contacts
	Detect Shake
	Device Display Information
	Device Information
	Email
	File Picker
	File System Helpers
	Flashlight
	Geocoding
	Geolocation
	Gyroscope
	Haptic Feedback
	Launcher
	Magnetometer
	Main Thread
	Maps
	Media Picker
	Open Browser
	Orientation Sensor
	Permissions
	Phone Dialer
	Platform Extensions
	Preferences
	Screenshot
	Secure Storage
	Share
	SMS
	Text-to-Speech
	Unit Converters
	Version Tracking
	Vibrate
	Web Authenticator
	Xamarin.Essentials release notes
	Troubleshooting
	Xamarin.Essentials on Q&A

	Data & Azure Cloud Services
	Overview
	Local data storage
	Overview
	File Handling
	Local Databases

	Azure Services
	Azure services overview
	Azure Cosmos DB Document Database
	Azure Notification Hubs
	Azure Storage
	Azure Search
	Azure Functions

	Azure Cognitive Services
	Cognitive services overview
	Introduction
	Speech Recognition
	Spell Check
	Text Translation
	Perceived Emotion Recognition

	Web Services
	Web services overview
	Introduction
	ASMX
	WCF
	REST

	Authentication
	Authentication overview
	REST
	Azure Active Directory B2C
	Azure Cosmos DB Authentication

	Deployment & Testing
	Overview
	Improve Performance
	Hot Restart
	Automate Testing with Visual Studio App Center
	Publish iOS apps
	Publish Android apps
	Publish UWP apps
	Publish Mac apps

	Advanced Concepts and Internals
	Overview
	Controls Class Hierarchy
	Dependency Resolution
	Experimental Flags
	Fast Renderers
	Source Link

	Troubleshooting
	Frequently Asked Questions
	How do I migrate my app to Xamarin.Forms 5.0?
	Can I update the Xamarin.Forms default template to a newer NuGet package?
	Why doesn't the Visual Studio XAML designer work for Xamarin.Forms XAML files?
	Android build error: The LinkAssemblies task failed unexpectedly
	Why does my Xamarin.Forms.Maps Android project fail with COMPILETODALVIK : UNEXPECTED TOP-LEVEL ERROR?

	Xamarin.Forms on Q&A
	Release notes
	Samples
	Creating Mobile Apps with Xamarin.Forms Book
	Enterprise Application Patterns eBook
	SkiaSharp Graphics in Xamarin.Forms

